Identification of Mating Type Genes in the Bipolar Basidiomycetous Yeast *Rhodosporidium toruloides*: First Insight into the *MAT* Locus Structure of the *Sporidiobolales*†‡

Marco A. Coelho, André Rosa, Nádia Rodrigues, Álvaro Fonseca,* and Paula Gonçalves

Centro de Recursos Microbiológicos, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

Received 18 January 2008/Accepted 1 April 2008

Rhodosporidium toruloides is a heterothallic, bipolar, red yeast that belongs to the *Sporidiobolales*, an order within a major lineage of basidiomycetes, the *Puccinimycotina*. In contrast to other basidiomycetes, considerably less is known about the nature of the mating type (*MAT*) loci that control sexual reproduction in this lineage. Three genes (*RHA1*, *RHA2*, and *RHA3*) encoding precursors of the *MAT A1* pheromone (rhodotorucine A) were previously identified and formed the basis for a genome walking approach that led to the identification of additional *MAT* genes in complementary mating strains of *R. toruloides*. Two mating type-specific alleles encoding a p21-activated kinase (PAK; *Ste20* homolog) were found between the *RHA2* and *RHA3* genes, and identification in *MAT A2* strains of a gene encoding a presumptive pheromone precursor enabled prediction of the structure of rhodotorucine A. In addition, a putative pheromone receptor gene (*STE3* homolog) was identified upstream of *RHA1*. Analyses of genomic data from two closely related species, *Sporobolomyces roseus* and *Sporidiobolus salmonicolor*, identified syntenic regions that contain homologs of all the above-mentioned genes. Notably, six novel pheromone precursor genes were uncovered, which encoded, similarly to the *RHA* genes, multiple tandem copies of the peptide moiety. This suggests that this structure, which is unique among fungal lipopeptide pheromones, seems to be prevalent in red yeasts. Species comparisons provided evidence for a large, multigenic *MAT* locus structure in the *Sporidiobolales*, but no putative homeodomain transcription factor genes (which are present in all basidiomycetous *MAT* loci characterized thus far) could be found in any of the three species in the vicinity of the *MAT* genes identified.

Fungal mating type (*MAT*) loci are specialized genomic regions that determine cell type identity and coordinate the sexual cycle. Their genetic structure has been relatively sparsely sampled in broad phylogenetic terms, but results of published studies have revealed both conserved features and remarkable diversity in ascomycetes and basidiomycetes (8, 13). A common trait of fungal *MAT* loci is the presence of genes encoding homeodomain or other classes of transcription factors that control the expression of genes that establish cell type identity and activate sexual development. In basidiomycetes, two major types of *MAT* loci have so far been recognized (9). The tetrapolar mating system of the corn smut *Ustilago maydis* and the mushrooms *Coprinopsis cinerea* and *Schizophyllum commune* is governed by two small (<10-kb) unlinked loci: one encodes homeodomain transcription factors (*HD1* and *HD2* homologs), and the other encodes lipopeptide pheromones and pheromone receptors (*STE3* homologs), which mediate intercellular signaling prior to cell fusion and/or sexual development after mating (9). Each locus may be multiallelic, which can result in up to thousands of compatible mating types in certain tetrapolar species. On the other hand, in the bipolar system of the human pathogen *Cryptococcus neoformans* and of the barley smut *Ustilago hordei* the two *MAT* loci described above for the tetrapolar species are physically linked, forming a single, large (>100-kb) multigene locus, which contains additional genes that may or may not be related to mating (5, 25). In this case there are only two possible combinations of *MAT* gene alleles, and hence only two compatible mating types exist. A unique feature of *C. neoformans* is that genes of three components of the pheromone-activated signaling cascade (viz., *STE11*, *STE12*, and *STE20*) are part of the *MAT* locus and, therefore, mating type specific (25).

Three major lineages are currently recognized in the *Basidiomycota* (18). One of them, the subphylum *Puccinimycotina*, comprises the rust fungi (e.g., the wheat rust *Puccinia graminis*, whose genome annotation was recently released [http://www .broad.mit.edu/annotation/genome/puccinia_graminis]) and other plant parasites, such as the anther smuts (*Microbotryum* spp.), as well as many saprobic yeast taxa. The latter include the so-called “red yeasts” in the genera *Rhodosporidium* and *Sporidiobolus*, which are classified in the order *Sporidiobolales* (30). Fungi in this lineage have remained virtually unexplored as to the content and organization of the *MAT* loci. However, preliminary work with the bipolar anther smut *Microbotryum violaceum* has shown that chromosomes carrying the *MAT* loci are sexually size dimorphic and rich in repetitive sequences (20). A recent study based on expressed sequence tag data (39) provided the first clues on their gene content, but the respective genetic organization is yet to be elucidated. The remaining two basidiomycetous subphyla contain the few taxa whose *MAT* loci have been investigated in detail (9): the

* Corresponding author. Mailing address: Centro de Recursos Microbiológicos, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal. Phone and fax: 351212948530. E-mail: amrf@fct.unl.pt.

† Supplemental material for this article may be found at http://ec.asm.org/.

‡ Published ahead of print on 11 April 2008.
Ustilaginomycotina, which includes the majority of smut fungi (e.g., Ustilago spp.) and many other dimorphic plant parasites, and the Agaricomycotina, which includes the mushrooms (e.g., Coprinopsis and Schizophyllum), the jelly fungi, and many yeast taxa (e.g., Cryptococcus). The present study aims to expand our knowledge on the nature and organization of MAT genes to members of the rust lineage, namely, red yeasts in the Sporidiobolales, which may provide invaluable clues on the evolution of MAT loci in basidiomycetes.

As experimental models, saprobic basidiomycetous yeasts have a major advantage over their strictly filamentous or parasitic counterparts because they complete their life cycle on culture medium (11). The vast majority of sexual yeast taxa, such as Rhodotorula, have dimorphic life cycles: upon fusion of compatible cells, elicited by the mating pheromones, the haploid yeast phase switches to a dikaryotic filamentous phase, during which basidia are eventually produced. In Rhodotorula basidia arise from teliospores, which are thick-walled, resting cells that form on the dikaryotic hyphae and where karyogamy takes place (11). Germination of basidiospores restores the yeast phase.

All known Rhodotorula species were isolated as haploid yeasts and have a bipolar mating behavior, i.e., their strains belong to either one of two complementary mating types, designated A1 and A2 or A and a (1, 10). Based on our current understanding of basidiomycete MAT loci, it is hypothesized that the genes encoding the pheromones, the pheromone receptors, and the homeodomain transcription factors are part of a single MAT locus in Rhodotorula species. Pioneering work by Japanese researchers led by S. Fukui in the late 1980s identified three genes encoding the pheromone precursors in a mating type A1 (or A) strain of R. toruloides (2). These genes were not present in a complementary mating type A2 (or a) strain (3) and have been suggested to be part of the MAT locus (6). Fukui and coworkers (1) had previously characterized the early stages of the mating process in R. toruloides and suggested that A1 cells constitutively produce a pheromone (A4 factor, later named rhodotorurine A), which induced the production of a factor by A2 cells. The studies of Akada et al. (2, 3) were not continued, and no additional information on the MAT loci of Rhodotorula species was published since then.

Here we present evidence that the gene encoding a P21-activated kinase (PAD; Ste20-like) possibly involved in pheromone signaling is mating type specific and that, along with the multiple pheromone precursor genes, it belongs to the R. toruloides MAT locus. We also found that this genomic region displays a high level of synteny with homologous genomic regions from the closely related yeast Sporobolomyces roseus (11), whose genome sequence has recently been released (Joint Genome Institute [JGI]; http://genome.jgi-psf.org/Sporol1/Sporol1.home.html). Genomic fragments of a close relative of the latter species, Sporidiobolus salmonicolor (11), are also available and provided an additional source of sequence data for comparison. Analysis of our data on R. toruloides together with that of the S. roseus genome and of the S. salmonicolor Trace Archive provided evidence as to the MAT locus structure of members of the Sporidiobolales and constitutes the second instance of the presence of a PAD kinase gene within a basidiomycete MAT locus.

MATERIALS AND METHODS

Rhodotorula toruloides strains, culture conditions and mating tests. The following strains of Rhodotorula toruloides, obtained from the Portuguese Yeast Culture Collection (CREM; Portugal), were studied in detail: PYCC 4416 (CBS 14; MAT A1), PYCC 5082 (MAT A1), PYCC 4417 (CBS 5745; MAT A2), and PYCC 4661 (MAT A2). Cultures were grown on MYP agar (0.7% malt extract, 0.05% yeast extract, 0.25% soyote-peptone, 1.5% agar) at room temperature. To check sexual compatibility, pairs of 2- to 4-day-old cultures were mixed on an MYP agar plate, incubated at room temperature, and examined microscopically after 1 week for the production of mycelia with clamp connections and teliospores, using phase-contrast optics.

An enlarged set of strains was used to check mating type specificity of pheromone genes by PCR, in addition to the four strains mentioned above, namely, CBS 350, CBS 315, M5D 231, A421, and A415 (MAT A1); CBS 349, PYCC 4786, PYCC 4943, PYCC 5109, PYCC 5081, A412, A401, A413, and A456 (MAT A2). MSD and A strains are environmental isolates obtained by Gadanhao et al. (16).

Miscellaneous. Isolation of genomic DNA was performed essentially as described by Sampaio et al. (29), with a few modifications. After centrifugation, the cell extracts were submitted to digestion with proteinase K (1 mg/ml; 1 h; 37°C) and, subsequently, to phenol (pH 8.0) and chloroform-isooamyl alcohol (24:1) extractions. Nucleic acids were dissolved in 100 μl of distilled water after precipitation. PCR products were performed in a final volume of 25 μl and contained the following components (unless stated otherwise): 2 mM of MgCl2, 0.25 mM of each of the four deoxynucleoside triphosphates (GE Healthcare), 0.8 μM of primer, 5 μl of template (genomic DNA was diluted 1:750), and 1 U Taq DNA polymerase (GE Healthcare, Canada). Thermal cycling consisted of a 5-minute denaturation step at 95°C, followed by 35 cycles of denaturation at 94°C for 30 s, 30 s at the annealing temperature (variable), and extension at 72°C (variable time); the annealing temperatures and extension times used in each reaction, as well as the sequences of all the primers, are listed in Table S1 in the supplemental material. A final extension of 7 min at 72°C was subsequently performed. Amplification products were purified using the GFX PCR DNA and gel purification kit (GE Healthcare) and either cloned into the pMOSSBlue vector (Roche Molecular Biochemicals, Canada) or sequenced directly (sequencing was performed by STABVida, Portugal).

Mating type specificity of RHA genes. The MAT A1 specificities of the RHA1, RH A2, and RHA3 pheromone precursor genes were checked by PCR amplification with gene-specific primers based on the sequences determined by Akada et al. (2) and using genomic DNA from both MAT A1 and MAT A2 strains as template. One forward primer common to the three genes (RHAFw) was used together with one reverse primer specific for each gene (RHA1Rev, RH A2Rev, and RHA3Rev) (see Table S1 in the supplemental material). Following the identification of the RH A2-A2 gene, mating type specificity was checked in an enlarged set of strains using reverse primers specific for either the RH A2 or the RHA2-A2 coding regions (MC075 and MC071, respectively) (see Table S1 in the supplemental material) and a common forward primer based on a conserved STE20 region in the two mating types (Ste20Dw2A2) (see Table S1 in the supplemental material).

Genome walking. A genome walking approach using the Universal Genome Walker kit (BD Biosciences Clontech) was employed to characterize the MAT loci of R. toruloides. This method consists of preparing a set of genomic DNA libraries each requiring the ligation of adapters to the ends of restriction fragments obtained by complete digestion with a particular enzyme (blunt cutters). These libraries are subsequently screened using combinations of gene-specific and adapter primers (API and AP2). For both MAT A1 strain PYCC 4416 and for MAT A2 strain PYCC 4661, the genomic libraries were prepared using FspI, PvuII, and Stul. Each Genome Walker library was used as a template in independent amplification reactions. Primer design and PCR conditions followed the manufacturer’s instructions. The fragment upstream of the RH A2 gene (fragment 1; Fig. 1) was obtained from the EcoRV library, whereas the two fragments encompassing part of the MAT A2 STE20 gene (fragments 5 and 6; Fig. 1) were amplified from the Stul MAT A2 library.

PCR amplification and sequencing of the STE20 alleles. A fragment encompassing the complete region between the RHA2 and RHA3 genes was obtained by PCR using gene-specific primers RHA3Up2 and SCP2Up (Fig. 1; see also Table S1 in the supplemental material) and genomic DNA from strain PYCC 4416-MAT A1 as a template. The primer pairs Ste20CRFw with Ste20CRRev and NCFw with NCRRev were based on regions of the MAT A1 STE20 allele that were found to be conserved in the closely related species S. roseus and S. salmonicolor. These primers were used to amplify most of the RST20 gene in
the remaining strains under study (MAT A1 and MAT A2). The PCR products were purified and directly sequenced by primer walking.

PCRamplification of a putative MAT A1 pheromone receptor (STE3 homolog). For the identification of pheromone receptor genes in *Rhodotorula toruloides*, the rcb1 gene from *Coprinopsis cinereus* (accession number Y11082) was used to perform a Tblastx search (4) in the *S. roseus* genome sequencing project database (JGI; http://genome.jgi-psf.org/Sporo1/Sporo1.home.html). Positive hits were retrieved and used to search the NCBI Trace Archive sequences of *S. salmonicolor*, yielding an assembled sequence for the SsSTE3 gene. The SsSTE3 and SsSTE3 genes were in turn aligned with other basidiomycete pheromone receptor genes (PDSTE3.3 gene from *Pleurotus djamor* [AY626110], bbr1 from *Schizopyllum commune* [U74495], and STE3a from *Cryptococcus neoformans var. neoformans* [XM_570116]), and the conserved regions were used to design degenerate primers (NCAR3Fw and NCAR4Rev) (see Table S1 in the supplemental material). These degenerate primers were used in PCRs with genomic DNA from *R. toruloides* but failed to yield an amplification product. A similar reaction using as template genomic DNA from a closely related species (*Rhodotorula glutinis*) produced an amplification product which was directly sequenced and found to encode a partial open reading frame (ORF) of a STE3-like pheromone receptor. The new sequence was used to refine the design of a second set of primers for *R. toruloides* (NCAR5STE3Fw and RHA1Rev) (see Table S1 in the supplemental material). The assembly of DNA sequences was performed using SeqMan II software (Premier Biosoft International). The assembly of DNA sequences was performed using ClustalW (37) and T-Coffee (28), respectively.

Nucleotide sequence accession numbers. The accession numbers for the novel *R. toruloides* DNA sequences are as follows: EU386160 (RiSTE20.A1, *Pycc 4416*, fragments 1 and 2) (Fig. 1); EU386161 (RiSTE20.A2 and RHA2.A2, *Pycc 4661*, fragments 3 to 6) (Fig. 1); EU401861 and EU401862 (RiSTE20.A1, *Pycc 5082*, and RiSTE20.A2, *Pycc 4417*, respectively; region corresponding to the fragments 3 and 4) (Fig. 1); EU401863 (RiSTE3.A1, *Pycc 4416*, partial sequence).

RESULTS

MAT status of *R. toruloides* strains. To characterize genomic regions involved in mating in *R. toruloides*, the four strains to be studied (two of each mating type) were tested for their ability to mate and form hyphae with clamp connections and teliospores, characteristic of the sexual cycle in this yeast (10). All four strains were fertile, MAT A1 isolates mated only with MAT A2 isolates, and none of the strains were self-fertile. The mating results were in accord with the presence of the pheromone precursor genes previously described by Fukui and co-workers (2) (*RHA1, RHA2, and RHA3*), since they were detected by PCR with gene-specific primers only in strains that mated as MAT A1 in cross experiments.

FIG. 1. Structure of the STE20 region of the MAT A1 and MAT A2 loci of *R. toruloides*. Coding regions are shown as gray arrows, indicating the direction of transcription, and the transcribed regions identified by Akada et al. (2) are shown as black boxes. Genomic DNA fragments 1 to 6 were obtained either by genome walking or by PCR with gene-specific primers. The primers used in each case are indicated by arrowheads (see Table S1 in the supplemental material).
Genomic regions in the vicinity of the pheromone precursor genes in R. toruloides MAT A1. Two of the pheromone precursor genes previously identified (RHA2 and RHA3) were found to be located close to each other on opposite DNA strands (2) (Fig. 1), while the location of the third gene (RHA1) in relation to the former remained to be established. Since in basidiomycetes the genes encoding pheromone precursors have so far been found almost invariably inside the MAT loci, we used the sequences of the three RHA genes as anchors for a genome walking approach to explore the adjacent regions, presumed to be part of the MAT A1 locus in this yeast.

To this end, a genome walking approach was designed that resulted in the amplification of a 0.7-kb genomic DNA fragment upstream of the RHA2 gene (Fig. 1, fragment 1). Sequencing of this fragment revealed two notable features: first, a region of 204 bp located immediately upstream of the RHA2 gene was found to be identical to the corresponding region upstream of the RHA3 gene sequenced by Akada et al. (2); second, a region of approximately 200 bp at the 5’ end of the fragment turned out to encode a peptide with strong similarity to the catalytic domain of PAK kinases (19). To investigate whether this was part of a PAK kinase gene, the entire intervening genomic region between the RHA2 and RHA3 genes was amplified and sequenced by primer walking (Fig. 1, fragments 1 and 2). This region was indeed found to contain a putative PAK kinase gene (named RtSte20), homologous to genes found in, for example, Ustilago maydis, Cryptococcus neoformans, and Pneumocystis carinii (32, 33, 38). In silico analysis predicted the presence of at least four introns in this gene.

The RtSte20 gene is mating type specific in R. toruloides MAT A1. Since the RtSte20 gene is located between two mating type-specific genes, we anticipated that it would be part of the MAT A1 locus. In this case, its sequence would be expected to exhibit mating type-specific polymorphisms. To investigate this, the RtSte20 gene was amplified and sequenced almost completely in the four strains under study (the regions sequenced, approximately 1.7 kb, correspond to fragments 3 and 4 depicted in Fig. 1). The sequences were indeed found to be almost identical between alleles obtained from strains of the same mating type (eight differences between the two MAT A1 strains and three differences between the two MAT A2 strains). However, sequences obtained for the opposite mating types had approximately 80 single nucleotide differences, which would lead to nine amino acid changes in the conserved domains of the RtSte20 protein (see Fig. S1 in the supplemental material). The large majority of the nucleotide differences between the two alleles were, however, located in less-conserved regions of the RtSTE20 gene. This observation supports the conclusion that RtSte20 is a mating type-specific gene in R. toruloides.

A putative pheromone precursor gene in R. toruloides MAT A2. To explore the organization of the MAT A2 locus of R. toruloides, the region around the RtSTE20 gene in MAT A2 strain PYCC 4661 was analyzed by genome walking. A fragment of 2 kb downstream of the STE20 gene was amplified and sequenced (Fig. 1, fragment 5). A completely dissimilar sequence was found downstream of the RtSTE20 gene in the MAT A2 strain when compared to the same region in a MAT A1 strain (encoding the RHA2 gene). To ascertain if this region also encoded a pheromone precursor, the sequence was examined for the presence of an open reading frame exhibiting characteristics in keeping with the general features of previously characterized pheromone precursor genes (6, 7). Indeed, a region was found potentially encoding two identical copies of a 13-amino-acid peptide and exhibiting at the C terminus a sequence of four amino acids (CAAX motif) very similar to that of the MAT A1 pheromone precursors (Fig. 2 and 3). The most likely initiation codon is preceded by two CT-rich regions (Fig. 2), one of which is identical to that found upstream of the transcription initiation site of the RHA (MAT A1) genes (2). Therefore, we postulate that this novel gene, named RHA2, encodes a precursor of the peptide moiety of the R. toruloides MAT A2 pheromone (rhodotorucine α).

Mating type specificity of RtSTE20/RHA regions. In order to check linkage between mating behavior and the presence of the newly identified RHA2/A2/STE20 region, a specific primer based on the RHA2/A2 coding region was used in a MAT A2 diagnostic PCR in combination with a RtSTE20 forward primer. A total of 14 additional strains (five MAT A1 and nine MAT A2) whose mating behavior was previously checked were tested for the presence of the putative MAT A2 locus sequences. As expected, an amplicon was obtained only for MAT A2 strains (results not shown). Conversely, when the same
RHA2 primer was used in combination with a primer based on the RHA2 (MAT A1) coding sequence in a PCR assay with the same strain set, only MAT A1 strains yielded an amplification product (results not shown). These results strongly suggest that this region is indeed part of the MAT locus of R. toruloides. Notably, one R. toruloides isolate (A399) (16), which was not included in the previous strain set because it exhibited ambiguous mating behavior (apparent sexual compatibility with several MAT A1 and MAT A2 strains), tested positive in both MAT A1 and MAT A2 diagnostic PCR assays, although amplification of MAT A1 sequences was weaker than observed for MAT A1 strains.

Direct evidence of linkage of the characterized genomic region in R. toruloides to MAT by genetic analysis of F1 progeny was not possible since basidiospores form only upon germination of teliospores embedded in the agar medium and are thus not easily subjected to micromanipulation.

Comparison with syntenic genomic regions from related red yeasts. A search in the recently released genome data of Sporobolomyces roseus for genes with a high percent sequence similarity with the catalytic domain of RHA1 revealed a genomic region of approximately 40 kb that was not easily subjected to micromanipulation.

FIG. 3. Alignment of the predicted pheromone precursor peptides from the three sporidiobolaceous species, as deduced from the sequence of the respective genes: RHA (R. toruloides), SsRHA (S. salmonicolor), and SrRHA (S. roseus). Sequences representing the mature pheromones are shadowed, and the sequences resembling the CAAX prenylation motif are underlined in the C terminus of each precursor.
synteny, including the presence of the gene encoding the RNA Pol III subunit between the \textit{STE3} and \textit{RHA1} genes (Fig. 4B). Search for putative HD homologs in \textit{S. roseus}. We found a gene encoding a putative HD1 homolog in the \textit{S. roseus} genome (scaffold 7, contig 11). Blastp searches in fungal protein databases using part of the sequence of the encoded protein retrieve most of the basidiomycetous HD1 proteins previously characterized. No HD2 candidates with such characteristics were found, although additional genes potentially encoding homeodomain proteins were identified in the \textit{S. roseus} genome. The gene encoding the putative HD1 homolog was recently annotated in the \textit{S. roseus} genome, but at this stage of the assembly of the sequence data the distance to the \textit{STE20/RHA} region cannot be precisely determined. However, even if they lie on the same chromosome, the distance of the Sr\textit{STE20} core to this HD1 candidate would be necessarily in excess of 600 kb, as judged from the positions of the genes within the scaffolds; the shortest distance to one of the ends of the respective scaffolds is 213 kb (\textit{STE20} scaffold) and 410 kb (\textit{HD1} scaffold), respectively. The region around this putative HD1-like gene was carefully screened for the presence of a HD2 homolog, since in most basidiomycetous \textit{MAT} loci the \textit{HD1} and \textit{HD2} genes are closely linked and divergently transcribed. However, no HD2 candidate gene was found, even when the homology searches using tBlastx were extended to the entire genome. Nevertheless, it should be noted that the presence of introns may considerably complicate this kind of search based on a short conserved region, as for example in the case of the Sxi2a gene (HD2 homolog) of \textit{Cryptococcus neoformans} (21).

DISCUSSION

In this paper we present the first insight into the structure of the \textit{MAT} locus of a group of fungi that has remained unexplored in this respect. While the basis of the work consisted of the identification of novel genomic regions in \textit{Rhodosporidium toruloides}, we have also analyzed syntenic genomic regions in two additional species belonging to the \textit{Sporidiobolales}, namely, \textit{Sporobolomyces roseus} and \textit{Sporidiobolus salmonicolor}. We found that two of the \textit{R. toruloides} pheromone precursor genes previously characterized by Akada et al. (2) flanked a gene potentially encoding a kinase of the PAK family, whose homologs were also present in the \textit{S. roseus} and \textit{S. salmonicolor} genomes. These three PAK kinase orthologs encode proteins that possess the two functional domains common to the entire PAK kinase family, namely, a highly conserved C-terminal catalytic domain and a CRIB domain (cdc42/ras interaction binding domain) (see Fig. S1 in the supplemental material). In addition, they have a third domain (PH-pleckstrin homology) (see Fig. S1 in the supplemental material) that is present in a subset of the PAK family members, such as the Ste20 kinases of \textit{Cryptococcus neoformans} and \textit{C. gattii} (38) and the Cla4 kinase of \textit{Ustilago maydis} (26). The former proteins were...
shown to be involved in mating or required for the onset of the filamentous phase and are present in the MAT loci of the two Cryptococcus sibling species. However, the MAT-specific alleles of STE20 have diverged considerably more in C. neoformans than in R. toruloides (approximately 70% versus 90% sequence identity) (Fig. 5). It is therefore unlikely that the two R. toruloides proteins exhibit functional dissimilarities comparable to those found for the C. neoformans MAT-specific kinases (38).

The rhodorurine A (RHA) genes were the first pheromone precursor genes whose structure was determined in basidiomycetes (2). The same authors (23, 24) had previously determined the chemical structure of the mature pheromone as a lipopeptide (farnesyl-undecapetide), in which the C-terminal cysteine of the peptide moiety was shown to be covalently linked to a farnesyl group through a thioether bond. That was the first demonstration of this type of posttranslational modification, of the peptide moiety was shown to be covalently linked to a farnesyl-undecapetide, in which the C-terminal cysteine of the peptide moiety was shown to be covalently linked to a farnesyl group through a thioether bond. That was the first demonstration of this type of posttranslational modification, which was subsequently found in many other fungal pheromones, such as the a factor of Saccharomyces cerevisiae, as well as in other eukaryotic proteins (6, 7).

Like other prenylated proteins, the predicted rhodorurine A precursors contain a C-terminal CAAX motif (2), where A stands for an aliphatic amino acid and X for any amino acid (often an alanine in fungal pheromones) (7). The C-terminal motif of the rhodorurine A precursor is actually CTVA, where threonine does not conform to the general pattern of fungal lipopeptide pheromones, which have either valine, isoleucine, or leucine as the middle amino acids (7, 27). However, recently Schirawski et al. (31) predicted six pheromone precursors in the smut Sporisorium reilianum, four of which have a terminal CTIA motif. The rhodorurine A precursors are, nevertheless, unique among fungal lipopeptide pheromones, since they contain multiple tandem copies of the peptide moiety (2, 7). Akada et al. (2) suggested that those multiple repeats could have originated by an unequal crossing-over mechanism. The same authors (2) also affirmed that the production of multiple peptides per mole of precursor (as well as the presence of multiple RHA genes) may increase the production of the mating pheromone per cell and that this may be a prerequisite for the poorly diffusible small lipophilic peptides to function effectively. In fact, the mating reaction in R. toruloides appears to be triggered by the production of rhodorurine A by MAT A1 (or A) cells, according to the chain of events suggested by Abe et al. (1). The other unusual trait of the rhodorurine A precursors is that CAAX motifs are present between the repeats, where they are followed by a lysine residue, which has been proposed as a signal for proteolytic processing (2, 6).

Our findings provide interesting new insights into this topic. On one hand the putative rhodorurine a precursor predicted from the RHA2.A2 gene sequence appears to have also a CAAX C-terminal motif (CTIA instead of CTVA) but only two repeats of the peptide moiety, which are apparently preceded by a much longer N terminus tail and separated by a longer peptide spacer (Fig. 3). These differences suggest that the pheromone precursor genes of the two opposite mating types of R. toruloides could be processed by different mechanisms. On the other hand our analyses of the S. roseus and S. salmonicolor genome data revealed the presence of three putative pheromone precursor genes which resemble those of R. toruloides MAT A1 (Fig. 3). The presence of three pheromone precursor genes in the three species examined, each encoding three to six copies of the mature peptide moiety, suggests that they have in common the production of abundant pheromone per cell and that this may be a prerequisite for the poorly diffusible small lipophilic peptides to function effectively. In contrast with tetrapolar species, like U. maydis, where mate recognition requires a second level of compatibility determined by the multiallelic mating type b locus, which encodes the bE and bW homeodomain transcription factors.

One striking difference between the RHA genes of R. toruloides and those found in the other two species is that the C-terminal motifs of the latter appear not to correspond to CAAX boxes. However, a lysine residue is present in the C terminus of the S. roseus and S. salmonicolor precursors immediately after a putative CAAX box and may signal a proteolytic processing site that could produce a CAAX-bearing intermediate. In all three sporidiobolaceous species, the internal CAAX boxes (as well as the putative terminal CAAX

FIG. 5. Phylogenetic tree showing the relationships between PAK kinases from different fungi, based on alignment of the respective protein sequences. Kinases lacking the PH domain are located in the gray branch of the tree. The sequences used and respective accession numbers are listed in Table S4 of the supplemental material, and the alignment of the three conserved domains in a subset of the proteins is shown in Fig. S1 of the supplemental material. The evolutionary distances were computed using Protdist (JTT matrix-based method) (12). Neighbor-joining (12) and MEGA4 (36) were used to construct and visualize the phylogenetic tree. Numbers on branches are bootstrap values inferred from 10,000 replicates (values below 50% are not shown).
motifs of the *S. roseus* and *S. salmonicolor* precursors) have the consensus sequence C(T/I)VS, where the terminal amino acid is a serine instead of alanine (Fig. 3). However, the former amino acid is also compatible with a potential farnesylation of the terminal cysteine of the peptide moiety (7).

In the bipolar basidiomycetes *Cryptococcus neoformans* and *Ustilago hordei*, the MAT loci are large and multigenic (100 kb and 500 kb, respectively) and encompass both a pheromone-receptor gene region and a region encoding homeodomain transcription factors (5, 25). We did not come across candidate homeodomain transcription factor genes upon inspection of a 40-kb genomic region surrounding the pheromone precursor and pheromone receptor genes in *S. roseus*, but a very likely *HD1* candidate was found at a distant location in the genome. This could mean that the MAT locus extends beyond the region inspected in *S. roseus* or that the homeodomain transcription factors are not linked to the MAT locus in this species, a situation corresponding to the *Aon MAT* status proposed by Fraser et al. (15) as one of the possible modes of transition from tetrapolar to bipolar mating systems. The other instance of a bipolar basidiomycete whose MAT locus structure has been elucidated, the mushroom *Coprinellus disseminatus*, is an example of the reverse situation with respect to MAT locus content, since in this case mating type identity is conferred by a short locus containing one or two pairs of closely linked homeodomain transcription factor genes but the pheromone and pheromone receptor genes are not mating type specific (9, 22). However, it should be kept in mind that although *S. roseus* is the only species in the *Sporidiobolales* for which the entire genome is available for scrutiny, it has been deemed an assexual species and therefore its MAT gene organization cannot be unequivocally linked to a functional sexual cycle. On the other hand, the sequenced *S. roseus* strain may well correspond to a haploid mating type of a yet-unrecognized sexual species, a situation frequently encountered among basidiomycetous yeasts (11). In favor of the latter hypothesis is the fact that none of the putative *S. roseus* MAT genes examined showed any sign of being degenerated or nonfunctional. On the other hand, *S. salmonicolor* is a heterothallic species, and the sequenced strain (IAM 12258, CBS 483) has a known mating status (MAT A2) (35).

Putative pheromone receptor genes (*STE3* homologs) with a high degree of sequence identity were found in *R. toruloides* MAT A1 strains and in the other two sporidiobolaceous species. In *R. toruloides* and *S. roseus* the genes appear to be located upstream of the RHA1 gene, with the same gene unrelated to mating (a subunit of RNA Pol III) in between. Therefore, also in this region, located in *S. roseus* at a distance of approximately 10 kb from the *Ste3* core, a strict synteny occurs between the three species (Fig. 4). Since the pheromone receptor gene remains to be identified in MAT A2 strains of *R. toruloides*, it is so far unknown whether the MAT A2 locus is also syntenic in this region. The strong sequence similarity observed between the Ste3 proteins and even between the putative mature pheromone regions in the three species suggests that the three MAT loci depicted in Fig. 3 represent the "same mating type," analogous to MAT A1 in *R. toruloides*. The limited amount of information available for the opposite mating type (restricted to the *RtSTE20.A2* and *RHA2.A2* genes in *R. toruloides*) precludes any conclusion with respect to extended MAT synteny conservation between the two mating types.

In conclusion, our results strongly suggest that the studied group of bipolar basidiomycetes possess extended multigenic MAT loci, containing both mating-related and unrelated genes. This gene content resembles that of the MAT locus of the distantly related bipolar *Cryptococcus* species (14). However, the apparent high level of synteny observed between the three sporidiobolaceous species is in sharp contrast with the highly variable MAT gene order and orientation observed in the *Cryptococcus* species. Future studies will be aimed at a more complete definition of the *Sporidiobolales* MAT loci, with special emphasis on the identification of additional MAT gene candidates, determination of the full extension of the MAT loci, and investigation of the role of homeodomain transcription factors in sexual reproduction. The recent release of genomic data from two other fungi in the *Pucciniozyma* (Puccinia graminis and Microbotryum violaceum) (39) and the future completion of the *Rhodosporidium babjevae* genome (an ongoing sequencing project at the JGI) will also contribute to placing our findings in a broader context and help to retrace the evolution of the MAT loci in this basidiomycete subphylum.

ACKNOWLEDGMENTS

The work was partially supported by project POCTI/BME/44322/2002 and Ph.D. grant SFRH/BD/29580/2006 (M.C.) from the Portuguese Foundation for Science and Technology. We thank Kenneth Wolfe (Smurfit Institute of Genetics, University of Dublin) for providing access to the *Sporobolomyces roseus* genome data before it was publicly available and José Paulo Sampaio (CREM, Universidade Nova de Lisboa) and coworkers for the *R. toruloides* strains.

ADDITIONAL IN PROOF

The strain sequenced by the JGI (IAM 13481), labeled as *Sporobolomyces roseus*, does not actually belong to that species, as was recently shown by Valerio et al. (Int. J. Syst. Evol. Microbiol. 58:736–741, 2008). It corresponds to an unnamed taxon with an unknown sexual status (see Fig. 2 of the above-mentioned paper).

REFERENCES

