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Abstract

In this present work, gels with liquid crystalline (LC) phases were studied based on cellulose
and collagen. The cellulose was further incorporated in a polymer matrix (polyvinyl alcohol) and in a
biocompatible material (glycerol), in order to produce gels with LC phases. The LC phases and other
properties of the gels were further investigated in order to determine relationships between
structure/properties. Preliminary cellular studies were done to unravel the influence of the LC phase in
cell proliferation and the changes in the LC phase due to the presence of the cells.

Nanocrystalline cellulose (NCC) with different aspect ratio, were obtained by acid hydrolysis
with sulfuric acid at different reaction times. Gelation of collagen type | was not achieved. The NCC/PVA
gels did not presented LC patterns.

NCCl/glycerol gels with NCC concentration higher than 7% (w/w) showed, through polarized
optical microscopy, a fingerprint texture characteristic of the chiral nematic ordering of the NCC. The
pitch of LC phase, increase with the NCC length and no significant variations were observed in gels with
higher NCC content. For cell culture studies the 7% (w/w) NCC concentration was selected and the pH
of the gels was increased by incubation with culture medium and an increase in the pitch size was
noticed. A negative zeta potential of the gels was observed even after pH increase. No chemically
modifications were observed by ATR-FTIR after increasing the gels’ pH. Preliminary rheological studies
gave a good indication of the materials’ viscoelastic properties and its thixotropic behaviour. Exploratory
cellular tests showed low cell adhesion and cytotoxic tests led to conclude that 48 hours of incubation

with culture medium is needed before any cellular studies.

This study shown that the NCC/glycerol gel is a promising material to use in tissue engineering
applications.

Keywords: Tissue engineering; Biomaterials; Liquid crystals; “fingerprint” texture;
Nanocrystalline cellulose;
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Resumo

Neste trabalho, géis com fases liquido-cristalinas (LC) de celulose e colagénio foram estudados.
A celulose foi incorporada posteriormente numa matriz polimérica (&lcool polivinilico) e num material
biocompativel (glicerol). As fases LC, bem como outras propriedades dos géis foram posteriormente
estudadas para relacionar as estruturas LC com as propriedades dos géis. Estudos celulares
preliminares foram efetuados para determinar a influéncia da fase LC na proliferagdo celular e as
alteracBes dessa mesma fase com a presenca de células.

Diferentes tempos de hidrélise da celulose com acido sulfdrico foram efetuados e celulose
nanocristalina (NCC) com diferentes comprimentos obtida. A gelificacdo do colagénio nédo foi
conseguida e os géis de NCC/PVA nao apresentaram uma organizacgao liquido-cristalina.

Géis de NCClglicerol observados por microscopia otica polarizada (POM), apresentam
birrefringéncia e a partir da concentracdo de 7%NCC no gel, tém uma textura denominada “impressao
digital”, caracteristica da fase LC nematica quiral. O passo dos géis aumenta com o comprimento das
NCC. Nao se verificou uma variacao significativa do passo para concentracées de NCC nos géis mais
elevadas. A concentracdo de 7%NCC foi selecionada para os estudos celulares, tendo o pH dos géis
aumentado para incubacdo com meio de cultura, observando-se o aumento do passo dos géis.
Verificou-se um potencial zeta negativo tanto nos géis com e sem incubagcdo em meio de cultura. Por
ATR-FTIR ndo se observaram alteracfes significativas dos géis apdés aumento de pH. Com estudos
reoldgicos preliminares, foi possivel caracterizar as propriedades viscoelasticas e a tixotropia do
material. Testes celulares preliminares demonstraram fraca adeséo celular aos géis, contudo testes de
citotoxicidade revelaram a necessidade de 48 horas de incubacdo dos géis antes de qualquer estudo

celular.
Este trabalho demonstrou que géis de NCC/glicerol sdo promissores para serem utilizados em

engenharia de tecidos.

Palavras-chave: Engenharia de tecidos; Biomateriais; Cristais liquidos; textura “fingerprint”;

Celulose nanocristalina.
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Considerations

In nature, cellulose and collagen are one of the most common macromolecules that form liquid
crystalline phases. It is believed that liquid crystal phases have a key role in tissue differentiation and is
an aim of this thesis to prove this theory. [1] Previous works had shown the importance and the
applicability of liquid crystals such as a thermotropic liquid crystals suitable for growth of mammalian
cells [2][3] and the alteration of the liquid crystal conformation in the presence of certain chemical
substances or physical changes. [4] The main goal of this thesis was to prepare liquid crystalline gels
based on nanocrystalline cellulose and collagen. Physical and chemical characterizations of the gels

were done and preliminary rheological and cellular studies were performed.

The research performed during this thesis was conducted in two different institutions: DCM —
Departamento de Ciéncias dos Materiais at Faculdade de Ciéncias e Tecnologia, Universidade Nova
de Lisboa (FCT/UNL) in the group SBM — CENIMAT|I3N and INEB — Instituto de Engenharia Biomédica
at Universidade do Porto (UP) in the group BIOCARRIER.

Chapter | brings an overview of the state of the art of the use of liquid crystals in tissue
engineering as well as their theoretical principles. It also introduces the main materials used during the
experimental part of the thesis and its current usages in the tissue engineering field.

Chapter Il describes the preparation of the studied biomaterials as well as, the characterization
techniques and studies performed on the samples (physical, chemical and biological characterization,
as well as, rheological experiments).

In the Chapter Il the results obtained were presented and discussed.

Chapter IV presents the overall conclusions and chapter V presents the future directions that
can be studied and explored in future works. An annex complements some theoretical principles to

better understand the rheological experiments.

CENTIO DE MYESTIOACAS D MATERWE

vV
CENIMAT S INEB
e

Instituto de Engenharia Biomédica
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Chapter | — Introduction

1. Liquid Crystals:

1.1. Liquid Crystals: Definition and Characterization

Liquid crystals (LCs) are widely used in different fields such as tissue engineering [2], drug
delivery [6] and electronics, for example as a component in a TV screen. [7] LCs are well known
for their intermediate state between isotropic liquids and crystalline solids with a three dimensional
structure (figure 1.1). Thus, their chemistry and physics has been profoundly studied throughout
the years, having a rapid advance after 1960. The discovery of the liquid crystalline state was
made by the botanist Freiderich Reinitzer in 1888. Reinitzer described a colour arise when melting
cholesteric acetate and cholesteric benzoate. In addition, two melting points of the cholesteric
benzoate were registered and for the first time the term liquid crystal was applied. [8] In 1904,
Otto Lehmann, a German physicist, with whom Reinitzer corresponded, proceeded with the study
of this state of matter and later associated these properties with some biological samples. From
1960 with the application of liquid crystals in televisions and other electronic devices, numerous

progresses were made in this field. [9]

> >

Increase Increase
temperature temperature

Crystalline Solid Liquid Crystal Isotropic liquid

Figure 1.1 — Schematic of the thermal transitions regarding the liquid crystalline state.

There are two major categories of liquid crystals: thermotropic and lyotropic. Thermotropic
liquid crystals are formed with anisotropic molecules that self-assemble in arranged structures
according to the temperature. This mesophase exists between full alignment of particles
(crystalline state) and the isotropic state, which occurs at a higher temperature. In another words,
thermotropic LCs result from heating a crystalline solid or cooling an isotropic liquid reaching a
thermodynamic equilibrium. [8] They are also formed by applying certain conditions of pressure.
[10] Lyotropic LCs are formed with the addition of a solvent to one or a mixture of compounds and

depends on the concentration of the mesogen (a compound that in certain conditions of
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temperature, pressure or concentration is a precursor of a mesophase or a liquid crystalline
phase) and also on the temperature and pressure conditions. [8]

Thermotropic LCs integrate rod-like, disk-like or banana-shaped molecules that arrange
in three different phases: nematic, cholesteric and smectic. [11] The most common liquid- crystal
phase is the nematic, identified by a long range orientational order with the direction of a
dimensionless vector n, called director. In the nematic phase molecules tend to align in the same
direction as the long axis, that is, in the same direction as the director with no specific positional
order. A cholesteric phase or chiral nematic phase is formed by optically active organic
compounds (chiral molecules), a mixture of different types of these compounds or a mixture of
optically active compounds with nematic liquid crystals. A chiral molecule is one that cannot be
superposed to its mirror image. [9] Cholesteric liquid crystals have a helical twist: the director
vector, n, pursues a helical form. The distance for a 360° turn is denominated pitch. Nematic LCs
have an infinite pitch and by chemical or mechanical processes they can be converted to the
cholesteric liquid crystalline phase. In the figure 1.2 is represented a three dimensional scheme
of this phase, where the molecules are represented by parallel lines and rotate in each level by a
constant and small angle. When the rotation reaches 1809, half pitch is defined. This model is
called plywood model. [12]

Figure 1.2 — Three dimensional representation of the cholesteric liquid crystalline phase (plywood model).
On each level the molecular arrangement is represented by parallel lines and they rotate continuously in a
small and constant angle. PO — pitch. [13]

Chiral nematic LCs have unique optical properties. When a perpendicular beam of light
with a wavelength much smaller than the pitch reaches the LC, it is broken in two: one
perpendicular and other parallel to the alignment axis — this phenomenon is called birefringence.
When the pitch is reduced, the beam is converted into a circular polarized wave and the LC shows
optical activity. This optical property is dependent on the wavelength of the irradiation beam and
on the dielectric constant of the LC material. [9]

Smectic liquid crystals are arranged in layers and have long range organizational order,
that is, the long axis is parallel to each layer. Depending on the molecular order in a layer, there
are two different subtypes of smectic LCs: unstructured and structured. Structured LCs have long
range order in the molecules arrangement and form a two dimensional lattice. In contrast, in

unstructured LCs the molecules in the layer do not have any specific order. [9]
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In figure 1.3 are represented three phases of the thermotropic liquid crystals:

I %
ol 2 |-
RIS

>

Director Smetic phase:
Nematic phase: vector orientation and . .
) . Chiral nematic phase
orientation, no some periodicity P

periodicity
Figure 1.3 — Schematic of three phases of the thermotropic liquid crystals: Nematic, Smectic and
Cholesteric. Adapted from [9].

Usually lyotropic liquid crystals are formed by an amphiphilic molecule and a solvent [11]
at a given temperature and relative concentrations. These molecules self-aggregate in a minimum
energy supramolecular structure and the most prevalent form is the lamellar, where the double
layers are parallel to each other and are separated by the solvent. Other lyotropic arrangements
consist in cubic, hexagonal, micellar and gel. [9] The most common phase in lyotropic liquid

crystals is the chiral nematic but achiral phase like smectic and nematic are also observed. [14]

1.2. Liguid Crystals in biology:

Liquid crystallinity is found in numerous biological molecules such as, proteins,
carbohydrates, fats, acid nuclei and virus. Furthermore, the liquid crystalline phase is proved to
be involved in the beginning of the formation of biological molecules and it is considered an
important step of the differentiation process of cells and tissue [1]; LCs are also responsible for
the morphogenesis of tissue, tendons and ligaments. [15] For instance, it was observed that
procollagen had pre-cholesteric phases that induced the structure of some animal tissues, which
are anisotropic and present a fibrillary structure. [16][17]

The double helix structure of DNA and RNA show a chiral nematic LC phase of these
organic compounds. Proteins exhibit the same behaviour and both form rods that combine into
hexagonal structures. The phospholipid bilayer also has a lyotropic liquid crystalline conformation
with a lamellar phase, which indicates a smectic phase [18]; lipid esters and carotenoids in contact
with water also exhibit liquid crystalline phases. [9] Myelin is also a phospholipid membrane with
LC behaviour; however, it is made of several concentric stacked bilayers. [14][18] Some proteins,
like haemoglobin in water, is packed in layers, forming a nematic LC phase. [9] The
polysaccharides chitin and cellulose, the first, present in carapace of crustaceans and the second

in plant cell walls have a plywood structure and consequently a chiral nematic order. [18][19]
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Cellulose, particularly nanocrystalline cellulose (NCC), in aqueous suspensions, shows liquid
crystalline behaviour, being a lyotropic LC, and has a chiral nematic arrangement. [19] On the
other hand, collagen molecules are triple helical, thus, also chiral nematic and posteriorly organize
into cross-striated fibrils and in a three dimensional network. [20] This type of assembly is present
in compact bones, connective tissues and cornea. In human compact bone, collagen type | has
arced textures due to the superposition of different molecules orientations at the section plane.
[17] In cuticles, the collagen molecules form concentric circles. [12]

In table 1.1 a summary of some biological liquid crystals and its corresponding liquid

crystalline phases is presented:

Table 1.1 — Biological liquid crystals and type of LC phase:

Biologic liquid crystal Liquid Crystalline Phase
DNA [9] Chiral Nematic
RNA [9] Chiral Nematic
Proteins [9] Chiral Nematic
Phospholipid bilayer [18] Smectic
Myelin [14] -
Haemoglobin [9] Nematic
Chitin [18] [19] Chiral Nematic
Cellulose [18] [19] Chiral Nematic
Collagen [20] Chiral Nematic

Liquid crystalline behaviour enhances some properties of the biological materials such as
elasticity, resistance to load and stress. [21] This characteristic also allows efficient packing and

self-assembly of plywood structure and sensor/actuator abilities. [22]

1.3. Liguid crystals in biomedical applications:

Liquid crystals are widely used in biomedical applications due to their unique properties
such as birefringence and the ability to change their conformation in the presence of an external
field as light, voltage and heat. In some external conditions, such as in the presence of chemical
or biological substances or pH variations, LCs can also change their conformation. Furthermore,
LCs have an affordable cost and are resistant to stress and elongation. The possibility to mimic
biological arrangements and to react to electromechanical stimulus, taking part of artificial
structures such as muscles and bones, enables a new type of prosthesis that can execute

complex tasks.
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Chiral nematic printed LC films are being used for temperature and humidity actuators.
These LCs are implemented as power generators, smart textiles, artificial muscles, and sensors.
The pitch and wettability of these LC superficies change with the radiation beam (temperature).
(23]

Another employment of LCs in this field includes: liquid-crystal tunable filters (LCTFs) and
spatial light modulators (SLMs). LCTFs are used in spectroscopy, acquiring the spectral signature
of a cell, tissue or a biological particle. As an example, the spectral signature of the haemoglobin,
present in the blood vessels of human conjunctiva, can be detected by the LCTFs and used to
diagnose anaemia by measuring the haemoglobin levels. Allied with optical fibres this technique
also allows endoscopic diagnosis. SLMs are used in DNA manipulation and in the investigation
of cellular behaviour as well as in in vitro fertilization practices. These devices brought more phase
contrast and led to advances in scanning microscopy. LCs are also used to produce, on a larger
scale, lasers with higher optical range and optical power that, with further research, will bring
advantages in the biomedical field. LCs nematic droplets can function as lenses with a focal length
that can be modulated with an electric field. They can substitute bifocal eyeglasses by switching
to near or far vision with the electric stimulus. [11]

A variety of molecules such as antigens, are added to liquid crystals to form chemical and
biological sensors. When a surface interaction occurs in the LC, its conformation changes,
forming a simple and rapid sensor that doesn’t need biological markers or any kind of energy to
function. [11] On the other hand, it was reported that an endotoxin aggregated to LC droplets’
defects, is able to change the droplet’s conformation. [24] Brake et al. observed an alteration of
the alignment in LCs, when phospholipids are added to the liquid crystal aqueous interface. [25]

In the field of tissue engineering, hydrogels and silicon elastomers with LC properties
were applied to the study of cell behaviour. Liquid crystals were added to a cell culture of
mammalian cells and it was observed cell proliferation, proving the non-toxicity of certain LCs to
this type of cells. [2] Liquid crystalline collagen was reported to align fibroblasts in a parallel
direction to the collagen matrix direction, supporting the role of LCs in tissue formation. [26] It was
also used to understand the influence of the matrix architecture on cell behaviour. [3] Collagen
fibrils, hydrated with a liquid crystalline phase, were shown to successfully grow an amount of
fibroblasts, close to the number of fibroblasts presented in the connective tissue, representing an
enormous breakthrough in tissue regeneration and in the production of new materials similar to
skeletal tissue [27], corneal and in the regrowth of peripheral nerve axons. [28] Genetically
engineered liquid crystalline films of virus M13, coated with peptides, are proved to aid in the
growth of nerve cells. [29]

Lyotropic liquid crystals, such as GMO/PT—propyleneglycol-water systems, are also
being investigating to be used as drug delivery systems in cancer treatments by photodynamic

therapy. [30] These materials have non-toxic, biodegradable and bioadhesive properties and are
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able to encapsulate, in its lyotropic layer, substances of low and high molecular weight such as,
chemical drugs, proteins, peptides and nucleic acids for drug delivery systems. [6]

2. Cellulose and collagen: two liquid crystalline

biomaterials:

Cellulose is the most common and important natural organic polymer and is a long-chain

polysaccharide with repeating unites of D-anhydroglucopyranose linked by a -1,4 glycosidic

bond. It's molecular structure is represented in figure 1.4. The main properties of cellulose are
hydrophilicity, chirality, degradability and the formation of supramolecular assemblies by
hydrogen bonds, due to the presence of three reactive hydroxyl groups. [31] Cellulose can be

found in plants, some bacteria, algae and fungi. [32]

Cellobiose
H OH H H H  OH H o)
H o H 2 OH H-0 H M
HO 170 5 H
3 HO
HO 0 OH
OH OH
- H H ho H OH
%{—/
AGU unit

Figure 1.4 — Molecular structure of cellulose representing the cellobiose unit as a repeating unit, showing
the non-reducing (left) and reducing (right) end-groups. This structure also shows that the repeated

anydroglucopyranose units (AGU) are rotated of 180° with respect to each other, due to - linkage
constrains (n=DP, degree of polymerization).

Improvement of the knowledge of the reactivity and structural features of cellulose has
motivated the search for new types of cellulose-based materials - ethers, esters and
nanocellulose.

On the basis of its functions, dimensions and preparation methods three categories of
nanocellulose can be considered: microfibrillated cellulose, bacterial nanocellulose and
nanocrystalline cellulose. [33]

Nanocrystalline cellulose (NCC) nanoparticles are rigid rod-like crystals, with 5-70 nm of
width and 100 or more nm of length, obtained by acid hydrolysis of cellulose fibres. NCC has a
high surface area, which increases its reactivity, possess less toxicity and presents enhanced
mechanical properties when used in a composite mixture. Besides, NCC is bio- and hemo-
compatible and has unique optical properties. In an aqueous suspension, NCC shows an isotropic

phase that is converted in a chiral nematic liquid crystalline phase when the NCC concentration
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rises above a critical point, observed by the appearance of birefringence and a characteristic
fingerprint texture. [34] NCC can also show a parallel alignment when exposed to a magnetic
field. [35] Nanocrystalline cellulose has been studied for various tissue engineering applications
in the past few years. NCC can be used as scaffolds, films, porous sponges and as hydrogels
reinforcement agents, increasing their mechanical properties and biocompatibility. [32] Burt et al.
studied the ability of NCC to bind to water soluble antibiotics and cationic NCC to bind to non-
ionized hydrophobic anticancer agents, proving that these systems are good drug carriers either
in the form of films, hydrogels or microspheres. In blood vessel replacements, NCC also improved
the mechanical properties of implant matrices of collagen, gelatin, alginate, chitosan, cotton
gauze, polyethylene glycol (PEG) and polyvinyl alcohol (PVA). [36] Yang et al. produced
injectable hydrogels of carboxymethyl cellulose and dextran reinforced with cellulose
nanocrystals and aldehyde-functionalized NCC, as a chemical cross-linking agent. These
hydrogels, with high dimensional stability in swelling experiments and improved mechanical
properties, exhibit non-significant cytotoxicity when in contact with 3T3 fibroblast, which opens its
use to several biomedical applications such as drug delivery systems or tissue engineering

matrices. [37]

Collagen is the most common protein present in the human body and is the main
structural element of tissue, skin, bone and cartilage. It is formed by three filaments of
polypeptides combined in a left-handed triple helix with 300 nm long and 1.5 nm of diameter.
Collagen is characterized by Gly—Pro—Hyp—Gly—X-Y sequences where Gly is glycine; Pro is
proline, Hyp is hydroxyproline, X and Y are amino acids, linked by hydrogen bonds between —CO
and —NH groups, and by covalent bonds. [26] Its precursor is procollagen, a molecule with N and
—C terminals groups that are posteriorly removed to form collagen. [16]

There are 19 types of collagen known. Type | collagen forms most of the extra cellular
matrix proteins of dense connective tissue. The hierarchical organisation of these fibrils increases
the elasticity of skin, the resistance to stress or shear in tendons, the load in bone and
transparency of the cornea. In vitro research proved the existence of liquid crystalline chiral
nematic phase of type | collagen with a long-range helical order. [20] A major interest in collagen
in tissue engineering field has grown due to collagen’s biocompatibility, biodegradability, low
immunogenicity and toxicity as well as good cell adhesion properties. [27]

Collagen is used in drug delivery systems in films, such as collagen shields in
ophthalmology for surface lubrication [38], and as a sponge, to delivery certain drugs through the
eye [39] and for wounds and bruises. It is additionally applied as a homeostatic agent. In tissue
engineering, collagen matrices can be used for bone regeneration and cell growth however the
growth of extracellular matrices takes a long time. [40] Stopak et al. verified that collagen gels,
which were formed shortly after the injection of collagen, in developing chick limb buds, rearrange

with the limb tissue and are able to form parts of tendon, perichondria, perineuria, and other
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structures. [41] Kofidis et al., showed, with in vitro studies, that projected collagen devices
colonized with cardyomiocites with continuous and synchronized contractions are close to be
suitable to repair cardiac tissue. [42] Collagen type | alone is used as bone substitutes and tissue
grafts due to its osteoconductive activity. Furthermore, mixtures of hydroxyapatite with

demineralized bone collagen are employed as bone grafts materials. [43]

3. Physical and chemical gels:

Gels are a viscoelastic soft material, which combines a solvent and an elastic cross-
linking network. The solvent is captured and adhered in the solid arrangement. If gels are formed
by strong chemical bonds they are thermally irreversible and they cannot be disassembled. On
the other hand, gels formed by weak and non-covalent interactions can be dismantled. [44] A
chemical gel is a polymer 3D network chemically bounded to each other by covalent bonds.
Physical gels are 3D assembled structures of fibrous low molecular weight compounds. The
interactions between molecules to form fibrous structures are hydrogen bonds, n-r and donor-
acceptor interactions. [45]

Liquid crystalline chemical gels are formed by in situ polymerization of monomers that
can or cannot be liquid crystals with reactive groups in inert liquid crystal solutions. LC physical
gels arise from the self-assembly of a fibrous low molecular weight structure (gelator) that
imprisons the liquid crystal. The transition of sol-gel of the gelator and the isotropic-anisotropic
transition of the liquid crystal occur in the gel formation process. [45] Figure 1.5 shows the
illustration of physical and chemical gels as well as of the physical and chemical liquid crystal
gels.

Liquid crystalline gels can be thermoreversible and have phase transitions: isotropic
liquid-isotropic gel and isotropic gel-liquid crystalline gel that are independent of each other but
dependent of the temperature. [45]

In the opto-electronic field, liquid crystalline physical gels are being studied due to their
ability to change from a light scattering state to a light transmission state with an applied voltage.
These LC gels, formed by oligo (amino acid) gelators, are a great advance for electro optical
displays. [46] Bistable nematic liquid crystal gels with self-assembled fibers, which are
thermoreversibles can be applied to the manufacturing of rewritable memory. Light can also
change the LC gel conformation and can be applied to produce electrically switchable diffracting

gratings. [45]
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Figure 1.5 — lllustration of: a) chemical gels; b) physical gels; ¢) Liquid-crystalline chemical gel; d) Liquid-
crystalline physical gel. Adapted from [45].

3.1 Hydrogels:

Hydrogels are hydrophilic polymer networks that are capable of swell and adsorb water
in a quantity higher than its weight. They present a physical structure similar to a biologic cellular
matrix and can be used to modulate and study the cellular behaviour and tissue morphogenesis.
Furthermore, hydrogels are suitable for a wide range of biomedical applications: 3D matrices for
tissue engineering, drug delivery systems, injectable fillers for minimally invasive surgeries and
composite biomaterials. [47]

Physical and chemical hydrogels are distinguished by the definition applied to gels (see
physical and chemical gels). When the variation of physical condition such as pH, temperature,
ionic strength or application of external forces occurs, the hydrogel may disintegrate and dissolve.
[48]

Peppas et al. stated that hydrogels are obtained by swelling cross-linked structures in
water. The different processes to form a hydrogel are: chemical cross-linking,
photopolymerization and irradiative cross-linking. Chemical cross-linking can cover bulk
polymerization, suspension polymerization and cross-linking. Photopolymerization is mostly used
with UV light, which activates certain functional groups to form covalent bonds with radicals. [44]
At last, irradiative cross-linking consists in generating radicals by ionizing radiation; these radicals
are not bonded to chains and recombine to form crosslink junctions. [49] Also physical interactions
like crystalline formations, entanglements and electrostatic forces lead to hydrogel formation. [50]

Cellulose is able to absorb large quantities of water, mainly dependent on its crystalline

and amorphous regions, total surface area and pore volume, which makes it suitable for use in
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hydrogels. [51] NCC, which have higher degree of crystallinity, surface area and pore volume are
used to produce hydrogels and are gelated with, for instance, the addiction of certain
polysaccharides. [52] Others examples of NCC hydrogels can be found in the literature. For
example, the NCC are gelated with polymers, as polyethylene glycol and poly(methyl vinyl ether-
co-maleic) acid, to produce hydrogels with enhanced physical properties. [50] In another
research, NCC were incorporated into hydrogels based on cyclodextrin/polymer inclusion and
these hydrogels, can possibly be used as a controlled drug delivery vehicle. [34]

Collagen hydrogels are easy to handle, although they present weak mechanical
properties and non-controllable swelling. Concentrated collagen hydrogels were studied to
surpass these disadvantages and it was shown that the hydrolysis of the gel was retarded
comparing to collagen gels. Furthermore, they favour cell growth and do not contract drastically,
making them suitable for dermal substitution. [53]

Elastomeric hydrogels are being developed by Betre et al., for biomedical applications due to
its elasticity similar to skin, blood vessels, lungs and muscle. These gels are prepared from a
mixture of a-elastin with polycaprolactone (PCL) that stimulate chondrocyte adhesion and
proliferation. Chondrocytes were implanted in a collagen, alginate and K-elastin composite and

the cartilage formation was observed. [54][55]

4. Polyvynil Alcohol (PVA):

PVA is a synthetic polymer that is widely used due to its biocompatibility and ability to
produce macroporous hydrogels suitable for tissue engineering [56] and drug delivery systems
[57]. PVA has good elastic and mechanical properties, such as tensile strength, and it can be
dissolved in water. [57] Hydrogels of PVA and NCC were reported by Abitbol et al. and are formed
by cyclic freezing and thawing. This method allows the formation of hydrogels with good stability
at room temperature and prevents toxicity derived from PVA. These hydrogels present a similar
water content of the biological tissues, have good elasticity and are thermoreversible at 50°C.
[58] The crystallites formed in the freeze cycles act as a cross-linking agent forming a hydrogel
with a pure crystalline network.

PVA is a polymer widely used in biomedical applications. Having this in mind gels of
NCC/PVA were explored as a fluorescence biosensor that can be employed in wound diagnosis.

[59] Gonzalez et al. showed a potential use of hydrogels with NCC/PVA for wound dressing. [60]

10
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5. Cell adhesion mechanisms:

5.1. Protein adsorption:

To occur cell adhesion, firstly there has to exist protein adsorption by the biomaterial’s
surface. A monolayer of proteins is able to adhere on the biomaterial shortly after the first contact
protein-biomaterial. This monolayer is fundamentally responsible for cell adhesion and for a
positive response of the body to an implanted biomaterial or, in case of scaffolds, cell proliferation.
[49]

The cell membrane possesses integrins, which are receptors that bind to specific protein
types. The proteins that enhance cell adhesion differ from cell line to cell line. As an example,
fibronectin improves cell adhesion in fibroblasts but the contrary is shown with endothelial cells.
Albumin is also known to decrease cell adhesion in fibroblasts and vitronectin enhances the
adhesion of endothelial cells. Protein absorption is a competitive process and thus, concentration
of different proteins should be taken into account in the culture medium. [49]

The proteins’ size, charge, structure stability and unfolding rate are some of the properties
that influence the interaction with the material’s surface. For instance larger proteins, or proteins
with a higher unfolding rate and even less stable proteins have more binding sites and thus lead
to a more efficiently cell adhesion. Proteins near the isoelectric point, (the pH at which the
molecule exhibits zero charge), have a better cell adhesion rate. [61]

Several studies also show that hydrophobic surfaces can more easily irreversibly bound
to proteins due to the protein unfolding on the surface. At low ionic strengths, cationic proteins
bind to anionic surfaces, as well as anionic proteins bind to cationic surfaces. These protein
preferences are due to the ion-ion coulombic forces. [62]

The cell adhesion process is also influenced by surfaces with textures, which extends its
surface area, heterogeneity and chemical composition of the surface. [61]

In contrast, the osmotic repulsion, dehydration between protein-surface, chain
compression and protein hydrophobic exposure opposes to protein bounding. Van der Waals
forces and desorption of water molecules also favour the protein-surface adhesion. [49]

In conclusion, protein adsorption is a complex mechanism and it is still being studied. The
main reason for a biomaterial resist to protein adsorption relies on the retention of bound water

by the surface molecules.

5.2. Non-fouling biomaterials:

Non-fouling biomaterials do not have a surface suitable for a good protein and/or cell
adhesion. Strong protein adsorption can also inhibit cell adhesion to the material. Although these

materials cannot be used for tissue engineering purposes, they do have diverse biomedical
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applications such as implanted devices, urinary catheters, diagnostic assays, biosensors, affinity
separations, microchannel flow devices, intravenous syringes and tubing. In a non-biomedical
field non-fouling materials are used as biofouling-resistant heat exchangers and ship bottoms.
[49] They are also used in in vivo nanopatrticle-based diagnostics and microarrays. Currently, few
non-fouling materials can be used in biomedical applications without suffering any kind of
degradation such as PEG, phosphorylcholine (PC) and sulfobetaine methacrylate (SBMA) and
carboxybetaine methacrylate (CBMA). [63]

5.3. Improvement of cell adhesion in non-fouling materials:

For tissue engineering purposes, good protein adhesion to the materials or surfaces are
essential. Hence, several physical (etching, roughening and photolithographic techniques) [64]
and chemical (cross-linking of polyelectrolyte multilayer films [64], addition of RGD peptide [65],
oxidation, fluorination and silanization [49]) methods have been developed to improve cell

adhesion in biomaterials.

6. Fibroblasts: a cell culture perspective.

6.1. Fibroblasts:

Fibroblasts are mesenchymal cells responsible by production of growth factors and the
main components of the extracellular matrix such as, interstitial collagens, proteoglycans,
glycoproteins, cytokines, and proteases. [66] They are part of the connective tissue family, which
also includes cartilage (chondrocyte) and bone (osteoblast and osteocyte) cells. They are found
dispersed through the connective tissue of an organ and repair the human tissue by migrating to
the wounded site and then excrete the extracellular matrix. [67]

Morphologically, fibroblasts have a spindle shaped flattened conformation [68] with an
oval nucleus. When adhesion to fibbers occurs, they form a three dimensional network and
become embedded within the extracellular matrix. Fibroblasts isolated from either different or
equal sites, show heterogeneous phenotypes [69] and currently there are no specific markers for
fibroblasts, difficulting their study. [70] The origin of this cell line is still being studied. [71] Some
type of fibroblasts can differentiate into other cells of its connective tissue family and in adipocytes,
in specific conditions of the extracellular matrix, growth factors, cell shape and hormones, which

is represented in figure 1.6. [67]
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Figure 1.6 — lllustration of the connective tissue cell family. The fibroblasts can in certain conditions of
extracellular matrix, growth factors, cell shape and hormones differentiate in other cells of the connective
tissue family. Adapted from [67].

Recent studies also showed that fibroblasts have an important role in the angiogenesis
process. [72] Furthermore, researches concluded that fibroblasts can differentiate into endothelial
cells as well as, endothelial cells can differentiate into fibroblasts. This recent discovery opened

new possibilities for in situ tissue repair. [73]

6.2. Fibroblasts in tissue engineering:

In 1975, the first techniques to culture fibroblasts were established by Rheinwald and
Green with 3T3 murine fibroblasts. Fibroblasts are vastly used in cell culture on account of its
individual behaviour (they do not form clusters) and the ability to adhere to plastic surfaces. In
specific, dermal fibroblasts can be easily expanded from a small skin sample without refined
purification methods, by enzymatic degradation or explant culture. For fibroblasts to grow there is
no need for growth factors and one culture expand rapidly (24-72 hours) in the presence of serum.
[74]

As previously mentioned, fibroblasts are able to migrate to injury sites and to differentiate
into another connective tissue lineage cells, including bone, cartilage and adipose cells. Based
on these unique properties, numerous studies were carried out until today focusing in fibroblasts
and their potential in tissue engineering.

Fibroblasts are being used to repair ligaments [75], skin defects such as acne scars and
rhytids [76], and when used in a collagen matrix for the treatment of burns. [77] Parmer et al., also
combined collagen matrix with fibroblasts to reconstruct epithelial-stroma interactions, helping the
growth of human mammary epithelium in mice. [78] In another study the authors showed that a
derived dermal substitute with human fibroblasts successfully improved the healing of diabetic
foot ulcers. [79] Also, clinical trials indicated that spray formulations of allogeneic neonatal

keratinocytes and fibroblasts aid the treatment of chronic venous leg ulcers. [80] Syedain et al.,
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conducted investigations regarding implantable arterial grafts obtained by entrapment of human
dermal fibroblasts in fibrin. Their team created grafts with similar aorta’s retention strength. [81]
Co-culture of bone marrow fibroblasts and endothelial cells in polycaprolactone substrates

showed good results for bone tissue engineering. [82]

6.3. Fibroblasts and liquid crystalline structures:

Fibroblasts were already used with liquid crystalline materials, demonstrating the
importance of the liquid crystals in new therapies based in tissue engineering techniques.

Fibroblasts were successfully cell cultured in collagen type | gels with liquid crystalline
textures. Furthermore, after one month of incubation, the number of fibroblasts is approximately
the same as estimated in the connective tissue. [27] Kirkwood et al., as previously described in
these chapter, observed the directional growth of fibroblasts according to the chiral nematic phase
of the type | collagen gels, opening new perspectives in recreating the original connective tissue
textures in vitro, for posterior tissue engineering purposes. [26]

Chung et al., produced M13 bacteriophages liquid crystalline films and fibers for
directional growth and successfully encapsulated fibroblasts. The results of these experiments

were the guidance of the fibroblasts growth. [83]
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Chapter Il - Materials and Methods

1. Nanocrystalline Cellulose gels:

1.1. Materials:

All materials were used as received unless stated otherwise. Microcrystalline cellulose,
Avicel® PH-1010, 50 um particle size, was purchased from Sigma-Aldrich. Sulfuric Acid (95-97%,
p.a) was used in the acid hydrolysis reaction of cellulose and was purchased from Merck. Glycerol
(pharmaceutical grade) was purchased from Laborspirit and polyvinyl alcohol (95%, Mw=95000
g/mol) was purchased from Acros Organics. Dilutions were always performed using ultrapure
water from a Millipore Elix Advantage 3 purification system. Collagen, from bovine Achilles
tendon, was purchased from Sigma-Aldrich (St. Louis — USA). Glacial acetic acid (99.7%, p.a.)
and ammonia (25%, p.a.) were purchased from Panreac. Yellow food dye was supplied by Globo.

Cryopreserved Human Neonatal Dermal fibroblasts (HNDF) were purchased from ZenBio.
Modified Eagle Medium (DMEM), with 10% fetal bovine serum (FBS), the essential culture
medium was acquired from Dulbecco’s. The solution of 0.25% trypsin/2.21 mM EDTA
(ethylenediamine tetraacetic acid) were purchased from Gibco. FBS was supplied by EC
approved origin, LDA. Resazurin (resazurin sodium salt at 0.1 mg/mL) was purchased from
Sigma-Aldrich. Phosphate-buffered saline (PBS) was prepared at INEB by a laboratory

technician.

1.2. Acid hydrolysis of cellulose:

To produce nanocrystalline cellulose (NCC), acid hydrolysis of microcrystalline cellulose
was performed based on the works of Gray group [84][85] and Orts et al. [86] with minor
adaptations. 10g of microcrystalline cellulose were hydrolysed in a mixture of 87.50 mL of
sulphuric acid and 84 mL of distilled water at 45°C, under vigorous magnetic stirring. Three
reaction times were set: 40 minutes, 70 minutes and 130 minutes. After the hydrolysis time was
concluded, the suspension was added to a 3L beaker with 10 fold of ultrapure water. The
suspension was placed at rest for 16 hours. After this time, the suspension presented two phases:
the acid in the top and the NCC/MCC deposited at the bottom of the beaker. The acid was
retrieved with a pipette and the NCC suspension was washed with ultrapure water by
centrifugation, at 12000 rpm for 30 minutes. This washing process was repeated until a pH of 3.4
was reached, normally attained after 2-3 full working days. A Thermo Scientific Heraeus Multifuge

X1R was used for the centrifugation. After this process, the remaining NCC suspension was
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centrifuge at 14000 rpm for an hour in order to concentrate the suspension. The resulting
suspension was placed in a Spectra/Por® 4 cellulose membrane (from Spectrum), with a cut-off
of 12-14 KDa, and dialyzed against ultrapure water until a constant pH value was achieved
(normally ~5.5 to 6.0). [84]

The amount of NCC in a given suspension was controlled by gravimetric study (10
measurements). In this procedure small quantities of NCC suspension were dry, on an oven at
60 °C, until constant weight. Higher contents of NCC in a suspension could be obtained by
centrifugation. All suspensions were sonicated, with an ultrasonic processor UP400s (400W,
24kHz, Hieslcher Ultrasonics GmbH), prior to use.

Pictures of NCC suspension’s birefringence, observed by placing the suspension vial
between two cross polarizers sheets (from Edmund Optics), were acquire by using a Casio EX-

F1 Exilim Pro camera. A light source was used behind the vial.

1.3. NCCl/glycerol gel formation:

Gelation was performed according to Dorris et al. procedure. [87] Typically glycerol was
added to the NCC suspension and the mixture was stirred vigorously for about 30 minutes or until
a homogeneous suspension was achieved. Then the mixture was placed in an oven at 60°C until
almost all the water is evaporated. The evaporation of the water was controlled by gravimetric
method, this is, until constant weight. The NCC/glycerol ratio was adjusted by changing the
amount of glycerol added to the NCC suspension. For instance, to obtain a gel with 5% (w/w) of
NCC, to 5g of 2.5% (w/w) NCC suspension 2.5g of glycerol was added and this ratio was used
for further concentration calculations. Gels with different NCC contents were obtained and are

summarized in table 2.1.

Table 2.1 — Amount of NCC and glycerol used in the NCC/glycerol gels preparation. Final NCC content in
the gels (value rounded to the integer).

% NCCin H,O | m (NCC/H0 m glycerol Final NCC %
Gel suspension suspension) (9) in the gel
(wiw) 9) (wiw)
A 2.124 2.5 1.593
B 2.124 2.5 1.062
C 2.124 2.5 0.490 10
D 2.124 2.5 0.245 18
NCCs40’
NCCs70’ 2.124 2.5 0.708 7
NCCs130’°
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To distinguish the gels with different hydrolysis times, the following nomenclature will be used
through the study of the NCC/glycerol gels with 7% (w/w) of NCC in their composition:

¢ NCCs40’: gels containing NCC with 40’ sulphuric acid hydrolysis time;

e NCCs70’: gels with 70’ NCC sulphuric acid hydrolysis time;

e NCCs130’: gels with 130’ NCC sulphuric acid hydrolysis time.

The remaining concentrations of NCC in the NCC/glycerol gels do not follow any specific

nomenclature.

1.4. NCC/PVA gel formation:

Gels of NCC and PVA were prepared according to Abitbol et al. by cyclic freezing and
thawing. PVA was dissolved in a ratio of 15g of PVA to 100g of water. After complete dissolution,
the aqueous suspension of NCC was added to this mixture and left under stirring for 24 hours.
The resultant suspension was placed in an oven at 90°C during 6 hours proceeded by 24 hours
of stirring at room temperature. 5 freeze-thawing cycles were performed to the sample. The freeze
cycle lasted 18 hours at -18 °C and the thawing cycle 4 hours at room temperature. To study the

most viable gel for cell culture, gels with different NCC/PVA ratios (table 2.2) were prepared. [58]

Table 2.2 — Amount of NCC and PVA used in the NCC/PVA gels preparation. Final NCC content in the

gels.
Gel % NCC in H;0O m (NCC/H.O | m PVA (g) m H20 (9) NCC % of dry
suspension suspension) weight of PVA
(wiw) (9)
A 2.124 2.833 0.604 1.256 10
B 2.124 0.304 1.000 6.370 0.65
C 2.124 2.354 1.038 4.617 4.85

2. Collagen gels formation:

2.1. Gel formation:

The preparation of collagen gels followed the work presented by Giraud-Guille et al.,
Typically collagen was dissolved in a 0.5M solution of acetic acid, in order to form a 5mg/mL
solution. Rapid stirring, during 72 hours at 4°C, was required for full dissolution of collagen. The
solution was then sonicated to destroy collagen agglomerates. Solvent evaporation was obtained
with reduced pressure (with an Edwards RV5 vacuum pump) until a 40 mg/mL concentration was
reached. The sample was then sonicated to obtain a homogenous solution for a better distribution

in a 96 well plate. The well plate was placed in an ammonia chamber for gel formation for a month.

(3]
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3. Characterization of the Nanocrystalline cellulose and its

gels:

3.1. Fourier Transform infra-red spectroscopy (FTIR):

Dry samples of NCC, as thin films, were analyzed by FTIR. Thin films of NCC suspensions
were casted onto polystyrene molds by solvent casting methods. NCC films were analyzed at
Cenimat|I3N by a FTIR Thermo Nicolet 6700 spectrometer coupled with an attenuated total
reflectance (ATR) sampling accessory (Smart iTR). ATR-FTIR spectra were recorder with an
incident angle of 45°, from 4000-600 cmt, with 4 cm-! resolution, 32 scans at room temperature.

ATR-FTIR spectra of the NCC gels, before and after exposure to cell culture medium,

were acquired at INEB with a Perkin-ElImer 2000 system 2000 XR-analysis.

3.2. X-Ray Diffraction:

The structural analysis of NCC and microcrystalline cellulose was achieved by collecting
X-Ray Diffraction patterns. This was done using a XRD PANalytical (model X’'Pert Pro) in Bragg—
Brentano geometry with Cu Ka line radiation (A=1.5406 A) at 45 kV and 40 mA, the instrument
being equipped with an X'Celerator detector. The XRD patterns were collected with a scanning
step of 0.0334° over the angular 26 range 10°-40°, with a total acquisition time of 4 min. To
analyze the diffractograms, specific software (OriginPro 8) was used that allows the

characterization of the peak parameters such as position, intensity, width and shape.

3.3.  Scanning Electron Microscopy (SEM):

Scanning electron microscopy (SEM) uses a high energy electron beam to target a
sample. The electrons carry a kinetic energy, which is transferred to the sample’s surface due to
the deceleration of the electrons, emitting secondary electrons. These secondary electrons
generate a current that is measured by charged coupled device (CCD) screens, originating the
SEM image. A SEM image is a representation of the specimen topology. On the other hand,
backscattered electrons — primary electrons that are dispersed after the collision with the sample,
provide a chemical analysis of the material — EDS (energy dispersive spectroscopy). [61] A

scheme of a scanning electron microscope is represented in figure 2.1:
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Figure 2.1- Schematic diagram of a Scanning electron microscopy (SEM) device. Adapted from [88].

Non-conductive materials have to be coated with a thin, electrically grounded layer of
metal such as gold or by a non-metal as carbon. This layer diminishes the negative charge of the
electron beams irradiating the sample’s surface. The coating procedure has some disadvantages:
at higher magnifications the image may be from the metal instead of the sample and if the layer’s
thickness is more than 200 A, the electron beam may not reach the material in an EDS analysis.
[49]

SEM (Zeiss Auriga at CENIMATII3N), was used to study the size and shape of
nanocrystalline cellulose obtained at different acid hydrolysis times. An electron beam with 2Kv
was applied to the samples with an aperture size of 30 um. An agueous suspension of NCC was
placed in circular transmission electron microscopy (TEM) grids. The water of the sample was
completely dried at room temperature and coated with carbon (thickness layer 20 nm). The
lengths and diameter of individual nanopatrticles, observed in the SEM images, were measured
using ImageJ software (version 1.48, http://imagej.nih.govl/ij/)). The distribution of the particles

length and width were achieved with 100 measurements.

3.4. Polarized Optical Microscopy (POM):

Polarized optical microscopy (POM) is widely used to characterize materials with optical
properties like chiral nematic liquid crystals. A schematic of a polarize microscope is represented
in figure 2.2. A halogen light bulb produces unpolarised beams, which are reflected by a mirror
and pass through the lenses. The beams reach a polarizer that can rotate until 360°, followed by

a condenser that uniforms the light that reaches the sample. After passing the objectives, a

19

Diana Paiva Dissertacdo de Mestrado em Engenharia Biomédica



LIQUID CRYSTALLINE MICROENVIRONMENTS FOR TISSUE ENGINEERING

second polarizer called analyser, absorbs almost all the light and only the beams that passed
through an anisotropic environment are displayed, otherwise dark background is shown. A digital
camerais used to record images of the samples and is placed above the objectives and the image

is acquired by a semi-transmitting mirror. [89]

Ocular

Analyser

Objective

Hot stage with sample

Condensor

Cross Polarizer

Lenses

A0

Unpolarized light

Figure 2.2 — Schematic of a polarized optical microscope. Adapted from [90].

Polarized optical microscopy was used to observe liquid crystalline textures in NCC/PVA
and NCC/glycerol gels. To analyse the liquid crystalline phases a 90° difference between the
analyser and the first polarizer had to be settled, this is, the image was acquire between cross
polarizers. In the LC phase, the light is scattered according to the pitch of the sample and only
the beams parallel to the analyser are observed. Optical microphotographs of the samples were
taken using a transmission mode in an Olympus BX51 microscope coupled with an Olympus
DP73 camera (CENIMAT]II3N) and Olympus BX50 at INEB. The pitch from the fingerprint texture
observed in the acquired images was measured with the ImageJ software. The distribution of the

pitch values was achieved with 100 measurements in each condition.

3.5.  Transmission electron microscopy (TEM):

Transmission electron microscopy (TEM), provides information about the internal
structure of the materials, inaccessible by other techniques such as POM or SEM. TEM is widely
used to characterize materials or particles from the atomic to a micrometre level. A scheme of the
transmission electron microscope is shown in figure 2.3. A high energy electron beam is produced
by heating a cathode which can be a filament or a sharply pointed rod of a metal such as tungsten.
The electrons collide with the anode, a disk with an axial hole configuration. The intensity and

angular aperture of the electron beam is controlled by condenser lens. [91] A TEM image is
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formed by transmission electrons, meaning, the electrons pass through the sample due to its
thickness or transparency. The collision of these electrons with a fluorescent screen or a CCD
generates the image. Black and white images are created. The black images occur when few
electrons are transmitted. On the other hand, white images are created when a large number of

electrons pass through the sample, thus are transmitted.

G) Electron source
|:| |:| Condensor lenses

Sample grid

0 0 Objective lenses

e Projective lenses

A 4

CCD surface or
fluorescente screen

Figure 2.3 — Schematic diagram of a Transmission electron microscopy (TEM) device. Adapted from [88].

TEM enables the assessment of chemical compounds present in the sample and the
crystallinity of the material. The sample preparation for TEM is a very complex procedure: the
sample has to be completely dried due to the propagation of the electron beams and so vacuum
was applied. Furthermore, the specimen has to be very thin so it has lower resistance to the
electrons (“electron transparent”) and has to be resilient to the high energy electron beams. [92]

Electron microscope Jeol JEM 1400, Zeiss model EM 10C and model EM 902A with a
SC1000 OriusTM CCD camera gatan images were used to study the internal structure of the
NCC/PVA gels. The sample was coated with EPON resin and an electron beam with 100 keV of

energy was applied.
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4. Integrity tests:

4.1.  Non-mobility test:

After total removal of water from the NCC/glycerol gel, these were inverted and placed at

rest during two weeks.

4.2. PBS stability test:

In order to understand the stability of the gels described in 1.3 was executed a simple
test. The test consisted in placing 1ml of PBS, mixed with a yellow food dye, on top of a gel,
placed in a vial. The set was closed and incubated at 37° C during six days. The test was
performed in both NCC/glycerol and NCC/PVA gels. If the form and shape of the gels remain
constant after this PBS stability test, a non-mobility test was conducted to the NCC/glycerol gels
(see 4.1).

4.3. pHand culture medium stability test:

This test was carried out with the objective of increasing the pH of the NCC/glycerol gels
to a suitable pH for cell culture and to ensure the stability of the gels after this procedure.

To increase the pH of the NCC/glycerol gels to a pH of 7, 1ml of PBS was deposited in
the top of the gel and incubated at 37°C for 4 hours and then the PBS was removed. The
procedure was repeated four times, wherein the gel was left in the incubator overnight in the last
procedure. The experimental work was performed in a 0.04% CO:2 atmosphere incubator.

To determine the behaviour of the NCC/glycerol gels in cell culture medium as well as
the pH of the gel after this treatment, 1ml of cell culture medium was added to the gel and the set
was incubated at 37°C during 24 hours in an atmosphere of 5% CO2. The same procedure was
repeated in a 0.04% CO2 atmosphere.

pH measurements were performed with a pH micro probe from Lazar Research
laboratories, model PHR-146B, that can be observed in figure 2.4. Calibration of the equipment
was executed previously to any measurements using the appropriate standard solutions.

To determine any changes in the chiral nematic structures of the NCC/glycerol gels after
this treatments, the samples were observed by POM, in an Olympus BX50 microscope and the
pitch measured by the ImageJ software. For statistical purposes 100 measurements were

obtained.
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Figure 2.4 — pH probe used to measure the pH of the gels during the pH integrity test.

4.4, Swelling behaviour evaluation:

NCC/glycerol gels were submerged in PBS at 37°C and weighted at precise time
intervals. An attempt to remove the excess of water from the samples surface was done by placing

the sample within filter papers.

5. Chemical analysis of the NCC/glycerol gels:

5.1.  Electro kinetic Analysis (EKA):

An electro kinectic analyser measures the zeta potencial of a macroscope material. An
electrolyte solution is pumped through a measurement cell containing the sample to measure. If
the material is electrically charged, an electrochemical double layer is formed. This
electrochemical double layer is divided in two: the immobile Stern layer, which is constituted with
counterions (ions with opposite charge to that of the surface) and, closely to the Stern layer, the
Gouy-Chapman layer that is a diffuse layer with both positive and negative charged ions. A plane
of shear separates the two layers and the electrostatical potential in these planes is called the
zeta potential. [93][94] An Anton Paar Electro Kinectic analyser was used to measure the 7%
NCClglyceroal gels zeta potential, before and after 24 hours of incubation of the samples with cell

culture medium. Six measurements were performed to ensure statistical viability of the results.
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6. Rheology

The rheological properties of the NCC/glycerol gels: NCCs40’; NCCs70’ and NCCs130” were
studied with a rotational rheometer, (Kinexus Pro, Malvern Instruments, Malvern, UK). A brief
explanation of the theory behind the methodology used is described in the supporting information
(Annex I). For both viscometry and oscillatory measurements, the samples were allowed to rest

after loading, for at least 30 min, before start applying any deformation.

6.1. Viscometry measurements:

Viscometry assays to the gels were performed using a cone (& 40 mm, 0.5°) and plate
geometry, with a 0.015 mm gap and at 25°C, to assess the thixotropy of the gels through a
hysteresis loop. This test was performed by means of an increasing ramp of shear rates (0.01 s
110000 s*), immediately followed by a decreasing ramp with the same shear rate values (Figure

2.5). The test was performed for a total of 10 minutes (5 minutes per shear rate ramp).

The dynamic shear viscosity of the samples could also be obtained from these assays. The
area of the hysteresis loop is a measure of the thixotropic degree of the material, and depends
on the experimental conditions such as test duration, maximum shear rate applied and shear
history of the sample prior to the experiment. [95]

A

10000

Shearrate (s}

0.01

v

5
10

Time (min)

Figure 2.5 — Shear rate ramps applied to the sample for the hysteresis loop tests.

6.2. Oscillatory measurements:

The oscillatory tests were performed using a parallel plate geometry (@ 20 mm) and a gap of
0.75 mm, at 25°C. Preliminary studies were done to determine both stress and frequency values
within the linear viscoelastic region (LVR) of the gels. This region represents the stress and
frequency windows at which the viscoelastic properties of the gels are independent of the stress

or the frequency applied. After determining the LVRs of the gels, oscillatory frequency sweeps
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were performed from 0.01 Hz to 50 Hz to determine the behaviour of the material with the
increasing of the frequency applied as described in the literature.[96] In addition, oscillatory stress
sweeps from 1 Pa to 4000 Pa, immediately followed by an oscillation test with fixed frequency
and stress within the LVR of the gels for 5 minutes, were conducted as represented in figure 2.6
- A. This stress sweep test was adapted according to Shona Pek at al., that studied the effects of
a thixiotropic matrix to posteriorly use in mesenchymal cells [97]. With these assays, it was
assessed the ability of the gel to return to its initial viscoelastic properties after a transition to a
liquid state. Both the yield stress and the complex shear stress of each gel needed for a solid-
liquid transition of the material to take place were also determined.

A test sequence was designed to study the ability of the gels to recover the solid like
properties after being stressed with a high shear stress value (out of the LVR and that allows a
solid-liquid transition) as performed by Sharma et al.[98] The sequence (Figure 2.6 - B) was
repeated 15 times for each gel and consisted on applying a shear stress (out of the LVR) for 1

min, followed by the application of a different shear stress (within the LVR) for 4 min.
A B

Shear stress
out of the LVR

Shear stress
out of the LVR

Shear stress (Pa)
Shear stress (Pa)

Shear stress within Shear stress within
the LVR / i the LVR
1

i
24 29 1 5

Time (min) Time (min)

Figure 2.6 — Oscillatory assays performed to the gels. A - Oscillatory stress sweep, followed by an
application of the LVR conditions. B - Oscillatory test in which a shear stress out of the LVR is applied for 1
minute followed by the application of a shear stress within the LVR for 4 minutes; this was repeated 15
times for each gel.

To study the differences of the viscoelastic properties of the gels after cell culture
conditions (48 hours in cell culture medium), was used a fixed frequency and a fixed shear stress
within the LVR of the gels, previously determined. The gel was placed in a gel caster (QGel® 3D
disc casters (Lausanne, Switzerland) and incubated in the conditions described in section 4.3.
After incubation, gel discs were cored out with a biopsy punch cylinder of 8 mm of diameter. For
the oscillatory measurements, a parallel plate geometry (& 8 mm) was used with a 1.5 mm gap

due to the use of the gel caster with the same diameter.

Each test was performed three times and both numeric and graphic results are

represented as average + standard deviation.
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7. Cell culture

7.1. Specific cell-culture gel preparation methods:

All samples (NCC/glycerol gels: NCCs40’, NCCs70’ and NCCs130’) were sterilized using two
cycles of UV irradiation (15 minutes each) inside the laminar flow hood. After allowing the gels to
reach the cell compatible pH range (pH equilibrium method described in section 4.3) these

samples were used to perform cell adhesion and cytotoxicity tests.

7.2. Cell culture:

Cryopreserved Human Neonatal Dermal Fibroblasts (HNDF) were expanded. The HDNF
were previously stored at -80°C in a cryovail. 8 mL of Dulbecco’s modified essential culture
medium with 10% FBS - fetal bovine serum and 2% of Pennicilin/Streptomicin were added to a
T75 flask. The cryovail was immediately placed in a 37°C water bath for 1 minute without
submerging the cap of the vial. The cryovail was rinsed with 70% ethanol and taken to a laminar
flow hood where 1mL of pre-warmed culture medium was added to the cryovail. Slighted agitation
was done to the cryovail content and the cells were transferred to the T75 flask. The cells were
incubated for 8 hours at 37°C in a 5% CO:2 and the medium was replaced.

The medium was aspirated and the fibroblasts were washed 2 times with sterile PBS for the
removal of fetal bovine serum traces. The PBS was removed and the cells were released from
the flask bottom by adding a solution of 0.25% trypsin/2.21 mM EDTA. The cells were allowed to
trypsinize for 5 minutes at 37°C. The trypsin was neutralized with 5 mL of DF-1 (Dermal fibroblast
culture medium). To ensure the detachment of the cells from the bottom of the flask, microscopic
visualization was performed and cells were counted. The cells were placed in a humidified
incubator at 37°C and 5% CO2. DF-1 was replaced every 3 days until the desired confluence was

reached.

7.3. Cell Adhesion:

To perform the cell adhesion experiments, HNDF were seeded onto the surface of the gels
and incubated during 24h at 37°C in ImL DMEM (Dulbecco's Modified Eagle Medium) + 10%
FBS. After the 24 hours of incubation, the culture medium was discarded and the remaining non-
adherent cells were washed with PBS. As a control, gels with no cells were incubated and the

metabolic activity was measured by a resazurin assay.
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7.4, Citotoxicity assays:

The in vitro cytotoxicity tests were performed to determine the biocompatibility of the
NCC/glycerol gels. Cytocompatibility of NCC gels was evaluated through both direct contact and
indirect contact cell viability assays.

In the indirect contact assay, each well plate containing the gels was incubated during 24h at
37°C in ImL DMEM + 10% FBS. After this incubation, the media was collected and used to
cultivate HNDF previously seeded on a 24 well plate to a final concentration of 10000 cells per
well. As a control, the same number of cells were cultured using fresh medium. After this period
the metabolic activity was assessed by resazurin assay.

In the direct contact test, each gel was incubated on top of pre-seeded HDNF in a 24 well
plate (10000 cells/ well) during 24h and 48h at 37°C in 500 uL DMEM + 10% FBS. As a control,
the same number of cells without addition of the gels was used. After this period the metabolic

activity was assessed by resazurin assay.

7.5. Resazurin metabolic test:

A resazurin assay offers a simple method to measure the metabolic activity of living cells.
This metabolic activity causes a reduction in the resazurin to resorufin. Resorufin emits
fluorescence at 590 nm which is measured by a spectrophotometer. These tests are not
destructive due to the non-toxicity of resazurin and its derivatives and their stability in culture
medium. [99]

Resazurin was diluted (20% v/v) in the respective medium (DMEM+10% FBS) and samples
were incubated for 3 h at 37°C. A fluorometer (Synergy Mx o, Biotek) was used to excite the
samples at 530 nm and read the fluorescence at 590 nm. DMEM+10% FBS with resazurin (20%
viv) was used as blank samples.

To measure the metabolic activities in cell adhesion and in both direct and indirect methods
the culture medium was retrieved and, in the direct contact test, the gel was also discarded. The
results obtained are presented in terms of relative metabolic activity with metabolic activity of
control considered as 100%. Averages and standard deviations are reported. All data were

analysed using the Mann-Whitney U test with Graph Pad Prism 6 software.
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Chapter Ill - Results and Discussion

Having in mind the objectives of this dissertation, several attempts were performed to
produce nanocrystalline cellulose (NCC) based gels with liquid crystal properties. Glycerol and
polyvinyl alcohol (PVA) were the materials selected as a polymer matrix to produce these gels
and NCC with different sizes were produced and characterized. In order to produce these gels,
different NCC contents were also used and its influence on the liquid crystalline phase, estimated
by the pitch of the fingerprint textures, evaluated by microscopic techniques. An attempt to obtain
collagen gels was also performed.

The gel stability, when in contact with culture medium, was evaluated with a set of integrity
tests specially developed. The gels’ pH was increased to allow its use in fibroblast cell culture.

For a better characterization of the NCC/glycerol gels, preliminary rheological studies
were performed as well as the study of modifications in chemical and rheological properties of the
gels after the contact with culture medium.

To assess the possibility of using NCC/glycerol gels as a biomaterial unravelling its LC

characteristics, exploratory cell culture tests were conducted.

1. NCC synthesis and characterization

1.1. Synthesis:

Nanocrystalline cellulose was successfully synthesized from the acid hydrolysis reaction
of the microcrystalline cellulose with the sulfuric acid, as shown in the scheme represented in

figure 3.1.

OH 0SOgH*
. Q H,S0, o)
o a5 o
HO 130070, a0 1O
OH OH

Figure 3.1 — Schematic representation of the acid hydrolysis reaction of micro-cellulose to afford
nanocrystalline cellulose with sulfate half-ester groups in an acid form.

It is considered that cellulose chains are assembled in alternating rigid (crystalline) and
flexible (amorphous) regions. [85] In this reaction the more accessible amorphous regions
undergo chemical attack with the sulfuric acid and as a consequence particles with smaller sizes
and higher crystallinity can be extracted from the reaction medium. This nanoparticles have

sulfate half-ester groups that were added to the active -OH sites of cellulose in the acid form.
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1.2. Characterization:

In figure 3.2, it can be seen the ATR-FTIR spectrum of a NCC film obtained by solvent
casting of an aqueous NCC suspension with 2.5% (w/w) of solid content. In this figure it is
noticeable the characteristic FTIR peaks of cellulose, this is, the stretching vibrations of the bond
type O—H, CH and C-O at approximately 3400 cm™, 2900 cm™ and 1060 cm™, respectively. Also
a peak associated with the bending vibration of the O-H bond at approximately 1640 cm?
wavenumber is present, in good agreement with spectra of the nanocrystalline cellulose obtained
from similar source. [84] The existence of peaks in the range of 700-650 cm™ can be assigned to
S—0 bond bending due to the presence of sulfate groups in the NCC surface.
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Figure 3.2 — ATR-FTIR spectrum of a thin film of nanocrystalline cellulose obtained by the reaction of acid
hydrolysis of microcrystalline cellulose during 130 min.

X-ray diffractometry was used to analyze the crystallinity index and crystallite size of both
NCC and its source MCC. The diffractograms are shown in figure 3.3. From this figure it can be
seen that both materials show the same diffraction features as the ones observed for
semicrystalline cellulose type I. [84] The main characteristic crystallography planes or cellulose

type | are 110, 100 and 200 and in our samples 26 is at 14.7°, 16,8° and 22.7°, respectively.

From the X-Ray diffractogram the crystallinity index I, was determined considering the

following empirical method develop by Segal et al. [100]:

_ ooz = Inin

I, x 100

1002
where, I,,, represents the maximum intensity of the crystalline region, at a 26 angle between 21°
and 23°, and I,,,;,, represents the intensity of the amorphous region defined as the minimum value

at a 26 angle between 18° and 20°.
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Figure 3.3 — XRD diffractograms of unmodified microcrystalline cellulose (MCC) and NCC obtained at 130
min of acid hydrolysis reaction time. The characteristic peaks of cellulose type | are highlighted in the
diffractogram.

The crystallite size of the cellulosic materials could be determined using the Scherrer
equation [101]:

_ 091
hkl™ B cos @

where, Dy, is the crystallite size in the directional normal to the hkl lattice planes, A is the
x-ray wavelength, B is the full width at half-maximum (FWHM) of the diffraction peak and 0 is the
corresponding Bragg angle.

Table 3.1 summarizes the values of I, and Dy;,; and it can be seen that the acid hydrolysis
reaction leads to an increase in the crystallinity index of NCC and a slight decrease in the
crystalline size. From the values presented in the table 3.1 one could expect to obtained
intermediate values of crystallinity index I, and crystalline size for the NCCs obtained with the
other hydrolysis reactions times. Nevertheless, this characterization was only performed with the

intent to show a change in these characteristics.

Table 3.1 — Crystallinity index and crystallite size calculated from the x-ray diffractograms for MCC and
NCC obtained with 130 minutes of acid hydrolysis.

Cellulose type | 20 (Iy0,) 1. (%) Dhii (M)
MCC 22.60 76.73 5.39
NCC 130’ 22.70 87.80 4.79

In figure 3.4, which presents SEM images of nanocrystalline cellulose films obtained from
NCC suspensions, it is observed that NCC exhibited a nano rodlike shape in every acid hydrolysis

performed (40, 70 and 130 minutes) in good agreement with the observed by other authors. [84]
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Measurements of width and length, performed with ImageJ software, are presented in table
3.2. It can be seen that the overall aspect ratio of the NCC is not greatly affected with the increase
of the hydrolysis times and the same can be said to the nanoparticles diameter. Nevertheless,
the increase of hydrolysis time from 40 to 130 minutes leads, as expected to a 1.75 times
reduction of the NCC length. In annex | (figure A2) a plot of the effect of acid hydrolysis time on
the length of NCC is plotted with date from Dong et al.[5] The experimental results obtained in
this work with the hydrolysis time of 40 and 210 minutes are in good agreement as the ones
reported in the literature, however the average length obtained for the hydrolysis reaction time of
70 minutes is slightly higher than the expected. In order to try to understand this difference,
another set of SEM images and measures should be obtained and a different hydrolysis reactions
times should be used. Nevertheless and having in mind the goal of this work, the results obtained
were enough to observe a reduction in the NCC length with the increase of the acid hydrolysis

reaction time.[5]

Figure 3.4 — SEM images of nanocrystalline cellulose obtained from reactions with different acid hydrolysis
time, taken with a 75K magnification. A, B, C show NCC obtained at 130 min, 70 min and 40min. acid
hydrolysis time, respectively.

Table 3.2 — Measurements of width and length of NCC obtained with different hydrolysis time.

Acid hydrolysis Width Length Aspect ratio
time (minutes) (hm) (hm) (L/D)
40 2448 244188 10
70 2448 231485 10
130 18+8 163175 9
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The sulfate groups present in the cellulosic chain are considered to be responsible for the
lowering of the nanocrystalline particles aggregation, resulting in the development of stable
dispersion of NCC in water. This suspension can, when the amount of NCC is above the critical
value, present birefringence, as can be seen in figure 3.5, which coexists with the isotropic phase.

This birefringence is characteristic of the liquid crystalline phases of NCC. [84]

Figure 3.5 — Photograph of a 2.12% (w/w) NCC aqueous suspension showing birefringence,
characteristic of the presence of a LC phase, resultant of the reflection of light of the suspension observed
between cross polarizers.

2. Structural characterization of NCC gels

2.1. NCC/glycerol and NCC/PVA gel formation:

The gelation of NCC with glycerol, following the method described by Dorris et al. was
successfully achieved. [87] NCC/glycerol gels with 3, 5, 7, 10 and 18 % (w/w) of NCC were
prepared, and in figure 3.6, it can be seen a photograph of a gel with 7% NCC content (w/w).

Figure 3.6 — NCC/glycerol gel with 7%NCC content (w/w) in the gel.
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NCC/PVA gelation was also successfully performed by consecutives freeze-thawing
cycles following the method described by Abitbol et al. [58] and the visual aspect of the gels is
shown in figure 3.7. From this figure it can be seen that the gels with higher amount of NCC are
less stable than the ones with lower NCC content.

Figure 3.7 — Photographs of the NCC/PVA gels with different NCC/PVA ratio. NCC content % (w/w): A —
0.65%, B — 4.85% and C — 10%. All percentages of NCC presented are with regarding to the dry weight of
PVA.

2.2. Polarized Optical Microscopy (POM):

NCC/glycerol, as well as, NCC/PVA gels do not present birefringence when observed
with cross-polarizers without magnification. Nevertheless, birefringence was detected in both gels

when the samples were observed with an optical microscope with cross-polarizers (figure 3.8).

100 pm

Figure 3.8 — Photographs obtained with POM taken between cross polarizers and a 20x magnification. A —
NCCl/glycerol gel with 5% (w/w) NCC; B — NCC/PVA gel with 4.85% NCC dry weight of PVA.

In NCC/glycerol gels with NCC concentration higher than 7%, a fingerprint texture
appeared, as can be observed in figure 3.9. These fingerprint textures are typical of a liquid
crystalline phase of NCC as presented by Revol et al. [84], among others, characteristic of a chiral
nematic liquid crystalline phase. This texture is formed by an arrangement of intercalated
anisotropic band (bright) and an isotropic band (black). The presence of a chiral nematic phase
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in the gels and mainly the appearance of fingerprint textures with a micrometric size pitch will
allows us to control, by an inexpensive and easy method (POM), possible changes in the LC
phase after doing cell culture tests. More important this evidence will help us understanding the
influence of the gel’s organizational order on the cellular growth, mainly if a specific cellular

differentiation is achieved.

Figure 3.9 — Pictures of NCC/glycerol gels (130 minutes acid hydrolysis time), observed through POM with
cross polarizers with a 20x magnification. A — NCC/glycerol gel with 7% (w/w) NCC; B — NCC/glycerol gel
with 10% (w/w) NCC; C — NCC/glycerol gel with 18% (w/w) NCC.

To study the influence of the NCC length size and content in the gels, the measurement of
the band-spacing (half the cholesteric pitch) of the fingerprint texture was performed with ImageJ
software. The measurements are summarized in table 3.3. These results indicate a slight
decrease of the pitch with the increase of the NCC content in the gel. In contrast, the pitch
decreases 3 times when NCC particles with almost half of the size are used. In the figure 3.10, it
can be see POM pictures of the gels with shorter hydrolysis time (NCCs40’ and NCCs70’) and its
noticeable a fingerprint textures with higher pitch values (the bands are thicker) than the ones
observed for gels of NCCs130’. These values are within the same range (1-15um) to those found
in literature concerning a chiral nematic liquid crystalline cellulosic phase. [84] [102] Furthermore,
the relationship between the NCC length and the acid hydrolysis reaction time observed by Beck-
Candanedo et al. was obtained in our gels, where higher NCC length, shorter acid hydrolysis

reaction time, leads to higher pitch values.[103]

Table 3.3 — Pitch measurements on NCCs/glycerol gels.

NCCs Acid hydrolysis time Pitch
% (w/w) (min) (um)
NCCs40’ 14+1
7% NCCs70’ 11.0+0.9
NCCs130° 4.440.4
10% 130 4.040.3
18% 130 2.8+0.3
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Figure 3.10 — Pictures of NCC/glycerol gels with 7% (w/w) NCC content, observed through POM with
cross polarizers and a 20x magnification. A — NCCs40’ gel; B— NCCs70’ gel

2.3. Transmission electron microscopy:

Since no fingerprint texture was observed in the NCC/PVA gels by POM another
microscopy - TEM - was used. Figure 3.11 shows TEM images of the surface of a NCC/PVA gel
sample with 4.85% (w/w) of NCC. It is important to note that gels with other NCC content were
damaged in the sample preparation procedure, and could not be observed by TEM. Also during

this examination some samples were deteriorated by electron beam irradiation. From the TEM

images, it is not possible to see any specific type of organization.

Figure 3.11 — Pictures of NCC/PVA gels with 4.85% (w/w) NCC of the dry weight of the polymer.
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3. Integrity tests:

To confirm the integrity of the NCC/glycerol gels as well as the NCC/PVA gels, were
performed several tests, described below: PBS stability test, non-mobility test and pH stability
test.

3.1. PBS stability test:

In figure 3.12 — A, it can be seen a gel of NCC/glycerol and in figures 3.12 B and C part
of NCC/PVA gels that were in contact with PBS, with yellow dye, for several days. These
photographs confirm that both NCC/glycerol and NCC/PVA gels do not disintegrate when in
contact with PBS. Both gels present the yellow dye color within its bulk, which confirms that they

are capable of swelling and absorb PBS into their network.

Figure 3.12 — Photographs of the NCC gels after the PBS stability test. The NCC/glycerol gel did not
suffer any structural deformation. A — NCC/glycerol gel with 5% NCCs concentration; B and C are
NCC/PVA gels with 0.65% and C with 10% of NCCs concentration regarding the PVA dry weight.

After 30 days of storage at 4°C the NCC/PVA gel showed signals of microorganism’s
activity. Consequently, and adding the absence of liquid crystalline characteristic textures, no

more characterization or attempt to use in cell culture was executed in these gels.

3.2. Non- mobility test:

In the non-mobility test the vials of the gels were kept inverted for at least 2 weeks. In
figure 3.13, it is possible to verify that the NCC/glycerol gels maintained its consistence and did
not alter its position during this experience. In the images a black line marks the initial position of

the gel and it was confirmed the absence of movement of the gel.
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Figure 3.13 — Photographs of the NCC/glycerol gels after two weeks of inversion. The gels did not alter
their position during the experience. In some photographs it is possible to observe a black mark of the
initial position of the gel and confirm the absence of movement of the gel. A — NCC/glycerol gel with 5%
NCCs concentration; B - NCC/glycerol gel with 10% NCCs concentration. The arrows mark the surface of
the gel in the vial.

3.3. pH stability test:

This test was performed with the aim of understanding if NCC/glycerol gels (NCCs40’,
NCCs70’ and NCCS130’) are suitable for cell culture. Due to its low initial pH (~ 4-5) it was
necessary to increase the pH of the gels since the ideal pH for the fibroblast cell culture is 7.4-
7.7.[104]

The results for the pH equilibrium of the NCC/glycerol gel are shown in table 3.4 and as
one can see, the increase of the pH of the gel was successful achieved, raising to a value of 8,

making both protocols suitable to be used prior to cell culture procedures.

Table 3.4 — pH measurements of the NCCS/glycerol gels

Experimental Conditions pH measured
PBS (0.04% COx) 8.25
Culture medium (5% CO3) 8.77
Culture medium (0.04%CO3) 8.36

It was observed a change of the gel color after incubation with the culture medium. This
happened due to the presence of phenol red in the culture medium. If the pH is lower than 7.6 the
phenol red turns yellow as visible in figure 3.14. On the other hand when the pH is above 7.6 the

phenol red maintains its color. [104] This observation is in accordance with the initial acidity of the

gel.
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Figure 3.14 — Photograph of the NCC/glycerol gel after the pH stability test with cell culture medium. The
gel changes the color of the medium due to its acidity.

In order to try to understand if the variation of pH would affect the LC properties, the
fingerprint texture of the gels was observed by POM. As shown in figure 3.15, in both PBS (3.15
- A) and culture medium (3.15 B-D) pH stabilization, the fingerprints are still present in the
NCCl/glycerol gel. The fingerprint textures of the gel when pH equilibrated with PBS are faded in
comparison with the fingerprint textures from the pH equilibration with culture medium.

Measurements of the pitch from the fingerprint texture observed after pH equilibrium with
cell culture medium in the photographs presented in figure 3.15 are summarized in table 3.5. It
can be seen that an increase in the pitch values is observed in every conditions of the gel when
compared with the gels before the pH raise (see table 3.3). Having in mind the illustration
presented in figure 1.2, for the organization of the chiral nematic LC phase, and the evolution of
the pitch as function of the NCC content one can assume that the increase of the helical pitch,
when in contact with cell culture medium, is derived from the presence of water and salts
molecules (present in the medium) between the cholesteric layers. These molecules will affect
the distance between the layers leading to an increase in its spacing and as a consequence, an
increase in the pitch is observed. Furthermore from the results presented in table 3.5 it can be
seen that the gel derived from NCC obtained at a higher hydrolysis time have an increase in the
pitch value of 3.5 times, however for gels from NCC with lower reaction time the increment
observed in the pitch value is only of 1.3 and 1.4 times. The unexpected behavior of the gel
obtained with NCC with higher hydrolysis time should be further explored in order to be able to
propose a valid explanation and also, more acid hydrolysis reaction times should be use in order

to established a specific tendency of the influence of the culture medium in the pitch of the gels.
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Table 3.5 — Pitch measurements of the NCC/glycerol gels before and after pH equilibrium with cell culture

medium.
Gels Pitch Pitch
(um) gels with | (um) gels with
pH=4 pH~8
NCCs40’ 14+1 18+2
NCCs70’ 11.0+0.9 1542
NCCs130° 4.4+0.4 14+2

Figure 3.15 — Photographs taken through polarized optical microscopy with cross polarizers and 20X
magnification of the NCC/glycerol gels after the pH stability test. A — “Fingerprint” textures of the NCCs130’
gel after the pH equilibrium with PBS. B, C and D shows fingerprint textures from: A — NCCs130’; B-
NCCs70’; C — NCCs40’ with pH equilibrium with culture medium.

3.4. Swelling behaviour:

Several attempts were done to determine the swelling behavior of the NCC/glycerol gels,
however the gels disintegrate during the test. With this outcome it was not possible to perform a
swelling test with viable data.
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3.5. Electro kinetic analysis (EKA):

Zeta potential is a highly used parameter that elucidates on the stability of the NCC

dispersion in aqueous media and it is often used to understand the effect of acid hydrolysis

reaction time in these suspensions. [105]

The results of the electro kinetic analysis of the NCC/glycerol gels are displayed in the table

3.6. In this study we have tried to infer on the influence of the acid hydrolysis reaction time, as

well as the gel treatment with cell culture medium in the zeta potential values obtained for the

gels.

Table 3.6 — Electro kinetic analysis results.

Gels Incubation with Zeta potential
culture medium (mV)
NCCs40’ No -8.4+0.3
Yes -4.0+£04
NCCs70’ No -11.2+04
Yes -6.7+£0.7
NCCs130’ No -40+0.1
Yes -6.0+£0.2

The negative zeta potential of the gels possibly have origin in the negative charges of the
nanocrystalline cellulose. NCC obtained by sulfuric acid hydrolysis have a negative zeta potential
that differs with the purity of the sulfuric acid used as well as the acid hydrolysis times. Other
studies shown that the zeta potential for NCC aqueous suspensions varies between -95.3 mV
(120 min acid hydrolysis) to -8.77 mV (20 min acid hydrolysis).[105] Indeed, one observed an
increase of the zeta potential in our results when the reaction time increases from 40 to 70
minutes. However the same trend is not observed for 130 min of reaction time. The zeta potential
values obtained show that the NCC/glycerol gels are stable (if the zeta potential is above +30 mV
or below -30mV the gel is unstable) [106].

A decrease in the zeta potential is seen in the NCCs40' and NCCs70’ gels after the
incubation with culture medium. This phenomenon can derive from the pH equilibrium described

in the chapter Il, section 4.3.

3.6. ATR-FTIR:

The effect of the increase of the pH, with cell culture medium, in the gels of NCC/glycerol
was also explored by means of ATR-FTIR. In figure 3.16 are shown the FTIR spectra of
NCCl/glycerol gels, obtained with different NCC reaction times before and after the treatment with
cell culture medium. From these spectra one can see that the characteristic bands of the sulfate
group vibration (S=O at ~1100cm™) and bending (S-O at ~800 cm™) are not so strong in the
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samples where the pH was raised, than in the samples that were not expose to the cell culture
medium. This effect is observed for all the acid hydrolysis times studied and might be due to the
substitution of the acid form of the sulfate group to a sodium form. All FTIR spectra also show the

vibrational bands of the characteristic groups of cellulose and glycerol.
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Figure 3.16 — ATR-FTIR spectra of NCC/glycerol gels. Red — NCCs40’; Black — NCCs40’ with culture
medium incubation; Purple - NCCs70’; Light blue — NCCs70’ with culture medium incubation; Dark blue —
NCCs130’ and Green — NCCs130’ with culture medium incubation.

4. Rheology:

A biomaterial has to be well characterized for future applications. Thus, understanding the
thixotropic behaviour of the gels, along with its viscoelastic properties is essential. Additionally,
the correlation of different nanocrystalline cellulose (NCC) sizes and consequently chiral nematic
pitches with the rheological properties of each gel, can also aid in the study of liquid crystalline
properties of the gels.

According to the literature [87], NCC/glycerol gels are thixotropic. IUPAC states that
thixotropy is “the continuous decrease of viscosity with time when flow is applied to a sample that
has been previously at rest and the subsequent recovery of viscosity in time when the flow is
discontinued”. [107] Thixotropic gels have the ability to become liquid-like materials when a high
shear is applied, and to return to its original solid-like state after the stress is decreased or ceased.

[108] Characteristically, these materials can, after the application of a shear outside the LVR (see
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methods page 24) of the material, totally or partially recover the viscoelastic properties that they
possessed before the shear was applied.

4.1. Frequency sweeps:

The data collected from the oscillatory tests (frequency sweeps and stress sweeps, Figs 3.17
and 3.20) performed to the gels revealed that a shear stress of 10 Pa and a frequency of 2 Hz
are within the LVR of all NCC/glycerol gels. All subsequent oscillatory tests that applied LVR
conditions used the values stated above of frequency and shear stress.

The results from oscillatory frequency sweeps tests, indicate that the viscoelastic properties
of the gels remains stable (no phase transitions occurred), as a function of the frequency. This
conclusion relies on the phase angle, which correlates the G” (loss modulus) and G’ (storage
modulus) values and also gives an insight regarding the more solid-like or liquid like-behaviour of
the gels (see Annex I). The values of the phase angle are fairly constant throughout the frequency
sweep tests.

In all samples the G’is higher than the G’, indicating a dominant solid-like behaviour, which
is characteristic of most of gel like materials. In addition, the phase angle is lower than 45°,
indicating the predominance of the more solid-like state of the material, independently of the
frequency applied to the samples (see Annex I). The slight plateau of the G’ that is visible in the
first points of the frequency sweep graphics, also corroborates that the material tested is indeed
a gel like material.

The different samples of NCC/glycerol gels also showed similar values of phase angle
(Table 3.7). This is an indicator of an absence of remarkable differences in the ratio between the
G” and G’. The NCCs40’ gels present lower storage modulus values than the NCCs70’ and
NCCs130’ gels, this is, the NCCs40'’ gels present a lower stiffness. The viscoelastic properties of
the NCCs70’ and NCCs130’ gels are similar. The decrease in the NCC length seems to lead to
an increase in the G’ and G” values, however from the results obtained in this study no linear
relation is obtained. From table 3.2 we can highlight that the average value of the NCC length
when 70 minutes of hydrolysis time is used instead of 40 minutes are very similar however the
viscoelastic properties are not. This difference might be related with the fact that longer hydrolysis
time leads to higher sulphate contents, as shown by Dong et al., [5] and that this groups will
influence the ionic interactions between the polymeric chains and consequently the formation of

the gel and its viscoelastic properties.
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Figure 3.17 — Frequency sweeps of the NCC/glycerol gels with 7% NCC (w/w) (A - NCCs40’, B - NCCs70’
and C - NCCs130’) with a fixed shear stress of 10 Pa.
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Table 3.7 — Storage and Loss modulus and phase angle values of the of the NCC/glycerol gels with 7%
NCC (w/w) (NCCs40’, NCCs70’ and NCCs130’) from the frequency sweep measurements, at 2 Hz and
using a 10Pa shear stress.

Gels G’ (kPa) G” (kPa) Phase angle (°)
NCCs40’ 66 + 10 19+3 15.6+0.9
NCCs70’ 99 + 16 28+ 4 15.7+0.2
NCCs130’ 90 £ 16 24+ 6 154+14

4.2. Viscometry assays

For the hysteresis loop test, the maximum shear rate demanded to the rheometer (10000

s1), could not be achieved for all samples (Fig 3.18). This may arise from the high viscosity of the

gels, which induces a high normal force on the test accessories when the samples are loaded

and further during the assays. Due to shortness of time, only the hysteresis loop test with 600

seconds of execution was performed, although, according to literature, to avoid the effect of the

inertia, the test time should have been calculated as: 1s per each 1s* of shear rate in the ramp.

[108] Therefore the viscosity measurements should only be considered qualitatively.
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Figure 3.18 — Thixotropic behaviour of the NCC/glycerol gels with 7% NCC (w/w) (A - NCCs40’, B -
NCCs70’ and C - NCCs130’) assessed by the hysteresis loop experiment.
45
Diana Paiva Dissertacdo de Mestrado em Engenharia Biomédica



LIQUID CRYSTALLINE MICROENVIRONMENTS FOR TISSUE ENGINEERING

Due to the limitations described above, different shear rate windows were applied to the
samples (as shown in figure 3.18, the maximum shear rate applied to the NCCs40’ sample was
~10 000 s, to the NCCs70’ ~6000 s and to the NCCs130’ gel a maximum shear rate of ~8000
st was applied). Nevertheless in order to be able to compare the three gels another set of test
should have been done where the same shear rate window was selected, however due to time
limitations it was not possible to repeat this study and only a qualitative result analyses was done.
Despite of the encountered issue, each gel showed a well-defined hysteresis loop as described
in the literature. [95][109] This indicates the recovery of the viscosity of the gels when the shear
rate decreases along with the shear stress, which is a good indication of the thixotropy of the
material referred in the literature.

To correlate the dependency of shear viscosity on the shear rate, shear viscosity and shear
rate data retrieved from the hysteresis loop test are shown in figure 3.19. As expected, the shear
viscosity of the samples decreases with the increase of shear rate. Before the linear decrease of
the shear viscosity with the increase of the shear rate applied to the sample, is observed in every
sample, an increase of the shear viscosity, which is characteristic of a typical flow curve of a
viscous, shear thinning material. [110][111] No other conclusions can be infer from this figure, in
particular the value of the yield strength for each gel cannot be considered due to the experimental
parameters selected. In order to achieve the yield strength values, new curves should be plotted

as describe above.
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Figure 3.19 — Shear viscosity of the NCC/glycerol gels with 7% NCC (w/w) (A - NCCs40’, B - NCCs70’
and C - NCCs130’) obtained from the shear rate ramps performed for the hysteresis loop tests.
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4.3. Stress sweeps

In figure 3.20 are represented oscillatory stress sweeps. In this figure it can be seen an
immediate partial recover of the initial more solid-like state of the gels, after the 4000 Pa shear
stress ceased, which confirms the thixotropy properties reported in literature. [108] This transition
is demonstrated by the phase angle values that increase to values higher than 45°, at a certain
applied stress, when the gel is liquefied, and decreases to values below 45° when the LVR

conditions start to be applied to the samples, occurring at the same time as the recovery of the

gel.

Yield stress is the lower force (in this case, shear stress) applied to the material that is higher
than the material’s internal bonding forces. As of this stress, the material starts to flow and occurs
a transition of the material from a solid-like state to a liquid-like state. [112] When the yield stress
is achieved, G’ starts to decrease and both G” and § increase. [111] In table 3.8 the values of
yield stress for each gel are stated and it seems that for higher NCC length (NCCs40’), the yield
stress is higher (the gel starts to flow at a higher shear stress). However the values obtained for
the three acid hydrolysis time are in the same order of magnitude.

From figure 3.20 it is observed that all the gels start to flow at low shear stresses (<70
Pa) however, the NCCs40’ gels present a more liquid-like state at lower shear stress values than
the remaining gels. As stated in the oscillatory frequency test, the overall behaviour of the
NCCs70’ and NCCs130’ gel is quite similar. Both gels recover approximately 60% of their initial
viscoelastic properties. However, the NCCs40’ sample’ can only recover 13% at the end of the

test. A summary of these results is shown in table 3.8.

Table 3.8 — Summary of the properties of the NCC/glycerol gels with 7% NCC (w/w) (NCCs40’, NCCs70’
and NCCs130’) retrieved from oscillatory stress sweep test followed by application of LVR conditions for 5

minutes.
Yield Transition Immediately Maximum
Gels stress (Pa) solid-liquid Recover of recover after
stress (Pa) after applying solicitation
stress (%) (%)
NCCs40’ 69.0 24.2e+02 7.5 13.0
NCCs70’ 55.0 38.2e+02 52.6 64.6
NCCs130’ 43.0 38.2e+02 54.7 64.7
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Figure 3.20 — A - Oscillatory stress sweep from 1 Pa to 4000 Pa followed by an application of the LVR
conditions. B - Stress sweeps of the of the NCC/glycerol gels with 7% NCC (w/w) (1 - NCCs40’, 2 -
NCCs70’ and 3 - NCCs130’) at 2Hz, immediately followed by the application of a frequency and shear
stress values within the LVR.
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4.4. Additional rheological tests:

The sequence to assess the recovery capability of the gels consisted in an application of
4000 Pa in the gel for 1 minute, immediately followed by 4 minutes of application of the LVR
frequency and stress conditions (2 Hz and 10 Pa, respectively). This test sequence was not
executed properly by the rheometer. In each repetition of the sequence, the rheometer randomly
decreased the value of the high shear stress applied. This sequence is represented in figure 3.21
and one can only use its data qualitatively.

Furthermore, from this figure, from the phase angle () values, it is possible to conclude
that the gels have the ability to constantly liquefy (§ > 45°) at high shear stresses and posteriorly
solidify when the LVR conditions are applied (6 < 45°). This test also proves the thixotropic nature
of the gels as well as its high capability to recover to its original solid state after a great number
of solicitations.

S
o

100 11 O 1 n %

104t -

(,) e|bue aseyq

0.1

G'; Complex shear stress (kPa)
-

(.) @16ue aseud
G'; Complex shear stress (kPa)

0.01 T T
45 30
Time(min) Time (min)
C
= 100 ; " |- moT-rnamnTomomosEon 90
% ) .
8 104 -
@ D e e 2 = Storage Modulus G' (kPa)
8 1 ’r-frf'f'rr*rr'r'r” 5. 145 g Complex shear stress (kPa)
@ W i Bl s =
3 BRI ST O O A | rr- E ® Phase angle (°)
S EEEE S EEEEEEEE C U
O eord L ; , — 0
0 15 30 45 60 75
Time(min)

Figure 3.21 — Oscillating fixed stress of 4000 Pa at a 2Hz frequency applied for 1 minute followed by the
application of the LVR conditions for 4 minutes The samples used are NCC/glycerol gels with 7% NCC
(wiw) (A - NCCs40’, B - NCCs70’ and C - NCCs130’).

After incubation in cell culture medium, a remarkable change in the physical properties of
the gels was visually noticed. When attempting to manipulate the gels with a spatula they easily
broke (Fig 3.22 - A). Due to this behaviour and in order to study the rheology of the gels, after this
treatment they were prepared in disc casters (Fig 3.22 - B) and consequently, a smaller geometry

plate (@ 8 mm) was used. As the gels lose their thixotropic like properties after incubation in cell
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culture medium, the oscillatory measurements were only performed with the NCCs40’, to assess

the viscoelastic properties of these gels as an example.

Figure 3.22 — Gels incubated in cell culture medium after the rheological measurements: A — Gel
incubated and transferred from the well plate with a spatula; B — Gel prepared with the gel casters.

After the incubation with cell culture medium, the NCCs40’ gel presented a more solid-
like behaviour (Figure 3.23), with a G’ higher than the G” and a phase angle below 45°.
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Figure 3.23 — Oscillation test of the NCCs40’ gel after incubation with culture medium, with fixed shear
stress and frequency values, both within the LVR of the NCCs40’ gel (2 Hz, 10 Pa).

Comparing the loss and storage modulus and the phase angle of the NCCs40’ gel
incubated with cell culture medium with the dry NCCs40'’ gels (table 3.9), using the same values
of frequency and shear stress, it is noticed a decrease in the loss modulus, and, consequently, in
the phase angle, which value decreases to half. After the incubation with cell culture medium, the

gels has aless liquid-like behaviour, which is in agreement with the previously referred brittleness.
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These results can also be affected by the difference between the plate used in the rheological
measurements of the gels without pH raise (@ 20mm) and the plate used in the samples with pH
of 8 (@ 8mm). With the unforeseen fragility of the gel and the consequent necessity of the gel
casters usage, there was no time to perform comparative rheological measurements with the gels

without cell culture medium contact with an 8mm diameter plate.

Table 3.9 — Comparison of the viscoelastic properties of NCCs40’ gel before and after incubation with cell
culture medium.

Gels G’ (KPa) G” (KPa) Phase angle (°)
NCCs40’ after
incubation with cell | 48.4 +17.3 5.5+ 2.0 6.5+0.2
culture medium
NCCs40’ 66.4 +9.8 18.6 £ 3.0 15.6 £ 0.9

From the studies shown, one could try to summarize a sort of relationship between the
observed viscoelastic and thixotropy properties of the gels and its pitch. The gels containing the
higher chiral nematic pitch (the NCCs40’) are the gels that showed less capability to recover its
initial viscoelastic properties, when compared to the gels with smaller chiral nematic pitches
(NCCs70’ and NCCs130).

5. Cell culture

5.1. Cell Adhesion:

In the figure 3.24 is represented the results from the cell adhesion test performed with

NCCl/glycerol gels.
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Figure 3.24 — Results from the 1t day of in vitro cell adhesion test for the NCCs130’, NCCs70’ and
NCCs40’. A —Results from Resazurin fluorescence test. B — Relative cell viability graphic. Significance
values were calculated by Mann-Whitney U test (p<0.0001).
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According to the results shown above, NCC/glycerol gels present a low cell adherence
percentage. Despite these low values, further tests of cell proliferation and cell adhesion with
longer incubation time should be performed. It is a possibility that these cells could proliferate and
the material could still be suited for tissue engineering purposes with more extensive tests.

On the other hand, the low results of cell adhesion could be due to the negative surface
charge of nanocrystalline cellulose (NCC) originated by the interaction of the hydroxyl groups of
cellulose with the sulfate groups (-SOs™-) resultant from the sulfuric acid hydrolysis and the
negative zeta potential presented in this chapter. This reaction creates a negative electrostatic
monolayer that repulses each NCC particle [113] and thus, the negatively charged cell
membranes. Studies have shown that the negative charge of the NCC produced by sulfuric acid
hydrolysis have repulsive effects in the internal integration of NCC in cells for bio imaging marking.
[114] However, the negative charges of NCC can adsorb through electrostatic forces proteins or
enzymes. [36] It was demonstrated by electro kinetic analysis that the NCC/glycerol gels surfaces
have a negative zeta potential. The negative zeta potential is a factor that influences the cell
adhesion process of fibroblasts along with another characteristics of the biomaterial. [115]

Itis not possible to correlate the fingerprint texture size and the cell adhesion percentage.
We can only verify that NCCs40’gel may have more weak points due to the gel formation that

allows some cell adhesion.

5.2. Cytotoxicity assays:

In figure 3.25 are represented the graphics from the direct and indirect contact assays.
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Figure 3.25 — Results from in vitro direct and indirect contact cytotoxicity assays for the NCCs130’ gel. A —
Results from Resazurin fluorescence test. B - Relative cell viability graphic. Significance values were
calculated by Mann-Whitney U test (p<0.0001).
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As observed, there are no cells remaining in the indirect contact assay. This outcome
could possibly be related to the release of cytotoxic compounds to the medium that were still
present on the gel after the pH equilibrium procedure.

On the other hand, the results from the direct contact show a 49% of relative metabolic
activity, which corroborates the hypothesis described above. The gel used in the direct contact
did not had as many cytotoxic compounds as the culture medium, because the medium washed
out those compounds, resulting in a significant relative metabolic activity percentage. With these
outcomes, it is necessary to incubate the pH equilibrated gels for another 24 hours in culture

medium before proceeding to cell culture.

Previous studies shown that NCC are not cytotoxic only when they are present in a
concentration below 50 pg /ml in human endothelial cells [116] and 1000 pg/ml in NIH3T3 murine
embryo fibroblast. [117] Although these studies show low cytotoxicity of NCC in contact with cells,
they are not applicable to the gels in study, since the NCC concentration used in our work of 7%
NCC/glycerol gels is 98000 pg/ml NCC in glycerol, that is very high when compared with the
literature studies. The high concentration of NCC used, and the high content of sulphate groups
present, can be associated with the decrease of the number of viable cells obtained in the direct
and indirect contact test. However this hypothesis should be confirmed with complementing tests
such as direct and indirect contact assays executed in gels with higher and lower percentage of

NCC in their composition.

5.3. Final remarks:

Despite the cell adhesion tests showed a lower percentage of adherent cells, further tests
should be performed. After the conclusions of the direct and indirect contact assays, the cell
adhesion test should be repeated with 48 hours of gel incubation prior to any cell culture (24 hours
for pH equilibrium as described in chapter Il — section 4.3 plus 24 hours for the releasing of all the
cytotoxic compounds that are still present within the gel). In addition, the period of the cell
adhesion test should be longer, because the percentage of cell adhesion presented in the results
could increase with time due to cell growth and expansion. The results shown in section 5.1 are

not sufficient to categorize the NCC/glycerol gels as a non-fouling material.

Furthermore, cell proliferation tests should also be executed for further information in the

viability of the gels for tissue engineering purposes.
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6. Collagen gels

Gelation of collagen was not observed and no further tries were performed due to shortage
of time.

Collagen in acetic acid was placed in an ammoniac vapour chamber for a month and the
process was repeated one more time. Gelation was never observed.

A possible reason for this outcome can be attributed to structural and chemical differences
between Achilles bovine tendon collagen (used in this work) and rat tail collagen (used by other
authors). For instance, dehydrated fibrils of rat tail collagen have a Young modulus of 11 GPa
[118] and the achilles bovine tendon have a 5 GPa Young modulus. [119] Cross-linked scaffolds
of rat tail tendon and achilles bovine tendon type | collagen also showed that fibroblasts
preferentially bind to the collagen scaffold from the rat tail tendon. [120] Furthermore, amino acid
differences were detected in equine and bovine collagen. The conclusion of the study conducted
by Angele et al., stated that tissue engineering data acquired from a collagen of a certain animal
species may not be transferable to scaffolds constituted by a different animal source of collagen

due to differences in the physico-chemical properties of the collagens. [121]
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Chapter IV - Conclusion

The aim of this study was to obtained gels with liquid crystalline phases and investigates
the relationship between the liquid crystalline phases, mainly, chiral nematic and the cell
behaviour when in contact with these conformations. Also, the evaluation of the material’s
behaviour when in contact with cell culture was a subject of interest.

To conduct this research, three environments were considered: collagen, NCC/glycerol
and NCC/PVA gels. NCC and collagen were chosen due to its possibility to self-assemble into a
liquid crystalline phase. Production of NCC with 40 min, 70 min and 130 min sulfuric acid
hydrolysis times were set in an attempt to evaluate the relationship between liquid crystalline
textures and NCC length. Through SEM, NCC’s width and length were measured.

Gelation of type | collagen of achilles bovine tendon did not occur as expected from the
adapted protocol, possibly due to the chemical and structural difference between the bovine
Achilles tendon type | collagen used in this study and the rat tail tendon type | collagen used in
the procedure from literature. NCC/PVA gelation was successfully achieved, however the
NCC/PVA hydrogels did not present liquid crystalline texture either in TEM and POM analysis and
hence no further studies were conducted with these gels. NCC/glycerol gels were successfully
produced and present the characteristic textures observed in the NCC chiral nematic liquid
crystalline phase.

The first method used to confirm the liquid crystalline phases was analyse its optical
properties with POM, where fingerprint textures in NCC/glycerol gels were visualized and only
birefringence was observed in NCC/PVA hydrogels. Different concentrations of NCC in the gels
were compared and alterations in the pitch of the “fingerprint” texture measured. Also the effect
of different acid hydrolysis time, and hence different lengths, was evaluated. The pitch of the
fingerprint texture was estimated to be around 4-16 um and increases with the NCC length. Initial
integrity tests showed the ability of the gel to swell PBS into its matrix. Due to the presence of the
fingerprint texture in the 7% (w/w) NCC concentration in the gels, this concentration was selected
in the subsequent studies. Parallel to these studies, and using the same concentration, NCC with
different sulfuric acid hydrolysis time were used in the gels to evaluate the influence of the NCC
length in the gels properties.

To prepare the NCC/glycerol gels for the cell culture, a rise of the pH to 8 of the gels was
achieved successfully both with PBS and cell culture medium. To ensure the preservation of the
liquid crystalline texture in the gels, new observations with POM were done prior to cell culture.
The gels, after the rise of pH, maintained the fingerprint texture and when culture medium was
used to raise the pH, was noted an increase of the pitch of the” fingerprint” texture of the gels.
EKA results showed that the gels have a negative zeta potential (> -10 mV). Rheological studies
confirmed the thixotropy of the gels with a dominance of the elastic component, G’, in LVR

conditions. Gels with NCC obtained with 40 min of acid hydrolysis showed less elastic properties
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than the ones obtained with longer times. A decrease in the viscous component of the material
and the conservation of the elastic component dominance was also examined in gels after 48
hours of incubation with culture medium.

Indirect and direct contact assays showed that cytotoxic compounds were still released
from the gels after 48 hours of incubation in cell culture medium. In the indirect contact assay, no
cells survived. On the contrary, direct contact 49% of cell survival which led to state conclude that
a 48 hour minimum time of pH equilibrium is necessary before initiate cell culture. Adhesion tests
showed that the percentage of adhere cells is low (5%-19% of cell adhesion) but further tests
should be performed to conclude if the material is non-fouling or is still suitable for tissue
engineering purposes.

From the results described above it can be concluded that the liquid crystalline
NCC/glycerol gels present interesting features: i) additionally to their thixotropy property, the gels
can recover from liquid to solid state after several cycles of solicitation; ii) the increase of the gels’
pH, required to work with the fibroblast cells, does not seem to affect the liquid crystalline features
of the gel; iii) the gels showed low cytotoxicity after 48 hours of incubation (24h from the pH raise
plus 24h of incubation in the direct contact test) iv) although the preliminary cell studies
demonstrate low cell adhesion (obtained with 24h of cell medium incubation time), the application
of 48h of incubation with culture medium prior to cell culture and the realization of proliferation
and more extensive cell adhesion studies could lead to a good cytotoxic response.

Despite the fact that further studies should be done in order to establish the
biocompatibility nature of the liquid crystalline NCC/glycerol gels the results presented here

already show a promising material to be applied in the tissue engineering field.
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Chapter V - Future directions

NCC/glycerol gels are far from being totally characterized and studied. Further chemical
and physical characterization studies should be perform. Supplementary proliferation and cell
adhesion tests should also be completed in order to evaluate the viability of the gel for tissue
engineering applications and confirm/disprove the non-fouling nature of the material.

Further rheological studies at 37°C as well as quantitative viscosity assays and other
complementary rheological tests should be conducted for a fully understanding of the thixotropic
properties of these materials. The capability of the NCC/glycerol gels to recover from a liquid state
to a solid state after a solicitation (thixotropy) could lead to the appliance of this gels as injectable
biomaterials for bone, tendon and muscle regeneration (due to the gels liquid crystal conformation
similar of these biological structures).

If the materials proves to be non-fouling, chemically modification of the NCC surface or
NCC/glycerol gels can be a viable path to develop a scaffold for tissue engineering, Many studies
were performed to functionalize or chemically alter the NCC surface. Future studies should
emphasis the RGD functionalization of NCC to enhance cell adhesion. This functionalization was
already done in bacterial cellulose, which was modified with xyloglucan and RGD to adhere
epithelial cells. [122] Bacterial nanocellulose (BNC) scaffolds were functionalized with type |
collagen and fibronectin to enhance the cell adhesion of the material [123]. Other alternative to
induce cell adhesion is the surface coating of the material with positive charged polyelectrolyte
PAHCL. This method was used in adhesion and growth of C2C12 myoblasts in functionalized
NCC. [124]

Interactions of the NCC/glycerol gels with proteins is another field yet to be explored.
Functionalized nanocellulose, such as nano fibrillated cellulose has successfully bounded
proteins [125] and is able to bound to specific Human IgG [126]. On the other hand, NCC
functionalized with gold nanoparticles are successfully used as a matrix for CGTase enzyme
immobilization [127] as well as for the enzyme glucose oxidase [128].

Further studies to understand if the pitch of the NCC/glycerol gels is tunable in certain
conditions, such as when in presence of an electric or magnetic field would be very interesting
and could lead to new developments in electronics as well as in creation of new (bio) sensors
[129].

NCC already showed photonic properties that could also be explored in the future [130].

In conclusion, NCC/glycerol gels have an enormous potential in a variety of fields and

there has to be conducted additional studies and exploration of these potentialities.
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Annex |

Shear stress is a force F tangentially applied to an area A which induces a movement in
the sample, a flow in the viscous component of the material. The velocity of the flow in an applied
stress is controlled by the material viscosity. A sinusoidal force is applied, dependent of a
frequency f. [110]

Equation 1 Shear Stress =T = % (Pa)

Strain is the displacement of the particles of the sample when a force or a stress is
applied. Is represented by y and is dimensionless.[112]

When a shear stress is applied, the upper layers of the sample flow at a maximum velocity
Vmax, iN contrast with the bottom layer that remains at rest, that is, with a zero velocity. The velocity
of the movement of each layer proportionally decreases with the distance of the layer where the

shear stress is applied [112]:

Equation 2 Shear rate = y = g s™)

Figure 1, demonstrates the movement of the sample when a parallel plate assay is
performed:

Area A

Shear Stress (1)

Distance

Velocity

\4

Figure Al — Schematic of the sample response to an applied shear stress. Adapted from [112].

Many variables influence the viscosity of a material such as: temperature, shear rate,
time, pressure and the chemical composition and the pH of the sample. The dynamic viscosity of
the material can be obtained by [112]:

Equation 3 Dynamic viscosity = n = % (Pa.s)
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The material can also be characterized by its viscoelasticity properties which includes the
complex shear modulus (G") and its components: the storage modulus and the loss modulus:

Equation 4 Complex Shear Modulus = G* = T7* (Pa)

The complex shear modulus has two components: the shear storage modulus or elastic
modulus (G”) and the shear loss modulus or viscous modulus (G”). They are related by the phase
angle,s, which is the phase between the sinusoidal stress applied (shear stress) and the

sinusoidal answer of the material. [111]

Equation 5: G'=G*cosé (Pa)
Equation 6: G'"=G*siné (Pa)
Equation 7: tand = GG—,

The transition from a solid state to a liquid state of a material can be inferred from the G’
and G” values and, consequently, in the phase angle. A solid state sample has a higher G’ than
G” and § <45°. When § =45° the transition solid-liquid occurs and G” is higher than G’. [111]
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Figure A2 — Graphic of NCC'’s length versus acid hydrolysis time and comparison with the data from
literature [5].
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