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Abstract

Given a program P we specify an enlargement of
its Well Founded Model which gives meaning to
the adding of Closed World Assumptions. We do
so by proposing the desirable principles of a Closed
World Assumption (CWA), and proceed to for-
mally define and apply them to Well Founded Se-
mantics (WFS), in order to obtain a WFS added
with CWA, the O-semantics. After an introduc-
tion and motivating examples, there follow the
presentation of the concepts required to formalize
the model structure, the properties it enjoys, and
the criteria and procedures which allow the pre-
cise characterization of the preferred unique maxi-
mal model that gives the intended meaning to the
O-Semantics of a program, the O-Model. Some
properties are also exhibited that permit a more
expedite obtention of the models. Several detailed
examples are introduced throughout to illustrate
the concepts and their application. Comparison is
made with other work, and in the conclusions the
novelty of the approach is brought out.

1 Introduction and Motiva-
tion

Well Founded Semantics [Van Gelder et al., 1980]
has been proposed as a suitable semantics for gen-
eral logic programs. Its Extended Stable Mod-
els (XSM) [Przymusinska and Przymusinski, 1990,
Przymusinski, 1990] version has been explored as
a framework for formalizing a variety of forms of
non-monotonic reasoning [Pereira et al., 1991d,
Pereira et al., 1991e] and generalized to deal with
contradiction removal and counterfactuals [Pereira
et al., 1991a, Pereira et al., 1991b, Pereira et al.,
1991c]. The increasing role of logic programming

extensions as an encompassing framework for these
and other AI topics is expounded at length in
[Kakas and Mancarella, 1991b], where they argue,
and we concur, that WFS is by design overly care-
ful in deciding about the falsity of some atoms,
leaving them undefined, and that a suitable form
of CWA can be used to safely and undisputably
assume false some of the atoms absent from the
well founded model of a program. Consider the
program P, adapted from [Kakas and Mancarella,
1991a]: {a <—~a; ¢ <~a}, where WEFM (P) = {}.
We argue that the intended meaning of the pro-
gram may be {~c}, since ~a may not be true in
any model of P, by the first rule, and so, the sec-
ond rule cannot contradict the assigned meaning.
Another way to understand this is that one may
safely assume ~c using a form of CWA on ¢, since
~a may not be consistently assumed.

However, when relying on the absence of present
evidence about some atom A, we do not always
want to assume that ~ A holds, since there may
exist consistent assumptions allowing to conclude
A. Roughly, we want to define the notion of con-
cluding for the truth of a negative literal ~A just
in case there is no hard nor hypothetical evidence
to the contrary, i.e. no consistent set of negative
assumptions such that ~A is untenable.

Consider P = {a <—~b; b<~a; c < a}. If we
interpret the meaning of this program as its WFM
(which is empty), and as we do not have a, a naive
CWA could be tempted to derive ~c based on the
assumption ~a. There is however an alternative
negative assumption ~b, that if made, defeats the
assumption ~a, i.e. the assumption ~a may not
be sustained since it can be defeated by the as-
sumption ~b. We will define later more precisely
the notions of sustainability and tenability.

Both programs above have empty well founded



models. We argue that WFS is too careful, and
something more can safely be added to the mean-
ing of program, thus reducing the undefinedness of
the program, if we are willing to adopt a suitable
form of CWA.

We argue that a set CWA(P) of negative lit-
erals (assumptions) added to a program model
MOD(P) by CWA must obey the four principles:

1. MOD(P) U CWA(P) ¥ L for any
~L € CW A(P). This says that the program
model added with the set of assumptions iden-
tified by the CWA rule must be consistent.

2. There is no other set of assumptions A
such that MOD(P) U A E L for some
~L € CWA(P). Le. CWA(P) is sustain-
able.

3. CWA(P) must be maximal.

4. CW A(P) must be unique.

The paper is organized as follows: in the next
section we present some basic definitions. In sec-
tion 3 we introduce some new definitions, captur-
ing the concepts behind the semantics, accompa-
nied by examples illustrating them. Models are
defined and organized into a lattice, and the class
of sustainable A-Models is identified. In section 5
we define the O-Semantics of a program P based on
the class of maximal sustainable tenable A-Models.
A unique model is singled out as the O-Model of P.
Afterwards we present some properties of the class
of A-Models. Finally, we relate to other semantics
and present conclusions.

2 Language

Here we give basic definitions and establish nota-
tion ([Monteiro, 1991]). A program is a set of rules
of the form: H < By,...,B,,~Cy,...,~Cp (n >
0,m > 0) or equivalently H « {By,...,B,}U
~{Cy,...,Cp}, where ~{A;,...; A,} is a short-
hand for {~A4;,...,~A,}, and ~C is short for
~{C1,...,Cy}; H,, B; and C; are atoms.

The Herbrand Base B(P) of a program P is de-
fined as usual as the set of all ground atoms. An
interpretation I of P is denoted by TU ~F', where
T and F are disjoint subsets of B(P). Atoms in T
are said to be true in I, atoms in F' false in I, and
atoms in B(P) — (T'U F) undefined in I.

In an interpretation TU ~ F a conjunction of
literals {Bi,...,Bp}U ~{Ch,...,Cp} is true iff
{B1,...,Bp} CT and {C4,...,Cp} C F,is false
iff{Bl,...,Bn}ﬂF;«éﬂor {Cl,,Cm}ﬂF;é@,

and is undefined iff it is neither true nor false.

3 Adding Negative Assump-
tions to a Program

Here we show how to consistently add negative
assumptions to a program P. Informally, it is con-
sistent to add a negative assumption to P if the
assumption atom is not among the consequences
P after adding the assumption. We also define
when a set of negative assumptions is defeated by
another, and show how the models of a program,
for different sets of negative assumptions added to
it, are organized into a lattice.

We begin by defining what it means to add as-
sumptions to a program. This is achieved by sub-
stituting true for the assumptions, and false for
their atoms, in the body of all rules.

Definition 3.1 (P+A) The program P + A ob-
tained by adding to a program P a set of negative
assumptions A C~B(P) is the result of:

e Deleting all rules H « {B;,...,B,}U ~C

from P, such that some B; € A

e Deleting from the remaining rules all ~L € A

Definition 3.2 (Assumption Model) An As-
sumption Model of a program P, or A-Model for
short, is a pair (4; M) where A C~ B(P) and
M =WFEM(P + A).

Among these models we define the partial order
<, in the following way: (Aq; M) <, (A2; Ms) iff
Ay C As. On the basis of set union and set inter-
section among the sets A of negative assumptions,
the set of all A-Models becomes organized as a
complete lattice.

Having defined assumption models we next con-
sider their consistency. According to the CWA
principles above, an assumption ~ A cannot be
added to a program P if by doing so A is itself
a consequence of P, or some other assumption is
contradicted.

Definition 3.3 (Consistent A-Model) An A-
Model (A4; M) is consistent iff A U M is an inter-
pretation, i.e. there exists no assumption ~L € A
such that L € M.



Example 1 Let P = {c <~ b; b <~ g
a <~a}, whose WFM is empty. The A-Model
({~a};{a,b,~c}) is inconsistent since by adding
the assumption ~a then a € WFM(P + {~a}).
The same happens with all A-Models containing
the assumption ~a. The A-Model ({~b, ~c}; {c})
is also inconsistent. Thus the only consistent A-

Models are ({};{}), ({~b};{c}) and ({~c}; {}). O

Lemma 3.1 If an A-Model AM is inconsistent
then any AM' such that AM <, AM' is incon-
sistent.

Proof:[sketch] We prove that for all ~a’ € B(P),
if (A;WFM(P + A)) is inconsistent then
(AU{~d'};;WFM(P + A U {~d'})) is also in-
consistent. By definition of consistent A-Model:
I~be A|be WFM(P + A), so it suffices to
guarantee that : b ¢ WFM(P + AU {~d'}) —
a e WEM(P+ AU {~a'}).

Consider b ¢ WFM(P + A U {~d'}). Since
P+ AU{~a'} only differs from P + A in rules
with @’ or ~a’, and since b is true in P + A, it can
be shown «' is also true in P + A. As the truth
of an atom in the WFM of any program may not
rely neither on the truth of itself nor of its com-
plementary, and because the addition of ~a’ to
P + A only changes rules with ~a' or @, the truth
value of @' in P+ AU {~a'} remains the same, i.e.
a' € WFM(P+ AU{~d'}). &

According to the CWA principles above, an as-
sumption ~A cannot be sustained if there is some
set of consistent assumptions that concludes A.
We’ve already expressed the notion of consistency
being used. To capture the notion of sustainability
we now formally define how an A-Model can de-
feat another, and define sustainable A-Models as
the nondefeated consistent ones.

Definition 3.4 (Defeating)
A consistent A-Model (A; M) is defeated by a con-
sistent (A'; M') iff 3 ~a € Ala € M'.

Definition 3.5 (Sustainable A-Models)

An A-Model (A; M) is sustainable iff it is consis-
tent and not defeated by any consistent A-Model.
Equivalently (~S; M) is sustainable iff:

SN Uconsistent (Ai; M;) M; = {}

Example 2 The only sustainable models in ex-
ample 1 are ({};{}) and ({~b};{c}). Note that
the consistent A-Model ({~c};{}) is defeated by

({~b}; {c}), i.e. the assumption ~c is unsustain-
able since there is a set of consistent assumptions
(namely {~b}) that leads to the conclusion ¢. O

The assumptions part of maximal sustainable A-
Models of a program P are maximal sets of consis-
tent Closed World Assumptions that can be safely
added to the consequences of P without risking
contradiction by other assumptions.

Lemma 3.2 If an A-Model AM is defeated by an-
other A-Model D, then all A-Models AM' such
that AM <, AM' are defeated by D.

Proof: Similar to the proof of lemma 3.1 above. <

Lemma 3.3 The A-Model ({}; WFM(P)) is al-
ways sustainable.

Proof: By definition of sustainable. {

Theorem 3.4 The set of all sustainable A-Models
is nonempty. On the basis of set union and set in-
tersection among its A sets, the A-Models ordered
by <, form a lower semi lattice.

Proof: Follows directly from the above lemmas. <

A program may have several maximal sustain-
able A-Models.

Example 3 Let

P = {c ~c,~b; b+ a; a +~a}. Its sustainable
A-Models are ({};{}), ({~b};{}) and ({~c};{}).
The last two are maximal sustainable A-Models.
We cannot add both ~b and ~c to the program to
obtain a sustainable A-Model since ({~b, ~c}; {c})
is inconsistent. O

4 The O-semantics

This section is concerned with the problem of sin-
gling out, among all sustainable A-Models of a pro-
gram P, one that uniquely determines the mean-
ing of P when the CWA is enforced. This is ac-
complished by means of a selection criterium that
takes a lower semilattice of sustainable A-Models
and obtains a subsemilattice of it, by deleting A-
Models that in a well defined sense are less prefer-
able, i.e. the untenable ones.

Sustainability of a consistent set of negative as-
sumptions insists that there be no other consistent



set that defeats it (i.e. there is no hypothetical evi-
dence whose consequences contradict the sustained
assumptions). Tenability requires that a maximal
sustainable set of assumptions be not contradicted
by the consequences of adding to it another com-
peting (nondefeating and nondefeated) maximal
sustainable set.

The selection process is repeated and ends
up with a complete lattice of sustainable A-
Models, which defines for every program P its O-
Semantics. The meaning of P is then specified
by the greatest A-Model of the semantics, its O-
Model.

To illustrate the problem of preference among
maximal A-Models we give an example.

Example 4

Let P = {c <—~c,~b; b+ a; a <~a}, whose sus-
tainable A-Models are ({};{}), ({~b};{}), and
({~c},{}). Because we wish to maximize the
number of negative assumptions we consider the
maximal A-Models, which in this case are the
last two. The join of these maximal A-Models,
({~b, ~c}; {c}), is per force inconsistent, in this
case wrt ¢. This means that when assuming ~c
there is an additional set of assumptions entail-
ing ¢, making this A-Model untenable. But the
same does not apply to ~b. Thus the preferred A-
Model is ({~b},{}), and the A-Model ({~c};{})
is said untenable. The rationale for the preference
is grounded on the fact that the inconsistency of
the join arises wrt ¢ but not wrt 5. O

Definition 4.1 (Candidate Structure)
A Candidate Structure CS of a program P is any

subsemilattice of the lower semi lattice of all sus-
tainable A-Models of P.

Definition 4.2 (Untenable A-Models)

Let {(Av; My), ..., (An; Mp)} be the set of all maz-
imal A-Models in Candidate Structure C'S. Let
J = (Ay; My) be the join of all such A-Models, in
the complete lattice of all A-Models . An A-Model
(Ai; M;) is untenable wrt CS iff it is mazimal in
CS and there exists ~a € A; such that a € Mj.

Proposition 4.1 There exists no untenable A-
Model wrt a Candidate Structure with a single
maximal element.

Proof: Since the join coincides with the unique
maximal A-Model, which is sustainable by defini-
tion of CS, then it cannot be untenable. {

The Candidate Structure left after removing all
untenable A-Models of a CS, may itself have sev-
eral maximal elements, some of which might not
be maximal A-Models in the initial CS. If the re-
moval of untenable A-Models is performed repeat-
edly on the retained Candidate Structure, a single
maximal element is eventually obtained, albeit the
bottom element of all the CSs.

Definition 4.3 (Retained CS) The Re-
tained Candidate Structure R(CS) of a Candidate
Structure C'S is:

e CS if it has a single mazimal A-Model, i.e.
C'S is a complete lattice.

o Otherwise, let Unt be the set of all untenable
A-Models wrt CS. Then R(CS) = R(CS —
Unt).

Definition 4.4 (The O-Semantics)
The O-Semantics of a program P is defined by the
Retained Candidate Structure of the semilattice of
all sustainable A-Models of P.

Let (A; M) be its mazimal element. The in-
tended meaning of P is AU M, the O-Model of
P.

Theorem 4.1 (Existence of O-Semantics)
The Retained Candidate Structure of the semilat-
tice of all sustainable A-Models is nonempty.

Proof:[sketch] It suffices to guarantee that at each
iteration with more than one maximal A-Model at
least one is untenable. This is done by contradic-
tion: suppose no maximal A-Model is untenable.
Then their join would be the single maximal sus-
tainable one, and so could not be untenable, in the
previous and final iteration; accordingly the sup-
posed models cannot be maximal.

When there is a single maximal A-Model then
the structure is a complete lattice, since at
each iteration only maximal A-Models were re-
moved. This lattice is nonempty since its bot-
tom ({}; WFM(P)) is always sustainable and can
never be untenable. <

5 Examples

In this section we display some examples and their
O-Semantics. Remark that indeed the O-Models
obtained express the safe CWAs compatible with
the WFMs (which are all {}).



Example 5
Let P = {a +~a; b+ a;c ~c,~b; d + ¢} The
semilattice of all sustainable A-Models CS is:

(({Nb’ Nd}’{}) (({ch Nd}:{Nd})
(A~ {1) (H~d), 13) (el {~a})
(IR0

The join of its maximal A-
Models is ({~b, ~c,~d}; {c,~d}). Consequently,
the maximal A-Model on the right is untenable
since it contains ~c¢ in the assumptions, and c is
a consequence of the join. So R(CS) = R(CS")
where C'S' is:

({Nb’ Nd}’ {}

({33 (({Nd]r{})) (({re} {~d})
{{

The join of all maximal elements in C'S’ is the same
as before and the only untenable A-Model is again
the maximal one having ~c in its assumptions.

Thus R(C'S) = R(CS") where CS" is:
({~b,~d1, 1
({0} {3) ((~d{31)
.

So the O-Model is {~b, ~d}. Note that if P is
divided into P, = {c +~c,~b; d+ ¢} and P> =
{a +~a; b + a}, the O-models of P, and P, both
agree on the only common literal ~b. So ~b rightly
belongs to the O-models of P. O

Example 6 Let P = {q <~p; p < a; a +~b;
b +~c; ¢ +~a}. Its only consistent A-Models
are ({3 {}), ({~p}i{a}) and ({~q}:{}). As this
last one is defeated by the second, the only sus-
tainable ones are the first two. Since only one is
maximal, these two A-Models determine the O-
Semantics, and the meaning of P is {~p,q}, its
O-Model. Note that if the three last rules, form-
ing an "undefined loop”, are replaced by another
"undefined loop” a <—~a, the O-model is the same.
This is as it should, since the first two rules con-
clude nothing about a. O

Example 7 Let P = {p + a,b; a +~b; b <~a}.
The A-Models with ~b in their assumptions de-
feat A-Models with ~a in their assumptions and

vice-versa. Thus the O-Semantics is determined
by ({};{}) and ({~p};{}), and the meaning of P
is {~p}, its O-Model. O

Example 8 Let P = {c <~c¢,~b; b<n~c,~b;
b + a; a +~a}. Its sustainable A-Models are
({3 01), ({~b}; {}) and ({~c}; {}). The join of the
maximal ones is ({~b, ~c}; {b, c}), and so both are
untenable. Thus the Retained Candidate Struc-
ture has the single element ({}; {}) and the mean-
ingof Pis {} O

6 Properties of Sustainable
A-Models

This section explores properties of sustainable
A-Models that provide a better understanding
of them, and also give hints for their construc-
tion without having to previously calculate all A-
Models.

We begin with properties that show how our
models can be viewed as an extension to Well
Founded Semantics (WFS). As mentioned in
[Kakas and Mancarella, 1991a], negation in WFS
is based on the notion of support, i.e. a literal ~L
only belongs to an Extended Stable Model (XSM)
if all the rules for L (if any) have false bodies in
the XSM. In contradistinction, we are interested
in negations as consistent hypotheses that cannot
be defeated. To that end we weaken the necessary
(but not sufficient) conditions for a negative lit-
eral to belong to a model as explained below. We
still want to keep the necessary and sufficient con-
ditions of support for positive literals. More pre-
cisely, knowing that XSMs must obey, among oth-
ers, the following conditions cf. [Monteiro, 1991]:

o If there exists a rule p < B in the program
such that B is true in model M then p is also
true in M (sufficiency of support for positive
literals).

e If an atom p € M then there exists a rule
p < B in the program such that B is true in
M (necessity of support for positive literals).

e If all rule bodies for p are false in M then
~p € M (sufficiency of support for negative
literals).

e If ~p € M then all rules for p have false bodies
in M (necessity of support for negative liter-
als).



Our consistent A-models, when understood as
the union of their pair of elements, assumptions
A and WFM(P + A), need not obey the fourth
condition. Foregoing it condones making negative
assumptions. In our models an atom might be false
even if it has a rule whose body is undefined. Thus,
only false atoms with an undefined rule body are
candidates for having their negation added to the
WFM(P).

Proposition 6.1 Let (A; M) be any consistent A-
Model of a program P. The interpretation AU M

obeys the first three conditions above.

Proof: Here we prove the satisfaction of the first

condition. The remaining proofs are along the
same lines.

If E'p — bl,...,bn,N Clye.oy™~ Cpy € P |
{b1,..., by, ~c1,...,~cpm} € AU M then b; € M

(1<i<n)and~c; € Mor~c; € A(1<j<m).
Let p < by,... ,~ckp(l > 1,k < m) be
the rule obtained from an existing one by removing
all ~c; € A, which is, by definition, a rule of P+ A.
Thus there exists a rule p + B in P+ A such that
BCWFM(P+A) = M. Given that the WFM of
any program must obey the first condition above,
pEWFM(P+ A).

7bn7Ncl7"‘

Next we state properties useful for more directly
finding the sustainable A-Models.

Proposition 6.2 There exists no consistent A-
Model (A; M) of P with ~a € A such that
a € WFM(P).

Proof: Let (A; M) be an A-Model such that
~a € A and a € WFM(P). It is known that the
truth of any a € WFM(P) cannot be sup-
ported neither on itself nor on ~a. If A = {~a}
then, after adding {~a} to the program, the
rules supporting the truth of @ remain un-
changed, i.e. a€ WFM(P + {~a}), and thus
({~a}; WFM(P + {~a})) is inconsistent. It fol-
lows, from lemma 3.1, that all A-Models (A4; M)
such that {~a} C A are inconsistent. ¢

Hence, A-Models not obeying the above restric-
tion are not worth considering as sustainable.

Proposition 6.3

If a negative literal ~L € WFM(P) then there is
no consistent A-Model (A; M) of P such that
LeM.

Proof:[sketch] We prove that if L € M for a given
A-Model (A; M) of P then (A; M) is inconsistent.
If L € M there must exist a rule L + B,~C in P
such that BU ~C' C M U A and BU ~C is false in
WFM(P), i.e. there must exist L < B,~C in P
with at least one body literal true in M U A and
false in W FM (P). If that literal is an element of
~C', by proposition 6.2, (A; M) is inconsistent (its
corresponding atom is true in WF M (P) and false
in M UA). If it is an element of B this theorem
applies recursively, ending up in a rule with empty
body, an atom with no rules or a loop without an
interposing ~[. By definition of WFM (P + A) the
truth value of literals in these conditions can never
be changed. {

Theorem 6.1 If ~L €¢ WFM(P) then ~L € M
in every consistent A-Model (A; M) of P.

Proof: Given proposition 6.3, it suffices to prove
that L is not undefined in any consistent A-Model
of P. The proof is along the lines of that of the
proposition above.

Consequently, all supported negative literals in
the WFM (P), which includes those without rules
for their atom, belong to every sustainable A-
Model.

Lemma 6.2 Let WFM(P) = TU ~F. For any
subset S of ~F, WFM(P)=WFM(P +S).

Proof: This lemma is easily shown using the def-
inition of P + A and the properties of the WFM.
¢

Theorem 6.3 Let WFM(P) = TU ~ F and
(A;WFM(P + A)) be a consistent A-Model, and
let A = AN ~ F. Then WFM(P + A) =
WFM(P+ (A-A")).

Proof: Let P/ = P+ (A— A"), and WFM(P) =
TU ~F. By theorem 6.1 ~F C WFM(P'). So,
by lemma 6.2, WFM(P') = WFM(P'+ ~F) =
WEM([P+(A—(AN ~F))]+ ~F). By definition of
P+A lt fOllOWS that (P+A1)+A2 = P+(A1 UAQ)
Thus WFM(P') is:

WFM(P +[(A— (AN ~F)U ~F))
= WFM(P+ A)



This theorem shows that sets of assumptions
including negative literals of WFM(P) are not
worth considering since there exist smaller sets
having exactly the same consequences AU M and,
by proposition 6.3 the larger sets are not defeatable
by reason of negative literals from the WFM(P).

Another important hint for calculating the sus-
tainable A-Models is given by lemma 3.1. Accord-
ing to it one should start by calculating A-Models
with smaller assumption sets, so that when an in-
consistent A-Model is found, by the lemma, sets
of assumptions containing it are unworth consid-
ering.

Example 9

Let P = {p+~a,~b; a + ¢,d; ¢ <~c; d}. The
least A-Model is ({};{d,~b}) where {d,~b} =
WFM(P). Thus sets of assumptions contain-
ing ~ d or ~ b are not worth considering.
Take now, for example, the consistent A-Model
({~a};{d,~b,p}), which we retain. Consider
({~c}; {c,a, ~p}); as this A-Model is inconsistent
we do not retain it nor consider any other A-
Models with assumption sets containing ~c. Now
we are left with just two more A-Models worth
considering:  ({~p};{d,~b}) which is defeated
by <{Na}) {da Nb,p}>, and <{Np> Na}; {da Nb>p}>
which is inconsistent. Thus the only two sustain-
able A-Models are ({}; {d, ~b})
and ({~a};{d, ~b,p}). In this case, the latter is
the single maximal sustainable A-Model, and thus
uniquely determines the intended meaning of P to
be AUM = {~a,d,~b,p}. O

7 Relation to other work

Consider the following program ([Van Gelder et
al., 1980]):

P = {p¢q,~r,~s qr,~p;

T4 P, ;8 =P~ ~T}

In [Przymusinska and Przymusinski, 1990] they
argue that the intended semantics of this program
should be the interpretation {s, ~p, ~q, ~r} due to
the mutual circularity of p, ¢, r. This model is pre-
cisely the meaning assigned to the program by the
O-Semantics, its O-Model. Note that WFS iden-
tifies the (3-valued) empty model as the meaning
of the program. This is also the model provided
by stable model semantics [Gelfond and Lifschitz,
1988]. The weakly perfect model semantics for this

program is undefined as noticed in [Przymusinska,
and Przymusinski, 1990].

The EWFS [Baral et al., 1990] is also an exten-
sion to the WFM based on the notion of GCWA
[Minker, 1987]. Roughly EWFS moves closer than
the WEFM (in the sense of being less undefined)
to being the intersection of all minimal Herbrand
models of P [Dix, 1991]:

EWFM(P) =40f
WFM(P) +(T(WFM(P)), F(WFM(P)))

where: T'(I) =4y True(I — MIN — MOD(P)),
F(I) =g4ey False(I — MIN — MOD(P)) and
I-MIN—-MOD(P) is the collection of all minimal
models consistent with the three valued interpre-
tation I.

For the program P = {a <—~a} we have:

WFM(P) = {},
MIN-MOD(P) = {a} and EWFM(P) = {a}

Note this view identifies the intended meaning
of rule a <~ a as the equivalent logic formula
a < —a, i.e. a. The O-Model of P is empty.

The difference between the O-Semantics and
EWEFS may be noticed in the intended meaning
of the two rule program: {a <—~b; b +—~a}, which
is behind the motivation of the extension EFWS of
WFM based on GCWA. EWFS wants to identify
a V b as the meaning of this program, which also
justifies the identification of a +—~a with the fact
a. The O-Model is empty.

A similar approach based on the notion of stable
negative hypotheses (built upon the notion of con-
sistency) is introduced in [Kakas and Mancarella,
1991b], identifying a stable theory associated with
a program P as a "skeptical” semantics for P, that
always contains the well founded model.

One example showing that
their approach is still conservative is:
{p +~q; q «~r; T <~p; s+ p}. Stable theories
identifies the empty set as the meaning of the pro-
gram; however its O-Model is {~s}, since it is con-
sistent, maximal, sustainable and tenable. Kakas
(personnal communication) now also obtains this
model, as a result of the investigation mentioned in
the conclusions of [Kakas and Mancarella, 1991b)].

8 Conclusions

We identify the meaning of a program P as a suit-
able partial closure of the well founded model of



the program in the sense that it contains the well
founded model (and thus always exists). The ex-
tension we propose reduces undefinedness (which
some authors argue is a desirable property) in the
intended meaning of a program P, by an ade-
quate form of CWA based on notions of consis-
tency, sustainability and tenability with regard to
alternative negative assumptions. Sustainability
of a consistent set of negative assumptions insists
that there be no other consistent set that defeats it
(i.e. there is no hypothetical evidence whose con-
sequences contradict the sustained assumptions).
Tenability requires that a maximal sustainable set
of assumptions be not contradicted by the conse-
quences of adding to it another competing (nonde-
feating and nondefeated) maximal sustainable set.
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