

Tiago José Valente Nunes

Licenciado em Matemática

Problema de Afetação de Recursos com Diferentes Competências

Dissertação para obtenção do Grau de Mestre em

Matemática e Aplicações - Ramo Atuariado, Estatística e Investigação Operacional

Orientadora: Prof.ª Doutora Isabel Cristina Silva Correia,

Professora Auxiliar, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa

Co-orientadora: Prof.ª Doutora Paula Alexandra da Costa Amaral,

Professora Auxiliar, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa


Júri

Presidente: Prof.ª Doutora Maria Isabel Azevedo Rodrigues Gomes, FCT-UNL

Arguente: Prof.ª Doutora Lídia Ludovina Lampreia Caeiro Pica Lourenço, FCT-UNL


Vogal: Prof.ª Doutora Isabel Cristina Silva Correia, FCT-UNL

Problema de Afetação de Recursos com Diferentes Competências Copyright © Tiago José Valente Nunes, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa. A Faculdade de Ciências e Tecnologia e a Universidade NOVA de Lisboa têm o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de inves-

tigação, não comerciais, desde que seja dado crédito ao autor e editor.

AGRADECIMENTOS

Às minhas orientadoras, a Professora Isabel e a Professora Paula, sem as quais este trabalho não seria uma realidade, pela disponibilidade, pela atenção, pelo incentivo, pela ajuda e por, em todos os momentos, terem dado tudo de graça, o meu sincero e profundo obrigado, esperando que tudo lhes seja devolvido de graça e em graça.

A todos os professores e funcionários do DM que me acompanharam e motivaram ao longo deste trabalho, às Professoras Isabel Gomes e Graça Gonçalves pela ajuda com o *GAMS*, à Professora Elvira pela amizade e pela palavra amiga no momento certo, à Professora Ana Luísa e ao Professor José Maria pelo apoio constante e ao Professor Paulo, à Professora Ayana e à Professora Fátima pelos alertas sobre o caminho a seguir.

Aos meus pais, pelo exemplo de vida que sempre serão e pela força e coragem a cada momento, ao meu irmão por tudo o que é e por ser capaz de perceber quando preciso de ajuda, mesmo antes de eu o saber.

Ao meu avô e à minha avó que já partiram deste mundo. À minha avó e à minha madrinha, por me indicarem sempre que a vida é para a frente, e ao meu avô e à minha tia, pelo testemunho e pela força de vida.


À D. Isaura e ao Sr. César, por tudo, sempre.

Aos amigos de uma vida, que definem aquilo que é a amizade, ao João, à Daniela, ao Nuno, ao Diogo, ao Tiago, ao Francisco, à Maria, à Célia, à Sofia, ao Luís, à Professora Helena, à Família Brito e a todos os que levando a sua missão mais alto me ajudaram.

Aos meus colegas de trabalho, por todas as oportunidades e por todos os momentos.


Ao Pe. Sidónio, ao Pe. Edgar, ao Pe. Francisco, ao Pe. Yeovanni, ao Pe. Hermenegildo e ao Pe. Pedro, por me mostrarem que existe sempre um plano melhor do que o meu.

A todos os que me ajudaram ao longo deste trabalho, muito obrigado! A todos! A cada um!

Contudo, não vos alegreis porque os espíritos vos obedecem; alegrai-vos, antes, por estarem os vossos nomes escritos no Céu.

Lc 10, (1-11, 17-20)

RESUMO


O problema em estudo neste trabalho, designado por Problema de Afetação de Recursos com Diferentes Competências, surgiu no contexto de uma empresa de retalho na qual é necessário planear a distribuição de tarefas pelos funcionários ao longo de um horizonte de planeamento e de acordo com o que se conhece nunca foi abordado na literatura.

Cada funcionário possui um conjunto de competências que poderá alargar através de formação *on job*, pois o desempenho de qualquer função apenas pode ocorrer se o funcionário possuir competência para tal. Caso a mão de obra existente não seja suficiente para satisfazer a procura, existe a possibilidade de recurso a *outsourcing*, para algumas funções. Todos os funcionários a exercerem funções auferem um salário correspondente à função exercida.

O problema descrito foi formulado em Programação Linear Inteira considerando um modelo multi-periódico, pois a afetação será feita para cada período do horizonte de planeamento. O modelo desenvolvido tem como objetivo a minimização dos custos de afetação, tendo em conta a satisfação da procura de mão de obra ao longo do horizonte temporal, o conjunto de competências de cada funcionário e ainda o recurso a formação e/ou *outsourcing*. O modelo pode ser adaptado com novos conjuntos de restrições, tais como a inclusão de regras laborais ou a variação de custos.

Foi realizada uma experiência computacional com dados gerados para o efeito, dada a impossibilidade de utilização de dados reais. Os resultados obtidos demonstram que a influência da formação no conjunto de competências dos funcionários e na afetação e que o recurso a *outsourcing* apenas se verifica quando é estritamente necessário para satisfazer a procura e não existem funcionários disponíveis para tal.

Palavras-chave: Otimização, Programação Inteira, Problema de Afetação, Competências, Formação, *Outsourcing*.

ABSTRACT


The problem studied in this work, called Assignment Problem of Resources with Different Skills, in the context of a retail company in which it is necessary to plan the distribution of tasks by the employees over the planning horizon. To the best knowledge of the author, the problem studied in this work has not been adressed in the literature.

Each employee has a set of skills that can be extended through on-job training, since the performance of any task can only occur if the employee has the skill to do so. If existing labor force is not sufficient to meet the demand, there is the possibility of using outsourcing for some tasks. All the employees receive a salary corresponding to the task performed.

The described problem was formulated in Integer Linear Programming considering a multi-period model, since the assignment will be done for each period of the planning horizon. The developed model has the objective of minimizing assignment costs, taking into account the satisfaction of the demand over the time horizon, the set of skills of each employee and also the use of training and outsourcing. The model can be adapted with new sets of constraints, such as the inclusion of labor rules or cost variation.


A computational experiment was performed with generated data for this purpose, given the impossibility of using real data. The results show the influence of training on the skills of employees and on the task assignment, also the use of outsourced employees only occurs when it is strictly necessary to satisfy the demand and there are no employees available.

Keywords: Optimization, Integer Programming, Assignment Problem, Skills, Training, Outsourcing.


Índice

Lista de Figuras Lista de Tabelas Siglas									
						1	Intr	odução	1
						2	Rev	isão Bibliográfica	3
	2.1	Introdução	3						
	2.2	Problemas de Afetação	6						
	2.3	Problemas de Afetação com Diferenciação de Recursos	10						
	2.4	Gestão de Recursos Humanos	13						
3	Um Modelo para o Problema de Afetação de Recursos com Diferentes Com-								
	peté	èncias	15						
	3.1	Introdução	15						
	3.2	Descrição do Problema	16						
	3.3	Exemplo Ilustrativo	19						
	3.4	Formulação do Problema	21						
	3.5	Solução para o Exemplo Ilustrativo	23						
	3.6	Possíveis Extensões para a Formulação	25						
4	Experiência Computacional								
	4.1	Introdução	27						
	4.2	Geração de Instâncias	28						
	4.3	Software e Metodologia de Resolução	30						
	4.4	Resultados Computacionais	30						
		4.4.1 Análise de Resultados	30						
		4.4.2 Análise de uma solução	33						
5	Con	clusão	37						
Bi	bliog	grafia	39						


Lista de Figuras

4.1	Dimensões das instâncias do problema	32
4.2	Necessidade de funcionários $i \in I$ para as funções $j \in J$, ao longo do horizonte	
	temporal	35

LISTA DE TABELAS

2.1	Custo de deslocação de cada voluntario para as areas de intervenção	3
3.1	Número de funcionários necessários por função e por período de tempo	19
3.2	Conjunto de funções para as quais os funcionários têm competência, no pe-	
	ríodo inicial	19
3.3	Taxa de contribuição do funcionário i para a função $j, i \in I, j \in J$	20
3.4	Duração da formação do funcionário i para a função j , $i \in I$, $j \in J$	20
3.5	Custos de afetar um funcionário a uma dada função, em unidades monetárias	
	(u.m.)	20
3.6	Funções realizadas pelos funcionários ao longo do horizonte de planeamento.	24
3.7	Número de funcionários contratados em regime de <i>outsourcing</i>	24
4.1	Geração dos parâmetros do problema.	29
4.2	Dimensões das instâncias do problema	31
4.3	Tempos de resolução e valores dos GAP's das instâncias do problema	33
4.4	Peso dos custos de formação e <i>outsourcing</i> na solução ótima	36

SIGLAS


PARDC Problema de Afetação de Recursos com Diferentes Competências.

PL Programação Linear.

PLB Programação Linear Binária.PLI Programação Linear Inteira.PLM Programação Linear Mista.

TUM Totalmente Unimodular.

u.m. unidades monetárias.

Introdução

Um dos problemas com que muitas empresas se deparam está relacionado com a afetação dos seus funcionários a um conjunto de tarefas a realizar, como ocorre, por exemplo, nas áreas dos transportes, saúde, indústria, retalho, turismo e construção.

O problema estudado neste trabalho surgiu no contexto de uma empresa de retalho. A empresa dispõe de um conjunto de funcionários com diferentes competências que necessita afetar a um conjunto de tarefas, necessitando cada tarefa de um determinado número de funcionários para a sua execução. Sendo a variabilidade da procura ao longo do tempo uma realidade inerente a este tipo de empresas, surge assim a necessidade de desenvolver procedimentos que permitam, de uma forma eficiente, fazer a afetação dos funcionários às diferentes tarefas ao longo do tempo.

Desta forma surgiu a necessidade de estudar um Problema de Afetação de Recursos com Diferentes Competências (PARDC) que é o tema desta dissertação. Neste problema é necessário afetar funcionários a tarefas ao longo de um determinado horizonte de planeamento. No início do horizonte temporal os funcionários podem possuir ou não um conjunto de competências, podendo este conjunto ser alargado mediante a realização de ações de formação sob determinadas condições. Dado que é prática comum em muitas empresas o recurso a *outsourcing*, o PARDC também contempla esta possibilidade.

Nesta dissertação propõe-se um modelo em Programação Linear Inteira (PLI) para o problema em estudo. Trata-se de um modelo multi-periódico cuja solução além de indicar a distribuição dos funcionários pelas várias tarefas ao longo do horizonte de planeamento, possibilita também a calendarização de ações de formação dos funcionários e contratações em regime de *outsourcing*. Este modelo pretende ser uma primeira ferramenta de apoio

à gestão de recursos humanos na empresa de retalho que esteve na origem deste problema.

Este trabalho conta com mais quatro secções. Na segunda secção é feita uma revisão bibliográfica sobre problemas variados que envolvem a afetação de recursos a tarefas, onde são também indicadas as diferentes técnicas que foram usadas na sua abordagem.

Na secção seguinte, o PARDC é descrito de uma forma detalhada sendo explicados todos os parâmetros utilizados e os pressupostos considerados. Apresenta-se uma formulação para este problema que, de acordo com o conhecimento do autor, é original. A formulação apresentada é ilustrada com um pequeno exemplo, terminando com algumas variantes ao modelo apresentado.

Na secção quatro é apresentada a experiência computacional realizada com o objetivo de testar o modelo proposto. Como não foi possível utilizar instâncias reais, procedeu-se à geração de um conjunto de instâncias de teste cuja geração se descreve, apresentando-se os resultados computacionais obtidos.

A última secção desta dissertação apresenta as conclusões sobre o trabalho realizado e algumas direções de trabalho futuro.

REVISÃO BIBLIOGRÁFICA

2.1 Introdução

Nesta tese estuda-se um Problema de Afetação de Recursos com Diferentes Competências (PARDC). Assim, optou-se por incluir neste capítulo uma revisão bibliográfica sobre problemas que de algum modo envolvam a afetação de recursos.

Dado que o problema de afetação clássico é um problema importante neste contexto, optou-se por revisitar este problema.

Genericamente um problema de afetação consiste em determinar a correspondência de menor custo entre dois conjuntos com o mesmo número de elementos. Como exemplo, podemos indicar a afetação de recursos a tarefas.

Consideremos o seguinte exemplo: um projeto de voluntariado pretende distribuir de forma equitativa os seus 3 voluntários pelas 3 áreas de intervenção existentes. Na tabela 2.1 indica-se o custo, em unidades monetárias (u.m.), de enviar cada um dos voluntários para cada área de intervenção. Pretende-se determinar qual a forma mais económica de distribuir os voluntários pelas áreas de intervenção, sabendo que cada voluntário deve ser distribuído por uma única área e que cada área deve receber um só voluntário.

		Áreas		
		1	2	3
	1	4	7	3
Voluntários	2	5	8	6
	3	5	2	5

Tabela 2.1: Custo de deslocação de cada voluntário para as áreas de intervenção.

Para que o problema possa ser formulado, é necessário começar por definir as seguintes variáveis de decisão:

$$x_{ij} = \begin{cases} 1, & \text{se o volunt\'ario } i \text{ \'e colocado na \'area } j \\ 0, & \text{caso contr\'ario} \end{cases}, \quad i, j \in \{1, 2, 3\}$$

Definidas as variáveis, podemos definir a função objetivo do problema que neste caso será a minimização dos custos totais de deslocação:

min
$$4x_{11} + 7x_{12} + 3x_{13} + 5x_{21} + 8x_{22} + 6x_{23} + 5x_{31} + 2x_{32} + 5x_{33}$$

Para terminar a formulação do problema, definem-se as restrições, onde se pretende garantir que cada voluntário apenas é colocado numa área e que cada área é intervencionada apenas por um voluntário:

$$\begin{aligned} x_{11} + x_{12} + x_{13} &= 1 \\ x_{21} + x_{22} + x_{23} &= 1 \\ x_{31} + x_{32} + x_{33} &= 1 \\ x_{11} + x_{21} + x_{31} &= 1 \\ x_{12} + x_{22} + x_{32} &= 1 \\ x_{13} + x_{23} + x_{33} &= 1 \\ x_{ij} &\in \{0, 1\}, i, j \in \{1, 2, 3\} \end{aligned}$$

Após a definição das variáveis, da função objetivo e das restrições, o problema está totalmente formulado, como se apresenta a seguir:

min
$$4x_{11} + 7x_{12} + 3x_{13} + 5x_{21} + 8x_{22} + 6x_{23} + 5x_{31} + 2x_{32} + 5x_{33}$$
 sujeito a: $x_{i1} + x_{i2} + x_{i3} = 1, i \in \{1, 2, 3\}$ $x_{1j} + x_{2j} + x_{3j} = 1, j \in \{1, 2, 3\}$ $x_{ij} \in \{0, 1\}, i, j \in \{1, 2, 3\}$

Considere-se agora o caso geral do problema de afetação, com n recursos disponíveis para realizar n tarefas, sendo que a cada recurso deve ser atribuída uma tarefa e cada tarefa deve ser realizada apenas por um recurso, sendo o objetivo a minimização dos custos de afetação.

Deste modo, consideremos c_{ij} como o custo de afetação do recurso i à tarefa j, $(i, j \in$ $\{1,\ldots,n\}$), e as variávies:

$$x_{ij} = \begin{cases} 1, & \text{se o recurso } i \text{ realiza a tarefa } j \\ 0, & \text{caso contrário} \end{cases}, \quad i, j \in \{1, \dots, n\}$$

A função objetivo representa a medida da qualidade da solução obtida, observando a gestão eficaz de todos os recursos, o que no caso de um problema de afetação é minimizar os custos de afetação, garantindo a realização de todas as tarefas e a afetação de todos os recursos.

O problema de afetação pode então formular-se em Programação Linear Binária (PLB) como:

$$\min \quad \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} \tag{2.1}$$

sujeito a:

$$\sum_{j=1}^{n} x_{ij} = 1 \qquad i \in \{1, ..., n\}$$

$$\sum_{i=1}^{n} x_{ij} = 1 \qquad j \in \{1, ..., n\}$$
(2.2)

$$\sum_{i=1}^{n} x_{ij} = 1 \qquad j \in \{1, \dots, n\}$$
 (2.3)

$$x_{ij} \in \{0,1\}$$
 $i,j \in \{1,\dots,n\}$ (2.4)

Por definição, uma matriz é Totalmente Unimodular (TUM) se qualquer das suas submatrizes quadradas tem determinante 0, 1 ou -1. Dado que os termos independentes são números inteiros e a matriz dos coeficientes das variáveis nas restrições deste problema é TUM, existe uma solução ótima inteira para a relaxação linear. Desta forma, o problema pode ser resolvido substituindo as restrições (2.4) por $0 \le x_{ij} \le 1$. Devido às restrições (2.2) e (2.3), sabemos que $x_{ij} \le 1, i, j \in \{1, ..., n\}$ e por isso, o problema de afetação pode ser formulado em Programação Linear (PL) substituindo as restrições (2.4) por $x_{ij} \ge 0$. O algoritmo Húngaro, desenvolvido por Kuhn (1955), é um método muito conhecido que permite determinar a solução ótima de um problema de afetação.

Muitas vezes os problemas reais que envolvem a afetação de recursos a tarefas são mais complexos que o problema correspondente ao modelo apresentado, dado que é necessário entrar em linha de conta com outro tipo de restrições e/ou variáveis. Neste caso, a matriz dos coeficientes das variáveis nas restrições pode já não ser TUM, pelo que poderá ser necessário aplicar um procedimento de Pesquisa em Árvore. Se o conhecimento de uma solução admissível de boa qualidade for suficiente para a aplicação que se pretende resolver, então poderá bastar desenvolver uma heurística que possa permitir a obtenção de uma solução com a qualidade desejada.

Este capítulo conta ainda com mais três secções:

- 1. Problemas de Afetação;
- 2. Problemas de Afetação com Diferenciação de Recursos;
- 3. Gestão de Recursos Humanos.

que de alguma forma envolvem a afetação de recursos a tarefas.

2.2 Problemas de Afetação

Nesta secção, serão referidos alguns trabalhos sobre problemas que envolvem a afetação de recursos a tarefas, abordando diferentes classificações dos modelos existentes para este tipo de problemas e incluíndo alguns exemplos de aplicação prática.

Muitas têm sido as abordagens aos problemas de afetação, de modo que Pentico (2007) apresenta a seguinte divisão dos diferentes tipos de problemas existentes:

- Problemas com uma tarefa por recurso, que se referem ao problema de afetação clássico apresentado na introdução desta secção;
- Problemas com múltiplas tarefas por recurso, onde cada tarefa é atribuída a um único recurso, mas cada recurso pode realizar mais do que uma tarefa para a qual possua qualificação;
- Problemas de afetação multi-dimensional, que consideram a correspondência entre
 os elementos de três ou mais conjuntos, como é o caso do problema em estudo.
 Neste tipo de modelos também podem ser considerados os problemas de afetação
 multi-período, quando é necessária a afetação de recursos a tarefas ao longo de
 um horizonte temporal, como por exemplo a afetação de estudantes e professores a
 turmas e períodos horários.

Ernst et al. (2004) apresentam uma revisão de aplicações e métodos de construção de horários de trabalho para a satisfação da procura de um determinado serviço, desde a procura até a afetação dos turnos. Estes modelos têm aplicação em diversas áreas, tais como: transportes, *call centers*, sistemas de saúde e serviços de emergência, serviços governamentais e financeiros, turismo, indústrias de retalho e manufatura. São também referidas novas abordagens para este tipo de problemas, nomeadamente a transposição para estes modelos das especificidades de cada indivíduo, como poderá ser o caso da qualificação para a realização de uma determinada tarefa.

Os problemas de planeamento de horários, conhecidos na literatura por *personnel* scheduling problems, constituem outra classe dos problemas de afetação. Este tipo de problemas consiste na atribuição de períodos de trabalho a indivíduos, por forma a satisfazer

a procura de mão de obra contemplando determinadas regras de trabalho. Neste contexto, Bergh et al. (2013) apresentam uma revisão de literatura sobre este tipo de problemas, fazendo a distinção em três grupos: planeamento de turnos diários, planeamento de trabalho semanal e o que se designa por *tour scheduling*. No primeiro grupo, o planeamento é efetuado através de um horizonte temporal diário, como é o caso dos *call centers*, enquanto no segundo, o planeamento é semanal, tendo em conta que a semana de trabalho operacional pode não corresponder à semana de trabalho dos recursos. O *tour scheduling* resulta da combinação destes dois grupos e permite a organização semanal do trabalho, tendo em conta turnos diários, como ocorre na hotelaria, na saúde ou nos transportes aéreos.

Ao nível da abordagem de modelos de *tour scheduling*, Alfares (2004) apresenta um *survey* com várias metodologias distintas desde a obtenção de soluções manualmente até às meta-heurísticas, passando pela PLI. Também são apresentadas algumas formulações de PLI para os problemas de *tour scheduling*, uma delas com o objetivo de minimizar o número de recursos, assumindo recursos com as mesmas características e a afetação de turnos com o mesmo custo e outra formulação baseada num modelo de programação por metas, que inclui penalizações para os casos de sobredimensionamento ou subdimensionamento de mão de obra.

Também Brucker et al. (2009) classifica os modelos de planeamento de horários tendo em conta as diferentes perspetivas de planeamento centradas: na permanência, como é o caso dos serviços policiais e hospitalares, onde as necessidades de trabalho são normalmente conhecidas antecipadamente; na variação da procura, como ocorre nos *call centers* ou nos centros de distribuição, onde a procura de mão de obra pode sofrer alterações ao longo do horizonte temporal; na mobilidade, tendo como exemplo as companhias de transporte e também os serviços de apoio domiciliário; no projeto, onde o trabalho é dividido em pequenos projetos, atribuindo um grupo de recursos a cada projeto, como ocorre nas empresas de tecnologia ou consultoria. Para além desta classificação, é também apresentada uma formulação de PLI para o problema de planeamento de horários, minimizando os custos de afetação. A complexidade computacional destes problemas é também abordada, com referências aos métodos de resolução através de heurísticas.

Para além dos problemas de afetação mais clássicos, torna-se pertinente a criação de modelos de afetação considerando diferentes objetivos e consequentemente, diferentes soluções quanto à afetação de recursos ou à distribuição de turnos, face às necessidades das organizações em adaptação ao crescimento da procura e da competitividade.

Castillo et al. (2007) consideram um problema multicritério tendo em conta a minimização do custo de afetação e a maximização do nível de serviço, cujo objetivo final é a geração de um grande número de horários possíveis, que serão avaliados segundo diferentes paradigmas, como a relação qualidade-custo. Através de um modelo de Programação Linear Mista (PLM), são identificados todos os possíveis turnos, tendo em conta a procura, e gerados os horários com diferentes combinações de turnos, escolhendo os mais eficientes de acordo com vários critérios de avaliação. Utilizando dados empíricos baseados em dados reais de *call centers*, os autores concluem que este tipo de abordagem permite uma redução dos custos operacionais e um aumento da satisfação dos recursos.

Também Chen e Lu (2007) consideram um problema de afetação com múltiplos objetivos, por forma a determinar quais as afetações com maior eficiência, visto que nas aplicações reais pode ocorrer a necessidade de em cada afetação existirem objetivos diferentes por parte dos decisores. Para tal é proposto um modelo de PL, partindo do problema clássico de afetação, que incorpora dois tipos de eficiência relativa utilizando diferentes conjuntos de decisão, pretendendo assim atingir a eficiência máxima na afetação dos recursos, tendo os resultados comprovado a abordagem utilizada.

Corominas et al. (2012) apresentam um modelo que integra as decisões relativas à produção, aos recursos humanos e à gestão do fluxo de caixa, tratando-se de uma adaptação de um problema de planeamento agregado de produção. O modelo de PLI é apresentado com as seguintes características: a capacidade de produção tem dependência não-linear do número de recursos, os custos de despedimento dependem do recurso em causa, cada recurso tem banco de horas de trabalho, os recursos contratados têm um período de formação e finalmente a gestão do fluxo de caixa também é tida em conta. Os resultados obtidos e a realização de uma análise de sensibilidade demonstram que a flexibilidade dos recursos aumenta durante os períodos com maior procura e que o recurso a um banco de horas de trabalho reduz o despedimento dos funcionários.

Baseado num problema real de uma companhia de retalho de roupa, Pastor e Olivella (2008) apresentam um modelo que considera a adaptação de horários semanais utilizando bancos de horas, onde é permitido um balanço entre as horas extra prestadas e as horas em falta. O problema tem como objetivo garantir a capacidade mínima de trabalho. O método de afetação de horários a cada recurso é definido em duas fases: na primeira fase, através da resolução de um problema de PLM, é atribuído um horário a cada recurso, que será ajustado na segunda fase e de acordo com as necessidades operacionais, evitando quer o sobredimensionamento da mão de obra, quer o subdimensionamento. Os resultados obtidos a partir de dados reais de duas lojas da companhia, permitem concluir que o método de afetação proposto é mais eficiente relativamente ao método manual utilizado anteriormente, tendo ainda outras vantangens, tais como a redução do risco de incongruências no escalonamento e de horas extra.

Também Kabak et al. (2008) abordam a questão de planeamento de horários no setor do retalho textil. Tal como na situação anterior, a resolução do problema é feita em duas fases, mas com o objetivo de maximizar o lucro de cada loja. Os resultados obtidos com o modelo proposto permitem não só a maximização da eficiência dos horários, mas também o crescimento das vendas. Os autores referem que, futuramente, o modelo poderá contemplar também as preferências dos funcionários ou as suas necessidades de descanso.

Azmat e Widmer (2004) referem que existem dois tipos de problemas relativos à atribuição de turnos, turno único e turnos múltiplos. Estes dividem-se em quatro subtipos de problemas de planeamento de horários:

- Semana de trabalho regular cinco dias de trabalho por semana;
- Semana de trabalho comprimida semana de trabalho com três e/ou quatro dias;
- Força de trabalho hierárquica considera diferentes classes de recursos, de acordo com as suas qualificações;
- Horas anuais fixadas o número de horas de trabalho é fixado anualmente, mas não semanalmente.

Ainda no mesmo artigo figura um método em três passos, que atribui o trabalho diário aos funcionários, tendo em conta as restrições legais, com o objetivo de minimizar o número total de recursos e atribuir a cada funcionário a mesma carga de trabalho diário. O modelo de PLI proposto considera que todos os funcionários que trabalham a tempo inteiro, têm direito a dias de descanso semanais e férias anuais e que a procura deve ser satisfeita. O método de resolução proposto divide-se em: definição dos recursos necessários para a satisfação da procura semanal; estimação do número de horas extra para cobrir os períodos de ausência e finalmente a atribuição do trabalho semanal a cada funcionário disponível. Os resultados obtidos são satisfatórios do ponto de vista do decisor operacional, dando espaço a que sejam considerados também outros critérios de afetação dos horários, como a compatibilidade entre funcionários.

Também Hertz et al. (2010) abordam o problema de afetação com horas de trabalho fixadas anualmente, descrevendo um modelo que considera as leis laborais e a possibilidade de contratação gradual de recursos, pois trata-se de um problem real de uma empresa suíça, onde cada produto é único e tem um prazo de entrega de 24 horas. O problema tem como objetivo a minimização do número total de semanas irregulares e da carga de trabalho imposta a cada funcionário. Para tal, foi concebido um modelo de PLM onde algumas restrições laborais foram simplificadas. Após a realização de testes computacionais ao modelo, verificou-se que este representa um instrumento de trabalho eficaz quando se trata de situações de procura variável, pois possibilita a geração de várias

soluções passíveis de negociação entre a companhia e o recurso.

Terminada a secção sobre problemas de afetação, observa-se que estes apresentam muitas variações quer ao nível dos modelos, quer ao nível dos objetivos e métodos de resolução, passando não só pela afetação de recursos a tarefas, mas incluíndo o planeamento de horários de trabalho nessa mesma afetação.

2.3 Problemas de Afetação com Diferenciação de Recursos

Visto que o problema em estudo se foca na afetação de recursos com diferentes competências, esta secção abordará a literatura existente sobre o tema da diferenciação dos recursos neste tipo de problemas, desde a qualificação de recursos até ao respetivo impacto na afetação às tarefas a realizar, analisando também alguns exemplos de aplicação.

Wirojanagud et al. (2007) apresentam um modelo de PLM, considerando a capacidade cognitiva dos recursos, definida como a capacidade de aprender e processar informação relativa a novos conhecimentos. Assumindo à partida as diferenças entre cada indivíduo, é referido que a capacidade cognitiva permite aos funcionários a possibilidade de frequentarem formação para realizar determinada tarefa, sendo que a formação e consequente adaptação do recurso acarreta custos operacionais e perda de eficência durante a formação. O modelo apresentado considera a existência de várias tarefas associadas a maquinaria, admitindo que cada funcionário está habilitado a operar com pelo menos um grupo de máquinas, podendo receber formação para operar outro tipo de maquinaria. O objetivo é a minimização do custo total de afetação, determinando a quantidade de procura satisfeita e o número de recursos a contratar, a despedir e a formar. Os resultados obtidos com uma heurística de decomposição realçam o efeito, que a formação e qualificação têm nas decisões operacionais, nomeadamente o impacto gerado pelas diferenças entre os vários funcionários.

Com o intuíto de obter uma solução em tempo útil para o problema referido no artigo anterior, Fowler et al. (2008) desenvolveram duas heurísticas para a determinação de uma boa solução admissível. As heurísticas partem da solução da relaxação linear, a qual é ajustada através do arredondamento por excesso ou por defeito, originando, respetivamente, sobredimensionamento ou subdimensionamento da mão de obra. Os resultados obtidos através destas heurísticas permitem a obtenção de soluções próximas do valor ótimo. Estes autores também propõem um algoritmo genético para o problema. Dado que o modelo em causa apenas considera a diferenciação de recursos com base na capacidade cognitiva, poderão ser abordadas outras situações, tal como a utilização de recursos temporários, como se verifica no problema em estudo.

Othman et al. (2011) propõem um modelo para minimizar os custos de pessoal (contratação, despedimento, formação e horas extra), onde figura um sistema de apoio à decisão para auxiliar a operacionalização do modelo. O modelo apresentado pressupõe a utilização de horas extra, formação, recursos temporários e também que cada recurso está habilitado a realizar pelos menos uma tarefa. Após a realização de testes ao modelo, estes demonstraram que os custos têm um impacto significativo na escolha de recursos com diferentes competências. Um possível desenvolvimento deste modelo seria a inclusão de vencimentos em função da experiência do recursos.

Inserido nos problemas de afetação com força de trabalho hierárquica, onde são consideradas as qualificações dos recursoss, encontra-se a abordagem desenvolvida por Seçkiner et al. (2007). Esta abordagem considera a afetação dos recursos a turnos numa semana de trabalho comprimida, de acordo com a sua flexibilidade e qualificação, produzindo assim um modelo de PLI de minimização dos custos operacionais com a mão de obra. Após a realização de testes computacionais, verificou-se que este modelo permite uma distribuição mais flexível e benéfica dos turnos para os recursos.

Retomando a questão da fixação do número de horas de trabalho, por semana e por ano, surge a abordagem de Corominas et al. (2007) onde figura um modelo de PLM para a situação acima descrita com recursos com diferentes qualificações, cujo objetivo é a minimização da soma ponderada entre a maior ausência de mão de obra possível e da soma das falhas de mão de obra semanais.

Considerando agora a afetação de recursos com diferentes tipos de formação, a abordagem de Campbell e Diaby (2002) centra-se na afetação dos recursos aos departamentos no início de um turno. O modelo de PLM proposto tem em conta as qualificações de cada recurso. Foi construída uma heurística para abordar o problema, tendo em conta o custo da afetação de cada recurso na função objetivo, utilizando também uma heurística Lagrangeana e outra de tipo *greedy*. Os resultados demonstram que a heurística definida obtém melhores resultados que as outras definidas, nomeadamente ao nível dos valores dos GAP's, para diversos fatores, desde o número de departamentos até ao número de recursos. O GAP foi definido como a diferença entre o limite superior da solução ótima e a solução da heurística, como percentagem do limite superior.

Ainda dentro da afetação departamental, Sayin e Karabati (2007) propõem uma abordagem em duas fases, utilizando uma função de utilidade quadrática: a primeira maximiza a utilidade após a afetação e a segunda maximiza a capacidade de aprendizagem de cada recurso. A abordagem centra-se no impacto que o processo de aprendizagem dos recursos tem na produção, colocando-se a questão sobre a quantidade de formação que deve ser realizada. O modelo apresentado inicia-se com a definição dos parâmetros de

aprendizagem e das qualificações de cada recurso por departamento. Segue-se a resolução de dois problemas de PLB, terminando com a atualização das capacidades de cada recurso. Os resultados obtidos confirmaram o benefício da inclusão das características de aprendizagem e de qualificação na afetação dos recursos.

Hojati e Patil (2011) desenvolveram um modelo de planeamento de horários para recursos a tempo parcial com diferentes qualificações e disponibilidades, em que a procura de mão de obra varia durante o dia e ao longo dos dias. Os objetivos deste modelo são a minimização do total de horas de trabalho por recurso e a minimização da diferença entre o total de horas trabalhadas e em falta por semana. A resolução do problema passa pela determinação de turnos de trabalho para cada tarefa diária, determinando o número de recursos disponíveis e qualificados para cada turno e pela atribuição desses mesmos turnos aos recursos, recorrendo a modelos de PLI. A experiência computacional com diferentes tipos de dados permitiu encontrar soluções admissíveis e com valores próximos do valor ótimo para o problema.

Abordando a questão do planeamento de horários na realização de projetos, Chen e Zhang (2013) desenvolveram a uma heurística baseada nos algoritmos de colónia de formigas para a afetação de recursoss num projeto de *software*. O modelo de PLI para a descrição do problema pretende afetar os recursos às tarefas onde a sua eficiência será maior. O processo de resolução do problema passa pelo desenvolvimento de um construtor de horários e pela definição da prioridade das tarefas e das respetivas cargas de trabalho. Os resultados computacionais validaram a utilidade do construtor de horários para afetar os recursos de forma mais eficiente, com menos custos e cargas de trabalho mais equilibradas.

Também Yoshimura et al. (2006) propõem um sistema de apoio à decisão para projetos de desenvolvimento de produtos, que consiste em dois algoritmos. Um algoritmo determina quais os projetos que maximizam o lucro total e o outro afeta os recursos a tarefas, tendo em conta as suas qualificações e necessidades. Através da aplicação de um exemplo numérico, conclui-se que a afetação baseada na satisfação dos recursos não tem em conta a sua motivação e progressão.

As companhias de transporte aéreo também beneficiam largamente da resolução de problemas de afetação, nomeadamente nos balcões de *check-in*. Stolletz e Zamorano (2014) desenvolveram um modelo de PLM para o problema de *tour scheduling* para recursos com diferentes tipos de capacidades e qualificações, minimizando o custo total de afetação para a satisfação da procura. A resolução do problema é feita a partir de uma heurística de decomposição ao longo do horizonte temporal predefinido, considerando todos os custos e restrições laborais impostas. Após a realização da experiência computacional, os resultados indicam que pode ser alcançada uma maior flexibilidade ao considerar um número

de recursos de características gerais sem diferenciação e outros com maior diferenciação, tal como concluem Felan e Fry (2001).

Também na área da saúde, principalmente nos cuidados domiciliários, têm impacto os problemas de afetação. O modelo de programação por metas desenvolvido por Kwak e Lee (1997) pretende afetar os recursos a turnos adequados, garantindo a minimização dos custos salariais, a satisfação dos utentes e as necessidades de mão de obra qualificada. O problema em causa considera que o trabalho decorre 24 horas por dia, que os turnos têm a mesma duração e que a funções diferentes correspondem salários diferentes. Os resultados permitem a tomada de decisão antecipando possíveis desvios aos objetivos definidos.

Finalmente, um exemplo de aplicação de afetação com recursos com diferentes qualificações é a indústria de *call center*, como abordam Avramidis et al. (2010) num estudo que pretende minimizar o custo total de afetação dos recursos, satisfazendo as restrições quanto ao nível de serviço por chamada. O modelo considera que a entrada de chamadas é variável ao longo do dia, permitindo uma série de decisões operacionais como a contratação de novos operadores, o envio para formação de determinados recursos e qual o seu horário diário. Para a resolução do problema, foram utilizados um modelo de simulação, o método dos planos de corte de Gomory e ainda uma meta-heurística baseada na teoria de filas de espera, tendo os resultados verificado que a flexibilidade dos turnos existentes permite satisfazer as necessidades de recursos e que se existir um ligeiro decréscimo, podem ocorrer alguns turnos com sobredimensionamento de mão de obra.

2.4 Gestão de Recursos Humanos

Finalmente, para enquadrar a bibliografia sobre a afetação de recursos, principalmente a diferenciação e qualificação dos mesmos, verifica-se ser necessário uma revisão geral das referências existentes do ponto de vista de gestão de recursos humanos sobre a variabilidade e diferenciação no contexto organizacional.

O estudo desenvolvido por Nishii e Wright (2007) analisa a questão da variabilidade dos recursos e as suas implicações para a organização. A percepção das práticas de recursos humanos por parte dos recursos influencia diretamente a sua satisfação e motivação. Esta percepção e contribuição para a organização é também influenciada por aquilo que os recursos obtêm por parte do empregador, como por exemplo formação para novas tarefas. Conclui-se que as políticas de gestão de recursos humanos implementadas devem considerar essa mesma variabilidade e diferenciação como tendo um impacto significativo nos recursos ao nível da sua motivação, do seu desempenho e do seu compromisso

para com a companhia.

Na sequência da análise da relação entre o desempenho e a diferenciação do capital humano, surge o estudo efectuado por Bowen e Ostroff (2004). Neste estudo é abordada a questão de como as características individuais de cada recursos têm impacto no desempenho organizacional. Os impactos no desempenho organizacional têm tido ao longo do tempo diferentes focos, devendo ser acompanhados pelo desenvolvimento das capacidades individuais dos recursos, quer ao nível dos seus conhecimentos, quer ao nível da sua motivação, promovendo assim a adaptação a diferentes estratégias de negócio. Recorrendo a análise de *clusters*, agrupando os recursos com visões comuns sobre a organização e a sua estrutura funcional, os autores propõem um modelo que contemple um ambiente organizacional adaptável à mudança, permitindo a consciencialização dos recursos para a necessidade de flexibilização e adaptação.

Apresenta-se agora o trabalho realizado por Whitener (2001) sobre as relações entre a gestão de recursos humanos, a confiança interpessoal e o envolvimento da organização, testando diversas hipóteses com recurso a análise multi-nível, utilizando modelos lineares hierárquicos. As políticas de gestão de recursos humanos dividem-se em dois tipos: controlo e envolvimento. As políticas de controlo impõem regras laborais mais restritas, reduzindo custos de trabalho e aumentando a eficiência, enquanto que as políticas de envolvimento permitem o aumento da eficácia e da produtividade, fazendo com que os recursos se identifiquem com os objetivos do negócio, motivando-os com formação e atividades de desenvolvimento, entre outras. Tendo em conta uma amostra de recursos de empresas de crédito, os resultados obtidos indicam recursos com pouca visibilidade do apoio organizacional favorecem organizações com mais atividades de formação, pois em situações onde a formação é abundante, esta é desvalorizada. Nas situações onde a formação não é frequente, esta é vista como uma mais valia e como um grande envolvimento e apoio da organização para com os seus recursos.

Concluída a secção relativa à gestão de recursos humanos, verifica-se que de um ponto de vista mais sociológico a questão da diferenciação e da formação tem impacto no desempenho e nos objetivos estratégicos da organização. A valorização deste tipo de ações depende do universo do capital humano, tendo em conta as necessidades de diferenciação e adaptação aos diversos ambientes empresariais.

Um Modelo para o Problema de Afetação de Recursos com Diferentes Competências

3.1 Introdução

Neste capítulo, composto por mais cinco secções, será abordado o tema central desta tese, a afetação de recursos com diferentes competências.

Inicialmente, na secção 3.2 será feita a descrição detalhada do problema em estudo, incluindo os pressupostos onde assenta o problema e todos os parâmetros em análise.

A secção 3.3 contém um pequeno exemplo com dados gerados propositadamente para ilustrar de uma forma simples o problema estudado, cuja solução ótima se apresenta na secção 3.5.

A formulação para problema de afetação de recursos com diferentes competências estudado, figura na secção 3.4.

Finalmente, considerando novos parâmetros e pressupostos para além dos considerados na formulação inicial, são apresentadas na secção 3.6 algumas possíveis extensões para o problema.

3.2 Descrição do Problema

A adaptação das empresas à crescente competitividade que enfrentam, obriga a que seja necessário diversificar a distribuição de tarefas entre os funcionários. Uma das formas de atingir esse objetivo é através da diferenciação dos funcionários, tendo em conta as qualificações ou a possibilidade de frequentarem formação para uma determinada tarefa, originando assim funcionários especializados para a realização de uma função específica e funcionários com diferentes competências, que realizam diferentes tarefas, de acordo com as necessidades operacionais.

O problema em estudo neste trabalho surgiu no contexto de uma empresa de retalho na qual é necessário planear a distribuição de tarefas pelos funcionários ao longo de um horizonte temporal. Cada funcionário pode possuir um conjunto de competências podendo este conjunto ser alargado através da realização de ações de formação. Um funcionário só pode ficar afeto a tarefas para as quais possua competência. Sendo a variabilidade da procura de mão de obra ao longo do tempo uma realidade inerente neste tipo de empresas, optou-se por desenvolver para este problema um modelo dinâmico ou multi-periódico, pois a afetação será feita para cada período do horizonte de planeamento.

A formação para uma determinada função será maioritariamente *on job*, fazendo com que o trabalhador em formação obtenha as qualificações necessárias para o exercício da função através da utilização dos respetivos instrumentos de trabalho e inserção no ambiente real de trabalho.

Neste problema também se contempla a possibilidade de contratação de funcionários em regime de *outsourcing*, para algumas funções.

Todos os funcionários a exercerem funções, em regime normal, de *outsourcing* ou em formação auferem um salário correspondente à função exercida.

Deste modo, a função objetivo do problema será a minimização dos custos salariais associados à satisfação das necessidades de funcionários para cada função, ao longo do tempo.

Assim para o problema acabado de descrever consideram-se as seguintes hipóteses:

- Considera-se um horizonte de planeamento dividido num conjunto finito de períodos de tempo.
- Todos os dados do problema são determinísticos e conhecidos no início do horizonte de planeamento.

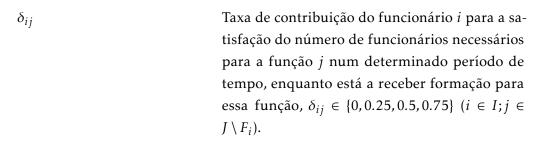
- Considera-se um conjunto de funções que devem ser realizadas pelos funcionários.
 O conjunto das funções encontra-se particionado em dois subconjuntos: o conjunto das funções de chefia e o conjunto das funções que não são de chefia. É conhecido o número mínimo e máximo de funcionários necessários em cada período de tempo para cada função.
- Considera-se que cada funcionário pode possuir inicialmente competências para realizar algumas das funções.
- Em cada período de tempo do horizonte de planeamento é possível recorrer a *out-sourcing* para satisfazer as necessidades relativas ao número de funcionários de cada função, que não seja de chefia.
- Considera-se que, em cada período de tempo, um funcionário poderá desempenhar qualquer função pertencente ao conjunto das suas competências inicial. Contudo, só poderá desempenhar uma função não pertencente ao seu conjunto de competências iniciais se previamente recebeu formação para essa função.
- Considera-se que a formação de um funcionário para uma determinada função deve decorrer durante um determinado número de períodos de tempo consecutivos. Este número de períodos depende da capacidade de aprendizagem do funcionário e da função em causa.
- Para muitas das funções consideradas, a formação pode decorrer em regime de *on job* o que significa que o funcionário começa a desempenhar a função com uma taxa de produtividade, que pode depender da sua capacidade de aprendizagem e da própria função.

O PARDC pretende assim determinar a afetação dos funcionários às tarefas satisfazendo todas as exigências do problema e minimizando os custos salariais totais.

Apresenta-se a seguir a notação utilizada ao longo desta secção.

Conjuntos:

$\mathcal{T} = \{1, \dots, t, \dots T\}$	Conjunto dos períodos de tempo do horizonte
	de planeamento.
$I = \{1, \dots, i, \dots n\}$	Conjunto dos funcionários.
$J = \{1, \ldots, j, \ldots m\}$	Conjunto de todas as funções.
$J_1 \subseteq J$	Conjunto das funções de chefia.
$J_2 = J \setminus J_1$	Conjunto das funções que não são de chefia.
$F_i \subseteq J$	Conjunto das funções para as quais o funcioná-
	rio $i \ (i \in I)$ tem competência no início do hori-
	zonte de planeamento.


CAPÍTULO 3. UM MODELO PARA O PROBLEMA DE AFETAÇÃO DE RECURSOS COM DIFERENTES COMPETÊNCIAS

$I_j \subseteq I$	Conjunto dos funcionários que não têm compe-
	tência para a função $j~(j\in J)$ no início do hori-
	zonte de planeamento.

Parâmetros:

v_j	Custo por cada período de tempo que um funci- onário realiza a função j ($j \in J$).
\hat{v}_j	Custo por cada período de tempo que um funcionário faz formação para a função j ($j \in J$).
$ ilde{v}_j$	Custo por cada período de tempo que um funcionário é contratado em regime de <i>outsourcing</i> para desempenhar a função j ($j \in J$).
n_j^t	Número mínimo de funcionários que no período t devem contribuir para a função j ($j \in$
$1.2\ n_j^t$	$J; t \in \mathcal{T}$). Número máximo de funcionários que no período t podem contribuir para a função j ($j \in J; t \in \mathcal{T}$).

Neste trabalho, considera-se que o número máximo de funcionários não pode exceder em 20% o número mínimo de funcionários necessários para determinada função, dado que a formação é *on job*, existindo funcionários que não contribuem totalmente para o mínimo de funcionários necessários, e atendendo a que muitas vezes existem limitações de espaço nos locais onde a formação é ministrada, surgiu a necessidade de considerar um número máximo de funcionários. Nas situações em que a taxa de 20% não se adapte a todas as funções, esta pode ser facilmente ajustada.

A título de exemplo, se dois funcionários têm, para a mesma função, uma taxa de contribuição de 0.5, então o trabalho total realizado por ambos em formação corresponde ao trabalho de um funcionário que possui competência para essa mesma função. Quando um funcionário realiza formação fora do seu local de trabalho, isso significa que não contribui para a satisfação do número de funcionários necessários, pelo que o componente δ_{ij} é nulo.

 ε_{ij} Número de períodos de tempo consecutivos que o funcionário i necessita de formação para a função j $(i \in I; j \in J \setminus F_i)$.

Para uma mesma função $j \in J \setminus F_i$, o valor do parâmetro ε_{ij} pode variar de acordo com os funcionários, traduzindo-se desta forma as diferentes capacidades de aprendizagem que os funcionários podem possuir.

3.3 Exemplo Ilustrativo

Nesta secção apresenta-se um pequeno exemplo ilustrativo do problema acabado de descrever.

Consideremos então 4 funcionários, 3 funções, sendo uma delas de chefia e 5 períodos de tempo. Deste modo tem-se:

- T = 5;
- n = 4;
- m = 3, sendo $J_1 = \{1\}$ e $J_2 = \{2, 3\}$.

A necessidade de mão de obra para cada função j em cada período de tempo t, n_j^t , é apresentada na tabela 3.1.

n_i^t	Períodos (t)					
,	1 2 3 4					5
	1	1	1	1	2	1
Funções (j)	2	3	5	3	4	2
	3	3	3	2	2	4

Tabela 3.1: Número de funcionários necessários por função e por período de tempo.

Conhecida a procura de funcionários, é necessário conhecer quais as funções para as quais os funcionários possuem qualificação no período inicial. Na tabela 3.2, o valor 1 na entrada (i,j) indica que o funcionário i possui competência para a tarefa j.

F_i	Funções (<i>j</i>)			
		1	2	3
	1	1	1	1
Funcionários	2	0	0	0
(i)	3	0	0	1
	4	0	1	0

Tabela 3.2: Conjunto de funções para as quais os funcionários têm competência, no período inicial.

Passando para a questão da formação, a taxa de contribuição de um funcionário i em formação para determinada função j, δ_{ij} , bem como a duração da formação que cada funcionário necessita, ε_{ij} , são indicadores fundamentais para o problema. Os valores destes parâmetros são apresentados nas tabelas 3.3 e 3.4, respetivamente.

δ_{ij}		Fur	ıções	(<i>j</i>)
,		1	2	3
	1	-	-	-
Funcionários	2	0.5	0.5	0.5
(i)	3	0	0	-
	4	0.25	-	0

Tabela 3.3: Taxa de contribuição do funcionário i para a função j, $i \in I$, $j \in J$.

ε_{ij}		Fu	nçõe	es(j)
·		1	2	3
	1	-	-	-
Funcionários	2	3	1	1
(i)	3	2	1	-
	4	2	-	1

Tabela 3.4: Duração da formação do funcionário i para a função j, $i \in I$, $j \in J$.

Exemplifica-se em seguida o significado dos parâmetros definidos anteriormente:

- $\delta_{21} = 0.5$ indica que o funcionário 2, enquanto frequenta formação *on job* para a função 1, contribui com 0.5 para o número de funcionários necessários para essa função.
- ε₄₃ = 1 significa que o funcionário 4 tem de frequentar um período de formação, por forma a obter qualificação para a função 3.

Tendo em conta o objetivo do problema em estudo, a minimização dos custos totais de afetação, é fundamental conhecer os custos por unidade de tempo de um funcionário a exercer determinada função, bem como o custo de formação e o custo de *outsourcing*:

	Funções (j)				
	1	2	3		
Custo normal (v_i)	946.13	394.43	293.48		
Custo em formação (\hat{v}_i)	1040.74	433.87	322.83		
Custo de outsourcing (\tilde{v}_j)	-	591.65	440.22		

Tabela 3.5: Custos de afetar um funcionário a uma dada função, em u.m..

3.4 Formulação do Problema

Nesta secção, apresenta-se uma formulação em PLI para o PARDC. Tanto quanto é do conhecimento do autor trata-se de uma formulação que nunca foi proposta na literatura.

Com o objetivo de formular o problema, considerem-se as seguintes variáveis:

$$x_{ij}^t = \begin{cases} 1, & \text{se o funcionário } i \text{ realiza a função } j \text{ no período } t; \\ 0, & \text{no caso contrário.} \end{cases}$$

$$i \in I; j \in J; t \in \mathcal{T}$$
.

$$z_{ij}^t = \begin{cases} 1, & \text{se o funcion\'ario } i \text{ recebe forma\~{c}\~ao para a fun\~{c}\~ao } j \text{ no per\'ado} t; \\ 0, & \text{no caso contr\'ario.} \end{cases}$$

$$i \in I; j \in J \setminus F_i; t \in \mathcal{T}.$$

 y_j^t : número de funcionários contratados em regime de *outsourcing* para desempenhar a função j no período t ($j \in J_2$; $t \in \mathcal{T}$).

O problema pode então formular-se como:

$$\min \sum_{\tau \in \mathcal{T}} \sum_{i \in I} \sum_{j \in J} v_j x_{ij}^{\tau} + \sum_{\tau \in \mathcal{T}} \sum_{j \in J_2} \tilde{v}_j y_j^{\tau} + \sum_{\tau \in \mathcal{T}} \sum_{i \in I} \sum_{j \in J \setminus F_i} \hat{v}_j z_{ij}^{\tau}$$

$$(3.1)$$

sujeito a:

$$x_{ij}^t \le \sum_{\tau=1}^{t-1} z_{ij}^{\tau} \qquad \qquad i \in I; j \in J \setminus F_i;$$

$$t \in \{\varepsilon_{ij} + 1, \dots, T\} \tag{3.2}$$

$$\sum_{i \in I} x_{ij}^t + \sum_{i \in I \setminus F_i} z_{ij}^t \le 1 \qquad i \in I; t \in \mathcal{T}$$
(3.3)

$$n_j^t \le \sum_{i \in I} x_{ij}^t + \sum_{i \in I_i} \delta_{ij} z_{ij}^t \le 1.2 n_j^t \qquad \qquad j \in J_1; \ t \in \mathcal{T}$$
 (3.4)

$$n_j^t \le \sum_{i \in I} x_{ij}^t + \sum_{i \in I_j} \delta_{ij} z_{ij}^t + y_j^t \le 1.2 n_j^t$$
 $j \in J_2; t \in \mathcal{T}$ (3.5)

$$\sum_{i=1}^{\varepsilon_{ij}} z_{ij}^{\tau} \ge (\varepsilon_{ij} - 1) z_{ij}^{1} \qquad i \in I; j \in J \setminus F_i : \varepsilon_{ij} \ge 2 \qquad (3.6)$$

$$\sum_{\tau=t+1}^{t+\varepsilon_{ij}-1} z_{ij}^{\tau} \geq (\varepsilon_{ij}-1)(z_{ij}^{t}-z_{ij}^{t-1}) \qquad \qquad i \in I; \ j \in J \setminus F_i : \varepsilon_{ij} \geq 2;$$

$$t \in \{2, ..., T - \varepsilon_{ij} + 1\}$$

$$z_{ij}^{t} \le z_{ij}^{t-1}$$

$$i \in I; j \in J \setminus F_{i} : \varepsilon_{ij} \ge 2;$$

$$(3.7)$$

$$t \in \{T - \varepsilon_{ij} + 2, ..., T\} \tag{3.8}$$

$$\sum_{t=1}^{T} z_{ij}^{t} \le \varepsilon_{ij} \qquad i \in I; j \in J \setminus F_{i}$$
 (3.9)

$$x_{ij}^t \in \{0,1\} \qquad \qquad i \in I; j \in J; t \in \mathcal{T}$$
 (3.10)

$$z_{ij}^t \in \{0,1\} \qquad \qquad i \in I; j \in J \setminus F_i; t \in \mathcal{T}$$
 (3.11)

$$y_j^t \ge 0$$
 e inteiras $j \in J_2; t \in \mathcal{T}$ (3.12)

A função objetivo (3.1) traduz a minimização dos custos totais. Estes custos incluem os custos totais associados ao desempenho das várias funções pelos funcionários, os custos totais relativos à formação dos funcionários e os custos totais de *outsourcing*.

As restrições (3.2) indicam que um funcionário só poderá, num determinado período de tempo, desempenhar uma função não pertencente ao seu conjunto de competências iniciais, se recebeu previamente formação para essa função.

O grupo de restrições (3.3) indica que cada funcionário em cada período de tempo não poderá estar simultaneamente a desempenhar uma função e a receber formação para uma função que não pertença ao seu conjunto de competências iniciais.

Os dois conjuntos de restrições (3.4) indicam que o número de funcionários que contribuem para uma função de chefia num determinado período de tempo é não inferior ao mínimo exigido e não superior ao número máximo permitido. Os conjuntos de restrições (3.5) têm o mesmo significado das (3.4) e referem-se às funções que não são de chefia e para as quais é permitido o recurso a *outsourcing*.

As restrições (3.6) asseguram que se um funcionário i começa a fazer formação no primeiro período do horizonte temporal para a função j, então essa formação decorre durante ε_{ij} períodos consecutivos ($i \in I; j \in J \setminus F_i$). Os grupos de restrições (3.7) e (3.8) complementam as restrições (3.6) e referem-se aos restantes períodos do horizonte temporal. Note-se que caso as restrições (3.8) não fossem incluídas no modelo, este poderia fornecer uma solução em que, por exemplo, o funcionário i' só frequentasse formação para uma função j' no último período do horizonte temporal quando $\varepsilon_{i'j'}$ fosse superior a 1. Naturalmente que se poderia considerar o modelo com esta possibilidade, mas essa não foi a escolha para o problema em estudo neste trabalho.

O grupo de restrições (3.9) impede que o número de períodos que um funcionário i recebe formação para a função j, seja superior a ε_{ij} ($i \in I$; $j \in J \setminus F_i$).

Finalmente os grupos de restrições (3.10) e (3.11) definem as variáveis x e z como binárias, enquanto que as restrições (3.12) definem as variáveis y como variáveis que podem assumir valores inteiros não negativos.

3.5 Solução para o Exemplo Ilustrativo

Nesta secção apresenta-se a solução obtida por aplicação do modelo proposto ao exemplo descrito na secção 3.3.

A solução obtida será apresentada através de uma tabela por se considerar que esta representação torna mais fácil a compreensão da solução por parte do leitor.

Assim, a tabela 3.6 indica qual a função desempenhada por cada funcionário em cada período do horizonte de planeamento, onde os valores sublinhados indicam a realização de formação.

CAPÍTULO 3. UM MODELO PARA O PROBLEMA DE AFETAÇÃO DE RECURSOS COM DIFERENTES COMPETÊNCIAS

	Período (t)					
Funcionário (i)	1	2	3	4	5	
1	1	1	2	1	3	
2	2	2	2	2	2	
3	1	1	1	1	1	
4	2	2	2	2	2	

Tabela 3.6: Funções realizadas pelos funcionários ao longo do horizonte de planeamento.

Por exemplo, a entrada (1,5) da tabela apresenta o valor 3, o que indica que o funcionário 1 realiza a função 3 no período 5. A entrada (3,1) apresenta o valor 1, que adicionalmente se encontra sublinhado, indicando que o funcionário 3 está a obter formação para a função 1 no primeiro período.

Tabela 3.7: Número de funcionários contratados em regime de outsourcing.

Nesta solução apenas as funções 2 e 3 necessitam de recorrer a funcionários em regime de *outsourcing*, apresentando-se na tabela 3.7 o número de funcionários assim contratados em cada período de tempo e para cada uma das funções referidas.

A afetação acima descrita tem um custo total de 22.294, 29 unidades monetárias, que corresponde ao valor ótimo do problema.

Verifica-se que o funcionário 1, sendo o mais qualificado no início do horizonte temporal, é aquele com maior rotatividade em termos de tarefas, enquanto o funcionário 4 executa a mesma função ao longo de todos os períodos de tempo. Apenas os funcionários 2 e 3 realizam formação, o funcionário 2 para a função 2 durante um período de tempo e o funcionário 3 para a função 1 durante dois períodos de tempo. Em ambas as situações e após a realização da formação, os funcionários executam a tarefa para qual receberam formação até ao fim do horizonte de planeamento.

De notar que o funcionário 2 não possui qualquer tipo de qualificação no início do horizonte temporal e como tal, frequenta formação para a tarefa 2, que é aquela com maior procura na maioria dos períodos de tempo. Também o funcionário 3, apesar de ter competência para a função 3, realiza formação para a função de chefia 1, suprindo deste modo a necessidade de dois funcionários em tarefa de chefia no período 4 e permitindo que o funcionário 1 execute a tarefa 3 no último período.

Quanto ao recurso a *outsourcing*, verifica-se que a função 3 é maioritariamente executada neste registo, pois trata-se da função com menor custo de afetação em *outsourcing*.

3.6 Possíveis Extensões para a Formulação

Tratando-se de um problema dinâmico baseado numa situação real, a formulação apresentada anteriormente permite alterações por forma a flexibilizar e adaptar o modelo a outras realidades.

Para além das hipóteses anteriormente descritas e que estiveram na origem da formulação do problema, existem outras que também podem ser consideradas, tendo em conta, tal como já foi referido, que o problema se baseia numa situação real de uma empresa de retalho.

Em algumas empresas, os funcionários podem ter direito a períodos de descanso obrigatório após a realização de determinadas tarefas. Assim, se um funcionário i* estiver de folga num determinado subconjunto de períodos de tempo \mathcal{T}'_{i*} , a condição pode ser facilmente incorporada no modelo através da adição das restrições:

$$\sum_{j \in J} x_{i*j}^t + \sum_{j \in J \setminus F_{i*}} z_{i*j}^t = 0, \quad t \in \mathcal{T}'_{i*}.$$

Também é frequente a situação em que um funcionário i* é impedido de frequentar formação para, por exemplo, funções de chefia, devido a motivos operacionais, de avalição de desempenho ou de comportamento. Esta questão pode ser incluída no modelo da seguinte forma:

$$z_{i*j}^t = 0, \quad j \in J_1; t \in \mathcal{T}.$$

O investimento por parte da empresa na formação de um funcionário é muito elevado, pois, tal como figura na formulação anterior e como acontece na maioria dos casos reais, engloba não só o vencimento do funcionário, mas também o material utilizado, o tempo despendido, ou o seguro de acidentes de trabalho. Ora, quando tal investimento é feito, a empresa espera obviamente algum retorno do mesmo, mas em algumas situações um funcionário realiza formação para determinada tarefa e após a conclusão da formação vai exercer outras funções. Assim, considere-se o parâmetro d_{ij} como o número de períodos de tempo consecutivos em que o funcionário i realiza a função j após receber qualificação para essa mesma função ($i \in I; j \in J \setminus F_i$). Podemos então definir um conjunto de restrições que estipula, que após frequentar formação, um funcionário deve cumprir um número mínimo de períodos na função para a qual recebeu formação:

$$\sum_{\tau=t}^{t+d_{ij}-1} x_{ij}^{\tau} \geq d_{ij}(z_{ij}^{t-1}-z_{ij}^{t}); \quad i \in I; j \in J \setminus F_{i}; t \in \{\varepsilon_{ij}+1,...,T-d_{ij}+1\}.$$

CAPÍTULO 3. UM MODELO PARA O PROBLEMA DE AFETAÇÃO DE RECURSOS COM DIFERENTES COMPETÊNCIAS

Para além destas adaptações ao modelo inicial, existem outras que, dependendo do objetivo final do problema, podem ser consideradas ou não, como é o caso dos vencimentos. Também seria possível ter em conta vencimentos não só dependentes da função, mas também do funcionário em causa. Neste caso, bastaria substituir os parâmetros v_j , \tilde{v}_j e \hat{v}_j por v_{ij} , \tilde{v}_{ij} e \hat{v}_{ij} , $(i \in I; j \in J)$, respetivamente.

Terminado o capítulo sobre o PARDC, onde se apresentaram as hipóteses subjacentes ao problema e respetiva formulação, deve passar-se à realização de um conjunto de experiências computacionais com o objetivo de testar o modelo proposto. O capítulo seguinte contém as experiências computacionais realizadas.

Experiência Computacional

4.1 Introdução

Neste capítulo serão apresentados os resultados computacionais obtidos com o modelo proposto no capítulo anterior e algumas das suas extensões.

Apesar do problema em estudo ter sido motivado por um problema real, não foi possível utilizar dados reais, pelo que se procedeu à geração de instâncias de teste. O procedimento para a obtenção destas instâncias é apresentado na secção 4.2.

Na secção 4.3 são apresentados alguns aspetos relacionados com a metodologia de resolução e o *software* utilizados.

Finalmente, na secção 4.4, analisam-se os resultados computacionais obtidos, abordando algumas questões de apoio à tomada de decisão por parte do gestor, onde se incluem análises de pesos de custos.

A partir da referida análise de resultados será possível explorar novas abordagens para o problema, incluíndo possíveis extensões para trabalhos futuros.

4.2 Geração de Instâncias

Apesar de o problema de afetação estudado ter origem num contexto empresarial, não foi possível obter dados reais para realizar a experiência computacional desejada, razão pela qual foram gerados todos os parâmetros e conjuntos descritos na secção 3.2 do capítulo anterior com recurso ao *software* estatístico *R Project - versão 3.3.2*.

Foram geradas 5 instâncias para cada um dos 6 cenários definidos pelo tripleto (n, m, T), sendo n o cardinal do conjunto de funções I, m o cardinal do conjunto de funções J e T o número total de períodos de tempo. Deste modo, o número total de instâncias geradas foi de 30.

O conjunto de funções J foi definido como $J = J_1 \cup J_2$, onde J_1 é o conjunto das funções de chefia e J_2 o conjunto das restantes funções. Consideremos m_1 e m_2 como o cardinal de J_1 e J_2 , respetivamente.

A tabela 4.1 indica as regras de geração para cada parâmetro do problema, onde se considera que:

- *U*[*a*,*b*] designa uma distribuição uniforme contínua no intervalo [*a*,*b*];
- $U\{a_1,...,a_n\}$ designa uma distribuição uniforme discreta no conjunto $\{a_1,...,a_n\}$;
- Para a duração da formação, considerou-se que esta deverá manter o mesmo valor ao longo do horizonte temporal, razão pela qual se fixou os limites mínimo e máximo de duração da formação;
- Relativamente às qualificações no ínicio do horizonte temporal para funções de chefia, caso nenhum funcionário possua qualificação para essas funções, o primeiro conjunto de funcionários correspondente a m₁ assumirá essas qualificações. Por exemplo, se J₁ = {1,2} e I = {1,2,3,4,5}, no caso não existir nenhum funcionário com qualificação para as funções de chefia, os funcionários 1 e 2 assumem qualificação para as mesmas;
- Após o quinto período do horizonte de planeamento, já decorreu tempo suficiente para a realização de formação, pelo que se consideraram valores diferentes para a geração;
- Os valores escolhidos para os parâmetros poderiam ser diferentes dos que aqui se apresentam, dado que estas escolhas não condicionam o modelo estudado.

Parâmetro	Descrição	Valor
п	Número de funcionários	{50,100}
m	Número de funções	0.1n
T	Número de períodos de tempo	{12, 24, 36}
m_1	Número de funções de chefia	0.2 <i>m</i>
m_2	Número de restantes funções	$m-m_1$
ε_{ij_1}	Duração da formação para funções de	$U{4,5}$
,-	chefia, em períodos de tempo	
ε_{ij_2}	Duração da formação para as restantes	$U\{1,2\}$
,,,	funções, em períodos de tempo	
$F_i \subseteq J_1$	Probabilidade do funcionário i pos-	$P(F_i) = 0.05$
	suir qualificação no ínicio do horizonte	
	temporal para uma função de chefia	
$F_i \subseteq J_2$	Probabilidade do funcionário i pos-	$P(F_i) = 0.25$
	suir qualificação no ínicio do horizonte	
	temporal para uma função que não é	
	de chefia	
$n_{j_1}^t \ (t \le 5)$	Necessidade de funcionários para fun-	m_1
JI V	ções de chefia nos primeiros 5 períodos	
	do horizonte temporal	
$n_{j_1}^t \ (t > 5)$	Necessidade de funcionários para fun-	$U\{m_1, m_1 + 1, m_1 + 2\}$
J1	ções de chefia nos restantes períodos	
	do horizonte temporal	
$n_{j_2}^t$	Necessidade de funcionários para as	$U\left[\frac{n-m_1+m_2}{2m_2}, \frac{n-m_1}{m_2}+1\right]$
J2	restantes funções	
δ_{ij}	Taxa de contribuição do funcionário <i>i</i>	$U\{0, 0.25, 0.5, 0.75\}$
,	enquanto frequenta formação para a	
	função j	
v_{j_1}	Custo por período de tempo de um fun-	<i>U</i> [750,1000]
,,,	cionário a exercer uma função de che-	
	fia j_1	
v_{j_2}	Custo por período de tempo de um fun-	U[250,500]
,-	cionário a exercer uma função que não	
	$\acute{ ext{e}}$ de chefia j_2	
$ \hat{v}_{j} $	Custo por período de tempo de um fun-	$1.1v_j$
,	cionário em formação para a função j	
$\mid ilde{v}_j \mid$	Custo por período de tempo de um fun-	$1.5v_j$
,	cionário, em regime de outsourcing, a	
	exercer a função <i>j</i>	
d_{ij}	Número de períodos de tempo que o	ε_{ij}
_	funcionário i, após frequentar forma-	
	ção para a função j, realiza a função j	

Tabela 4.1: Geração dos parâmetros do problema.

4.3 Software e Metodologia de Resolução

A formulação apresentada, incluíndo as suas extensões, foram implementadas e resolvidas computacionalmente recorrendo ao *software GAMS (General Algebraic Modeling System)* - versão 24.2.3, através do *solver CLPEX 12.6.0*, utilizando um computador portátil com processador Intel Core i7-6500U com 2.59 gigahertz, memória *RAM de 8GB* e com sistema operativo *Windows 10 (64-bit)*.

O software GAMS utiliza o solver CPLEX 12.6.0, que para problemas de PLI recorre a um algoritmo de branch and cut. Para cada instância, estabeleceu-se um tempo máximo de resolução de 10 horas, sendo os restantes parâmetros os definidos por defeito.

4.4 Resultados Computacionais

4.4.1 Análise de Resultados

Tal como referido na secção 4.2, foram geradas um total 30 instâncias com diferentes dimensões, tendo sido todas testadas para a formulação inicial apresentada no capítulo anterior e que designaremos por *P*1. Todas as instâncias foram também testadas para a formulação *P*2, que resulta da inclusão das seguintes restrições na formulação *P*1:

$$\sum_{\tau=t}^{t+d_{ij}-1} x_{ij}^{\tau} \geq d_{ij}(z_{ij}^{t-1}-z_{ij}^{t}); \quad i \in I; \ j \in J \setminus F_i; t \in \{\varepsilon_{ij}+1,...,T-d_{ij}+1\}.$$

Recorde-se que este grupo de restrições estipula que, após frequentar formação, um funcionário deve cumprir um número mínimo de períodos na função para a qual recebeu formação.

Todas as instâncias foram resolvidas otimamente para ambas as formulações, *P*1 e *P*2, considerando a formulação original em PLI e a respetiva relaxação linear em PL, pelo que se apresentam em seguida os resultados obtidos.

A tabela 4.2 contém as dimensões das instâncias do problema para os modelos P1 e P2, sendo que cada linha contém informação para as 5 instâncias que têm os mesmos valores de *n*, *m* e *T*, tal como se observa na figura 4.1.

				Nº Variáveis	Nº Restrições			
n	m	T	Form.	Méd.	Mín.	Méd.	Máx.	
50	5	12	P1	6 310	5 961	6 625.80	9 129	
			P2	6 310	8 173	8 223.00	8 311	
50	5	24	P1	12 370	11 301	11 515.80	11 661	
			P2	12 370	16 521	16 769.80	17 025	
50	5	36	P1	18 430	16 773	17 053.80	17 349	
			P2	18 430	24 981	25 252.60	25 529	
100	10	12	P1	25 120	22 389	22 605.00	22 773	
			P2	25 120	31 219	31 405.00	31 565	
100	10	24	P1	49 240	42 993	43 343.40	43 569	
			P2	49 240	63 811	64 133.00	64 343	
100	10	36	P1	73 360	63 561	64 036.20	64 497	
			P2	73 360	96 367	96 829.80	97 263	

Tabela 4.2: Dimensões das instâncias do problema.

Quanto ao número de variáveis, como seria expectável, este aumenta à medida que aumenta o número de funcionários e, consequentemente, o número de funções, e o número de períodos de tempos, sendo este último aquele que tem mais influência no aumento do número de variáveis. Ora, considerando os dois valores para o número de funcionários (50,100), verifica-se que aumentando o número de períodos de 12 para 24, o número de variáveis aumenta 96% e de 24 para 36, aumenta 49%, o que já não se verifica quando se altera também o número de funcionários, pois de 50 funcionários e 36 períodos para 100 funcionários e 12 períodos, o número de variáveis aumenta 36%.

Relativamente ao número de restrições, este regista valores muito diversificados, sem padrão aparente de variação, dado que o valor de alguns parâmetros, tais como ε_{ij} e d_{ij} , têm grande impacto neste número. Contudo, se se considerar o número de funcionários de 50 e 100, ao aumentar os períodos de tempo de 12 para 24, o número de restrições aumenta, em média, 83% para a formulação P1 e 104% para a formulação P2, e de 24 para 36 períodos, aumenta, em termos médios, 48% para a formulação P1 e 51% para a formulação P2.

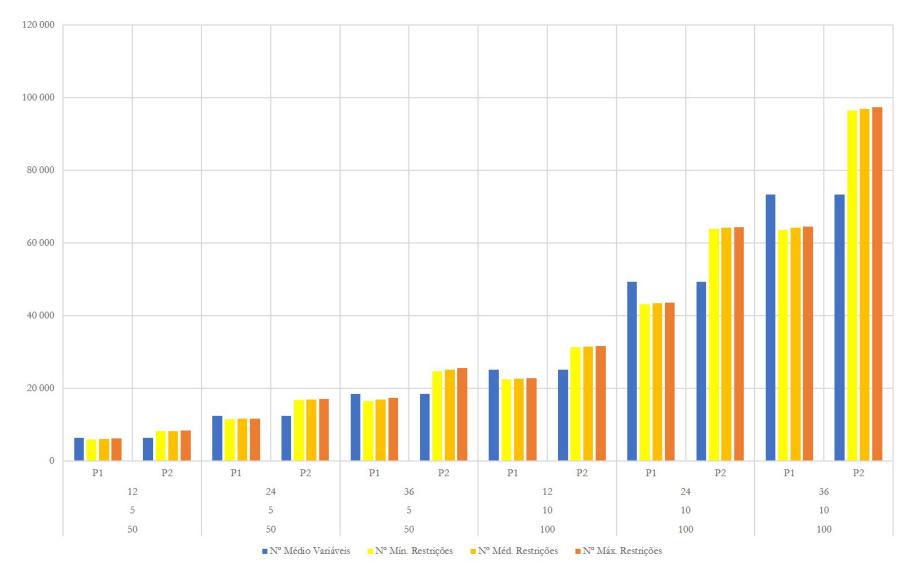


Figura 4.1: Dimensões das instâncias do problema.

A tabela 4.3 apresenta os tempos de resolução das instâncias testadas para as formulações *P*1 e *P*2, bem como o GAP entre o valor ótimo de PLI e o valor ótimo da relaxação linear, sendo que cada linha da tabela apresenta os valores mínimos, médios e máximos para cada conjunto de 5 instâncias que partilham os mesmos valores de *n*, *m* e *T*. O GAP foi calculado tendo em conta:

• VOI: valor ótimo da formulação de PLI;

• VORL: valor ótimo da relaxação linear;

•
$$GAP(\%) = \frac{(VOI - VORL)}{VOI} \times 100$$

				Temp	os de Res	solução PLI (s)	Tempos de Resolução RL (s)			GAP (%)		
n	m	T	Form.	Mín.	Méd.	Máx.	Mín.	Méd.	Máx.	Mín.	Méd.	Máx.
50	5	12	P1	0,33	0,73	1,02	0,08	0,11	0,14	0,89	2,73	3,95
			P2	0,44	0,82	1,09	0,13	0,14	0,16	1,10	3,07	4,71
50	5	24	P1	0,88	1,26	2,00	0,19	0,28	0,39	0,54	0,87	1,63
			P2	1,41	1,83	2,48	0,38	0,50	0,64	0,61	1,10	2,33
50	5	36	P1	1,48	3,00	4,88	0,38	0,63	0,95	0,24	0,59	0,98
			P2	3,36	4,53	5,63	0,73	1,06	1,50	0,45	1,14	2,27
100	10	12	P1	1,63	7,91	28,55	0,31	0,46	0,67	0,11	1,14	2,90
			P2	1,98	32,80	153,48	0,64	0,84	1,00	0,11	1,29	3,10
100	10	24	P1	4,52	7,32	10,11	0,88	0,97	1,02	0,30	0,59	0,80
			P2	5,75	8,21	13,31	1,83	2,29	2,52	0,39	0,67	0,98
100	10	36	P1	6,09	9,42	12,06	1,55	1,71	1,91	0,07	0,32	0,80
			P2	8,30	15,04	35,67	3,88	4,65	5,84	0,12	0,38	0,93

Tabela 4.3: Tempos de resolução e valores dos GAP's das instâncias do problema.

Da análise da tabela, observa-se que os GAP's da relaxação linear variam de 0.07% a 4.71%, verificando-se que:

- A formulação P1 origina os menores valores de GAP;
- As instâncias com 36 períodos de tempo apresentam, em termos médios, os menores valores de GAP, independentemente do número de funcionários e funções.

Os tempos de resolução apresentados refletem que a relaxação linear tem tempos de resolução significativamente menores que os da formulação inteira e que quanto maior for a dimensão da instância, maior será o seu tempo de resolução.

4.4.2 Análise de uma solução

Nesta subsecção, caso tivessem sido utilizados dados reais, seria interessante realizar uma análise da solução que permitisse equacionar diferentes modelos de gestão de funcionários. Não sendo possível tal situação, optou-se por analisar uma solução de uma instância com 100 funcionários, 10 funções e 36 períodos de tempo.

Nesta instância existem dentro do conjunto J de 10 funções, duas de chefia, que constituem o conjunto $J_1 = \{1,2\}$ e as restantes funções o conjunto $J_2 = \{3,4,5,6,7,8,9,10\}$. Dos 100 funcionários existentes, seis não tinham qualquer tipo de qualificação inicial, $I_j = \{28,33,69,74,84,86\}, \forall j \in J$.

A figura 4.2 contém as necessidades de funcionários para cada função, em cada período do horizonte temporal. No topo de cada coluna é indicado o número total de funcionários necessários em cada período.

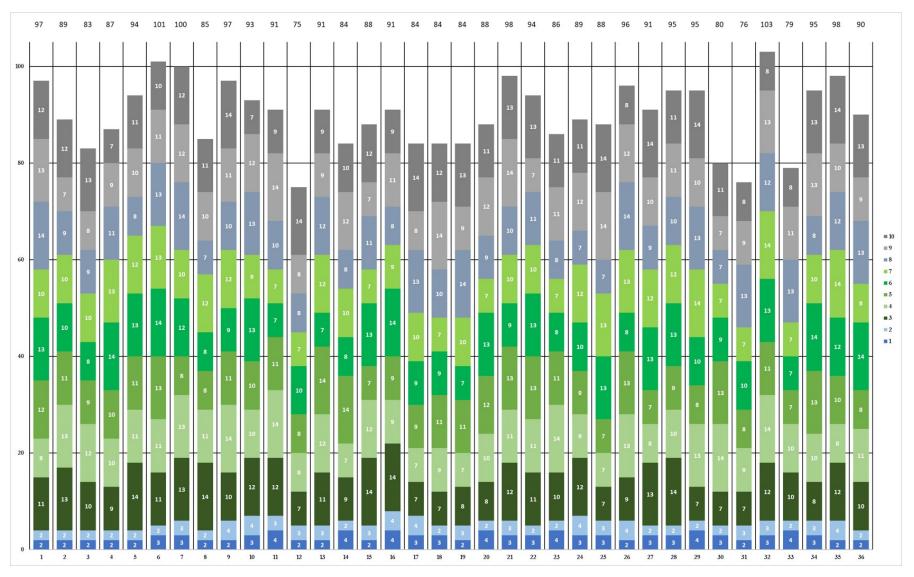


Figura 4.2: Necessidade de funcionários $i \in I$ para as funções $j \in J$, ao longo do horizonte temporal.

RESULTADOS COMPUTACIONAIS

Após a resolução do PARDC com os dados desta instância, foi possível observar as seguintes situações:

- 1. Todos os funcionários sem qualificação no iníco do horizonte temporal realizam formação nos seis primeiros períodos, em qualquer uma das formulações P_1 e P_2 .
- 2. Também para ambas as formulações, alguns funcionários têm períodos sem exercerem qualquer função ou frequentarem formação, situação associada ao facto dos recursos humanos disponíveis serem, em alguns períodos, superiores à procura de mão de obra nesse período.
- 3. O recurso a *outsourcing* apenas ocorre em períodos onde a procura é superior ao número de funcionários disponíveis, períodos 12 e 32, ou quando as restrições da formulação *P*2 obriga ao exercício de funções a seguir a formação.
- 4. Todos os funcionários selecionados para formação realizam-na para funções cuja a sua taxa de contribuição será $\delta_{ij} = 0.75$, cumprindo assim as restrições que incluem o espaço físico da formação *on job*.

Sobre o peso dos custos de formação e outsourcing no valor ótimo, temos o seguinte:

	Valor Ótimo (u.m.)	Custos de Formação (u.m.)	%VO	Custos de Outsourcing (u.m.)	%VO
V.O. Inteiro P1	1 226 090.85	2 521.40	0.21	1 503.96	0.12
V.O. R.L. P1/P2	1 225 287.33	1 885.35	0.15	1 503.96	0.12
V.O. Inteiro P2	1 226 728.67	2 797.13	0.23	1 503.96	0.12

Tabela 4.4: Peso dos custos de formação e outsourcing na solução ótima.

Relativamente aos custos apresentados, o valor ótimo de P1 é superior em 0.07% ao valor da relaxação linear, enquanto o valor ótimo de P2 o excede em 0.12%.

Observa-se o peso dos custos é ocupado quase na totalidade pelos custos relativos ao desempenho de uma função para o qual o funcionário tem ou recebeu formação, associado às variáveis x_{ij}^t , seguidos pelos custos de formação, associados às variáveis z_{ij}^t , e pelos custos de *outsourcing*, associados às variáveis y_j^t , em ambos os modelos, P1 e P2, e na relaxação linear.

O valor ótimo do modelo P2 corresponde a mais 0.05% que o valor ótimo do modelo P1, tal como seria expectável, tendo em conta que foi adicionado mais um conjunto de restrições à formulação inicial, pelo que o valor ótimo de P2 seria sempre igual ou superior ao valor ótimo de P1.

Quanto à relação entre os custos de formação e de *outsourcing*, no modelo P1, os custos de *outsourcing* correspondem a 59.65% dos custos de formação e na relaxação linear a 79.77%, enquanto no modelo P2, os custos de *outsourcing* correspondem a 53.77%.

5

Conclusão

Neste trabalho estudou-se um Problema de Afetação de Recursos com Diferentes Competências, que tanto quanto se conhece nunca foi abordado desta forma na literatura. Este problema teve origem numa situação real de uma empresa de retalho.

O principal foco deste trabalho foi o desenvolvimento de um modelo de PLI para o problema onde o conjunto de competências de cada recurso era diferente no início do horizonte temporal e poderia aumentar ao longo do mesmo, dada a possibilidade dos funcionários receberem formação para determinada função. No modelo desenvolvido também era prevista a hipótese de recurso a *outsourcing* para a satisfação da procura, para algumas funções, ao longo do horizonte temporal.

O modelo desenvolvido foi testado com recurso ao *software GAMS*, utilizando dados gerados para o efeito, dada a impossibilidade de utilização de dados reais.

Como trabalho futuro seria interessante poder testar o modelo e a sua extensão com os dados reais da empresa de retalho, onde o problema teve origem.

Para além das hipóteses formuladas e testadas no modelo apresentado, existem outras cuja importância para os problemas de afetação também é muito pertinente. Assim, como possíveis extensões deste trabalho seria útil considerar o modelo com o seguinte:

 Restrições relativas aos períodos de descanso obrigatório após a realização de determinada tarefa, articulando esses períodos com os períodos em que o modelo já obriga a descanso, caso não seja necessário esse funcionário durante determinado período;

- Custos dependentes do funcionário e da função, isto é, em lugar de se considerar os parâmetros v_j , \tilde{v}_j e \hat{v}_j , seriam considerados os parâmetros v_{ij} , \tilde{v}_{ij} e \hat{v}_{ij} , $(i \in I; j \in J)$, respetivamente
- Custos variáveis de acordo com a procura para determinada tarefa, isto é, se a necessidade de funcionários para uma dada função ja ∈ J fosse A ∈ N e para jb ∈ J fosse B ∈ N, A > B, então neste caso vja deveria ser superior a vjb de acordo com uma determinada proporção;
- Possíveis penalizações, em termos de custos, para o caso de existirem funcionários sem exercer qualquer tipo de função ou receber formação.

BIBLIOGRAFIA

- Alfares, H. K. (2002). "Optimum Workforce Scheduling Under the (14,21) Days-Off Timetable". Em: *Journal of Applied Mathematics and Decision Sciences* (6), pp. 191–199.
- Alfares, H. K. (2004). "Survey, Categorization en Comparison of Recent Tour Scheduling Literature". Em: *Annals of Operations Research*(127), pp. 145–175.
- Avis, D. e C. W. Lai (1988). "The probabilistic analysis of a heuristic for the assignment problem". Em: SIAM Journal on Computing 17, pp. 732–741.
- Avramidis, A. N., W. Chan, M. Gendreau, P. L'Ecuyer e O. Pisacane (2010). "Optimizing daily agent scheduling in a multiskill call center". Em: *European Journal of Operational Research* (200), pp. 822–832.
- Azmat, C. S. e M. Widmer (2004). "A case study of single shift planning and scheduling under annualized hours: A simple three-step approach". Em: *European Journal of Operational Research*(153), pp. 148–175.
- Bergh, J. V. den, J. Beliën, P. D. Bruecker e E. Demeulemeester (2013). "Personnel scheduling: A literature review". Em: *European Journal of Operational Research* (226), pp. 367–385.
- Blöchliger, I. (2004). "Modeling staff scheduling problems. A tutorial". Em: *European Journal of Operational Research*(158), pp. 533–542.
- Bowen, D. E. e C. Ostroff (2004). "Understanding HRM-firm performance linkages: the role of the «strenght» of the HRM system". Em: *Academy of Management Review* Vol. 29(2), pp. 203–221.
- Bronson, R. e G. Naadimuthu (2001). *Investigação Operacional*. 2nd Edition. McGraw-Hill. ISBN: 972-773-067-1.
- Brucker, P., R. Qu e E. Burke (2009). "Personnel scheduling: Models and complexity". Em: *European Journal of Operational Research*(196), pp. 162–170.
- Buck, M. W., C. S. Chan e D. P. Robbins (2002). "On the Expected Value of the Minimum Assignment". Em: *Random Structures and Algorithms*(21), pp. 33–58.
- Bussieck, M. R. e A. Meeraus. "General Algebraic Modeling System (GAMS)". Em: *Modeling Languages in Mathematical Optimization*. GAMS Development Corporation. URL: https://www.gams.com/~bussieck/gamsmodlang.pdf.
- Campbell, G. M. e M. Diaby (2002). "Development and evaluation of an assignment heuristic for allocating cross-trained workers". Em: *European Journal of Operational Research* (138), pp. 9–20.

- Castillo, I., T. Joro e Y. Y. Li (2007). "Worforce scheduling with multipli objectives". Em: *European Journal of Operational Research*(183), pp. 694–699.
- Chen, L.-H. e H.-W. Lu (2007). "An extended assignment problem considering multiple inputs and outputs". Em: *Applied Mathematical Modelling*(31), pp. 2239–2248.
- Chen, W.-N. e J. Zhang (2013). "Ant Colony Optimization for Software Project Scheduling and Stafing with an Event-Based Scheduler". Em: *IEEE Transactions on Software Engineering* Vol. 39(1), pp. 1–17.
- Coppersmith, D. e G. B. Sorkin (1999). "Constructive Bounds and Exact Expectations for the Random Assignment Problem". Em: *Random Structures and Algorithms*(15), pp. 113–144.
- Corominas, A., A. Lusa e R. Pastor (2007). "Planning annualised hours with a finite set of weekly working hours and cross-trained workers". Em: *European Journal of Operational Research* (176), pp. 230–239.
- Corominas, A., A. Lusa e J. Olivella (2012). "A detailed worforce planning model including non-linear dependence of capacity on the size of the staff and cash management". Em: *European Journal of Operational Research*(216), pp. 445–458.
- Ernst, A. T., H. Jiang, M. Krishnamoorthy e D. Sier (2004). "Staff scheduling and rostering: A review of applications, methods and models". Em: *European Journal of Operational Research* (153), pp. 3–27.
- Felan, J. T. e T. D. Fry (2001). "Multi-level heterogeneous worker flexibility in a Dual Resource Constrained (DRC) job-shop". Em: *International Journal of Production Research* Vol. 39(14), pp. 3041–3059.
- Fowler, J. W., P. Wirojanagud e E. S. Gel (2008). "Heuristics for workforce planning with worker differences". Em: *European Journal of Operational Research*(3), pp. 525–533.
- Hertz, A., N. Lahrichi e M. Widmer (2010). "A flexible MILP model for multiple-shift workforce planning under annualized hours". Em: *European Journal of Operational Research*(200), pp. 860–873.
- Hill, M. M., M. dos Santos e A. L. Monteiro (2008). *Investigação Operacional Vol.* 3 *Transportes, Afectação e Optimização em Redes*. First. Edições Sílabo, Lda. ISBN: 978-972-618-496-6.
- Hojati, M. e A. S. Patil (2011). "An integer linear programming-based heuristic for scheduling heterogeneous, part-time service employees". Em: *European Journal of Operational Research* (209), pp. 37–50.
- Jouini, O., A. Pot, G. Koole e Y. Dallery (2010). "Online scheduling policies for multiclass call centers with impatient customers". Em: *European Journal of Operational Research* (207), pp. 258–268.
- Kabak, Özgür, F. Ülengin, E. Aktas, S. Önsel e Y. I. Topcu (2008). "Efficient shift schedulling in the retail sector through two-stage optimization". Em: *European Journal of Operational Research* (184), pp. 76–90.
- Korte, B. e J. Vygen (2000). *Combinatorial Optimization Theory and Algorithms*. 2nd Edition. Springer. ISBN: 3-540-43154-3.

- Krokhmal, P. A. e P. M. Pardalos (2009). "Random assignment problems". Em: *European Journal of Operational Research*(194), pp. 1–17.
- Kuhn, H. W. (1955). "The Hungarian Method for the Assignment Problem". Em: *Naval Research Logistics Quarterly*(2), pp. 83–97.
- Kwak, N. K. e C. Lee (1997). "A Linear Goal Programming Model for Human Resource Allocation in a Health-Care Organization". Em: *Journal of Medical Systems* Vol. 21(3), pp. 129–140.
- Marchand, H., A. Martin, R. Weismantel e L. Wolsey (2002). "Cutting planes in integer and mixed integer programming". Em: *Discrete Applied Mathematics* 123, pp. 397–446.
- Meisels, A. e A. Schaerf (2001). "Modelling and Solving Employee Timetabling Problems". Em: *Annals of Mathematics and Artificial Intelligence*. URL: http://www.researchgate.net/publication/2868141.
- Nishii, L. H. e P. M. Wright (2007). "Variability Within Organizations: Implications for Strategic Human Resource Management". Em: CAHRS Working Paper 07-02, Cornell University, School of Industrial and Labor Relations, Center for Advanced Human Resource. URL: http://digitalcommons.ilr.cornell.edu/cahrswp/467.
- Othman, M., N. Bhuiyan e G. J. Gouw (2011). "A New Approach to Workforce Planning". Em: *International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering* Vol. 5(4), pp. 858–864.
- Parviainen, R. (2004). "Random Assignment with Integer Costs". Em: *Combinatorics, Probability and Computing Cambridge University Press* 13, pp. 103–113. URL: https://doi.org/10.1017/S0963548303005819.
- Pastor, R. e J. Olivella (2008). "Selecting and adapting weekly work schedules with working time accounts: A case of a retail clothing chain". Em: *European Journal of Operational Research* (184), pp. 1–12.
- Pentico, D. W. (2007). "Assignment problems: A golden aniversary survey". Em: *European Journal of Operational Research*(176), pp. 774–793.
- Rosenthal, R. E. (2007). "GAMS User's Guide". Em: GAMS Development Corporation.
- Sayin, S. e S. Karabati (2007). "Assigning cross-trained workers to departments: A two-stage optimization model to maximize utility and skill improvement". Em: *European Journal of Operational Research*(176), pp. 1643–1658.
- Seçkiner, S. U., H. Gökçen e M. Kurt (2007). "An integer programming model for hierarchical workforce scheduling problem". Em: *European Journal of Operational Research* (183), pp. 694–699.
- Stolletz, R. e E. Zamorano (2014). "A rolling planning horizon heuristic for scheduling agents with different qualifications". Em: *Transportaion Research Part E*(68), pp. 39–52.
- Whitener, E. M. (2001). "Do «high commitment» human resource practices affect employee commitment? A cross-level analysis using hierarchical linear modeling". Em: *Journal of Management*(27), pp. 515–535.

- Wirojanagud, P., E. S. Gel, J. W. Fowler e R. Cardy (2007). "Modelling inherent worker differences for workforce planning". Em: *International Journal of Production Research* Vol. 45(3), pp. 724–740.
- Yoshimura, M., Y. Fujimi, K. Izui e S. Nishiwaki (2006). "Decision-making support system for human resource allocation in product development projects". Em: *International Journal of Production Research* Vol. 44(5), pp. 831–848.