Geomorphic dam-break flows. Part I: conceptual model

J. G. A. B. Leal PhD, R. M. L. Ferreira PhD and A. H. Cardoso PhD

This paper presents a one-dimensional conceptual model for simulating geomorphic dam-break flows. The model is based on conservation laws drawn from continuum mixture theory that are integrated over the flow depth, assuming that the flow is composed of two transport layers. Closure equations were derived from the review and reanalysis of previous studies on granular flow, debris flow and sheet flow. The sediment transport is modelled assuming capacity regime. The closure equation coefficients are estimated based on a large set of experiments available in the literature. The validity of the model is discussed by computing the most relevant dimensionless parameters. The model is expected to simulate adequately the friction at the wave front and the sheet flow throughout the wave profile. Ultimately, although the problem incorporates complex phenomena, the model can be easily implemented by practising engineers for simulating one-dimensional geomorphic dam-break flows. The implementation and the verification of the adequacy of the model for simulating these flows are presented in a companion paper.

NOTATION

- \(a \): coefficient that depends on the type of sediment
- \(b \): coefficient that depends on the type of sediment
- \(C_s \): sediment volumetric concentration
- \(d_s \): sediment mean diameter (m)
- \(e \): erosion rate (m/s)
- \(g \): gravity acceleration vector (m/s²)
- \(h \): flow depth (m)
- \(k \): bed permeability (m²)
- \(N_{Bag} \): Bagold number
- \(N_{Dar} \): Darcy number
- \(N_{Fr} \): friction number
- \(N_{Rc} \): number mass
- \(N_{Re} \): Reynolds number of sediments
- \(N_{Sav} \): Savage number
- \(p \): bed porosity
- \(R \): dimensionless Chezy’s friction coefficient
- \(S_e \): energy slope
- \(S_{sgn} \): sediment specific gravity
- \(sgn \): sign function that takes the value 1 if the variable is positive and –1 if the variable is negative
- \(t \): time (s)
- \(u \): mean mixture velocity vector (m/s)
- \(u_\alpha \): friction velocity (m/s)

Subscripts or superscripts

- \(\alpha \): refers to values above the immobile bed surface
- \(b \): immobile bed
- \(c \): refers to values below the immobile bed surface
- \(f \): fluid or liquid constituent
- \(s \): solid or sediment constituent
- \(w \): clear water layer

I. INTRODUCTION

During the past two decades, dam-break flows have been modelled by many researchers and engineers. Initially, the flow was treated as a purely hydrodynamic problem. Recent observations and records from real accidents (Brooks and Lawrence, 1999) have shown that dam-break flows can interact strongly with the mobile bed (Figure 1). Several experimental studies (Capart and Young, 1998; Leal, 2005; Leal et al., 2003; Spinewine and Zech, 2007) highlight the existence of a transport layer with high concentration of sediments within the flow. The thickness of this layer can vary from small values in the upstream reach of the wave profile to the entire water depth near the wave-front. Due to the high shear rate and corresponding high concentration of sediments, the flow can be classified as debris flow or sheet flow, where stresses due to
conceptual model is developed based on recent studies (Ferreira, 2005; Leal, 2005). The model incorporates, in a simple way, some of the most relevant conclusions that can be drawn from granular flow, debris flow and sheet-flow studies. In the companion paper (Leal et al., 2010), the results of the model are compared with experimental data.

2. CONSERVATION LAWS

Assuming that no external mass transfer occurs, the mass and momentum conservation of fluid (liquid) and solid (sediment) mixture can be written as (Iversen, 1997)

\[
\frac{\partial \rho}{\partial t} + \nabla (\rho \mathbf{u}) = 0
\]

\[
\frac{\partial (\rho \mathbf{u})}{\partial t} + \rho (1 - C_s) \mathbf{u} \cdot \nabla (\mathbf{u}) + \rho C_s \mathbf{u} \cdot \nabla (\mathbf{u}) = \nabla (\sigma + \alpha_s + \rho g)
\]

where subscripts f and s stand for fluid and solid constituents, respectively, \(\rho = \rho_f (1 - C_s) + \rho_s C_s \) is the mixture mass density, \(C_s \) is the sediment volumetric concentration, \(\mathbf{u} = [\rho_f (1 - C_s) \mathbf{u}_f + \rho_s C_s \mathbf{u}_s] / \rho \) is the mixture mean velocity vector, \(t \) is time, \(\nabla \) is the mathematical operator \(\frac{\partial}{\partial x} \frac{\partial}{\partial y} \frac{\partial}{\partial z} \), \(x, y \) and \(z \) are the spatial coordinates, \(\sigma \) is the stress tensor and \(g \) is the gravity acceleration vector.

As the bottom can be subjected to erosion and deposition, Equations 1 and 2 are not sufficient to describe the flow and the mass conservation of the solid constituent must be added

\[
\frac{\partial}{\partial t} (\rho C_s) + \nabla (\rho C_s \mathbf{u}) = 0
\]

3. TRANSPORT LAYERS (DEPTH AVERAGING)

Experimental observations of geomorphic dam-break flows show different sediment transport magnitude along the wave profile (Capart and Young, 1998; Leal, 2005; Spinewine and Zech, 2007). In the wave-front the entire flow depth is occupied with a debris or sheet-flow (Figure 2(a)), while upstream the flow presents two distinct transport layers: one upper clear water layer and one lower sheet-flow layer (Figure 2(b)). Based on this observed flow configuration and assuming hydrostatic pressure distribution, a one-dimensional (1D) conceptual transport layers model (Figure 3) was proposed in a previous study (Leal, 2005). In this figure, subscripts \(w, c \) and \(b \) stand for clear water layer, sheet-flow layer and immobile bed, respectively, \(h \) is the flow depth, \(z \) the elevation and \(p \) is the bed porosity.

The depth average flow depth, mean velocity, volumetric sediment concentration and mass density are given, respectively, by

\[
h = h_c + h_w
\]
\[
\frac{\partial (\rho u h)}{\partial t} + \frac{\partial}{\partial x} \left(\rho u u^2 h + \rho u u^i h_i \right) =
- g (\rho u h_u + \rho h_i \frac{\partial h}{\partial x})
- \int_0^1 \left(\frac{\partial \sigma_{(xx)}}{\partial x} + \frac{\partial \sigma_{(yy)}}{\partial y} + \frac{\partial \sigma_{(zz)}}{\partial z} \right) dx
\]

where \(z_{ss} = h + z_b \) is the water surface elevation, \(z_e = (1 - \rho) z_b + C_b h_c \) is an equivalent bed elevation that includes the sediment storage in the water column and \(\sigma_{jj} \) is the stress in the plane normal to \(i \), in the direction \(j \).

4. STRESS TENSOR

The stress tensor will account for the following stress-generating processes (Greenspan, 1997): (a) grain collisions, (b) friction between grains, (c) fluid viscosity, (d) turbulent fluctuations, (e) interaction between fluid and grains. Processes (b), (c), and (e) are responsible for viscous or friction stresses, whereas processes (a) and (d) generate inertial stresses. The magnitude and importance of each of the five processes will be evaluated later.

The depth integration of momentum equation 2, between \(z \) and \(z_b \), under the hypotheses mentioned before, renders the normal stress

\[
\sigma_{(xx)} =
\begin{cases}
\rho u g (z - z_b) & \text{if } z \gg z_b + h_c \\
\rho u g (z_b + (1 - C_b)(h_c + z_b - z)) & \rho u g C_b (h_c + z_b - z) & \text{if } z_b \ll z < z_b + h_c
\end{cases}
\]

For the clear water layer, Equation 11 means that the normal stress is caused by the weight of the fluid and that turbulent stresses are neglected. For the sheet-flow layer, the first term of Equation 11 represents the normal stress due to the weight of the fluid, whereas the second term represents the normal stress originated by sediment grain collisions that transfer the weight to the bottom. The normal stresses due to friction between grains are neglected. The stresses due to the interaction between fluid and grains are also omitted since the mixture is considered to be fully fluidised and therefore interstitial pressures are insignificant. Whenever the mixture behaves like a liquid, the normal stresses are isotropic, namely \(\sigma_{(xx)} = \sigma_{(yy)} = \sigma_{(zz)} \) (Pouliquen and Forterre, 2002). The hydrostatic pressure assumption implies normal stresses isotropy for the liquid

\[
\sigma_{(xx)} = \sigma_{(yy)} = \sigma_{(zz)} = \sigma_{f(zz)}
\]
when grain collisions dominate upon frictional interactions the grains normal stresses are also isotropic \(\sigma_{n(1)} = \sigma_{n(1)} \), because grain collisions are isotropic as long as the elasticity of the grains is small (Chou, 2000). Using Equation 11, one can compute the integral of normal stress included in Equation 9, namely

\[
\int_{s}^{t} \frac{\partial (\sigma_{n})}{\partial x} \, dx = \int_{s}^{t} \frac{\partial (\sigma_{u})}{\partial x} \, dx
\]

\[
= \frac{\partial}{\partial x} \left[\frac{1}{2} \{ \rho_{u} h_{u} v_{u}^{2} + 2 \rho_{w} h_{w} v_{w}^{2} + \rho_{s} h_{s} v_{s}^{2} \} \right]
\]

The bottom shear stress, \(\tau_{bc} \), can be obtained by analysing the bottom of the sheet-flow layer, where grains collisions dominate over viscous effects. Assuming that tangential stresses are proportional to \((dU/dz) \) (Bagbald's inertial regime), which can be extrapolated from gas kinetic theory applied to granular flows with interstitial liquid (Jenkins and Hanes, 1996), the bottom shear stress, \(\tau_{bc} \), is given by a Chezy-type equation (Fraccarollo and Capart, 2002). Recently, the following relation was proposed (Ferreira, 2005)

\[
\tau_{bc} = \sigma_{n} \rho_{w} R n v^{2}
\]

where \(R \) is the dimensionless Chezy's friction coefficient and \(\sigma_{n} \) is the sign function that takes the value 1 if the variable is positive and -1 if the variable is negative. Equation 13 allows the usual definition of friction velocity

\[
v_{f} = \sqrt{\frac{\tau_{bc}}{\rho_{w}}} = \sqrt{ghS_{f}}
\]

where \(S_{f} = (R n v^{2})/gh \) is the energy slope. This definition is important since the substitution in Equation 13 yields the proportionality between \(u \) and \(u_{f} \), corroborating debris-flow observations (Takahashi, 1991).

The sheet-flow results highlight a variation of the friction coefficient with the dimensionless sediment settling velocity

\[
w_{s} = w_{s} / \sqrt{g(s-1)d_{s}}
\]

where \(w_{s} \) is the sediment settling velocity and \(d_{s} \) is the sediment mean diameter (Sumer et al., 1996). This variable can be computed using, for example, the general expression (Jiménez and Madsen, 2003)

\[
\frac{1}{w_{s}} = a + \frac{4v}{d_{s}} \frac{b}{\sqrt{(s-1)d_{s}}}
\]

where \(a \) and \(b \) are coefficients that depend on the type of sediment, and \(v = 10^{-6} \text{ m}^{2} \text{ s}^{-1} \) is the water kinematic viscosity at 20°C. Figure 4 presents the variation of the friction coefficient, \(R \), with \(w_{s} \), obtained by reanalysing the experimental data of Sumer et al. (1996). It can be concluded that \(R \) varies for constant \(w_{s} \). For each \(w_{s} \), a mean value of \(R \) will be assumed; this assumption is discussed in a companion paper by the authors (Leal et al., 2010).

The tangential stresses integral appearing in Equation 9 can be written as

\[
\int_{s}^{t} \frac{\partial (\sigma_{u})}{\partial x} \, dx = \tau_{bc} = \rho_{n} R n v^{2}
\]

Finally, and in accordance with the proposed 1D approach, the variation of the tangential stresses in direction \(y \) is considered to be negligible

\[
\int_{s}^{t} \frac{\partial (\sigma_{u})}{\partial y} \, dy = 0
\]

5. CLOSURE EQUATIONS

Several authors have proposed relations for estimating the height of the sheet-flow layer \(h_{c} \). Based on Bagbald's 1954 work, one can obtain theoretically \(h_{c}/d_{s} \approx 10 \theta \), where

\[
\theta = \frac{\tau_{bc}}{[\rho_{w} g(s-1)d_{s}]} = \frac{u_{f}^{2}}{[g(s-1)d_{s}]}
\]

is the Shields parameter (Wilson, 1987). The revision of Daniel's (1965) results showed \(h_{c}/d_{s} \approx 7 \theta \) (Naidi and Wilson, 1992). Sheet-flow visual observations led to the relation \(h_{c}/d_{s} \approx 6 \theta \) for the larger sediments; using the measurements of sediment concentration profiles, the following relation \(h_{c}/d_{s} \approx 12 \theta \) was also derived for the smaller sediments (Sumer et al., 1996). The application of gas kinetic theory to a mixture of grains and water revealed that \(h_{c}/d_{s} \) varies linearly with \(\theta \) (Jenkins and Hanes, 1998). This behaviour was also observed experimentally (Fugel and Wilson, 1999). Taking all these results into consideration, it can be concluded that

\[
h_{c} = \beta \theta
\]

where \(\beta \) is a dimensionless coefficient related to the type of
sediment that depends on \(w \). (Sumer et al., 1996). Figure 5 presents the values of \(\beta \) obtained by reanalysing the previous results on sheet-flow (Pugh and Wilson, 1999; Sumer et al., 1996). For a given type of sediment, the value of \(\beta \) can be estimated from Figure 5 knowing \(w \).

For dry granular flows, it is consensus that the velocity profile is linear (Savage, 1984; Savage and Hutter, 1989; Savage and Jeffrey, 1981). For mixtures of liquid and grains, most authors agree that the velocity in the sheet-flow layer should be proportional to \(z^{n} \). The value of power \(n \) is not consensus. Some authors suggested \(n = 3/2 \) (Asano, 1995; Takahashi, 1991), whereas others proposed \(n = 3/4 \) (Jenkins and Hanes, 1998; Sumer et al., 1996; Wan and Wang, 1994). As Sumer et al. (1996) performed a large set of tests using different sediments and their results were theoretically confirmed (Jenkins and Hanes, 1998), the equation proposed by those authors for the local velocity is adopted

\[
\frac{u(z)}{u_*} = 2.59^{-1/4} \left(\frac{z}{d_i} \right)^{3/4}
\]

Replacing the result of the depth integration of Equation 18 over the sheet-flow layer into Equation 17 and dividing it by the height of that layer one obtain the depth-averaged velocity within the sheet-flow layer

\[
u_c = \frac{10}{7} \beta^{1/4} \sqrt{g(s-1)h_e \theta}
\]

Assuming that a small thickness layer exists between the bottom of the sheet-flow layer and the top of the immobile bed, where frictional effects are dominant, the integration of Equation 9 renders (Ferreira, 2005)

\[
\phi_s = \frac{\tau_{bc}^{\text{sub}} - \tau_{bc}^{\text{sub}}}{\rho_e (u_{bc}^{\text{sub}} - u_{bc}^{\text{sub}})}
\]

where \(\phi_s \) is the erosion rate and superscripts 'above' and 'below' refer to values above and below the interface between the sheet-flow layer and the immobile bed. Equation 20 is similar to the equation obtained by other authors assuming a discontinuity in the shear stress at the bed surface (Fraccarollo and Capart, 2002). \(\tau_{bc}^{\text{sub}} \) is a pure frictional stress and therefore it can be computed using Coulomb's law (Lambe and Whitman, 1979)

\[
\tau_{bc}^{\text{sub}} = \sigma_{bc} \tan(\phi_s)
\]

where \(\phi_s \) is the sediment static friction angle and

\[
\sigma_{bc} = \sigma_{bc} - \rho_v g h_i - \rho_v g(s-1)h_e,
\]

is the effective normal bed stress at \(z = z_0 \) and \(\sigma_{bc} \) is the normal bed stress. This normal stress is obtained by subtracting the interstitial liquid hydrostatic pressure in Equation 11. \(\tau_{bc}^{\text{sub}} \) is a pure collisional stress; it can be computed with Equation 13. Assuming equilibrium sediment transport -- that is, \(\phi_s = 0 \) and replacing Equations 13 and 21 into Equation 20 one obtains

\[
C_s = \frac{R u^4}{g(s-1)h_e \tan(\phi_s)} = \frac{d_i \theta}{h_e \tan(\phi_s)} = \frac{1}{\beta \tan(\phi_s)}
\]

From Equation 22, it can be concluded that the sediment concentration in the sheet-flow layer is constant and depends only on the type of sediments. Some authors have used this assumption to model geomorphic dam-break flows (Fraccarollo and Capart, 2002; Spinewine and Zech, 2007).

Taking into consideration the closure Equations 17, 19 and 22 it can be easily concluded that the sediment transport rate \(C_s h_e h_i \) is proportional to \(\theta^{1/2} \) and therefore proportional to \(u^4 \). This result has been reported in several studies on sediment transport under unsteady conditions (Asano, 1995; Ribberink and Al-Salem, 1990). As \(u_\infty \leq u \) and \(C_s \leq C_s^0 = 1 - p \), the closure Equations 19 and 22 yield the following limits

\[
R \leq \frac{49}{10^{0.5/2}}
\]

\[
\beta \geq \frac{1}{(1 - p) \tan(\phi_s)}
\]

6. VALIDITY OF THE MODEL FOR GEOMORPHIC DAM BREAK FLOWS

To verify the validity of some of the hypotheses adopted in the derivation of the stress tensor and closure equations, it is important to estimate the value of some dimensionless parameters that characterise debris flow and others that characterise fluvial flows. As the clear water layer has no sediment, the parameters will only be analysed in the sheet-flow layer. The parameter that represents the ratio between collisional stresses and grain frictional stresses is the Savage number (Iverson, 1997)

\[
N_{Sav} = \frac{\rho_v d_i^2 (u_{bc}^{\text{sub}} - u_{bc})}{(\rho_e - \rho_v) g h_i (h_e - z) \tan(\phi_s)}
\]

Water Management. 163 Issue WM6 Geomorphic dam-break flows. Part I: conceptual model Leal et al. 301
The ratio between collisional stresses and liquid viscous stresses is the Bagnold number (Bagnold, 1954)

\[N_{\text{Bag}} = \frac{C_0 \rho_s d_s^2 (dz_s/\text{dz})}{(1 - C_s) \mu} \]

where \(\mu = 0.001 \) Pa s is the liquid dynamic viscosity. The ratio between the collisional stresses and the turbulent stresses is the mass number (Iverson, 1997)

\[N_{\text{mass}} = \frac{C_0 \rho_s}{(1 - C_s) \rho_w} \]

The ratio between stresses originated by liquid–grain interactions and collisional stresses is the Darcy number (Iverson, 1997)

\[N_{\text{DAR}} = \frac{\mu}{C_{\text{ar}} k (dz_s/\text{dz})} \]

where \(k \) is the bed permeability. The ratio between turbulent stresses and liquid viscosity stresses is the Reynolds number of sediment

\[N_{\text{Rey}} = \frac{N_{\text{Bag}}}{N_{\text{mass}}} \frac{\rho_s d_s^2 (dz_s/\text{dz})}{\mu} \]

The ratio between frictional stresses and liquid viscous stresses is the friction number (Iverson, 1997)

\[N_{\text{fric}} = \frac{N_{\text{Bag}}}{N_{\text{grav}}} \frac{(\rho_s - \rho_w) g C_s^2 h_s d_s \tan(\phi_s)}{(1 - C_s) \mu (dz_s/\text{dz})} \]

One of the most important parameters in fluvial hydraulics is the Shields parameter \(\theta \) that has been defined before and represents the ratio between the total bottom shear stress and the submerged weight of sediment particles. Another important parameter is the suspension parameter which represents the relation between the sediment settling velocity and the friction velocity and was defined by Baicheelor (1965) as \(w_s/\text{u} _ \text{fric} \) (Sumer et al., 1996).

To compute the values of the dimensionless parameters defined above it is necessary to establish the sediment properties. Table 1 presents those properties and the related coefficients for the two sediment types used in previous tests performed by the authors: natural sand and pumice (Leal et al., 2010).

Table 2 presents the values of the dimensionless parameters computed with the sediment properties presented in Table 1, assuming that the gradient \(dz_s/\text{dz} \approx (u_s)_{\text{top}}/h_s \), where \((u_s)_{\text{top}} = 2.5 \sqrt{g s - 1} (d_s)^{1/3} h_s^{1/3} \) is the velocity at the top of the sheet-flow layer given by Equation 18. To evaluate the frictional and collisional effects, two values of the elevation were used: one near the bottom (\(z = z_s = 0 \) m), where frictional effects should be relevant, and the other at the middle of the sheet-flow layer (\(z = h_s/2 \)), where the collisional effects should dominate. In a dam-break wave, the Shields parameter \(\theta \) varies from small values upstream to high values near the wave-front; therefore, two typical values were used: one small, \(\theta < 0.1 \), and another high, \(\theta > 0.5 \) (Leal, 2006).

Analysing the values presented in Table 2, one can conclude that, for high values of \(\theta \), collisional stresses dominate since \(N_{\text{Bag}} > 0.1 \) (Savage and Hutter, 1989), except near the bottom, where that parameter presents a small value. This confirms the adequacy of considering a purely collisional sheet-flow layer and the adoption of Coulomb's frictional law in the bottom. For the smaller value of \(\theta \), the frictional stresses are irrelevant, even near the bottom, and therefore the use of Coulomb's law may be inadequate. If \(N_{\text{Bag}} > 0.20 \), the collisional stresses overcome the liquid viscous stresses (Bagnold, 1954). The \(N_{\text{Bag}} \) values reported in Table 2 are close to that limit, which means that viscous stresses can have some relevance. Nonetheless, near the bottom, those values are higher and the collisional stresses can be discarded. At the bottom, the values of \(N_{\text{Bag}} \) are close to the values presented by Iverson (1997) for debris flow (\(N_{\text{Bag}} \approx 4 \)), meaning that, in this region, the grains inertia is more important than fluid inertia. The values of \(N_{\text{Bag}} \) are lower than the ones presented by Iverson (1997) (\(N_{\text{Bag}} \) ranging from 600 to \(6 \times 10^3 \)), indicating that it is correct to neglect the stresses originated by liquid–grain interactions. As \(N_{\text{Bag}} > 1 \), the flow does not have a pure viscous behaviour and should exhibit turbulent fluctuations. The differences between the values of \(N_{\text{Bag}} \) at the bottom and at the middle of the sheet-flow layer highlight the decrease of friction effects over viscous effects with the increase of the elevation. For lower values of \(\theta \), the suspension parameter satisfies the criteria of non-suspension, \(w_s/\text{u} _ \text{fric} > 0.8 \); this supports the assumption of a clear water layer and the non-consideration of turbulent effects in sediment suspension. For higher values of \(\theta \), typically near the wave front, that criterion is not verified and therefore it is not rigorously correct to discard the turbulent effects on sediment suspension. Summarising, the use of Coulomb's law seems more adequate for the wave-front region than for the upstream reach of the wave profile. The option of not considering turbulent effects on sediment suspension seems more realistic in the upstream reach than in the wave-front region. For the whole wave profile, it seems reasonable to neglect stresses originated by liquid–grain interactions.

<table>
<thead>
<tr>
<th>Type of sediment</th>
<th>(d_s) (mm)</th>
<th>(s)</th>
<th>(w_s)</th>
<th>(\theta)</th>
<th>(\beta)</th>
<th>(\tan(\phi_s))</th>
<th>(k) (m²)</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>0.77</td>
<td>2.65</td>
<td>0.99</td>
<td>0.007</td>
<td>7.0</td>
<td>0.49</td>
<td>10⁻⁹</td>
<td>0.4</td>
</tr>
<tr>
<td>Pumice</td>
<td>1.22</td>
<td>1.40</td>
<td>1.25</td>
<td>0.010</td>
<td>6.6</td>
<td>0.53</td>
<td>10⁻⁹</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Table 1. Sediment properties and related coefficients.
Table 7. Dimensionless parameters

<table>
<thead>
<tr>
<th></th>
<th>Sand</th>
<th></th>
<th>Pumice</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Middle of sheet-flow layer</td>
<td>Near the bottom</td>
<td>Middle of sheet-flow layer</td>
<td>Near the bottom</td>
</tr>
<tr>
<td>(\theta)</td>
<td>0.08</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>(z)</td>
<td>0.002</td>
<td>0.002</td>
<td>0.000</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>0.29</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>(d)</td>
<td>249</td>
<td>79</td>
<td>249</td>
<td>79</td>
</tr>
<tr>
<td>(\rho)</td>
<td>19.56</td>
<td>20</td>
<td>4.75</td>
<td>0.05</td>
</tr>
<tr>
<td>(N_{bb})</td>
<td>161</td>
<td>51</td>
<td>587</td>
<td>186</td>
</tr>
<tr>
<td>(N_{max})</td>
<td>1.09</td>
<td>3.98</td>
<td>23</td>
<td>1.09</td>
</tr>
<tr>
<td>(N_{min})</td>
<td>5</td>
<td>16</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>(N_{s})</td>
<td>148</td>
<td>47</td>
<td>148</td>
<td>47</td>
</tr>
<tr>
<td>(N_{s})</td>
<td>8</td>
<td>260</td>
<td>123</td>
<td>3905</td>
</tr>
<tr>
<td>(w_{t})</td>
<td>0.99</td>
<td>0.31</td>
<td>0.99</td>
<td>0.31</td>
</tr>
</tbody>
</table>

7. CONCLUSIONS

A two transport layers conceptual model for simulating geomorphic dam-break flows is presented. The use of results from granular flow, debris flow and sheet flow studies allowed the establishment of physically based closure equations. The parameters in these equations are dependent on the sediment properties and can be estimated easily, by reanalyzing existing sheet-flow results (Sumer et al., 1996).

Based on the analysis of the relevant dimensionless parameters, the model is expected to simulate adequately the friction at the wave front and the sheet flow throughout the wave profile. Nevertheless some limitations can be pointed out, namely the equilibrium sediment transport assumption, that can fail to simulate short-term morphological bed changes, and the assumption of a constant friction coefficient that can lead to wrong prediction of the wave front position and height.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the financial support of the Portuguese Foundation for Science and Technology through the projects PCTI/36069/ECM/09 and PTDC/ECM/106962/2006. The authors also wish to acknowledge the Natural Resources of Canada for allowing the reproduction of Figure 1.

REFERENCES

Lambe TW and Whitman RV (1979) *Soil Mechanics*. Wiley, New York, USA.

What do you think?
To discuss this paper, please email up to 500 words to the editor at journals@ice.org.uk. Your contribution will be forwarded to the author(s) for a reply and, if considered appropriate by the editorial panel, will be published as discussion in a future issue of the journal.

Proceedings journals rely entirely on contributions sent in by civil engineering professionals, academics and students. Papers should be 2000–5000 words long (briefing papers should be 1000–2000 words long), with adequate illustrations and references. You can submit your paper online via www.icevirtuallibrary.com/content/journals, where you will also find detailed author guidelines.