How to Detect a Small Cluster in Big Data?

Paulo João, NOVA School of Statistics and Information Management, ISEGI-UNL, Portugal, jolriao@gmail.com
Victor Lobo, Portuguese Naval Academy – NOVA School of Statistics and Information Management, Portugal vlobo@isegi.unl.pt

Abstract

Detecting small clusters in a large amount of data is a difficult problem, mainly when there are only a few samples to be detected. There are general purpose solutions for small cluster detection, but many times they are not adequate for specific data. Artificial Intelligence techniques have been proposed, because they present the advantage of requiring little or no a priori assumption on the data distributions. The amount and higher dimensional nature of big data makes it too complex to be processed and analyzed by traditional methods. Hierarchical Self Organizing Maps, (HSOM) can improve the decision making with an approach based on specialization of Self Organizing Maps (SOM), dimensionality reduction and visualization of clusters. The goal is to propose a methodology to detect and visualize small clusters in the data with a toy case, where traditional human based approaches are not possible or are too complex to process, and the results clearly demonstrate that the HSOM based method outperforms the most widely adopted traditional methods revealing a number of small clusters hidden in data.

Keywords: Outlier detection, data mining, SOM, HSOM, cluster, big data.

1. INTRODUCTION

Big data describe the exponential growth and availability of data, both structured and unstructured and may be as important to society because more data involves more accurate analyses, such as cluster detection, and may lead to more confident decision making, better decisions can mean greater operational efficiencies, cost reductions and reduced risk.

Detect small clusters in big data, are usually associated with detecting unusual observations or outliers. Outlier detection has become a major focus of concern and a political, social and economic issue in the big data analysis. The requirement to meet public demand for quality and technology services is real and this is likely to become more widespread and intense [Yang and Hwang 2006]. The amount of data along with their high dimensional nature requires sophisticated statistical methods to extract new and unexpected patterns or clusters embedded in that data [Li, Huang, Jin and Shi 2008].

To detect outlier, first we analyze the available data and then we must detect the outlier data or unusual observations. This requires an understanding of the mathematical properties of data and
relevant knowledge in the domain context where the outliers occur [Ilango, Subramanian and Vasudevan 2012]. Detection methods can be divided between: univariate methods, where each variable is explored separately; and multivariate methods, where many variables are explored together. We can also find two different approaches in each case: parametric methods, that assume characteristics or parameters on the data, e.g. Gaussian distribution and non-parametric methods that don’t assume such characteristics or parameters [Ben-Gal 2005].

The problem of detection of multidimensional outliers is a fundamental and important problem in big data. It involves a lot of computation time and dimensionality reduction. Despite this, most known algorithms for detecting outliers are not fast enough when the underlying probability distribution is unknown, the size of the dataset is large and the number of dimensions is high [Chaudhary, Szalay and Moore 2002].

1.1. Outliers overview

Outliers are unusual observations on data. They are also known as: novelty; noise; extreme values; outlier, anomaly; defect data; skewed data; rare case or noisy data. The difference is not methodological but related to the involved subject.

Outliers have been informally defined as rare observations in a dataset that seem to be inconsistent with the rest of the data, or deviate so much from other observations to arouse suspicions that they were generated by a different mechanism. [Ferdousi and Maeda 2006], [Hodge and Austin 2004], [Ahmed and Funk 2011], [He, Xu, Huang and Deng 2004].

Another approach, refers outlier to criminal activities or fraudulent behavior occurring in commercial organizations such as banks, insurance agencies, mobile companies, etc., and it is assumed that these activities are rare and generate data which differs from normal activities. Thus, small clusters in data can be due to outliers, and it makes sense to look for outliers mainly amongst these clusters, even though they are not necessarily outliers.

1.2. Outlier detection

Applications such as small cluster detection need the detection of outliers, but most of the known algorithms (e.g. Parametric statistical models) for detecting outliers are not fast enough when the underlying probability distribution (a formula that gives the probability for each value of the random variable) is unknown, the size of the dataset (number of observations) is large, and the number of dimensions (number of variables) is high [Chaudhary et al. 2002].

Sometimes, detect a small cluster involves several entities and may show outlier behavior or small clusters of data among entities and deserves a close analysis of the situation.
1.3. **Self Organizing Maps**

A Self Organizing Map (SOM) is a neural network with feed-forward topology and an unsupervised training algorithm that uses a self-organizing process to configure its output neurons, according to the topological structure of the input data [Wasserman 1989].

SOM were first proposed by Tuevo Kohonen in the beginning of the eighties [Kohonen 1982]. He draws some inspiration from the way we believe the human brain works. Research has shown that the cerebral cortex of the human brain is divided into functional subdivisions and that the neural activity decreases as the distance to the region of first activation increases [Kohonen 2001].

Traditional SOM converts the nonlinear statistical relationships that exist in the data into geometric relationships, able to be represented visually [Kohonen 1998, 2001], it can be considered as a visualization method for multidimensional data especially adapted to display the clustering structure [Himberg, 2000], [Kaski et al. 1999], or as a diagram of clusters, [Kohonen 1998].

To detect multiple outliers in multidimensional datasets, a SOM produces a topology preserving mapping of the multidimensional data onto a lower dimensional visualizable plane [Chandola, Banerjee and Kumar 2007]. The objective is to extract the essential structures in a dataset, through a map resulting from an unsupervised learning process [Kaski and Kohonen, 1996], [Kaski, Nikkilä and Kohonen 1998]. Each input data is mapped to one of a large (but fixed) number of nodes, and groups of these nodes (or even just a single one) represent a cluster. The basic SOM training algorithm can be described as follows [Lobo, Cabral and Bação 2007]:

Let:

- \(x \) be the set of \(n \) training patterns \(x_1, x_2, \ldots, x_n \)
- \(W \) be a \(p \times q \) grid of units \(w_{ij} \) where \(i \) and \(j \) are their coordinates on that grid
- \(\alpha \) be the learning rate, assuming values in the interval \([0,1] \), initialized to a given first learning rate
- \(r \) be the radius of the neighborhood function \(h[w_{ij}, w_{mn}, r] \), initialized to a given first radius

Do

1. Repeat
2. For \(k=1 \) to \(n \)
3. For all \(w_{ij} \in W \), calculate \(d_{ij} = \|x_k - w_{ij}\| \)
4. Select the unit that minimizes d_{ij} as the winner w_{winner}

5. Update each unit $w_{ij} \in W$: $w_{ij} = w_{ij} + \alpha[h[w_{winner}, wij, r] ||x_k - wij]$

6. Decrease the value of α and r

7. Until α reaches 0

The main advantage of SOM is that it allows us to have some idea of data structure and outliers by observing a two-dimensional map. This is possible mainly due to preservation of topological relations (e.g. Patterns that are close in the input space will be mapped to units that are close in the output space). In most implementations, this is a rectangular grid of units with hexagonal polygons [Kohonen 2001]. Single-dimensional SOM is also common to solve problems where an ordering is necessary (e.g. Travelling salesman problem).

1.4. Hierarchical SOM

One approach to improve the small cluster detection is using a Hierarchical SOM (HSOM). HSOM changes the normal interconnections between units. They are often used in application fields where a structured decomposition into smaller and layered problems is convenient (e.g. Data with many variables, grouped by themes). With this method [figure 1] one or more than one lower level SOM are located at each layer, usually operating on different thematic variables [Bação, Lobo and Painho 2008].

HSOM can have several lower level SOM as partial maps that cluster the data according to different characteristics and then pass the results to an upper high level SOM or they may have a lower level global SOM, that acts as a gate mechanism to activate one of several higher level SOM that specialize in a certain area of the input space [Bação et al. 2008].

With the detailed view of clusters found by the low level SOM, we can apply specific measures and solutions. This allows us to know better the problem and prepare the best data treatment.
The SOM is a very effective method for clustering via visualization [Flexer 2001]. It is generally based on two-dimensional abstractions such as the U-mat, one of the most used methods [Skupin and Agarwal 2008], or the Kohonen projection method that allows visualizing the data structure.

The idea is to use color as a mean of representing distances between reference vectors associated with the SOM units. Units that are near their neighbors are usually represented in a white (or red hot color), units distant from their neighbors are represented in black (or dark blue) [Kohonen 2001].

1.5. **Quality of data**

The dataset where small clusters are to be detected is the starting point of any outlier detection technique. Input is generally treated as a collection of data objects or data instances [also called a record, point, vector, pattern, event, case, sample, observation, or entity] [Chandola et al. 2007]. Raw data for cluster detection comes mostly from government records and must be pre-processed into a form that is acceptable by a statistical method (e.g. normalization and variable selection) [Li, J., Huang, K. Y., Jin, J., and Shi, J. 2008].

The general approach is by now a familiar one: use historical facts to build a model of outlier behavior and then use data mining techniques to find similar instances of this behavior and cluster them [Cabena, P., Hadjinian, P., Stadler, R., Verhees, J., and Zanasi, A. 1998]. Missing values and incomplete information are common in big data. Some data elements are not collected due to
omission, irrelevance, excess risk, human error, personal information protection or inapplicability in a specific clinical context. [Li et al. 2008]

2. T OY C A S E

The dataset for the case study has some pre-processing to fill in incomplete or missing data. These types of approach require certain properties of the data being used. As a result, it is important to have at least a basic understanding of the different types of data and information that might be met, and how this might guide the choice of a particular analytical approach.

For instance, continuous variables can take an unlimited number of values between lowest and highest values, are very desirable in inferential statistics (parametric statistical methods), but tend to be less useful in data mining; discrete variables have a limited number of possible values. Binary data are a type of discrete data where the information is confined to two possible options (e.g. Male or female, yes or no, 0 or 1). Categorical variables are not easy to use with SOM if not converted to a binary or continuous variable. Understanding the different types of data and variables is important because some of the methods have been designed for particular types of information and may be inappropriate for another type.

To test the model we use a pre-processing dataset with 10.000 random observations of ePrescription database records from January 2012, restricted to the Lisbon Council with 4 relevant variables [all the others are categorical variables or not possible to use without transformation]: Prescription day, dispensing day, medicine final sale value and value pay by patient with the follow descriptive statistics [table 1]:

<table>
<thead>
<tr>
<th>Type</th>
<th>Min</th>
<th>Max</th>
<th>Var</th>
<th>Std Dev</th>
<th>Med</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISPENSINGDAY</td>
<td>day</td>
<td>1</td>
<td>31</td>
<td>16.531</td>
<td>8.157</td>
<td>10000</td>
</tr>
<tr>
<td>PRESCRIPTIONDAY</td>
<td>day</td>
<td>1</td>
<td>31</td>
<td>15.503</td>
<td>8.093</td>
<td>10000</td>
</tr>
<tr>
<td>PATIENTACCEPT</td>
<td>value</td>
<td>0</td>
<td>36</td>
<td>23.703</td>
<td>4.869</td>
<td>10000</td>
</tr>
<tr>
<td>SALEPRICE</td>
<td>value</td>
<td>0</td>
<td>34</td>
<td>23.664</td>
<td>4.966</td>
<td>10000</td>
</tr>
</tbody>
</table>

Table 1: Dataset variable statistics

In table 2 we found the Pearson correlation matrix among variables, some of them strongly correlated with others or could indict outlier or unusual observation within variables and this is enough motive for a deeper research on this subject because involves big amounts of money spend by the NHS (National Health Care Service) in reimbursements to pharmacies (and, is some cases, also to patients).
2.1. Results with GeoSOM suite

To get some results with the previously described dataset, we used a SOM variant, the GeoSOM suite. This tool implements the GeoSOM algorithm, which is based on SOM, and has the potential to organize the SOM output space according to the geographic proximities of the input patterns. This way, areas of the geographic map with similar characteristics will warrant a smaller number of units than the areas of the map where characteristics differ a lot. GeoSOM can be viewed as an exploratory technique to build zones, contrary to most zone design algorithms [Horn 1995], [Mehrotra, A., Johnson, E. L., and Nemhauser, G. L. 1998], [Macmillan and Pierce 1994], [Alvanides and Openshaw 1999]. The GeoSOM suite is implemented in Matlab and uses the public domain SOM toolbox [Vesanto, Himberg, Alhoniemi, and Parhankangas 1999].

The GeoSOM suite is freely available at www.isegi.unl.pt/labnt/geosom. It allows multiple analyses to be shown at the same time. For example, one may use several different SOM on the same dataset with different variables, and visually compare the results or create a HSOM as we do in the follow analyses represented on the follow table 3. We can see a lower quantization error on the lower level SOM value and day compare with the SOM all, due to the specialization of the variables used.

<table>
<thead>
<tr>
<th>SOM</th>
<th>Variables</th>
<th>Train</th>
<th>Neigh</th>
<th>Lattice</th>
<th>Normalize</th>
<th>U-mat</th>
<th>Q-error</th>
<th>T-error</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>all variables</td>
<td>Batch</td>
<td>Gaussian</td>
<td>Hex</td>
<td>Variance</td>
<td>40x30</td>
<td>0.1323</td>
<td>0.1851</td>
</tr>
<tr>
<td>Value</td>
<td>saleprice, patientaccept</td>
<td>Batch</td>
<td>Gaussian</td>
<td>Hex</td>
<td>Variance</td>
<td>40x30</td>
<td>0.0014</td>
<td>0.3018</td>
</tr>
<tr>
<td>Day</td>
<td>dispensingday, prescriptionday</td>
<td>Batch</td>
<td>Gaussian</td>
<td>Hex</td>
<td>Variance</td>
<td>40x30</td>
<td>0.0095</td>
<td>0.1289</td>
</tr>
<tr>
<td>Hour</td>
<td>SOM value, SOM day</td>
<td>Batch</td>
<td>Gaussian</td>
<td>Hex</td>
<td>None</td>
<td>30x20</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Table 3: SOM details used

We start by training the SOM with 10 interactions using all the variables in the dataset (SOM all). After this first analysis, we can clearly visualize nine clusters of data, one of them with a
large number of hits [figure 2]. Now we cannot be sure of the presence of more small cluster or outlier of data, because we need more detail. To do that, we need specialized SOM with specific and related variables, and then aggregate the SOM in a hierarchical way (HSOM).

Figure 2: U-mat view of SOM with all variables

The component plans, also show us, the distribution of clusters for each variable [figure 3].

Figure 3: Components plans of variables

We start the HSOM by creating two low level SOM. In figure 4, we have a U-mat of a SOM with variables dispensing day and prescription day. Just one small cluster detected on left side.
João e Lobo / How to Detect a Small Cluster in Big Data?

Then we create the second lowest level SOM on figure 5 where we can see the U-mat of a SOM with the variables: sale price and patient accepted pay. Small cluster is detected, but not well defined.

In figure 6, we have the final result of the higher level SOM on the HSOM structure resulting from the two previous lower SOM, which indicate a big amount of small cluster of data due to outlier or error observations. We cannot observe those clusters on figures 4 and 5 because the variables are correlated, but when we mix them, new clusters appear, and that indicates outliers observations and should be better investigated.
3. CONCLUSIONS AND FUTURE WORK

HSOM applications to detect small clusters can have tremendous potential and usefulness and many of limitations of the past, such as problems with computation power, are no longer so serious. Nevertheless, we need other tools to deeply explore the small clusters detected and identify individual observations, the success of detection hinges on the availability of clean data. In this respect, it is critical that the people consider how data can be better captured, stored, prepared, and mined. Possible directions of further work include the standardization of vocabulary and the sharing of data across organizations to enhance the benefits of this kind of applications. How to detect false positive errors and avoid them is a main issue to save computational time and deserves more attention from researchers. Another problem is the border effect of the SOM, we need to evaluate the quality of the clusters and separation among them.

REFERENCES

João e Lobo / How to Detect a Small Cluster in Big Data?

