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Abstract

Sugar nucleotides are essential building blocks for the glycobiology of all organisms being
intrinsically linked to cellular metabolism. However, the market price of sugar nucleotides is currently

very high due to the inexistence of cost-effective manufacturing processes.

In this thesis, an in vitro enzyme process for the synthesis of sugar nucleotides UDP-Man, UDP-
Glc and UDP-GIcNAc using low cost substrates was developed and studied in order to decrease the
manufacturing costs of sugar nucleotides. The effects of pH and buffer composition on the cascades
were investigated leading to an increase in the productivity of the target product. Another important
discovery was the enzymatic production of the sugar nucleotide, UDP-Man, representing the first step

towards the more economical production of this sugar.

Moreover, it was found that, by adjusting the concentration of the enzymes in the cascades, the
productivity of the UDP-GIlc and the UDP-GIcNAc cascade could be increased by 52% and 56%,
respectively. Finally, it was observed that when high concentration of product if formed, in situ removal

of sugar nucleotide might be necessary.

Given the results obtained, this thesis presents new data and ideas towards the establishment
of a cost-effective in vitro enzymatic production process of UDP-Man, UDP-Glc and UDP-GIcNAc

with very promising practical applications.

Keywords: sugar nucleotides, UDP-GIcNAc, UDP-Glc, UDP-Man, multi enzymatic system, in vitro,

one pot synthesis
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Resumo

Os acUcares nucleotideos sé@o essenciais para a Glicobiologia de todos o0s organismos
estando intrinsecamente ligados ao metabolismo celular. No entanto, pesquisas relacionadas com
esta tematica encontram-se limitadas devido a complicagdes na obtencao de aglcares nucleotideos
provocadas pelo seu elevado preco de fabricacdo. Nesta tese, € desenvolvido um processo
multienzimético in vitro que se foca na sintese de aglcares nucleotideos, UDP-Man, UDP-Glc e UDP-
GIcNAc, através de uma eficiente cascata de enzimas usando substratos de baixo custo.

Os efeitos do pH e buffer nas cascatas foram investigados levando a um aumento da
produtividade do produto em questdo. Um ponto importante a frisar € que UDP-Man foi produzido,
pela primeira vez, via enzimatica dando assim o primeiro passo em dire¢cdo a producdo mais
econdmica deste aclcar nucleotideo.

Foi ainda provado que, ao ajustar as concentracbes de enzimas nas cascatas, a
produtividade de UDP-GIc e UDP-GIcNAc poderia ser aumentada em 52% e 56%, respetivamente.
Para finalizar, observou-se que, quando se forma alta concentracdo de produto, pode vir a ser
necessaria a remocao in situ do produto.

Dados os resultados obtidos, esta tese apresenta novos dados e ideias para uma producao
enzimatica mais econémica de UDP-GIcNAc, UDP-Glc e UDP-Man com aplica¢des praticas muito

interessantes.

Palavras-chave: aclcares nucleotideos, UDP-GIcNAc, UDP-Glc, UDP-Man, sistema

multienzimatico, in vitro
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1. Introduction

Sugar nucleotides are fundamental molecules in life. They are formed by the combination of a
uridine or guanosine-containing nucleoside diphosphate (UDP or GDP) along with a sugar. The sugar
can contain aldopentose (UDPXyl), aldohexose (UDP-Glc, UDP-Gal), aldohexosamine (UDP-
GIcNAc, UDP-GalNAc) or uronic acid (UDP-GIcA) components [1]. In Figure 1.1 there is presented
the example of the structure of the sugars nucleotides that are mainly approached in this project,
UDP-N-acetylglucosamine (UDP-GIcNAc) and UDP-Glucose (UDP-GIc).

OH
Uridine Uridine
HO
NH O
oH|[I R @ | Y OH o o Fg\)ﬁ
OFP—0—P—0 [l Il o N
O OH o | ° T e
NH O- Of O
Sugar (Glucose) @]
CHa
OH OH Sugar oo
(N-Acetylglucosamine)
(a) (b)

Figure 1. 1: Sugar nucleotide structure. (a) Structure of UDP-Glucose [53]. (b) Structure of UDP-GIcNACc [54].

Figure 1.1A illustrates UDP-Glucose, which is a sugar nucleotide composed by a uridine group
and an aldohexose group (glucose). It is also presented, in Figure 1.1B, UDP-GIcNAc that has, also,
a uridine group attached to an aldohexamine sugar (N-acetylglucosamine). These nucleotide sugars
are essential building blocks for the glycobiology of all living organisms, therefore, the study and

quantification of these compounds contributes to the understanding of their functions [1].

One of the most important cellular processes involving sugar nucleotides is glycosylation.
Glycosylation comprehends important modifications that confer and controls a wide range of
properties to a protein [2]. This process takes place mainly in the endoplasmic reticulum (ER) where
various glycosyltransferases catalyze the transfer of sugar nucleotides forming a glycan. When the
glycan is attached to the protein, it forms a glycoprotein with a specific purpose which can be a direct

result of their structure [3].



Chapter 1 - Introduction

Glycoproteins are included in the field of protein engineering technologies. This area has reached
high advances regarding the achievement of desirable functional characteristics of proteins for the
treatment of several diseases [4]. These glycoproteins, particularly therapeutic proteins, have a high
demand and have stimulated the research for new, better, and faster sources for recombinant protein

production leading to an increase of studies in this field [2] [5].

These glycoproteins are associated to many diseases related to glycans, and they have an
important role on vaccination and host-pathogen interactions. For that reason, sugars nucleotides
have a high impact on protein glycosylation, and thus on biological activity, stability and
immunogenicity of glycoproteins [6]. With that in mind, it became essential to describe and produce
sugar nucleotides in the biotechnological field, for instance, in biopharmaceutical production [7].

Nevertheless, this research has been limited by the high commercial price of sugar nucleotides [8].

These sugars can be produced chemically or via enzymatic synthesis. However, the chemical
synthesis is somewhat problematic due to their complex molecular structure, low solubility of sugar
nucleotides in organic solvents and the presence of several polar or charged functional groups [9]
[10]. Chemical processes will always have the main use in the pharmaceutical industry, but, by
combining or changing them to enzymatic processes, prices can decrease, and productivity can

increase offering a wide broad of opportunities for this technology [11].

For that reason, enzymatic synthesis offers a promising highly efficient alternative allowing the
regeneration of sugar nucleotides and promoting continued advances on understanding the biological
roles played by glycans and their sugars contributing to the development of new therapeutic
medicines [10]. In addition, with an industry that is continuously trying to improve efficiency the use
of biocatalysts is becoming more cost-effective and additional sustainable solutions can be found,

reducing the environmental footprint [11].

Although the enzymatic reactions to produce sugar nucleotides take place inside the cells,
producing them in vivo can be problematic since the process is dictated by many factors such as the
availability, activity, and correct subcellular localization of substrates and enzymes resulting in a lower

yield of the reaction [9].

As a result, enzymatic reactions can be made outside of the cells, in vitro, which means that the
process uses isolated enzymes to produce the final product, keeping the outstanding efficiency. This
approach holds a very particular promise since individual enzyme expression contributes to promoting
the transformation wanted to obtain only the desired product [12]. Also, since enzymes are usually
derived from mesophilic organisms in moderate conditions, by using enzymes in vitro, optimal

conditions can be determined resulting in the reduction of cost and time processing [13].

Usually, in cells are also present multi-enzymatic systems that can be recreated in vitro. These

type of systems are based on the combination of several enzymatic transformations, offering

2
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considerable advantages: the demand of time, costs and chemicals for product recovery may be
reduced, reversible reactions can be driven to completion and the concentration of harmful or

unstable compounds can be kept to a minimum [14].

The major advantage of in vitro multi-enzymatic systems compared to engineered cellular systems
is their reduced complexity and therefore ease of reaction control. However, to find the optimal
conditions, it is necessary to do an intensive study for all the reactions. All the reactions can be
optimized by varying enzyme and substrate concentrations, testing different cofactors and buffers,
variations of pH and temperature [15]. After optimization of the system, it is possible to obtain higher
purity of the final product when compared to cellular systems where are side reactions occurring

resulting in a complex mixture of compounds [16].

When dealing with multi-enzymatic systems, there is also a traditional “stop and go” approach to
synthesis in which a sequential process takes place with many separation steps. However, regularly
can exist problems regarding the insurance of the consecutive reactions and can be associated with
a higher price. For that reason, a more straightforward and better approach for this type of systems

was pursuit [17].

As a rival to this traditional approach to synthesis stands the one-pot strategy, in which multiple
chemical transformations are performed in a single reaction vessel without intermediary purification

steps [18], as it is shown in Figure 1.2.

Start Step 1 Step 2 Step 3

Final
Product

(a) (b)

Figure 1. 2: Comparison between stop and go and one-pot synthesis [55]. (a) Stop-and-go synthesis
involving more separation steps and for that reason can increase the costs. (b) One- pot synthesis
where no intermediary steps need to occur, decreasing the costs of production.
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In industrial processes, the one-pot approach has been adapted as an effective means of reducing
time, costs and waste generation when compared to traditional synthesis where purification of
intermediaries needs to be done at each step (Figure 1.2A). By reducing the number of isolation
steps, an improvement on process efficiency and safety can be made leading to process research
and development in the area of one-pot synthesis which is culminating in more efficient and practical

processes [19].

Since sugar nucleotides production is already costly it is important to develop better and cheap
ways to produce this product [20]. Therefore, high productivities can be reached when reactions are
made using an in vitro multi-enzymatic system in one-pot based on a de novo cascade that

regenerates the product in question, like is shown on Figure 1.2B [21].

Regarding the sugars produced in this thesis, a significant one is UDP-Mannose (uridine
diphosphate mannose) whose presence was reported in mammalian tissues. It has been recently
stated that in some areas of the brain there is a higher concentration of UDP-Man when compared to
other organs. This leads to believe that if there is a better understanding of the role of UDP-Man in
the process of glycosylation, then it can open new pathways for the treatment of neurological diseases
[22].

Also, naturally in cells, sugar nucleotides such as UDP-GIcNAc and UDP-Glc act as activated
sugars in the glycosylation process [23]. Besides this, a study was made that shows that both this
sugar nucleotides concentrations are distinctly increased in human breast cancer, contributing to the
tumor-promoting microenvironment [24]. Also, regarding UDP-GIc, it was proven that has effect in
specific cell receptors that variate immune and inflammatory responses [21]. Furthermore, the
research that can be made on these sugars may lead to a better understanding of their biological

roles and importance [24].

Chemical synthesis of sugar nucleotides as UDP-GIlc and UDP-GIcNAc was already made and
reported in several papers [30-31]. Regarding enzymatic synthesis of these sugar nucleotides, it was
also reported in articles [31]. For example, UDP-GIcNAc was already synthesized in vitro from low-
cost substrates with a yield approaching 100 % [25] and UDP-Glc was synthetized catalyzed in one-
pot with a yield of 70% and high purity [26]. However, in the particular case of UDP-Man there are no

successful studies reported by in vitro enzymatic conversion.

In conclusion, sugar nucleotides have a crucial biological role, however, research related to this
field is held down due to the high prices of fabrication. By resorting to a one-pot synthesis using an
in vitro multi-enzymatic system, sugar nucleotides can be produced using low cost substrates,

allowing the formation of this product with lower prices when compared to the traditional methods.



2. Theoretical Background

In this chapter, the relevant topics related to enzyme technology and sugar nucleotide production
will be overviewed. In section 2.1. the process of glycosylation in which sugar nucleotides are involved
will be explained followed by section 2.2. where it will be reviewed about what are enzymes and their

structure. In section 2.3. an explanation is made about how each enzyme used in the cascade works.

2.1. Glycosylation

Glycosylation is a process that causes modifications on proteins trough the covalent attachment
of an oligosaccharide on the protein. It comprises an assembly part and a processing part extending

for three cellular compartments (Figure 2.1) [27]:

e the cytosol, where sugars are synthesized

e the endoplasmic reticulum (ER), where sugar nucleotides are catalyzed by
glycosyltransferases that remove the sugars to form a glycan, which is a chain of
oligosaccharides that is then attached to the protein

¢ the Golgi Complex, where more modifications take place

Assembly Processing
attachment
to protein

Figure 2. 1: Glycosylation of a protein [27]

It is possible to observe in Figure 2.1 that in the cytosol and ER occurs the assembly attachment
to the protein, followed by the processing that takes place mainly in the Golgi Complex. When
processing is over, all the post-translation modifications in proteins are over, defining their structure

and functions.
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Every living cell on the planet is covered with a dense and complex array of glycans and for that
reason, it has many properties related to health [28]:

e Many diseases that affect humans involves glycans

e A significant majority of host-pathogen interactions involve glycans via recognition or

degradation

e  Most of therapeutic proteins must be glycosylated to be functionally effective

e Altered glycosylation is a universal feature of cancer and contributes to pathogenesis and
progression

e Many vaccines are glycan based because virus has a protein capsule

Besides that, congenital disorders of glycosylation (CDG) are a fast-growing family of genetic

diseases due to the defects in the synthesis of glycans [20].

2.2. Enzymatic synthesis of sugar nucleotides

Enzymes are biological proteins that catalyze different chemical reactions. All reactions that take
place in living systems are catalyzed by enzymes. Enzyme processes replacing or supplementing
chemical reaction have lowered the environmental footprint regarding energy consumption, water
usage, and amount of synthetic chemicals ending up in the environment. These advantages led to

more research and consequent improvement of enzyme technology [29].

2.2.1. Structure

Enzymes are proteins composed by several amino acids. These amino acids are covalently
bound through a peptide bond and their function is determined by their complex structure. The
reaction takes place in a small part of the enzyme called the active site. The amino acids around the
active site attach the substrate molecule and hold it in position while the reaction takes place. This
makes the enzyme specific for one reaction only, as other molecules will not fit into the active site
[29].



2.2 Enzymatic synthesis of sugar nucleotides

enzyme

enzyme-substrate
complex

Figure 2. 2: Model that represents how an enzyme works

In Figure 2.2 it is possible to observe the simplest model to represent how an enzyme works. The

substrate fits into the active site to form a reaction intermediate.

Many enzymes need cofactors or coenzymes to work correctly. These can be metal ions (such
as Fe?*, Mg?*, Cu?*) or organic molecules (such as FAD, NAD or coenzyme A). Many of these are
derived from dietary vitamins, which is why they are so important. For this reason, it is vital to

determine if the enzymes used are activated with co factor or with coenzymes [30].

2.2.2. Enzyme Assays

When dealing with enzymes, it is imperative to determine the temperature and pH that allows them
to achieve a higher yield of the final product. The best temperature needs to be determined since for
high temperatures, enzymes can suffer denaturation and for very low temperatures the reaction can
be prolonged, not allowing the achievement of a high yield. Regarding the pH, each enzyme has an
optimal pH that maximizes the yield of production of the final product. For high or low values of pH,
enzyme activity can be affected, and for that reason, the pH that promotes a higher production of the
final product should be determined [31].

During the reactions, it is also necessary to add an appropriate buffer to preserve the stability of
the enzymes. Buffers are used to adjust and stabilize the desired pH of the enzyme assay. They are
strongly correlated with the yield of the reaction because if pH is drastically changed then enzyme
activity can be decreased [32].

Regarding the buffers used in the reactions, literature usually recommends using Tris buffer (tris
(hydroxymethyl) aminomethane). Biological buffers are considered non-toxic, biocompatible and
environment-friendly which is the case of MOPS (3-(Nmorpholino) propane sulfonic acid) and HEPES

(N-(2-hydroxyethyl) piperazine-NO-ethanesulfonic acid) [31].
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Regarding the buffers available for enzyme assays, it is important to study each one of them, and

their particularities, as it is possible to see in the following table 2.1 [33].

Table 2. 1: Properties and pH range of different buffers used in literature

BIS TRIS
MOPS HEPES PROPANE TRIS
pH range 6.5-7.9 6.8-8.2 6.3-9.5 7-9
It is relatively The primar
It is recommended for cheap, and it is . € p Y
. - : . . High pH amine group of
Properties use as a buffer in biologically inert . . .
; X . ; screening Tris reacts with
solutions with metal ions in most .
cases metals ions

Enzymes are stored in glycerol at -20°C [25], to keep protein stabilization. Storing proteins in
glycerol is very common, mainly because it is shown that storing enzymes in this substance allows
them to not loose stability [34]. However, it is debatable if this is the best substance to stabilize
proteins. Recently was reported that sorbitol, which is also a polyhydric alcohol, is better than glycerol

to preserve enzyme stability [35].

2.2.3. Application

The use of biocatalysts is increasing very fast in the pharmaceutical industry. With an industry that
is continuously striving to improve efficiency, a high number of studies had been conducted to
increase the ability of biocatalysts to reach its full potential in pharmaceutical synthesis. In addition,

such processes can deliver alternative ‘green’ solutions with reduced environmental footprints [11].

Besides pharmaceutical industry, enzymes are being used in numerous new applications in the
food, agriculture, paper, leather, and textiles industries, resulting in significant cost reductions. This
means that industries are embracing more and more enzyme technology, a trend strengthened by

concerns regarding health, energy, raw materials, and the environment [36].
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2.3. Enzymes used

The following subsections explain how each enzyme used in this project works and which are the
substrates needed and final products obtained. It is also presented the EC number (Enzyme
Commission Number) for each enzyme. This specific number consists in a classification scheme for
enzymes, based on the chemical reactions they catalyze thus, allowing a properly distinction of one

enzyme from another.

2.3.1. NahK

Enzyme NahK, also known as N-acetylhexosamine 1-kinase (EC 2.7.1.162) uses ATP to
phosphorylate substrate GIcNAc forming GIcNAc-1p and ADP. The reaction that is associated to this

enzyme is shown in Equation 1.

NahK
ATP + GIcNAc «— ADP + GIcNAc — 1p 1)

This enzyme is very important in the area of glycoscience because has a big affinity to N-

acetylglucosamine which is a fundamental substrate of the process of glycosylation [37] [38].

2.3.2. Glk

This enzyme is known as glucokinase (EC 2.7.1.2) and the main purpose is to use ATP to

phosphorylate Glc, forming Glc-6p [39].

Glk
ATP + Glc < ADP + Glc — 6p (2)

Also, this enzyme also phosphorylates mannose to form Man-6p, as shown in Equation 3.

Glk
ATP + Man < ADP + Man — 6p 3)
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2.3.3. Man B/C

In the case of glucose and mannose, enzyme Glk forms Glc — 6p and Man — 6p, respectively.
However, to obtain the final product, it is necessary to acquire Glc and Man phosphorylated in the
first carbon, in the form of Glc-1p and Man-1p. For that reason, enzyme Man B/C is used. This enzyme
is co-expressed by phosphomannomutase (ManB) (EC 5.4.2.8), and mannose-1-phosphate-

guanyltransferase (ManC) (EC 2.7.7.13) in E.coli using one plasmid [40].

The reactions this enzyme promotes are the following [41]:

Man B/C
Glc —6p «— Glc—1p (4)
Man B/C
Man — 6p «—— Man — 1p (5)

2.3.4. URAG

Uridine monophosphate kinase, URA6 (EC 2.7.4.22) forms UDP through UMP. It removes a
phosphor of ATP forming ADP. The phosphor removed is attached to UMP forming UDP, as shown
in Equation 6 [42].

URA6
ATP + UMP «— ADP + UDP (6)

2.3.5. PPK3

Enzyme polyphosphate kinase (EC 2.7.4.1) phosphorylates ATP forming ADP consuming
phosphate [43].

PPK3
ATP + PolyB, «<— ADP + PolyP, 4 )

2.3.6. Galu

UTP-glucose-1-phosphate uridylyltransferase (EC 2.7.7.9) is the most important enzyme of the
system, since it produces the final product. Like the name already says, the enzyme uses as
substrates UTP and Glc-1p to produce the final product. The reactions are shown in the following

reactions [44]:

GalU
UTP + Glc — 1p <— UDP — Glc + PP 8)

10
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GalU
UTP + GlcNAc — 1p <— UDP — GlcNAc + PP, 9)
GalUu
UTP + Man — 1p «— UDP — Man + PP; (10)

2.3.7. PmPpA

PmPpA, also known as inorganic diphosphatase (EC 3.6.1.1) and it is used to shift the equilibrium

of the reaction of GalU to the direct way in order to increase the yield of the final product [45].

PmPpA
PP, + H,0 «—— 2P, (12)

2.3.8. 2D-PPK2

This enzyme, 2-domain-polyphosphate kinase (EC 2.7.4.1), is known to have affinity to AMP,
GMP, CMP and UMP in this order. For this reason, the AMP that is formed in the reaction is consumed
by this enzyme, forming ADP and ATP. The same happens with UMP, forming UDP and UTP but in
lower affinity, since this enzyme has a higher affinity to AMP [43] [46].

The following reactions show how this enzyme processes AMP:

2D-PPK2

AMP + PolyP, «—— ADP + PolyP,_, (12)
2D-PPK2

ADP + PolyP, «<——— ATP + PolyP,,_, (13)

In a very similar way as AMP, also UMP is consumed by this enzyme being phosphorylated by

polyphosphate forming UDP and UTP.

2D-PPK2

UMP + PolyP, «—— UDP + PolyP,_, (14)
2D—-PPK?2

UDP + PolyP, «——— UTP + PolyP,_, (15)

11
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2.4. High Throughput Screening

As it was said before, there are many variables that need to be determined when an enzyme
cascade is being established and optimized. High throughput screening (HTS) is a valuable tool to
handle such complex systems involving many different variables with interactions. It involves recent
scientific methods relevant to the field of chemistry and biology, in which hundreds of experimental
samples are subjected to simultaneous testing under given conditions. This allows not only a faster

sample reading but also an easier way to test different conditions instead of the regular way [47].

For that reason, a technique was implemented to analyze the amount of product in each sample,
which was the Phosphate Assay test (Pi Color Lock System). This test measures the amount of

phosphate in a microplate through a colorimetric assay [48].

When the dye is added to the samples, forms a Pi-dye complex turning into a blue color, which is
more intense when there is a high concentration of phosphate in the sample. Considering the quantity
of phosphate measured in the samples, and the chemical reactions that take place, the obtained
concentration of phosphate will be twice the value of the product obtained in the sample, based on

the following chemical Equation 16:

GalU PmPpA
UTP + Man — 1p «<— UDP — Man + PP, «—— 2P; (16)

Essentially, with this indirect method, it is possible to have a fast, quantitate value of the

concentration of the final product in each sample that is taken from the system.

12
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3. Materials and Methods

3.1. Choice of Enzymes

The enzymes used on this project were based on the article previously reported in literature for
production of UDP-GIcNAc [25]. However, to produce sugar nucleotides UDP-Man and UDP-Glc data
base website BRENDA [49] was used in order to find enzymes needed to create the functional
enzymatic cascades. With research, the appropriated enzymes were found, and a series of
experiments were conducted in order to evaluate if the cascade worked. In addition, the amount of
enzymes and substrates that were necessary to make the cascade functional were also determined

with a series of experiments of trial and error.

3.2. Protein Expression

This part of the project was made by laboratory technical assistant, whose work was to generate
a specific DNA sequence in E. Coli that can be multiplied with the right medium and conditions,
increasing the amount of protein generated. The DNA sequence generated specifies a string of six
histidine residues that is used in the vectors for the production of recombinant proteins. The result is
an expression of a recombinant protein with six histidine’s that can be easily purified due to the string

of histidine that binds to immobilized metal ions, as nickel.

3.3. Cell Lysis

Since the proteins of interest are inside the cells, it is necessary to do cell lysis using sonification
which is a technique that uses mechanical forces in the form of ultrasonic sound waves to shear cell
tissues. The sound waves provide cell rupture and release protein do the mixture. However, they can
also release other proteins that can inhibit our protein of interest. For that reason, it is very important

to purify them.

To perform cell lysis on cells, 5 mL of lysis buffer was added do the sample of biomass followed
by vortex to lift the protein from the bottom. Lysis buffer was prepared with 50 mM HEPES at pH 7.5,
10 mM of Imidazole, 10 mM of MgCI2 and 300 mM of NaCl.

13
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Then, the samples were placed in ice and using digital sonifier BRANSON it is started pulses of
0.5 seconds with pause every 2.5 seconds for 3 minutes. In the end, samples are centrifuged for 20
minutes at 16 000 g [40].

3.4. Enzyme Purification

For purposes of enzyme purification, it was used IMAC (immobilized metal ion affinity
chromatography), connected to a computer with the software UNICORN. To use this technique,

several buffers needed to be prepared:

e Elution buffer was made with 50 mM HEPES at pH 7.5, 500 mM of Imidazole, 10 mM of
MgCl2 and 300 mM of NaCl

e Equilibration buffer was made with 50 mM HEPES at pH 7.5, 10 mM of Imidazole, 10 mM
of MgCl2 and 300 mM of NaCl (same as lysis buffer previously used)

Firstly, all system needed to be washed with 20% ethanol followed by a wash with equilibration

buffer with the flow of 5 mL/min. When it was finished, the flow rate was set to 0.5 mL/min.

His-Trap HP Column (1ml capacity) was prepared by adding droplets of water into the column
until it is full to prevent bubbles. Then, water was injected through the column followed with

equilibration buffer to wash out unbound proteins.

Samples were loaded, and the program started. The protein of interest is released when it is used
elution with a buffer containing high concentration of imidazole that has strength enough to take the
protein of interest out of the column. When separation is finished, the system was manually cleaned
at 1 ml/min with water and then with cleaning agent and again with water. Finally, the whole system

was cleaned with 20% ethanol [10].

By using this type of purification, the proteins generated with a six-histidine terminal bind to the

nickel column while the other proteins are released from the column.

14
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3.5. Enzyme Quantification

For enzyme quantification Bradford method was adopted. The main principle of this assay is that

the binding of protein molecules to dye results in a color change from brown to blue.

To obtain the concentration of protein, calibration curves needed to be obtained. For that reason,
a solution of 100 mg of BSA and 100 g of PBS was made in 250 mL. In the end, the solution was
stirred for 5 minutes.

Then, in a 96 well plate, the solution prepared for the calibration curve was added in each well
in triplicates (200 pL). In addition, it was also placed 200 pL of the samples containing the enzymes
in triplicates. It is necessary to do a series of dilutions (always in triplicates) of the samples with
enzymes to assure that obtained value falls within the calibration range.

After that, 50 pL of dye Bio-Rad was added to each well. In the end the plate was read in the
plate reader at 595nm.

3.6. Reactions

For the reaction of the enzymes, it is necessary four essential things:
- Buffer (HEPES)

- Co-factor (usually MgClz2)

- Reactants

- Enzymes

All reactions were carried out with a co-factor concentration of 30 mM MgCI2 at 30°C in 50 mM
HEPES buffer at pH 7.5. The reaction was incubated at 1000 rpm in a thermomixer from Eppendorf
AG. Sample aliquots of 25 pl were quenched in 400-1500 ul of MilliQ water, preheated in a closed
Eppendorf tube to 90°C, followed by another 3 min of heating at 90°C to ensure enzyme inactivation.

In the end, all samples are centrifuged at 12 000 g for 20 minutes to remove proteins.

15
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3.7. Quantification of compounds

To quantify the compounds of the reaction High Performance Anion Exchange Chromatography
(HPAEC) was used which separates compounds on an anion exchange column. The machine used
was an IC5000 thermo and a column carbopac PAL. With an optimized gradient all the compounds
appear as peaks and all measurements for quantification of analytes were based on UV detection.

An example of the chromatogram is exposed in Figure 3.1.
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Figure 3. 1: Example of a chromatogram using HPAEC

To run the samples in chromatography, they were collocated in special vials appropriate for the
machine and 4 eluents (A-water, B-1 mM NaOH and 1M NaOAc, C-100 mM NaOH and D-1M
NaOAc).

Regarding Phosphate assay test, it includes a commercially available kit that contains a Golden
mix to detect phosphate and a stabilizer to stabilize phosphate formation. In a 384 well plate, 50 uL
of Golden mix are added to 70 uL of samples. After 5 minutes, 20 uL of stabilizer needs to be added
and the solution is mixed with a pipette. Afterwards the plate is shaken at 1000 rpm for half an hour

and is inserted in a spectrophotometer read at 635nm.
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4. Results and Discussion

In this chapter, experimental work and obtained results will be discussed. In section 4.1. the
establishment of the cascades to produce sugar nucleotides UDP-Man, UDP-GIlc and UDP-GIcNAc
is presented with an analysis of intermediary compounds. In section 4.2. it is presented a series of
experiments and analysis that improved the cascade reactions to produce the sugar nucleotides. In
order to improve the productivity of the cascade, a few issues were found when performing reactions.
For that reason, section 4.3. focus on solving and analyzing the problems found with the purpose to
develop and improve the reactions. In the end, because a high number of experiments still need to
be performed to establish and improve the reactions to be prepared for the scale up, a high throughput
screening test was studied to be implemented for these reactions (section 4.4). It is important to
mention that mass balance was made for all reactions to reassure the reliability of the system. It has

taken into consideration the conservation of the amounts of adenosine and uridine in the system.

4.1. Established Cascades

A significant step regarding the production of sugar nucleotides is the cascade establishment. It
includes not only the choice of the enzymes used, but also the concentrations of enzymes and
substrate that it is possible to be processed to create a functional cascade. In this thesis, three sugar

nucleotides were successfully synthetized: UDP-Mannose, UDP-Glucose and UDP-GICcNAc.

All concentrations for the final product and intermediary compounds were calculated using a
calibration curve for each compound (except UDP-Man which commercial standard is not available).
For each analysis made in chromatography, the calibration curve for each substance was determined

in the same run in order to avoid the possible biased error of the HPAEC.
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4.1.1. UDP-Man Cascade

UDP-Man Cascade has ATP, UMP, PolyP14 and mannose as substrates. The enzymes in this

cascade are shown in Figure 4.1

PmPpA
PPK3 PPK3

URAG

ume)

Figure 4. 1: UDP-Man Cascade

By the analysis of Figure 4.1 it is possible to observe that enzyme Glk converts Man into Man-
6p. However, for the reaction to take place and form UDP-Man it is necessary to add enzyme Man
B/C to convert Man-6p in Man-1p, which is the mandatory substrate for enzyme GalU to produce the

final product.

Enzyme URAG has the role of using ATP to form UDP. On the other hand, PPK3 converts ATP
in ADP, as PolyPi4 into PolyP1s, phosphorylating UDP to produce UTP that in the end is used to
produce the final product by enzyme GalU. For this reason, both enzymes, URA6 and PPKS3, are

crucial to transform UMP into UTP.
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Experiments to establish the cascade of UDP-Man were made in the following conditions (Table

4.1).

Table 4. 1: Conditions for UDP-Man cascade

Glk GalU PPK3 URAG6 PmPpA Man B/C
Enzymes
concentrations 0.5 0.1 0.1 0.1 0.05 0.2
(mg/mL)
Mannose UMP ATP PolyPn
Initial
concentrations 2 2 15 4.5
(mM)
MgCl2 HEPES
Other
Concentrations 20 50
(mM)
Temperature (°C) Shaking (rpm)
Conditions of the
. 30 1000
reaction

The analysis of the concentration of substrates, product and intermediary compounds during the

reaction for UDP-Man cascade is exposed in Figures 4.2 and 4.3.
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Figure 4. 2: Results of AMP, ADP and ATP for UDP-Man cascade. (a) Concentration of AMP vs Time.
(b) Concentration of ADP and ATP vs Time.
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It is possible to observe in Figure 4.2A that AMP concentration increases with time due to the
fact that ADP and ATP can have their phosphate bond hydrolyzed forming AMP [50]. As shown in
Figure 4.2B, ATP decreases along time because it is being consumed by enzymes PPK3 and Gk to
produce the final product. ADP concentration increases in the beginning of the cascade reaction as
ATP is consumed and turned into ADP by PPK3 but then it reaches equilibrium, which means that
the rate of consumption of ADP is the same rate as formation.

In Figure 4.3 is presented the concentration of UDP over time.
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Figure 4. 3: Concentration of UDP vs Time for UDP-
Man Cascade

It is possible to conclude from the analysis of Figure 4.3 that the intermediary product, UDP, is
produced very fast when reaction starts. However, the concentration values start to decrease very
quickly due to enzyme PPK3 that phosphorylates UDP by using ATP to form UTP.

The concentration of UDP-Man was not evaluated due to the fact that this substance is not
commercially available.
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4.1 Established Cascades

4.1.2. UDP-GIc Cascade

Regarding UDP-Glc cascade, it uses the same biocatalysts as in the UDP-Man cascade.
Enzyme Glk converts glucose in Glc-6p and, once again, for the reaction to take place and form UDP-

Glc it is necessary to add enzyme Man B/C to convert Glc-6p in Glc-1p, which is the mandatory

substrate for enzyme GalU to produce the final product.

@) P

EGIK : ManB GalU
Glc Glc-6p «— Glc- 1p UDP-Glc

PmPpA
PPK3 PPK3

UI?P
URAG6
ﬂ‘/

Figure 4. 4: UDP-Glc Cascade

The UDP-GIc cascade was established and the concentrations of enzymes and reactants that

made the cascade functional were determined and are shown in Table 4.2.

Table 4. 2:Conditions for UDP-GIc cascade

Glk Galu PPK3 URAG PmPpA Man B/C
Enzymes
concentrations 0.5 0.1 0.1 0.1 0.05 0.2
(mg/mL)
Glc UMP ATP PolyPn
Initial
concentrations 1 1 3 3
(mM)
MgCl2 HEPES
Other
Concentrations 30 50
(mM)
Temperature (°C) Shaking (rpm)
Conditions of the
. 30 1000
reaction
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Chapter 4 - Results and Discussion

The analysis of each reactant of this cascade is exposed in Figure 4.5.
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Figure 4. 5: Results of AMP, ADP, ATP, UDP and Glc-6p for UDP-Glc cascade. (a) Concentration of AMP vs
Time. (b) Concentration of ATP and ADP vs Time. (c) Concentration of UDP vs Time. (d) Concentration of Glc-
6p vs Time

Figures 4.5A and 4.5B show that, as in UDP-Man cascade, the concentration of AMP increases
with time. Concentration of ADP increases in the beginning while concentration of ATP decreases.
This happens because ATP is consumed in the beginning, forming ADP. But very fast both
compounds reach equilibrium.

In Figure 4.5C UDP is consumed, meaning that enzyme PPK3 is efficiently consuming the
substrate UDP, in order to form the main substrate for enzyme GalU, UTP.

Regarding Glc-6p concentration (Figure 4.5D) it decreases along time meaning that enzyme
Man B/C is working very well, consuming Glc-6p and forming Glc-1p that will be used by enzyme
GalU to produce the final sugar nucleotide, UDP-Glc.

22



4.1 Established Cascades

In Figure 4.7 it is possible to observe the behavior of UDP-Glc and UMP during the reaction.
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Figure 4. 7: Concentration of UMP and UDP-Glc vs Time

It is possible to observe in the previous figure that, while UMP is consumed, the product UDP-
Glc is produced as expected. Since UMP is one of the main substrates for the cascade reaction to
work it is expected that the concentration decreases which means that this substrate is consumed in

high quantity, resulting in a formation of high concentrations of product.

For this cascade, the productivity obtained had the value of 4.24 —=2

- Iprotein
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Chapter 4 - Results and Discussion

4.1.3. UDP-GIcNAc Cascade

About UDP-GIcNAc cascade (Figure 4.8), it is not necessary to have enzyme Man B/C because
Nahk converts instantly GIcNAc into GIcNAc-1p.
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Figure 4. 8: UDP-GIcNAc Cascade [25]

The concentrations of enzymes and reactants that can make the cascade functional were
determined and are shown in Table 4.3.

Table 4. 3: Conditions for UDP-GIcNAc cascade

NahK Galu PPK3 URAG6 PmPpA
Enzymes
concentrations 0.3 0.2 0.1 0.1 0.05
(mg/mL)
GIcNAc UMP ATP PolyPn
Initial
concentrations 2 2 2 4
(mM)
MgCl2 HEPES
Other
Concentrations 20 50
(mM)
Temperature (°C) Shaking (rpm)
Conditions of the
. 30 1000
reaction
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4.1 Established Cascades

The results for the behavior of the different compounds are shown in Figure 4.9.
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Figure 4. 9: Results of ATP, ADP UMP, UDP-GIcNAc and UDP for UDP-GIcNAc cascade. (a) Concentration of

ADP and ATP vs Time. (b) Concentration of UDP vs Time. (c) Concentration of UMP vs Time. (d)Concentration
of UDP-GIcNAc vs Time.

From Figure 4.9A, it is possible to observe that at the beginning of the reaction, while a significant
amount of ATP is consumed, a high amount of ADP if formed, due to enzyme PPK3. As it happened
in the previous cascades, in the end both compounds tend to reach equilibrium.

UMP, which is one of the main substrates for the cascade reaction, is being consumed very
slowly, as it is possible to see in Figure 4.9C. For that reason, there is not a very high production of
the main product, however, there is production of UDP-GIcNAc starting at 130 minutes, meaning that

the cascade was established and works appropriately (Figure 4.9D).

Figure 4.9B shows that, opposite to the analysis made in the previous cascades, UDP increases
over time. This means that in the first 130 minutes, the UMP consumed formed UDP, however, UDP

did not form UTP for enzyme GalU, ending up being accumulated. After 130 minutes, UDP reaches
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Chapter 4 - Results and Discussion

equilibrium which means that the amount of UDP consumed is the same as the UDP produced, having
formation of UDP-GIcNAc.

The productivity obtained for this cascade was 1.48 — 2

- Iprotein

4.2. Advanced Development of Sugar Nucleotide Cascade

After cascade reactions are established regarding enzymes and substrate concentrations, it is

important to establish other conditions as best pH, temperature and buffer to be used in the reactions.

Rules for performing enzymes reactions, appropriate handling, preparation of assay, choice of
the assay time and suggestions to avoid frequent and trivial errors need to be investigated. Only after
the determination of this important aspects, it is possible to improve cascade reactions to produce

sugar nucleotides.

In subsection 4.2.1. the best pH that can promote a higher formation of the final product was

determined.

In subsection 4.2.2, the best buffer to use in enzymatic reactions is chosen. The choice of the
best buffer is made based on the yield of the final product, showing that the buffer that reaches higher

productivity can control pH shifts better not affecting enzyme activity.

All these factors together can contribute to higher productivity of the sugar nucleotide, maintaining

enzyme activity and improving the cascade reactions.
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4.2 Advanced Development of Sugar Nucleotide Cascade

4.2.1. Best pH for UDP-Glc Cascade

Experiments were conducted for UDP-GIc cascade at different pH to determine the pH that

allows a higher production of the sugar nucleotide UDP-Glc. The experimental design is shown in
Table 4.4.

Table 4. 4: Conditions for different pH of UDP-GIc cascade

Glk GalU PPK3 URAG6 PmPpA Man B/C
Enzymes
concentrations 0.5 0.1 0.1 0.1 0.05 0.2
(mg/mL)
Glc UMP ATP PolyPn
Initial
concentrations 1 1 3 3
(mM)
MgCl2 HEPES
Other
Concentrations 30 50
(mM)
Temperature (°C) Shaking (rpm)
Conditions of the
. 30 1000
reaction

The results are shown in Figure 4.10.
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Figure 4. 10: Concentration of UDP-GIc vs Time at different pH

Analyzing Figure 4.10, it is possible to observe that for pH 6.4 and 7.5 there is higher productivity,
meaning that this two pH’s are adapted to do the reactions and enzymes are not affected at these pH
values. However, because 7.5 is a neutral pH and it is this value that is mainly used in the literature

[31], it was this pH that was chosen to do all the reactions for this cascade.

27



Chapter 4 - Results and Discussion

It is also possible to see that, at pH 9, enzymes do not have high productivity at alkaline
environments, not producing that much final product as they could if the reaction was made at the
advised pH in literature. This leads to believe that at pH’s 7.1, 8 and 9 enzyme activity can be affected.

4.2.2. Different Buffers

A series of experiments were made to evaluate different buffer effect in the reactions. The buffers
were chosen based on the literature [51]. Since buffer MOPS, HEPES and tris/HCI are the buffers
mainly used in enzymatic reactions they were the ones that were evaluated, together with bis-tris-
propane buffer that has a large buffer capacity.

The results for the effect of different pH are exposed in the following Figure 4.11 based on the
conditions of Table 4.3.

Concentration of UDP-GIcNAc at 120 minutes
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Figure 4. 11: Concentration of UDP-GIcNAc at 120 minutes with
different buffers

The best buffer to perform the reactions is HEPES because it has higher productivity of final
product than the other buffers improving cascade reactions. For that reason, all the experiments made
after this were using HEPES buffer instead of the previous used Tris/HCI buffer.
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4.3 Small Scale Experiments

4.3. Small Scale Experiments

One of the main goals to develop the process is to do the scale up to allow the industrial
application of the final product. For that reason, it is important to do small scale experiments to
investigate what type of problems can the process have and solve them. This way it is possible to get
a better understanding of the process and better preparation for the scale up.

One of the problems that appeared during the reactions was the sub product production of AMP.
This sub product is formed due to hydrolyzation of the phosphate bond of ADP and ATP which are

presentin the reactions. In Figure 4.12 it is possible to observe the high concentration of AMP reached
during the reactions.
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Figure 4. 12: Chromatogram from a cascade reaction that shows the amount of AMP
formed

As itis possible to observe in the previous figure, high amounts of AMP were being formed during
the reactions. This can lead to problems not only in the reaction, decreasing the productivity of the

system but also in the purification process. Thus, an attempt to decrease the formation of this sub
product was made.

In addition, the influence of high amounts of substrate on the reaction vial was analyzed. On the
other hand, the influence of large quantities of product inside vials was also pursuit. Both these sets
of experiments were made to observe how significant quantities of product or substrate can affect the
reaction giving important information about the future design of the reactor.

In the end, enzyme stability was studied in the sense that when scale up is done it is very

important to keep enzyme stability and productivity stable.
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Chapter 4 - Results and Discussion

4.3.1. AMP formation

After analyzing a high number of preliminary experiments, it was seen that high amounts of AMP

were produced. This fact led to do a series of experiments to see how high amounts of substrates

can lead to a more prominent formation of AMP.

The experiments were conducted with different concentrations of reactants and without any
enzymes, to see how higher concentrations can affect the formation of this intermediary product. The

experimental plan is shown in Table 4.5.

Table 4. 5: Experimental plan to investigate the formation of AMP

UMP UTP UDP ATP ADP

ExpeTment 1 1 1 1 1

Initial -
concentrations Expegment 2 2 2 2 2

(mM) -
Expegment 3 3 3 3 3

Temperature (°C) Shaking (rpm)
Conditions of the
. 30 900
reaction

The results for the analysis of AMP formation are shown in Figure 4.13.
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Figure 4. 13: AMP rate of formation (uM/min)
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4.3 Small Scale Experiments

From the previous figure is possible to conclude that the higher concentrations of reactants,
higher is the rate of formation of AMP. The possible explanation for this is the fact that when reactants
concentration increases, the hydrolyzation of phosphate bounds in ADP and ATP also increases.
This is of concern potentially leading to serious scale-up problems due to the fact that results show
that ATP will hydrolyze very fast. For that reason, it is reinforced that measures should be taken to

decrease the concentration of this compound.

4.3.2. Enzyme 2D-PPK2 experiments

To reduce the accumulation of AMP, enzyme 2D-PPK2 was added to the cascade since this

enzyme is known to catalyze AMP forming ATP and ADP [46].
The experimental plan is shown in Table 4.6.

Table 4. 6: Experimental plan for UDP-GIcNAc cascade with and without 2D-PPK2

NahK GalU PPK3 URAG6 PmPpA 2D-PPK?2
Enzymes
concentrations 0.3 0.2 0.1 0.1 0.05 0.5
(mg/mL)
GIcNAc UMP ATP PolyPn
Initial
concentrations 2 2 2 4
(mM)
MgCl2 HEPES
Other
Concentrations 20 50
(mM)
Temperature (°C) Shaking (rpm)
Conditions of the
. 30 1000
reaction
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The results for the addition of enzyme 2D-PPK2 to the UDP-GIcNAc cascade are shown in

Figures 4.14 and 4.15.
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Figure 4. 14: Experiments with and without enzyme 2D-PPK2 for UDP-GIcNAc Cascade. (a)Concentration of
UDP-GIcNAc vs Time. (b) Concentration of AMP vs Time. (c) Concentration of UMP vs Time.
(d)Concentration of ADP vs Time.

By analyzing Figure 4.14A, it is possible to conclude that when enzyme 2D-PPK2 is added to

the cascade there is a high increase of the product when compared to the cascade without 2D-PPK2

(increase of 56%). Faced to values showed in literature for the volumetric productivity obtained of

UDP-GIcNACc (0.81 g L*h'1) [25], the value obtained with enzyme 2D-PPK2 in this project was 18.74

g L'tht which is a considerable higher productivity. However, it is important to mention that the values

compared don’t have the same concentration of reactants.
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4.3 Small Scale Experiments

In Figure 4.14C it is possible to observe that UMP concentration has a much more severe
decrease when enzyme 2D-PPK?2 is added to the system. Because UMP is much faster consumed,

there is much more production of the final product.

AMP concentration with this enzyme has a fast increase when the reaction starts reaching even
higher values than when enzyme 2D-PPK2 is not in the system (Figure 4.14 B). This can be explained
since when the reaction starts ATP is quickly consumed, forming ADP. However, when enzyme 2D-
PPK2 is added to the system, ADP concentration reaches almost zero (Figure 4.14D), meaning that
the following reaction is happening on the inverse direction, consuming all the ADP and forming high
quantities of AMP.

2D-PPK2
AMP + PolyP, «——— ADP + PolyP,_,

Then, when AMP concentration is very significant, reaction starts sifting in the direct way, into
forming ADP and ATP. For that reason, as it is possible to observe in Figure 4.14B, AMP
concentration decreases, which was precisely the wanted objective.

The opposite happens with UDP concentration, as it is shown in Figure 4.15.

500

450 -

400 - T T

350 - i

300 - ¢ With ppk2

250 - T

200 - Without

150 - T J' ppk2

100 -

07 8 i .

O — T T
0 100 200 300

Time (min)

Concentration(uM)

Figure 4. 15: Concentration of UDP vs Time (Experiments with
and without enzyme 2D-PPK2 for UDP-GIcNAc Cascade)

UDP concentration with enzyme 2D-PPK2 increases much slower than the cascade without 2D-
PPK2. This happens because UMP is consumed very quickly by 2D-PPK2, forming UDP that is also
being consumed very fast to form UTP that is the main substrate to form the final product, UDP-
GIcNAc.
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Regarding UDP-GIc cascade, experimental conditions are shown in Table 4.7.

Table 4. 7: Experimental plan for UDP-Glc cascade with and without 2D-PPK2

Glk Galu

PPK3

URAG

2D-
PPK2

PmPpA Man B/C

Enzymes
concentrations
(mg/mL)

0.5 0.1

0.1

0.1

0.5

0.05 0.2

Glc UMP

ATP

PolyPn

Initial
concentrations
(mM)

MgCl2

HEPES

Other
Concentrations
(mM)

30

50

Temperature (°C)

Shaking (rpm)

Conditions of the
reaction

30

1000
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4.3 Small Scale Experiments

The results with concentrations of substrates and intermediary compounds for UDP-GIc cascade
are presented in Figure 4.16.
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.Figure 4. 16: Experiments with and without enzyme 2D-PPK2 for UDP-Glc Cascade. (a) Concentration
of UDP-Glc vs Time. (b) Concentration of AMP vs Time. (c) Concentration of UMP vs Time.
(d)Concentration of UDP vs Time. (e) Concentration of UTP vs Time. (f) Concentration of ADP vs Time.
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In Figure 4.16A and Figure 4.16B it is possible to observe that AMP is being consumed, as
expected, and formation of UDP-GIc increases when 2D-PPK2 is added to the system increasing the
productivity by 52%. In literature, the volumetric productivity obtained for the production of this sugar
nucleotide with different enzymes and substrates was 10 g L-th-1[52]. In this project, the productivity
obtained when enzyme 2D-PPK2 is added to the system is 31.51 g Lth-1 having a considerable

increase when compared to literature values.

In Figure 4.16D and 4.16E it is possible to see that when enzyme 2D-PPK2 is added to the system,
concentration of UTP and UDP decreases due to the fact that enzyme 2D-PPK2 also has affinity to
UMP, forming UDP and UTP that is more quickly consumed by enzyme GalU. On the other hand,

when enzyme 2D-PPK2 is not present in the system, both compounds are less consumed.

Regarding UMP concentration (Figure 4.16C), it decreases faster with 2D-PPK2 then without the
enzyme. This happens because when the enzyme is added to the system, UMP is also converted

into more UDP and UTP increasing the concentration of substrate for enzymes PPK3 and GalU.

In Figure 4.16F it is possible to observe that in the first minutes, reactions take place on the reverse
direction (ATP is forming ADP and AMP). When the reaction reaches 50 minutes, the reaction takes
place on the forward directions, consuming AMP and ADP to form ATP. Afterwards, at 200 minutes,

it reaches the equilibrium where the ADP consumed equals the ADP produced.
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4.3 Small Scale Experiments

4.3.3. Enzyme Stability

Enzymes are stored in glycerol to prevent them from losing activity when stored in the freezer.
However, when the reactions are made, the dilutions to fulfill the final volume are made with water.
Three experiments were conducted to analyze if enzymes loose activity in different environments:
water, sorbitol and glycerol. The conditions for the experiments are shown in Table 4.3 and the results
for the UDP-GIcNAc concentration in the final time point of the experiment is shown in Figure 4.17.

Concentration of UDP-GIcNAc at 330 minutes
800

700
600
500
400
300
200
100

Concentration(uM)

B Water M Glycerol Sorbitol

Figure 4. 17: Experiments conducted in water, sorbitol and
glycerol.

In the previous figure, it is possible to observe that higher amounts of product in glycerol might
imply higher enzyme stability. In fact, it is much more effective to use glycerol to perform the dilutions

to the reaction to prevent the loss of activity of the enzymes, increasing the respective productivity.

In Figure 4.18 it is possible to observe the behavior of different compounds in the different
environments.
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Figure 4. 18: Results of AMP, ADP, UMP and ATP vs Time for the experiments conducted in water, sorbitol
and glycerol. (a) Concentration of AMP vs Time. (b) Concentration of UMP vs Time. (c) Concentration of ADP
vs Time. (d)Concentration of ATP vs Time

In Figure 4.18A, the subproduct AMP is also formed in a higher amount when dilutions are
performed in water. For that reason and to reinforce the choice of glycerol for the dilutions, lower
amounts of AMP are formed.

Regarding the UMP concentration (Figure 4.18B), it seems to decrease with time. In the case of
water, it decreases very fast but then starts decreasing slower when compared to the others. This
means that when water is added the enzymes still work properly, but with time, they start loosing their
stability, not consuming UMP that much. However, it should be necessary to run more reactions to

confirm this fact due to standart deviation error that usually happens during experiments.

Regarding ADP concentration (Figure 4.18C) it is possible to see that when in water, it is more
consumed when compared with glycerol and sorbitol leading to a higher concentration of ATP. This

is confirmed when ATP concentration is analyzed (Figure 4.18D).
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4.3.4. Product Inhibition with single enzyme

Analyzing how the amount of product can affect the reaction can give a lot of important
information to the process and how the scale up can be properly done. Experiments with enzymes
PmPpA and GalU were conducted with different amounts of product inside the reaction vessel in
order to have an appropriate study of the possible scale up to do in the future development of this

process. The experimental plan for these experiments is shown on Table 4.8.

Table 4. 8: Experimental plan for product inhibition experiments

Galu PmPpA
Enzymes
concentrations 0.2 0.1
(mg/mL)
UDP-Glc UTP Glc-1p
0
5
Initial 10 1
concentrations 15 1
(mM) 20
25
30
MgCl2 HEPES
Other
Concentrations 5 30
(mM)
Temperature (°C) Shaking (rpm)
Conditions of the
reaction 30 900
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The results of this experiment are shown in Figure 4.19.
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Figure 4. 19:Concentration of UTP vs time (Product Inhibition)

Regarding UTP concentration, it is possible to observe in the previous figure that the reaction is
reversible, especially for high concentrations of UDP-Glc. Until 10 mM UDP-Gilc that is already inside
the vial, the reaction takes place in the forward direction. However, when the concentration of product
increases above 10 mM of product inside the vial, in the first 5 minutes there is an increase of UTP
concentration, meaning that the reactions are happening in a reversible direction, producing UTP and
consuming UDP-GIc. This means that, for high concentrations of product inside the reactor, enzyme
GalU starts consuming the product, producing more substrate, which is something that is not
desirable at all, especially in a scale up process where the main goal is to produce the most significant
amount of final product possible consuming the lowest amount of substrates allowing a high
productivity. For that reason, in the future should be considered an in situ product removal when
cascade reactions have present high concentration of product.
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4.3 Small Scale Experiments

4.3.5. Substrate Loading with single enzyme

The research of how different substrate loadings can affect the reaction is also very critical. For
that reason, a series of experiments using different substrate concentrations were conducted (Table

4.9) to see how reactions are affected.

Table 4. 9: Experimental conditions for substrate loading experiments

Galu PmPpA
Enzymes
concentrations 0.2 0.1
(mg/mL)
Glc-1p UTP
Initial 1 1
concentrations 5 5
(mM) 10 10
20 20
MgCl2 HEPES
Other
Concentrations 5 30
(mM)
Temperature (°C) Shaking (rpm)
Conditions of the
reaction 30 900

The results for this experiment are shown in Figures 4.20 and 4.21.
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Figure 4. 20: Rate of production of UDP-Glc (mg/(h.gprotein))
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As expected, the concentration of UDP-GIc increases when substrate concentrations are also

increased.

Figure 4.20 shows in a more explicit way what was said before. The rate of production of sugar
nucleotide UDP-GIc increases with the increase of reactants concentration. For that reason, substrate
loading does not seem to cause any problems when scale up is done.

To confirm the thought mentioned before, rate of consumption of UTP was also calculated and it
is presented on Figure 4.21.

Rate of consumption of UTP (mg/(h.g,,,cin))
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Figure 4.21:Rate of consumption of UTP (mg/(h.gprotein))

On the previous Figure 4.21, it is possible to observe that the rate of consumption of UTP
increases when substrate concentration increases also. This means that enzymes PmPpA and GalU
can process high concentrations of substrate and as the concentration of substrate increases,

concentration of product also increases.
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4.4. High Throughput Screening (Phosphate Assay)

As mentioned above, establishing an enzyme cascade is a very complex process that involves
testing different environments with the purpose of finding the best conditions to maximize the
production of the final product. For that reason, a phosphate assay was attempted to be established
due to the fact that by using a 384 well plate, innumerous conditions could be tried in one experiment.

However, to establish a method, several parameters should be defined, starting with the calibration

curve (shown in Figure 4.22).
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Figure 4. 22: Calibration Curve of phosphate assay

After obtaining the calibration curve that allows the calculation of phosphate in each sample
that is going to be analyzed, it is possible to see that all the experiments that will be done in the future

should fit in this curve (Figure 4.22), meaning that all dilutions made should fit between 0-40 uM.

Subsequently, new tests were made, particularly a sensibility test to the presence of PmPpA
on the cascade. Experiments were conducted to analyze if this phosphate assay could detect free
phosphate. For that reason, two experiments were made for the UDP-GIcNAc cascade: one with all

the enzymes and another one without enzyme PmPpA.
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Table 4. 10: Experimental design for phosphate test with negative control

NahK GalU PPK3 URAG PmPpA
Enzymes 0.05
concentrations 0.3 0.2 0.1 0.1
(mg/mL) 0
GIcNAc UMP ATP PolyPn
Initial
concentrations 2 2 2 4
(mM)
MgCl> HEPES
Other
Concentrations 20 50
(mM)
Temperature (°C) Shaking (rpm)
Conditions of the
reaction 30 1000

The results for the phosphate concentration calculated are shown in Figure 4.23.

Phosphate Concentration vs Time

800 - ® @ Without PmPpA
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Figure 4. 23: Phosphate concentration vs time with and
without PmPpA using chromatography

The experiments were made with and without enzyme PmPpA as negative control. It is also
important to mention that, for effects of calculations, the contamination of phosphate due to reactants
as ATP, UTP, ADP, UMP and AMP was considered by the subtraction of the concentration of
phosphate of the reactants to the total phosphate concentration with the purpose to obtain a more
accurate phosphate concentration.

Real phosphate Concentration = Total amount of phosphate — Amount of phosphate in reactants
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Asi itis possible to observe in Figure 4.24, there is a big difference in the amount of phosphate
present in the samples when PmPpA is added to the system. This happens because of the following

reaction

GalUu PmPpA
UTP + GlcNAc — 1p < UDP — GlcNAc + PP; —— 2P, (17)

When the enzyme PmPpA is not in the system, the phosphate formed is not very significant.
For that reason, it can be said that in fact, enzyme PmPpA works appropriately and it forces the
reaction to occur in the direct mode, producing more final product.

After phosphate concentration was obtained, UDP-GIcNAc concentration was calculated and
is shown in Figure 4.24.

300 UDP-GIcNACc concentration vs Time

700 -
Esoo |

S 500 -
g 400 - * ¢ Without PmPpA

:,':: 300 - With PmPpA
€200 - o
© 100 - *

0 100 200 300
Time(min)

Figure 4. 24: Estimated UDP-GIcNAc concentration vs time
(phosphate assay)

As it is possible to realize by the previous chemical reaction shown, the concentration of
UDP-GIcNAc was considered as half of the phosphate concentration measured due to the reaction
stoichiometry. It is also important to mention that for each sample, triplicates were made to analyze
with this assay and standard deviation was calculated however, it was a very low deviation and for
that reason, it is not very visible in Figure 4.24.

To realize if the results are similar with chromatography (HPAEC) which is already
established and proved that it works properly all the samples were run in chromatography to compare

with phosphate assay. The results are presented in Figure 4.25.
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Figure 4. 25:UDP-GIcNAc concentration vs time (phosphate
assay and chromatography)

Regarding the comparison between phosphate assay and chromatography results (Figure
4.25) it is possible to see that the outcomes are not close. This lead to believe that perhaps there is
another font of contamination of phosphate in the reactants due to the phosphate assay having higher
values of UDP-GIcNAc concentration than chromatography. Even though reactants contamination of
phosphate was taking into account by putting them all together and measuring the absorbance of
them, another technique should be tried.

In conclusion, an attempt to establish a high throughput measurement was made, however,
itis along and delicate subject that was proven that works as a qualitative method, however it requires
much more testing due to the high phosphate contamination. With more testing, it can be possible to

perform all the reactions in the spectrophotometer in a 384 well plate allowing to do innumerous

experiments at once.
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4.5. UDP-GIlc Cascade Experiments

Finding the right model of a system can provide important information about it, thus allowing the
optimization of the system and being able to predict behaviors. However, prior to the modelling it is
important to collect the precise data without error associated.

For that reason, experiments for the cascade of UDP-Glc were conducted with the purpose of
modelling. For this set of experiments, different initial concentrations were tested and are shown in

Figure 4.26.
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Figure 4. 26: UDP-GIc modelation results

Itis possible to see that when substrate concentration increases, the concentration of product
also increases as expected.
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In the Figure 4.27 are the results for the experiments of 3mM UMP and 3mM Glc.
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Figure 4. 27: Results for UDP-GIc modelling experiments. (a) Concentration of UDP-Glc and UMP vs Time. (b) Concentration
of UDP vs Time. (c) Concentration of ADP and ATP vs Time. (d) Concentration of Glc-6p vs Time.

Enzymes concentrations (mg/mL): Glk: 0.5; GalU: 0.1; PPK3: 0.1; URA6: 0.1; PmPpA: 0.05; Man B/C: 0.2.

Initial concentrations: Glc, UMP (3mM), PolyPn and ATP (6mM)

As it is obvious in the previous figures, as UDP-Glc concentration increases, UMP and UDP
concentrations decrease because these compounds are being consumed by URA6 and PPK3 to
produce the final product.

In Figure 4.27C it is possible to realize that in the first minutes, concentration of ADP
increases and ATP decreases because enzyme PPK3 is consuming ATP to form ADP. After 100
minutes both compounds reach equilibrium which means that the ADP and ATP that is consumed is

also produced. Regarding Glc-6p concentration, it decreases through time. This shows that enzyme
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Man B/C is working properly converting Glc-6p into Glc-1p which is the main substrate for the main

enzyme, GalU, that produces the final product.
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Conclusions

The main achievement of this thesis was the successful establishment of in vitro enzymatic
cascades to produce UDP-GIc and UDP-GIcNAc. In addition, for the first time, the enzymatic pathway
to produce UDP-Man was found. More specifically, the concentration of enzymes and substrates
were studied to make the cascade functional.

Subsequently, cascade conditions were improved to increase product yield, by using HEPES
buffer at pH 7.5. Results showed an increased yield of sugar nucleotide production with HEPES buffer

when compared to the buffer that was previously used to do the reactions.

When doing the experiments, problems were found, mainly the high production of sub product
AMP. Enzyme 2D-PPK2 was added to the cascade to consume AMP resulting in a 52% and 56%

productivity increase of the UDP-Glc and UDP-GIcNAc cascades, respectively.

Another problem found was that enzyme stability apparently decreases when the reaction takes
place in water instead of glycerol. However more experiments should be performed to confirm this
observation. In addition, it was also observed that when high concentration of product is formed, an
in situ removal of the sugar nucleotide might be necessary.

Since there are many parameters that need to be tested to fully establish an enzyme cascade,
an attempt to develop a high throughput screening test was made. In this thesis, the test was proven

to work, however there is the need to do more experiments to have more precise results.

Another important aspect is that the efficient design of enzymatic cascades requires a
mathematical model that embodies the many different parameters to study. As a first step to the
establishment of such a model, dedicated experiments were performed with a very low error and

precise time points.
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Future Work

As future work, the best pH for the cascade of UDP-GIcNAc and UDP-Man should also be
studied. Also, the effect of different co factors should be studied to determine which one is the best

to use on the reactions and correspondingly the effect of different temperatures for all the cascades.

Also, as upcoming work, all the cascades should be established with enzyme 2D-PPK2 to obtain
higher yields of product. Moreover, more studies regarding enzyme stability should be done because

if water affects enzymes, then all the reactions should start being done in glycerol.

Modelling should be done for all the cascades to optimize the system and get the optimal enzyme
and substrate concentration. Only after that, product inhibition and substrate loading should be

studied for all the cascade to conclude what type of reactor can be used in the future scale up.

Catalytic properties such as stability and reusability of enzymes should also be pursued, and the

purification of the final product should be studied.

Regarding the phosphate assay test, it should be pursuit due to the great advantages that can
bring to analyze different conditions of the reactions. The next step to improve this test should be
doing the reactions directly in a 384 well plate. While doing a large number or experiments,
contamination of reactants can also be considered with same shaking and temperature as the
reaction, allowing a more effective counting of the phosphate contamination of substrate and

hopefully giving a more accurate concentration of final product.
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Attachments

Attachment 1

In this attachment are presented the results for UDP-Man cascade for 3mM Man and 3mM UMP
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Attachment 1: Experiments for UDP-Man cascade. (a) Concentration of AMP vs Time. (b) Concentration of UMP vs Time. (c)
Concentration of ADP vs Time. (d) Concentration of UDP vs Time
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Concentration of ATP vs Time
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Attachment 2: Experiments for UDP-Man cascade (concentration of
ATP vs Time)

Attachment 2

In this attachment is presented the chromatogram for the UDP-Man cascade, where it is possible to observe that
the sugar nucleotide in question is eluted at 38 minutes.

20,04 1 AMP
) ADP
150 UmMP
= ]
<
E
g 100
I
50 uppm  ATP g
/  Fay
0.0
| — |
-5'0_-| T T T T T T T T T T T T T T T T T T T T T
0.0 10.0 20.0 30.0 40.0 50.0
Time [min]

Attachment 3: Chromatogram of UDP-Man Cascade
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