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Abstract 

This thesis is the first report of suckerin proteins extracted from the sucker ring teeth (SRT) of the 

Jumbo Squid, being used for drug delivery applications. The main protein used on this work, 

suckerin-39, was expressed through E. Coli cultures and purified with water-based treatments. This 

protein was processed into particles with average size of 766 nm to be used as carriers for a 

chemotherapeutic agent, doxorubicin. The particles were chemically cross-linked to increase their 

stability, and doxorubicin was successfully loaded into these particles that showed controlled released 

kinetics at different pH. The secondary structure of the particles was determined to be random orientated 

β-sheet domains and random α-coil domains, and the interaction between the β-sheet and the 

hydrophobic drug was deemed to be fundamental for a controlled release of doxorubicin. These SRT 

particles were able to be internalized by HeLa cells, which indicates their great potential as a 

chemotherapeutic drug carrier for cancer therapy in the future.  

Keywords: SRT; suckerin-39; suckerin particles; β-sheet; drug delivery; doxorubicin. 
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Resumo 

Esta tese é a primeira vez que é documentado o uso de proteínas suckerin, extraídas do anel de dentes 

localizado nas ventosas ao longo dos tentáculos da Lula Jumbo (SRT), em aplicações de libertação de 

fármacos. A proteína mais utilizada neste trabalho, suckerin-39, foi expressa através de culturas de 

E. Coli e purificada com tratamentos à base de água. Esta proteína foi processada de forma a formar 

partículas com um tamanho médio de 766 nm para serem utilizadas como veículos para agentes quimió 

terapeuticos, neste caso doxorubicina. As partículas foram reticuladas quimicamente de forma a 

aumentar a sua estabilidade e doxorubicina foi encapsulada nas partículas que mostraram uma 

libertação controlada do fármaco em diferentes pH. A estrutura secundária das partículas foi 

determinada como sendo domínios de folhas β aleatoriamente ordenados e domínios de hélice α 

aleatóriamente ordenadas. A interação entre as folhas β e o fármaco na forma hidrofóbica foi 

considerada como fundamental para a libertação controlada de doxorubicin. As partículas de suckerin 

foram internalizadas por HeLa cells, o que demonstra um grande potencial como veículo para fármacos 

no futuro. 

Palavras-chave: SRT; suckerin-39; partículas de suckerin; folhas β; libertação de fármacos; 

doxorubicina. 
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Units 

Da –Dalton 

g – Gram 

h – Hours 

L – Litre 

M – Molar 

m – Metre 

min – Minutes 

Pa – Pascal 

psi – Pounds per square inch 

rpm – Rotation per minute   
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1 Introduction 

1.1 Motivation 

The development of materials that can keep up with the high demanding technological evolution is one 

of the biggest concerns for our daily life. Nevertheless, when thinking about a long-term solution, this 

problem doesn’t have a straightforward answer. With the increasing pollution and the shortage of 

resources on earth, the need for new, sustainable and more creative materials is of great challenge. 

These materials must be made of abundant elements and have a low impact on the environment at the 

same time. In addition, they must be commercially viable, which means they have to be cheap, easy to 

synthesize and have similar or better properties than the materials already available in the market. 

The evolution of billions of years allows nature to create amazing materials that the human only recently 

started to explore. Simple phenomenon like burdock burrs getting stuck in dogs hair (which led to the 

invention of Velcro by George de Mestral in 1948) and amazing ones like the 200 wing flaps per minute 

of flies are starting to inspire scientists to create new materials in a field called biomimetic engineering. 

The synthetic biomaterials in this field are extracted from nature. A good example is spider silk, one of 

nature’s toughest materials that can even be five times stronger than steel by weight. However, to avoid 

damaging the environment and hurting animals, other ways to synthesize biomaterials have been 

explored in the past decades. Genetic and protein engineering are two of the answers scientists found. 

The introduction of synthetic genes into living organisms which can produce encoded proteins allows 

the expression of recombinant proteins with high control over their properties. This process brings other 

advantages since it only uses lower temperature water fermentation processes instead of harsh 

conditions or toxic chemicals. Nevertheless, the yields of reaction still remain low and some steps of 

the process in protein engineering can be very expensive. [1] 

1.2  Spider Silk as a Bio-inspired Material 

Silk has received much attention in the past decades due to its interesting mechanical properties. Orb 

web weaving spiders appear to use a minimum amount of silk in their webs to catch the prey, and their 

web needs to stop a fast flying insect almost instantly so that the pray can be successfully trapped. To 

do so, the web must absorb the energy of the insect without falling apart, which requires a high 

mechanical strength to prevent insects to escape from the web. Several types of silks from different 

species of spider have been studied in the past few years. When comparing with the mechanical 

properties of other materials (Table 1.1), silk shows a remarkable combination of toughness, strength 

and ductility while being a biocompatible material. [2] 
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Table 1.1 - Comparison between mechanical properties of common silks and biomaterial fibers and tissues 

commonly used today. [3] 

Material UTS (MPa) Young Modulus (GPa) % strain at break 

B. mori silk 740 10 20 

Nephila clavipes silk 875 - 972 11 - 13 17 – 18 

Colagena 0.9 – 7.4 0.0018 – 0.046 24 – 68 

PLAb 28 - 50 1.2 – 3.0 2 – 6 

Bone 160 20 3 

Kevlar (49 fiber) 3600 130 2.7 

Synthetic rubber 50 0.001 850 
 

a Rat-tail collagen Type I, b Polylactic acid with molecular weights ranging from 50,000 to 300,000 

These amazing properties greatly inspired researchers to use spider silks as biopolymers in several 

different applications ranging from hydrogels, capsules and particles for drug and gene delivery, to 

fibers for textiles, sutures for wound ligation and scaffolds for tissue engineering. Due to the 

biocompatible features of spider silks, they are largely used in biomedical applications.[4] [5] 

1.3 A New Interesting Silk-like Material from the Jumbo Squid 

The Jumbo squid, Dosidicus gigas, is an extreme aggressive predator from the family Ommastrephidae 

found in the eastern Pacific Ocean at depths between 200 and 700 m. This invertebrate can grow up to 

2 m and weight 50 kg. Its eight arms and two tentacles bear hundreds of suckers equipped with sharp 

teeth with which they capture their prey and push it towards a large and sharp beak.[6] 

The Jumbo squid’s teeth (Figure 1.1), called suckering ring teeth (SRT), have a form of rings with 

triangular teeth which increase the functionality of the suckers. By increasing the shear forces (created 

by struggling prey), the jumbo squid is able to break the seal created by the infundibulum of the sucker. 

Despite lacking a mineral phase, which is the common microstructural strategy used by nature to create 

hard tissues, the structures of SRT display impressive mechanical properties. Further studies on finding 

the origin of the SRT roughness led to the discovery of a family of 21 proteins.[7] 

 

Figure 1.1– Dosidicus Gigas and suckerin location (a), suckerin within the suckers of the squid’s tentacles (b) 

and an isolated suckerin (c). [7] 

 

The similarity between suckerins and silk proteins is appealing given the wide range of biomedical and 

engineering applications demonstrated for silks, including tissue engineering, drug delivery, and 
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photonics. Although these two materials have similar mechanical properties, differences between them 

are summarized in Table 1.2. [8] 

Table 1.2 – Comparison between SRT and silkworm and spider dragline silks properties. [8] 

Properties SRT Silkwork and spider dragline silks 

Native morphology bulk Fiber 

Native mechanical 

loading regime 
Tensile, compression -  shear Tensile 

Mechanical properties High E (4.5-8 GPa) High E (~ 10 GPa) 

Structure β-sheet reinforced network β-sheet reinforced network 

Protein composition suckerins Fibroins or spidroins 

Molecular Weight 8-50 kDa 
Heavy chain silk fibroin, 390 kDa; light chain 

silk fibroin, 26 kDa; spidroins, 250-300 kDa 

Primary amino acid 

sequence 

Ala, Val Thr, Ser, His-rich and 

Gly, Tyr, Leu-rich modules 
Poly(Gly-Ala)/poly-Ala and Gly-rich modules 

Ease of full length 

recombinant protein 

expression 

yes No 

Ease of processing and 

fabricating materials 

Rapid purification, facile 

water-based fabrication 

Harsh solvents often required for fabrication and 

purification 

1.3.1 Suckerin-39 

One of the major constituents of the SRT is a protein named suckering-39 that has a molecular weight 

around 39 kDa. This protein is highly modular exhibiting two alternating domains. One domain contains 

alanine and histidine rich motifs (around 11 residues), often flanked by proline residues, and the other 

consists of glycine and tyrosine rich domains (around 20 to 30 residues) which is shown in Figure 1.2a. 

About the secondary structure, it forms randomly orientated β-sheet domains and random α-coil 

structures (Figure 1.2b). [8][9] 

 

Figure 1.2 – Primary amino acid sequence and repetitive modular organization of the suckerin-39(signal peptide 

is underlined; Ala, Val, Thr, and His-rich modules are highlighted in red, Gly, Tyr, and Leu-rich modules are in 

blue, and proline residues are highlighted in green) (a); and secondary structure of the suckerin-19 (b). [8] [9] 
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1.4 Recombinant Protein Expression 

An easy way of reproducing proteins found in nature that doesn’t involve the use of harsh conditions 

and solvents is by using living organisms as a cell factor for expressing recombinant proteins. 

Escherichia coli is one of the most common cell choices for the production of recombinant proteins. 

[10] 

At the theoretical level, there are some important steps needed for obtaining a recombinant protein. A 

gene of interest is selected and cloned in whatever expression vector is at disposal, then it is transformed 

into the host of choice, the expression is induced and finally the protein is ready for purification and 

characterization.  [11] 

There are several strains of E. coli and different vectors that can be used for this purpose. In this project 

E. coli BL21 with the vector PET24 was used to express the suckerin recombinant proteins Figure 1.3. 

 

Figure 1.3 – Vector 24a(+) used for recombinant protein expression with E. coli. 

1.5 Protein Crosslinking 

A crosslink is a chemical bond that links one polymer chain to another. This bond can be covalent or 

ionic and can be used to link proteins together to change their properties. When a biopolymer is 

crosslinked its ductility decreases and the elastic modulus increases. 

In this project, we introduce a non-reversible chemical crosslinking method which was used to stabilize 

the SRT protein particles. This method is based on the use of a ruthenium complex (𝑅𝑢(𝐼𝐼)3
+2) and an 

electron accepter (ammonium persulfate, APS) to trigger the formation of di-Tyr bonds when the 

protein is exposed to a light source of 452nm. The ruthenium complex is oxidized by the light to 

𝑅𝑢(𝐼𝐼𝐼)3
+3, which is able to remove an electron from the tyrosine residue becoming again 𝑅𝑢(𝐼𝐼)3

+2. 

The tyrosine residue lacking an electron forms a covalent bond with another tyrosine residue. The APS 

is used to receive the free electron generated from the Ru(II) oxidation and prolong the reaction. The 

process is illustrated in Figure 1.4. [12] [13] 
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Figure 1.4 –Crosslinking reaction of two tyrosine residues. [12] 

1.6 Drug Delivery 

In spite of all the advances in medicine and drug development in the past decades, cancer still is one of 

the leading causes of death in the world. Standard strategies to fight these diseases have side effects that 

diminish the health of the patients. A common drug used to treat several types of cancer is doxorubicin 

hydrochloride but this drug is commonly related to severe suppression of haematopoiesis, and 

gastrointestinal and cardiac toxicity when administered directly in vivo. [14] 

In order to enhance the therapeutic outcomes and reduce side effects of anticancer drugs, different types 

of drug carriers, such as liposomes [15], polymeric micelles[16], polymersomes[17], carbon 

nanotubes[18], mesoporous silica nanoparticles[19], polymeric nanoparticles[20] and capsules[14] 

have been extensively studied to improve therapeutic outcomes. 

Polymeric nano and microparticles which are biodegradable and biocompatible and can encapsulate an 

agent of interest into their matrix are of great interest for drug delivery. Due to their sub-cellular 

size-range they can penetrate deep into tissues through thin capillaries and be internalized by the 

targeted cells. [21] 

Different polymers, both natural and synthetic, have been used to formulate biodegradable micro and 

nanoparticles. While synthetic polymers have the advantage of sustaining the release of the 

encapsulated therapeutic agents over longer periods compared to natural polymers, they are often 

limited by the use of organic solvents and harsher processing conditions.[22] 

The suckerin proteins present an excellent profile, which can be potentially explored as a drug delivery 

vector. Having similar characteristics as spider silks, the suckerins have been proposed as drug delivery 

vehicles in the current study. These proteins present the advantage of being produced and processed 

without the use of harsh conditions or solvents. In addition, the suckerin proteins have the advantage of 

having a high quantity of useful amino acids, like tyrosine and histidine, in its structure opening new 

possibilities for surface functionalization to optimize targeted delivery of drugs. [8] [13] [23] [24] 
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1.6.1 Mechanisms for an Efficient Delivery 

For the efficient delivery of a therapeutic agent with minimal side effects to the patient from the toxicity 

of the agent, several critical steps in drug delivery are shown in Figure 1.5. 

 

Figure 1.5 – Targeted drug delivery process: a) stealth nanoparticles which is decorated by neutral polymers and 

targeted ligand over the surface of the nanoparticles ; b) active targeting process where the targeting ligand bind 

with the receptor through specific ligand-receptor interactions; c) Internalization of targeted nanoparticle by 

receptor-mediated endocytosis. Adapted from [25] 

The first fundamental property of a carrier system should be non-immunogenicity. In another words, 

the carrier must transport the drug to the targeted tumour tissue without triggering any immune 

response. When the carrier approaches the targeted tissue, it should be able to recognize and attach to 

the receptors that are overexpressed by tumour cells in order to facilitate its specific uptake and avoid 

non-specific uptake by other normal cells. Triggered release can be achieved by pH-sensitive 

mechanisms in response to an intracellular acidic environment. The pH around tumour tissue is slightly 

lower than in our circulatory system, which makes it possible to control the release of therapeutic agents 

by using pH responsive carriers or drugs.[26] 

1.6.2 HeLa Cells 

HeLa cell is an immortal cancer cell line commonly used in scientific research. They are the oldest and 

the most used human cell line in scientific research. The cell line was derived from cervical cancer cells 

and were found to be remarkably durable and prolific. They owe their name to Henrietta Lacks, a patient 

who died of cancer in 1951,  whose HeLa cells were the firsts to be isolated.[27] 
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2 Methods and Characterization 

2.1 Proteins Synthesis 

To express the suckerin-39 and suckerin-25 proteins, E. Coli BL21(DE3) bacteria containing the 

recombinant vector PET-24a (courtesy of Dr. Shawn Hoon) with the necessary coding were used. These 

bacteria were stocked at -80 oC in glycerol. The proteins were expressed, purified and extracted 

following the protocol described below. 

2.1.1 Expression of Recombinant Suckering Proteins 

The E.coli BL21(DE3) containing pET24a-suckerin-39 or pET24a-suckerin-25  was allowed to grow 

in LB broth medium (BD, France) in the presence of Ampicillin (Calbiochem, Germany) to attain an 

OD600 between 0.6-0.8 and the target proteins were induced with 1mL of 1 mM IPTG (Gold 

Biotechnology, USA)  and allowed the expression for 7 h. The cells were harvested by centrifugation 

at 4 x 103 rpm for 30 minutes and stored at -70°C until further use. 

2.1.2 Extraction and Purification 

The cell pellet collected was suspended in 40 mL of lysis buffer (50 mM of Tris at pH7.4, 200 mM of 

NaCl (Merck, Germany) and 1 mM of PMSF (Sigma Aldrich, USA)), followed by cell disruption with 

a Microfluidizer (Microfluidics M110-P) high-pressure homogenizer (25 kpsi) for six times. PMSF is 

used to prevent the proteins from being degraded by enzymes. The cell-disrupted samples were 

subjected to centrifugation at 19 x 103 rpm at 4oC for 30 min. The supernatant was discarded and the 

cell pellet was washed twice with 40 mL of wash buffer I (2% Triton X-100 (Bio-Rad, USA), 100 mM 

of Tris (Bio-Rad, USA) pH7.4, 5 mM EDTA (Bio-Rad, USA), 2 mM urea (Affymetrix, Germany) and 

5 mM of DTT (Bio-Ras, USA)). Urea is used to solubilize the impurities; triton X-100 is to wash the 

disrupted membranes and the DDT to inhibit protein degradation by the enzymes. After each wash the 

solution was centrifuged at 6,45 x 103 rpm for 10 min and the supernatant is discarded. After this step, 

the Triton and Urea were removed by washing the cell pellet twice with 40 mL of wash buffer II (100 

mM Tris pH 7.4, 5 mM EDTA and 5 mM DDT). After each wash the solution was centrifuged at 

6,45 x 103 rpm for 10 min and the supernatant was discarded. The resultant cell pellet was re-solubilized 

in 40 mL of 5% acetic acid (Schedelco, Singapore) and centrifuged at 19 x 103 rpm at 4oC for 30 mins. 

The supernatant was collected and pellet discarded. The solution was dialyzed against 5% acetic acid 

for 48 hours and then the solution was freezed at -80oC overnight before being lyophilized for 48 hours. 
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2.2 Purity Assays 

2.2.1 SDS Page (Sodium Dodecyl Sulfate Polyacrilamide Gel Electrophoresis) 

In order to confirm the presence of suckerin proteins and their purity the samples acquired after the 

freeze-dried step were analysed by SDS Page. This technique is used to separate different proteins based 

on their migration on a gel, which is affected by their lengths and mass-to-charge ratio. 

There are two different parts that compose the gel: the stacking gel (that forms the entrance of the wells 

and where the samples are loaded) and the running gel (responsible for the process of migration). Both 

parts were made of a polyacrylamide matrix in which 10% SDS is added together with a stacking or a 

running buffer. 

To build the gel, 200mL of a monomer solution was prepared (58.4 g of acrylamine (Bio-Rad, USA) 

and 1.6 g of bis acrilamine (Bio-Rad, USA)) as well as 200 mL of running buffer (36.3 g of Tris pH8.8) 

and 200 mL of stacking buffer (3 g of Tris pH6.8). For making the preparation of the gel less 

complicated it was prepared a total of both parts enough for running 5 different gels. The running gel 

preparation consisted in mixing 5 mL of monomer solution, 3.75 mL of running buffer, 6 mL of milliQ 

water, 150 µL of 10% SDS, 75 µL of 10% APS (Sigma Aldrich, USA) and 10µL of TEMED (Bio-Rad, 

USA). For the stacking gel 665 µL of monomer solution, 1.25 mL of stacking buffer, 3 mL of milliQ 

water, 50 µL of 10% SDS, 25 µL of 10% APS and 2.5 µL of TEMED were mixed. The gel was stacked 

between two glass plates with a plastic mould with a shape of the wells and left resting for crosslinking. 

Meanwhile 5 µL of the sample to be analysed was mixed with a loading buffer (4.75 µL of laemmli 

sample buffer and 0.25 µL of β-mercaptoethanol (Sigma Aldrich, USA)) and heated in a hot water bath 

for 5 min. 

After the gel got crosslinked the sample was loaded in the wells together with a reference buffer and 

electrophoresis was performed at 0.01 mA for approximately 1h. The resulting gel was stained for 2h 

in a bath of staining solution (0.165% comassie blue R-250 (Applichem, Germany), 50% methanol 

(Fisher Scientific), 10% acetic acid) followed by a distaining step overnight in a bath of distaining 

solution (7% acetic acid an 5% methanol). 

2.2.2 MALDI-TOF 

The molecular weight of the suckerin proteins expressed previously was determined by MALDI-TOF. 

A sample was prepared by mixing a 2 µL solution of 1 mg/mL suckerin-39 in 5% acetic acid with a 

matrix (10 mg/ml of sinapic acid (Sigma Aldrich, USA) dissolved in 50% ACN (FullTime, China) with 

1% TFA (Sigma Aldrich, USA)). The spectra was recorded in a MALDI Shimatsu AXIMA in linear 

mode with 100 shots per sample and a power level of 120. 
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2.3 Suckerin-39 Particle Formation and Crosslinking 

For the preparation of particles 120 μL of a 1,33 mg/mL suckerin-39 dissolved in 5% acetic acid was 

added to 720 μL of a 220 mM NaCl solution. The mixture was votexed for 2 minutes and the particles 

were observed with an optical microscope (Zeiss Axio Scope.A1). All of the particles were formed by 

adding the protein to the salt. 

The suckerin-39 particles synthetized previously were crosslinked by adding 21.4 μL of 50 mM APS 

and 53,4 μL of 4 mM Tris(2,2’-bipyridyl)dichlororuthenium(II) hexahydrate (Sigma Aldrich, USA) and 

exposing the mixture twice to visible light for 3 min (using a Philips QVF135 Halolite lamp) with 1h 

interval between the exposures. During and between the exposures the solution was kept stirring at 

1 x 103 rpm. 

To wash away the Ru(II), the NaCl and the APS the particles were washed 3 times and suspended in 

clean milliQwater. Finally they were observed under the same optical microscope to check if there was 

aggregation. 

2.4 Particle Characterization 

For characterizing the size distribution of the particles, a sample was prepared following the protocol 

previously presented and analysed with a Particle Size Analyzer LA-960. 

To analyse the morphology and topography of the particles, Atomic Force Microscopy and Field Effect 

Scanning Electron Microscopy were carried out. Both techniques allowed the observation of the shape 

and roughness of the samples. 

For the topographical characterization, AFM data were acquired using an Asylum Research Cypher S. 

All measurements were performed in tapping mode TM under ambient conditions and the samples were 

left drying in a mica substrate overnight before being analysed. Commercial soft tapping mode etched 

silicon probes (NCSTR-20) from Nano World were used.  

Scanning electron microscopy images of the protein particles were acquired with a JEOL 7600F 

FESEM, LEI SEM detector mode and scanning wide distance of 15 mm. The images were taken in the 

in-lens mode with an acceleration voltage of 5.00kV. The particles were coated with a thin platinum 

layer (approximately 12 nm). 

Circular Dichroism analysis was performed to determine the secondary structure of the proteins before 

and after the formation of the particles. The proteins were dissolved in 5% acetic acid and the particles 

in 160 mM of NaCl. An Aviv 420 Circular Dichroism Spectrometer was used together with cuvettes 

with a light path of 0,1 mm and 0,01 mm bought from Hellma Analytics. 
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2.5 Drug Loading of suckerin-39 Particles 

Using the protocol in the section 2.1, solutions of 6 mg of suckerin-39 particles dispersed in 100 μL of 

milliQ water were prepared to be loaded with Doxorubicin hydrochloride (Santa Cruz Biotechnology, 

USA). 

To remove the HCl group of the DOX and make it hydrophobic, 600 μL of trimethylamine (Alfa Aesar, 

UK) were added to 2 mg of drug dissolved in 1 mL of 50% DMSO (Cambridge Isotope Laboratories, 

UK). After 30 seconds the existence of two phases, a transparent phase and a purple phase, could be 

observed. The transparent one composed by the TEA that removed the HCl group was discarded. 

After being treated with TEA, 100 μL of 1.25 μg/μL doxorubicin solution was added to the suckerin-

39 solutions and left stirring overnight in the dark. The next morning the particles were washed 3 times 

and suspended in 200 μL of milliQ water to be taken to a Microplate Reader (InfiniteM200PRO) to 

check the fluorescent intensity. The 96 wells black plate with clear fat bottom used were bought from 

Corning. 

In order to analyse the loading efficiency of the particles differential interference contrast images were 

acquired with an Axio Observer Research microscope with a 543 nm laser light. To get 3D images the 

particles were dispersed in 2,5% Agarose (Bio-Rad, USA) at 50 oC and the solution was cooled down 

to form a gel. 

2.6 Drug Release Study 

Drug release studies were conducted by dispersing 6 mg of suckerin-39 particles in PBS (Sigma 

Aldrich, USA) solution with pH7.4 and pH5 and left stirring for 60 h. The PBS was removed, stored 

and replaced for new one 10 times in specific time intervals (10 min, 30 min, 1h, 3h, 6h, 12h, 24h, 36h, 

48h and 60h). The stored PBS solutions were analysed with the Microplate reader to calculate the 

release profile. 

2.7 In Vitro Studies 

Human cervical carcinoma cell line, HeLa was purchased from ATCC (Rockville, USA) and cultured 

in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% heat-inactivated fetal bovine 

serum and 2 mM glutamine, within a cell culture incubator maintained at 37 °C, 5% CO2 and 95% 

relative humidity. 

For cell uptake visualization, HeLa cells were seeded at 2 × 104 cells per well into 8-well Lab-Tek 

chambered coverglass slides (Thermo Fisher Scientific, Rochester) and allowed to grow for 24 h. 

Afterwards, cells were incubated with particles for 24 h followed by washing with PBS three times. 

Cells were first fixed with 4% paraformaldehyde for 15 min at 37 °C, washed with PBS twice and 
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stained with wheat germ agglutinin (0.25 μg/mL) at room temperature for 10 min, followed by staining 

with Hoechst 33342 (2 μg/mL) at room temperature for 15 min. 

The system was observed using the same Axio Observer Research microscope used in section 2.3. 
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3 Results and Discussion 

3.1 SRT protein expression and purification 

3.1.1 SDS Page 

Two suckerin proteins were expressed, extracted, and purified in this study. The expressed suckerin 

proteins had the molecular weight around 37 kDa (suckerin-39) and 23 kDa (suckerin-25) as indicated 

in Figure 3.1 by the darker blue band. In Figure 3.1b there are three lighter bands between 10 kDa and 

15 kDa that represent the co-existence of other proteins besides the desired suckerin-39. For the 

purification of suckerin-25, the strategy involving sonicating the sample in each washing step was 

adopted in order to obtain purer protein. The sonication was expected to break the pellet and release the 

impurities that were attach to the suckerin protein. However, as can be seen in Figure 3.1a, it resulted 

in a less pure protein sample. 

In order to get purer suckerin proteins, two strategies including using either His-tag to purify the protein 

by immobilized metal affinity chromatography (IMAC), or high performance liquid chromatography 

(HPLC), could be considered. However, HPLC is time-consuming and the yield is generally limited, 

which is not suitable for industrial manufacture. The His-tag, which is necessary for IMAC, may affect 

the properties of the protein. As most of the impurities are of low molecular weight, dialysis membranes 

with a molecular cut-off close to the protein molecular weight were used to remove those low-

molecular-weight impurities. 

 

Figure 3.1 - SDS-PAGE gel of the suckerin recombinant proteins: a) suckerin-25 and b) suckerin-39. 
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3.1.2 MALDI-TOF analysis of SRT protein  

As shown in Figure 3.2 the molecular weight of the suckerin-39 expressed was around 39.8 kDa that 

is almost identical to the expected value of 39.3 kDa.[8] The peaks at 19.9 kDa, 13.5 kDa and 10.9 kDa 

are the double charged, triple charged and quadruple charge forms of the protein respectively. The peak 

at 80.1 kDa corresponds to the dimer (double mass). 

 

Figure 3.2 – MALDI-TOF mass spectrum of the suckerin-39 recombinant protein. 

From the MALDI-TOF signal of the suckerin-25 protein, shown in Figure 3.3, the molecular weight of 

protein expressed was determined to be around 23 kDa. The peaks at 7.6 kDa and 1.5 kDa are the double 

charged and triple charged forms of the protein respectively. The peak at 46.1 kDa corresponds to the 

dimer (double mass). 

 

Figure 3.3 - MADI-TOF mass spectrum of the suckerin-25 recombinant protein. 
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3.2 Suckerin-39 Particles 

3.2.1 Preparation of SRT Particles 

The suckerin-39 has positively charged, negatively charged and hydrophobic residues in its structure. 

The positive charges are the main repelling force between the protein chains. When NaCl was added to 

the solution, the Na+ and Cl- ions shield the charges of the protein and as a result, the hydrophobic 

residues are able to aggregate forming spherical protein particles due to hydrophobic interactions. 

The size of the particles formed could be controlled to some extent by changing the concentration of 

NaCl. The optical microscopy images (Figure 3.4) shows that the suckerin particles prepared in the 

presence of 166 mM NaCl possess an average sizes around 1 μm, whereas suckerin particles prepared 

in the presence of 100 mM NaCl presented bigger particle size and higher size distribution. 

Higher concentration of salt resulted on protein particles being masked by the ions decreasing the 

probability of aggregation decreasing the particle size. For lower concentrations the opposite happened 

with the probability of aggregation being higher increasing the particle size. 

 

Figure 3.4 - Optical microscopy images of suckerin-39 particles prepared from a) 166mM of NaCl and b) 100mM 

NaCl. The scale bar represents 10 µm. 

All suckerin particles became unstable when NaCl was removed from the solution by washing the 

particles with DI water. For this reason, it is essential to crosslink the formed particles in order to 

stabilize them in aqueous conditions. 

The particles could be well dispersed in water after crosslinking and could be kept for several days 

without disassembly at room temperature. Since the crosslinking involves the formation of a covalent 

bond between two tyrosine residues when the particles were excited with a light source of 285 nm, they 

are also capable to emit light with wavelength of 400 nm (blue light) [28]. This property may offer a 

label-free approach for the fluorescence detection of SRT particles. 
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3.2.2 Particle Characterization 

3.2.2.1 Morphology Study of SRT Particles  

In this study, FE-SEM was used to characterize the morphology of the suckerin-39 particles. As shown 

in Figure 3.5, the obtained particles are spherical, with an average size of 649 nm (Figure 3.6). It was 

clearly observed that there was no particle aggregation after they were dried (examples of aggregation 

in supporting information, Figure 6.1). The aggregation present was due to interparticle crosslinking, 

which suggests that the tyrosine of one particle forms a covalent bond with the tyrosine from other 

particles, instead of forming the covalent bond within the same particle. The aggregation could be 

avoided by gent stirring while crosslinking the particles. 

 

Figure 3.5 – FE-SEM images of crosslinked suckerin-39 particles. The white bar represents 1 µm. 

 

Figure 3.6 – Particle size calculated from SEM images (with ImageJ).  
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3.2.2.2 SLS Analysis 

To check the size distribution, freshly prepared suckerin-39 particles were analysed by SLS. As shown 

in Figure 3.7, the average size of the particles was 766 nm. The average size obtained with SLS is 

higher than the one from FE-SEM, because the FE-SEM sample was dried before characterization, 

which probably caused the particles to shrink. 

 

Figure 3.7- Static Light Scattering of a batch of the suckerin-39 particles. 

 

3.2.2.3 AFM Analysis 

AFM was also used to characterize the particles and get more information about the particle topography. 

Figure 3.8 shows the AFM images of the suckerin-39 particles which are around 1 μm. Since the 

particles were not spherical, two orthogonal diameters were measured with the height images 

(supporting information, Figure 6.1a). One was 1.1 μm and the other was 1.4 μm. The surface 

roughness was measured as 32.93 nm, which was determined in a section of the surface of the particle 

on top (supporting information Figure 6.1b). A 3D model was also built based on the data of these 

measurements (Figure 6.2c in the supporting information). 
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Figure 3.8 – AFM images of suckerin-39 particles: a) Amplitude mode and b) phase mode. 

3.2.2.4 Circular Dichroism Analysis 

Since the ß-sheet domain of the suckerin-39 particles is hydrophobic, the domain may help to entrap 

hydrophobic drugs inside the particles through hydrophobic interaction. For this reason, the ß-sheet 

content of the particles was studied through circular dichroism, as shown in Figure 3.9. The difference 

between the ß-sheet content of the suckerin-39 in solution and in particle form was investigated. For 

free suckerin-39 in solution, multiple peaks appears in the range of 206-214 nm, which corresponds to 

ß-sheet structure as reported previously [8]. In the case of suckerin particles, the signal shows an 

increase in the ß-sheet content as indicated by peak shift to 218 nm. (the interpretation of the results is 

based on qualitative observations). This reflects the secondary structure content of the suckerin (ß-sheet) 

changes significantly after the particle formation from free suckerin-39 protein. [8] 

 

Figure 3.9 – CD signal of suckerin-39 dissolved in acetic acid (5 mg/mL) and suckerin-39 particles dispersed in 

water. 
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3.3 Drug Loading 

Since DOX became water insoluble after removing its hydrochloride, we used DMSO to dissolve it and 

expect to load DOX into the β-sheet domain of the suckerin particles. Nevertheless, it was found that 

DMSO destroyed the suckerin particles in preliminary experiments. As a result, a mixture of 

DMSO/H2O was used as solvent for the loading process of DOX to avoid destroying the particles. After 

loading the drug, fluorescence images of suckerin particles were acquired to check whether DOX 

loading was successful, since DOX possess inherent red fluorescence. Figure 3.10 shows the 

fluorescence and differential interference contrast (DIC) images of suckerin particles where strong red 

fluorescence, which is generated by DOX inside the particles, could be clearly observed demonstrating 

that DOX is densely loaded within the particles. As can be seen from Supporting Information (Figure 

6.3), DOX-loaded particles are still stable with strong red fluorescence after 2 days, and no aggregation 

was observed during this period, suggesting the good stability of DOX-loaded suckerin particle 

formulation. 

 

Figure 3.10 – Differential interference contrast (DIC) images of drug loaded suckerin particles: The scale 

represents 10 μm. 

Figure 3.11 illustrates the potential loading mechanism that helps explaining the process how DOX 

molecules were loaded into the particles. As suckerin particles possess confined β-sheet domains in 

their backbone, DOX molecules that are dispersed in the solvent can interact with those domains 

through hydrophobic interactions, especially when a more polar solvent, such as water is introduced to 

the solution mixture. This study suggests that the confined β-sheet domains of the suckerin particles are 

able to efficiently encapsulate hydrophobic drugs, which is expected to reduce side effects of DOX for 

cancer chemotherapy. 
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Figure 3.11 – Scheme of the loading mechanism of DOX into suckerin-39 particles. Adapted from [13] 

It is also important to optimize the concentration of DOX that is required for the maximum 

encapsulation efficiency of suckerin particles. To this end, suckerin particles at a fixed concentration 

were exposed to various concentrations of DOX, and fluorescence intensity of encapsulated drug was 

measured after removal of the unencapsulated DOX to determine the effective drug loading. As shown 

in Figure 3.12a, the fluorescence intensity increased with the increasing concentration of DOX and 

stabilized at the DOX concentration of 62.5 µg/µL. Further increase in DOX concentration merely 

enhanced the DOX fluorescence intensity. Figure 3.12b shows the DOX solution before and after 

mixing with suckerin-39 particles. It was observed that the colour of DOX solution changed 

significantly after exposure to suckerin particles, which also provide an indirect evidence of successful 

DOX loading into the particles. 

The drug-loaded particles were destroyed to determine the total amount of drug loaded. At DOX 

concentration of 0.625 μg/μL, the amount of drug loaded was around 575 ng for 6 mg of suckerin 

particles, which is equivalent to a loading efficiency of 4.6%. 

 

Figure 3.12 - Loading efficiency of different initial concentrations of DOX and difference in concentration of the 

DOX solution before and after the loading process in the inset. 
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3.4 Drug Release 

The release of DOX from suckerin-39 particles was studied at pH 7.4 and pH 5 (Figure 3.13) in order 

to mimic the physiological and intracellular pH, respectively. At both pH values, the burst release 

occurred during the first three hours. Afterwards, DOX was gradually released from the particles from 

3 to 60 hours. Around 30% of the total encapsulated drug was released at pH 7.4, indicating some 

leakage of the DOX at extracellular pH and salt concentrations. At pH 5, 85% of the total DOX was 

released in 60 h. The difference in stability at extracellular physiological pH and intracellular 

endo/lysosome pH conditions is favourable for the enhanced intracellular release of cargo.[24] 

 

Figure 3.13 - Release study of DOX over a period of 60 hours for pH5 and pH7.4 PBS. 

Two mechanisms illustrating the drug release from the suckerin particles are proposed in Figure 3.14. 

DOX is a pH-dependent drug that presents increased hydrophilicity at lower pH, thereby become more 

positively charged [29]. When the particles are dispersed in PBS at pH 5, DOX becomes more 

hydrophilic as compared to pH 7.4, and is capable of detaching from the hydrophobic core of the 

β-sheets and diffusing through the suckerin particles in the salt solution. The histidine residues in the 

β-sheets also play a fundamental role in the release of the drug. Below pH 6.5, the repelling electrostatic 

forces between the positively charged histidine moieties (which has pKa around 6.5) and like-charged 

DOX may push the drugs to the surface of the particles, where they are slowly released to the 

surrounding environment. 
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Figure 3.14 - Illustration of DOX release mechanisms from SRT particles. Adapted from [13] 
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3.6 In-Vitro Studies 

As shown in Figure 3.15a, the suckerin-39 particles were internalized by HeLa cells after 24 hours of 

incubation. The intracellular localization of the particles, as shown by 3D reconstructed confocal 

images, indicates that SRT particles are primarily inside the cell membranes. However, the cell uptake 

efficiency of suckerin-39 particles was relatively low, probably due to the large size of particles. It is 

well-documented that particle uptake by cells is size-dependent through endocytosis pathway [30]. 

Therefore, it is essential to decrease the size of particles in order to increase particle uptake efficiency. 

In Figure 3.15c the particles emit yellow light because the green stain dye reacted with the suckerin 

particles and the mixture of red (from DOX) and green lights generates yellow. 

 

 

Figure 3.15 – Confocal microscopy images of HeLa cells with internalized SRT particles: a) fluorescence from 

the DOX (red); b) fluorescence from the DOX (red) and DAPI-stained cell nuclei (blue); c) florescence from the 

DOX (red), cell nuclei (blue) and cell membranes (green); d) Reconstructed three-dimensional images generated 

from image (c).  
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4 Conclusions and Future Work 

In this study, the suckerin proteins were successfully expressed with the molecular weight of 23 kDa 

and 39 kDa. The expressed suckerin proteins showed traces of low molecular impurities in the case of 

the suckerin-39, and both low and high molecular weight impurities in the case of the suckerin-25. 

Trying different techniques like salting-out methods or using concentration tubes to separate the 

impurities from the suckerin proteins might be a good solution for purifying these proteins in the future.  

Spherical suckerin-39 particles with an average size of 766 nm were obtained through salt induced 

protein assembly approach. This method is simple and reproducible, and can produce confined β-sheets 

domains that are essential for hydrophobic drug encapsulation. Further experiments to reduce particle 

size down to the nanometre scale is essential in order to increase cell uptake of the particles. Since the 

suckerin family are composed of multiple suckerin proteins, it might be interesting to explore the 

particle formation with other suckerin proteins to see whether nanoscaled particles could be obtained.  

A crosslinking method was developed to stabilize the particles as well. In the future, it is also important 

to develop reversible crosslinking methods in order to control the particle degradation at specific 

conditions. As mentioned, particle degradation is of great importance to reduce side effects of the 

particles in the human body. In addition, it is fundamental to know if the particles may induce an 

immunological response in the human body. 

High loading efficiency of doxorubicin was achieved without affecting the particles integrity in this 

study. Investigations on the behaviour of the β-sheet transformation when the particles change from a 

neutral pH to more acidic conditions should be pursued in order to understand the initial burst of release. 

Although particle degradation was observed during the drug release study, this phenomenon was not 

systemically investigated. Experiments should be planned where the particles are analysed with SLS at 

different steps of the process to have a better understanding why suckerin particles degrade in spite of 

stable non-reversible crosslinks within the particles.  

Despite the internalization of suckerin particles, cell uptake was low most probably due to their large 

size. New studies should be performed for longer periods of time to analyse the cell uptake, and the 

release of the drug at intracellular level as well as the cytotoxicity of these particles.  

In the future, suckerin particles could also be functionalized via different protein chemistries for targeted 

drug delivery. This would provide an important solution to increase the uptake of the suckerin particles 

as well.  
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6 Supporting Information 

 

Figure 6.1a – FE-SEM images of suckerin particles aggregation due to interparticle tyrosine crosslinking (x5000 

magnification). 

 

 

Figure 6.1b – FE-SEM images of suckerin particles aggregation due to interparticle tyrosine crosslinking (x11000 

magnification). 
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Figure 6.2a - AFM image in height mode of suckerin particles used to calculate the two diameters (in red). 

 

Figure 6.2b - AFM image in phase mode of the section of a suckerin particle used to calculate the surface 

roughness. 

 

Figure 6.2c - 3D model created with the data from the AFM images of a suckerin particles in dried 

state. 
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Figure 6.3 - Differential interference contrast images of suckerin particles left resting for 2 days. 

 


