AVALIAÇÃO POR TOMOGRAFIA COMPUTADORIZADA
DA AURÍCULA ESQUERDA E VEIAS PULMONARES
— CONTEXTO ANÁTOMO-CLÍNICO

HUGO MIGUEL RODRIGUES MARQUES
Tese para obtenção do grau de Doutor em Medicina
na Especialidade em Cirurgia e Morfologia Humana (Medicina da Imagem)
na NOVA Medical School | Faculdade de Ciências Médicas

Setembro, 2017
AVALIAÇÃO POR TOMOGRAFIA COMPUTADORIZADA
DA AURÍCULA ESQUERDA E VEIAS PULMONARES
— CONTEXTO ANÁTOMO-CLÍNICO

Hugo Miguel Rodrigues Marques

Orientadores:
Professor Doutor João Martins Pisco
Professor Catedrático Jubilado da NMS|FCM, UNL
Professor Doutor João Erse de Goyri O’Neill
Professor Catedrático da NMS|FCM, UNL
Prof. Dr. Pedro Manuel Pulido Garcia Adragão
Professor Auxiliar Convidado da NMS|FCM, UNL

Tese para obtenção do grau de Doutor em Medicina
na Especialidade em Cirurgia e Morfologia Humana (Medicina da Imagem)

Setembro, 2017
HUGO MIGUEL RODRIGUES MARQUES

AVALIAÇÃO POR TOMOGRAFIA COMPUTADORIZADA DA AURÍCULA ESQUERDA E VEIAS PULMONARES — CONTEXTO ANÁTOMO-CLÍNICO

Setembro, 2017
Cap I — Descrição Geral da Tese

Cap II
Aurícula Esquerda
— contexto anatómo-clínico

Cap III
TC cardíaca
— avaliação anatômica, funcional e valor prognóstico

Cap IV — Objetivos

Cap V
População

Cap VI
TC cardíaca
— Aspetos técnicos e Protocolos de aquisição

Cap VII
Av dimensional 2D, volumétrica, funcional e classificação anatômica. Base de dados e análise estatística

Material e Métodos

Resultados e Discussão

Cap VIII
Normograma volumétrico da Aurícula Esquerda em fase médio-diastólica. Aplicabilidade em doentes com FA

Cap IX
Caracterização anatômica e funcional da Aurícula Esquerda nos doentes com FA e seu contributo prognóstico para prever o sucesso da terapêutica percutânea

Cap X
Otimização dos exames de TC cardíaca prévios à ablação de FA

Cap XI — Discussão Global

Cap XII — Conclusão e Direcções para futuras investigações
Às minhas meninas e menino...
“Almeja o todo para ires conseguindo as suas partes...”

“Conhecer não é demonstrar nem explicar, é aceder à visão...”

Saint-Exupéry
A reprodução dos artigos publicados foi autorizada pelos respetivos editores.
ÍNDICE

15 Agradecimentos
17 Resumo
19 Acrónimos

21 Capítulo I — Descrição geral da tese
23 Sumário
25 1.1. Introdução Sumária da Tese
25 1.2. Descrição Sumária da tese

35 Capítulo II — Aurícula esquerda — Contexto anatómo-clínico
37 Resumo
39 Sumário
41 2.1. Introdução
42 2.2. Aurícula Esquerda
42 2.2.1. Morfologia
44 2.2.2. Dimensão
45 2.2.3. Função
47 2.2.4. Estrutura
48 2.2.5. Contributo prognóstico
49 2.3. Apêndice Auricular Esquerdo
50 2.3.1. Morfologia
50 2.3.2. Dimensão, Função e Estrutura
52 2.3.3. Contributo prognóstico
52 2.4. Veias Pulmonares
53 2.5. Fibrilhação Auricular
Capítulo III — TC Cardíaca — Avaliação anatômica, funcional e valor prognóstico

3.1. Introdução
3.2. TC Cardíaca
 3.2.1. Avaliação de doença coronária
 3.2.2. Avaliação morfo-funcional
 3.2.3. Valor prognóstico
3.3. TC Cardíaca em Doentes com Fibrilhação Auricular

Bibliografia
Anexos

Capítulo IV — Objetivos
4.1. Objetivos

Capítulo V — População
5.1. Introdução
5.2. Definição dos Grupos Populacionais:
 5.2.1. Normograma e caracterização anatómo-funcional e correlação prognóstica dos doentes com FA
 5.2.2. Otimização dos exames de TC cardíaco prévio à ablação de FA
245 Capítulo VI — TC Cardíaca — Aspetos técnicos e protocolos de aquisição

247 Resumo

249 Sumário

251 6.1. Introdução

251 6.2. Aspetos Técnicos

251 6.2.1. Cobertura crânio-caudal

252 6.2.2. Resolução de sinal, contraste, espacial e temporal

252 6.2.3. Técnicas de energia espetral

253 6.2.4. Dose de radiação

256 6.3. TC Cardíaca — Um ou Vários Estudos?

257 6.4. TC Cardíaca — Protocolos de Aquisição nos Diferentes Grupos Populacionais Âmbito desta Tese (Definidos no Capítulo V)

261 Bibliografia

263 Anexos

291 Capítulo VII — Avaliação dimensional 2D, volumétrica, funcional e classificação anatômica — Base de dados e análise estatística

293 Resumo

295 Sumário

297 7.1. Introdução

297 7.2. Avaliação Dimensional 2D, Volumétrica, Funcional e Classificação Anatômica

297 7.2.1. Avaliação dimensional 2D

300 7.2.2. Avaliação volumétrica

300 7.2.3. Avaliação funcional da AEsq

302 7.2.4. Avaliação da variabilidade intra-observador, inter-observador e inter-fase

302 7.3. Classificação Anatômica do Apêndice Auricular Esquerdo e das Veias Pulmonares

302 7.3.1. Classificação das Veias Pulmonares

303 7.3.2. Classificação do Apêndice Auricular Esquerdo

305 7.4. Bases de Dados e Análise Estatística

307 Bibliografia
Capítulo VIII — Normograma volumétrico da aurícula esquerda em fase médio-diastólica — Aplicabilidade a doentes com fibrilação auricular

311 Resumo
313 Sumário
315 8.1. Introdução
317 8.2. Métodos
319 8.3. Resultados
324 8.4. Discussão
325 8.5. Conclusão
326 Bibliografia
329 Anexos

Capítulo IX — Caracterização anatómica e funcional da Aurícula Esquerda nos doentes com FA e seu contributo prognóstico para prever o sucesso da terapêutica ablativa percutânea

355 Resumo
357 Sumário
359 9.1. Introdução e Objetivos
360 9.2. Material e Métodos
360 9.2.1. População
361 9.2.2. Protocolo de aquisição da TC
361 9.2.3. Classificação das veias pulmonares
361 9.2.4. Classificação do apêndice auricular esquerdo
362 9.3. Resultados
363 9.3.1. Grupo A
364 9.3.2. Grupo A2 – Grupo de doentes FA paroxística com FUP
368 9.3.3. Avaliação Dimensional e Funcional
371 9.3.4. Avaliação Prognóstica
375 9.4. Discussão
378 9.5. Conclusão
380 Bibliografia
Capítulo X — Otimização dos exames de TC cardíaca prévios a ablação de Fibrilação Auricular

Resumo
Sumário

10.1. Introdução
10.2. Métodos
10.3. Resultados
10.4. Discussão
10.5. Conclusão

Anexos

Capítulo XI — Discussão Global

11.1. Introdução
11.2. Discussão Global

Capítulo XII — Conclusões e direções para futura investigação

12.1. Conclusões
12.2. Direcções Para Futura Investigação

12.2.1. Relacionáveis com a área da otimização de protocolos de TC cardíaca, num contexto de exame único prévio a ablação de FA
12.2.2. Relacionáveis com o trabalho desenvolvido nesta tese
12.2.3. Relacionáveis com a TC no contexto de doença coronária
AGRADECIMENTOS

Agradeço aos orientadores desta tese, ao Professor Doutor Martins Pisco, ao Professor Doutor João Goyri O’Neill e ao Prof. Dr. Pedro Adragão o apoio e estímulo que demonstraram, a disponibilidade sempre presente e as perguntas desafiantes. Constituíram, na sua diversidade, uma mais valia inestimável.

À Dra Luísa Figueiredo, diretora do Serviço de Radiologia do Hospital de Santa Marta, onde me formei como Radiologista, o apoio incondicional, o estímulo na hora certa e os ensinamentos e carinho maternos que sempre me dispensou.

Ao Prof. Dr. Pedro Gonçalves, com quem iniciei a realização de exames de TC cardíaco e a UNICA (Unidade de imagem cardiovascular por TC e RM – Hospital da Luz), pela amizade e companheirismo. Pelo papel de enorme relevo que teve ao longo deste período, acreditando neste projeto. Pelo permitir ver por outros olhos, alargar horizontes, potenciando o complemento entre as nossas formações de base (Cardiologia e Radiologia).

Ao Dr. António Miguel Ferreira, membro da UNICA, com quem tive o privilégio de privar desde os tempos de estudante universitário, contribuindo decisivamente para o “estar sempre à procura”... que caracteriza a nossa amizade.

Ao Prof. Dr. Nuno Cardim, membro da UNICA pelos conselhos, ensinamentos e amizade.

Aos restantes constituintes da UNICA (técnicos e enfermeiros) pelo seu profissionalismo e competência, sem os quais o Serviço ao doente seria por certo inferior.
Aos colegas de serviço do Hospital da Luz e do Hospital de Santa Marta pelo apoio amigo sempre que necessário e o estímulo para perseverar.

Aos internos de Radiologia e Cardiologia que têm feito formação conosco, é da sua procura pelo conhecimento que alimento a minha.

Aos doentes, porque no final é por eles e para eles.

À família, frequentemente a mais sacrificada, mas cuja incondicionalidade, generosidade e afeto permitiu esta conquista.
RESUMO

A **Aurícula Esquerda** é uma câmara cardíaca com origem embriológica complexa que apresenta contributo prognóstico independente em diversas situações clínicas. É nela que tem origem a arritmia cardíaca crónica mais prevalente, a **Fibrilhação Auricular**, que afeta 2,5% dos portugueses com mais de 40 anos.

A fibrilhação auricular apresenta relevante morbi-mortalidade *per se* e pela frequente associação a terapêutica anti-agregante ou anti-coagulante.

A Ablação Percutânea da fibrilhação auricular é um tratamento com crescente aplicabilidade, seguro, com bons resultados globais, mas com taxas de recidiva a longo prazo relativamente altas. É habitualmente precedido da realização de exame de **tomografia computorizada cardíaca** para avaliação anatómica e, por vezes, com intuito de excluir trombo intra-cavitário.

A informação contida no exame de TC quer anatómica quer funcional poderá ter relevância prognóstica e ajudar a uma escolha otimizada dos doentes que irão beneficiar mais do tratamento, potenciando o binómio custo-benefício.

A **TC cardíaca** para avaliação coronária tem assistido a um enorme aumento de utilização apropriada, sendo considerada por algumas sociedades o exame de primeira linha para avaliação do doente com dor torácica estável de possível etiologia cardíaca. Estima-se que a aplicação destas *guidelines* condicione um crescimento de cerca de 600% no número destes exames. A evolução tecnológica que acompanhou o desenvolvimento destas técnicas de TC cardíaca permite, hoje, a avaliação das coronárias na grande maioria dos casos com informação obtida **apenas em fase médio-diastólica** (cerca de 70% do intervalo entre onda R (RR)). A ausência de informação telesistólica e telediastólica não permite a avaliação funcional cardíaca. A avaliação
dimensional das câmaras cardíacas fica igualmente condicionada pela inexistência de normogramas para essa fase do ciclo cardíaco (70% do RR).

Neste contexto, foi possível desenvolver um normograma do volume da aurícula esquerda em fase médio-diastólica. Confirmámos uma boa correlação entre os volumes obtidos a 70% do intervalo RR e os volumes máximos, e criámos uma regressão para obter o volume máximo da aurícula esquerda com base no diâmetro axial máximo e altura máxima em plano sagital avaliado a 70% do intervalo RR. Esta regressão permite, de forma eficiente e sem necessidade de software dedicado, fazer a avaliação quantitativa da aurícula esquerda na maioria dos exames de coronariografia por TC, inclusive naqueles que, por utilizarem tecnologia mais recente, adquirem informação apenas na fase medio-diastólica. A aplicabilidade deste normograma a doentes com FA foi testada, tendo permitido identificar todos os doentes com FA que tinham dilatação da AESq.

Descobrimos um marcador anatômico (o padrão de drenagem das veias pulmonares à direita) com relevância significativa e independente na taxa de recidiva após ablação percutânea da fibrilhação auricular.

Identificámos fatores identificáveis na TC cardíaca, efetuada em contexto prévio à ablação de FA, que se correlacionam com o score de risco de eventos embólicos CHA₂DS₂-VASc, lançando assim os fundamentos para um eventual score incluindo parâmetros clínicos e imagiológicos.

Por fim, analisámos a otimização do protocolo e a qualidade de imagem dos exames de TC cardíaca realizados num contexto pré-ablação e foi possível descrever um protocolo, com doses de radiação submilisivert e sem condicionar a qualidade de imagem.
<table>
<thead>
<tr>
<th>ACRÓNIMOS</th>
<th>SIGNIFICAÇÕES</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEsqFej</td>
<td>Fração de ejeção da aurícula esquerda</td>
</tr>
<tr>
<td>AEsqFejACT</td>
<td>Fração de ejeção ativa da aurícula esquerda</td>
</tr>
<tr>
<td>ASC</td>
<td>Área de superfície corporal</td>
</tr>
<tr>
<td>AVC</td>
<td>Acidente vascular cerebral</td>
</tr>
<tr>
<td>AIT</td>
<td>Acidente isquémico transitório</td>
</tr>
<tr>
<td>bpm</td>
<td>batimentos por minuto</td>
</tr>
<tr>
<td>CSVE</td>
<td>Câmara de saída do ventrículo esquerdo</td>
</tr>
<tr>
<td>DM</td>
<td>diabetes mellitus</td>
</tr>
<tr>
<td>DPOC</td>
<td>Doença pulmonar obstrutiva crónica</td>
</tr>
<tr>
<td>DRC</td>
<td>Doença renal crónica</td>
</tr>
<tr>
<td>FBP</td>
<td>Filtered Back Projection</td>
</tr>
<tr>
<td>FC</td>
<td>Frequência cardíaca</td>
</tr>
<tr>
<td>Fej</td>
<td>Fração de ejeção</td>
</tr>
<tr>
<td>FFR</td>
<td>Fractional flow reserve</td>
</tr>
<tr>
<td>HTA</td>
<td>Hipertensão arterial</td>
</tr>
<tr>
<td>IMC</td>
<td>Índice de massa corporal</td>
</tr>
<tr>
<td>IVUS</td>
<td>Intravascular ultrasound</td>
</tr>
<tr>
<td>KeV</td>
<td>Kilo electrão volt</td>
</tr>
<tr>
<td>kV</td>
<td>Kilo Volt</td>
</tr>
<tr>
<td>MD</td>
<td>médio-diastólico</td>
</tr>
<tr>
<td>OCT</td>
<td>Optic Coerence Tomography</td>
</tr>
<tr>
<td>RM</td>
<td>Ressonância magnética</td>
</tr>
<tr>
<td>ROI</td>
<td>Region of interest</td>
</tr>
<tr>
<td>RR</td>
<td>intervalo RR</td>
</tr>
<tr>
<td>SCA</td>
<td>Síndroma coronário agudo</td>
</tr>
</tbody>
</table>
TArt Tensão arterial
TC Tomografia cardíaca
VAAEsq Volume apêndice auricular esquerdo
VAAEsqMax Volume máximo do apêndice auricular esquerdo
VAAEsqMaxi Volume máximo indexado do apêndice auricular esquerdo
VAAEsqMin Volume mínimo do apêndice auricular esquerdo
VAAEsqMini Volume mínimo indexado do apêndice auricular esquerdo
VAAEsqPS Volume pré-sistólico do apêndice auricular esquerdo
VAEsq Volume da aurícula esq
VAEsqMax Volume máximo da aurícula esquerda
VAEsqMaxi Volume máximo indexado da aurícula esquerda
VAEsqMin Volume mínimo da aurícula esquerda
VAEsqMini Volume mínimo indexado da aurícula esquerda
VAEsqPS Volume pré-sistólico da aurícula esquerda
VPEsq Veia pulmonar esquerda (tronco comum de drenagem)
VPIDrt Veia pulmonar inferior direita
VPIEsq Veia pulmonar inferior esquerda
VPM Veia pulmonar média
VPSDrt Veia pulmonar superior direita
VPSEsq Veia pulmonar superior esquerda
vs versus
CAPÍTULO I

Descrição geral da tese
SUMÁRIO

<table>
<thead>
<tr>
<th>Página</th>
<th>Conteúdo</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>1.1. Introdução Sumária da Tese</td>
</tr>
<tr>
<td>25</td>
<td>1.2. Descrição Sumária da Tese</td>
</tr>
<tr>
<td>29</td>
<td>Anexos:</td>
</tr>
<tr>
<td></td>
<td>1. Aprovação pela comissão de ética</td>
</tr>
<tr>
<td></td>
<td>2. Folha de consentimento informado.</td>
</tr>
</tbody>
</table>
1.1. INTRODUÇÃO SUMÁRIA DA TESE

Foi num contexto de enorme desenvolvimento tecnológico e de aplicabilidade clínica apropriada da TC cardíaca que surgiu o tema desta tese, procurando conciliar o conhecimento anatômico com relevância clínica às mais valias que as novas técnicas de imagem poderiam dar.
Assim foi escolhida uma aplicação recente da TC cardíaca, como a avaliação única do doente no contexto pré-ablativo e procurou-se otimizar a técnica quer a nível do protocolo de aquisição, quer na utilização de toda a informação possível de ser obtida que pudesse ter relevância clínica e prognóstica.
A esta intensão, associou-se o projeto complementar da avaliação dimensional da AEsq, procurando antecipar necessidades futuras quando os aparelhos de TC no futuro permitissem a avaliação coronária apenas em fase medio-diastólica na grande maioria dos doentes. Aqui o futuro é hoje, enaltecedo a importância do normograma que apresentamos.

1.2. DESCRIÇÃO SUMÁRIA DA TESE

A tese está dividida em 12 capítulos, cuja organização é ilustrada pela Figura 1.
No presente capítulo (*capítulo I*) faz-se uma introdução sumária ao tema e aos motivos da tese.

A **INTRODUÇÃO** subdivide-se em dois capítulos de contextualização.
No **Capítulo II** abordamos o contexto anatômico e clínico.
No **Capítulo III** centramos as atenções no método de imagem utilizado a tomografia computorizada.

O **Capítulo IV** é dedicado aos **OBJETIVOS** da tese.

O **MATERIAL E MÉTODOS** encontra-se dividido em 3 capítulos.
No **Capítulo V** descrevemos os diferentes grupos da população de estudo.
No **Capítulo VI** fazemos uma introdução complementar às questões técnicas relevantes da TC para posteriormente descrevermos os protocolos de aquisição das TC cardíacas em cada grupo de estudo.
No **Capítulo VII**, descrevemos em detalhe a forma de obtenção dos dados quantitativos de dimensões 2D, volumétricos e funcionais, para além das classificações utilizadas para caracterizar o AAEsq e o padrão de drenagem das veias pulmonares. Ainda neste capítulo fazemos uma breve revisão dos métodos estatísticos utilizados.

Os **RESULTADOS E DISCUSSÃO** são âmbito de 3 capítulos, um para cada objetivo da tese.
Assim, no **Capítulo VIII** apresentamos o normograma volumétrico da aurícula esquerda em fase médio-diastólica.
No **Capítulo IX** fazemos a caracterização anatômica e funcional da aurícula esquerda e exploramos o seu contributo prognóstico na determinação de sucesso da terapêutica ablativa percutânea.
No **Capítulo X** fazemos a avaliação da otimização do protocolo de TC cardíaca como exame único, prévio à ablação percutânea de FA.

O **Capítulo XI**, de discussão global, procura sumarizar e agregar, correlacionando os três capítulos anteriores

No **Capítulo XII** descrevem-se as **CONCLUSÕES e lançam-se desafios**.
FIGURA 1
Organização dos diferentes capítulos da Tese
ANEXOS
HOSPITAL DA LUZ

COMISSÃO DE ÉTICA PARA A SAÚDE

Exmo. Sr.
Dr. Hugo Marques
Unidade de Imagiolegia
Hospital da Luz

Assunto: AVALIAÇÃO POR TOMOGRAFIA COMPUTORIZADA DA AURÍCULA ESQUERDA E VEIAS PULMONARES - CONTEXTO ANÁTOMO-CLÍNICO

CC.: Director Clínico / Conselho de Administração

A Comissão de Ética para a Saúde do Hospital da Luz, reunida a 15 de Abril de 2009 aprovou por unanimidade a realização do estudo clínico AVALIAÇÃO POR TOMOGRAFIA COMPUTORIZADA DA AURÍCULA ESQUERDA E VEIAS PULMONARES - CONTEXTO ANÁTOMO-CLÍNICO de que V. Exa. é investigador principal.

Com os melhores cumprimentos

Lisboa, 15/04/2009

Pel'A Comissão de Ética para a Saúde

João Sá, Presidente
QUESTIONÁRIO ANGIOTCS CARDÍACAS

Foi-lhe solicitada pelo seu médico assistente a realização de uma angioTC cardíaca. O centro de Imagioologia do Hospital da Luz é uma referência nesta área, fruto não só do elevado número de exames mas sobretudo da investigação científica, apresentada regularmente em reuniões nacionais e internacionais de Cardiologia e de Imagioologia e estando em curso 2 teses de doutoramento nesta área.

Para este efeito, gostaríamos de pedir a sua colaboração no preenchimento deste questionário, cuja informação (bem como o resultado do seu exame) será introduzida numa base de dados, para análise pelos médicos responsáveis pelos exames de angioTC cardíaca. Será sempre respeitada a sua confidencialidade, retirada a sua identificação de qualquer imagem que possa vir a ser apresentada e/ou publicada, estando estes dados abrangidos pelo obrigatório “segredo médico profissional”.

Tem tensão arterial elevada ou toma medicação para a tensão arterial?
☐ SIM ☐ NÃO

Tem o colesterol elevado ou toma medicação para o colesterol?
☐ SIM ☐ NÃO

Tem diabetes?
☐ SIM ☐ NÃO

É fumador (ou ex-fumador há menos de 1 ano)?
☐ SIM ☐ NÃO

Tem história de doença cardiovascular na família (enfarote do miocárdio ou acidente vascular cerebral - AVC)?
☐ SIM ☐ NÃO

Se sim, esses antecedentes são num familiar direto (Pai, Mãe, Irmãos) e em idade prematura (num homem <55 anos; numa mulher <65 anos)?
☐ SIM ☐ NÃO

Sabe o nome dos medicamentos que toma regularmente?
__

Autorizo que os meus dados sejam incluídos em bases de dados para investigação científica e aceito ser eventualmente contactado telefonicamente de futuro para seguimento e atualização da minha situação clínica.

Data____/____/________ Assinatura__
CAPÍTULO II

Aurícula esquerda

Contexto anatómo-clínico
RESUMO

A aurícula esquerda (AESq) centra as atenções do trabalho investigacional produzido nesta tese.

É uma câmara cardíaca com origem embrionária complexa, que apesar da interdependência com o ventrículo esquerdo, apresenta contribuição prognóstica independente em diversas situações clínicas.

Este capítulo faz a contextualização anatómica e clínica da aurícula esquerda, com especial ênfase na principal doença com ela relacionável, a fibrilhação auricular (FA) e o método terapêutico ablativo percutâneo.

Fomos coautores de dois manuscritos, o primeiro que versa o desenvolvimento de um score preditor de recidiva de FA após terapêutica ablativa percutânea (Manuscrito 1) e o outro sobre a comparação de duas formas ablativas em relação à segurança e sucesso do procedimento (Manuscrito 2).

MANUSCRITOS

Manuscrito 1

Development and Validation of a Risk Score for Predicting Atrial Fibrillation Recurrence After a First Catheter Ablation Procedure — ATLAS score.

Manuscrito 2

SUMÁRIO

<table>
<thead>
<tr>
<th>Página</th>
<th>Título</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>2.1. Introdução</td>
</tr>
<tr>
<td>42</td>
<td>2.2. Aurícula Esquerda</td>
</tr>
<tr>
<td>42</td>
<td>2.2.1. Morfologia</td>
</tr>
<tr>
<td>44</td>
<td>2.2.2. Dimensão</td>
</tr>
<tr>
<td>45</td>
<td>2.2.3. Função</td>
</tr>
<tr>
<td>47</td>
<td>2.2.4. Estrutura</td>
</tr>
<tr>
<td>48</td>
<td>2.2.5. Contributo prognóstico</td>
</tr>
<tr>
<td>49</td>
<td>2.3. Apêndice Auricular Esquerdo</td>
</tr>
<tr>
<td>50</td>
<td>2.3.1. Morfologia</td>
</tr>
<tr>
<td>50</td>
<td>2.3.2. Dimensão, Função e Estrutura</td>
</tr>
<tr>
<td>52</td>
<td>2.3.2. Contributo prognóstico</td>
</tr>
<tr>
<td>52</td>
<td>2.4. Veias Pulmonares</td>
</tr>
<tr>
<td>53</td>
<td>2.5. Fibrilhação Auricular</td>
</tr>
<tr>
<td>54</td>
<td>2.6. Tratamento percutâneo da FA</td>
</tr>
<tr>
<td>54</td>
<td>2.6.1. Ablação percutânea de FA</td>
</tr>
<tr>
<td>56</td>
<td>2.6.2. Oclusão do AAesq</td>
</tr>
<tr>
<td>58</td>
<td>Bibliografia</td>
</tr>
<tr>
<td>63</td>
<td>Anexos</td>
</tr>
</tbody>
</table>
2.1. INTRODUÇÃO

A aurícula esquerda (A Espresso) centra as atenções do trabalho investigacional produzido nesta tese.

É uma câmara cardíaca com origem embrionária complexa, que apesar da interdependência com o ventrículo esquerdo, apresenta contribuição prognóstica independente em diversas situações clínicas.

A aurícula esquerda resulta da fusão do botão embrionário das veias pulmonares com a aurícula esquerda primitiva, sendo que a sua porção de parede lisa resulta do botão embrionário das veias pulmonares, enquanto que a A Espresso primitiva, com a sua parede trabeculada dá origem ao apêndice auricular (I).

Esta diferença embriológica condiciona as diferenças anatômica/morfológica conhecidas, no entanto a sua relevância clínica carece de avaliação, nomeadamente na tradução de diferenças etiopatogénicas e prognósticas destas duas zonas.

São poucas as medições em Cardiologia com um impacto tão amplo como o da dimensão da AESg, que está, entre outros, independentemente associada ao risco de:

- FA e sua recorrência;
- eventos tromboembólicos;
- insuficiência cardíaca;
- enfarte do miocárdio;
- mortalidade cardiovascular
A ecocardiografia é o método imagiológico mais frequentemente utilizado para a avaliação da aurícula esquerda, no entanto subestima as dimensões da AESq quando comparada com a ressonância magnética (RM).

O aumento crescente da utilização da TC coronária, com a sua ótima capacidade de avaliação morfológica, aliada a obtenção de informação volumétrica (tridimensional), cria uma oportunidade de avaliação das câmaras cardíacas, incluindo a aurícula esquerda.

No entanto, é ainda uma área com alguns déficits de conhecimento básico e portanto com grande campo investigacional.

A fibrilação auricular é a arritmia crónica mais frequente, com morbidade e mortalidade relevante, sendo a AESq a peça central da sua génese, perpetuação e recidiva.

2.2. AURÍCULA ESQUERDA

A AESq participa no ajuste da volémia e no equilíbrio hemodinâmico, nomeadamente através de influência na natriurese, na vasodilatação, na inibição do sistema simpático e do sistema renina-angiotensina-aldosterona.

É igualmente um sensor de volume e um barómetro da função diastólica do ventrículo esquerdo (2).

2.2.1. Morfologia

A avaliação morfológica da AESq permite a exclusão de trombos e massas, assim como a detecção de variantes anatômicas, como divertículos e apêndices acessórios. Os divertículos da AESq são evaginações de parede lisa que podem ter um colo com diferente comprimento (ver Figura 1).

Já os apêndices acessórios são igualmente evaginações mas com parede crenada, com aparência semelhante à conferida pelos músculos pectíneos (ver Figura 2).

A frequência de divertículos tem sido descrita em cerca de 45% da população referenciada para a realização de TC cardíaca e a de apêndices acessórios em cerca de 5% (3).
Visualizam-se dois divertículos da AE esq na imagem volumétrica 3D. Na imagem axial oblíqua observamos a dimensão do maior divertículo.

(Imagens Hugo Marques – UNICA – Hospital da Luz.)

Apêndice acessório. Imagem de reconstrução 3 dimensional e numa imagem axial oblíqua mostrando a relação com o AAE esq principal.

(Imagens Hugo Marques – UNICA – Hospital da Luz.)

Estas estruturas poderão ter relevância na génese de doenças como a FA, mas podem também contribuir como locais de eventual maior probabilidade de formação de trombos (4). É ainda relevante o seu conhecimento prévio à terapêutica ablativa de FA ou de oclusão do AAE esq.
2.2.2. Dimensão

A avaliação da dimensão da aurícula esquerda pode ser realizada por avaliação de diâmetros, áreas ou volumes, sendo o volume a forma de avaliação dimensional com maior relevância prognóstica (5).

O volume depende tanto da pré-carga: função sobretudo da volémia; como da pós-carga: função sobretudo das propriedades elásticas e pressão do VEsq.

São causas de dilatação da AEsq: a sobrecarga de pressão, (condicionada por exemplo por estenose mitral ou disfunção diastólica do VEsq) e/ou a sobrecarga de volume (condicionada por insuficiência mitral, situações clinicas de débito cardíaco aumentado, shunts e fistulas).

O volume máximo indexado à superfície corporal (VAEsqMaxi) é a medida da aurícula esquerda com maior correlação com doença cardiovascular, conferindo uma estratificação de risco adequada e uniforme (6).

Há, no entanto, outros estudos que referem a importância do volume mínimo indexado (VAEsqMini), como sendo o que apresenta maior correlação com a disfunção diastólica do VEsq, tendo sido o melhor preditor de eventos cardiovasculares major — MACE (major adverse cardiac effects) (7) e o melhor preditor de desenvolvimento de FA (8).

FIGURA 3

Avaliação volumétrica da AEsq: efetuada desenhando regiões de interesse (ROI) limitadas pela parede da AEsq, excluindo o AAESq, as veias pulmonares e o VEsq, em cortes axiais consecutivos e posteriormente fazendo o somatório dos volumes resultantes (áreas x espessura de corte).

(Imagens Hugo Marques — UNICA — Hospital da Luz.)
2.2.3. Função
Classicamente descrevem-se três fases funcionais da AEsq:

> Função Reservatório — entre o fecho e a abertura da válvula mitral, durante a sístole ventricular.
Influenciada pela elasticidade da AEsq, pelo retorno venoso pulmonar e, de forma menos relevante, pela contractilidade e relaxamento da AEsq, pela descida da base do VEsq durante a sístole e pelo volume telesistólico do VEsq.

> Função Conduto — após a abertura da válvula mitral até à sístole auricular — durante parte da diástole ventricular.
Interligada à função reservatório e dependente da elasticidade da AEsq e da elasticidade e da capacidade de relaxamento do VESq.
Depende também da não obstrução provocada pela válvula mitral.

> Função Ativa/Bomba — durante a sístole da aurícula esquerda até ao encerramento da válvula mitral — fase final da diástole ventricular.
Reflecte a magnitude e timing da contracção da AEsq influenciada pela pré-carga (volume pré-sistólico da AEsq) e pela pós-carga (volume telediastólico do VEsq) e pela reserva sistólica do VEsq.
Contribui para cerca de 25% da fracção de ejeção do VEsq (9-12), tornando-se essencial na presença de disfunção diastólica do VEsq, em que é responsável por 50% do débito cardíaco.

Para a avaliação das fases funcionais da AEsq é necessário medir o volume auricular máximo (VAEsqMax), o volume auricular mínimo (VAEsqMin) e o volume auricular pré-sistole auricular (VAEsqPS) (ver Figura 4).
Assim, podemos determinar para além da função global da AEsq, o índice de expansibilidade — relacionável com a função reservatório; a função passiva — relacionável com a função conduto; a função ativa — relacionável com a função bomba.
TABELA 1
Avaliação funcional da AEsq — definições e fórmula de cálculo.

<table>
<thead>
<tr>
<th>Função reservatória</th>
<th>Índice de expansibilidade</th>
<th>Fração de Ejeção Passiva</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(VAEsqMax –VAEsqMin) / VAEsqMin</td>
<td>Volume sistólico passivo da AEsq</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(VAEsqMax –VAEsqPS) / VAEsqMax</td>
</tr>
<tr>
<td>Função conduto</td>
<td>Fração de Ejeção ativa (FejACT)</td>
<td>Fração de Ejeção ativa (FejACT)</td>
</tr>
<tr>
<td></td>
<td>Volume sistólico ativo da AEsq</td>
<td>Volume sistólico ativo da AEsq</td>
</tr>
<tr>
<td></td>
<td>(VAEsqPS –VAEsqMin) / VAEsqPS</td>
<td>(VAEsqPS –VAEsqMin) / VAEsqPS</td>
</tr>
</tbody>
</table>

Diferentes entidades influenciam estas fases de forma diversa:

> HTA — não modifica a função de conduto, mas aumenta a função ativa e a Fej da AEsq. (13).

> Exercício físico vigoroso — aumenta o VAEsqMax, a função ativa e passiva.

> Status pós ablação de FA — melhoria da função reservatório e da Fej da AEsq. (14, 15)

> Status pós tratamento da apneia do sono — por melhoria da função diastólica do VEsq e sem alterar o volume máximo da AEsq, provoca uma melhoria da função de conduto, com a compensatória diminuição da função ativa.

Nos últimos anos, as técnicas de deformação miocárdica, inicialmente utilizadas para avaliar a função VEsq foram também extendidas a outras cavidades,
nomeadamente à AESq. Apesar da sua complexidade técnica (paredes de espessura finas, necessidade de exclusão do AAEsq e veias pulmonares), um grande número de trabalhos publicados têm mostrado a exequibilidade e reprodutibilidade das técnicas de deformação miocárdica (Speckle-tracking-STE) na avaliação do miocárdio da aurícula esquerda, permitindo estabelecer os seus valores de referência e tendo-se revelado um dos principais focos de investigação em ecocardiografia (16, 17).

2.2.4. Estrutura

A avaliação estrutural não invasiva da AESq poderá ajudar a entender a forma de relacionamento causa/efeito em diferentes contextos e doenças.

A espessura da parede e a presença de fibrose são as duas informações diretas que têm sido avaliadas.

A disponibilidade, custo, inocuidade e resolução temporal (2D 10-20ms; 3D 50-75ms) fazem da ecocardiografia o estudo de escolha para a avaliação funcional da AESq.

No entanto, esta avaliação é também possível em exames de RM (resolução temporral 20-50ms), bem como em TC com sincronização eletrocardiográfica e aquisição retrospectiva (resolução temporal 75-250ms).
A estrutura da AESq condiciona a sua dimensão e a função.
Enquanto a espessura da parede pode ser avaliada por ecografia, TC ou RM, a avaliação de fibrose é mais difícil e tem sido efetuada por RM. A resolução espacial dos métodos tridimensionais de avaliação do realce tardio por RM tem sido apontada como uma limitação, no entanto, em centros especializados têm tido bons resultados, com boa correlação prognóstica em doentes com FA pré e após ablação térmica (18, 19).

2.2.5. Contributo prognóstico
Índices dimensionais e funcionais da AESq são marcadores de risco cardiovascular na população geral (20-28).
O volume da AESq e a disfunção sistólica são fatores de risco independentes para o desenvolvimento de FA, sendo que a disfunção sistólica é incremental ao VAEsqMaxi. Este aspeto sugere que a diminuição da função ativa da AESq é um marcador de maior remodeling do que apenas a dilatação (29).

O contributo prognóstico depende da população em estudo, são exemplos:

- População geral jovem — VAEsqMaxi >24ml/m² foi preditor de MACE e mortalidade de todas as causas (30)
- Doentes idosos com doença cardiovascular — VAEsqMaxi preditor de mortalidade e eventos cardiovasculares (31, 32)
- População geral — o VAEsqMin foi superior e independente do VAEsqMax para desenvolvimento inicial de FA
- População geral — o VAEsqMin foi em análise multivariável o melhor preditor para MACE
- Em doentes com HTA crónica e sem doença cardiovascular, a disfunção sistólica da AESq foi o preditor mais potente de MACE e mortalidade de todas as causas (24)
- Doentes com miocardiopatia (22, 26)
 - VAEsqMax foi preditor de insuficiência cardíaca (IC) independente da função VEsq
 - Na presença de IC, o VAEsq Max e a disfunção AESq foram preditores de hospitalização, MACE e mortalidade
– Na presença de doença coronária, na ausência de arritmias e de patologia valvular mitral – o VAeqMaxi>50ml/m² foi tão relevante como a função sistólica do VEsq em prever hospitalização e morte por insuficiência cardíaca

> Doentes com FA
– Tanto a dilatação como a disfunção da AESq são preditores de eventos (33-37)
– A fibrose da AESq é preditor de risco de MACE, sobretudo de AVC e AIT (38)
– O VAeqMax é mais importante do que o tipo de FA para prever sucesso de longo prazo após ablação térmica (39, 40)
– A presença de fibrose previa à ablação torna a ablação menos eficaz (18, 41)
– A fibrose correlaciona-se com maior probabilidade de AVC (42)
– A fibrose “de novo” após ablação prediz sucesso da ablação (19)

2.3. APÊNDICE AURICULAR ESQUERDO

Sendo o apêndice auricular esquerdo (AAEsq), o principal local de formação de trombos e um possível trigger de FA, a importância do seu estudo pode revestir-se de maior relevância se pensarmos que a sua diferente génese embriológica e a diferente influência ventricular esquerda na sua função poderão fazer diferir a correlação com a restante aurícula esquerda nos diferentes contextos nosológicos (43, 44).

Anatomicamente, o AAEsq apresenta um ostium, um colo e um corpo que pode apresentar diferentes lobos.
Para cima e para trás encontramos o ostium da VPSesq e na face epicárdica correlaciona-se com o sulco aurículo-ventricular onde se encontra a artéria circunflexa e a grande veia cardíaca. Em cerca de 30% dos casos a artéria para o nóculo sino-auricular tem origem na artéria circunflexa e pode passar por baixo ou por fora e por cima do AAEsq (ver Figura 5).
O nervo frénico correlaciona-se com o AAEsq, na sua vertente póstero-lateral, mas em topografia extra-pericárdica.
O AAEsq é avaliado no decurso da avaliação da AESq.
A ecocardiografia transesofágica tem sido considerado o gold standard não invasivo para avaliação de trombos dentro do AAEsq, no entanto a RM apresenta boa acuidade e a TC, em metanálise recente, foi considerada alternativa ao ETE (45).

2.3.1. Morfologia
Existem diversas classificações do AAEsq por TC, com relevância prognóstica, umas relacionáveis com o número de lobos e trabeculação (46) e outras com a forma/tipo (47, 48) (ver Figura 6a e 6b).

No entanto, apesar das ótimas imagens conseguidas por TC, a reprodutibilidade da classificação de Wang e Di Biase pode não ser tão alta, como evidenciada pelo estudo de Taina et al (49).

2.3.2. Dimensão, Função e Estrutura
O AAEsq é mais distensível do que a AESq, servindo de tampão para manter constantes o volume e a pressão da AESq. A dimensão e função do AAEsq é provavelmente mais dependente do VESq do que a AESq, o que ajudaria a explicar a maior relação direta entre a probabilidade de trombo e evento cardiovascular com a função VESq do que com a dilatação da AESq nos doentes em FA.

A dimensão do AAEsq não se correlaciona fortemente com a dimensão da AESq (ver Capítulo IX).
A modificação estrutural que acontece em doentes com FA é semelhante à que ocorre na AEsq, com dilatação, inflamação, disfunção e fibrose (50, 51), o que favorece a presença de trombo dado a maior estase, a disfunção do endotélio e o estado pro-coagulante que daí resulta.
2.3.3. Contributo prognóstico
O aumento do comprimento, do número de lobos e volumétrico, a fibrose da parede, uma menor dimensão do ostium assim como uma morfologia não “chicken wing” estão associados a estase e a maior probabilidade de trombo (52-55).

2.4. VEIAS PULMONARES

Embriologicamente, o botão das veias pulmonares dá origem à aurícula esquerda. A presença de endotélio auricular nas veias pulmonares permite que estas sejam o local de origem e perpetuação da fibrilhação auricular (56, 57).

Existem diferentes padrões de veias pulmonares, sendo que a existência de 4 ostiae é o mais frequente, com duas veias pulmonares à direita (drenando a média na veia pulmonar superior direita) e duas à esquerda (ver Figura 7). O padrão das veias pulmonares e a dimensão dos seus ostiae podem estar relacionados com a recorrência de FA após terapêutica ablativa (58, 59).

FIGURA 7
Imagem volumetrica 3D do padrão habitual das veias pulmonares, com 4 ostiae, 2 à direita e 2 à esquerda sem parede livre entre eles. (Imagens Hugo Marques — UNICA — Hospital da Luz.)
2.5. FIBRILHAÇÃO AURICULAR

É a arritmia crónica mais frequente, com uma incidência e prevalência que aumenta com a idade, desde cerca de 3% dos adultos com mais de 20 anos até chegar a afetar quase 10% das pessoas com mais de 80 anos (60). Em Portugal afeta 2,5% da população com mais de 40 anos (61).

Pode aparecer em doentes sem causa aparente, no entanto são fatores de risco: a doença valvular (sobretudo mitral reumática), a insuficiência cardíaca, o exercício físico vigoroso, a apneia do sono, a DPCO, a DRC, a HTA, a diabetes, a doença coronariana, a disfunção tiroideia, o consumo de álcool, a obesidade e a idade avançada. Há igualmente um substrato genético predisponente. Na ausência de patologia valvular como seu fator fisiopatológico, a FA designa-se como “não valvular”.

Caracteriza-se por FC marcadamente irregulares e frequentemente altas, aspeto que se extremo pode condicionar morbilidade por diminuição do débito cardíaco e/ou desencadear de isquemia. No entanto, a principal fonte de morbilidade e mortalidade prende-se com a propensão para a formação de trombos.

Cerca de 10 a 40% dos doentes com FA são hospitalizados em cada ano.

A FA está independentemente associada a um risco 2 vezes maior de morte (de todas as causas) no homem e 1,5 vezes nas mulheres.

O risco de evento tromboembólico pode ser calculado com o score CHA\textsubscript{2}DS\textsubscript{2}VASc (62).

<table>
<thead>
<tr>
<th>Condição</th>
<th>Pontos</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Insuficiência Cardiaca</td>
</tr>
<tr>
<td>H</td>
<td>Hipertensão</td>
</tr>
<tr>
<td>A\textsubscript{2}</td>
<td>> ou = 75 anos</td>
</tr>
<tr>
<td>D</td>
<td>DM</td>
</tr>
<tr>
<td>S\textsubscript{2}</td>
<td>Sexo feminino</td>
</tr>
<tr>
<td>V</td>
<td>Doença vascular</td>
</tr>
<tr>
<td>A</td>
<td>(65-74) anos</td>
</tr>
<tr>
<td>S\textsubscript{c}</td>
<td>História de AVC / AIT / Tromboembolismo</td>
</tr>
</tbody>
</table>

Pontuação:
2 — risco alto — anticoagulação plena
1 — risco intermédio — zona cinzenta, anticoagulação individualizada
0 — risco baixo — só antiagregação ou sem terapêutica
A FA pode ser classificada em:

- Paroxística — na maioria das vezes termina sozinha em 48h, mas pode durar até 7 dias
- Persistente — FA de duração superior a 7 dias
- Persistente de longa data — FA que dura há mais de um ano e quando se adaptam medidas de controlo de ritmo
- Permanente — quando é aceite e não se fazem mais medidas de controlo de ritmo

Idealmente o objetivo clínico é a conversão dos doentes a ritmo sinusal (o que pode ser conseguido com cardioversão farmacológica ou elétrica) e a sua preservação (ausência de recidivas de FA). A preservação do ritmo sinusal pode ser efetuada através de terapêutica médica (por exemplo fármacos antiarrítmicos classe III) ou de técnicas ablativas percutâneas e/ou cirúrgicas.

Na impossibilidade de conversão a ritmo sinusal, a terapêutica centra-se na prevenção de morbi-mortalidade, com controlo de resposta ventricular e prevenção da formação de trombos. Este último aspeto pode ser efetuado farmacologicamente ou por encerramento cirúrgico ou percutâneo do AAEsq.

2.6. TRATAMENTO PERCUTÂNEO DA FA

2.6.1. Ablação percutânea de FA

A ablação percutânea da FA é atualmente uma das terapêuticas com maior indicação nos casos de FA sintomática, sobretudo em doentes com FA paroxística e aurículas não muito dilatadas.

Esta terapêutica, que visa o retorno a ritmo sinusal e a cura da FA, teve origem nos bons resultados obtidos no Hospital de Santa Cruz em 1996, pela equipa liderada por Queiroz e Melo, nos doentes submetidos a uma cirurgia inovadora, que substituía a fragmentação da aurícula cirúrgica (no Maze clássico) por uma aplicação intra-operatória de radiofrequência a isolar as veias pulmonares. (63). Esta fragmentação intra-operatória, mas não cirúrgica permitia menor morbidade e comprovava a eficácia do isolamento termoeléctrico por radiofrequência. Ainda em 1996, a equipa

Em 1998 Haissaguerre confirmou a importância dos focos localizados nas veias pulmonares e a possibilidade da sua ablação após Jais ter descrito a origem focal da FA, neles (56, 57). No entanto, a aplicação de radiofrequência nas veias pulmonares resultou numa incidência inaceitável de estenoses, pelo que a técnica atual tem por base a técnica inicialmente descrita pelo grupo português de Adragão.

A ablação percutânea consiste na colocação de um cateter ablativo (por radiofrequência) ou balão de crioablação na AEsq junto dos ostiae das veias pulmonares e, por ablação e subsequente indução de fibrose conseguir o isolamento elétrico das mesmas. Consoante o tipo de FA poderão estar indicadas outras zonas de ablação. Outro dos avanços relevantes da técnica ocorreu com o desenvolvimento de mapeamento tridimensional (permitindo por exemplo fusão com as imagens de TC), com a localização precisa dos pontos de ablação, assim como a utilização de sistemas robotizados para facilitar o procedimento, sendo Pappone uma figura destacada neste contexto (66).

FIGURA 8
Valvuloplastia Mitral de balão e 1.º isolamento das veias pulmonares. Hospital de Santa Cruz, Lisboa 1996 (imagem cedida pelo Prof. Dr. P. Adragão).
Apesar de poder curar a FA e ser um procedimento seguro com baixa morbidade e mortalidade (67), esta terapêutica tem taxas de recidiva não desprezíveis (60), sendo que os resultados do nosso grupo foram publicados por Adragão et al. (68) com taxas de recidiva anuais na ordem dos 20% sendo que outros referem recidivas superiores a 50% aos 6 anos (69).

O sucesso da terapêutica ablativa é dependente de vários fatores: desde o tipo de FA, à fibrose pré-existente na aurícula, à fibrose que foi possível induzir, até a marcadores dimensionais auriculares como o volume máximo (18, 19, 40).

O nosso grupo publicou uma comparação prognóstica (segurança e avaliação de recidiva) entre doentes em que a ablação foi realizada com e sem navegação magnética (68). A importância de identificar pré-procedimento quais os doentes que mais iriam beneficiar da sua realização, neste contexto de resposta heterogénea e percentagem de recidiva alta, é fundamental numa medicina de custo-benefício. Este aspeto foi alvo de investigação pelo nosso grupo, tendo sido desenvolvido o score ATLAS (70) (Manuscrito 1).

O ATLAS tem em linha de conta a idade, o tipo de FA, o volume auricular, o sexo e os hábitos tabágicos. O principal fator de ponderação é o volume da AESq.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Number of points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age > 60 years</td>
<td>1</td>
</tr>
<tr>
<td>Type of AF (non-paroxysmal)</td>
<td>2</td>
</tr>
<tr>
<td>Left atrial volume indexed to BSA</td>
<td>1 point per each 10 mL/m² (rounded to nearest integer)</td>
</tr>
<tr>
<td>Sex (female)</td>
<td>4</td>
</tr>
<tr>
<td>Smoking (current cigarette smoking)</td>
<td>7</td>
</tr>
</tbody>
</table>

Um score ATLAS é baixo até 5 pontos, intermédio de 6 e 10 e alto se maior que 10.

2.6.2. Oclusão do AAEsq

Esta terapêutica visa excluir a principal fonte embólica nos doentes com FA, podendo ser realizada percutâneamente ou através de cirurgia.

A imagem por TC tem utilidade quer para planeamento do procedimento, quer para avaliar o resultado e as complicações (ver Figura 9 e Capítulo III).
FIGURA 9
Dispositivo para oclusão do AAEsq muito introduzido, com trombo associado e permeabilidade parcial do apêndice — maior risco de evento tromboembólico. Imagem da slide da apresentação da palestra do Congresso da Associação Portuguesa de Arritmologia, Pacing e Electrofisiologia.
(Imagens Hugo Marques — UNICA — Hospital da Luz.)
BIBLIOGRAFIA

ANEXOS
Development and validation of a risk score for predicting atrial fibrillation recurrence after a first catheter ablation procedure — ATLAS score.

Mesquita, J.F., A.M.; Cavaco, D.; Costa, F.M.; Carmo, P.; Marques, H.; Morgado, F.; Mendes, Miguel; Adragão, P.

Europace, 2017
https://doi.org/10.1093/europace/eux265
Development and validation of a risk score for predicting atrial fibrillation recurrence after a first catheter ablation procedure – ATLAS score

João Mesquita1†*, António Miguel Ferreira1,2†, Diogo Cavaco1,2, Francisco Moscoso Costa1,2, Pedro Carmo1,2, Hugo Marques3, Francisco Morgado1, Miguel Mendes1, and Pedro Adragão1,2

1Cardiology Department, Hospital de Santa Cruz, Av. Prof. Reinaldo dos Santos, 2790-134 Carnaxide, Lisbon, Portugal; 2Cardiology Department, Hospital da Luz, Lisbon, Portugal; and 3Radiology Department, Hospital da Luz, Lisbon, Portugal

Received 5 April 2017; editorial decision 11 July 2017; accepted 12 July 2017

Aims

Several predictors of relapse after catheter ablation of atrial fibrillation (AF) have been established, but assessing each patient’s individual risk remains challenging. Our aim was to develop and validate a score to estimate the risk of AF recurrence after the first radiofrequency pulmonary vein isolation (PVI) procedure.

Methods and results

Independent predictors of AF relapse were identified retrospectively in a two-centre registry of 1934 patients who underwent a first PVI procedure. Using the Cox regression hazard ratios of designated variables, a risk score was developed in a random sample of 50% of the patients (development cohort) and validated in the remaining (validation cohort) half. The accuracy and discriminative power of the predictive model were assessed in both subgroups. During a follow-up of 4.2 ± 2.7 years, 522 patients (27%) relapsed. Five independent predictors of AF recurrence were identified and included in the score: age >60 years (1 point), female sex (4 points), non-paroxysmal AF (2 points), current smoking (7 points) and indexed left atrial volume (1 point for each 10 mL/m²). The score showed good discriminative power (censored c-statistic of 0.75 in both cohorts). In the development group, AF relapse rates were 8, 11, and 17%/year for low (<6 points), intermediate (6–10 points), and high-risk patients (>10 points), respectively (P<0.001). In the validation group, AF recurrence rates were 8, 11, and 18%/year, respectively (P<0.001).

Conclusion

A simple risk score to estimate the rate of AF recurrence after ablation was developed and validated. An external assessment of its usefulness as a patient selection tool seems warranted.

Keywords

Atrial fibrillation • Atrial fibrillation recurrence • Pulmonary vein isolation • Radiofrequency catheter ablation • Prognosis • Risk score

Introduction

Pulmonary vein isolation (PVI) is now a well-established treatment for selected patients with atrial fibrillation (AF). However, despite high early success rates, AF recurrence is common during follow-up, offsetting the potential benefits of the procedure.1–4 Identifying the patients who are unlikely to remain in sinus rhythm seems a logical way to improve success rates and avoid the unnecessary risks and costs of ineffective ablations. While several predictors of AF relapse have been identified,1,2,5 assessing each patient’s individual risk of recurrence remains challenging, in part due to the absence of a risk stratification tool that would condense the prognostic information conveyed by several different variables. The purpose of this study was to develop and validate a score to assess the risk of AF recurrence after a first radiofrequency PVI procedure.

* Corresponding author. E-mail address: jpmesquita@chlo.min-saude.pt
† The first two authors contributed equally to the study.

Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.
CT could not be performed (mainly for logistical reasons), LA volume was calculated by tracing the LA borders on CT images, excluding the ablation catheter. Left atrial access was established by trans-septal puncture through which three catheter electrodes were introduced: (i) a decapolar catheter ablation catheter. Left atrial access was established by trans-septal puncture. Radiofrequency ablation was performed more than 5 mm from the PV ostia, with continuous lesions enclosing the left and right pairs of PV. At Hospital Santa Cruz, all patients underwent conventional manually guided ablation, while at Hospital da Luz a Niobe II magnetic navigation system (St Jude Medical Inc., St Louis, MO, USA) was used. If typical atrial flutter was previously documented or observed at the time of the procedure, an additional cavotricuspid isthmus (CTI) ablation was performed (n = 194 patients). The treatment was considered successful if complete electrophysiological PVI was achieved. When required, an electrical cardioversion was performed at the end of the procedure. Oral anticoagulation was resumed 6 h after the ablation, maintained for 6 months and then withdrawn or continued according to CHA2DS2-VASc criteria (CHA2DS2, before 2009). Patients on vitamin K antagonists with subtherapeutic international normalized ratio (INR) were kept on subcutaneous enoxaparin 1 mg/kg every 12 h until an adequate INR was achieved. As a general rule, class I/III antiarrhythmic drugs were maintained in all patients for the first 3 months after the procedure and then withdrawn if there was no AF recurrence. A proton pump inhibitor was also prescribed for the first month after the ablation.

Methods

Patient population and study design
All consecutive patients with symptomatic drug-refractory AF undergoing percutaneous PVI in two Portuguese centres (Hospital Santa Cruz, Camarade, Portugal, and Hospital da Luz, Lisbon, Portugal) were included in an observational registry, which we used for this retrospective study. The first centre enrolled patients between May 2005 and November 2015, and the second centre between June 2007 and September 2013. From a pool of 2836 procedures, we excluded patients with previous AF ablation (n = 428), and those without 3D quantification of LA volume neither by computed tomography (CT) nor electroanatomical mapping (n = 332). The latter was used as an exclusion criterion, since left atrial (LA) volume has been shown to be a powerful prognostic marker in this setting. Patients who were lost to follow-up less than 6 months after the procedure were also excluded (n = 322). The final study population (n = 1934) was randomized on a 1:1 ratio into development and validation cohorts. In the development cohort, Cox regression analysis was used to identify independent predictors of clinical and/or electrocardiographic AF recurrence. The β regression coefficients of the selected variables were then used to develop a risk score whose accuracy and discriminatory power were evaluated in the validation cohort.

Atrial fibrillation was categorized as paroxysmal if self-terminating in <7 days, persistent if episodes lasted >7 days or required cardioversion, or long-standing persistent if AF was maintained for more than 12 months.

The majority of patients (n = 1132, 69%) underwent a 64-slice cardiac CT scan less than 48 h before the ablation procedure for the assessment of pulmonary vein anatomy, measurement of LA volume, exclusion of thrombi, and integration with electroanatomical mapping. Left atrial volume was calculated by tracing the LA borders on CT images, excluding the pulmonary veins and the left atrial appendage. In patients where cardiac CT could not be performed (mainly for logistical reasons), LA volume was estimated from CARTO® (Biosense Webster Inc., Diamond Bar, CA, USA) electroanatomical mapping at the time of ablation. Left atrial volumes were indexed to body surface area (BSA). In patients who had LA volume estimated by different methods (2D echocardiogram, cardiac CT and/or electroanatomical mapping), a correlation analysis was performed to assess comparison between all methods.

Pulmonary vein isolation protocol
Pulmonary vein isolation was guided by electroanatomical mapping, using either NavX® (St Jude Medical Inc., St Paul, MN, USA) or CARTO® systems. The right femoral vein was used as the preferred vascular access, through which three catheter electrodes were introduced: (i) a decapolar catheter, advanced through the coronary sinus; (ii) a variable circular mapping catheter, placed in the pulmonary veins; and (iii) an irrigated-tip ablation catheter. Left atrial access was established by trans-septal puncture. Radiofrequency ablation was performed more than 5 mm from the

Statistical analysis

Normally and non-normally distributed variables were expressed as mean ± standard deviation and median, respectively. Differences between groups were assessed using independent samples t-test and Fisher’s exact test for continuous and categorical variables, respectively. The study population was split into development and validation cohorts by generating a random number for each patient and assigning odd and even numbers to each of these groups.

Univariate proportional-hazards Cox regression was used to identify predictors of time to AF recurrence in the development cohort. The following variables were assessed age, sex, type of AF (paroxysmal vs. non-paroxysmal), indexed LA volume, body mass index, hypertension, diabetes, cigarette smoking, hypercholesterolaemia, known obstructive coronary artery disease, and left ventricular systolic dysfunction (ejection fraction <50%). Smoking was defined as any cigarette consumption during the previous 6 months. In order to simplify clinical score calculations, age was dichotomized using a threshold (60 years) identified with receiver operating characteristics (ROC) curve analysis. Pearson’s correlation with a two-tailed test of significance was used to evaluate LA volume estimation by different methods.

Variables with a p-value <0.10 in univariate analysis were entered simultaneously in a multivariate Cox regression model and considered to be statistically significant if P < 0.05. Multicollinearity was excluded by assessing Pearson’s correlation coefficient between pairs of continuous variables (all <0.60). In order to create a practical risk score, each of the independent predictors was assigned a number of weighted points proportional to its β regression coefficient value (rounded to the nearest
Table 1 Baseline patient characteristics

<table>
<thead>
<tr>
<th></th>
<th>All patients (n=1934)</th>
<th>Development group (n=960)</th>
<th>Validation group (n=974)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>59±11</td>
<td>58±12</td>
<td>59±11</td>
<td>0.04</td>
</tr>
<tr>
<td>Male sex—no. (%)</td>
<td>1330 (69)</td>
<td>664 (69)</td>
<td>666 (68)</td>
<td>0.40</td>
</tr>
<tr>
<td>Body mass index—kg/m² (IQR)</td>
<td>27 (5)</td>
<td>26 (5)</td>
<td>27 (5)</td>
<td>0.53</td>
</tr>
<tr>
<td>Type of AF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paroxysmal—no. (%)</td>
<td>1488 (77)</td>
<td>734 (76)</td>
<td>754 (77)</td>
<td>0.41</td>
</tr>
<tr>
<td>Persistent—no. (%)</td>
<td>284 (15)</td>
<td>147 (15)</td>
<td>137 (14)</td>
<td>0.76</td>
</tr>
<tr>
<td>Long-standing—no. (%)</td>
<td>162 (8)</td>
<td>74 (8)</td>
<td>88 (9)</td>
<td></td>
</tr>
<tr>
<td>Indexed LA volume mL/m² (IQR)</td>
<td>54 (44-63)</td>
<td>55 (44-65)</td>
<td>54 (44-66)</td>
<td>0.49</td>
</tr>
<tr>
<td>Hypertension—no. (%)</td>
<td>770 (40)</td>
<td>380 (40)</td>
<td>390 (40)</td>
<td>0.89</td>
</tr>
<tr>
<td>Diabetes mellitus—no. (%)</td>
<td>136 (7)</td>
<td>62 (7)</td>
<td>74 (8)</td>
<td>0.38</td>
</tr>
<tr>
<td>Hypercholesterolemia—no. (%)</td>
<td>408 (21)</td>
<td>204 (21)</td>
<td>204 (21)</td>
<td>0.78</td>
</tr>
<tr>
<td>Current smoking—no. (%)</td>
<td>188 (10)</td>
<td>94 (10)</td>
<td>94 (10)</td>
<td>0.68</td>
</tr>
<tr>
<td>Known coronary heart disease—no. (%)</td>
<td>82 (4)</td>
<td>44 (5)</td>
<td>38 (4)</td>
<td>0.43</td>
</tr>
<tr>
<td>LV systolic dysfunction—no. (%)</td>
<td>153 (8)</td>
<td>81 (8)</td>
<td>72 (7)</td>
<td>0.31</td>
</tr>
<tr>
<td>Previous stroke—no. (%)</td>
<td>46 (2)</td>
<td>21 (2)</td>
<td>25 (3)</td>
<td>0.65</td>
</tr>
<tr>
<td>CHA²DS²-VASc—no. (IQR)</td>
<td>1888 (10)</td>
<td>94 (10)</td>
<td>94 (10)</td>
<td>0.88</td>
</tr>
<tr>
<td>Patients with at least 1 antiarrhythmic drug—no. (%)</td>
<td>1840 (95)</td>
<td>918 (96)</td>
<td>922 (95)</td>
<td>0.46</td>
</tr>
</tbody>
</table>

AF: atrial fibrillation; LA: left atrium; IQR: interquartile range; LV: left ventricle.

Results

The baseline clinical characteristics of the 1934 patients included in this study are summarized in Table 1. Overall, the development and validation cohorts were well balanced, except for a small but statistically significant difference in mean age. Regarding LA size assessment, 2D echocardiogram correlated poorly with cardiac CT (n=227, r=0.43, P<0.001) and electroanatomical mapping (n=416, r=0.47, P<0.001). A good correlation between CT and CARTO® volume estimation methods was observed (n=748, r=0.77, P<0.001) (Supplementary material online, Figure S1).

During a mean follow-up of 4.2±2.7 years, 522 patients (27%) experienced AF recurrence (259 and 263 in the development and validation groups, respectively, P=0.88). Less than 5% of these recurrences in both groups were due to atrial arrhythmias other than AF (P=0.58). The majority of AF relapses were established by both symptoms and electrocardiographic documentation (n=282, 54%), whereas clinical relapse (n=177, 34%) and documented silent AF (n=177, 34%) accounted for the remainder adjudicated recurrences.

Although atrial flutter was previously documented or induced in 164 patients, an additional CTI ablation was performed in 480 patients—criteria based on operator’s decision. CTI ablation had no impact in AF-free survival (HR 1.09, 95% CI 0.84–1.41, P=0.54) and AF annual relapse rate. Maintaining antiarrhythmic drug therapy after the 3-month blanking period had no impact in AF relapse in the subgroup of patients who received CTI ablation.

At the end of the procedure, 433 patients underwent electrical cardioversion.

Ethical standards

All human and animal studies have been approved by the appropriate ethics committees and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. The patients signed an informed consent both for the procedure and publication of any relevant data.

Cont.

ATLAS—a risk score to predict recurrence after AF ablation

II — AURÍCULA ESQUERDA — CONTEXTO ANÁTOMO-CLÍNICO | 67
and validation groups. A secondary analysis excluding these patients yielded the same independent predictors of recurrence and similar regression coefficients (Supplementary material online, Table S1 and Figure S2).

The results of Cox regression analysis are presented in Table 2. Seven variables associated with AF recurrence were identified in univariate analysis and entered into the multivariate model, yielding five independent predictors of relapse. Each of these variables was assigned a number of points proportional to its b coefficient (Table 3).

In order to aid memorization, the acronym ATLAS (A, Age; T, Type of AF; LA, LA volume; S, Sex and Smoking) was created. The relative contribution of the five variables to each individual’s ATLAS score is shown in Figure 1.

Table 2 Predictors of time to AF recurrence in univariate and multivariate Cox regression analysis

<table>
<thead>
<tr>
<th>Variable</th>
<th>Univariate analysis</th>
<th>Multivariate analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR (NA)</td>
<td>95% CI</td>
</tr>
<tr>
<td>Age >60 years</td>
<td>1.32</td>
<td>1.11–1.57</td>
</tr>
<tr>
<td>Female sex</td>
<td>1.19</td>
<td>0.99–1.43</td>
</tr>
<tr>
<td>Smoking</td>
<td>1.75</td>
<td>1.31–2.33</td>
</tr>
<tr>
<td>Non-paroxysmal AF</td>
<td>1.28</td>
<td>1.06–1.55</td>
</tr>
<tr>
<td>LA volume (each 10 mL/m2)</td>
<td>1.01</td>
<td>1.01–1.02</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1.36</td>
<td>1.1–1.68</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>1.46</td>
<td>1.06–2.01</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1.05</td>
<td>0.81–1.36</td>
</tr>
<tr>
<td>BMI (kg/m2)</td>
<td>0.75</td>
<td>0.51–1.08</td>
</tr>
<tr>
<td>LV systolic dysfunction</td>
<td>0.95</td>
<td>0.45–2.01</td>
</tr>
<tr>
<td>Known CAD</td>
<td>1.03</td>
<td>0.55–1.93</td>
</tr>
<tr>
<td>CHA2DS2–VASc</td>
<td>1.04</td>
<td>0.97–1.11</td>
</tr>
</tbody>
</table>
| HR, non-adjusted hazard ratio; aHR, adjusted hazard ratio; CI, confidence interval; (B), b coefficient; AF, atrial fibrillation; LA, left atria; LVSD, left ventricular systolic dysfunction; BMI, body mass index; LV, left ventricle; CAD, coronary artery disease.

Table 3 Calculation of the ATLAS score

<table>
<thead>
<tr>
<th>Variable</th>
<th>Number of points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age > 60 years</td>
<td>1</td>
</tr>
<tr>
<td>Type of AF (non-paroxysmal)</td>
<td>2</td>
</tr>
<tr>
<td>Left atrial volume indexed to BSA</td>
<td>1 per each 10 mL/m2 (rounded to nearest integer)</td>
</tr>
<tr>
<td>Sex (female)</td>
<td>4</td>
</tr>
<tr>
<td>Smoking (current cigarette smoking)</td>
<td>7</td>
</tr>
</tbody>
</table>

Example: A 64-years-old non-smoker woman with paroxysmal AF and an LA volume of 57 mL/m2 would have an ATLAS score of 11 (=1 + 0 + 6 + 4 + 0).
presented in Figure 1, showing that, on average, indexed LA volume accounts for two thirds of the total value.

The distribution of the ATLAS score in the overall population is depicted in Figure 2. The median score was 8 (IQR 6–11), with no significant difference between the development and validation groups (both with median scores of 8, P = 0.890).

The score displayed good discriminatory power for earlier AF recurrence, with a censored C-index of 0.75. Three risk categories were defined: low-risk (<6 points), intermediate-risk (6–10 points), and high-risk (>10 points). These categories corresponded to 23.5, 52.5, and 24.0% of the total population, respectively. The AF-free survival curves of low-, intermediate-, and high-risk patients are presented in Figure 3. There was a statistically significant difference in AF-free survival between the three risk score categories (log-rank P < 0.001 in both the development and validation cohorts). The hazard ratio for intermediate-risk was 1.10 [95% CI 0.90–1.35 (P-value 0.35)] and for high-risk 1.60 [95% CI 1.28–2.00 (P-value <0.001)].

Within each risk category, there were no statistically significant differences in yearly relapse rates between the development and validation cohorts: 8, 11, and 17%/year for low-, intermediate-, and high-risk patients in the development cohort, vs. 8, 11, and 18%/year in the validation cohort.

Analysis of yearly relapse rates showed a significant gradient of risk of AF recurrence across the spectrum of ATLAS score values (Figure 4). The calibration-in-the-large statistic (0.077, P = 0.272) and a calibration slope of 0.93 showed an overall good calibration, supporting the validity of the prediction model.

The ATLAS score was developed in a population mostly composed of paroxysmal AF patients (77%). Since there is an under-representation of non-paroxysmal AF, a subgroup analysis was performed to assess applicability to these patients. The ATLAS score retained its predictive power and ability to identify high-risk patients for AF relapse after a first PVI, regardless of the type of AF (paroxysmal vs. non-paroxysmal) (Supplementary material online, Figure S3). The annual relapse rates were similar in the low/intermediate-risk categories (10%/year in both groups) but higher in the high-risk group of patients with non-paroxysmal AF (19%/year vs. 15%/year).

Discussion

Prognosis after pulmonary vein isolation is remarkably heterogeneous, with some patients experiencing early relapse while others remain free of AF for years.2,10 In this study, we developed and validated a score that estimates the risk of recurrence after a first PVI procedure. Two important aspects of a risk prediction model were assessed: discrimination (the ability to identify those who will relapse) and calibration (reflecting how close predicted recurrence rates are to the actual observed rates). The ATLAS score showed good discriminative power, substantiated in a censored C-statistic of 0.75 and a more than three-fold difference in the yearly rate of AF relapse across the spectrum of score values. Model calibration was similarly good, with a calibration slope of 0.93 supporting the accuracy of the score.

In our cohort, patients who were kept on antiarrhythmic drugs after the 3-month blanking period were not considered failed ablation. Although this remains controversial, the current body of evidence supports that antiarrhythmic drugs are not superior to other agents (e.g. beta-blocker) in maintaining sinus rhythm after PVI.11,12 Nevertheless,
AVALIAÇÃO POR TOMOGRAFIA COMPUTADORIZADA DA AURÍCULA ESQUERDA E VEIAS PULMONARES

Studies assessing AF recurrence after PVI have shown some discordance regarding the predictors of relapse.2–4 Our analysis yielded five independent predictors of recurrence: LA volume, female sex, cigarette smoking, age, and type of AF (paroxysmal vs. non-paroxysmal). Left atrial volume showed the strongest association with AF-free survival, outweighing all other factors. Although LA size has long been recognized as a prognostic marker, only 4 of the 20 studies included in a recent review found an independent association with relapse rates.3 However, in those studies LA size was assessed using echocardiographic diameters, which tend to underestimate LA enlargement and correlate poorly with more accurate techniques, such as cardiac CT and magnetic resonance.13–16 Additionally, a higher inter-observer variability has also been reported with 2D echocardiographic assessment of LA size.17 It is well recognized that clinical scores demand a trade-off between simplicity and accuracy, but our findings suggest that any prediction tool that does not include LA volume (or an adequate surrogate) assessed by a more precise technique will compromise accuracy in a significant manner.

Therefore, we believe that the increase in score complexity associated with adding a reproducible LA volume CT-scan estimation is justified. In studies where LA volume was used, a robust independent association between LA dilatation and AF relapse was found.1,6 Larger LA volumes probably reflect more extensive remodelling and also larger surface area and greater wall stress and thickness, possibly rendering the tissue more resistant to the creation of transmural lesions. Left atrial dilatation may also increase the likelihood that, once PV reconnection occurs, AF is induced and sustained.

With some surprise, cigarette smoking emerged as an independent predictor of AF recurrence. Although smoking has been previously associated with an increased risk of AF in the general population,18,19 thus far only one small study showed an association between smoking and AF recurrence after PVI.20 This relationship is not necessarily causal, but nicotine has been shown to increase atrial vulnerability to fibrillation21 and induce atrial fibrosis,22 itself a strong predictor of AF recurrence after ablation.23 Further studies are warranted to confirm and assess the possible mechanisms of this link.

Gender was also independently associated with AF-free survival in our cohort. Other studies have shown higher recurrence rates in women,5,24,25 although this was not a universal finding. Later referral, higher incidence of non-PV triggers, and gender-related anatomical differences are some of the possible explanations.26–28

To the best of our knowledge, two other scores have been linked to AF recurrence after PVI. The DK-FLASH score was developed to identify patients with low voltage areas on LA electrograms that could require extensive substrate modification instead of PVI alone.24 Even though it was not the purpose of the score, its association with long-term recurrence of AF was tested in a retrospective cohort of 484 patients, where those with scores >3 were almost twice as likely to experience an AF recurrence within 1 year after ablation.25 The recently published CAAP-AF score was developed specifically for predicting long-term freedom from AF after ablation. It includes age, type of AF, LA diameter, sex, number of failed antiarrhythmic drugs, and coronary artery disease.29 Unfortunately, we could not perform a direct comparison between ATLAS and these two scores, since our registry database lacks some of the variables required for its calculation.
Even though the ATLAS score was devised to estimate the rate of AF recurrence and aid decision-making, it is no substitute for sound clinical judgment. There is currently no consensus on what constitutes an acceptable rate of recurrence, and this will probably depend on the clinical setting, procedural risk, and patient preference, among other factors. Consequently, thresholds for classifying patients as low, intermediate or high-risk are largely arbitrary. Users of the ATLAS score might choose to employ other clinically meaningful risk thresholds.

Limitations

Various limitations of this study should be recognized. Atrial fibrillation relapse is most likely underestimated in this population, since recurrences are frequently asymptomatic and our follow-up protocol did not include continuous ECG monitoring. However, since the main goal of AF ablation is to improve symptoms, we believe our pragmatic follow-up protocol captures the essential benefit of the procedure.

Several variables with established prognostic value (e.g. AF burden, left atrial fibrosis, obstructive sleep apnea, etc.) were not systematically evaluated, preventing their inclusion in the model.

Smoking was assessed as a dichotomous variable (and not in padi- year units). Notwithstanding the possible loss of information, this approach replicates the assessment of smoking status in commonly used cardiovascular risk calculators such as the heart SCORE30 and the ASCVD algorithm.17

Different methods were used to measure LA volume, and several patients were lost to follow-up. Assessment of LA volume by cardiac CT may also be regarded as a limitation, since this information is usu- ally unavailable when a patient is being considered for AF ablation. However, in our cohort, this was the single most important prognostic factor.

Although the subgroup analysis showed no significant differences in AF relapse regarding the type of AF, an underrepresentation of non-paroxysmal AF patients in our cohort warrants additional validation in external populations.

Conclusion

We developed and internally validated a risk model to estimate the rate of AF recurrence after a first PV healthcare outcomes of catheter ablation. Europace 2010;12:1609–78.

We developed and internally validated a risk model to estimate the rate of AF recurrence after a first PV procedure. The resulting 5-variable score (ATLAS: Age > 60 years, Type of AF, indexed Left Atrial Volume, Sex and Smoking) showed good discriminative power and good calibration. If validated in independent datasets, this score might prove a useful tool for selecting patients who will benefit the most from AF ablation, avoiding the unnecessary risks and costs of ineffective procedures.

Even though the ATLAS score was devised to estimate the rate of AF recurrence and aid decision-making, it is no substitute for sound clinical judgment. There is currently no consensus on what constitutes an acceptable rate of recurrence, and this will probably depend on the clinical setting, procedural risk, and patient preference, among other factors. Consequently, thresholds for classifying patients as low, intermediate or high-risk are largely arbitrary. Users of the ATLAS score might choose to employ other clinically meaningful risk thresholds.

Limitations

Various limitations of this study should be recognized. Atrial fibrillation relapse is most likely underestimated in this population, since recurrences are frequently asymptomatic and our follow-up protocol did not include continuous ECG monitoring. However, since the main goal of AF ablation is to improve symptoms, we believe our pragmatic follow-up protocol captures the essential benefit of the procedure.

Several variables with established prognostic value (e.g. AF burden, left atrial fibrosis, obstructive sleep apnea, etc.) were not systematically evaluated, preventing their inclusion in the model.

Smoking was assessed as a dichotomous variable (and not in padi-year units). Notwithstanding the possible loss of information, this approach replicates the assessment of smoking status in commonly used cardiovascular risk calculators such as the heart SCORE30 and the ASCVD algorithm.17

Different methods were used to measure LA volume, and several patients were lost to follow-up. Assessment of LA volume by cardiac CT may also be regarded as a limitation, since this information is usually unavailable when a patient is being considered for AF ablation. However, in our cohort, this was the single most important prognostic factor.

Although the subgroup analysis showed no significant differences in AF relapse regarding the type of AF, an underrepresentation of non-paroxysmal AF patients in our cohort warrants additional validation in external populations.

Further studies will be required to ascertain whether it can be replaced by a more easily obtainable measure of LA dilation without significant loss of prognostic information. Finally, although the ATLAS score showed good discriminative power and calibration, its portability to other populations remains to be established.

Despite these limitations, our findings could have important implications for clinical practice. After external validation, the ATLAS score may become a useful tool for clinicians to refine patient selection and inform patient-physician discussions, for researchers to design clinical trials, and for policymakers to improve the allocation of healthcare resources.

Conclusion

We developed and internally validated a risk model to estimate the rate of AF recurrence after a first PV procedure. The resulting 5-variable score (ATLAS: Age > 60 years, Type of AF, indexed Left Atrial Volume, Sex and Smoking) showed good discriminative power and good calibration. If validated in independent datasets, this score might prove a useful tool for selecting patients who will benefit the most from AF ablation, avoiding the unnecessary risks and costs of ineffective procedures.

Supplementary material

Supplementary material is available at Europace online.

Conflict of interest: none declared.

References

J Cardiovasc Electrophysiol, 2016
27 Suppl 1: p. S11-6
54.8% of first time ICD recipients were candidates for S-ICD.¹

REFERENCE:

PEDRO PULIDO ADRAÇÃO, M.D., Ph.D., † DIOGO CAVACO, M.D., ‡ ANTONIO MIGUEL FERREIRA, M.D., † FRANCISCO MOSCOSO COSTA, M.D., ‡ LEONOR PARREIRA, M.D., † PEDRO CARMO, M.D., ‡ FRANCISCO BELLO MORGADO, M.D., † KATYA REIS SANTOS, M.D., † PEDRO GALVÃO SANTOS, M.D., ‡ MARIA SALOMÈ CARVALHO, M.D., † ANAI DURAZZO, M.D., † HUGO MARQUES, M.D., † PEDRO ARAÚJO GONÇALVES, M.D., Ph.D., † LUIS RAPOSO, M.D., ‡ and MIGUEL MENDES, M.D.*

From the *Cardiology Department, Hospital Santa Cruz, Western Lisbon Hospital Center, Lisbon, Portugal; †Cardiology Department, Hospital da Luz, Lisbon, Portugal; and ‡Cardiovascular Imaging Department, Hospital da Luz, Lisbon, Portugal

Magnetic versus Manual Ablation of Atrial Fibrillation. Introduction: Whether or not the potential advantages of using a magnetic navigation system (MNS) translate into improved outcomes in patients undergoing atrial fibrillation (AF) ablation is a question that remains unanswered.

Methods and Results: In this observational registry study, we used propensity-score matching to compare the outcomes of patients with symptomatic drug-refractory AF who underwent catheter ablation using MNS with the outcomes of those who underwent catheter ablation using conventional manual navigation.

Among 1,035 eligible patients, 287 patients in each group had similar propensity scores and were included in the analysis. The primary efficacy outcome was the rate of AF relapse after a 3-month blanking period. At a mean follow-up of 2.6 ± 1.5 years, AF ablation with MNS was associated with a similar risk of AF relapse as compared with manual navigation (18.4% per year and 22.3% per year, respectively; hazard ratio 0.81, 95% CI 0.63–1.05; P = 0.108). Major complications occurred in two patients (0.7%) using MNS, and in six patients (2.1%) undergoing manually navigated ablation (P = 0.286). Fluoroscopy times were 21 ± 10 minutes in the manual navigation group, and 12 ± 9 minutes in the MNS group (P < 0.001), whereas total procedure times were 152 ± 52 minutes and 213 ± 58 minutes, respectively (P < 0.001).

Conclusions: In this propensity-score matched comparison, magnetic navigation and conventional manual AF ablations seem to have similar relapse rates and a similar risk of complications. AF ablations with magnetic navigation take longer to perform but expose patients to significantly shorter fluoroscopy times.

(J Cardiovasc Electrophysiol, Vol. 27, pp. S11-S16, March 2016)

atrial fibrillation, catheter ablation, efficacy, magnetic navigation system, manual ablation, propensity score, safety

Introduction

Catheter ablation has now become a well-established treatment for selected patients with atrial fibrillation (AF). 1-3 Enduring success of pulmonary vein isolation (PVI) depends on the creation of permanent and uninterrupted transmural scar in order to block electrical conduction between the left atrium (LA) and the pulmonary veins. The creation of this scar can be challenging even for experienced electrophysiologists and recurrences are common, usually due to pulmonary vein reconnection. 4,5 Procedures are also associated with a relatively high level of radiation exposure and a non-negligible risk of complications. 6 Recently, a magnetic navigation system (MNS) was introduced as a way to ensure stable and reproducible catheter positioning, provide adequate tissue contact, and reduce radiation exposure to both patient and physician. 7

Whether or not these potential advantages translate into improved clinical outcomes is an important question that remains essentially unanswered.

The purpose of this study was to assess the safety and long-term efficacy of a single AF ablation procedure using MNS as compared to conventional manual navigation.

Methods

Patient Characteristics and Study Design

We conducted a registry-based analysis of all consecutive patients with symptomatic drug-refractory AF undergoing percutaneous PVI in 2 centers (Hospital Santa Cruz,
Manuscrito 2

AVALIAÇÃO POR TOMOGRAFIA COMPUTADORIZADA DA AURÍCULA ESQUERDA E VEIAS PULMONARES

Introduction

In order to account for the learning curve with new technology, AF ablations performed during the first 6 months after the introduction of magnetic navigation (i.e., July through December 2007) were excluded. The analyzed procedures were performed between January 2008 and April 2014, when both techniques were in use. Exclusion criteria also comprised any previous AF ablation procedure, no 3-dimensional quantification of LA volume, and loss to follow-up (Fig. 1).

Results

Data on patient demographics, symptoms, and previous medical history were obtained from a pre-procedure interview, supplemented with information provided by the referring physician and electronic medical records. AF was categorized as paroxysmal if self-terminated in <7 days, persistent if episodes lasted ≥7 days or required pharmacological or electrical cardioversion, or longstanding persistent if AF was maintained for more than 12 months. The presence of structural heart disease (known cardiomyopathy, moderate or severe valvular heart disease, congenital heart disease, or left ventricular systolic dysfunction from any cause) was assessed by clinical history, physical examination, and transthoracic echocardiography. Sixty-four slice cardiac computed tomography performed less than 48 hours before the ablation procedure was used to assess LA volume, an important predictor of AF recurrence. When cardiac CT could not be performed for logistical reasons (n = 162, 28.2%), electroanatomical mapping at the time of ablation was used to calculate LA volume, as previously described.31-32

Ablation Protocol

Ablation procedures were guided by CARTO™ (Biosense Webster Inc., Diamond Bar, CA, USA) or NavX™ (St. Jude Medical® Inc., St. Paul, MN, USA) electroanatomical mapping. Three catheters were introduced via right femoral venous access under local anesthesia. A multipolar diagnostic catheter was placed in the coronary sinus. An irrigated-tip ablation catheter and a duodecapolar circular mapping catheter were placed at the pulmonary veins (PV) ostia via transseptal access. In Hospital Santa Cruz all patients underwent conventional manually guided ablation, whereas in Hospital da Luz a Niobe II magnetic navigation system (Stereotaxis®, Inc., St. Louis, MO, USA) was used. Irrigated radiofrequency ablation was performed with continuous lesions encircling both pairs of pulmonary veins and deployed more than 5 mm from the PV ostia in order to achieve pulmonary vein isolation. In patients with previously documented typical atrial flutter or when typical sustained atrial flutter occurred during the procedure, a cavotricuspid isthmus ablation line was also performed. Whenever necessary, patients were cardioverted to sinus rhythm at the end of the procedure. Anticoagulation was restarted within 24 hours, maintained for 6 months, and then suspended according to CHADS2 criteria (CHA2DS2-VASc from 2013 onward). As a general rule, patients were maintained on class I or III antiarrhythmic drugs for the first 3 months and then withdrawn if there was no AF recurrence. Despite this department guidance, the decision to withhold drug therapy was ultimately left to the treating electrophysiologist. Proton pump inhibition was used by protocol during the first month. Throughout the study period, the ablation procedures were performed by the same team of experienced electrophysiologists, who worked in both institutions.

Study Endpoints and Patient Follow-Up

The efficacy endpoint was AF recurrence, defined as the presence of symptomatic or documented AF after a 3-month blanking period. Symptomatic AF was defined as the presence of symptoms possibly related to AF episodes. Documented AF was defined by the presence of at least one episode of AF lasting more than 30 seconds in any electrocardiogram (ECG), 24-hour Holter monitoring or event-loop recording. AF recurrence was assessed independently of the use of antiarrhythmic drugs at the time of relapse. The follow-up protocol consisted of outpatient visits with 12-lead ECGs and 24-hour Holter monitoring at 1, 3, 6, and 12 months in the first year, and yearly thereafter. Patients were encouraged to contact the department whenever they experienced symptoms of possible recurrence. When clinical records were insufficient, a structured telephone interview was conducted. Seventy-seven patients (5.1%) were lost to follow-up and excluded from this analysis.

The primary safety endpoint was the occurrence of any major complication, defined as a complication that results in permanent injury or death, requires intervention for treatment, or prolongs or requires hospitalization for more than 48 hours. Our secondary safety endpoint was fluoroscopic time.

Figure 1. Patient selection and study design

Caracaxide, Portugal, and Hospital da Luz, Lisbon, Portugal.

This study was approved by both of the institutional review boards and all patients gave written informed consent.
Statistical Analysis

Given the differences in the baseline characteristics between patients undergoing PVI with MNS versus conventional manual navigation, propensity-score matching was used to identify a cohort of individuals with similar baseline characteristics. The propensity score (PS) is a conditional probability of receiving a particular treatment given a set of baseline-measured covariates. The PS was estimated by a multivariable logistic regression model with ‘AF ablation using MNS’ as the dependent variable, and the following baseline characteristics as covariates: age, gender, body mass index, type of AF, hypertension, structural heart disease, and indexed left atrial volume. For every MNS ablation, matching patients with the closest propensity score were identified from the pool of manual navigation ablations. The maximal allowable difference in propensity score for matching was 0.2 (caliper width equal to 0.2 of the standard deviation of the logit of the propensity score). When 2 or more manual navigation patients had the same propensity-score match, the match for the analysis was chosen randomly. Matched subjects were removed from the pool and the next MNS ablation and its matched manual navigation patient were selected until no further matches could be identified.

Comparisons between groups were performed using independent samples t-test and Fisher’s exact test for continuous and categorical variables, respectively. Kaplan–Meier curves were used to describe the occurrence of AF relapse over time, and any differences in AF-free survival were assessed with the log-rank test. Annualized event rates for AF relapse were also calculated by dividing total numbers of first events by total number of person-years of follow-up for each group. Finally, the comparative risk of AF relapse was further adjusted for in the matched cohort with the use of a Cox proportional-hazards model. This model included the treatment modality (MNS vs. conventional manual navigation), the propensity score, and potentially confounding variables whose standardized difference between groups remained above 10% after matching. Statistical analyses were performed with SPSS version 19.0 (SPSS Inc., Chicago, IL, USA). Two-tailed P values <0.05 were considered statistically significant.

Results

Among the 1,509 registry patients, 1,035 were available for matching, of whom 633 (61.2%) underwent PVI with MNS and 402 (38.8%) with conventional manual navigation. Before propensity-score matching, there were significant differences between the 2 groups in several of the baseline characteristics (Table 1). Using the propensity score, 287 patients who underwent AF ablation using MNS were matched with 287 who underwent ablation with conventional manual navigation. The C-statistic for the model was 0.82. After matching, the 2 cohorts were well balanced with respect to baseline variables except for indexed LA volume, where a trend toward smaller left atriums in the MNS group was still observed (standardized difference of 12%, P = 0.088). PVI was achieved in all patients. Overall, 63 patients (11.0%) remained on antiarrhythmic drugs for longer than 3 months after ablation, despite the absence of AF recurrence. The proportion of antiarrhythmic drug persistence was similar between patients who underwent PVI with manual navigation versus MNS (13.1% vs. 9.9%, respectively, P = 0.284).

At a mean follow-up of 2.6 ± 1.5 years, 251 patients (43.7%) experienced AF relapse (131 in the manual navigation group and 120 in the MNS group). Recurrences occurred at a median of 1.2 years after the ablation procedure (interquartile range 0.5–2.5), and were established by symptoms in 69 cases, by electrocardiographic documentation of AF in 27 patients, and by both in the remainder 155 subjects. Kaplan–Meier AF-free survival curves for the matched MNS and manual navigation patients are presented in Figure 2. AF ablation with MNS was associated with a similar risk of AF relapse as compared with conventional manual navigation (18.4% per year and 22.3% per year, respectively; hazard ratio 0.81, 95% CI 0.63–1.05; P = 0.108). Further Cox regression adjustment for propensity-score value and indexed LA volume confirmed that treatment modality (MNS vs. manual navigation) was not an independent predictor of AF relapse in this cohort (Table 2).

Safety Outcomes

Observed complications and procedure characteristics are detailed in Table 3. Major complications occurred in 2 patients (0.7%) using the MNS, and 6 patients (2.1%) undergoing conventional manually navigated ablation (P = 0.286). Fluoroscopy times were significantly shorter with MNS, with an average 9-minute reduction in exposure as compared to manual navigation. On average, procedures using MNS took 61 minutes longer to perform and applied radiofrequency for 23 minutes longer than manual conventional navigation.

Discussion

Ever since its introduction in 2003, magnetic navigation for AF ablation has been proposed as a way to overcome some of the limitations of this demanding procedure. The potential advantages of magnetic navigation include finer control of small catheter movements, greater stability, and the possibility of standardizing catheter positions, which could theoretically produce better electrical isolation of the pulmonary veins. Magnetic guidance, and the need of lower forces to maintain stable tissue contact, might also mean less fluoroscopy time and fewer complications. Notwithstanding these potential benefits, and despite being used for several years, magnetic navigation for PVI has never been compared to conventional manual ablation in a large randomized controlled trial with long-term follow-up. Applying a pseudo-randomization procedure to a large dataset of patients, we sought to compare the safety and long-term efficacy of a single AF ablation procedure performed with each of these techniques. Our results suggest that the 2 methods have similar relapse rates and a similar risk of complications. According to our findings, AF ablations with magnetic navigation take longer to perform, but expose patients to significantly shorter fluoroscopy times.

To the best of our knowledge, this is the largest and longest follow-up comparison between MNS and manually navigated AF ablation. Several studies have addressed this subject, but calculations have generally been limited by non-randomized design, small sample sizes, and relatively short follow-up periods. The available evidence gathered in 2 recent systematic reviews and meta-analyses suggests that both techniques have similar relapse rates, a notion that is strengthened by our study.

Magnetic versus Manual Ablation of Atrial Fibrillation

cont.
TABLE 1
Baseline Characteristics Before and After Propensity-Score Matching

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Before Matching</th>
<th>After Matching</th>
<th>Standardized Difference</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Manual Magnetic</td>
<td>Magnetic Navigation</td>
<td>Standardized Difference</td>
<td>P Value</td>
</tr>
<tr>
<td>Age (years)</td>
<td>57.7 ± 11.0</td>
<td>59.2 ± 11.1</td>
<td>13.6%</td>
<td>0.036</td>
</tr>
<tr>
<td></td>
<td>274 (68.2%)</td>
<td>457 (60.9%)</td>
<td>1.7%</td>
<td>0.793</td>
</tr>
<tr>
<td>Male sex</td>
<td>274 (68.2%)</td>
<td>457 (60.9%)</td>
<td>1.7%</td>
<td>0.793</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>27.7 ± 3.8</td>
<td>27.0 ± 3.8</td>
<td>18.4%</td>
<td><0.001</td>
</tr>
<tr>
<td>Body surface area (m²)</td>
<td>1.96 ± 0.22</td>
<td>1.93 ± 0.21</td>
<td>14.0%</td>
<td><0.001</td>
</tr>
<tr>
<td>Paroxysmal AF</td>
<td>291 (72.4%)</td>
<td>601 (79.9%)</td>
<td>13.3%</td>
<td>0.053</td>
</tr>
<tr>
<td>Hypertension</td>
<td>160 (39.8%)</td>
<td>233 (36.8%)</td>
<td>18.4%</td>
<td>0.358</td>
</tr>
<tr>
<td>Structural heart disease</td>
<td>36 (9.0%)</td>
<td>55 (5.5%)</td>
<td>15.7%</td>
<td>0.043</td>
</tr>
<tr>
<td>Indexed LA volume (mL/m²)</td>
<td>63 ± 18</td>
<td>46 ± 16</td>
<td>99.8%</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Standardized differences of less than 10.0% indicate a relatively small imbalance between groups.

Figure 2. Kaplan–Meier AF-free survival curves after single ablation procedure.

TABLE 2
Cox Regression Adjustment for Propensity Score and Indexed Left Atrium Volume in the Matched Cohort

<table>
<thead>
<tr>
<th>Variable</th>
<th>Adjusted HR</th>
<th>95% CI</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propensity score</td>
<td>0.78</td>
<td>0.23–2.70</td>
<td>0.694</td>
</tr>
<tr>
<td>Indexed LA volume</td>
<td>1.08</td>
<td>0.94–1.26</td>
<td>0.284</td>
</tr>
<tr>
<td>Magnetic navigation</td>
<td>0.81</td>
<td>0.63–1.04</td>
<td>0.104</td>
</tr>
</tbody>
</table>

HR = hazard ratio; CI = confidence interval.

The reasons for the apparent similar results of MNS in terms of long-term efficacy are beyond the scope of this study, but it can be speculated that the potential advantages of MNS including catheter stability are balanced by the higher contact forces of conventional manual ablation.24,25

Our results are also in general agreement with the published evidence regarding the safety of AF ablation with each of the 2 navigation methods. One of the systematic reviews and meta-analyses comparing MNS to conventional manual navigation reported less peri-procedural complications, while the other found similar complication rates except for pericardial tamponade or effusion requiring intervention/hospitalization, which were significantly less numerous when MNS was used.15,21 In our study, major complications were relatively rare and, although numerically more frequent in the manual navigation group, this difference did not reach statistical significance. However, it should be recognized that our analysis is underpowered to detect differences in major...
complications, since these are relatively infrequent events, best assessed in large randomized controlled trials or multi-center registries.

Finally, our findings corroborate other studies showing that MNS ablations take longer to perform but expose pa-
tients to less fluoroscopy time.6,17-22,26 Since the radiofre-
cency power was similar by protocol in both groups, the lower contact force in the MNS might be responsible for a longer time to achieve pulmonary vein isolation. Regarding fluoroscopy time, given that a significant proportion of patients need repeat procedures in order to remain free of new atrial fibrillation, MNS ablation might be more beneficial.27 On the other hand, longer procedure times may pose additional chal-
lenges to already overloaded electrophysiology departments struggling to treat an ever increasing number of patients with AF.

Limitations

Some limitations of this study should be taken into ac-
count. First, the observational design of the study: even though propensity scoring can provide excellent matching of baseline characteristics, it does not guarantee the absence of significant differences in covariables that were not systemati-
cally collected and entered into the model, such as AF burden, sleep apnea, and LA fibrosis. Some of our patients were lost to follow-up, and AF relapse may be underreported, since recurrences are frequently asymptomatic and the follow-up protocol did not include continuous ECG monitoring. Finally, sample size limitations preclude subgroup analyses based on type of AF or other baseline characteristics.

Conclusion

In this propensity-score matched comparison, magnetic navigation and conventional manual AF ablations seem to have similar relapse rates and a similar risk of complications. AF ablations with magnetic navigation take longer to perform but expose patients to significantly shorter fluoroscopy times. Large truly randomized controlled trials are warranted to confirm these findings.

References

4. Ganesan AN, Shelp NJ, Brooks AG, Kubik P, Lau DH, Lim HS, Sullivan T, Roberts-Thomson KC, Sanders P: Long-term outcomes of catheter ablation of atrial fibrillation: A systematic review and meta-

5. Ouyang F, Anth M, Ernst S, Bachu H, Marnath H, Degert PT, Schaun-
mann A, Chun J, Feik P, Hennig D, Liu X, Bansch D, Kuck KHE: Recovered pulmonary vein conduction as a dominant factor for re-

Mannunzio 2

AVALIAÇÃO POR TOMOGRAFIA COMPUTADORIZADA DA AURÍCULA ESQUERDA E VEIAS PULMONARES

Journal of Cardiovascular Electrophysiology Vol. 27, Suppl 1, March 2016

A. Santinelli V. Robotic magnetic navigation for atrial fibrillation ablation. J Am Coll Cardiol 2006;47:1396-1400.

CAPÍTULO III

TC Cardíaca

Avaliação anatômica, funcional e valor prognóstico
RESUMO

Neste capítulo é feita uma revisão da utilização da TC cardíaca nos diferentes contextos clínicos e do seu contributo prognóstico na doença cardiovascular.

O capítulo é acompanhado de vários manuscritos da nossa coautoria.

Apresentamos um artigo de revisão (Manuscrito 3) sobre TC cardíaca (1) e um artigo sobre a contextualização do estudo multicêntrico PARADIGM que avalia a progressão da doença coronária detetada por TC (Manuscrito 4)(2) e as suas implicações prognósticas.

Ainda dentro do âmbito da utilização da TC cardíaca no contexto da doença coronária estável anexamos o artigo sobre custo-eficácia (Manuscrito 5)(3).

Referente à avaliação morfo-funcional e na comparação com outras técnicas anexamos dois artigos (Manuscritos 6 e 7) (4, 5).

No contexto do valor prognóstico e da sua implicação em populações específicas ou com fatores de risco determinados anexamos os Manuscritos 8 — 14 (6-12).

Na integração de diversos parâmetros com valor prognóstico, utilizando técnicas de inteligência artificial, incluímos o Manuscrito 15 (13).

Por fim descrevemos, em maior pormenor, a utilização da TC cardíaca nos doentes com FA.

MANUSCRITOS

Manuscrito 3

Cardiac CT: the end of invasive coronary angiography as a diagnostic procedure?

Manuscrito 4
Rationale and design of the Progression of Atherosclerotic Plaque Determined by Computed TomoGraphic Angiography IMaging (PARADIGM) registry: A comprehensive exploration of plaque progression and its impact on clinical outcomes from a multicenter serial coronary computed tomographic angiography study.

Manuscrito 5
Cost-effectiveness of different diagnostic strategies in suspected stable coronary artery disease in Portugal.

Manuscrito 6
Modified continuity equation using left ventricular outflow tract three-dimensional imaging for aortic valve area estimation.

Manuscrito 7
Left ventricular diverticulum: a finding by cardiac CT angiography

Manuscrito 8
White-coat hypertension during coronary computed tomography angiography is associated with higher coronary atherosclerotic burden.
Manuscrito 9

Diabetes as an independent predictor of high atherosclerotic burden assessed by coronary computed tomography angiography: the coronary artery disease equivalent revisited.

Manuscrito 10

Prevalence and predictors of coronary artery disease in patients with a calcium score of zero.

Manuscrito 11

Relationship of Hypertension to Coronary Atherosclerosis and Cardiac Events in Patients With Coronary Computed Tomographic Angiography.

Manuscrito 12

Sex-Specific Associations Between Coronary Artery Plaque Extent and Risk of Major Adverse Cardiovascular Events: The CONFIRM Long-Term Registry.

Manuscrito 13
LONG-TERM PROGNOSTIC IMPACT OF CT-LEAMAN SCORE IN PATIENTS WITH NON-OBSTSTRUCTIVE CAD: RESULTS FROM THE CORONARY CT ANGIOGRAPHY EVALUATION FOR CLINICAL OUTCOMES INTERNATIONAL MULTICENTER (CONFIRM) STUDY.

Manuscrito 14
CORONARY COMPUTED TOMOGRAPHY ANGIOGRAPHY-ADAPTED LEAMAN SCORE AS A TOOL TO NONINVASIVELY QUANTIFY TOTAL CORONARY Atherosclerotic Burden.

Manuscrito 15
MACHINE LEARNING FOR PREDICTION OF ALL-CAUSE MORTALITY IN PATIENTS WITH SUSPECTED CORONARY ARTERY DISEASE: A 5-YEAR MULTICENTRE PROSPECTIVE REGISTRY ANALYSIS.
SUMÁRIO

89 3.1. Introdução

90 3.2. TC cardíaca
90 3.2.1. Avaliação de doença coronária
91 3.2.2. Avaliação morfo-funcional
91 3.2.3. Valor prognóstico

92 3.3. TC cardíaca em doentes com fibrilhação auricular

96 Bibliografia

99 Anexos
3.1. INTRODUÇÃO

A TC cardíaca tem sido um exame com crescente importância no arsenal diagnóstico. Este aspeto tem vindo a ser comprovado pelas sucessivas *guidelines* do seu uso apropriado, com a triplicação de indicações consideradas adequadas entre as duas últimas publicações (2006 e 2010) (14, 15).

A TC cardíaca evoluiu de um exame sem contraste para avaliação do risco cardiovascular (*score* de cálcio), para um exame de exclusão de doença coronária obstrutiva: posteriormente, para deteção de doença coronária e atualmente poderá funcionar como exame único na avaliação do doente com suspeita de doença coronária, dadas as suas capacidades pluripotenciais.

Para elas contribuiu uma evolução tecnológica impar no campo da imagem médica, aliando uma resolução de contraste muito elevada com a utilização de contraste ioddado, às resoluções temporais nativas a chegarem aos 66ms, às resoluções espaciais de 0,23mm e a capacidade de obter informação volumétrica de todo o coração apenas num batimento cardíaco (quer por técnicas de movimento de mesa muito elevado e/ou por aumento do número de detetores). As técnicas de energia espetral contribuem por um lado, para a redução da dose de contraste ioddado necessária; e por outro, permitem a quantificação de iodo por *voxel*, o que permite fazer a avaliação quantitativa. O desenvolvimento de reconstrução iterativa contribuiu para o aumento da qualidade de imagem, ao otimizar os rácios sinal/ruído, que por sua vez permitem uma redução da dose de radiação e de contraste.

O desenvolvimento e as diferentes utilizações do *gating* prospetivo, assim como a capacidade da ampola produzir maior miliamperagem a kV mais baixos contribuem para a marcada redução de dose de radiação.
Todos estes fatores permitem avaliar mais doentes (mesmo com menor capacidade de modulação de frequência cardíaca ou inclusivamente doentes arrítmicos), com menor contraste, menor radiação e maior acuidade.

3.2. TC CARDÍACA

3.2.1. Avaliação de doença coronária

A TC cardíaca permite a deteção de placas, inclusive as não calcificadas e as não obstrutivas, de forma não invasiva. Consegue determinar características associadas a placas com menor grau de estabilidade, consideradas “vulneráveis”, responsáveis por mais de 50% dos eventos coronários agudos (16).

Consegue ainda detetar doentes em risco de progressão rápida da doença aterosclerótica coronária.

Permite igualmente a extrapolação do significado funcional de uma estenose anatômica, através de diferentes técnicas como o gradiente intraluminal, o fractional flow reserve (FFR) virtual, de técnicas de perfusão quantitativa de primeira passagem ou de técnicas de energia espectral. A avaliação do FFR virtual permite ainda simular efeito terapêutico de eventual revascularização (17).

Permite também a avaliação de viabilidade, através da avaliação do realce tardio por TC ou ainda por técnicas de energia espectral (18).

Por todas estas capacidades clínicas, associadas à sua grande disponibilidade, à marcada e contínua redução de dose de radiação e sobretudo ao facto de ser não invasivo, tornam a TC cardíaca um verdadeiro game changer na avaliação do doente com suspeita de doença coronária. Tudo isto é espelhado nas recentes guidelines da NICE (National Institute for Health and Care Excellences (NICE) Clinical Guideline 95) que, tendo especial ponderação do binómio custo-eficácia, considerou a TC cardíaca (coronária) como exame de primeira linha em doentes com dor torácica de possível causa coronária, ultrapassando na hierarquia diagnóstica exames tão frequentes como...
o ECG com prova de esforço. Calcula-se que a aderência a estas guidelines provoque um crescimento dos exames de TC cardíaca na ordem dos 600% no Reino Unido. Em 2014 publicámos um artigo sobre a avaliação de custo-eficácia de diferentes estratégias diagnósticas em doentes com doença coronária estável em Portugal (Manuscrito 5) (3).

3.2.2. Avaliação morfo-funcional

A capacidade de avaliação funcional da TC cardíaca apresenta boa acuidade, com boa correlação com a RM (considerada o gold standard). A capacidade de medir dimensões e volumes é inclusive superior às da ecocardiografia, sendo por exemplo: superior na avaliação da real dimensão do anel aórtico para adequada escolha de prótese a ser colocada por via endovascular, bem como para a avaliação dimensional da câmara de saída do ventrículo esquerdo (CSVE), mesmo em relação à ecografia transesofágica 3D (Manuscrito 6) (4). A avaliação da morfologia miocárdica é igualmente efetuada com grande qualidade, permitindo a deteção de pequenas variantes como criptas miocárdicas e divertícuulos (Manuscrito 7) (5). São portanto indicações apropriadas per se ou quando métodos mais baratos e sem radiação têm resultados insuficientes (por exemplo em casos de má janela acústica ecocardiográfica).

3.2.3. Valor prognóstico

São múltiplos e diversos os parâmetros de TC cardíaca com valor prognóstico, com grande evidência clínica. Para além dos parâmetros que podem ser avaliados por outras técnicas, como por exemplo a disfunção sistólica em caso de doença coronária obstrutiva, existem alguns parâmetros que, de forma não invasiva, apenas podem ser obtidos pelo exame de TC. Dentro destes salientamos os seguintes:

- Presença e quantificação do cálcio coronário (19)
- Presença de placas coronárias não obstrutivas (20-22)
- Localização e grau de estenose de placas coronárias (Manuscritos 13 e 14) (11, 12)
> Presença de características de vulnerabilidade nas placas coronárias (23)
> Critérios de maior probabilidade de progressão rápida da doença coronária

Estes e/ou outros parâmetros foram ainda testados em diferentes grupos mantendo valor prognóstico, como por exemplo homens versus mulheres (Manuscrito 8) (10), em doentes com suspeita de SCA em contexto de urgência, em mulheres jovens (com história familiar de doença coronária precoce — score de cálcio) ou em doentes diabéticos, para citar apenas alguns (Manuscrito 9, 10 e 11) (6, 7, 9).

Não há outra medida em Cardiologia que comprovadamente confira um tão bom prognóstico a médio prazo para eventos coronários do que um score de cálcio igual a zero (doentes fora de um contexto agudo). No entanto podem ser definidos preditores de doença nestes doentes como publicado pelo nosso grupo (Manuscrito 12) (8). A integração dos diversos fatores com técnicas de inteligência artificial permite aumentar ainda mais o valor prognóstico da TC cardíaca (Manuscrito 15) (13).

3.3. TC CARDÍACA EM DOENTES COM FIBRILHAÇÃO AURICULAR

A avaliação de doentes arrítmicos durante a aquisição sempre colocou dificuldades acrescidas na avaliação cardíaca por TC, sendo fonte de artefatos e portanto condicionando a acuidade do método.

Com o desenvolvimento tecnológico, associado a centros de grande volume e treino, foi possível começar a avaliar estes doentes, inclusive as coronárias. Este asperto deveu-se sobretudo à melhoria da resolução temporal (permite avaliação de coronárias mesmo em intervalos RR menores) e à capacidade de obter a informação volumétrica cardíaca em menos rotações (idealmente todo o volume num só batimento cardíaco) (24).

Há, no entanto, diversas outras formas de permitir melhores imagens (mesmo em aparelhos menos recentes), com menos artefatos ao adquirir e reconstruir imagens de forma específica para cada doente e cada tipo de arritmia. São exemplo disso a menor modulação da dose ao longo do RR, a utilização de pitch menores ou até aquisições axiais step and shoot com rejeição de extrassistoles se estas forem em número
reduzido. Mas, num contexto de FA, talvez a mais importante seja a reconstrução em tempo absoluto após a onda T, local isovolumétrico do ciclo cardíaco e temporalmente constante em doentes em FA.

Esta capacidade de “retirar” a arritmia (os artefactos condicionados pela arritmia) das imagens permite manter níveis de acuidade dos exames de TC, mesmo para avaliação de pequenas estruturas com grande movimento como são as coronárias (ver **Figura 1**).

FIGURA 1

(Imagens Hugo Marques — UNICA — Hospital da Luz)

Para além da avaliação da doença coronária, a TC cardíaca tem outras utilidades nos doentes com FA, nomeadamente:
> antes da realização de tratamento ablativo percutâneo para fornecer mapa anatômico da aurícula e veias pulmonares
> para avaliar a presença de trombo antes de terapêutica ablativa ou de conversão a ritmo sinusal (ver **Figura 2**).
AVALIAÇÃO POR TOMOGRAFIA COMPUTADORIZADA DA AURÍCULA ESQUERDA E VEIAS PULMONARES

FIGURA 2
Presença de trombo dentro do AAEsq, facilmente diagnosticado, mesmo num doente com FC média próxima dos 100bpm. O trombo foi posteriormente confirmado por ETE.

(Imagens Hugo Marques — UNICA — Hospital da Luz.)

> para avaliação morfológica do AAEsq sobretudo em doentes que irão realizar a sua oclusão de forma percutânea, bem como para avaliar o resultado dessa intervenção
> avaliação de complicações das terapêuticas referidas

Para além do impacto prognóstico que advém da exclusão de trombo antes da conversão a ritmo sinusal ou da intervenção terapêutica (ablativa ou encerramento do AAESQ), a TC fornece outras informações com valor prognóstico nestes doentes. Por exemplo o volume auricular é o principal fator que contribui para o sucesso da terapêutica ablativa, inclusive mais importante do que o tipo de FA (25), sendo ainda o principal contribuidor para o score ATLAS — score preditor de recidiva após tratamento ablativo percutâneo (26) (Manuscrito 1 — Capítulo II).
Embora não seja utilizada em todos os centros num contexto pré-encerramento percutâneo (ou cirúrgico) do AAEsq, a TC cardíaca pode ter um papel relevante. Permite avaliar o retorno venoso, o septo inter-auricular, a dimensão da aurícula esquerda e a presença de trombo intracardíaco.

Para além desta informação, é o método mais fiável para avaliar a relação do AAEsq com estruturas adjacentes nomeadamente o ostium da VPSEsq e a artéria circunflexa, permitindo ainda determinar a dimensão e morfologia do ostium do AAEsq e do AAESQ (ver Figura 3). Estes aspetos têm relevância prognóstica (27-32).

A TC é ainda um método com grande acuidade para identificar apêndices acessórios e divertículos da AESq, que são fonte embolígena (33), relativamente frequente não abordada pelo encerramento. Assim a TC tem utilidade quer no planeamento, quer na avaliação do resultado e na prevenção e diagnóstico de complicações.

FIGURA 3

Diferente informação fornecida pela TC num contexto prévio a encerramento percutâneo do AAEsq.

A) comprimento da câmara de entrada do AAEsq. B) diâmetro do ostium do AAEsq. C) exclusão de trombo. D) correlação entre o ostium do AAEsq (seta espessa) e a artéria circunflexa (seta fina).

(Imagens Hugo Marques – UNICA – Hospital da Luz.)
BIBLIOGRAFIA

22. Xie JX, Eshtehardi P, Varghese T, et al. Prognostic Significance of Nonobstructive Left Main Coronary Artery Disease in Women Versus Men: Long-Term Outcomes From the CONFIRM

ANEXOS
MANUSCRITO 3

Cardiac CT:
the end of invasive coronary angiography as a diagnostic procedure?

Goncalves Pde, A. and Marques, H.

Rev Port Cardiol, 2009
28(7-8): p. 825-42
ARTIGOS DE REVISÃO

Angio TC cardíaca: o fim da coronariografia invasiva como modalidade diagnóstica? [67]

PEDRO DE ARAÚJO GONÇALVES, HUGO MARQUES
Hospital da Luz, Lisboa, Portugal

Recebido para publicação: Janeiro de 2009 • Aceito para publicação: Março de 2009
Received for publication: January 2009 • Accepted for publication: March 2009

RESUMO

Nos últimos anos temos assistido a uma rápida evolução na tecnologia de Tomografia computorizada (TC) multicortes, com uma melhoria crescente da resolução temporal e espacial, fazendo desta uma robusta modalidade no diagnóstico das artérias coronárias. Apesar da coronariografia invasiva ser ainda considerada o exame de referência para diagnosticar doença coronária, existem várias indicações para as quais a angiografia por AngioTC cardíaca poderá vir a ser considerada o exame de primeira linha em detrimento da coronariografia por cateterismo cardíaco. Dado o seu elevado valor preditor negativo, esta técnica revela-se particularmente útil para excluir a presença de estenoses coronárias significativas, evitando assim procedimentos diagnósticos invasivos desnecessários, nomeadamente em doentes com probabilidade intermédia e exames de isquemia e/ou queixas inconclusivas ou na avaliação coronária que antecede a cirurgia valvular ou da aorta.

A angiografia não se esgota na coronariografia invasiva, e a avaliação cardíaca extra-coronária, nomeadamente da função ventricular esquerda, bem como a avaliação de achados extra-cardíacos contribuem para a rentabilidade deste exame.

Palavras-Chave
Angio TC cardíaca; Cateterismo cardíaco; Doença coronária; Diagnóstico.

RESUMO

Cardiac CT: the end of invasive coronary angiography as a diagnostic procedure?

In recent years, multislice computed tomographic (CT) technology has progressed rapidly, with significant improvements in spatial and temporal resolution, and has become a powerful technique for coronary artery evaluation. Although invasive angiography is still considered the gold standard for the diagnosis of coronary artery disease, there are several indications for which coronary CT angiography (CTA) may become the first-line exam, instead of invasive catheter-based coronary angiography. Because of its high negative predictive value, CTA is very useful to rule out significant coronary stenosis, thus avoiding unnecessary invasive diagnostic procedures, particularly in patients with intermediate probability and inconclusive stress tests and/or symptoms, or in routine coronary evaluation of patients scheduled for valvular or aortic surgery.

CTA is not limited to non-invasive coronary angiography; it can make important additional diagnostic contributions in both extra-coronary cardiac evaluation, such as left ventricular function, and assessment of extracardiac findings.

Key words
Coronary CT; Cardiac catheterization; Coronary artery disease; Diagnosis.
INTRODUÇÃO

A coronariografia invasiva por cateterismo cardíaco tem sido considerada a modalidade de eleição para identificar a presença de doença coronária. Para além de confirmar a sua presença e caracterizar a anatomia coronária e a gravidade e distribuição das lesões, a sua maior vantagem reside na possibilidade de se realizar, quando indicada, revascularização miocárdica por angioplastia. No entanto, numa elevada percentagem dos casos, apenas é realizada a coronariografia diagnóstica, não sendo o doente subsequentemente submetido a angioplastia. Existem várias justificações para esta discrepância entre o número de coronariografias diagnósticas e o número de angioplastias: em primeiro lugar, em alguns casos não se confirmam as suspeitas dos exames não invasivos e na coronariografia não se documenta a presença de estenoses significativas; em segundo lugar, uma percentagem significativa é constituída por doentes com patologia valvular ou da aorta torácica com indicação cirúrgica, nos quais está indicada a realização de uma coronariografia na avaliação de rotina pré-operatória; em terceiro lugar, em alguns casos, após a coronariografia opta-se por outra modalidade terapêutica, nomeadamente optimização da terapêutica médica ou cirurgia de revascularização. Nas estatísticas mais recentemente publicadas da Sociedade Europeia de Cardiologia, a proporção média de procedimentos de intervenção para coronariografias foi de 33% ou seja, cerca de 2 em cada 3 das coronariografias invasivas não motivaram um procedimento de intervenção\(^1\). Apesar de se tratar actualmente de um procedimento bastante seguro, trata-se de um exame invasivo e assim tem um risco de complicações que, apesar de pouco frequentes, ocorrem por vezes em procedimentos puramente diagnósticos.

Com a evolução recente na tecnologia de tomografia computadorizada multicortes, tornou-se possível a realização de uma coronariografia de uma forma não invasiva. A elevada acuidade diagnóstica demonstrada nos estudos comparativos com coronariografia invasiva, justificam que, para algumas indicações, a angiografia por tomografia computadorizada (AngioTC) cardíaca seja considerada uma modalidade diagnóstica alternativa à coronariografia por cateterismo.

I

nvasive catheter-based coronary angiography is considered the first-line technique for detection of coronary artery disease (CAD). Besides confirming the presence of CAD and characterizing coronary anatomy and the severity and distribution of lesions, its main advantage is that it affords the possibility, when indicated, of performing myocardial revascularization by angioplasty. However, in a large percentage of cases, the procedure is merely diagnostic and the patient does not undergo angioplasty. There are various reasons for the discrepancy between the number of diagnostic exams and the number of angioplasties. Firstly, in some cases the suspicions aroused by non-invasive exams are not confirmed and coronary angiography does not detect significant stenosis; secondly, a significant proportion of patients have valvular or thoracic aortic disease with indication for surgery, coronary angiography being used in these patients for routine pre-operative evaluation; and thirdly, a different therapeutic approach may be chosen following coronary angiography, for example optimization of medical therapy or revascularization surgery. According to the latest statistics published by the European Society of Cardiology (ESC), the mean percentage of interventions during coronary angiography was 33%; in other words two out of three invasive angiograms do not result in an intervention\(^5\). Although the procedure is now very safe, it is an invasive exam and as such carries a risk of complications that, while uncommon, do sometimes occur during purely diagnostic procedures.

With the recent development of multislice computed tomographic technology, non-invasive coronary angiography is now feasible. Its high diagnostic accuracy demonstrated in comparative studies with invasive coronary angiography means that for certain indications cardiac CT angiography (CTA) is considered an alternative diagnostic modality to catheter-based coronary angiography\(^2,4\).

The various indications for which cardiac CTA may replace catheter-based coronary angiography as the first-line exam are reviewed below.

cont.
EXCLUSION OF SIGNIFICANT CORONARY STENOSIS IN PATIENTS WITH INTERMEDIATE PROBABILITY OF CORONARY ARTERY DISEASE

Various studies have demonstrated the high negative predictive value of cardiac CTA, which has a consistently lower rate of false negatives than the gold standard technique of invasive catheter-based coronary angiography. A review published by the ESC working group involving over 800 patients and systematically comparing state-of-the-art equipment (64-slice and 64-slice dual source systems) with conventional angiography reported 89% sensitivity, 96% specificity and 98% negative predictive value for the former. The consistently low false-negative rate makes this exam particularly attractive for excluding the presence of coronary artery disease in patients with intermediate probability for CAD and this is in fact the most common indication for performing cardiac CTA. In a recent study by Meijboom et al., the diagnostic accuracy of cardiac CTA was assessed according to the pretest probability of CAD, the authors concluding that it was most useful in patients with low or intermediate probability, in whom it can exclude the presence of significant CAD with a high level of certainty and thus avoid invasive coronary angiography. The patients most likely to benefit from this indication are those with inconclusive ischemia testing or those with a positive test but in whom the probability based on clinical assessment (age, gender, symptoms and risk profile) suggests that it is probably a false positive. Using an exam with a high negative predictive value such as cardiac CTA to exclude coronary stenosis avoids unnecessary cardiac catheterization in such patients (Figs. 1 and 2).

CORONARY EVALUATION PRIOR TO CARDIAC SURGERY

Coronary angiography prior to surgery is indicated in a wide range of patients with valvular disease, to detect the presence of significant concomitant CAD. According to the latest ESC guidelines on the management of valvular heart disease, besides being indicated in patients with a history of CAD, suspected myocardial ischemia or left ventricular systolic dysfunction, coronary
angiography is also recommended in those with only a single risk factor, or even none in the case of men aged over 40 or postmenopausal women

Manuscrito 3
Rev Port Cardiol
Vol. 28 Julho/Agosto 09 / July/August 09

Figura 1. Reconstruções de volume (VRT), multiplanar (MPR) e coronariografia virtual, em exame com boa qualidade de imagem documentando artéria coronária direita sem placas significativas.

Figure 1. Volume-rendered reconstruction (VRT), multi-planar reconstruction (MPR) and virtual coronary angiography: good quality images showing right coronary artery without significant plaques.

Figura 2. Reconstruções de volume (VRT), multiplanar (MPR) e coronariografia virtual, em exame com boa qualidade de imagem documentando artéria descendente anterior sem placas significativas.

Figure 2. Volume-rendered reconstruction (VRT), multi-planar reconstruction (MPR) and virtual coronary angiography: good quality images showing left anterior descending artery without significant plaques.

AVALIAÇÃO CORONÁRIA PRÉ-CIRÚRGIA CARDÍACA

Na presença de doença valvular com indicação cirúrgica, está indicada a realização de coronariografia, para avaliar a presença concomitante de doença coronária significativa, sendo esta indicação bastante abrangente. De acordo com as últimas recomendações de manejo

It is common in such patients to find no significant CAD, and even when it is present, coronary angiography is merely diagnostic, surgical revascularization being performed at the same time as valve surgery. This means that patients are exposed to the risks inherent in an invasive exam for purely diagnostic purposes. While the risks are low, they are not negligible, particularly in patients under anticoagulant...
das doenças valvulares da Sociedade Europeia de Cardiologia, para além de estar indicada em doentes com antecedentes de doença coronária, com suspeita de isquemia miocárdica ou com disfunção sistólica ventricular esquerda, a coronariografia está ainda indicada na presença de apenas um factor de risco e mesmo na ausência destes, caso se trate de um doente do sexo masculino com mais de 40 anos, ou de uma mulher pós-menopausa.

Nestes doentes, é frequente não se encontrar doença coronária significativa e mesmo nos casos em que existe doença coronária associada à doença valvular, apenas é realizada a coronariografia diagnóstica, sendo a revascularização feita cirurgicamente aquando da cirurgia valvular. Deste modo, os doentes são expostos aos riscos cirurgicamente aquando da cirurgia valvular, apenas é realizada a coronariografia diagnóstica, sendo a revascularização feita cirurgicamente aquando da cirurgia valvular. Deste modo, os doentes são expostos aos riscos cirurgicamente aquando da cirurgia valvular.

Num estudo que incluiu 70 doentes com indicação para cirurgia valvular, foi avaliada a acuidade diagnóstica da angioTC cardíaca, em comparação com a coronariografia convencional. Neste trabalho, realizado com um aparelho de 64 cortes foram excluídos doentes com fibrilação auricular e insuficiência renal e englobou vários tipos de valvulopatia, inclusive doentes com estenose aórtica. O desempenho diagnóstico da angioTC cardíaca foi excelente, com uma sensibilidade de 100%, especificidade de 92%, valor preditor positivo de 82% e valor preditor negativo de 100%. Dos 4 falsos positivos verificados, 3 foram em doentes cuja valvulopatia era estenose aórtica. Este constitui um subgrupo de doentes valvulares onde provavelmente esta técnica se depara ainda com algumas limitações, uma vez que se tratam habitualmente de doentes mais idosos, com maior probabilidade de doença coronária concomitante e com elevada prevalência de lesões coronárias calcificadas, cujo grau de estenose é habitualmente sobrevalorizado na angioTC. Num outro trabalho que incluiu apenas doentes com estenose aórtica, o valor médio de score de cálcio foi de 609±680 e foi identificado o limiar de 1000, valor a partir do qual a frequência de segmentos não interpretáveis era bastante elevada.

Os doentes com fibrilação auricular, frequente-
Assessment of Patients with Previous Myocardial Revascularization

Monitoring of patients with previous surgical or percutaneous myocardial revascularization is by clinical assessment and ischemia testing, and control coronary angiography is not routinely indicated. However, it can be scheduled during follow-up in certain cases, generally following complex interventions, such as angioplasty of the left main coronary artery, or in patients enrolled in clinical trials evaluating new stents. Assessment of stent patency is hindered by the need to synchronize with the ECG the images acquired, which becomes particularly difficult when there is great RR variability. The high temporal resolution of the latest generation angiography systems, with 64 cortices in a single revolution, may overcome this limitation, with initial promising results (9,10) (Fig. 3). On the other hand, the new 320 cortices systems, allowing a crânio-caudal coverage for total cardiac acquisition in a single rotation, will probably surpass this limitation, with initial promising results (9,10) (Fig. 3).
artifacts arising from the alloys used in stents, as well as by stent diameter, because of CTA’s limited spatial resolution compared to conventional angiography. However, most modern stents of a reasonable caliber (>3 mm) can be assessed. In a recent review by the ESC Working Group of the results of various studies comparing 64-slice and 64-slice dual source systems with conventional angiography, 88% of the 684 stents included in these studies were correctly assessed. Thus, for cases in which control angiography is indicated during follow-up and particularly when there is a low likelihood of need for further percutaneous intervention, CTA may be a good alternative (Fig. 4).

In patients with previous coronary bypass surgery, the usefulness of cardiac CTA depends mainly on the clinical reason for the exam. If the objective is to assess bypass graft patency, CTA is highly accurate, not only because of its sensitivity but also due to its high specificity in
AVALIAÇÃO DE DOENTES COM ANTECEDENTES DE REVASCULARIZAÇÃO MIOCÁRDICA

O seguimento dos doentes com antecedentes de revascularização miocárdica cirúrgica ou percutânea é feito clinicamente e com exames de documentação de isquemia, não estando indicada a realização, por rotina, de uma nova coronariografia de controlo. No entanto, em determinados casos, fica planeada a realização de nova coronariografia no seguimento. Habitualmente tratam-se de casos de intervenções complexas, como é o caso da angioplastia do tronco comum ou então de doentes incluídos em ensaios clínicos para avaliação de novos stents. A avaliação da patência dos stents é prejudicada pelos artefactos resultantes das ligações metálicas dos stents. Esta depende não só do tipo de liga metálica, mas sobretudo do diâmetro do stent, dadas as limitações de resolução espacial desta técnica, em comparação com a angiografia convencional. De qualquer modo, a grande maioria dos stents de nova geração, desde que tenham um calibre razoável (>3mm), são passíveis de avaliação. Numa revisão recente do grupo de estudos da Sociedade Europeia de Cardiologia, englobando os resultados de vários trabalhos publicados com aparelhos de 64 cortes e 64 cortes de dupla ampola, com comparação sistemática com angiografia convencional, 88% dos 684 stents incluídos nestes estudos, foram correctamente avaliados (4). Assim, para os casos em que esteja indicada uma nova coronariografia no seguimento e sobretudo quando se antecipa uma baixa probabilidade de nova intervenção percutânea, a coronariografia por TC poderá constituir uma boa alternativa. (Fig. 4)

No caso dos doentes com antecedentes de cirurgia coronária, a utilidade da angiotomografia depende sobretudo da questão clínica. Se o objectivo for documentar a patência das pontagens, a acuidade da angiotomografia é elevada, não só pela habitual sensibilidade, mas também por uma elevada especificidade, dado tratar-se de vasos de maior calibre, com menor movimento e cujas lesões habitualmente não são calcificadas (Fig. 3). No caso das pontagens arteriais, apesar da presença de artefactos resultantes dos clips metálicos (Fig. 6), a sua avaliação é igualmente possível na grande maioria dos casos e é ainda possível avaliar a sua relação com a parede assessing large caliber vessels that are liable to move less and in which the lesions are generally not calcified (Fig. 3). Arterial grafts can also be assessed in most cases, despite the presence of surgical clip artifacts (Fig. 6), as can their relationship to the thoracic wall, which is useful information when repeat sternotomy is necessary. A recent study assessing 418 bypass grafts in 138 patients with a standard 64-slice system reported 97% specificity, with no significant differences between venous and arterial grafts (11).

However, assessment of native circulation in such patients is more difficult due to the presence of advanced coronary atherosclerosis, frequently with widespread disease, multiple calcified plaques and small caliber arteries, all significant limitations given the current spatial resolution of CTA, even using the latest systems (12).

INDICATIONS IN THE EMERGENCY DEPARTMENT

Exclusion of acute coronary syndrome (ACS) in patients in the emergency department is sometimes difficult, particularly when initial assessment detects no significant ECG abnormalities and biomarkers of myocardial damage are negative. Patients often remain under observation, serial assessments being performed until the likelihood of ACS is considered low. In cases of an apparently normal ECG and negative biomarkers, using CTA to exclude significant coronary disease would enable rapid risk stratification and earlier discharge. Conversely, it could also identify patients who do in fact have significant coronary disease despite being considered at low risk on the basis of conventional assessment by ECG and biomarkers. Initial studies have demonstrated the high diagnostic accuracy of CTA in this context (13,14), as well as its cost-effectiveness, compared to stratification using standard algorithms (15). A study following patients discharged early after exclusion of significant CAD by CTA reported no significant coronary events (16). Further studies will help to validate the prognostic impact of this strategy.

Besides ACS, differential diagnosis of patients admitted to the emergency department with acute chest pain includes aortic dissection and pulmonary embolism. Protocols have been developed that enable assessment of these three
important pathologies in a single CT scan, known as “triple rule-out”17,18.

Finally, for some patients admitted to the emergency department with chest pain, the diagnosis is myocarditis or myopericarditis. Such cases often present repolarization abnormalities on the ECG and positive biomarkers of myocardial damage, so differential diagnosis must be made...
with ACS, for which they are generally referred for invasive coronary angiography to exclude CAD. Since many of these patients – usually young individuals with no history of cardiovascular disease and a low risk profile – have a low probability of CAD, this situation would be a good indication for non-invasive angiography using CTA. Studies have yet to be performed to validate this strategy.

CARDIAC CT ANGIOGRAPHY BEYOND NON-INVASIVE CORONARY ANGIOGRAPHY: EXTRA-CORONARY CARDIAC EVALUATION AND ASSESSMENT OF EXTRACARDIAC FINDINGS

Another advantage of CTA compared to conventional coronary angiography is that it can provide extra-coronary cardiac information and assess extracardiac findings in the same exam, without the need to increase radiation or contrast doses. Although extra-coronary cardiac evaluation is not usually the reason for the exam and most patients will already have undergone echocardiography, findings may be identified that went undetected in previous exams, particularly in patients with poor acoustic windows\(^{(16-21)}\) (Fig. 7). The technique also scans the thoracic segments included in cardiac acquisition, and extracardiac findings are common in the lung and mediastinal fields\(^{(22)}\).

CARDIAC CT ANGIOGRAPHY BEYOND DOCUMENTING SIGNIFICANT STENOSIS: PLANNING REVASCULARIZATION STRATEGIES

Although exclusion of CAD is the main indication for cardiac CTA, when significant coronary stenosis is detected the information provided by this exam can be useful in planning revascularization strategies. Recent studies have demonstrated the value of cardiac CTA to predict the outcome of recanalization of chronic occlusions\(^{(23,24)}\) and to assess distribution patterns of coronary bifurcation lesions\(^{(25,26)}\), which is useful in decisions regarding revascularization (Fig. 8).

Cardiac CTA can also characterize plaques,
particularly the presence of calcification, which is also important for coronary interventions, since angioplasty of calcified coronary lesions is generally more difficult and sometimes requires special devices.

OTHER INDICATIONS

There are other clinical situations for which cardiac CT could be considered the first-line exam instead of conventional coronary angiography, one of which is suspected anomalous origin of the coronary arteries, a known cause of sudden
death in young athletes. Cardiac CTA can determine not only the origin but the trajectory of anatomical variants, identifying malignant forms that course between the aorta and the pulmonary artery, which are difficult to characterize with conventional coronary angiography.

Another indication is in patients with dilated cardiomyopathy (DCM), in whom a coronary etiology must generally be excluded. In a study involving 61 patients with DCM of undetermined cause that compared the performance of cardiac CTA with invasive angiography for detection of CAD, sensitivity and specificity of CTA were 99% and 96.2% respectively, even with a 16-slice system. The study also assessed the safety of the two diagnostic modalities; no complications were observed with cardiac CTA, while the rate of complications in patients undergoing invasive angiography was 16%, 9.8% due to acute heart failure and 6.5% related to vascular access.

Besides excluding the presence of significant coronary disease in patients with DCM, cardiac CTA also accurately measures volumes and ejection fraction in the same scan, thus avoiding the need to increase contrast or radiation doses. Since acquisition is synchronized with the ECG, reconstructions at different phases of the cardiac cycle can be compared in order to select the best systolic and diastolic phases. This, together with the technique’s excellent endocardial definition and the fact that the 17 segments can be represented in multiplane reconstructions, leads to highly accurate and reproducible determination of volumes and ejection fraction. Given the prognostic and therapeutic implications of ejection fraction in patients with left ventricular dysfunction, this capability is an important additional advantage of non-invasive angiography, and further enhances the value of cardiac CTA in such patients.

LIMITATIONS OF CARDIAC CT ANGIOGRAPHY

The limitations of cardiac CTA are related to spatial and temporal resolution, the lack of functional information and radiation doses.

The spatial resolution of CTA is inferior to that of invasive coronary angiography, making assessment of small caliber distal segments more
A angio TC cardíaca permite ainda avaliar o tipo de placa, nomeadamente a presença de calcificação, informação igualmente importante para a intervenção coronária, uma vez que a angioplastia de estenoses coronárias calcificadas é habitualmente mais difícil, exigindo por vezes a utilização de dispositivos específicos.

OUTRAS INDICAÇÕES

Existem ainda outras indicações clínicas, para as quais a angioTC cardíaca poderá ser considerada o exame de primeira linha, em vez da coronariografia invasiva convencional. Um destes exemplos é a suspeita de origem anómala das artérias, reconhecida causa de morte súbita em jovens\(^27\). A angioTC cardíaca permite delinear não só a origem mas sobretudo o trajecto das variantes anatómicas, permitindo assim identificar as variantes malignas, nas quais o trajecto se faz entre a aorta e a artéria pulmonar, aspectos difíceis de caracterizar na coronariografia convencional.

Outro exemplo é o dos doentes com Miocardiopatia Dilatada nos quais se tem habitualmen-

difficult, which is why most studies limit their analysis to segments of ≥1.5 mm. Evaluation of calcified lesions is also difficult, the degree of stenosis generally being overestimated by CTA. Special filters are usually employed in reconstructions aimed at assessing stent patency, and these should also be used in patients with calcified lesions to minimize the effect of blooming artifacts\(^8\).

Temporal resolution is also inferior to conventional angiography, which hinders assessment of patients with high heart rates or arrhythmias. However, this limitation has been overcome by the latest 64-slice dual source systems, which can assess patients with high heart rates and even those in atrial fibrillation\(^9,10\).

The lack of functional information is another limitation of the technique. The ability to provide data on the functional impact of plaques or stenosis as well as anatomical information would make cardiac CTA the most complete non-invasive method of assessing CAD. There are two lines of research in this area: one seeks to assess perfusion on the basis of myocardial density, which is linearly correlated with perfusion following administration of iodinated contrast; the
other exploits the ability of dual energy methods to quantify iodine concentration in tissue. Both methods are still at the initial development stage in a few centers and there are various obstacles to be overcome, particularly the need to avoid a significant increase in radiation dose and the ability to perform exams under pharmacological stress.

Finally, the radiation dose in cardiac CTA, around 11 mSv even in studies with ECG-dependent dose modulation, is higher than in conventional coronary angiography, which is estimated at 7 mSv (30). As well as ECG-dependent dose modulation, which is now routine in such exams, new protocols have recently been developed aimed at reducing the dose even further. One consists of reducing the voltage from 120 kV to 100 kV, which is feasible in most patients except the obese. In a study comparing the radiation doses of different protocols in 1035 patients, a mean dose of 5.4 mSv was obtained with 64-slice systems using a combination of ECG-dependent dose modulation and the 100 kV protocol, which corresponds to a 64% reduction compared to standard protocols (31). Another recently developed protocol that has considerable potential to reduce the radiation dose even further consists of acquisition with prospective, rather than the usual retrospective, ECG triggering, known as step-and-shoot mode. Initial studies using this protocol have reported doses of 1.2 to 2.6 mSv (32).

The recently introduced 320-slice systems,
which enable acquisition of the entire heart volume in a single RR interval, should also lead to significant reductions in radiation and contrast doses.

CONCLUSION

Ongoing research and technological advances in the area of multislice computed tomography have progressively improved the spatial and temporal resolution of cardiac CTA exams. In addition to the current indications for use of the technique, notably exclusion of coronary artery disease in patients with intermediate probability, this diagnostic modality is also proving useful in other areas, and may become a first-line technique.

LIMITAÇÕES DA ANGIOTC CARDÍACA

As limitações da AngioTC cardíaca estão relacionadas com resolução espacial, resolução temporal, ausência de informação funcional e dose de radiação.

A resolução espacial da angioTC cardíaca é inferior à da coronariografia invasiva o que dificulta a avaliação de segmentos distais de pequeno calibre, razão pela qual na maior parte dos estudos, a análise foi limitada aos segmentos com ≥ 1,5mm. A avaliação de lesões
When significant coronary stenosis is detected, the information provided by cardiac CTA can be useful in planning revascularization strategies. However, the exam is not limited to assessment of the coronary tree, and the same acquisition protocol can be used for extracoronary cardiac evaluation, particularly multiphase reconstructions to determine ejection fraction and for assessment of extracardiac findings in the thoracic segments included in the scan.

It is hoped that some of the technique’s current limitations will be overcome in the future, particularly with regard to radiation doses and assessment of calcified lesions, and that cardiac CT angiography will be able to combine both anatomical and functional information in the same non-invasive exam. Initial results have been extremely promising and we shall see what the future will bring.
as doses de radiação com diferentes protocolos em 1035 doentes, foi possível obter uma dose média de 5,4mSv em aparelhos de 64 cortes, com o uso combinado de modulação da dose de acordo com o ECG e utilização de protocolo de 100Kv, o que corresponde a uma redução de 64% em relação aos protocolos convencionais31. Um outro protocolo recentemente desenvolvido e com elevado potencial para reduzir ainda mais a dose de radiação consiste na aquisição sincronizada com o ECG de forma prospectiva em vez da habitual retrospectiva, o chamado protocolo step and shot. Estão descritas doses de 1,2 a 2,6 mSv nos trabalhos iniciais com este protocolo32.

Finalmente, os aparelhos de 320 cortes recentemente introduzidos, que permitem realizar a aquisição de todo o volume cardíaco em apenas um intervalo RR, deverão igualmente conduzir a uma redução significativa da dose de radiação e de contraste.

CONCLUSÃO

A constante investigação e evolução tecnológica na área da TC multicortes tem vindo a permitir uma melhoria progressiva na resolução espacial e temporal dos exames de angioTC cardíaca. Para além das indicações actualmente aceites para esta técnica, nomeadamente a exclusão da presença de doença coronária em doentes com probabilidade intermédia, esta modalidade diagnóstica tem-se revelado útil também noutras área, podendo de futuro constituir-se como uma modalidade de primeira escolha.

BIBLIOGRAFIA / REFERENCES

Rationale and design of the Progression of Atherosclerotic Plaque Determined by Computed Tomographic Angiography Imaging (PARADIGM) registry: A comprehensive exploration of plaque progression and its impact on clinical outcomes from a multicenter serial coronary computed tomographic angiography study.

Am Heart J, 2016
182: p. 72-79
Rationale and design of the Progression of Atherosclerotic Plaque Determined by Computed Tomographic Angiography (PARADIGM) registry: A comprehensive exploration of plaque progression and its impact on clinical outcomes from a multicenter serial coronary computed tomographic angiography study

Sang-Eun Lee, MD, a Hyuk-Jae Chang, MD, PhD, a Asim Rizvi, MD, a Martin Hadamitzky, MD, a Yong Jin Kim, MD, PhD, b Edoardo Conte, MD, c Daniele Andreini, MD, c Gianluca Pontone, MD, c Valentina Volpato, MD, c Matthew J. Budoff, MD, c Ilan Gottlieb, MD, c Byoung Kwon Lee, MD, PhD, h Eun Ju Chun, MD, PhD, f Filippo Cademartiri, MD, PhD, f Erica Maiefi, MD, f Hugo Marques, MD, f Jonathan A. Leipsic, MD, f Sanghoon Shin, MD, m Jung Hyun Choi, MD, PhD, m Namsik Chung, MD, PhD, m and James K. Min, MD b

Background The natural history of coronary artery disease (CAD) in patients with low-to-intermediate risk is not well characterized. Although earlier invasive serial studies have documented the progression of atherosclerotic burden, most were focused on high-risk patients only. The PARADIGM registry is a large, prospective, multinational dynamic observational registry of patients undergoing serial coronary computed tomographic angiography (CCTA). The primary aim of PARADIGM is to characterize the natural history of CAD in relation to clinical and laboratory data.

Design The PARADIGM registry (ClinicalTrials.gov NCT02803411) comprises ≥2,000 consecutive patients across 9 cluster sites in 7 countries. PARADIGM sites were chosen on the basis of adequate CCTA volume, site CCTA proficiency, local demographic characteristics, and medical facilities to ensure a broad-based sample of patients. Patients referred for clinically indicated CCTA will be followed up and enrolled if they have a second CCTA scan. Patients will also be followed up beyond serial CCTA performance to identify adverse CAD events that include cardiac and noncardiac death, myocardial infarction, unstable angina, target vessel revascularization, and CAD-related hospitalization.

Summary The results derived from the PARADIGM registry are anticipated to add incremental insight into the changes in CCTA findings in accordance with the progression or regression of CAD that confer prognostic value beyond demographic and clinical characteristics. [Am Heart J 2016;182:72-9.]

Funding: This research was supported by Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (Grant No. 2012027176) and GE Healthcare.

Submitted June 5, 2016; accepted September 17, 2016.

Reprint requests: Hyuk-Jae Chang, MD, PhD, Division of Cardiology Severance Cardiovascular Hospital, 311 Seogang-daero, Mapo-dong, Mapo-gu, Seoul, 121-742, South Korea; hjchang@yuhs.ac, jkm2001@med.cornell.edu

© 2016 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.ahj.2016.09.003

Trial Design

Manuscrito 4

Rationa...
Ischemic heart disease remains the most important cause of morbidity and mortality worldwide. At present, the development of the atherosclerotic lesion in the vessel wall is conceptualized as a sequential event, wherein progression of atherosclerosis in coronary arteries leads to stenosis or plaque rupture with resultant atherothrombosis and eventual myocardial damage. To date, the temporal evolution of atherosclerotic progression has rarely been serially monitored or visualized, and assessment of treatment response toward coronary artery disease (CAD) has been inferred by cholesterol monitoring, rather than individualized direct imaging of the plaque due to limitations in noninvasive monitoring of the diseased vessel wall.

Further still, although previous clinical trials have demonstrated an effect of statin therapy in reducing cardiovascular disease events, these studies were most often conducted on a population level. Hence, direct visualization of the serial changes in plaque and vessel wall may further our understanding in the natural history of disease progression and response to therapy, which might eventually facilitate in managing patients more efficiently.

To date, the progression or change in response to medical therapy of coronary plaque has been demonstrated mainly by invasive techniques including quantitative coronary angiography or intravascular ultrasound (IVUS). However, the invasiveness of these methods limits their use to patients who are undergoing invasive coronary angiography (ICA). As a consequence, most studies thus far have predominantly focused on patients with an acute coronary syndrome (ACS) or high risk of CAD, which comprise only a small portion of the patient population. To this end, most patients with suspected CAD who have low-to-moderate risk and are therefore not eligible for ICA according to current guidelines, including sequential changes in plaque morphology or composition, is not well characterized.

Prior studies examining plaque progression have been primarily restricted to measures of obstructive CAD on a per-lesion basis, and non–ischemic lesions or newly developed lesions on a follow-up basis are largely overlooked. The latter approach also limits our understanding of the progression of mild lesion or development of atherosclerotic plaques, despite the notion that nonischemic lesions have been found to be associated with the development of future ACS in recent studies. To wholly understand the progression of atherosclerosis in the coronary arteries, assessment of CAD should cover the entire coronary tree, which currently represents a challenge when relying on the use of invasive techniques only.

Moreover, most available studies that have assessed the progression of plaque by invasive procedures have included fewer numbers of patients or used a relatively shorter-term follow-up. Although a sufficient number of patients were enrolled in some studies that used quantitative coronary analysis, the traditional reference method for assessing the severity of CAD was used. Potential drawbacks of this technique include the underestimation of disease severity and the inability to assess changes in the vessel wall, as documented elsewhere. Recent developments in coronary computed tomographic angiography (CCTA) enable not only detection of luminal narrowing but also characterization of high-risk plaque morphology and quantification of plaque volumes. The relationship of CCTA-defined increasing burden of CAD and cardiovascular risk has been reported in the CONFIRM registry. Furthermore, more recent studies have used fully or semiautomated plaque assessment methods, thereby permitting a higher accuracy and enhanced reproducibility as compared with a manual technique. In addition, the relatively high radiation dose, which was a prior limiting factor of serial CCTA examinations, has substantially been reduced from 15 to 20 mSv to less than 1 mSv in selected patients. Hence, CCTA has emerged as a potential alternative to invasive imaging modalities for serial interrogation of CAD, which assess interval changes on morphological plaque characteristics and evaluate the efficacy of treatments.

The PARADIGM registry (ClinicalTrials.gov NCT02803411) has been designed to directly address the natural history of coronary atherosclerosis, characteristics, and determinants of coronary plaque progression, as well as to define the impact of plaque progression in terms of adverse clinical outcomes in patients presenting with CAD. This report describes the rationale and design features of the PARADIGM registry.

Methods

Overall study design

The PARADIGM registry is a prospective, open-label, international, multicenter dynamic observational registry designed to evaluate associations between changes in serial CCTA imaging findings and clinical presentation and their ability to predict mortality and major adverse cardiac events (MACEs) in patients with CAD. The registry uses a collaborative design using contribution and merger of similar prospectively enrolled cohorts from 16 sites around the world. Patients who underwent CCTA will be prospectively followed up, and among them, patients with a second CCTA scan will be enrolled. The change in plaque composition, size, lumen dimensions, and arterial remodeling will be assessed along with their association with adverse clinical outcomes. Qualifying sites participated in data collection and common data analysis if the site collected data including clinical presentation, risk factors, CCTA data recordings, and follow-up data including all-cause mortality and MACE.

Study objectives

Primary objective. The primary objective of PARADIGM is to describe the natural course of coronary

cont.
atherosclerotic plaque development and progression in CAD over time by CCTA in relation to demographic and laboratory data for refinement of risk stratification among patients with repeated CCTA. Specifically, we will explore the temporal changes in plaque composition and quantitative measures such as plaque volume by serial CCTA.

Secondary objectives, secondary objectives will be as follows: (1) determine the most optimal and effective way to define the progression of plaque quantitatively assessed by serial CCTA; (2) identify the determinants of plaque progression; (3) evaluate the prognostic power of changes in CCTA findings in specific subgroups, including but not limited to gender, type 2 diabetes mellitus, dyslipidemia, and various ethnic backgrounds; (4) ascertain imaging parameters derived from serial CCTA that can be used in monitoring patients with CAD; (5) assess changes in serial CCTA findings and their possible association with clinical risk factors and symptoms for the purpose of developing a CCTA global risk score for patients with suspected CAD; and (6) test the efficacy and robustness of using CCTA imaging indicators as surrogate markers of atherosclerotic progression.

Study end points

The primary end point of the PARADIGM registry is to explore the temporal changes in plaque characteristics (volume and composition). Secondary end point is a composite of MACE in relation with primary end point, which comprise cardiac and noncardiac mortality, myocardial infarction, unstable angina requiring hospitalization, and revascularization.

Study eligibility criteria

Patient eligibility. All consecutive patients undergoing CCTA of 64-detector rows or greater at cluster sites are included within the PARADIGM registry if all inclusion criteria were met. Patient selection criteria included the following: (1) patients who underwent 2 or more clinically indicated CCTA with 64-detector rows or greater for CAD evaluation, (2) at least a 2-year interval between the baseline and follow-up CCTAs, and (3) prospective data collection for CAD risk factors.

Exclusion criteria included the following: (1) unavailable clinical or laboratory data within 1 month from baseline CCTA or follow-up CCTA and (2) uninterpretable CCTA.

Site eligibility. The site requirements for participating sites of the PARADIGM registry are as follows: (1) >200 patients per annum undergoing CCTA by 64-detector rows or greater, (2) incorporation of CCTA into daily clinical practice by members of the medical center other than those involved with the CCTA performance and interpretation, and (3) director of laboratory possessing level III–equivalent expertise in CCTA.

Study sites and participating centers

During the initial phase of the PARADIGM registry, 9 cluster sites contributed data from patients undergoing CCTA of 64-detector rows or greater. Seven countries in North America, Europe, South America, and Asia are presently represented in this multinational effort, including the United States, Canada, Italy, Germany, Brazil, Portugal, and South Korea. Data collection activities began in 2013 with a target of collecting data on approximately more than 2,000 patients.

The geographic clusters were selected to represent medical centers of different sizes and with different diagnostic capabilities, as well as patient populations with diverse clinical and demographic characteristics. Medical centers where CCTA has been incorporated into daily clinical cardiac practice were chosen. Each sites’ principal investigator was required to obtain approval from the appropriate ethics committee or institutional review board.

Sites were eligible for merger into the PARADIGM registry if they performed prospective cohort collection of CCTA findings with >80% overlap with the predefined data dictionary. Databases had to include uniform collection of major categories of patient data, including demographics, history of CAD, Framingham risk factors, symptom indication for CCTA, raw image dataset of CCTA, and obtained follow-up data for all-cause mortality for ≥2 years with <30% loss to follow-up. Sites were allowed to provide both previously published and unpublished data.

Patient evaluation and follow-up

All PARADIGM study patients underwent initial and follow-up CCTA based on order from their primary physician. Demographic data, targeted medical history, cardiovascular risk factors, laboratory data, and development of clinical events were prospectively collected using electronic case report forms at the time of initial CCTA and at the time of follow-up CCTA (Table I). Standardized definitions for cardiovascular risk factors were used. Medical history including previous stroke, transient ischemic accident, and peripheral artery disease were documented. If patients had chest pain, it was recorded based on one of the following terms: atypical chest pain, noncardiac chest pain, or typical chest pain.

Patient follow-up was performed by each local center by a dedicated physician or research nurse, or both. Patients were followed up for a development of MACE. Ascertainment of all-cause death was determined by direct interview, telephone contact, or review of medical records. The PARADIGM database will be locked in June 2016, and will be reopened every 3 months to update additional investigative sites’ data and to update preexisting sites for longer follow-up evaluation.

Acquisition and interpretation of CCTA

All testing, image acquisition, and image postprocessing for CCTAs in the PARADIGM cohort are in direct accordance with Society of Cardiovascular Computed Tomography guidelines. No restrictions were placed...
The presence of coronary atherosclerosis is defined as any tissue structures >1 mm2 that existed either within the coronary artery lumen or adjacent to the coronary artery lumen that could be discriminated from surrounding pericardial tissue, epicardial fat, or the vessel lumen itself.52

For qualitative analysis, the presence of positive remodeling, low attenuated plaque, and spotty calcification will be identified, and plaque type will be recorded as one of the following: noncalcified, calcified, or mixed calcified plaque. A remodeling index is defined as a maximal lesion vessel area divided by proximal reference vessel area, with positive remodeling defined as a remodeling index ≥1.1. Low attenuated plaque is defined as any voxel <50 Hounsfield units (HU) within a region of interest, and spotty calcification is defined by an intraluminal calcific plaque <3 mm in length that comprised <90\% of the lesion circumference.20 Percentage of obstruction of the coronary artery lumen is based on a comparison of the luminal diameter of the segment exhibiting obstruction to the luminal diameter of the most normal-appearing site immediately proximal to the plaque. Diameter stenosis severity was graded as none (0\%), very mild (1\%-24\%), mild (25\%-49\%), and moderate (50\%-70\%).33

For quantitative atherosclerotic plaque analysis, a semiautomated method will be used, which has been validated against IVUS in previous studies.26 First, a centerline originating from the ostium defined by the observer will be automatically drawn. Then stretched multiplanar reformatted images will be generated, and the lumen and vessel borders will be detected longitudinally in 4 different cut planes by the software and will be corrected by the observer, as necessary. Based on these longitudinal contours, cross-sectional images at 0.5-mm intervals will be calculated to create transversal lumen and vessel wall contours. The settings for window level and width will be fixed at 740 HU and 220 HU, respectively.

To detect the progression or development of a plaque over time more efficiently, a no-gap method34,35 will be used, assuming that there is no gap between the vessel wall and the lumen except where a plaque exists, instead of drawing each line separately throughout the entire vessel.

Plaque volume is defined as the difference between the vessel volume and lumen volume, and the mean plaque burden is calculated as the plaque volume divided by the vessel volume, multiplied by 100 to obtain the percentage value.

Imaging repository

All CCTA images will be sent to a core laboratory for image analysis. The core laboratory will perform qualitative and semiquantitative analyses for accuracy of CCTA. CCTA core laboratory interpretation will be used for post hoc analysis. Images will be stored either by a Web-based server or locally by a single informatics core laboratory site.

Data management

Completed electronic case report forms will be entered by each site and checked locally for possible errors or omissions. Then, each site’s raw data file will be electronically transmitted to a central data repository at the Clinical and Data Coordinating Center, where they will undergo extensive cleaning and subsequent merging.
to generate the master PARADIGM dataset. On receipt, the CDCC will perform an additional check for possible errors, omissions, or erroneous values.

The CDCC will qualify all investigators by determining the following: knowledge and experience level with standard-of-care CCTA scanning and ICA procedures, adequate patient population to enroll within the scheduled timeline, and the presence of an established clinical research department. Completion of these requirements will be documented via a site qualification questionnaire or equivalent, along with documentation of investigator experience and background.

Sample size calculation

In previous studies that quantitatively measured total plaque volume changes using serial CCTA, total plaque volume increased by 2% to 4% per year, although each study enrolled different patient populations. When assuming that total plaque volume increases 2.0% per year, enrollment of 1,766 patients achieve 80% power at an α level of 0.5. An overall sample size of approximately 2,000 subjects were deemed necessary for study enrollment when permitting a 20% drop-out rate.

Statistical methods

Descriptive, univariate, and multivariate analyses will be conducted. In per-lesion and per-vessel analyses, continuous variables between groups will be analyzed using an independent t-test, whereas those between categorical variables will be analyzed using a χ² test. Changes in lesion characteristics will be analyzed using mixed linear models. For the primary and secondary objectives, variables displaying significant relationships based on prior relevant literature as well as those with a P value <.1 in univariate Cox proportional hazard regression models will be defined as potential covariates and will be subsequently included in the multivariate analyses to evaluate the association of changes in CCTA parameters and clinical variables. Cutoff values for defining the plaque progression will be determined based on receiver operating characteristic curves.

Study limitations

Although this study will address many of the shortcomings of prior studies examining the natural history of CAD, it is not without limitations. For the present registry, only patients who had 2 or more CCTA scans will be enrolled. However, under current guidelines, most patients diagnosed as having severe CAD according to their baseline CCTA would likely have been referred to ICA and may subsequent have undergone revascularization. In any case of patients with normal coronary anatomy at baseline CCTA, follow-up CCTA is typically not recommended during the warranty period.

Consequently, it would be anticipated that a large bulk of patients with either severe disease or normal coronaries at baseline CCTA would have been omitted from the current registry. Indeed, such a selection bias is often inherent with this type of study design, and given no current recommendations exist regarding serial CCTA in patients with suspected or known CAD, an observational study such as PARADIGM provides a unique opportunity to noninvasively demonstrate the natural course of CAD.

Funding and authorship

The PARADIGM registry is funded by the National Research Foundation of Korea and GE Healthcare. The authors are solely responsible for the design and conduct of this study, all study analyses, the drafting and editing of the manuscript, and its final contents.

Discussion

The PARADIGM registry is a prospective international multicenter dynamic observational cohort registry, which aims to describe and characterize the natural history of coronary atherosclerosis in patients with low-to-intermediate risk and, further, to find the determinants of atherosclerotic disease progression. The results of this registry will inform clinicians about the clinical and pathological course of CAD by (1) underlining the clinical and CCTA characteristics of vulnerable patients who are most likely exposed to the occurrence of MACE and who might warrant follow-up, (2) determine the frequency and appropriate length of duration wherein vulnerable patients should be followed up using CCTA, (3) assess the clinical and CCTA characteristics which indicate the need for revascularization, and (4) highlight the treatment strategies which regress or delay the progression of CAD. Foremost, the anticipated results from PARADIGM are expected to help guide clinical decision making regarding the appropriate management of patients, by focusing on changes in CCTA as a surrogate marker of disease progression.

Previous studies using invasive techniques have identified high-risk features such as thin-cap, low residual lumen area, and spotty calcification as the hallmark of high-risk plaques. These high-risk plaques identified by either IVUS or OCT were also associated with adverse clinical outcomes. However, given these invasive procedure-based studies were naturally performed on patients considered to be high risk, or those with previous ACS, there is a limitation as to how one should directly apply their results to patients with mild-to-intermediate risk. In patients with subclinical CAD, the probability of finding these high-risk plaques is low, and therefore, these techniques are not suitable to be used as an indicator of disease progression. Moreover, it has been conceived that atherosclerotic CAD is a generalized disorder with a dynamic nature of plaque morphology, and that
therapeutic interventions for atherosclerosis are most effective when started at an early stage of the disease. Therefore, rather than simply characterize and identify the presence of such coronary atherosclerotic plaques as high risk, quantitative assessment of disease burden and progression has remained a subject of intense interest. The ability of CCTA to noninvasively image plaque composition as well as to assess the entire coronary tree wall thickening enables detection and monitoring of earlier stages of CAD. It has been hypothesized that noninvasive imaging modalities such as CCTA further stratify intermediate-risk patients to a very high-risk group. Moreover, in IVUS and CCTA comparative studies, CCTA was shown to accurately evaluate atherosclerotic plaque size, remodeling, eccentricity, and plaque composition. Based on the small mean differences between CCTA and IVUS with virtual histology measurements, it was suggested that quantitative CCTA analysis could be tolerated on a population level. More recently, studies using QCA or IVUS-like parameters have also validated the reliability and reproducibility of CCTA in quantitatively assessing coronary atherosclerotic plaque.

However, still there are limited data regarding plaque progression using CCTA. Although some have used serial CCTA findings to describe the progression or change in coronary plaques, research to date has been limited by small study samples, relatively short durations of intervals between scans, and a focus on more particularistic subsets of patients or lesions. Also, these studies have primarily focused on high-risk populations (Table II). Moreover, there has been no consensus on optimized methodology with regard to quantifying plaque volume by CCTA in an effort to provide reproducible and standardized results.

To thoroughly understand the natural history of atherosclerotic CAD, and to optimize the CCTA methodology and clarify the role of CCTA in quantitative assessment of CAD, prospective studies of low- to moderate-risk populations are clearly needed. Noninvasive imaging methods such as CCTA that possess the ability to accurately estimate change in disease burden over time are critical to assess the response to medical treatments and to monitor the disease process. The PARADIGM registry is designed specifically to address these questions.

The PARADIGM registry will be the first to evaluate the quantitative assessment of disease burden using serial CCTA in populations with low-to-moderate risk, while using its large database collected from geographically diverse regions, which are representative of persons who are presently undergoing clinically indicated CCTA. Furthermore, the results of this registry may allow for the contemporary revision of indications of CCTA and its role in monitoring patients with suspected CAD. Current guidelines worldwide do not recommend serial CCTA; however, results derived from PARADIGM may prove beneficial.
that direct visualization of the lesion may be adequate in monitoring patients who present with CAD.

New knowledge gained

Direct visualization of the natural course of atherosclerosis, as well as identification of the clinical determinants of plaque progression or regression, holds the potential to shift the paradigm of CAD monitoring among low- to moderate-risk patients with suspected CAD, with aims of offering earlier therapeutic strategies, which may facilitate in attenuating disease progression or even improve clinical outcomes. We firmly believe that the PARADIGM registry is appropriately designed to address these important questions in the most suitable manner.

References

Cost-effectiveness of different diagnostic strategies in suspected stable coronary artery disease in Portugal.

Ferreira, A.M., Marques, H., Goncalves, P.A., and Cardim, N.,

Arq Bras Cardiol, 2014
102(4): p. 391-402
Cost-Effectiveness of Different Diagnostic Strategies in Suspected Stable Coronary Artery Disease in Portugal

António Miguel Ferreira1,2, Hugo Marques1,3,4, Pedro Araújo Gonçalves1,2,4, Nuno Cardim1,4
Hospital da Luz1, Lisboa; Hospital Santa Cruz - Centro Hospitalar de Lisboa Ocidental2, Lisboa; Hospital Santa Marta - Centro Hospitalar de Lisboa Central3, Lisboa; Faculdade de Ciências Médicas da Universidade Nova de Lisboa4, Lisboa − Portugal

Abstract

Background: Cost-effectiveness is an increasingly important factor in the choice of a test or therapy.

Objective: To assess the cost-effectiveness of various methods routinely used for the diagnosis of stable coronary disease in Portugal.

Methods: Seven diagnostic strategies were assessed. The cost-effectiveness of each strategy was defined as the cost per correct diagnosis (inclusion or exclusion of obstructive coronary artery disease) in a symptomatic patient. The cost and effectiveness of each method were assessed using Bayesian inference and decision-making tree analyses, with the pretest likelihood of disease ranging from 10% to 90%.

Results: The cost-effectiveness of diagnostic strategies was strongly dependent on the pretest likelihood of disease. In patients with a pretest likelihood of disease of ≤50%, the diagnostic algorithms, which include cardiac computed tomography angiography, were the most cost-effective. In these patients, depending on the pretest likelihood of disease and the willingness to pay for an additional correct diagnosis, computed tomography angiography may be used as a frontline test or reserved for patients with positive/inconclusive ergometric test results or a calcium score of >0. In patients with a pretest likelihood of disease of ≥60%, up-front invasive coronary angiography appears to be the most cost-effective strategy.

Conclusions: Diagnostic algorithms that include cardiac computed tomography angiography are the most cost-effective in symptomatic patients with suspected stable coronary artery disease and a pretest likelihood of disease of ≤50%. In high-risk patients (pretest likelihood of disease ≥60%), up-front invasive coronary angiography appears to be the most cost-effective strategy. In all pretest likelihoods of disease, strategies based on ischemia appear to be more expensive and less effective compared with those based on anatomical tests. (Arq Bras Cardiol. 2014; 102(4):391-402)

Keywords: Coronary disease / economics; Coronary disease / diagnosis; Cost-Benefit analysis.

Introduction

Clinical assessment of an individual with suspected stable coronary artery disease (CAD) is usually complemented by noninvasive tests such as the ergometric test (ET), myocardial perfusion scintigraphy (MPS), or stress echocardiography (StressEcho). Cardiac computed tomography angiography (CCTA) has broadened the options for the assessment of CAD patients and is a potentially beneficial alternative for individuals with an intermediate or a low pretest likelihood of disease (PLD). However, the generalized adoption of new techniques that, although appealing, may entail additional costs and no added value, should be considered carefully with regard to the increasing economic pressure to which healthcare systems are exposed. Therefore, it is important to determine the cost-effectiveness of diagnostic strategies routinely used for the diagnosis of stable CAD and identify patients for whom CCTA is a cost-effective alternative.

Methods

The cost-effectiveness of seven diagnostic strategies was assessed: (1) ET followed by MPS in positive or inconclusive cases, (2) ET followed by 64-detector CCTA in positive or inconclusive cases, (3) MPS (as first option), (4) StressEcho with dobutamine (as first option), (5) CCTA (as first option), (6) calcium scoring (CaSc) followed by CCTA (CACS-CCTA) when CaSc > 0, and (7) invasive coronary angiography (CATH) as the first and only test. All considered strategies presuppose the end of the diagnostic procedures when a test is negative and a confirmation CATH when the last test of the noninvasive strategy is positive or inconclusive. In addition, an eight alternative was assessed in individuals with a PLD of 10%, which involved not performing any complementary diagnostic tests and assuming the absence of obstructive CAD.
A decision-making tree analysis was performed according to the method described by Patterson et al.14 to assess the cost-effectiveness of each strategy according to PLD. In this method, hypothetical cohorts of patients with a certain PLD are subjected to each of the diagnostic strategies. Then, Bayesian inference is used to estimate the cost and effectiveness of each strategy according to the test characteristics. Sensitivity, specificity, and the rate of nondiagnostic tests were gathered from meta-analysis, clinical recommendations, and published series (Table 1). The rate of nondiagnostic ET and StressEcho tests was calculated as the mean percentage of patients who fail to reach the target heart rate. MPS was always considered to be diagnostic, and its accuracy was considered independent of the stress method used. In addition, CCTA tests were always considered diagnostic since the meta-analysis on its accuracy was performed on an intention-to-diagnose basis, assuming that all nondiagnostic tests would be false-positive, thereby decreasing the specificity of the test14. The sensitivity and specificity of CaSc > 0 for the diagnosis of obstructive CAD were obtained through combined analysis of the results of two international multicenter clinical trials15,16. We assumed that CATH tests would always be diagnostic, with a sensitivity and specificity of 100%. A cost-effectiveness of coronary disease diagnosis translates into better cost-effectiveness. Comparison between the diagnostic strategies was made from the society’s perspective (i.e., including all costs, regardless of the payer17). To compare the incremental cost-effectiveness of each option with that of all the other alternatives, the diagnostic strategies were ranked in increasing order of cost and those outperformed by complete dominance (simultaneously more expensive and less effective) and incomplete dominance (less effective with a higher incremental cost-effectiveness ratio; ICER) were excluded. ICERs (added cost per additional correct diagnosis) were calculated for each strategy relative to the previous less expensive strategy.

Definition of cost

The cost of a diagnostic strategy includes direct and indirect costs. Direct cost was considered as the cost of the examinations performed for patients in each cohort, using the current Tabela de Preços do Serviço Nacional de Saúde (price list of the National Health Service), which was defined by the Ordinance 839-A/2009 of July 31, 2009, as a reference15. The price of cardiac CCTA was defined as the sum of the values of CCTA, intravenous contrast supplement, and post-processing (Table 2). In the CaSc-CCTA strategy, a cost of € 207.10 was assumed for those who only underwent CaSc, while a cost of € 207.10 was assumed for those who also underwent CCTA.

Comparison of cost-effectiveness

The cost-effectiveness of each strategy was defined as the cost per correct diagnosis (inclusion or exclusion of obstructive CAD) in a symptomatic patient. According to this definition, a lower cost value per correct diagnosis translates into better cost-effectiveness. Comparison between the diagnostic strategies was made from the society’s perspective (i.e., including all costs, regardless of the payer). To compare the incremental cost-effectiveness of each option with that of all the other alternatives, the diagnostic strategies were ranked in increasing order of cost and those outperformed by complete dominance (simultaneously more expensive and less effective) and incomplete dominance (less effective with a higher incremental cost-effectiveness ratio; ICER) were excluded. ICERs (added cost per additional correct diagnosis) were calculated for each strategy relative to the previous less expensive strategy.

Table 1 – Sensitivity, specificity, and rate of nondiagnostic tests for each method as assumed in the economic model

<table>
<thead>
<tr>
<th>Test</th>
<th>ET (%)</th>
<th>MPS (%)</th>
<th>StressEcho (%)</th>
<th>CCTA (%)</th>
<th>CaSc > 0 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>68.7</td>
<td>87.95</td>
<td>96.59</td>
<td>98.37</td>
<td>93.24</td>
</tr>
<tr>
<td>Specificity</td>
<td>77.7</td>
<td>81.87</td>
<td>84.32</td>
<td>85.13</td>
<td>43.14</td>
</tr>
<tr>
<td>Rate of nondiagnostic tests</td>
<td>17.50</td>
<td>0.00</td>
<td>18.23</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

ET: ergometric test; MPS: myocardial perfusion scintigraphy; StressEcho: stress echocardiogram with dobutamine; CCTA: computed tomography angiography of the coronary arteries; CaSc: calcium scoring.

Table 2 – Price of tests included in the different diagnostic strategies (values for Portugal)

<table>
<thead>
<tr>
<th>Code</th>
<th>Designation</th>
<th>Price (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40315</td>
<td>Stress test in ergometric bicycle or treadmill with continuous ECG monitoring and recording at each stage</td>
<td>36.80</td>
</tr>
<tr>
<td>56015</td>
<td>Myocardial perfusion scintigraphy under pharmacological stress</td>
<td>424.40</td>
</tr>
<tr>
<td>40690</td>
<td>Transthoracic echocardiography under pharmacological stress (includes the cost of the drug)</td>
<td>121.80</td>
</tr>
<tr>
<td>16350</td>
<td>CCTA</td>
<td>(129.40)</td>
</tr>
<tr>
<td>16325</td>
<td>CT, intravenous contrast supplement</td>
<td>(62.60)</td>
</tr>
<tr>
<td>16345</td>
<td>Post-processing</td>
<td>(15.10)</td>
</tr>
<tr>
<td>-</td>
<td>Total cardiac CCTA (three codes)</td>
<td>207.10</td>
</tr>
<tr>
<td>-</td>
<td>Calcium scoring</td>
<td>50.00</td>
</tr>
<tr>
<td>40820</td>
<td>Left catheterization with selective coronary angiography</td>
<td>565.50</td>
</tr>
</tbody>
</table>

ECG: electrocardiogram, CCTA: computed tomography angiography of the coronary arteries, CT: computed tomography.
The following indirect costs were included.

1. Cost associated with incidental findings during CaSc and cardiac CCTA. We assumed that 7% of these tests would exhibit incidental extracardiac findings of uncertain clinical significance, which would require direct investigation15, usually to assess lung nodules. We assumed that these cases would require noncontrast chest CT a few months later17 at an additional cost of € 80.0031.

2. Cost associated with complications caused by diagnostic CATH. We assumed that the rate of major iatrogenic adverse cardiovascular events (death, myocardial infarction, or stroke) was 0.05%32, while that of vascular access-related complications that required transfusion or surgery was 0.4% (for a rate of 80% for radial access use)19. With regard to major cardiovascular events, we considered acute myocardial infarction to be a typical risk for cardiovascular events due to the non-prescription of CAD diagnosis, other examinations for the differential diagnosis of chest pain, worse quality of life, and added cost of an iatrogenic major cardiovascular event thus estimated was 0.05%18, while that of vascular access-related complications was (€ 1,671.53)15 to the cost of 1 month of temporary incapacity to work, for a gross domestic product (GDP) per capita of €16,100, assuming that half of the population assessed for suspected CAD was active. The mean cost of an iatrogenic major cardiovascular event thus estimated was € 4,342. The mean cost of a vascular access complication requiring transfusion or surgery was estimated to be €1,500 (expert opinion).

3. Cost of false-negative tests. The potential cost of false-negative tests includes the cost of repeat tests for CAD diagnosis, other examinations for the differential diagnosis of chest pain, worse quality of life, and added risk for cardiovascular events due to the non-prescription of adequate medical therapy. These costs are particularly difficult to evaluate. Previous studies have used various methods to estimate that the cost of a false-negative test is 1.4–6.7 times higher than that of a false-positive test25,39. Therefore, false-negative tests were allocated a cost that was three times higher than that of a false-positive test (€1,818 for each false-negative test). In the scenario where no further testing is performed assuming the absence of CAD (a hypothesis considered for patients with PLD of 10%), the costs of false-negative were the only ones taken into account.

We did not include the cost of complications caused by noninvasive tests in the model because serious complications resulting from these tests are very rare and would only marginally increase costs. In addition, the cost associated with potential exposure to ionizing radiation was not included because this was a short-term cost-effectiveness model; furthermore, there is great uncertainty about the effects of radiation doses used in these tests25.

Sensitivity analysis

To assess the extent to which the results obtained depended on some of the variables under study, several sensitivity analyses were performed. Calculations were repeated using new assumptions such as decreasing the sensitivity and specificity values for cardiac CCTA to 96% and 81%, respectively (lower limits of 95% confidence intervals in the meta-analysis of 53 studies)4; decreasing the cost of MPS to €207.10 (equating the cost of MPS with that of CCTA); decreasing the rate of inconclusive StressEcho tests to 5%, and assuming zero cost for false-negative tests.

Results

Figure 1 shows the cost-effectiveness plans for the diagnostic strategies for each scenario of PLD. In general, costs increase and the percentage of correct diagnosis decreases with increasing PLD (due to the increase in the number of false-negative tests).

The composition of direct and indirect costs is shown in Table 3 (simulation of the expected results when a cohort of 100 patients with a PPT of 30% is assessed).

Table 4 summarizes the results of incremental cost-effectiveness of the diagnostic strategies applied to hypothetical cohorts of 100 patients with a PLD of 10%–90%. Diagnostic strategies were presented in increasing order of cost and respective ICER for each assessed PLD. In all scenarios of PLD, the diagnostic strategies for ET-MPS, MPS, and StressEcho are dominated by alternative strategies that are less expensive and more effective. According to the cost-effectiveness criterion, choosing the best diagnostic strategy depends on the proportion of false-negative tests that one is willing to accept and on the willingness to pay for an additional correct diagnosis (Figure 2). For example, for a limit of €5,000 per additional correct diagnosis, the preferred strategy would be CACS-CCTA for patients with a PLD of 10%, CCTA for those with a PLD of 20%–40%, and CATH for those with a PLD of ≥50%.

Results of sensitivity analysis

To assess the robustness of the results and the influence of several assumptions, we reformulated the model by altering some parameters such as diagnostic accuracy of CCTA, price of MPS, rate of inconclusive StressEcho tests, and cost of false-negative tests.

The decrease in sensitivity and specificity of CCTA to 96% and 81%, respectively, resulted in the increase in total cost and ICER of the strategies that include CCTA. Nevertheless, the ET-MPS, MPS, and StressEcho diagnostic strategies remained dominated, with the increasing cost of the cost-effectiveness shown in Table 4 being maintained for every assessed PLD.

When the cost of MPS is equated to the cost of CCTA (€ 207.10), the cost-effectiveness of the ET-MPS and MPS diagnostic strategies improves. However, these strategies remained dominated by other diagnostic methods (less expensive and more effective) for all assessed PLDs (Table 5).

The decrease in the rate of inconclusive StressEcho tests from 18% to 5% resulted in the improvement of its cost-effectiveness; however, this method remained dominated by other diagnostic strategies for all the assessed PLDs. When the StressEcho strategy was compared with the dominant noninvasive strategies (more cost-effective), at each level of PLD, the StressEcho strategy entailed an additional cost of €303 to €2,700 per 100 patients, along with an increase in false-negative tests from 1.1% to 5.7%.

In the model where the absence of indirect costs is assumed in patients with false-negative tests, the ET-CCTA strategy is the least expensive for all levels of PLD. However, this diagnostic procedure resulted in a significant number of false-negative tests, particularly for intermediate or high PLDs. The transition to more effective strategies becomes less expensive with the increasing prevalence of obstructive CAD (Table 6).
Discussion

In recent years, the need to consider the cost of clinical decisions is becoming increasingly important. Cost-effectiveness analyses allow for more efficient use of health resources and rationalize the use of new technologies, often more expensive than their alternatives. To our knowledge, this is the first assessment of the cost-effectiveness of several strategies used for the diagnosis of stable CAD in Portugal. The results of this analysis indicate that, in this country, diagnostic algorithms that include cardiac CCTA are the most cost-effective methods in symptomatic patients with suspected obstructive CAD and a PLD of ≤50%. In high-risk patients (PLD > 50%), immediate CATH appears to be the most cost-effective strategy. The model suggests that ischemia imaging techniques (MPS and StressEcho) are more expensive and less effective compared with other diagnostic strategies for all assessed PLDs. With regard to patients with a PLD of ≤50% and the conservative scenario wherein the willingness to pay for an additional correct diagnosis is €1,000, the results of incremental cost-effectiveness indicate that it is advantageous to perform an ergometric test before CCTA in patients with a lower PLD (10%), do a “rule-out” CaSc before CCTA in patients with a PLD of 20-30%, and perform up-front CCTA in patients with a PLD of 40-50%. In the more liberal scenario (willingness to pay €5,000 for an additional correct diagnosis), the preferred strategy would be ScCa-CCTA for patients with a PLD of 10%, CCTA for patients with a PLD of 20–40%, and CATH for patients with a PLD of ≥ 50%.

Figure 1 – Cost-effectiveness plans for the diagnostic strategies according to the pretest likelihood of disease.
Ultimately, the selection of a diagnostic method on the basis of cost-effectiveness criteria depends on PLD and the willingness to pay for an additional correct diagnosis. Contrary to long-term cost-effectiveness studies, in this context, there is no commonly accepted cost-effectiveness limit (for example: €30,000/quality-adjusted life-years [QALY]) to serve as a reference for the adoption or rejection of a diagnostic strategy. However, a recent study suggested that, for a CAD prevalence of ≥30%, values of incremental cost per correct diagnosis in the short-term model are similar to those of incremental cost per QALY estimated in long-term models. In a more conservative scenario, the willingness of the Portuguese society to pay for an additional correct diagnosis will be at least ≥€1,010, which corresponds to the sum of the direct costs of MPS followed by CATH, a diagnostic strategy that is well accepted and frequently used in Portugal.

Of the scenarios assessed in the sensitivity analysis, the one in which CCTA and MPS have the same price is particularly important because this is the case in some countries. Even in this scenario, MPS remains a dominated strategy (i.e., more expensive and less effective) because it is less accurate than CCTA, particularly in terms of sensitivity. The results would only be different in a scenario (not tested) where the price of scintigraphy was identical and where scintigraphy was more accurate.

In general, these results are in line with those obtained in other countries that consider cardiac CCTA as a cost-effective method for the diagnosis or exclusion of obstructive CAD in patients with an intermediate PLD. This is probably because of a favorable combination of cost (relatively affordable) and accuracy. Better diagnostic accuracy simultaneously increases the denominator of the cost-effectiveness equation (number of correct diagnoses) and decreases the numerator, with lower indirect costs from false-negative and false-positive tests.

The interpretation of these results and analysis of their potential implications should consider several factors. First, it should be noted that the cost-effectiveness of diagnostic strategies is critically dependent on the adequate selection of patients. The calculation of PLD is a key step in selecting a cost-effective diagnostic strategy. This assessment can be easily and quickly made using validated clinical scores that were recently calibrated in European contemporary populations. Second, the results of this analysis only apply to patients without known CAD. Therefore, these findings do not mean that functional tests are not useful or cost-effective in distinct contexts, namely in patients with established CAD. In the latter case, the performance of CCTA is suboptimal, and the key issues are the presence or absence of ischemia and the localization, extension, and severity of ischemia. Rather than seeing these results in terms of winners and losers, it is important to know the advantages and disadvantages of...
Table 4 – Incremental cost-effectiveness of the diagnostic strategies applied to hypothetical cohorts of 100 patients with a PLD of 10%–60%. For a PLD of >60%, all strategies are dominated by the CATH strategy.

<table>
<thead>
<tr>
<th>Pretest likelihood</th>
<th>Diagnostic strategy</th>
<th>Total cost (€)</th>
<th>Number of correct diagnoses*</th>
<th>False-negative tests*</th>
<th>ICER**</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>No test</td>
<td>18.180</td>
<td>90.0</td>
<td>10.0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ET-CCTA</td>
<td>24.473</td>
<td>97.2</td>
<td>2.8</td>
<td>€ 874</td>
</tr>
<tr>
<td></td>
<td>CACS-CCTA</td>
<td>27.975</td>
<td>99.1</td>
<td>0.9</td>
<td>€ 1.819</td>
</tr>
<tr>
<td></td>
<td>ET-MPS</td>
<td>34.667</td>
<td>96.4</td>
<td>3.6</td>
<td>Dominated</td>
</tr>
<tr>
<td></td>
<td>CCTA</td>
<td>35.585</td>
<td>99.8</td>
<td>0.2</td>
<td>€ 11.234</td>
</tr>
<tr>
<td></td>
<td>StressEcho</td>
<td>36.338</td>
<td>98.9</td>
<td>1.1</td>
<td>Dominated</td>
</tr>
<tr>
<td></td>
<td>CATH</td>
<td>59.877</td>
<td>100</td>
<td>0</td>
<td>€ 121.461</td>
</tr>
<tr>
<td></td>
<td>MPS</td>
<td>60.252</td>
<td>98.7</td>
<td>1.3</td>
<td>Dominated</td>
</tr>
<tr>
<td>20%</td>
<td>ET-CCTA</td>
<td>34.349</td>
<td>94.4</td>
<td>5.6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CACS-CCTA</td>
<td>34.974</td>
<td>98.2</td>
<td>1.8</td>
<td>€ 162</td>
</tr>
<tr>
<td></td>
<td>CCTA</td>
<td>40.918</td>
<td>99.6</td>
<td>0.4</td>
<td>€ 4.388</td>
</tr>
<tr>
<td></td>
<td>StressEcho</td>
<td>41.862</td>
<td>97.7</td>
<td>2.3</td>
<td>Dominated</td>
</tr>
<tr>
<td></td>
<td>ET-MPS</td>
<td>46.232</td>
<td>92.8</td>
<td>7.2</td>
<td>Dominated</td>
</tr>
<tr>
<td></td>
<td>CATH</td>
<td>59.877</td>
<td>100</td>
<td>0</td>
<td>€ 47.397</td>
</tr>
<tr>
<td></td>
<td>MPS</td>
<td>66.687</td>
<td>97.4</td>
<td>2.6</td>
<td>Dominated</td>
</tr>
<tr>
<td>30%</td>
<td>CACS-CCTA</td>
<td>41.973</td>
<td>97.4</td>
<td>2.6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ET-CCTA</td>
<td>44.224</td>
<td>91.6</td>
<td>8.4</td>
<td>Dominated</td>
</tr>
<tr>
<td></td>
<td>CCTA</td>
<td>46.252</td>
<td>99.4</td>
<td>0.6</td>
<td>€ 2.106</td>
</tr>
<tr>
<td></td>
<td>StressEcho</td>
<td>47.386</td>
<td>96.6</td>
<td>3.4</td>
<td>Dominated</td>
</tr>
<tr>
<td></td>
<td>ET-MPS</td>
<td>57.796</td>
<td>89.2</td>
<td>10.8</td>
<td>Dominated</td>
</tr>
<tr>
<td></td>
<td>CATH</td>
<td>59.877</td>
<td>100</td>
<td>0</td>
<td>€ 22.709</td>
</tr>
<tr>
<td></td>
<td>MPS</td>
<td>73.122</td>
<td>96.1</td>
<td>3.9</td>
<td>Dominated</td>
</tr>
<tr>
<td>40%</td>
<td>CACS-CCTA</td>
<td>48.972</td>
<td>96.5</td>
<td>3.5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CCTA</td>
<td>51.585</td>
<td>99.2</td>
<td>0.8</td>
<td>€ 964</td>
</tr>
<tr>
<td></td>
<td>StressEcho</td>
<td>52.910</td>
<td>95.4</td>
<td>4.6</td>
<td>Dominated</td>
</tr>
<tr>
<td></td>
<td>ET-CCTA</td>
<td>54.099</td>
<td>88.8</td>
<td>11.2</td>
<td>Dominated</td>
</tr>
<tr>
<td></td>
<td>CATH</td>
<td>59.877</td>
<td>100</td>
<td>0</td>
<td>€ 10.305</td>
</tr>
<tr>
<td></td>
<td>ET-MPS</td>
<td>69.361</td>
<td>85.6</td>
<td>14.4</td>
<td>Dominated</td>
</tr>
<tr>
<td></td>
<td>MPS</td>
<td>79.557</td>
<td>94.8</td>
<td>5.2</td>
<td>Dominated</td>
</tr>
<tr>
<td>50%</td>
<td>CACS-CCTA</td>
<td>55.971</td>
<td>95.6</td>
<td>4.4</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CCTA</td>
<td>56.919</td>
<td>99.0</td>
<td>1.0</td>
<td>€ 280</td>
</tr>
<tr>
<td></td>
<td>StressEcho</td>
<td>56.434</td>
<td>94.3</td>
<td>6.7</td>
<td>Dominated</td>
</tr>
<tr>
<td></td>
<td>CATH</td>
<td>59.877</td>
<td>100</td>
<td>0</td>
<td>€ 2.955</td>
</tr>
<tr>
<td></td>
<td>ET-CCTA</td>
<td>63.975</td>
<td>86.0</td>
<td>14.0</td>
<td>Dominated</td>
</tr>
<tr>
<td></td>
<td>ET-MPS</td>
<td>80.925</td>
<td>82.0</td>
<td>18.0</td>
<td>Dominated</td>
</tr>
<tr>
<td></td>
<td>MPS</td>
<td>85.992</td>
<td>93.5</td>
<td>6.5</td>
<td>Dominated</td>
</tr>
<tr>
<td>60%</td>
<td>CATH</td>
<td>59.877</td>
<td>100</td>
<td>0</td>
<td>Dominated</td>
</tr>
<tr>
<td></td>
<td>CCTA</td>
<td>62.252</td>
<td>98.8</td>
<td>1.9</td>
<td>Dominated</td>
</tr>
<tr>
<td></td>
<td>CACS-CCTA</td>
<td>62.970</td>
<td>94.7</td>
<td>5.3</td>
<td>Dominated</td>
</tr>
<tr>
<td></td>
<td>StressEcho</td>
<td>63.958</td>
<td>93.1</td>
<td>6.9</td>
<td>Dominated</td>
</tr>
<tr>
<td></td>
<td>ET-CCTA</td>
<td>73.850</td>
<td>83.2</td>
<td>16.8</td>
<td>Dominated</td>
</tr>
<tr>
<td></td>
<td>MPS</td>
<td>92.427</td>
<td>92.2</td>
<td>7.8</td>
<td>Dominated</td>
</tr>
<tr>
<td></td>
<td>ET-MPS</td>
<td>92.490</td>
<td>78.3</td>
<td>21.7</td>
<td>Dominated</td>
</tr>
</tbody>
</table>

* At the end of the diagnostic strategy, i.e., including the results of CATH when the noninvasive tests are positive or inconclusive. ** Incremental cost per additional correct diagnosis. ICER: incremental cost-effectiveness ratio (Δ cost/Δ correct diagnosis), ET: ergometric test, CCTA: computed tomography angiography of the coronary arteries, CaSc: calcium scoring, MPS: myocardial perfusion scintigraphy, StressEcho: stress echocardiography.
III — TC CARDÍACA — AVALIAÇÃO ANATÔMICA, FUNCIONAL E VALOR PROGNÓSTICO

Original Article

Figure 2 – Choice of the most cost-effective diagnostic strategy according to the PLD and willingness to pay for a correct diagnosis. Once the maximum value that society is willing to pay for an additional correct diagnosis is established, the strategy that represents the best use of these resources is the one that intercepts the line of the value that society is willing to pay. For example, for a willingness to pay €1,500 per additional correct diagnosis, the best method would be ET-CCTA when the pretest likelihood of disease is 10%, CACS-CCTA when the pretest likelihood is 20%–30%, CCTA when the pretest likelihood is 40%–50%, and CATH when the pretest likelihood is ≥60%.

Limitations

This study has some limitations. First, it described a theoretical model, the results of which are dependent on factors such as sensitivity and specificity of various techniques that, in the real world, can be different from those reported in international studies of reference. With regard to CCTA, it should be noted that its specificity depends on PLD because of the varying prevalence of coronary calcifications. The use of intermediate values may have led to the underestimation of the cost-effectiveness of CCTA in patients with a lower PLD and overestimation in patients with a higher PLD. Similarly, like in all analyses of this type, the results are only applicable to patients who are capable of undergoing any of the tests under study (i.e., able to exercise, without complete block of the left bundle branch, without severe renal impairment, and not allergic to iodinated contrast medium).

We chose to exclude the costs and benefits related to periods after the diagnosis phase (such as costs of medication, revascularization, hospitalization, and possible gains in QALY) in the model because they entail greater complexity and uncertainty. However, there is evidence that the diagnosis of obstructive CAD (vs. false-negative tests) is associated with an increase of three QALYs over a period of 10 years. Depending on the assumptions made, it is possible that long-term analysis produces results that are significantly different from those obtained in this analysis. In addition, to avoid a more complex analysis, not all possible diagnostic strategies were considered; we chose accessible and frequently utilized modalities and diagnostic procedures. Moreover, conclusive tests were classified as positive or negative, in a reductionist dichotomization which is inevitable in this type of analysis. Finally, cost-effectiveness should be one of the criteria considered in clinical decision-making. Other patient-related or context-
Table 5 – Incremental cost-effectiveness of diagnostic strategies in hypothetical cohorts of 100 patients with a PLD of 10%–60%, considering identical prices for MPS and CCTA of the coronary arteries. For a PLD of ≥60%, all strategies were dominated by CATH

<table>
<thead>
<tr>
<th>Pretest likelihood</th>
<th>Diagnostic strategy</th>
<th>Total cost (€)</th>
<th>Number of correct diagnoses*</th>
<th>False-negative tests*</th>
<th>ICER**</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>No test</td>
<td>18.180</td>
<td>90.0</td>
<td>10.0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ET-CCTA</td>
<td>24.473</td>
<td>97.2</td>
<td>2.8</td>
<td>€874</td>
</tr>
<tr>
<td></td>
<td>ET-MPS</td>
<td>26.013</td>
<td>96.4</td>
<td>3.6</td>
<td>Dominate</td>
</tr>
<tr>
<td></td>
<td>CACS-CCTA</td>
<td>27.975</td>
<td>99.1</td>
<td>0.9</td>
<td>€1,819</td>
</tr>
<tr>
<td></td>
<td>CCTA</td>
<td>35.585</td>
<td>99.8</td>
<td>0.2</td>
<td>€11,234</td>
</tr>
<tr>
<td></td>
<td>StressEcho</td>
<td>36.338</td>
<td>98.9</td>
<td>1.1</td>
<td>Dominate</td>
</tr>
<tr>
<td></td>
<td>MPS</td>
<td>38.522</td>
<td>98.7</td>
<td>1.3</td>
<td>Dominate</td>
</tr>
<tr>
<td></td>
<td>CATH</td>
<td>59.877</td>
<td>100</td>
<td>0</td>
<td>€121,461</td>
</tr>
<tr>
<td></td>
<td>ET-CCTA</td>
<td>34.349</td>
<td>94.4</td>
<td>5.6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CACS-CCTA</td>
<td>34.974</td>
<td>98.2</td>
<td>1.8</td>
<td>€162</td>
</tr>
<tr>
<td></td>
<td>TET-MPS</td>
<td>36.796</td>
<td>92.8</td>
<td>7.2</td>
<td>Dominate</td>
</tr>
<tr>
<td></td>
<td>CCTA</td>
<td>40.918</td>
<td>99.6</td>
<td>0.4</td>
<td>€4,388</td>
</tr>
<tr>
<td></td>
<td>StressEcho</td>
<td>41.862</td>
<td>97.7</td>
<td>2.3</td>
<td>Dominate</td>
</tr>
<tr>
<td></td>
<td>MPS</td>
<td>44.957</td>
<td>97.4</td>
<td>2.6</td>
<td>Dominate</td>
</tr>
<tr>
<td></td>
<td>CATH</td>
<td>59.877</td>
<td>100</td>
<td>0</td>
<td>€147,397</td>
</tr>
<tr>
<td></td>
<td>CACS-CCTA</td>
<td>41.973</td>
<td>97.4</td>
<td>2.6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ET-CCTA</td>
<td>44.224</td>
<td>91.6</td>
<td>8.4</td>
<td>Dominate</td>
</tr>
<tr>
<td></td>
<td>CCTA</td>
<td>46.252</td>
<td>99.4</td>
<td>0.6</td>
<td>€2,106</td>
</tr>
<tr>
<td></td>
<td>StressEcho</td>
<td>47.386</td>
<td>96.6</td>
<td>3.4</td>
<td>Dominate</td>
</tr>
<tr>
<td></td>
<td>ET-MPS</td>
<td>47.519</td>
<td>89.2</td>
<td>10.8</td>
<td>Dominate</td>
</tr>
<tr>
<td></td>
<td>MPS</td>
<td>51.392</td>
<td>96.1</td>
<td>3.9</td>
<td>Dominate</td>
</tr>
<tr>
<td></td>
<td>CATH</td>
<td>59.877</td>
<td>100</td>
<td>0</td>
<td>€22,709</td>
</tr>
<tr>
<td></td>
<td>CACS-CCTA</td>
<td>48.972</td>
<td>96.5</td>
<td>3.5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CCTA</td>
<td>51.585</td>
<td>99.2</td>
<td>0.8</td>
<td>€964</td>
</tr>
<tr>
<td></td>
<td>StressEcho</td>
<td>52.910</td>
<td>95.4</td>
<td>4.6</td>
<td>Dominate</td>
</tr>
<tr>
<td></td>
<td>ET-CCTA</td>
<td>54.099</td>
<td>98.8</td>
<td>11.2</td>
<td>Dominate</td>
</tr>
<tr>
<td></td>
<td>CCTA</td>
<td>57.827</td>
<td>94.8</td>
<td>5.2</td>
<td>Dominate</td>
</tr>
<tr>
<td></td>
<td>ET-MPS</td>
<td>58.272</td>
<td>85.6</td>
<td>14.4</td>
<td>Dominate</td>
</tr>
<tr>
<td></td>
<td>CATH</td>
<td>59.877</td>
<td>100</td>
<td>0</td>
<td>€10,365</td>
</tr>
<tr>
<td></td>
<td>CACS-CCTA</td>
<td>55.971</td>
<td>95.6</td>
<td>4.4</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CCTA</td>
<td>56.919</td>
<td>99.6</td>
<td>1.0</td>
<td>€280</td>
</tr>
<tr>
<td></td>
<td>StressEcho</td>
<td>58.434</td>
<td>94.3</td>
<td>6.7</td>
<td>Dominate</td>
</tr>
<tr>
<td></td>
<td>CATH</td>
<td>59.877</td>
<td>100</td>
<td>0</td>
<td>€2,959</td>
</tr>
<tr>
<td></td>
<td>ET-CCTA</td>
<td>63.975</td>
<td>96.0</td>
<td>14.0</td>
<td>Dominate</td>
</tr>
<tr>
<td></td>
<td>MPS</td>
<td>64.262</td>
<td>93.5</td>
<td>6.5</td>
<td>Dominate</td>
</tr>
<tr>
<td></td>
<td>ET-MPS</td>
<td>69.025</td>
<td>83.0</td>
<td>18.0</td>
<td>Dominate</td>
</tr>
<tr>
<td></td>
<td>CATH</td>
<td>59.877</td>
<td>100</td>
<td>0</td>
<td>€2,959</td>
</tr>
<tr>
<td></td>
<td>CCTA</td>
<td>62.252</td>
<td>98.8</td>
<td>1.9</td>
<td>Dominate</td>
</tr>
<tr>
<td></td>
<td>CACS-CCTA</td>
<td>62.970</td>
<td>94.7</td>
<td>5.3</td>
<td>Dominate</td>
</tr>
<tr>
<td></td>
<td>StressEcho</td>
<td>63.958</td>
<td>93.1</td>
<td>6.9</td>
<td>Dominate</td>
</tr>
<tr>
<td></td>
<td>MPS</td>
<td>70.697</td>
<td>92.2</td>
<td>7.8</td>
<td>Dominate</td>
</tr>
<tr>
<td></td>
<td>ET-CCTA</td>
<td>73.850</td>
<td>83.2</td>
<td>16.8</td>
<td>Dominate</td>
</tr>
<tr>
<td></td>
<td>ET-MPS</td>
<td>79.718</td>
<td>78.3</td>
<td>21.7</td>
<td>Dominate</td>
</tr>
</tbody>
</table>

* At the end of the diagnostic strategy, i.e., including the results of CATH when the noninvasive tests are positive or inconclusive. ** Incremental cost per additional correct diagnosis. ICER: incremental cost-effectiveness ratio (Δ cost/Δ correct diagnosis). ET: ergometric test; CCTA: computed tomography angiography of the coronary arteries; CaSc: calcium scoring; MPS: myocardial perfusion scintigraphy; StressEcho: stress echocardiography
Table 6 – Incremental cost-effectiveness of diagnostic strategies in hypothetical cohorts of 100 patients with a PLD of 10%–90%, considering zero cost for false-negative tests. The dominated strategies are not shown.

<table>
<thead>
<tr>
<th>Pretest likelihood</th>
<th>Diagnostic strategy</th>
<th>Total cost (€)</th>
<th>Number of correct diagnoses*</th>
<th>False-negative tests*</th>
<th>ICER** (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>ET-CCTA</td>
<td>19.378</td>
<td>97.2</td>
<td>2.8</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CACS-CCTA</td>
<td>26.379</td>
<td>99.1</td>
<td>0.9</td>
<td>3.637</td>
</tr>
<tr>
<td></td>
<td>CCTA</td>
<td>35.221</td>
<td>99.8</td>
<td>0.2</td>
<td>13.052</td>
</tr>
<tr>
<td></td>
<td>CATH</td>
<td>59.877</td>
<td>100</td>
<td>0</td>
<td>123.279</td>
</tr>
<tr>
<td>20%</td>
<td>ET-CCTA</td>
<td>24.157</td>
<td>94.4</td>
<td>5.6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CACS-CCTA</td>
<td>31.783</td>
<td>98.2</td>
<td>1.8</td>
<td>1.980</td>
</tr>
<tr>
<td></td>
<td>CCTA</td>
<td>40.191</td>
<td>99.6</td>
<td>0.4</td>
<td>6.206</td>
</tr>
<tr>
<td></td>
<td>CATH</td>
<td>59.877</td>
<td>100</td>
<td>0</td>
<td>49.215</td>
</tr>
<tr>
<td>30%</td>
<td>ET-CCTA</td>
<td>28.937</td>
<td>91.6</td>
<td>8.4</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CACS-CCTA</td>
<td>37.187</td>
<td>97.4</td>
<td>2.6</td>
<td>1.428</td>
</tr>
<tr>
<td></td>
<td>CCTA</td>
<td>45.161</td>
<td>99.4</td>
<td>0.6</td>
<td>3.924</td>
</tr>
<tr>
<td></td>
<td>CATH</td>
<td>59.877</td>
<td>100</td>
<td>0</td>
<td>24.527</td>
</tr>
<tr>
<td>40%</td>
<td>ET-CCTA</td>
<td>33.717</td>
<td>88.8</td>
<td>11.2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CACS-CCTA</td>
<td>42.591</td>
<td>96.5</td>
<td>3.5</td>
<td>1.152</td>
</tr>
<tr>
<td></td>
<td>CCTA</td>
<td>50.131</td>
<td>99.2</td>
<td>0.8</td>
<td>2.782</td>
</tr>
<tr>
<td></td>
<td>CATH</td>
<td>59.877</td>
<td>100</td>
<td>0</td>
<td>12.183</td>
</tr>
<tr>
<td>50%</td>
<td>ET-CCTA</td>
<td>38.496</td>
<td>86.0</td>
<td>14.0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CACS-CCTA</td>
<td>47.995</td>
<td>95.6</td>
<td>4.4</td>
<td>987</td>
</tr>
<tr>
<td></td>
<td>CCTA</td>
<td>55.101</td>
<td>99.0</td>
<td>1.0</td>
<td>2.098</td>
</tr>
<tr>
<td></td>
<td>CATH</td>
<td>59.877</td>
<td>100</td>
<td>0</td>
<td>4.777</td>
</tr>
<tr>
<td>60%</td>
<td>ET-CCTA</td>
<td>37.581</td>
<td>83.4</td>
<td>16.6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>StressEcho</td>
<td>51.435</td>
<td>93.1</td>
<td>6.9</td>
<td>822</td>
</tr>
<tr>
<td></td>
<td>CACS-CCTA</td>
<td>53.399</td>
<td>94.7</td>
<td>5.3</td>
<td>1.210</td>
</tr>
<tr>
<td></td>
<td>CATH</td>
<td>59.877</td>
<td>100</td>
<td>0</td>
<td>1.231</td>
</tr>
<tr>
<td>70%</td>
<td>ET-CCTA</td>
<td>48.059</td>
<td>80.4</td>
<td>19.6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>StressEcho</td>
<td>54.872</td>
<td>92.0</td>
<td>8.0</td>
<td>588</td>
</tr>
<tr>
<td></td>
<td>CATH</td>
<td>59.877</td>
<td>100</td>
<td>0</td>
<td>623</td>
</tr>
<tr>
<td>80%</td>
<td>ET-CCTA</td>
<td>52.836</td>
<td>77.6</td>
<td>22.4</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CATH</td>
<td>59.877</td>
<td>100</td>
<td>0</td>
<td>314</td>
</tr>
<tr>
<td>90%</td>
<td>ET-CCTA</td>
<td>57.615</td>
<td>74.8</td>
<td>25.2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CATH</td>
<td>59.877</td>
<td>100</td>
<td>0</td>
<td>90</td>
</tr>
</tbody>
</table>

*At the end of the diagnostic strategy, i.e., including the results of CATH when the noninvasive tests are positive or inconclusive. ** Incremental cost per additional correct diagnosis. ICER: incremental cost-effectiveness ratio (Δ cost/Δ correct diagnosis). ET: ergometric test. CCTA: computed tomography angiography of the coronary arteries. CaSc: calcium scoring. MPS: myocardial perfusion scintigraphy. StressEcho: stress echocardiogram with dobutamine.

related factors (availability, experience, etc.) should be considered during the selection of a complementary diagnosis method.

Conclusions

The diagnostic algorithms that include cardiac CCTA are the most cost-effective in symptomatic patients with suspected stable coronary disease and a PLD of ≤50%. In these patients, depending on the PLD and the willingness to pay per correct diagnosis, CCTA may be used as a first-line test or reserved for patients with positive/inconclusive ergometric test results or CaSc > 0. In high-risk patients (PLD ≥ 60%), immediate CATH appears to be the most cost-effective strategy. For all PLDs, strategies based on ischemia tests appear to be more expensive and less effective compared with strategies based on anatomical tests.
Author contributions
Conception and design of the research; Writing of the manuscript; Analysis and interpretation of the data and Critical revision of the manuscript for intellectual content: Gonçalves PA, Cardim N, Marques H, Ferreira AM. Acquisition of data and Statistical analysis: Ferreira AM.

Potential Conflict of Interest
No potential conflict of interest relevant to this article was reported.

References

Modified continuity equation using left ventricular outflow tract three-dimensional imaging for aortic valve area estimation.

Echocardiography, 2017
34(7): p. 978-985
Modified continuity equation using left ventricular outflow tract three-dimensional imaging for aortic valve area estimation

Pedro Pinto Teixeira MD | Ruben Ramos MD | Pedro Rio MD | Luísa Moura Branco MD | Guilherme Portugal MD | Ana Abreu MD | Ana Galrinho MD | Hugo Marques MD | Luísa Figueiredo MD | Rui Cruz Ferreira MD

1Cardiology Department, Hospital de Santa Marta, Lisboa, Portugal
2Radiology Department, Hospital de Santa Marta, Lisboa, Portugal
Correspondence
Pedro Pinto Teixeira, Cardiology Department, Hospital de Santa Marta, Lisboa, Portugal.
Email: phpintoteixeira@gmail.com

Purpose: Aortic valve area (AVA) is usually estimated by the continuity equation (CE) in which the left ventricular outflow tract (LVOT) area is calculated assuming a circular shape. This study aimed to compare measurements of LVOT area using standard 2D transthoracic echocardiography (2DTTE), 3D transesophageal echocardiography (3DTEE), and multidetector computed tomography (MDCT) and assess their relative impact on AVA estimated by the CE.

Methods and Results: We prospectively enrolled 60 patients with severe aortic stenosis (AS) referred for transcatheter aortic valve replacement (TAVR) who systematically underwent 2DTTE, 3DTEE, and MDCT. Mean LVOT areas obtained by 2DTTE (3.28±0.66 cm²) and 3DTEE (3.95±0.90 cm²) were significantly underestimated when compared to the mean MDCT LVOT area (4.31±0.99 cm²). LVOT was rather elliptical than round, with a mean eccentricity index of 1.47 (ratio of maximum to minimum LVOT diameters) assessed by MDCT. Mean TTE AVA estimated by the CE was 0.62±0.20 cm². Substitution of 2DTTE LVOT area by 3DTEE LVOT area in the CE resulted in AVA of 0.74±0.24 cm², while using MDCT LVOT area held an AVA of 0.80±0.24 cm². MDCT-derived AVA was similar to MDCT planimetric AVA and allowed 24% of patients to be reclassified from severe to moderate AS.

Conclusions: 2DTTE and 3DTEE underestimate LVOT area when compared to MDCT with significant impact on AVA estimation. Assessment through MDCT fusion AVA may be of incremental value in patients with discrepant severity criteria for AS.

Keywords: aortic stenosis, aortic valve replacement, computed tomography, three-dimensional echocardiography

1 | INTRODUCTION

Accurate estimation of aortic valve area (AVA) is crucial to identify patients with severe aortic stenosis (AS) who might be eligible for aortic valve replacement treatment.1–2 The measurement of AVA using two-dimensional (2D) transthoracic echocardiography (TTE) is based on the widely accepted continuity equation, which assumes a circular geometry of the left ventricular outflow tract (LVOT).1–5 However, preceding studies using three-dimensional (3D) imaging methods such as multidetector computed tomography (MDCT), magnetic resonance imaging, and....
imaging, or 3D echocardiography have shown the LVOT shape is often elliptical, leading to a potential underestimation of LVOT area andAVA by 2DTTE.6–12 In addition to AVA estimation, other echocardiographic criteria are taken into consideration to assess the AS severity such as transaortic gradients, dimensionless index, and planimetry AVA.1–3 However, there are often discrepancies between these criteria and continuity equation 2DTTE-derived AVA, raising concerns about the accuracy of AVA estimation through this method.13,14

Multidetector computed tomography and 3D trancesophageal echocardiography (3DTEE) are already routinely used in the preprocedural assessment of the aortic valve root and apparatus in the setting of transcatheter aortic valve replacement (TAVR).15,16 Moreover, these 3D imaging techniques allow direct LVOT area measurement by planimetry with high spatial resolution and image quality, which could then be introduced into the continuity equation for AVA calculation, avoiding the error associated with 2DTTE-derived LVOT area estimation.16,17 The incremental value of 3DTEE and MDCT with regard to LVOT andAVA evaluation is still scarcely explored in the literature.

The aim of this study was to (i) compare measurements of LVOT area acquired by 2DTTE, 3DTEE, and MDCT in patients with AS being assessed for TAVR; (ii) assess the impact of a modified multimodal continuity equation incorporating either 3DTEE or MDCT-derived LVOT areas; (iii) evaluate the congruence between 3D-derived AVA and various echocardiographic severity criteria for AS.

2 | METHODS

From April 2014 to December 2015, we prospectively enrolled 60 patients with severe aortic stenosis (defined by 2DTTE estimatedAVA < 0.6 cm²/m² using the continuity equation) who were referred for TAVR assessment. Patients were included if they had performed 2DTTE, 3DTEE, and MDCT at our institution within 1 week of each other. Patients with previous surgery of the aortic valve or ascending aorta were excluded. The study protocol was approved by the local ethics committee, with waiver of individual informed consent.

2.1 | Echocardiography

Echocardiography studies were executed using a commercially available echocardiographic system (IE33 Philips Medical Systems, Andover, MA, USA) using an SS-1 array probe for 2D echocardiography. All measurements were performed according to recommendations of the American Society of Echocardiography.1 From the apical long-axis or five-chamber views, continuous-wave (CW) Doppler spectral recordings were collected, enabling assessment of peak and mean transaortic gradients, as well as of velocity-time integrals (VTI) across the aortic valve.2,4 The highest aortic valve velocity was systematically sought in all patients and was found in nonapical locations (right parasternal or suprasternal) in nine patients. LVOT area was derived in a standard fashion from the LVOT sagittal diameter ([LVOT diameter/2]²×π), obtained on a zoomed parasternal long-axis view, 5 mm below the aortic annulus, in mid-systole.5 The VTI of the LVOT was assessed by spectral pulsed-wave (PW) Doppler with the sample volume positioned at the same level of the LVOT diameter measurement.1 Two-dimensional transthoracic AVA (2DTTE AVA) was calculated using the continuity equation in accordance with the current guidelines: (LVOT area x LVOT VTI)/AV VTI, where LVOT VTI is the velocity-time integral of LVOT flow, and AV VTI is the velocity-time integral of aortic valve flow.1–2

3DTEE was performed with the same echocardiographic system using a X7-2t xMATRIX probe. The examination was undertaken with minimal patient sedation. From the mid-esophageal position, real time 3D imaging of a pyramidal volume (60°×30°) of the aortic valve and LVOT was obtained. Settings were optimized using narrow-angled acquisition mode to ensure frame rates around 25 Hz. A total of three different cycles were recorded in each patient. All volumetric images were analyzed offline by trained readers using a commercially available software package (3D Q-Lab, Philips Medical Systems). After choosing the mid-systolic frame, from the long-axis aortic view, perpendicular 2D planes were shifted and rotated to find the cross-sectional LVOT 5 mm below the aortic annulus, where LVOT area was planimetered (Figure 1). LVOT minimum and maximum diameters were also measured at this level to calculate the eccentricity index (maximum LVOT diameter/minimum LVOT diameter). The eccentricity index values ranged from 1 to 2, with a value of 1 indicating a perfect circle and greater values indicating a progressively more elliptical shape.

Intra-observer variability and inter-observer variability for LVOT diameter on 2DTTE and for LVOT area measurement on 3DTEE were assessed using a randomly selected subset of 15 patients. Measurements were repeated by the same observer after an interval ≥1-month and by a second independent blinded reader. Reproducibility was estimated by intra-class correlation coefficient, with good agreement defined as ≥0.80.

2.2 | Multidetector computed tomography (MDCT)

Multidetector computed tomography scans were performed using a 64-detector scanner (VCT Lightspeed, GE Healthcare, Milwaukee, WI, USA) after administration of iodinated contrast agent (90–110 mL of Ultravist 370) at 4–5 mL/s followed by 30–50 mL of normal saline at the same rate. Data were acquired using a retrospective ECG-controlled tube current modulation technique, where the highest tube current (450–500 mA) was applied only during the systolic phase of the cardiac cycle. Images were reconstructed from phase 20% to 50% of the RR interval, with 5% interval increments. Mean radiation dose for the entire protocol (which comprehends thoracic and abdominal scan for vascular access study for TAVR) was 19.5 mSv.

Multidetector computed tomography images were analyzed on a dedicated CT workstation (InTuition, TeraRecon, San Mateo, CA, USA) by an experienced cardiac CT reader who was blinded to all echocardiographic data. The largest cross-sectional area of the LVOT was measured manually at mid-systole (20%–40% of the RR interval depending on the heart rate) just below the level of the aortic valve “hinge points” and using double oblique images to identify the true short-axis (Figure 2).11 LVOT minimum and maximum diameters were also collected at this level for determination of the eccentricity index.
Planimetry AVA was assessed manually at maximal aortic valve opening by scrolling through the short-axis images toward the tip of the cusps until the smallest orifice was found. AVA was then traced at the inside borders of the coronary cusps (Figure 3).17,18

Intra-observer variability and inter-observer variability for LVOT area quantification on MDCT were evaluated using a random subset of 15 patients, with measurements repeated by the same observer after an interval ≥1-month and by a second independent blinded reader.
Reproducibility was estimated by intra-class correlation coefficient, with good agreement defined as >0.80.

2.3 | Modified continuity equation for AVA estimation

We replaced the conventional 2DTTE LVOT area in the continuity equation by either the 3DTEE LVOT area or the MDCT LVOT area to generate a modified multimodality continuity equation as follows: (3DTEE LVOT area or MDCT LVOT area \times LVOT VTI)/Aortic valve VTI. Pulsed-wave and continuous-wave VTI through the LVOT and aortic valve were constant and assessed in a standard fashion by 2DTTE. AVAs estimated through this modified continuity equation were labeled as 3DTEE fusion AVA and MDCT fusion AVA.

2.4 | Statistical analysis

Continuous variables are presented as mean value±standard deviation and categorical variables as absolute numbers and percentages. LVOT and AVA data were compared using two-sided paired t test, after checking normal distribution of data and homogeneity of variances. Pearson correlation coefficient was used to test associations between continuous variables. Bland-Altman analysis was performed to systematically assess the differences between the LVOT areas measured by 2DTTE, 3DTEE, and MDCT.\(^{19}\) A probability value of <.05 was accepted as statistically significant. Statistical analysis was performed using SPSS Statistics, version 21.

3 | RESULTS

Of the 60 consecutive patients enrolled, five were excluded due to inadequate echocardiographic or tomographic images and three due to concomitant conditions that rendered invalid the continuity equation [two patients with significant aortic regurgitation and one patient with LVOT flow velocity >2 m/s]. The final sample consisted of 52 patients, aged 81.5±5.3 years, and 28 were women (54%). Table 1 summarizes the 2DTTE measurements for this population.

Table 1 Transthoracic echocardiography data of the study sample (n=52)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left ventricular ejection fraction (%)</td>
<td>59.8±13.9</td>
</tr>
<tr>
<td>Left ventricular diastolic volume index (mL/m²)</td>
<td>58.3±18.4</td>
</tr>
<tr>
<td>Left ventricular systolic volume index (mL/m²)</td>
<td>25.1±14.2</td>
</tr>
<tr>
<td>Stroke volume index (mL/m²)</td>
<td>39.8±13.7</td>
</tr>
<tr>
<td>Interventricular wall thickness (cm)</td>
<td>12.9±2.3</td>
</tr>
<tr>
<td>Left ventricular posterior wall thickness (cm)</td>
<td>11.1±2.0</td>
</tr>
<tr>
<td>LVOT diameter (cm)</td>
<td>2.04±0.20</td>
</tr>
<tr>
<td>LVOT area (cm²)</td>
<td>3.28±0.66</td>
</tr>
<tr>
<td>Aortic valve peak velocity (m/s)</td>
<td>4.4±0.6</td>
</tr>
<tr>
<td>Transaortic peak systolic gradient (mm Hg)</td>
<td>78.9±21.6</td>
</tr>
<tr>
<td>Transaortic mean systolic gradient (mm Hg)</td>
<td>49.4±14.4</td>
</tr>
<tr>
<td>Aortic valve velocity-time integral (cm)</td>
<td>109.7±22.8</td>
</tr>
<tr>
<td>LVOT velocity-time integral (cm)</td>
<td>20.4±6.0</td>
</tr>
<tr>
<td>Dimensionless index (LVOT_VTI/AV_VTI)</td>
<td>0.19±0.06</td>
</tr>
<tr>
<td>Aortic valve area (cm²) by the continuity equation</td>
<td>0.62±0.20</td>
</tr>
<tr>
<td>Aortic valve area index (cm²/m²)</td>
<td>0.36±0.12</td>
</tr>
</tbody>
</table>

cont.
LVOT areas were all significantly different from each other (P<.001). 3DTEE and MDCT LVOT areas showed very good correlation (r=.83; P<.001). 2DTTE LVOT area had only moderate correlation with 3DTEE LVOT area (r=.44; P<.001) or MDCT LVOT area (r=.48; P<.001).

Compared to MDCT, 2DTTE systematically underestimates LVOT area by a mean of 1.02±0.89 cm² (95% confidence interval 0.78–1.27) as shown by the Bland-Altman analysis (Figure 4). This difference corresponds to an underestimation of AVA by 33±30% when using the continuity equation.

The LVOT eccentricity index derived from 3DTEE (1.23±0.16) was significantly different from the one derived from MDCT (1.47±0.14), P<.001. No significant correlation was found amidst the eccentricity index and the LVOT areas obtained by each method or the differences between areas. Moreover, eccentricity was not associated with age, gender, body surface area, LVOT area, left ventricular diastolic or systolic volumes, LV ejection fraction, interventricular wall thickness, or aortic valve peak velocity (all with p=NS).

The intra-observer and inter-observer agreement for LVOT diameter and area measurements using the intra-class correlation coefficients were as follows: 2DTTE LVOT diameter (intra-observer 0.93 and inter-observer 0.91), 3DTEE LVOT area (intra-observer 0.96 and inter-observer 0.92), and MDCT LVOT area (intra-observer 0.97 and inter-observer 0.94).

3.2 | AVA and modified continuity equation

2DTTE AVA estimated by the continuity equation was 0.62±0.20 cm². Substituting the LVOT area in the continuity equation by the LVOT area acquired by 3DTEE held a mean 3DTEE fusion AVA of 0.74±0.24 cm². When adopting the LVOT area from MDCT to the continuity equation, we obtained a mean MDCT fusion AVA of 0.80±0.24 cm². All AVAs differed significantly among each other (P<.001). 3DTEE fusion AVA showed stronger correlation with MDCT fusion AVA (r=.91; P<.001) than with 2DTTE AVA (r=.75; P<.001). MDCT fusion AVA was statistically equivalent to MDCT planimetry AVA (0.84±0.17 cm²; P=1.2; r=.74) (Figure 5).

Measurements of planimetric AVA by echocardiography were unattainable in several patients because of suboptimal imaging of the aortic valve opening due to heavy calcification of the cusps. We obtained planimetric AVA in 32 patients (mean AVA 0.70±0.18 cm²) performing 2DTTE and in 36 patients (mean AVA 0.80±0.19 cm²) using 3DTEE. These planimetric AVAs differed significantly between each other and from fusion AVAs (P<.05).

3.3 | Patient reclassification and congruence between echocardiographic parameters and fusion AVA

The dimensionless index (DI), derived from the ratio of LVOTVTI/AVVTI, is independent of the LVOT area measurement and is suggestive of...
severe aortic stenosis when <0.25. In our sample, where all patients were classified as having severe aortic stenosis based on TTE AVA <0.6 cm²/m² by the continuity equation, only 79% of patients had DI <0.25. In contrast, when using MDCT fusion AVA the correspondence between DI <0.25 and AVA <0.6 cm²/m² was nearly perfect (98% of patients had congruence on both parameters). Furthermore, when adopting MDCT fusion AVA a total of 12 patients (24%) would be reclassified from severe to moderate aortic stenosis. This percentage increases when analyzing the subgroup of patients with mean transaortic gradient <40 mm Hg despite a preserved ejection fraction, where five of nine patients were reclassified into moderate aortic stenosis. The impact of using 3DTEE fusion AVA was less pronounced with a percentage of reclassification over the whole sample of 15% (eight patients).

To improve AVA assessment by 2DTEE, we estimated a corrected 2DTEE AVA using a correction factor of 1.33, derived from the mean ratio of MDCT LVOT area/TTE LVOT area and consistent with the percentage of underestimation of AVA. The corrected TTE AVA (0.83±0.27 cm²) held identical values to MDCT fusion AVA (P=0.36) and MDCT planimetry AVA (P=0.64).

4 | DISCUSSION

In the present study, we found that both 2DTEE and 3DTEE underestimated LVOT area when compared to MDCT and therefore AVA estimation by echocardiography alone was significantly undervalued. Incorporating the planimetric area of the LVOT measured by MDCT into a modified multimodality continuity equation yielded significantly larger AVA values, with nearly one in four patients being reclassified from severe to moderate AS.

Moreover, we confirmed the LVOT shape is rather oval than round, which is supported by the mean eccentricity index obtained by MDCT (1.46±0.14) and is in accordance with the findings of previous studies. MDCT allows planimetric measurement of the LVOT area and is therefore independent of geometric assumptions. In contrast, 2DTEE assumes a circular LVOT and relies on a single sagittal diameter mensuration which, in the setting of an eccentric LVOT, may more often correspond to the minimum diameter than to the mean diameter of the ellipse. Furthermore, the squaring of that diameter to derive the area [(LVOT diameter/2)²×π] exponentiates even small errors.

Our findings have shown that replacing 2DTEE LVOT area in the continuity equation by MDCT LVOT area resulted in a mean increase of 0.18 cm² in AVA values. Yet performing an MDCT scan to assess the LVOT area would be impractical for most patients. 3D echocardiography which also provides threedimensional imaging of the LVOT could dismiss the need for an MDCT scan. However, previous publications have suggested that 3D transesophageal echocardiography also underestimates LVOT area when compared to MDCT. Insufficient spatial resolution, especially lateral resolution, to accurately delineate the LVOT borders has been appointed as the primary reason for the underestimation. The current study sought to overcome the image quality issue using TEE, routinely performed in our center for pre-TAVR assessment.

Despite improved echocardiographic window, our results showed that 3DTEE still underestimates LVOT area by a mean of 0.36 cm² when compared to MDCT. When applying the modified continuity equation, this resulted in a mean difference of 0.06 cm² between 3DTEE fusion AVA and MDCT fusion AVA. Although this difference is significant, 3DTEE fusion AVA correlates much more strongly with MDCT fusion AVA (r=0.91) than with 2DTEE AVA (r=0.75). It remains unclear the reason for the discrepancy in the LVOT area measurements among the 3D dimensional methods. The mean LVOT eccentricity index derived from 3DTEE is inferior to the one obtained by MDCT, which could suggest 3DTEE fails to recognize more elliptical LVOTs. However, we could not establish any significant correlation between the difference of the areas and the eccentricity index or other factors. Preceding studies have also been unable to predict LVOT eccentricity or to establish a relation between it and discrepancies in the LVOT area measurements.

Multimodality imaging is playing an increasingly more important role in the setting of patients with moderate-to-severe AS and prospective aortic valve replacement treatment. Following the results of the current and previous research, it appears that in patients with discordant calculated AVA, transaortic gradients and DI, a precise assessment of the LVOT area by MDCT, may be useful to accurately classify the severity of the AS. In the present study, MDCT fusion AVA was similar to MDCT planimetry AVA and MDCT fusion AVA <0.6 cm²/m² held perfect concordance with DI <0.25, whereas 3DTEE fusion AVA failed to accomplish such concordance of parameters.

If the criteria of severe AS as AVA <0.6 cm²/m² was applied to patients assessed by MDCT fusion AVA, 24% of our cohort would be reclassified from severe to moderate AS. However, the cut-point value of 0.6 cm²/m² was validated for patients studied exclusively by 2D echocardiography. Hence, recalcification of patients evaluated by MDCT fusion AVA according to that criteria should be discouraged. Nevertheless, once more data become available, the use of a hybrid or modified continuity equation accounting for the true area of the LVOT might become a useful tool for a more accurate assessment of patients with discrepant echocardiographic criteria for AS severity or poor acoustic windows.
Bearing in mind that MDCT, 3DTEE or even 3DTTE may not be readily available or clinically indicated, we sought to establish a correction factor to compensate for LVOT ovality. We found that applying a correction factor of 1.33 to AVA measurements by 2DTTE would result in a corrected AVA that is identical to MDCT fusion AVA and MDCT planimetry AVA. In their study, Gaspar et al. proposed a correction factor of 1.17. However, only half of the study population had AS and, interestingly, their mean LVOT eccentricity index was also inferior to what we found. In the same study, they validate their findings on a small group of patients with severe AS. In this particular group, the LVOT mean eccentricity index (1.32±0.1) was higher and closer to what we describe. The inconsistency of values regarding correction factor and eccentricity index underlines the need for further and larger studies in this area.

Our study had important limitations. First and more critical is the absence of a true “gold standard” for AVA. The constraints of studies in this area.

CONCLUSIONS

Three-dimensional imaging confirms the LVOT is elliptical in most patients, resulting in underestimation of LVOT area and hence AVA when assessed by 2DTTE. Although 3DTEE approximated its LVOT measurements to those of MDCT, it still failed to recognize larger areas. Incorporating the planimetric area of the LVOT measured by MDCT into a modified continuity equation yielded significantly larger AVA values, with 24% of the patients in our study being reclassified from severe to moderate AS. In patients with discrepant echocardiographic criteria for AS severity, multimodality imaging may be useful for a more accurate assessment.

REFERENCES

MANUSCRITO 7

Left ventricular diverticulum:
a finding by cardiac CT angiography

Dourado, R., Goncalves, P.A., Marques, H., Gaspar, A.,
Machado, F.P., and Roquette, J.

Rev Port Cardiol, 2009
28(3): p. 341-4
INTRODUCTION

We present the case of a 72-year-old woman with moderate mitral stenosis who underwent cardiac computed tomographic (CT) angiography for preoperative assessment of coronary artery disease.

The scan was performed on a 64-slice dual source system (Somatom Definition®, Siemens Medical Solutions) and took 10 seconds. Iodixanol (Visipaque®) 320 mgI/ml iso-osmolar contrast (96 ml) was administered and the radiation dose was 12 mSv.

During the scan the patient developed atrial fibrillation, with a ventricular response of between 37 and 68 bpm (Figure 1).

Figure 1. ECG during cardiac CT angiography. Mean heart rate 52 bpm (37-68).
The image quality was sufficiently good to assess all segments and significant coronary disease was excluded (Figures 2 and 3).

Figura 2. Reconstrução 3D “volume-rendered”.

Figure 2. 3D volume-rendered reconstruction.

Coronária Direita: right coronary artery; Circunflexa: circumflex artery; Descendente Anterior: anterior descending artery.

Besides the absence of significant coronary disease, cardiac assessment revealed a dilated left atrium, thickened and calcified mitral valve leaflets with restricted opening, and normal left ventricular systolic function (Figure 4B).

A small, well-defined image was observed in the left ventricle protruding from the lateral wall with a narrow connection, compatible with a left ventricular diverticulum (Figures 4 and 5).
O divertículo apresenta contractilidade síncrona com o ventrículo esquerdo, esvaziando quase na totalidade em sistole (Figura 6).

The diverticulum contracted in synchrony with the left ventricle, almost completely emptying in systole (Figure 6).
Congenital left ventricular diverticula are rare, especially when diagnosed in adulthood\(^1\-^3\). They can be associated with embolism, heart failure, valve regurgitation, ventricular wall rupture, ventricular tachycardia and sudden death. In most cases they are asymptomatic and are incidental findings on imaging studies\(^1\-^4\).

Diagnosis is obtained by echocardiography, ventriculography, CT scan or magnetic resonance imaging of a protrusion from the ventricular wall, with a narrow connection and contracting in synchrony with the ventricular chamber\(^1\-^5\).

Diverticula are composed of all three cardiac layers. Differential diagnosis is with aneurysms, which are usually saccular in form and consist of fibrous tissue, with a wide connection and paradoxical motion\(^5\).

Treatment varies according to the form of presentation, associated anomalies and possible complications. In symptomatic patients with embolic phenomena, treatment is surgical associated with oral anticoagulation therapy. Although controversial, surgical resection is recommended by some authors even in asymptomatic patients, given the high risk of death due to wall rupture or severe arrhythmias\(^5\).

\[\text{BIBLIOGRAFIA / REFERENCES}\]

White-coat hypertension during coronary computed tomography angiography is associated with higher coronary atherosclerotic burden

Costa, C., de Araujo Goncalves, P., Ferreira, A., Pitta, M.L., Dores, H., Cardim, N., and Marques, H.,

Coron Artery Dis, 2017
28(1): p. 57-62
White-coat hypertension during coronary computed tomography angiography is associated with higher coronary atherosclerotic burden

Cátia Costaa,d, Pedro de Araújo Gonçalvesa,b,c, António Ferreiraa,b, Maria L. Pittad, Hélder Doresa,b,c, Nuno Cardima and Hugo Marquesa

\textbf{Introduction} White-coat hypertension (WCH) is a prevalent entity, which has been associated with an increased cardiovascular risk.

\textbf{Aim} Assess whether WCH is associated with a higher coronary atherosclerotic burden, evaluated by coronary computed tomography angiography (CCTA) and coronary artery calcium (CAC) scoring.

\textbf{Methods} A total of 1362 patients who performed CCTA and simultaneous CAC for the assessment of coronary artery disease (CAD) were prospectively enrolled in a single-center registry and divided into three groups: (A) patients with normal blood pressure (BP) ($n = 386$); (B) patients with WCH ($n = 174$); without a history of hypertension or antihypertensive medication, but with systolic BP ≥ 140 and/or diastolic BP ≥ 90 mmHg before examination acquisition; and (C) patients with hypertension ($n = 802$). The following coronary atherosclerotic markers were evaluated: CAC above the 50th percentile (CAC $> p50$), prevalence of CAD (any plaque), and obstructive CAD (plaque with > 50% stenosis).

\textbf{Results} Patients with WCH had a higher coronary atherosclerotic burden compared with patients with normal BP for all markers (30.5 vs. 19.4% for CAD $> p50$, 50.6 vs. 36.8% for CAD, any plaque; and 13.8 vs. 8.3% for obstructive CAD). On multivariate analysis, WCH was an independent predictor of a CAC $> p50$ (odds ratio (OR) 1.563, 95\% confidence interval 1.018–2.400, $P = 0.041$), but not of the presence of CAD (any plaque) (OR 1.335, $P = 0.169$) or obstructive CAD (OR 1.376, $P = 0.301$).

\textbf{Conclusion} In this registry of patients, WCH was an independent predictor of a CAC above the p50. It was also associated with higher other markers of coronary atherosclerotic burden, such as the presence of CAD on CCTA, compared with patients with normal BP. Coron Artery Dis 28:57–62 Copyright © 2016 Wolters Kluwer Health, Inc. All rights reserved.

Coronary Artery Disease 2017, 28:57–62

Keywords: coronary artery calcium scoring, coronary artery disease, coronary computed tomography angiography, hypertension, white-coat hypertension

*$\text{Hospital da Luz,} \text{ Hospital de Santa Cruz,} \text{ CEDOC, Nova Medical School, Lisbon and} \text{ Hospital Santarém, Santarém, Portugal}$

Correspondence to Pedro de Araújo Gonçalves, MD, Hospital Luz, Av. Luísia, 1500-650 Lisbon, Portugal Tel: +351 968 866 455; fax: +351 214 241 388; e-mail: paraujogoncalves@yahoo.co.uk

Received 20 May 2016 Revised 23 June 2016 Accepted 8 August 2016

\textbf{Introduction} White-coat hypertension (WCH) is defined as an office blood pressure (BP) up to 140/90 mmHg, but with home BP less than 140/90 mmHg and no evidence of hypertensive target organ damage, and occurs in 15–30\% of patients presenting with an elevated BP at the office [1,2]. This entity carries a risk of progression to established hypertension [3,4] and therefore it is recommended that patients with WCH should be followed up to confirm the diagnosis and be advised on lifestyle changes [1,2,5].

It has been shown that WCH is an independent predictor of both renal damage and increased aortic stiffness [6,7] and is also associated with markers of carotid atherosclerosis (both intima-media thickness and stenosis) [8,9], which is in agreement with the higher stroke risk of these patients, as evidenced in recent publications [10,11]. The subclinical damage is also extended to the heart as suggested by a recent large meta-analysis that found WCH to be associated with higher left ventricular mass index, lower mitral E/A ratio, and a larger left atrium [12].

Taken together, these studies support the concept that WCH is not a benign condition and the relation between WCH and several cardiovascular outcomes, including myocardial infarction, stroke, heart failure, the need for revascularization, pacemaker implantation rates and cardiovascular death, has also been highlighted [4,10,11,13,14].

All the published evidence suggests that WCH is in fact a masked cardiovascular risk factor, but for coronary artery disease (CAD) there are not much data available, with only one small study from Kostandinis et al. [15] describing an association between WCH with more severe CAD, assessed with conventional invasive angiography.
Coronary artery calcium (CAC) scoring provides a non-invasive evaluation of the burden of calcified lesions in the coronary tree, which has been documented extensively as a strong prognostic marker [16,17]. Coronary computed tomography angiography (CCTA) provides a comprehensive evaluation of the total burden of atherosclerotic disease (all plaque compositions types – both calcified as well as noncalcified or mixed, and degree of stenosis – both obstructive and nonobstructive), which has also been linked to future cardiovascular events [18–21].

To the best of our knowledge, this is the first study to examine the association between WCH and the presence and extent of the coronary atherosclerotic burden evaluated noninvasively by both CAC scoring and CCTA.

Methods

Study and design

Between May 2013 and March 2015, 1778 consecutive patients undergoing CCTA for assessment of possible CAD were prospectively included in this single-center registry. Patients referred from the emergency department for possible acute coronary syndrome \((n = 36) \), those with indications other than assessment for possible CAD, such as for ablation of atrial fibrillation or implantation of a percutaneous aortic valve \((n = 115) \), those without CAC scoring assessment \((n = 95) \), and patients with a history of myocardial infarction, coronary artery bypass graft surgery, or percutaneous coronary intervention \((n = 170) \) were excluded from the present analysis. For the purpose of this study, 1362 patients were included and the population was divided into three groups according to the BP profile: group A, including patients with normal BP; group B, including WCH patients; and group C, of patients with established hypertension. Patient selection and study design are shown in Fig. 1.

Cardiovascular risk factor assessment

A detailed medical history, including a cardiovascular risk factor questionnaire, was obtained from all patients to assess the presence of: (a) diabetes (defined as fasting plasma glucose \(\geq 7.0 \, \text{mmol/l} \) or use of oral hypoglycemic agents or insulin); (b) dyslipidemia (defined as total cholesterol \(\geq 5 \, \text{mmol/l} \) or treatment with lipid-lowering drugs); (c) hypertension (defined as BP \(\geq 140/90 \, \text{mmHg} \) or the use of antihypertensive medication); (d) family history of premature CAD [defined as the presence of CAD in first-degree relatives younger than 55 (men) or 65 (women) years]; and (e) smoking (defined as previous, less than 1 year, or current smoker) and ex-smoking (defined as previous, more than 1 year). WCH was defined as the absence of known hypertension or the use of antihypertensive medication; associated with the measurement of systolic BP up to 140 mmHg and/or diastolic BP up to 90 mmHg before the CT scan, a variation of the conventional definition, which considers the measurement of BP at the office. The local ethics committee approved the study and all patients provided their written informed consent.

Scan protocol, image reconstruction, calcium score, and coronary disease assessment

Scans were performed with a dual-source scanner (SOMATOM Definition; Siemens Medical Systems, Germany), with the patient in dorsal decubitus and in deep inspiration breath hold. All patients received sublingual nitroglycerin, except when contraindicated, and β-blockers were administered to lower the heart rate when indicated. During the scan acquisition, a bolus of iodinated contrast (Visipaque; GE Healthcare Inc., Princeton, New Jersey, USA) was infused at 6 ml/s, followed by a 50 ml saline flush. The contrast dose was calculated according to the following formula: (acquisition time + 6 s delay) \(\times \) flow (6 ml/s). Contrast administration was timed to optimize uniform enhancement of the coronary arteries. Dose-reduction strategies – including ECG-gated tube current modulation, reduced tube voltage, and prospective axial triggering – were used whenever feasible. Transaxial images were reconstructed with a temporal resolution of 83 ms and a slice thickness of 0.75 mm with 0.4 mm increments. Postprocessing was carried out using Aquarius iNtuition Viewer software (TeraRecon Inc., Foster City, California, USA), with multiplanar reconstructions, maximum intensity projection, and volume rendering. All scans were analyzed in the same session by both a cardiologist and a radiologist with level III-equivalent experience. The CAC scoring was calculated by summing the number of coronary segments with calcium, and a higher than expected atherosclerotic burden was defined as a CAC above the 50th percentile (CAC > p50), according to age-adjusted and sex-adjusted monograms, similar to what we have described recently [22]. The presence of CAD, including the presence of plaque (any degree of stenosis) and of obstructive CAD (defined by the presence of a stenosis equal or superior to 50%), was also evaluated.

Statistical analysis

Continuous variables were expressed as medians and interquartile range (IQR) in line with their non-normal distribution. Normality was tested using the Kolmogorov–Smirnov test. Categorical variables were expressed as frequencies and percentages. Statistical comparisons were performed using the \(\chi^2 \) test or Fisher’s exact test, as appropriate, for categorical variables and the Mann–Whitney test for continuous variables. The ability of WCH to predict a CAC > p50, the presence of coronary plaque, and obstructive CAD was assessed in a customized logistic regression model. Two-tailed tests of significance are reported. For all the comparisons, a \(P \) value less than 0.05 was considered statistically significant. When appropriate, 95% confidence intervals were
calculated. The statistical analysis was carried out using SPSS, version 20.0 (SPSS Inc., Chicago, Illinois, USA).

Results

Baseline demographic and clinical characteristics

The baseline demographic and clinical characteristics are shown in Table 1. Briefly, the median age of the 1362 studied patients was 58 (IQR 50–66) years and 51.6% were men. The most prevalent risk factor was hypertension (58.9%), followed by dyslipidemia (57.3%), family history of premature CAD (46%), smoking or ex-smoking (31.8%), and diabetes (12.8%). The median CAC was 1.0 (IQR 0.0–58.0), with 28.6% patients having a CAC higher than the p50, a value lower than what was verified in other populations [23]. As expected, most of the risk factors, with the exception of smoking, were more prevalent in patients with established hypertension, followed by patients in the WCH group.

<table>
<thead>
<tr>
<th>Variables</th>
<th>All patients (n = 1362)</th>
<th>Normal BP (n = 386)</th>
<th>White-coat hypertension (n = 174)</th>
<th>Hypertension (n = 802)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age [median (IQR) (years)]</td>
<td>58 (50–66)</td>
<td>53 (45–60)</td>
<td>57 (49–64)</td>
<td>61 (54–68)</td>
<td><0.001</td>
</tr>
<tr>
<td>Male</td>
<td>703 (51.6)</td>
<td>206 (53.4)</td>
<td>105 (60.3)</td>
<td>392 (48.9)</td>
<td>0.017</td>
</tr>
<tr>
<td>Cardiovascular risk factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>802 (58.9)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>802 (100)</td>
<td>–</td>
</tr>
<tr>
<td>Diabetes</td>
<td>781 (57.3)</td>
<td>173 (44.8)</td>
<td>82 (47.1)</td>
<td>526 (65.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>174 (12.8)</td>
<td>17 (4.4)</td>
<td>15 (9.6)</td>
<td>142 (17.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Smoking or ex-smoking</td>
<td>433 (31.8)</td>
<td>141 (36.5)</td>
<td>56 (32.2)</td>
<td>236 (29.4)</td>
<td>0.048</td>
</tr>
<tr>
<td>Family history of CAD</td>
<td>626 (46.0)</td>
<td>163 (42.2)</td>
<td>75 (43.1)</td>
<td>388 (48.4)</td>
<td>0.099</td>
</tr>
<tr>
<td>BP profile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic [median (IQR)]</td>
<td>139 (127–152)</td>
<td>125 (117–132)</td>
<td>150 (144–158)</td>
<td>144 (132–158)</td>
<td><0.001</td>
</tr>
<tr>
<td>Diastolic [median (IQR)]</td>
<td>79 (71–88)</td>
<td>74 (67–80)</td>
<td>86 (79–93)</td>
<td>81 (71–89)</td>
<td><0.001</td>
</tr>
<tr>
<td>Calcium score</td>
<td>0.004</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>1 [0–58]</td>
<td>0 [0–11]</td>
<td>0 [0–54]</td>
<td>9 [0–108]</td>
<td><0.001</td>
</tr>
<tr>
<td>CAD</td>
<td>389 (28.6)</td>
<td>75 (19.4)</td>
<td>53 (30.5)</td>
<td>261 (32.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Any plaque</td>
<td>745 (54.7)</td>
<td>142 (36.8)</td>
<td>88 (50.8)</td>
<td>515 (64.2)</td>
<td><0.001</td>
</tr>
<tr>
<td>Obstructive</td>
<td>197 (14.5)</td>
<td>32 (8.3)</td>
<td>24 (13.8)</td>
<td>141 (17.6)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

BP, blood pressure; CAC, coronary artery calcium; CAD, coronary artery disease; IQR, interquartile range; p50, 50th percentile.
White-coat hypertension and coronary atherosclerotic burden

When groups were compared in terms of the presence and extent of the coronary atherosclerotic burden, patients in the WCH group had a significantly higher prevalence of all the three markers – CAD > p50 and CAD (any plaque and obstructive CAD) – compared with patients with normal BP (Fig. 2). As expected, patients in the established hypertension group showed the highest values for all the coronary atherosclerotic markers, but interestingly, when compared with the WCH group, only the marker ‘CAD-any plaque’ reached statistical significance and the prevalence of obstructive CAD was only numerically higher (17.6 vs. 13.8%, P = NS).

A multivariate analysis was carried out after evaluation of the correlation between all the demographic and clinical characteristics and the coronary atherosclerotic burden markers. WCH was an independent predictor of a CAC higher than p50 [odds ratio (OR) 1.563, 95% confidence interval 1.018–2.400, P = 0.041] (Table 2), but not of the presence of CAD (OR 1.335, P = 0.169) or obstructive CAD (OR 1.376, P = 0.301) (Tables 3 and 4).

Discussion

The main findings of our study were as follows: (a) WCH, defined as an elevated BP before CT scan, in patients without known hypertension or using antihypertensive medication, was an independent predictor of a calcium score above the p50 for age and sex; and (b) it was also associated with other markers of coronary atherosclerotic burden evaluated by CCTA, such as nonobstructive and obstructive CAD, compared with patients with normal BP.

WCH has been associated consistently not only with subclinical organ damage but also with adverse clinical outcomes. In a recent meta-analysis including 3478 patients (of which 666 with WCH), Cuspidi et al. [9] reported a higher carotid intima-media thickness, a recognized marker of vascular damage, in patients with WCH compared with patients with normal BP, supporting the concept that WCH is not, effectively, a benign condition. This association was also found for carotid stenosis in the Hisayama study, independent of the other traditional risk factors [8]. This is in agreement with a higher risk of stroke of these patients, as evidenced in the recent publication from the Ohasama study [10] and other studies linking WCH to adverse cardiovascular outcomes [4,10,11,13].

However, for CAD, there are not much data available. Kostandis et al. [15] reported an association between WCH and CAD severity, assessed by the Gensini score, in a small cohort of patients undergoing invasive coronary angiography. In our study, we aimed to study the relation between WCH and CAD using both the nonenhanced (CAC scoring) as well as the enhanced (CCTA) scans, given their documented ability to provide a comprehensive evaluation of the total coronary atherosclerotic burden. Interestingly, recently, several authors documented the prognostic value of disease burden beyond obstructive lesions and therefore in our study, we aimed to evaluate both obstructive and nonobstructive disease [18–20]. We found that WCH was associated with a higher coronary atherosclerotic burden compared with patients with normal BP for all three markers evaluated. Interestingly, the difference between WCH and patients with normal BP was higher than that between WCH and established hypertension (only reaching statistical significance in the marker ‘CAD-any plaque’), in line with what has been reported previously for other markers, namely, carotid intima-media thickness [8,9] and left ventricle mass index [12].

The protocol of our institution with a detailed questionnaire and BP measurement before the examination, coupled with an almost routine nonenhanced scan before CCTA acquisition, allowed the design of the current study, providing one opportunity to relate WCH before the examination to the presence and extent of CAD, although with an unconventional definition of WCH.

By multivariate analysis, we found that WCH was an independent predictor of a CAC higher than that expected for sex and age (above the p50), but we could not find the same independent association with the presence of obstructive CAD. The reason for this might be related, on the one hand, to the fact that obstructive
The present study has several limitations that should be acknowledged: (a) this is a single-center medium-size prospective registry; (b) other markers of target organ damage (such as intima-media thickness and left ventricle mass) were not evaluated; (c) the definition of WCH in our study differs from the traditional definition used by other studies as we used BP values measured before the CT scan because we believed that a medical exam also corresponds to a time of increased anxiety experienced by the patient, similar to what occurs in office BP; and (d) no data on ambulatory BP monitoring are provided, although many of these patients were closely followed in cardiology outpatient clinics that referred the patients for CCTA for clinical reasons. Therefore, because of the lack of systematic ambulatory BP monitoring data, there is the possibility that some patients included in the WCH group could have had masked hypertension. However, in line with the rationale of CCTA referral being a general marker of good access to health surveillance, it is unlikely that this represents the majority of the cases.

Conclusion
In this registry of patients referred to CCTA, WCH was associated with a higher coronary atherosclerotic burden evaluated by both CAC and CCTA compared with patients without hypertension, but lower than that of patients with established hypertension. WCH was an independent predictor of a calcium score above the p50 for age and sex.

Acknowledgements

Conflicts of interest
There are no conflicts of interest.

References
AVALIAÇÃO POR TOMOGRAFIA COMPUTADORIZADA DA AURÍCULA ESQUERDA E VEIAS PULMONARES

Diabetes as an independent predictor of high atherosclerotic burden assessed by coronary computed tomography angiography: the coronary artery disease equivalent revisited.

Int J Cardiovasc Imaging, 2013
29(5): p. 1105-14
Diabetes as an independent predictor of high atherosclerotic burden assessed by coronary computed tomography angiography: the coronary artery disease equivalent revisited

Pedro de Araújo Gonçalves, Hector M. Garcia-Garcia, Maria Salomé Carvalho, Helder Dores, Pedro Jeronimo Sousa, Hugo Marques, et al.
Manuscrito 9

Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media Dordrecht. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer’s website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".
Diabetes as an independent predictor of high atherosclerotic burden assessed by coronary computed tomography angiography: the coronary artery disease equivalent revisited

Pedro de Araujo Goncalves · Hector M. Garcia-Garcia · Maria Salome Carvalho · Helder Dores · Pedro Jeronimo Sousa · Hugo Marques · Antonio Ferreira · Nuno Cardim · Rui Campante Teles · Luis Raposo · Henrique Mesquita Gabriel · Manuel Almeida · Ana Aleixo · Miguel Mota Carmo · Francisco Pereira Machado · Miguel Mendes

Received: 10 October 2012 / Accepted: 5 December 2012 / Published online: 13 December 2012
© Springer Science+Business Media Dordrecht 2012

Abstract (1) To study the prevalence and severity of coronary artery disease (CAD) in diabetic patients. (2) To provide a detailed characterization of the coronary atherosclerotic burden, including the localization, degree of stenosis and plaque composition by coronary computed tomography angiography (CCTA). Single center prospective registry including a total of 581 consecutive stable patients (April 2011–March 2012) undergoing CCTA (Dual-source CT) for the evaluation of suspected CAD without previous myocardial infarction or revascularization procedures. Different coronary plaque burden indexes and plaque type and distribution patterns were compared between patients with (n = 85) and without diabetes (n = 496). The prevalence of CAD (any plaque; 74.1 vs. 56 %; p = 0.002) and obstructive CAD (≥50 % stenosis; 31.8 vs. 10.3 %; p < 0.001) were significantly higher in diabetic patients. The remaining coronary atherosclerotic burden indexes evaluated (plaque in LM-3v-2v with prox. LAD; SIS; SSS; CT-LeSc) were also significantly higher in diabetic patients. In the per segment analysis, diabetics had a higher percentage of segments with plaque in every vessel (2.6/13.1/7.5/10.3 % for diabetics vs. 1.4/7.1/3.3/4.4 % for nondiabetics for LM, LAD, LCx, RCA respectively; p < 0.001 for all) and of both calcified (19.3 vs. 9.2 %, p < 0.001) and noncalcified or mixed types (14.4 vs. 7.0 %; p < 0.001); the ratio of proximal-to-distal relative plaque distribution (calculated as LM/proximal vs. mid/distal/branches) was lower for diabetics (0.75 vs. 1.04; p = 0.009). Diabetes was an independent predictor of CAD and was also associated with more advanced CAD, evaluated by indexes of coronary atherosclerotic burden. Diabetics had a significantly higher prevalence of plaques in every anatomical subset and for the different plaque composition. In this report, the relative geographic distribution of the plaques within each subgroup, favored a more mid-to-distal localization in the diabetic patients.

Keywords Diabetes · Coronary artery disease · Atherosclerotic burden · Coronary CT angiography

Introduction

Patients with diabetes are considered to be at an increased risk of cardiovascular events and therefore it has been recommended by many guidelines a more aggressive management of this subset of patients, especially for those with established cardiovascular disease [1, 2].

By contrast, on a primary prevention unselected population level, some of the preventive measures for diabetic patients, like the use of antiplatelets, have failed to demonstrate a clear clinical benefit [3] and are no longer recommended in the absence of clinical evidence of atherosclerotic disease [4]. The reason for the lack of
benefit of aspirin in diabetic patients is likely related to the fact that diabetic patients represents an heterogeneous subset in what concerns the prevalence and severity of atherosclerotic coronary burden.

This illustrates the need for risk stratification of diabetic patients to identify the ones that can benefit from a more aggressive management at earlier stages. This is an opportunity for noninvasive imaging modalities, such as coronary computed tomography angiography (CCTA), which provides a detailed and comprehensive evaluation of the presence and extent of coronary artery disease (CAD), and can play an important role identifying the diabetic patients that could benefit from a more aggressive prevention of cardiovascular events.

Since CCTA is used mainly as a gatekeeper for the exclusion of significant CAD [5], most of the referred patients are at low to intermediate risk, this provides a good setting to study atherosclerotic disease at an earlier stage.

Therefore the aim of this study is two-folded:
1. To study the prevalence and severity of CAD in diabetic patients at earlier stages of CAD, to further evaluate the concept of CAD equivalent.
2. To provide a detailed characterization of the coronary atherosclerotic burden in diabetic patients, using the comprehensive information derived from CCTA on the localization, degree of stenosis and plaque composition.

Methods

Population

Single center prospective registry, including a total of 772 consecutive patients undergoing CCTA (with Dual source CT), from April 2011 to March 2012.

Patients were excluded if: (1) previous history of myocardial infarction and/or revascularization procedures (n = 70); (2) referred for Cardiac CT for other indications than the evaluation of possible CAD (cardiac CT for atrial fibrillation ablation or transcatheter aortic valve implantation procedures; n = 88); (3) referred for suspected acute coronary syndromes (n = 24); (4) with atrial fibrillation or other significant arrhythmias during scan acquisition that compromised image quality (n = 9). This resulted in a 24.7 % of the total population being excluded.

For the purpose of this study, 581 stable patients referred for suspected CAD were included in the context of: (1) Previousequivocal or inconclusive stress tests or discordant with the clinical evaluation (n = 417, 71.8 %); (2) Cardiac CT as 1st line investigation of possible CAD (n = 136, 23.4 %); 3) Preoperative CAD assessment prior to noncoronary valvular or aortic surgery (n = 17; 2.9 %); (4) Evaluation of possible CAD in cardiomyopathies (Dilated or Hypertrophic) (n = 11; 1.9 %) (Fig. 1: Patient selection and study design).

The study was approved by the local ethics committee and all patients gave a written informed consent.

A detailed medical history by means of a risk factors questionnaire was obtained from the patients to assess for the presence of: (1) Diabetes mellitus (defined as a fasting glucose level of ≥ 7 mmol/l or the need for insulin or oral hypoglycemic agents) [6]; (2) Dyslipidemia (defined as a total cholesterol level ≥ 5 mmol/l or treatment with lipid-lowering drugs) [7]; (3) Hypertension (defined as blood pressure ≥ 140/90 mm Hg or the use of antihypertensive medication) [8]; (4) Obesity (body mass index ≥ 30 kg/m²); (5) positive family history of premature CAD [defined as the presence of CAD in first-degree relatives younger than 55 (male) or 65 (female) years of age] [9]; (6) smoking (defined as previous <1 year) or current smoker.

Pre-test probability of CAD was determined using both the Diamond and Forrester extended CAD consortium method (DF–CAD consortium model) [10] and the Morise score [11]. The cardiovascular risk was assessed with the HeartScore [4]. For the DF–CAD consortium probability model, as the CAD probability and CV risk of our population was shifted to lower probability (less that 2 % had a ≥ 70 % DF probability), the DF–CAD consortium model categories ≥ 30–70 % and ≥ 70 % were gathered in an intermediate to high (≥ 30 %) probability group. For the Morise, the original described cut-off points (for low, intermediate and high probability) were used, and for the HeartScore the established high risk cut-off of ≥ 5 % was used.

Scan protocol and image reconstruction

All scans were performed with a dual-source scanner (Somatom Definition, Siemens Medical, Germany), with the patient in dorsal decubitus and in deep inspiration breath-hold. Sublingual nitroglycerin was administered to all patients except when contraindicated and intravenous metoprolol (5 mg, with a titration dose up to 20 mg) was administered in patients with heart rate >65 beats/min.

During the scan acquisition, a bolus of iodinated contrast (Visipaque, GE Healthcare, USA) was injected at a 6 ml/s infusion rate, followed by a 50-ml saline flush. The dose of contrast was calculated according to the following formula: (acquisition time + 6 s delay) x flow (6 ml/s). Contrast timing was performed to optimize uniform contrast enhancement of the coronary arteries.

Dose reduction strategies—including electrocardiogram-gated tube current modulation, reduced tube voltage, and prospective axial triggering—were used whenever
feasible. Mean estimated radiation dose was 4.6 ± 3.7 mSv, contrast dose was 98.9 ± 14.4 ml and heart rate was 65.6 ± 10.6 bpm.

Transaxial images were reconstructed with a temporal resolution of 83 ms and slice thickness of 0.75 mm with 0.4 mm increments.

Post-processing was carried out using Circulation® software, with multiplanar reconstructions, maximum intensity projection and volume rendering technique.

Coronary artery analysis

All scans were analyzed in the same session by both a cardiologist and a radiologist with Level III—equivalent experience. The Society of Cardiovascular Computed Tomography (SCCT) recommended classification was used regarding segmentation (16 segments), stenosis severity (<25; 25–49; 50–69; 70–99; 100 %) and plaque composition (calcified, noncalcified, mixed plaque) [12]. In each coronary artery segment, coronary atherosclerosis was defined as tissue structures >1 mm² that existed either within the coronary artery lumen or adjacent to the coronary artery lumen that could be discriminated from surrounding pericardial tissue, epicardial fat, or the vessel lumen itself. [13] Coronary atherosclerotic lesions were quantified for stenosis by visual estimation. Percent obstruction of coronary artery lumen was based on a comparison of the luminal diameter of the segment exhibiting obstruction to the luminal diameter of the most normal-appearing site immediately proximal to the plaque.

In the detailed per segment analysis, for the distribution of plaque on the 3 main coronary vessels, this rules were applied: plaques in the diagonal branches were counted as belonging to the left anterior descending (LAD); plaques in the obtuse marginal an intermediate branch were counted as belonging to the LCx; plaques in the posterior descending and right postero-lateral were counted as belonging to the right coronary artery (RCA). For the last two, coronary dominance was taking into account. The ratio of “proximal-to-distal relative plaque distribution” was calculated as the proportion of plaques between these two subgroups: (1) Left main and proximal segments of the LAD, LCx and RCA; (2) Mid and distal segments of LAD and RCA, distal LCx and all evaluable coronary branches.

Definition of the coronary atherosclerotic burden indexes

The following coronary atherosclerotic burden indexes were evaluated and compared between patients with and
without diabetes: (1) Coronary artery disease (CAD)—presence of any plaque in the coronary tree; (2) “Obstructive CAD”—presence of at least one plaque with ≥50% stenosis; (3) “LM-3v-2v with proximal LAD”—plaque in the left main or 3 main epicardial vessels or in 2 main epicardial vessels including the proximal left anterior descending (LAD); (4) “SIS”—segment involvement score, obtained as the total number of segments with plaque; (5) “SSS”—segment stenosis score, obtained by grading the stenosis severity of each segment with plaque, as was previously described [13]. For these last two, the prognostically validated cut-offs (>5) were used [13].

(6) “Calcium score (CaSc) ≥100”; (7) “CaSc ≥75th percentile” (according to published nomograms [14]; (8) CTTA-adapted Leaman score (CT-LoSc)—this score was calculated taking in account 3 weighting factors (localization, plaque composition and stenosis severity) according to previously described methodology and the same cut-off for high plaque burden (≥8.3) was used (provided as additional information to the reviewers, since the manuscript, where it is originally described, is under consideration elsewhere). In Fig. 2, two case examples of diabetic patients with nonobstructive CAD are shown, with the different plaque burden indexes.

Statistical analysis

Continuous variables are presented as mean ± SD or medians (interquartile range) and categorical variables as frequencies with percentages.

The non-parametric Mann–Whitney or Kruskal–Wallis tests were used to compare continuous variables. Chi square test was used to evaluate differences in frequencies. Differences were regarded significant when $p < 0.05$ (two-tailed).

Multivariate analyses (binary logistic regression model—enter method) were performed to identify independent predictors of CAD (any plaque and obstructive) using the demographic and clinical variables presented in Table 1, that were significant in univariate analysis ($p < 0.05$). A second multivariable analyses was performed to identify independent predictors among the clinical scores of CAD probability (Diamond-Forrester CAD consortium model and Morise score) and the CV risk score HeartScore. For the detailed per segment analysis, the unit of measure was each segment and there were no adjustments or corrections made for the serial correlation between segments.

SPSS version 17.0 (SPSS Inc., Chicago, IL, USA) was used for all statistical analyses.
Results

Study population

In the final study population (n = 581), 85 patients were diabetics (14.6 %).

Regarding the demographic and clinical variables, diabetic patients were older (mean age 61.4 ± 8.7 vs. 56.9 ± 11.3) and had a higher prevalence of obesity (28.6 % vs. 17.4 %) and hypertension (84.7 vs. 58.9 %). This was predominantly a population with low to intermediate CAD probability, more so in the non-diabetic population since 61.7 % had a DF–CAD consortium <30 and 90.7 % had a Morise score <16. The cardiovascular risk, as estimated with the HeartScore (≥5 %), was significantly higher in the patients with diabetes (42.4 vs. 22.6 %) (Table 1).

Independent predictors of CAD

Diabetes was an independent predictor of both the presence of plaque (OR 1.81; 95 % CI 1.02–3.21; p = 0.041) and of obstructive CAD (OR 3.69; 95 % CI 2.08–6.53; p < 0.001). The other independent predictors of the presence of plaque were age ≥65 years (OR 3.42; 95 % CI 2.16–5.45; p < 0.001), male sex (OR 2.72; 95 % CI 1.85–4.01; p < 0.001), hypertension (OR 3.42; 95 % CI 2.16–5.45; p < 0.001), male sex (OR 2.72; 95 % CI 1.85–4.01; p < 0.001), male sex (OR 2.72; 95 % CI 1.85–4.01; p < 0.001), and an HeartScore ≥5 % (OR 1.68–5.15; p < 0.001). The other independent predictors of obstructive CAD were age ≥65 years (OR 1.98; 95 % CI 1.16–3.37; p = 0.012), male sex (OR 2.94; 95 % CI 1.68–5.15; p < 0.001), an DF–CAD consortium ≥30 % (OR 1.84; 95 % CI 1.04–3.42; p = 0.038), a Morise score ≥16 (OR 1.84; 95 % CI 1.06–3.20; p = 0.031), and an HeartScore ≥5 % (OR 2.71; 95 % CI 1.50–4.88; p = 0.001).

Coronary artery disease prevalence, severity and coronary atherosclerotic burden indexes—per patient analysis

The prevalence of plaques in the coronary arteries was high in the overall study population, but this was significantly higher for diabetic patients, as almost 3 out of 4 diabetic patients (74.1 %) had plaques in the coronary arteries.

Table 1

<table>
<thead>
<tr>
<th>Demographic and clinical characteristics of the study population</th>
<th>No diabetes (n = 496)</th>
<th>Diabetes (n = 85)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>56.9 ± 11.3</td>
<td>61.4 ± 8.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Male sex</td>
<td>277 (55.8)</td>
<td>47 (55.3)</td>
<td>1.000</td>
</tr>
<tr>
<td>Risk factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obesity (BMI ≥30)</td>
<td>85 (17.4)</td>
<td>24 (28.6)</td>
<td>0.023</td>
</tr>
<tr>
<td>Hypertension</td>
<td>292 (58.9)</td>
<td>72 (84.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>301 (60.7)</td>
<td>59 (69.4)</td>
<td>0.147</td>
</tr>
<tr>
<td>Smoking</td>
<td>118 (23.8)</td>
<td>20 (23.5)</td>
<td>1.000</td>
</tr>
<tr>
<td>Family history of premature CAD</td>
<td>168 (33.9)</td>
<td>26 (30.6)</td>
<td>0.619</td>
</tr>
<tr>
<td>Chest pain</td>
<td>265 (54.3)</td>
<td>46 (54.1)</td>
<td>1.000</td>
</tr>
<tr>
<td>CAD probability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF–CAD consortium ≥30 %</td>
<td>189 (38.1)</td>
<td>42 (49.4)</td>
<td>0.049</td>
</tr>
<tr>
<td>DF–CAD consortium <30 %</td>
<td>307 (61.9)</td>
<td>43 (50.6)</td>
<td></td>
</tr>
<tr>
<td>Morise score ≥16</td>
<td>46 (9.3)</td>
<td>26 (30.6)</td>
<td><0.001</td>
</tr>
<tr>
<td>Morise score 9–15</td>
<td>316 (63.7)</td>
<td>53 (62.4)</td>
<td></td>
</tr>
<tr>
<td>Morise score 0–8</td>
<td>134 (27.0)</td>
<td>6 (7.1)</td>
<td></td>
</tr>
<tr>
<td>CV risk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HeartScore ≥5 %</td>
<td>112 (22.6)</td>
<td>36 (42.4)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Values are mean ± SD or n (%)

CAC coronary artery disease, BMI body mass index, DF–CAD consortium diamond-forrester CAD consortium model, CV cardiovascular p < 0.001, hypertension (OR 1.82; 95 % CI 1.23–2.67; p = 0.002), dyslipidemia (OR 1.89; 95 % CI 1.29–2.77; p = 0.001), chest pain (OR 0.62; 95 % CI 0.42–0.91; p = 0.014) an DF–CAD consortium ≥30 % (OR 2.62; 95 % CI 1.70–4.05; p < 0.001), a Morise score ≥16 (OR 2.55; 95 % CI 1.57–4.14; p < 0.001), and an HeartScore ≥5 % (OR 3.90; 95 % CI 2.19–6.94; p < 0.001). The other independent predictors of obstructive CAD were age ≥65 years (OR 1.98; 95 % CI 1.16–3.37; p = 0.012), male sex (OR 2.94; 95 % CI 1.68–5.15; p < 0.001), an DF–CAD consortium ≥30 % (OR 1.84; 95 % CI 1.04–3.42; p = 0.038), a Morise score ≥16 (OR 1.84; 95 % CI 1.06–3.20; p = 0.031), and an HeartScore ≥5 % (OR 2.71; 95 % CI 1.50–4.88; p = 0.001).

Table 2

Calcium score and CCTA characteristics of the study population

<table>
<thead>
<tr>
<th>Calcium score</th>
<th>No diabetes (n = 496)</th>
<th>Diabetes (n = 85)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>0 (0-67)</td>
<td>68 (0-311)</td>
<td><0.001</td>
</tr>
<tr>
<td>CaSc ≥100</td>
<td>96 (19.4)</td>
<td>40 (47.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>CaSc ≥75th percentile</td>
<td>60 (12.1)</td>
<td>23 (27.1)</td>
<td>0.012</td>
</tr>
<tr>
<td>CTA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal/No plaque</td>
<td>217 (43.8)</td>
<td>22 (25.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>Nonobstructive CAD</td>
<td>228 (46.0)</td>
<td>36 (42.4)</td>
<td></td>
</tr>
<tr>
<td>Obstructive CAD</td>
<td>51 (10.3)</td>
<td>27 (31.8)</td>
<td></td>
</tr>
<tr>
<td>Coronary atherosclerotic burden indexes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plaque in LM-3v-2v with prox. LAD</td>
<td>178 (35.9)</td>
<td>53 (62.4)</td>
<td><0.001</td>
</tr>
<tr>
<td>Segment involvement score >5</td>
<td>66 (13.3)</td>
<td>31 (36.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Segment stenosis score >5</td>
<td>25 (5.0)</td>
<td>21 (24.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>CT-Leaman Score ≥8.5</td>
<td>79 (15.9)</td>
<td>35 (41.2)</td>
<td><0.001</td>
</tr>
<tr>
<td>Technical data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart rate (bpm)</td>
<td>66.3 ± 10.6</td>
<td>67.0 ± 10.2</td>
<td>0.172</td>
</tr>
<tr>
<td>Contrast dose (ml)</td>
<td>99.3 ± 14.7</td>
<td>96.7 ± 12.3</td>
<td>0.119</td>
</tr>
<tr>
<td>Radiation dose (mSv)</td>
<td>4.7 ± 4.9</td>
<td>5.7 ± 3.8</td>
<td>0.069</td>
</tr>
</tbody>
</table>

Values are mean ± SD, median (IQR) or n (%)

CaSc calcium score, CCTA coronary computed tomography angiography, CAD coronary artery disease, LM-3v-2v left main, 3 vessel, 2 vessel, LAD left anterior descending, bpm beats per minute, mSv milisievert

cont.
All the indexes of coronary atherosclerotic burden were significantly higher in diabetics as compared to nondiabetics (Table 2). For some of these indexes, like the presence of obstructive disease, and the SSS, the prevalence was 3–5 times higher in diabetics.

By gender, male diabetics had more often coronary artery disease (any plaque and obstructive), as compared to their counterparts (Fig. 4).

Prevalence, localization and type of plaques—per segment analysis

For the analysis of the atherosclerotic burden indexes, 8,136 coronary segments were evaluated for the presence of plaque, degree of stenosis and type of plaque. Because of small size (<2 mm) or insufficient image quality related to artifacts or severe calcification, 866 (10.6 %) segments were excluded (n = 723–10.4 % in nondiabetics; n = 143–12.0 % in diabetics).

On a “per evaluable segment” analysis, diabetics had significantly more segments with plaque and this was observed in the left main as well as in the other 3 coronary territories and in both more proximal and more distal locations (Table 3). The prevalence of obstructive plaque was also significantly higher in patients with, as compared to patients without diabetes (11.6 vs. 6.9 %, p < 0.001).

On a “per segment with plaque” analysis, nondiabetics had an almost equal distribution of plaques between more proximal (LM/proximal segments) and more mid-to-distal (Mid/distal/branches) localization (ratio of 1.04), but the opposite was seen in patients with diabetes, in whom more plaques were found in the more mid-to-distal segments, as reflected by a ratio of “proximal-to-distal relative plaque distribution” of 0.75 (Table 3).

Regarding plaque composition, diabetics had also a higher percentage of all types of plaques (both calcified and noncalcified or mixed plaques) per evaluable segment (Table 4).

Discussion

The main findings of this study are:

1. Although diabetic patients had a higher prevalence of coronary artery disease, coronary atherosclerotic plaques were commonly observed in both patients with and without diabetes.
Several different coronary atherosclerotic burden indexes were more prevalent in diabetics, indicating more diffuse and severe CAD, and this was especially true for males.

In the detailed per segment analysis, diabetics had a higher percentage of segments with plaque in every vessel and of both calcified and noncalcified or mixed types; ratio of proximal-to-distal relative plaque distribution suggested an anatomical gradient in the geographic distribution, with higher proportion of disease involvement in the mid/distal/branches segments in diabetic patients.

Diabetes as an heterogeneous group—not all diabetics have the same CV risk

For many years, diabetic patients have been considered as a subset at higher risk of cardiovascular events. Nevertheless,

Table 3 Prevalence, and localization of plaques—per segment analysis

<table>
<thead>
<tr>
<th></th>
<th>No diabetes (n = 496; 6,957 segments)</th>
<th>Diabetes (n = 85; 1,187 segments)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>All evaluable segments</td>
<td>6,234 (89.6)</td>
<td>1,044 (88.0)</td>
<td>0.093</td>
</tr>
<tr>
<td>Segments with any plaque</td>
<td>1,008 (16.2)</td>
<td>352 (33.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Coronary artery distribution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any plaque in the LM</td>
<td>87 (1.4)</td>
<td>27 (2.6)</td>
<td>0.007</td>
</tr>
<tr>
<td>Any plaque in the RCA</td>
<td>276 (4.4)</td>
<td>110 (10.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Any plaque in the LAD</td>
<td>441 (7.1)</td>
<td>137 (13.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>Any plaque in the LCx/Ramus</td>
<td>204 (3.3)</td>
<td>78 (7.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Proximal versus distal distribution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any plaque in LM/Proximal</td>
<td>514 (8.2)</td>
<td>151 (14.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Any plaque in Mid/Distal/Branches</td>
<td>494 (7.9)</td>
<td>201 (19.3)</td>
<td><0.001</td>
</tr>
<tr>
<td>“Ratio of proximal-to-distal relative plaque distribution”</td>
<td>1.04 (514/494)</td>
<td>0.75 (151/201)</td>
<td>0.009</td>
</tr>
</tbody>
</table>

“Ratio of proximal-to-distal relative plaque distribution”—proportion of plaques in the “LM/Proximal” versus “Mid/Distal/Branches”

Table 4 Type of plaques—per segment analysis

<table>
<thead>
<tr>
<th></th>
<th>No diabetes (n = 496; 6,957 segments)</th>
<th>Diabetes (n = 85; 1,187 segments)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>All evaluable segments</td>
<td>6,234 (89.6)</td>
<td>1,044 (88.0)</td>
<td>0.093</td>
</tr>
<tr>
<td>Segments with any plaque</td>
<td>1,008 (16.2)</td>
<td>352 (33.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Calcified plaque</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All segments</td>
<td>571 (9.2)</td>
<td>202 (19.3)</td>
<td><0.001</td>
</tr>
<tr>
<td>LM/Proximal</td>
<td>291 (4.7)</td>
<td>83 (8.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>Mid/Distal/Branches</td>
<td>280 (4.5)</td>
<td>119 (11.4)</td>
<td><0.001</td>
</tr>
<tr>
<td>Noncalcified or mixed plaques</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All segments</td>
<td>437 (7.0)</td>
<td>150 (14.4)</td>
<td><0.001</td>
</tr>
<tr>
<td>LM/Proximal</td>
<td>223 (3.6)</td>
<td>68 (6.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Mid/Distal/Branches</td>
<td>214 (3.4)</td>
<td>82 (7.9)</td>
<td><0.001</td>
</tr>
</tbody>
</table>
it has been difficult to prove a clear benefit of some primary prevention measures, like is the case of aspirin in the primary prevention of cardiovascular events. This inconsistent benefit of aspirin in the absence of clinical manifestations of cardiovascular disease, can be related to the fact that it is less effective in these patients [15] or more likely that diabetic patients are an heterogeneous group in terms of cardiovascular disease presence and extent. This way, without risk stratification, we could be overtreating some low risk diabetic patients, exposing them to the risk of side effects that could offset the reduction in expected atherothrombotic events rate.

Of note, there has been a more consistent beneficial effect of aspirin as primary preventive measure in males, for reducing the risk of myocardial infarction [3] and this is in line with our findings of higher prevalence of coronary plaques and obstructive CAD in this subgroup, as compared to females.

Recently, Saely et al. [16] revisited the concept of diabetes as a CAD equivalent in a study comparing the vascular event rate of patients according to the presence of diabetes and/or CAD. In this study, diabetes was not per se a CAD risk equivalent, since diabetic patients without significant CAD had a lower event rate than nondiabetic patients with significant CAD.

CCTA derived coronary atherosclerotic burden indexes

Scores derived from invasive angiography have previously demonstrated to further stratify diabetic patients with more advanced CAD [17]. We hypothesized that this could also be the case for diabetics with less severe CAD, using the comprehensive information derived from CCTA on the presence, localization, degree of stenosis and plaque composition.

Several different aspects of coronary disease are reflected in these scores: prevalence and severity (any plaque and obstructive CAD), number of plaques (SIS), number and distribution (plaque in LM-3v-2v with prox. LAD), number and stenosis severity (SSS), absolute and relative amount of calcified plaque (CaSc ≥100 and ≥75th percentile) and localization, stenosis severity and type of plaque (CT-Le score). All the coronary atherosclerotic burden indexes were significantly higher in diabetics as compared to nondiabetics, reflecting the higher prevalence as well as the more severe coronary disease of this subset of patients and they can be useful as noninvasive imaging tools for risk stratification. Some of these indexes have already been prognostically validated and demonstrated a good correlation with major cardiovascular events [13, 18, 19]. In our view, since the prevalence of plaque is very high, even in this predominantly low-to-intermediate CAD probability population, these coronary atherosclerotic burden indexes can help risk stratify patients and should ideally be included in the CCTA report. However, since they convey information on different aspects of CAD, with some overlap in the information they provide and, in clinical practice, reporting on all of them is not suitable, ideally we should be able to decide in the future which one(s) should be routinely used, based on their prognostic performance.

Anatomical distribution and plaque composition

In this report, the higher prevalence of plaques in diabetic patients was seen in the left main as well as in the other 3 coronary territories and in both proximal and distal locations. Regarding the left main and the other proximal locations, we observed a higher percentage of plaques in diabetics as compared to nondiabetics. This is in line with previous studies linking the geographic distribution of myocardial infarction culprit lesions to more proximal locations in the coronary tree [20] and could explain the higher incidence of coronary events experienced by diabetic patients.

One interesting finding in our study is related to the relative geographic localization of plaques in diabetics as compared to patients without diabetes.

Although in prevalence of evaluable segments, diabetics had more plaques in every location (both proximal and distal) compared to nondiabetics, the relative geographic plaque distribution was different in the two subgroups of patients, since diabetics had a ratio of “proximal-to-distal relative plaque distribution” of 0.75 (vs. 1.04 for nondiabetics), suggesting a higher predisposition to disease involvement of the more distal segments. This finding, on a per segment analysis, together with the higher prevalence of a SIS ≥5 on the per patient analysis reflects the more diffuse nature of coronary atherosclerotic burden of diabetic patients.

As diabetic patients are considered to be a model of more advanced CAD, this could suggest that as the coronary atherosclerosis progresses, distal segments become more involved by disease, although serial measurements in time would be the ideal setting to evaluate this hypothesis.

The per segment analysis allowed also the evaluation of the plaque composition. Diabetic patients had a significantly higher prevalence of segments with both calcified and noncalcified or mixed plaques, in both more proximal or more distal locations. The proportion of calcified to noncalcified or mixed plaques was the same for both subgroups of patients.

Limitations

There are a number of limitations related to this report:

1. This is a single center data with medium size cohort;
2. The population included in our study was mainly composed of patients with low to intermediate CAD probability and CV risk, as this reflects daily practice of CCTA being used as a gatekeeper to exclude obstructive CAD and are in line with the recommendations. Since coronary plaques were present in nearly 60% of the patients, this was an opportunity to evaluate the coronary atherosclerotic burden pattern of DM patients at earlier stages.

3. There were some differences in the baseline characteristics of the two subgroups of patients, that could have contributed to the higher disease extent observed in diabetic patients. Nevertheless, after adjusting for those differences, diabetes remained an independent predictor of both the presence and severity of CAD.

4. Since patients were referred for CCTA because of symptoms and/or the results of stress tests, some referral bias has to be acknowledged.

Conclusions

Diabetes was an independent predictor of CAD and was also associated with more advanced CAD, evaluated by indexes of coronary atherosclerotic burden.

The comprehensive information regarding the presence, severity and type of plaque noninvasively provided by CCTA, has made possible a detailed characterization of the coronary disease pattern of diabetic patients at an earlier stage of disease.

Diabetes had a significantly higher prevalence of plaques in every anatomical subset (type of vessel and both proximal or distal localizations) and for the different plaque composition (both calcified and noncalcified or mixed).

In this report, the relative geographic distribution of the plaques within each subgroup, favored a more mid-to-distal localization of the diabetic patients.

Conflict of interest

None.

References

Prevalence and predictors of coronary artery disease in patients with a calcium score of zero

Int J Cardiovasc Imaging, 2013
29(8): p. 1839-46
Prevalence and predictors of coronary artery disease in patients with a calcium score of zero

Maria Salome Leal de Carvalho · Pedro de Araújo Gonçalves · Hector M. Garcia-Garcia · Pedro Jerônimo de Sousa · Helder Dores · António Ferreira · Nuno Cardim · Miguel Mota Carmo · Ana Aleixo · Miguel Mendes · Francisco Pereira Machado · José Roquette · Hugo Marques

Abstract The absence of coronary calcification is associated with an excellent prognosis. However, a calcium score of zero does not exclude the presence of coronary artery disease (CAD) or the possibility of future cardiovascular events. Our aim was to study the prevalence and predictors of coronary artery disease in patients with a calcium score of zero. Prospective registry consisted of 3,012 consecutive patients that underwent cardiac CT (dual source CT). Stable patients referred for evaluation of possible CAD that had a calcium score of zero (n = 864) were selected for this analysis. The variables that were statistically significant were included in a multivariable logistic regression model.

From 864 patients with a calcium score of zero, 107 (12.4 %) had coronary plaques on the contrast CT (10.8 %, n = 93 with nonobstructive CAD and 1.6 %, n = 14 with obstructive CAD). By logistic regression analysis, the independent predictors of CAD in this population were age [\(\geq 55 \) years] [odds ratio (OR) 1.63 (1.05–2.52)], hypertension [OR 1.64 (1.05–2.56)] and dyslipidemia [OR 1.54 (1.00–2.36)]. In the presence of these 3 variables, the probability of having coronary plaques was 21 %. The absence of coronary artery calcification does not exclude the presence of coronary artery disease, but the prevalence of obstructive disease is very low. In this population, the independent predictors of CAD in the setting of a calcium score of zero were hypertension, dyslipidemia, and age above 55 years. In the presence of these 3 predictors, the probability of having CAD was almost 2 times higher than in the general population.

Keywords Zero calcium score · Coronary artery disease · Noncalcified plaque

Introduction

Coronary artery disease (CAD) is a major cause of death in developed countries and it is expected to remain the most important disease in the upcoming years [1].

Quantification of coronary artery calcium [calcium scoring (CaSc)] can provide a measure of the atherosclerotic plaque burden, since coronary arterial calcification occurs almost exclusively in atherosclerotic plaques [2, 3]. Also, it has been demonstrated in many large clinical trials, that CaSc is a strong predictor of cardiovascular events [4–7].

On the other hand, the absence of calcium in the coronary arteries, although it does not rule out atherosclerotic disease, is consistent with an excellent long-term prognosis [8] and has a high sensitivity and negative predictive value for excluding obstructive CAD. This fact prompted some recent guidelines to suggest that a calcium score of zero might exclude the need for coronary angiography in symptomatic patients [9]. Nevertheless, in previous studies, a high variation was reported in the incidence of obstructive CAD in patients with a CaSc of zero, ranging from 2 to 32 % [10–15]. For instance, in the recent CONFIRM registry, it was shown that in patients with a CaSc of zero, obstructive CAD is
possible and it is associated with increased cardiovascular events [16]. The aim of this study was to assess the prevalence and predictors of coronary artery disease in a population of stable patients referred for evaluation of possible CAD who had a calcium score of zero.

Methods

Study design and patient population

Single center prospective registry including 3,012 consecutive patients undergoing dual source coronary CT angiography (CCTA) from February 2007 to March 2012. For this analysis, 864 stable patients (with symptoms and/or positive or inconclusive stress tests) referred for evaluation of possible CAD that had a calcium score of zero were included. Exclusion criteria included: (1) preoperative CAD assessment prior to noncoronary valvular or aortic surgery (n = 51); (2) evaluation of possible CAD in cardiomyopathies (dilated cardiomyopathy or hypertrophic cardiomyopathy) (n = 330); (3) cardiac CT for atrial fibrillation ablation (n = 70); (4) previous myocardial infarction and/or revascularization procedures (n = 257); (5) suspected ACS (n = 10); (6) other indications (n = 102). Patients with atrial fibrillation or other significant arrhythmias during scan acquisition or artifacts that significantly compromised image quality were also excluded, as every patient with a CaSc >0 (Fig. 1).

The study was approved by the local ethics committee and all patients gave a written informed consent.

A detailed medical history with a questionnaire investigating risk factors was obtained from the patients to assess for the presence of: (1) Diabetes mellitus (defined as a fasting glucose level of ≥126 mg/dl or the need for insulin or oral hypoglycemic agents) [17]; (2) Dyslipidemia (defined as a total cholesterol level ≥200 mg/dl or treatment with lipid-lowering drugs) [18]; (3) Hypertension (defined as blood pressure ≥140/90 mmHg or the use of antihypertensive medication) [19]; (4) Obesity (body mass index ≥30 kg/m²); (5) positive family history of premature CAD (defined as the presence of CAD in first-degree relatives younger than 55 (male) or 65 (female) years of age) [20]; (6) smoking (defined as previous (less <1 year) or current smoker).

Pre-test probability of CAD was determined using both the modified Diamond and Forrester [21] and the Morise score [22]. The cardiovascular risk was assessed with the Heart Score [23]. In the modified Diamond–Forrester, patients were classified into very low (<5 %), low (<10 %), intermediate (10–90 %) and high probability (>90 %). For the Morise score, patients were classified into low (scores 0–8), intermediate (scores 9–15) and high probability (scores ≥16). For the Heart Score, the cut-off of ≥5 % (high-risk) was used.
Scan protocol and image reconstruction

All scans were performed with the first generation of dual-source scanner (Somaton Definition, Siemens Medical, Germany), with the patient in dorsal decubitus and in deep inspiration breath-hold.

The calcium score acquisition consisted of step and shoot—prospective ECG triggering at 70 % of the R–R interval if the heart rate was below 60 beats per min (bpm) or at 40 % of the R–R interval if the heart rate was higher. From the topogram, a cranio-caudal scan was obtained from the carina to the plane just below the heart silhouette, with 120 kV and 128 mAs/rot tube current, with CARE-Dose 4D mAs modulation. The value of the calcium score was obtained with the analysis of consecutive non-contrast 3 mm slices, with a reconstruction b35f Kernel and a small (cardiac) FOV, with a dedicated software (CaSc–Siemens), where every area at least with 3 mm² within a coronary vessel and a density above 130 HU (Hounsfield Units) was selected.

For CCTA, sublingual nitroglycerin was administered to all patients, except when contraindicated, and intravenous metoprolol (5 mg, with a titration dose up to 20 mg) was administered in patients with heart rate >70 bpm.

During the scan acquisition, a bolus of iodinated contrast was injected at a 6 ml/s infusion rate, followed by a 50-ml saline flush. The dose of contrast was calculated according to the following formula: (acquisition time + 6 s delay) × flow (6 ml/s). A ROI was defined in the ascending aorta for the bolus trigger technique, set at 120 HU.

Dose reduction strategies—including electrocardiogram-gated tube current modulation, reduced tube voltage, and prospective axial triggering—were used whenever feasible.

Mean estimated radiation dose was 0.8 ± 0.5 mSv for CaSc and 4.6 ± 3.8 mSv for CT scan. Mean contrast dose was 96.2 ± 13.6 ml and heart rate was 67.8 ± 12.9 bpm.

Transaxial images were reconstructed with a temporal resolution of 83 ms and slice thickness of 0.75 mm with 0.4 mm increments. Post-processing was carried out using Circulation® software, with multplanar reconstructions, maximum intensity projection and volume rendering technique. All scans were analysed independently in the same session by both a cardiologist and a radiologist with level III equivalent experience by the Society of Cardiovascular Computed Tomography. In case of disagreement, a joint reading was performed and a consensus decision was reached.

In each coronary artery segment, coronary atherosclerosis was defined as tissue structures >1 mm² that existed either within the coronary artery lumen or adjacent to the coronary artery lumen that could be discriminated from surrounding pericardial tissue, epicardial fat, or the vessel lumen itself [24]. Coronary atherosclerotic lesions were quantified for stenosis by visual estimation. Percent obstruction of coronary artery lumen was based on a comparison of the luminal diameter of the segment exhibiting obstruction to the luminal diameter of the most normal-appearing site immediately proximal to the plaque. Obstructive CAD was defined by presence of at least one plaque with ≥50 % stenosis.

Statistical analysis

Continuous variables with normal distribution were expressed as mean ± standard deviation. Categorical variables were expressed as percentages and their frequencies were compared with the Chi square test.

Binary logistic regression models were built to elucidate independent predictors of CAD without coronary calcification.

The objective of this model was the assessment of clinical variables that aid to predict the presence of CAD in patients with a calcium score of zero. All the demographic, risk factors and clinical variables present in Table 2 that had a p <0.1 in univariate analysis were included in a multivariate logistic regression model (Enter method).

Statistical analysis was performed with SPSS 17.0 software for Windows (SPSS Inc., Chicago, IL, USA).

Results

Baseline and procedural characteristics

In the final study population of 864 patients, most of the patients were female (55 %) and mean age was 53.8 ± 11.0 years. The prevalence of traditional risk factors was low, with only 9.0 % of patients with diabetes. This was predominantly a low risk population with few high risk patients (only 9.0 % with the Morise score and 3.1 % with the modified Diamond–Forrester had a high CAD probability). Likewise, most of the patients were not considered as high cardiovascular risk, as assessed by the Heart Score (only 11.9 % had a Heart Score ≥5 %)—Table 1.

Coronary plaques were detected on CCTA in 107 patients (12.4 %): 10.8 % (n = 93) with nonobstructive CAD and 1.6 % (n = 14) with obstructive CAD—Fig. 2. Considering the degree of stenosis of the obstructive CAD group, 64 % (n = 9) had a 50–70 % stenosis and 36 % (n = 5) a >70 % stenosis. Considering the extent of disease, all these patients had obstructive CAD in only 1 vessel and 93 % had a single lesion. Regarding the distribution, most of the obstructive CAD lesions were found in proximal or mid segment locations (87 %), and the most affected artery was the right coronary artery 50 % (n = 7).
AVALIAÇÃO POR TOMOGRAFIA COMPUTADORIZADA DA AURÍCULA ESQUERDA E VEIAS PULMONARES

Left anterior descendent was affected in 5 patients, while left main was affected in one patient and the circumflex artery in other patient.

There were no significant differences in the prevalence of CAD in patients referred for CCTA because of positive/inconclusive stress tests (93/722 = 12.9 %) versus patients referred without previous stress tests (14/142 = 9.9 %), p = 0.403.

We further analyzed the distribution of CAD in the different pretest probability subgroups. Using those defined by Morise, the prevalence of CAD (any plaque) was 7.9, 14.3 and 20.5 % in low, intermediate and high pretest probability patients, respectively. Regarding obstructive CAD, a higher prevalence was also found in patients with high pretest probability, but this increase was not statistically significant (Table 2).

Univariate analysis

Patients with CAD were older (prevalence of age ≥55 years 64 vs. 47 %, p = 0.001) than patients without CAD and had a higher prevalence of dyslipidemia (65 vs. 51 %, p = 0.010) and hypertension (67 vs. 51 %, p = 0.002).

The pre-test CAD probability assessed both by the Morise score and the modified Diamond–Forrester was higher in the CAD group and these patients had a 2–4 times higher probability of being of a high CAD probability group. Cardiovascular risk, estimated by the Heart Score, was also significantly higher in patients with CAD. Although there was a trend in this group towards a higher prevalence of diabetes and male gender, these differences were not statistically significant—Table 3.

Multivariate analysis

By multivariate analysis, the independent predictors of CAD in patients with a calcium score of zero were age ≥55 years (OR 1.631, 95 % CI 1.054–2.524, p = 0.028), hypertension (OR...
1.641, 95 % CI 1.051–2.560, \(p = 0.029 \) and dyslipidemia (OR 1.538, 95 % CI 1.002–2.361, \(p = 0.049 \)) (Fig. 3). In the presence of these 3 variables (n = 176 patients, 20.4 % of the population), the probability of having coronary plaques was 21 % (vs. 12.4 % in the total studied population). We also analyzed the prevalence of CAD according to the presence of none, one, two or three of these risk factors. The results are shown in Table 4.

Discussion

In this single center cohort of stable patients without known CAD, referred for cardiac CT angiography, we found a very low prevalence of obstructive CAD (1.6 %) in the subset with a CaSc of zero. When considering the degree of stenosis, only 0.6 % had a stenosis >70 %.

The prevalence and clinical significance of obstructive CAD on coronary CT angiography among patients with a calcium score of zero has been evaluated in several cohorts, but with conflicting results, depending on the population included. Data from Nieman et al. [14], the CONFIRM registry [16], Rubinstein et al. [13] and Akram et al. [11], are in line with our results, with a low prevalence of obstructive CAD (2, 3.5, 7.2 and 8.2 %, respectively). Our prevalence was even lower, and this might be explained by a high prevalence of patients with a low pretest probability of CAD.

In contrast, in the work of Harberl et al. [10] and Gottlieb et al. [12], there was a high prevalence of CAD (32 and 19.4 %, respectively), which can be related to the fact that these studies included patients referred for conventional angiography, including patients with possible acute coronary syndromes.

In our population, the prevalence of CAD in patients with positive/inconclusive stress tests (exercise electrocardiography in most cases) was not significantly different from that of patients referred to CCTA without previous tests, as in the study from Nieman et al. [14].

Calcium scoring enables a noninvasive quantification of the total coronary atherosclerotic burden, although it underestimates the burden of disease, by not measuring noncalcified plaques [25]. Nevertheless, it has been shown to outperform traditional risk stratification tools, such as clinical risk factor assessment, ankle-brachial index, carotid intima-media thickness and high-sensitivity C-reactive protein, as a predictor of cardiovascular events [4, 5].

Our data suggests that, although the absence of calcium does not exclude the presence of CAD, it was associated with a very low probability of obstructive lesions. This was especially true in cases of low and intermediate pretest CAD probability, as in the study from Werkhoven et al. [15] in which the prevalence of obstructive CAD, in the absence of calcium, was only 3.4 and 3.8 % in patients with low and intermediate pretest CAD probability, respectively. This is in line with the excellent prognosis that has been demonstrated for patients with a calcium score of zero [8].

In our population, older age (≥55 years), hypertension and dyslipidemia were independent predictors of CAD in
this subset of patients without calcium, and in the presence of these 3 predictors, the probability of having CAD was almost 2 times higher than in the general population. Nevertheless, the odds ratios for the independent predictors were rather modest and other traditional CAD risk factors were not found to be independent predictors. This way, we could hypothesize that coronary plaques without calcium could be a different phenotypical subset of CAD. Another possibility could be that these patients with coronary plaques in the absence of calcium represent CAD at earlier stages, since calcium is considered to be associated with more advanced forms of atherosclerotic lesions [2]. In fact, in our population, all the patients with obstructive CAD had only 1 vessel disease, most (93 %) with a single lesion, and only a minority (36 %) had >70 % stenosis.

One last hypothesis could be that these plaques can have microcalcifications below the threshold of cardiac CT spacial resolution, as in the case example (Fig. 4), in which small spots of calcium were only detected by intravascular ultrasound (IVUS) virtual histology.

Limitations

There are a number of limitations related to this report: (1) this is a single center retrospective study with medium size cohort; (2) our population in mainly of low CAD probability and CV risk; the very low percentage of obstructive CAD found can not be extrapolated to cohorts with more patients with higher CAD probability and CV risk (3) the definition of CAD was made using CCTA and not invasive angiography, which may lead to false-positive findings, although this is unlikely in the absence of calcium; (4) lack of prognostic information, since we did not evaluate the prognostic importance of obstructive CAD in patients with a CaSc of zero.
In this population of stable patients referred for evaluation of possible CAD that had a calcium score of zero, 12.4% had coronary plaques and 1.6% had obstructive (>50%) CAD.

Therefore, and despite the known high negative predictive value of CaSc for coronary events, the absence of coronary artery calcification does not exclude the presence of coronary artery disease, but the prevalence of obstructive disease is very low.

In this population, we found that age ≥55, hypertension, dyslipidemia were independent predictors of CAD in the setting of a calcium score of zero. In the presence of these 3 predictors, the probability of having CAD was almost 2 times higher than in the total studied population.

Conflict of interest All the authors declare that they have no conflict of interest.

References

Relationship of Hypertension to Coronary Atherosclerosis and Cardiac Events in Patients With Coronary Computed Tomographic Angiography

Hypertension, 2017
70(2): p. 293-299
Title:
Relationship of Hypertension to Coronary Atherosclerosis and Cardiac Events in Patients With Coronary Computed Tomographic Angiography

Journal Issue:
HYPERTENSION, 70(2)

Author:
Nakanishi, R
Baskaran, L
Gransar, H
Budoff, MJ
Achenbach, S
Al-Mallah, M
Cademartiri, F
Callister, TQ
Chang, H-J
Chinnaiyan, K
Chow, BJW
Delago, A
Hadamitzky, M
Hausleiter, J
Cury, R
Feuchtmair, G
Kim, Y-J
Leipsic, J
Kaufmann, PA
Maffei, E
Raff, G
Shaw, LJ
Villines, TC
Dunning, A
Marques, H
Pontone, G
Andreini, D
Rubinstein, R
Bax, J
Jones, E

Previously Published Works
UCLA

A University of California author or department has made this article openly available. Thanks to the Academic Senate’s Open Access Policy, a great many UC-authored scholarly publications will now be freely available on this site.
Let us know how this access is important for you. We want to hear your story!
http://escholarship.org/reader_feedback.html
Hindoyan, N
Gomez, M
Lin, FY
Min, JK
Berman, DS

Publication Date:
08-01-2017

Series:
UCLA Previously Published Works

Permalink:
http://escholarship.org/uc/item/35c5c4bg

DOI:
https://doi.org/10.1161/HYPERTENSIONAHA.117.09402

Keywords:
angiography, atherosclerosis, coronary artery disease, hypertension, risk factors

Local Identifier(s):
UCPMS ID: 2157741

Abstract:
Hypertension is an atherosclerosis factor and is associated with cardiovascular risk. We investigated the relationship between hypertension and the presence, extent, and severity of coronary atherosclerosis in coronary computed tomographic angiography and cardiac events risk. Of 17,181 patients enrolled in the CONFIRM registry (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter Registry) who underwent ≥64-detector row coronary computed tomographic angiography, we identified 14,803 patients without known coronary artery disease. Of these, 1,434 hypertensive patients were matched to 1,434 patients without hypertension. Major adverse cardiac events risk of hypertension and non-hypertensive patients was evaluated with Cox proportional hazards models. The prognostic associations between hypertension and no-hypertension with increasing degree of coronary stenosis severity (nonobstructive or obstructive ≥50%) and extent of coronary artery disease (segment involvement score of 1-5, >5) was also assessed. Hypertension patients less commonly had no coronary atherosclerosis and more commonly had nonobstructive and 1-, 2-, and 3-vessel disease than the no-hypertension group. During a mean follow-up of 5.2±1.2 years, 180 patients experienced cardiac events, with 104 (2.0%) occurring in the hypertension group and 76 (1.5%) occurring in the no-hypertension group (hazard ratios, 1.4; 95% confidence intervals, 1.0-1.9). Compared with no-hypertension patients without coronary atherosclerosis, hypertension patients with no coronary atherosclerosis and obstructive coronary disease tended to have higher risk of cardiac events. Similar trends were observed with respect to extent of coronary artery disease. Compared with no-hypertension patients, hypertensive patients have increased presence, extent, and severity of coronary atherosclerosis and tend to have an increase in major adverse cardiac events.

Copyright Information:
All rights reserved unless otherwise indicated. Contact the author or original publisher for any necessary permissions. eScholarship is not the copyright owner for deposited works. Learn more at http://www.escholarship.org/help_copyright.html#reuse
Original Article

Relationship of Hypertension to Coronary Atherosclerosis and Cardiac Events in Patients With Coronary Computed Tomographic Angiography

Abstract—Hypertension is an atherosclerosis factor and is associated with cardiovascular risk. We investigated the relationship between hypertension and the presence, extent, and severity of coronary atherosclerosis in coronary computed tomographic angiography and cardiac events risk. Of 17181 patients enrolled in the CONFIRM registry (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter Registry) who underwent 64-detector row coronary computed tomographic angiography, we identified 14803 patients without known coronary artery disease. Of these, 1434 hypertensive patients were matched to 1434 patients without hypertension. Major adverse cardiac events risk of hypertension and non-hypertensive patients was evaluated with Cox proportional hazards models. The prognostic associations between hypertension and non-hypertension with increasing degree of coronary stenosis severity (nonobstructive or obstructive ≥50%) and extent of coronary artery disease (segment involvement score of 1–5, >5) was also assessed. Hypertension patients less commonly had no coronary atherosclerosis and more commonly had nonobstructive and 1-, 2-, and 3-vessel disease than the non-hypertension group. During a mean follow-up of 5.2±1.2 years, 180 patients experienced cardiac events, with 104 (2.0%) occurring in the hypertension group and 76 (1.5%) occurring in the non-hypertension group; hazard ratio, 1.4 (95% confidence interval, 1.0–1.9); Compared with non-hypertension patients without coronary atherosclerosis, hypertensive patients with no coronary atherosclerosis and obstructive coronary disease tended to have higher risk of cardiac events. Similar trends were observed with respect to extent of coronary artery disease. Compared with no-hypertension patients, hypertensive patients have increased presence, extent, and severity of coronary atherosclerosis and tend to have an increase in major adverse cardiac events. (Hypertension. 2017;70:00-00.

DOI: 10.1161/HYPERTENSIONAHA.117.09402.)

Key Words: angiography ■ atherosclerosis ■ coronary artery disease ■ hypertension ■ risk factors

Received March 16, 2017; first decision March 25, 2017; revision accepted May 14, 2017.

From the Los Angeles BioMedical Research Institute at Harbor UCLA Medical Center, Torrance, CA (R.N., M.J.B.); Departments of Imaging and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA (R.N., H.G., D.S.B.); Department of Radiology, Dalio Institute of Cardiovascular Imaging, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY (L.B., E.J., N.H., M.G., F.Y.L., J.K.M.); Department of Medicine, University of Erlangen, Germany (S.A.); King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, King AbdulAziz Cardiac Center, Ministry of National Guard, Health Affairs, Riyadh, Saudi Arabia (M.A.-M.); Department of Radiology, Montreal Heart Institute, Quebec, Canada (F.C., E.M.); Department of Radiology, Erasmus University Medical Center, Rotterdam, The Netherlands (F.C., E.M.); Tennessee Heart and Vascular Institute, Hendersonville (T.Q.C.); Division of Cardiology, Severance Cardiovascular Hospital and Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea (Y.J.K.); William Beaumont Hospital, Royal Oak, MI (K.C., G.R.); Department of Medicine and Radiology, University of Ottawa, Ontario, Canada (B.J.W.C.); Capitol Cardiology Associates, Albany, New York (A.D.); Department of Radiology and Nuclear Medicine, German Heart Center Munich, Germany (M.H.); Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität München, Germany (J.H.); Baptist Cardiac and Vascular Institute, Miami, FL (R.C.); Department of Radiology, Medical University of Innsbruck, Austria (G.F.); Department of Medicine and Radiology, Seoul National University Hospital, South Korea (Y.-J.K.); Department of Medicine and Radiology, University of British Columbia, Vancouver, Canada (J.L.); Department of Nuclear Cardiology, Cardiovascular Center, University Hospital, Zurich, Switzerland (P.A.K.); Department of Cardiology, Emory University School of Medicine, Atlanta, GA (L.I.S.); Department of Medicine, Walter Reed National Military Medical Center, Bethesda, MD (T.C.V.); Duke Clinical Research Institute, Durham, NC (A.D.); UNICA, Cardiac CT and MRI Unit, Hospital da Luz, Lisbon, Portugal (H.M.); Department of Clinical Sciences and Community Health, University of Milan, Italy (G.P., D.A.); Centro Cardiologico Monzino, IRCCS, Italy (G.P., D.A.); Department of Cardiology at the Lady Davis Carmel Medical Center, The Ruth and Bruce Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa, Israel (R.R.); and Department of Cardiology, Leiden University Medical Center, HARTZ, The Netherlands (J.B.)

Correspondence to Daniel S. Berman, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048. E-mail Bermand@csbs.org

© 2017 American Heart Association, Inc.

Hypertension is available at http://hyper.ahajournals.org

DOI: 10.1161/HYPERTENSIONAHA.117.09402

cont.
Hypertension affects almost one third of adults, including >7 million patients in the United States1–3 and is strongly associated with cardiovascular morbidity and mortality.4–6 Although hypertension is a well-established risk factor for coronary artery disease (CAD), the relationships between hypertension and coronary atherosclerotic plaque stenosis, extent, characteristics, and major adverse cardiac events (MACE) risk have not been examined. Coronary computed tomographic angiography (CTA) has emerged as an accurate noninvasive modality to evaluate coronary atherosclerotic plaque and assess the risk of patients with suspected CAD.1–4 In this study, we used coronary CTA to investigate the relationship between hypertension and the presence, extent, and severity of CAD and to explore whether hypertension adds to the assessment of atherosclerosis in prediction of MACE.

Methods

Study Population
From 17181 patients enrolled in the CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter Registry) registry between 2002 and 2011 who underwent 264-detector row coronary CTA at 17 centers, we identified 14803 patients without known CAD who underwent coronary CTA. Of those, we sequentially excluded patients without information on MACE (n=4885), early revascularization <3 months after coronary CTA (n=1212), and any risk factors used for matching (n=2272), resulting in a population of 4430 patients. Hypertensive and nonhypertensive subjects were matched for age, sex, all other CAD risk factors, including diabetes mellitus, dyslipidemia, current smoking, family history, chest pain symptoms (asymptomatic, atypical, noncardiac, and typical chest pain), and dyspnea using propensity scores. The resulting propensity score was then applied 1:1 to match every hypertensive subject (n=2791) to a corresponding nonhypertensive subject (n=2639) using a Mahalanobis nearest-neighbor matching algorithm with caliper <0.01.15 After matching, 2868 patients (age ≥50 years) comprised the final study population, with 1434 patients with hypertension and 1434 patients without hypertension. Propensity matching resulted in no differences between the groups in age, male sex, other clinical risk factors and atherosclerosis variables.

Prescan Risk Factor Assessment
All CAD risk factors were prospectively ascertained before the coronary CTA examination by direct patient interview by a physician or nurse research coordinator and by standardized site surveys. Hypertension was defined as a history of physician-diagnosed high blood pressure or treatment with blood pressure medications. Dyslipidemia was defined as physician-diagnosed dyslipidemia or current treatment with lipid-lowering medications. Diabetes mellitus was defined by physician-diagnosed diabetes mellitus or use of insulin or oral hypoglycemic agents. A smoking history was defined as current smoking or cessation of smoking within 3 months of testing. Family history of CAD was determined by self-report. Chest symptom characteristics (asymptomatic, atypical, noncardiac, and typical chest pain and dyspnoea) were recorded.16

Imaging Analysis
Coronary CTA was performed using multidetector CT scanners with 264 slices detector rows as previously described.16 CT data sets were evaluated for the presence of any plaque and plaque composition (stenosis and extent) on coronary CTA, using a modified 16-segment American Heart Association coronary tree model in accordance with the Society of Cardiovascular Computed Tomographic guidelines.14 Coronary plaque was identified as hyperdense structure adjacent to lumen of any size or hypodense structure distinct from lumen and per-arterial tissue >1 mm² in largest area. Severity of luminal stenosis was classified into 3 groups: none (0% luminal stenosis), nonobstructive (1%–49% luminal stenosis), and obstructive stenosis (≥50% luminal stenosis). For per-vessel analysis, we used a 5-category categorization: no plaque, nonobstructive CAD, and presence of obstructive CAD in 1, 2, or 3 vessels. Left main disease was categorized as a 3-vessel CAD equivalent. For measures of CAD extent and distribution, the segment involvement score (SIS) was defined as the total number of coronary artery segments involved with any plaque.14 For per-location analysis, we used a 5-group categorization: left main, proximal, mid and distal coronary segments, and side branches, including diagonal branches, obtuse marginal branches, posterior descending artery, and posterior lateral branch. Detected plaques were visually classified as noncalcified plaque (containing calcium and noncalcified plaque), or calcified plaque (containing only calcification).

Statistical Analysis
Continuous variables were expressed as the mean±SD. The Wilcoxon rank-sum test (for nonparametrically distributed variables) was used to conduct intergroup comparisons between no-hypertension and hypertension groups. Categorical variables were compared using Pearson χ² tests.

MACE was defined as all-cause death or nonfatal myocardial infarction. Myocardial infarction was defined by site physicians in accordance with American College of Cardiology/American Heart Association guidelines and the World Health Organization Universal Definition of Myocardial Infarction.19,20 The log-rank test was used for comparing MACE event rates between the hypertension and no-hypertension groups, and MACE-free survival was further assessed using Cox proportional hazards models and Kaplan–Meier survival curves. We also assessed MACE risk by Cox proportional hazards models in men and women. In addition, degrees of stenosis severity (normal, nonobstructive, and obstructive CAD ≥50%) and extent of CAD (SIS of 0, 1–5, and ≥5) were assessed among no-hypertension and hypertension groups in relation to time to MACE by Cox proportional hazards models. Scaled Schoenfeld residuals were used to verify the assumption of proportional hazards of the Cox models.21 Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated from the Cox models. Area under the curves (AUC) by receiver operator characteristic for prediction of MACE were used to evaluate the added value of hypertension over assessment of coronary atherosclerosis alone (≥50% stenosis or SIS) or the combination of coronary atherosclerosis and clinical factors other than hypertension (other clinical factors [age, sex, diabetes mellitus, dyslipidemia, current smoking, family history, and all chest symptoms]). We also calculated continuous net reclassification index (cNRI)22 between the models to investigate whether hypertension reclassified patients with respect to MACE risk over the combination of other clinical risk factors and atherosclerosis variables. All statistical calculations were performed using STATA (Version 11.2; StataCorp LP, College Station, TX) for Windows.

Results

Patient Characteristics
Table 1 demonstrates the baseline characteristics among patients with and without hypertension. Propensity matching resulted in no differences between the groups in age, male sex, other CAD risk factors, and all chest symptoms (P>0.05 for all).

CAD Characteristics on Coronary CTA
Extent and severity of CAD as observed on coronary CTA in patients with and without hypertension are shown in Table 2. About plaque extent and severity stenosis, compared with the no-hypertension patients, hypertension patients manifested a greater SIS and a lower prevalence of absent
Hypertension patients possessed greater prevalence of obstructive lesions in 1, 2, or 3 vessels (P<0.001). Hypertension patients had more ≥50% stenosis in the proximal and mid coronary arteries and side branches. On plaque characteristics, any noncalcified plaque or calcified plaque was more observed in hypertension patients compared with no-hypertension patients (Table 2).

MACE Risk

One-hundred eighty patients (6.3% of study population) experienced MACE at a mean follow-up of 5.2±1.2 years, 7.3% versus 5.3%, =0.03; Tables 3 and 4). Kaplan–Meier curve demonstrated that MACE were more common in the hypertension versus the no-hypertension group (Figure 2A).

The risk of MACE was also progressively higher in the subjects with nonobstructive CAD and those with obstructive CAD when compared with those with no-CAD (Figure 2A). A trend toward a higher odds ratio was observed among hypertension patients with normal coronary arteries; however, it did not reach statistical significance (HR, 1.9; 95% CI, 1.0–3.6; P=0.12 for hypertension and a trend toward increase in the AUC (model 3; AUC, 0.648). The combination of other clinical factors increased this prediction (model 2; AUC, 0.680; P<0.0001 for AUC). When hypertension was then added (model 3), there was a significant increase in cNRI (P=0.03), and a trend toward increase in the AUC (P=0.055).

Considering the CTA findings, the risk of MACE was progressively higher in the patients with nonobstructive CAD and those with obstructive CAD when compared with those with no-CAD (Figure 2A). A trend toward a higher odds ratio was observed among hypertension patients with normal coronary arteries; however, it did not reach statistical significance (HR, 1.9; 95% CI, 1.0–3.6; P=0.06). In patients with nonobstructive CAD, the HRs of the hypertension and no-hypertension groups were similar. In the obstructive CAD group, the HR in the hypertension group was only slightly higher than that in the no-hypertension group (Figure 2A).

On the extent of CAD, similar findings were observed. The risk of MACE was also progressively higher in the subjects with SIS of 1 to 5 and those with SIS of >5 when compared with those with no-CAD. The HRs of the hypertension group in the SIS of 1 to 5 and SIS of >5 groups were only slightly higher than the no-hypertension group (Figure 2B).

The incremental added value of hypertension in prediction of MACE over clinical and CTA variables is shown in Table 4. The presence of obstructive CAD was predictive of MACE (model 1; AUC, 0.648). The combination of other clinical factors increased this prediction (model 2; AUC, 0.680; P<0.0001 for cNRI and P<0.0001 for AUC). When hypertension was then added (model 3), there was a significant increase in cNRI (P=0.03), and a trend toward increase in the AUC (P=0.055). Similar

Table 1. Clinical Characteristics (n=2868)

<table>
<thead>
<tr>
<th>Clinical Characteristics</th>
<th>No Hypertension (n=1434)</th>
<th>Hypertension (n=1434)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>56.3±11.0</td>
<td>56.6±11.1</td>
<td>0.47</td>
</tr>
<tr>
<td>Male sex (%)</td>
<td>60.8</td>
<td>60.8</td>
<td>1.00</td>
</tr>
<tr>
<td>Diabetes mellitus (%)</td>
<td>7.5</td>
<td>8.5</td>
<td>0.30</td>
</tr>
<tr>
<td>Dyslipidemia (%)</td>
<td>48.0</td>
<td>49.0</td>
<td>0.60</td>
</tr>
<tr>
<td>Smoking (%)</td>
<td>16.5</td>
<td>18.3</td>
<td>0.20</td>
</tr>
<tr>
<td>Family history (%)</td>
<td>33.3</td>
<td>34.8</td>
<td>0.41</td>
</tr>
<tr>
<td>Chest pain status (%)</td>
<td>39.8</td>
<td>37.7</td>
<td>0.17</td>
</tr>
<tr>
<td>Asymptomatic</td>
<td>14.2</td>
<td>15.8</td>
<td></td>
</tr>
<tr>
<td>Noncardiac</td>
<td>37.3</td>
<td>35.9</td>
<td></td>
</tr>
<tr>
<td>Agipal</td>
<td>8.8</td>
<td>10.7</td>
<td></td>
</tr>
<tr>
<td>Dyspnea</td>
<td>12.8</td>
<td>14.6</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Table 2. CAD Characteristics on Coronary CTA (n=2868)

<table>
<thead>
<tr>
<th>CAD Characteristics on Coronary CTA (n=2868)</th>
<th>No Hypertension (n=1434)</th>
<th>Hypertension (n=1434)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIS (median; IQR)</td>
<td>0 (0–2)</td>
<td>1 (0–3)</td>
<td><0.0001</td>
</tr>
<tr>
<td>No. of vessels with plaque and ≥50% stenosis (%)</td>
<td>53.0</td>
<td>43.7</td>
<td></td>
</tr>
<tr>
<td>No plaque</td>
<td>33.3</td>
<td>37.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Nonobstructive plaque (1%–49%)</td>
<td>9.5</td>
<td>12.1</td>
<td></td>
</tr>
<tr>
<td>2-vessel disease (≥50%)</td>
<td>2.6</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>3-vessel disease (≥50%)</td>
<td>1.6</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>Distribution for any coronary artery disease (%)</td>
<td>12.6</td>
<td>14.1</td>
<td>0.24</td>
</tr>
<tr>
<td>Left main</td>
<td>36.2</td>
<td>46.6</td>
<td><0.001</td>
</tr>
<tr>
<td>Proximal</td>
<td>29.3</td>
<td>36.0</td>
<td><0.001</td>
</tr>
<tr>
<td>Distal</td>
<td>14.1</td>
<td>18.6</td>
<td>0.002</td>
</tr>
<tr>
<td>Side branches</td>
<td>14.7</td>
<td>18.4</td>
<td>0.01</td>
</tr>
<tr>
<td>Distribution for coronary artery disease with ≥50% stenosis (%)</td>
<td>0.3</td>
<td>0.6</td>
<td>0.18</td>
</tr>
<tr>
<td>Left main</td>
<td>7.5</td>
<td>10.0</td>
<td>0.02</td>
</tr>
<tr>
<td>Proximal</td>
<td>8.2</td>
<td>10.3</td>
<td>0.06</td>
</tr>
<tr>
<td>Distal</td>
<td>3.4</td>
<td>4.6</td>
<td>0.12</td>
</tr>
<tr>
<td>Side branches</td>
<td>4.7</td>
<td>7.0</td>
<td>0.01</td>
</tr>
<tr>
<td>Plaque characteristics (%)</td>
<td>19.2</td>
<td>17.8</td>
<td>0.001</td>
</tr>
<tr>
<td>Noncalcified plaque</td>
<td>10.0</td>
<td>25.4</td>
<td></td>
</tr>
<tr>
<td>Partially calcified plaque</td>
<td>6.7</td>
<td>14.2</td>
<td></td>
</tr>
<tr>
<td>Calcified plaque</td>
<td>9.5</td>
<td>21.8</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. MACE Risk

<table>
<thead>
<tr>
<th>MACE Risk</th>
<th>No Hypertension (n=1434)</th>
<th>Hypertension (n=1434)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACE (%)</td>
<td>5.3 (76)</td>
<td>7.3 (104)</td>
<td>0.03</td>
</tr>
<tr>
<td>Deaths (%)</td>
<td>2.9 (42)</td>
<td>3.9 (56)</td>
<td></td>
</tr>
<tr>
<td>Nonfatal MI (%)</td>
<td>2.4 (34)</td>
<td>3.4 (48)</td>
<td></td>
</tr>
</tbody>
</table>

MACE indicates major adverse cardiac events; and MI, myocardial infarction.
results were observed with respect to the extent of CAD. The SIS alone was predictive MACE (model 4; AUC, 0.678). The combination of other clinical factors increased this prediction (model 5; P=0.001 for cNRI and P=0.001 for AUC). When hypertension was added (model 6), a significant increase in cNRI (P=0.03) and an increase in the AUC were observed (P=0.052).

Discussion

This study demonstrated that patients with hypertension had more advanced coronary atherosclerosis by coronary CTA and future MACE risk compared with those without hypertension. When stratifying by sex, there was a trend toward increased MACE risk in hypertension in both men and women. Patients with hypertension more frequently had any CAD, with higher prevalence of any CAD and of 1-, 2-, and 3-vessel obstructive CAD in each category, as well as CAD ≥50% stenosis in the proximal, mid, and side branches. Hypertension patients also had greater prevalence of any noncalcified plaque and calcified plaque. When stratifying by the extent and severity of CAD, MACE risk in the hypertension group was slightly higher than that in the non-hypertension group across the CAD categories. There was a trend toward incremental predictive value of hypertension over other risk factors and the extent or severity of CAD.

It is well known that hypertension is a main cardiovascular risk factor and related to worsening prognosis. To our knowledge, however, no previous studies have shown the direct relation of hypertension to CAD characteristics, including the presence, extent, and severity of CAD on coronary CTA findings and MACE risk that is described in this article.

Using the current registry, our group previously reported the relationship between diabetes mellitus and current smoking and the presence, extent, and severity of coronary atherosclerosis on coronary CTA, as well as the relationship of the coronary CTA findings to future adverse outcomes. The findings of this study suggest that the presence of hypertension per se may not add as much incremental prognostic value as these other risk factors after taking into account the presence, extent, and severity of coronary CTA.

Hypertension has been previously shown to be a predictor of the extent of coronary atherosclerosis as assessed by coronary artery calcium. Both diabetes mellitus and smoking were found to be stronger predictors of coronary atherosclerosis than hypertension. Extensive epidemiological data have also demonstrated that hypertension is an independent risk factor for coronary atherosclerosis and for future cardiac events, but that it is less strong a predictor than diabetes mellitus and smoking. Our findings are concordant with the previous data with respect to coronary atherosclerosis, including a relationship to increasing amounts of obstructive CAD and with showing a trend toward association with MACE events.

How hypertension results in increase in coronary atherosclerosis has been extensively studied. The principal underlying pathophysiologic mechanism is considered to be a mechanical one related to pulse pressure. Wide pulse pressure has been reported to be associated with increased cardiac events. Both increased pulse pressure and systolic pressure contribute to endothelial dysfunction, which facilitates the entry of low-density lipid cholesterol into the blood vessel...
Hypertension also is a cause of left ventricular hypertrophy (LVH), which has been implicated as a cause of coronary atherosclerosis, myocardial infarction, arrhythmia, cardiac failure, or cardiac death. LVH is associated with collagen deposition within the left ventricle. This process is considered to explain the frequent association of LVH with midmyocardial scarring on cardiovascular magnetic resonance, which is associated with an increase in cardiac events. Of interest, in this study, in patients with no evidence of CAD on coronary CTA, those with hypertension had a 2.5-fold MACE risk compared to those with no hypertension. An increased risk of events in these patients could have been related to LVH; however, information on LVH was not present in the CONFIRM database.

Limitations
There are several limitations in this study. Data on duration and severity of hypertension, as well as information on LVH, did not exist in the current registry. Information was not uniformly available on specific antihypertensive medications at the time of testing. Further, no information was available on the effectiveness of blood pressure control after testing which may have affected MACE risk. We have included various CAD descriptors, including the extent, stenosis severity, basic characteristics, and location of CAD. However, other variables, such as vulnerable plaque features or bifurcation lesions, that might be associated with MACE risk were not available in this study. The number of events by sex was small and may have led to the finding that a trend toward increased MACE divided by sex was not statistically significant.

Perspectives
Compared with patients without hypertension, hypertensive patients have increased presence, extent, and severity of coronary atherosclerosis and tend to have an increase in MACE events. The findings support the concept of lifestyle modification regardless of sex to optimize CAD risk factors, including hypertension, to reduce further cardiovascular events as suggested by current guidelines.

Conclusions
Hypertensive patients had greater amount of coronary atherosclerosis and greater risk of MACE compared with nonhypertensive patients, independent of other clinical risk factors and of the presence of obstructive CAD or extent of CAD. Further, hypertensive individuals with an increasing degree of CAD stenosis severity and extent of CAD experienced modestly increase rates of MACE compared with nonhypertensive patients.

Disclosures
J.R. Min received modest speakers' bureau medical advisory board compensation and significant research support from GE Healthcare. D.S. Berman received grant funding from Siemens and GE Healthcare. S. Achenbach received grant support from Siemens and Bayer Schering Pharma and has served as a consultant for Servier. M. Al-Mallah received support from the American Heart Association, BCBS Foundation of Michigan, and Astellas. F. Cademartiri has served on the Speakers' Bureau of Guerbet and is a consultant for Guerbet, Servier, and Somaton. K. Chinnayan received grant support from Bayer Pharma and Blue Cross Blue Shield Blue Care MI. B.J.W. Chow received research and fellowship support from GE Healthcare, research support from Pfizer and AstraZeneca, and educational support from TeraRecon. G. Pontone received grant support from GE Healthcare and Heartflow, and has served on the Speakers' Bureau of GE Healthcare, Bracco, and Medtronic. J. Hausleiter received a research grant from Siemens Medical Systems. P.A. Kaufmann received institutional research support from GE Healthcare and grant support from Swiss National Science Foundation. G. Raff received grant support from Siemens, Blue Cross Blue Shield Blue Care MI, and Bayer Pharma. All other authors report no conflicts.

References
6 Hypertension August 2017

What Is New?

• This study is the first study showing the relation of hypertension to the presence, extent, and severity of coronary artery disease on coronary computed tomographic angiography and to risk of major adverse cardiac events among patients without known coronary artery disease.

What Is Relevant?

• The presence of hypertension per se may not add as much incremental prognostic value as other risk factors after taking into account the presence, extent, and severity of coronary computed tomographic angiography.

Summary

Patients with hypertension had greater prevalence of extent and stenosis severity of coronary artery disease and modestly increased major adverse cardiac events risk compared with those without hypertension.
Relationship of Hypertension to Coronary Atherosclerosis and Cardiac Events in Patients With Coronary Computed Tomographic Angiography

Hypertension. published online June 12, 2017; Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Copyright © 2017 American Heart Association, Inc. All rights reserved. Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/early/2017/06/12/HYPERTENSIONAHA.117.09402

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org/subscriptions/
Sex-Specific Associations Between Coronary Artery Plaque Extent and Risk of Major Adverse Cardiovascular Events: The CONFIRM Long-Term Registry

JACC Cardiovasc Imaging, 2016

Sex-Specific Associations Between Coronary Artery Plaque Extent and Risk of Major Adverse Cardiovascular Events

The CONFIRM Long-Term Registry

Joshua Schulman-Marcus, MD,a Britain Ó Hartaigh, PhD,b Heidi Gransar, MS,b Fay Lin, MD,a Valentina Valenti, MD,a Ik sung Cho, MD,a Daniel Berman, MD,a Tracy Callister, MD,a Augustin DeLago, MD,a Martin Hadamitzky, MD,b Joerg Hausleiter, MD,b Mouaz Al-Mallah, MD,b Matthew Budoff, MD,b Philipp Kaufmann, MD,b Stephan Achenbach, MD,b Gilbert Raff, MD,a Kavitha Chinnaiyan, MD,b Filippo Cademartiri, MD,k Erica Maffei, MD,b Todd Villines, MD,b Yong-Jin Kim, MD,m Jonathon Leipsic, MD,n Gudrun Feuchtner, MD,o Ronen Rubinstein, MD,p Gianluca Pontone, MD,q Daniele Andreini, MD,q Hugo Marques, MD, Leslee Shaw, MD, James K. Min, MDa

ABSTRACT

OBJECTIVES The purpose of this study was to examine sex-specific associations, if any, between per-vessel coronary artery disease (CAD) extent and the risk of major adverse cardiovascular events (MACE) over a 5-year study duration.

BACKGROUND The presence and extent of CAD diagnosed by coronary computed tomography angiography (CTA) is associated with increased short-term mortality and MACE. Nevertheless, some uncertainty remains regarding the influence of sex on these findings.

METHODS 5,632 patients (mean age 60.2 ± 11.8 years, 36.5% women) from the CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter) registry were followed for 5 years. Obstructive CAD was defined as $\geq 50\%$ luminal stenosis in a coronary vessel. Using Cox proportional hazards models, we calculated the hazard ratio (HR) for incident MACE among women and men, defined as death or myocardial infarction.

RESULTS Obstructive CAD was more prevalent in men (42% vs. 26%; p < 0.001), whereas women were more likely to have normal coronary arteries (43% vs. 27%; p < 0.001). There were a total of 798 incident MACE events. After adjustment, there was a strong association between increased MACE risk and nonobstructive CAD (HR: 2.16 for women, 2.56 for men; p < 0.001 for both), obstructive 1-vessel CAD (HR: 3.69 and 2.66; p < 0.001), 2-vessel CAD (HR: 3.92 and 3.55; p < 0.001), and 3-vessel/left main CAD (HR: 5.94 and 4.44; p < 0.001). Further exploratory analyses of atherosclerotic burden did not identify sex-specific patterns predictive of MACE.

CONCLUSIONS In a large prospective coronary CTA cohort followed long-term, we did not observe an interaction of sex for the association between MACE risk and increased per-vessel extent of obstructive CAD. These findings highlight the persistent prognostic significance of anatomic CAD subsets as detected by coronary CTA for the risk of MACE in both women and men. (J Am Coll Cardiol Img 2016;9:364–72) © 2016 by the American College of Cardiology Foundation.
Sex disparities in coronary artery disease (CAD) outcomes are well documented (1-4). Although women tend to have a lower prevalence of obstructive CAD, prior evidence indicates that women are more likely to be admitted for angina pectoris and experience worsened outcomes after myocardial infarction (MI) (5). Likewise, women with symptomatic CAD are more likely to suffer worse clinical outcomes, a finding present even among women with apparently normal or nonobstructive coronary arteries as evaluated by invasive coronary angiography (6,7). In light of the considerable burden of CAD in women, further improvements in risk stratification are essential for guiding preventive strategies and public health initiatives.

Coronary computed tomography angiography (CTA) is a noninvasive imaging modality that enables accurate detection and exclusion of CAD. Prior epidemiological studies have demonstrated that the presence and extent of anatomic CAD are associated with a heightened risk of death as well as major adverse cardiovascular events (MACE) within a 2-year follow-up period (8-13). A chief limitation, however, is the lack of certainty regarding the influence of sex on these findings. One study reported that nonobstructive CAD was associated with increased mortality risk in women but not in men (8). A subsequent propensity-matched study derived from similar data documented an equivalent risk of mortality and MI for nonobstructive CAD between sexes (13); however, the latter study failed to examine the sex-specific relationship between obstructive CAD and MACE. Further still, most of the available published reports have been unable to account for the risk beyond 3 years. Thus, an additional question is whether sex-specific differences in risk persist or attenuate over a longer duration of follow-up. Using data from a large prospective coronary CTA registry, we therefore set out to determine the sex-specific relationships, if any, between the extent of CAD and risk of MACE over a 5-year study period.

METHODS

STUDY POPULATION.

Study patients were identified from the CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter) registry, a dynamic, international, multicenter, observational cohort study that prospectively collects clinical, procedural, and follow-up data on patients undergoing ≥64-detector row coronary CTA. The rationale, design, site-specific patient characteristics, and follow-up durations have been described previously (14). In brief, this study screened 12,086 patients with 5-year follow-up data who underwent coronary CTA at 17 centers in 9 countries (Austria, Canada, Germany, Israel, Italy, Portugal, South Korea, Switzerland, and the United States) between 2002 and 2009. Individuals with known CAD at the time of coronary CTA, as defined by prior MI or coronary revascularization or cardiac transplantation, were excluded (n = 1,593). Patients with incomplete follow-up of all clinical events (n = 4,585), with adverse events on the day of the coronary CTA (n = 50), with missing plaque severity data (n = 224), or those who were missing age and sex information (n = 2) were also omitted. Thus, the analytic sample comprised 5,632 patients. Each study site received institutional review board approval for all registry procedures, including follow-up methodologies, and each participant provided written informed consent.

CLINICAL DATA COLLECTION.

Standardized data collection methods were used at the participating study sites. Data were systematically collected for each consecutive patient while applying consistent definitions for suspected cardiac symptoms, risk factors, and angiographic CAD extent and severity. Patient information was gathered for traditional cardiovascular risk factors, including hypertension, diabetes, dyslipidemia, current smoking, and a family history of premature CAD. Patients who were treated for hypertension, diabetes, or dyslipidemia, or who otherwise had a prior diagnosis for these conditions...
TABLE 1 Study Demographics

<table>
<thead>
<tr>
<th>Ages, yrs</th>
<th>Overall (n=5,632)</th>
<th>Women (n=2,929)</th>
<th>Men (n=2,703)</th>
<th>p Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.2 ± 11.8</td>
<td>62.4 ± 11.4</td>
<td>58.9 ± 11.8</td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>

Cardiac risk factors

<table>
<thead>
<tr>
<th>Values</th>
<th>n (%)</th>
<th>p Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension</td>
<td>3,079 (54.9)</td>
<td>1,234 (60.3)</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>2,031 (54.1)</td>
<td>1,133 (55.3)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>961 (17.1)</td>
<td>358 (17.5)</td>
</tr>
<tr>
<td>Current smoker</td>
<td>1,193 (21.4)</td>
<td>306 (15.0)</td>
</tr>
<tr>
<td>Family history of premature CAD</td>
<td>1,662 (29.9)</td>
<td>674 (33.2)</td>
</tr>
</tbody>
</table>

Chest pain

Typical | 719 (14.8) | 292 (15.8) | 427 (15.5) |
Asympotomatic | 1,983 (39.6) | 603 (27.2) | 1,380 (30.8) |
Noncardiac | 664 (13.3) | 298 (16.2) | 366 (11.6) |
Atypical | 1,625 (32.4) | 651 (35.3) | 974 (30.8) |

Baseline medication use

Asa | 1,443 (32.6) | 491 (30.5) | 952 (33.8) | 0.02 |
Beta blocker | 1,289 (29.1) | 498 (30.9) | 791 (28.1) | 0.05 |
ACE/ARB | 1,273 (28.8) | 439 (27.3) | 834 (29.6) | 0.1 |
Statin | 1,603 (36.0) | 588 (36.3) | 1,015 (35.9) | 0.78 |

Extent of CAD by coronary CTA

Normal | 1,844 (32.7) | 878 (42.7) | 966 (27.0) | <0.001 |
Nonobstructive CAD | 1,690 (30.0) | 611 (29.7) | 1,079 (30.2) | 0.72 |
1-vessel obstructive CAD | 1,094 (19.4) | 318 (16.3) | 776 (21.7) | <0.001 |
2-vessel obstructive CAD | 544 (9.7) | 135 (6.6) | 409 (13.4) | <0.001 |
3-vessel/LM obstructive CAD | 460 (8.2) | 114 (5.5) | 346 (9.7) | <0.001 |
Early revascularization (<90 days) | 1,243 (22.1) | 345 (16.8) | 898 (25.1) | <0.001 |

Values are mean ± SD or n (%).

ACEI = angiotensin-converting enzyme inhibitor; ARB = angiotensin receptor blocker; ASA = acetylsalicylic acid; CAD = coronary artery disease; CTA = computed tomography angiography; LM = left main.

III — TC CARDÍACA — AVALIAÇÃO ANATÓMICA, FUNCIONAL E VALOR PROGNÓSTICO | 197
multivariate adjustment using a stepwise Cox regression procedure, reporting hazard ratios (HRs) with 95% confidence intervals (CIs). Initially, we modeled associations between each clinical risk factor and MACE, selecting a subset of covariates with a p value < 0.25 in univariate analyses. We then used a backward multivariate regression model with a covariant retention threshold set at a p value < 0.10. We chose a less-conservative p value of 0.10 to permit inclusion of covariates that are traditionally associated with cardiovascular risk but were not deemed significant at the conventional threshold p value of < 0.05. Categorical variables were retained if 1 component was significant. As a sensitivity check, and to conform to prior studies reported from the CONFIRM registry (9), patients who underwent early revascularization procedures ≥ 90 days previous were excluded from all survival analyses (n = 1,245). Variables retained in the final Cox model were also used as covariates during exploratory analyses of various plaque characteristics. For the purpose of this study, we also tested for an interaction between sex and each of the coronary CTA characteristics with the study outcomes. A 2-tailed p value < 0.05 was considered statistically significant. All statistical analyses were conducted using STATA version 12 (StataCorp, College Station, Texas).

RESULTS

BASELINE CHARACTERISTICS. Of 5,632 patients included in the study, 2,056 (36.5%) were women. The mean age of the cohort was 60.2 ± 11.8 years; women were significantly older than men (mean 62.4 vs. 58.9, p < 0.001). Demographic data are displayed in Table 1. Men were more likely to be smokers, whereas women were more likely to have hypertension, a family history of premature CAD, symptoms of chest pain, and excessive dyspnea (p < 0.001 for all). With regard to the extent of visualized atherosclerosis, men had an increased number of vessels with obstructive CAD, whereas women were more likely to have normal coronary arteries (p < 0.001 for all). There were a total of 371 deaths and 484 MIs in the cohort; 798 first MACE events were used for analyses. No sex-specific differences in the number of deaths or MIs were observed.

CLINICAL CHARACTERISTICS ASSOCIATED WITH MACE. The results of the multivariate model construction procedures are reported in Table 2. All variables were entered into the backward regression except for female sex (p = 0.68) and family history (p = 0.32). Of candidate risk factors, age, hypertension, diabetes, tobacco use, angiotensin-converting enzyme/angiotensin receptor blocker use, angina typicality, and per-vessel CAD severity were retained as important predictors of MACE. Sex was not a significant predictor of MACE when forced into the final multivariate model (HR: 0.86; 95% CI: 0.71 to 1.04; p = 0.12). All variables remained significantly associated with MACE in the multivariate Cox proportional hazards model with the exception of some angioma variants.

CAD EXTENT AND MACE. In multivariate regression analyses, an increasing number of vessels with obstructive CAD was associated with increased MACE risk in a dose-response relationship (Figure 1). As displayed in Figure 2, increased per-vessel CAD extent was associated with MACE risk over time in both women and men (p < 0.001 by log-rank test for both). After adjustment, increasing per-vessel CAD extent was significantly associated with increased MACE risk in a manner similar to the overall cohort in both women and men (Table 3) (p for interaction = 0.98).

In exploratory analyses of secondary outcomes, there was no clear stepwise relationship between the number of diseased vessels and all-cause mortality in either sex (p for interaction = 0.58). Notably, in both women and men, the adjusted point estimates trended toward increased hazard of death.

TABLE 2 Predictors of MACE

<table>
<thead>
<tr>
<th>Table 2 Predictors of MACE</th>
<th>Univariate</th>
<th>Multivariate*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR (95% CI)</td>
<td>p Value</td>
</tr>
<tr>
<td>Age</td>
<td>1.04 (1.03-1.05)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Women</td>
<td>0.97 (0.84-1.12)</td>
<td>0.68</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1.51 (1.31-1.75)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>0.93 (0.81-1.07)</td>
<td>0.22</td>
</tr>
<tr>
<td>Diabetes</td>
<td>1.92 (1.64-2.25)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Smoking</td>
<td>1.20 (1.03-1.41)</td>
<td>0.03</td>
</tr>
<tr>
<td>Family history of premature CAD</td>
<td>0.90 (0.77-1.06)</td>
<td>0.21</td>
</tr>
<tr>
<td>Typical angina</td>
<td>1.52 (1.25-1.85)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Atypical angina</td>
<td>0.98 (0.83-1.16)</td>
<td>0.82</td>
</tr>
<tr>
<td>Noncardiac chest pain</td>
<td>0.84 (0.67-1.05)</td>
<td>0.12</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>1.50 (1.22-1.84)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Aspirin</td>
<td>1.63 (1.37-1.94)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Beta blocker</td>
<td>1.25 (1.04-1.50)</td>
<td>0.02</td>
</tr>
<tr>
<td>ACE/ARB</td>
<td>1.58 (1.32-1.88)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Statin</td>
<td>1.36 (1.14-1.62)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Nonobstructive disease</td>
<td>0.95 (0.81-1.10)</td>
<td>0.47</td>
</tr>
<tr>
<td>1-vessel obstructive disease</td>
<td>1.65 (1.40-1.93)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>2-vessel obstructive disease</td>
<td>1.73 (1.41-2.11)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>3-vessel obstructive disease</td>
<td>2.42 (1.99-2.95)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Early revascularization</td>
<td>2.41 (2.07-2.80)</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

*HRs shown only for variables retained.

ACE = angiotensin-converting enzyme; CI = confidence interval; HR = hazard ratio; MACE = major adverse cardiovascular events; other abbreviations as in Table 1.
for both nonobstructive and obstructive disease. Conversely, in both women and men, there appeared to be a stepwise relationship between the secondary outcome of nonfatal MI and number of diseased vessels after adjustment for covariates (p for interaction = 0.93). These findings were not materially different when patients with early revascularization (≤90 days after the index coronary CTA) were removed as a sensitivity check (data not shown).

SEX-SPECIFIC PLAQUE PATTERNS AND MACE. In exploratory analyses of other per-patient and per-segment measures, men had a higher prevalence of atherosclerotic plaque and obstructive CAD (Table 4). After adjustment, all measures of increased atherosclerotic severity and extent were associated with increased MACE risk in women and men. There were no significant sex-specific interactions, with the exception that increased segments of calcified plaque were associated with increased MACE risk in women but not in men (p for interaction = 0.004).

DISCUSSION

In the present study, we observed a strong and independent association between increased extent of per-vessel obstructive CAD by coronary CTA and heightened risk of MACE over a 5-year period among women and men. Similar findings were observed for the secondary outcome of nonfatal MI in both sexes, whereas increased mortality risk was more uniform across the spectrum of anatomic CAD. These findings highlight the persistent prognostic significance of increased CAD extent as detected by coronary CTA for both women and men.

The current study observations are fitting with previous observations; that is, although obstructive CAD detected by coronary CTA is less common in women than in men, its presence is associated with equal if not worse adverse outcomes. In an analysis of 24,775 patients followed over a mean of 2.3 years, Min et al. (8) found that although increased mortality risk was noted in both men and women with...
nonobstructive, 1-vessel, and 2-vessel obstructive disease, in women 3-vessel/left main obstructive disease was associated with an even higher mortality risk compared with men (HR: 4.21 compared with 3.27). In a smaller single-center cohort of 1,127 patients (57% women), Shaw et al. (16) also observed that although higher obstructive CAD burden by coronary CTA was associated with increased mortality in both sexes, women with 3-vessel obstructive/left main disease had a higher risk of death compared with men. These findings are in concord with prior registry data demonstrating higher rates of in-hospital mortality in women with obstructive CAD (17). Our study extends the prior published reports by observing the attenuation of the aforementioned sex-specific differences in MACE over a longer duration. However, our study emphasizes the core finding of the prior published reports that the extent of obstructive CAD detected by coronary CTA, regardless of sex, is the most significant predictor of increased MACE risk.

The present study findings are also in line with those of Leipsic et al. (13), who observed an association between increased risk of MACE and nonobstructive CAD by coronary CTA and no significant disparity between women and men. In that study, over the course of 2.3 years, the authors made use of propensity analysis to match patients with normal coronary arteries and nonobstructive CAD by coronary CTA for age and CAD risk factors. Following this approach, the annual death, MI, or MACE rates for both women and men with nonobstructive CAD were equivalent. This analysis stands in contrast to other coronary CTA and retrospective invasive studies suggesting a unique adverse prognosis for nonobstructive CAD by coronary CTA in women compared with men (1,6,7,18). Our study re-enforces the findings of Leipsic et al. (13) by observing a similar attenuation in sex-specific MACE risk for nonobstructive CAD over a longer time frame and with a larger number of events available for analysis. Further still, the present study highlights that nonobstructive CAD is associated with increased risk of MACE in men as well as women (19), and its presence in the former category should not be overlooked.

Although this study did not identify sex differences in MACE risk for several measures of CAD severity and extent, it must be emphasized that our findings do not exclude sex differences in the pathophysiology and functional importance of atherosclerosis. For example, an intriguing study of early atherosclerosis using intravascular ultrasound reported that women have lower measures of

![FIGURE 2 Kaplan-Meier Event-Free Survival Curves](image-url)

TABLE 3 Adjusted Hazards of MACE and MACE Components by CAD Extent, Stratified by Sex

<table>
<thead>
<tr>
<th></th>
<th>Women</th>
<th></th>
<th>Men</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adjusted HR (95% CI)</td>
<td>p Value</td>
<td>Adjusted HR (95% CI)</td>
<td>p Value</td>
</tr>
<tr>
<td>Total MACE</td>
<td>Normal</td>
<td>Ref</td>
<td>Ref</td>
<td>Ref</td>
</tr>
<tr>
<td></td>
<td>1-vessel obstructive</td>
<td>3.69 (2.25-5.78)</td>
<td><0.001</td>
<td>2.66 (1.66-4.26)</td>
</tr>
<tr>
<td></td>
<td>2-vessel obstructive</td>
<td>3.92 (2.24-6.85)</td>
<td><0.001</td>
<td>3.55 (2.17-5.79)</td>
</tr>
<tr>
<td></td>
<td>3-vessel obstructive/LM</td>
<td>5.94 (3.47-10.17)</td>
<td><0.001</td>
<td>4.44 (2.73-7.22)</td>
</tr>
<tr>
<td>Death</td>
<td>Normal</td>
<td>Ref</td>
<td>Ref</td>
<td>Ref</td>
</tr>
<tr>
<td></td>
<td>1-vessel obstructive</td>
<td>1.96 (1.07-3.58)</td>
<td>0.028</td>
<td>1.33 (0.75-2.38)</td>
</tr>
<tr>
<td></td>
<td>2-vessel obstructive</td>
<td>2.06 (0.95-4.45)</td>
<td>0.066</td>
<td>1.35 (0.71-2.56)</td>
</tr>
<tr>
<td></td>
<td>3-vessel obstructive/LM</td>
<td>1.66 (0.70-3.98)</td>
<td>0.253</td>
<td>1.76 (0.94-3.29)</td>
</tr>
<tr>
<td>MI</td>
<td>Normal</td>
<td>Ref</td>
<td>Ref</td>
<td>Ref</td>
</tr>
<tr>
<td></td>
<td>1-vessel obstructive</td>
<td>5.96 (3.11-11.40)</td>
<td><0.001</td>
<td>6.79 (3.01-15.32)</td>
</tr>
<tr>
<td></td>
<td>2-vessel obstructive</td>
<td>6.26 (2.86-13.69)</td>
<td><0.001</td>
<td>10.42 (4.57-23.80)</td>
</tr>
<tr>
<td></td>
<td>3-vessel obstructive/LM</td>
<td>14.04 (6.89-28.61)</td>
<td><0.001</td>
<td>13.57 (5.96-30.89)</td>
</tr>
</tbody>
</table>

MI = myocardial infarction; Ref = reference; other abbreviations as in Tables 1 and 2.
microvascular dysfunction, whereas men tend to have a higher burden of atheroma and endothelial dysfunction in epicardial arteries (20). In addition, prior research has shown that women with nonobstructive CAD but who present with chest pain and apparently normal invasive angiograms have increased rates of microvascular dysfunction, which is associated with a higher burden of clinical outcomes (16). Differing mechanisms of plaque disruption in acute MI have been noted between men and women (3). Finally, although rigorous and clinically relevant, the measures of CAD extent used in the present study are relatively crude. Given these considerations, further studies are needed to distinguish whether there are sex-specific plaque characteristics detected by coronary CTA, and whether these are associated with a higher risk of clinical events.

STUDY LIMITATIONS. Although CONFIRM represents the largest consecutive cohort of patients undergoing coronary CTA, as a registry it is subject to potential selection and referral bias. Many of the patients with long-term follow-up had incomplete outcomes data regarding MI and were excluded from this study. Thus, in spite of a lengthy follow-up and a relatively high number of events, the analyses relative to microvascular dysfunction, whereas men tend to have a higher burden of atheroma and endothelial dysfunction in epicardial arteries (20). In addition, prior research has shown that women with nonobstructive CAD but who present with chest pain and apparently normal invasive angiograms have increased rates of microvascular dysfunction, which is associated with a higher burden of clinical outcomes (16). Differing mechanisms of plaque disruption in acute MI have been noted between men and women (3). Finally, although rigorous and clinically relevant, the measures of CAD extent used in the present study are relatively crude. Given these considerations, further studies are needed to distinguish whether there are sex-specific plaque characteristics detected by coronary CTA, and whether these are associated with a higher risk of clinical events.

STUDY LIMITATIONS. Although CONFIRM represents the largest consecutive cohort of patients undergoing coronary CTA, as a registry it is subject to potential selection and referral bias. Many of the patients with long-term follow-up had incomplete outcomes data regarding MI and were excluded from this study. Thus, in spite of a lengthy follow-up and a relatively high number of events, the analyses relative to several sex-specific subgroups may have been underpowered, which likely explains the wide 95% CIs

TABLE 4 Plaque Patterns and Adjusted Risk of MACE, Stratified by Sex

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Adjusted HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per patient</td>
<td></td>
</tr>
<tr>
<td>CACS</td>
<td><0.001</td>
</tr>
<tr>
<td>No plaque</td>
<td>774 (55.3)</td>
</tr>
<tr>
<td>1-400</td>
<td>470 (33.9)</td>
</tr>
<tr>
<td>≥400</td>
<td>149 (10.8)</td>
</tr>
<tr>
<td>Maximal CAD stenosis severity</td>
<td><0.001</td>
</tr>
<tr>
<td>No plaque</td>
<td>878 (42.7)</td>
</tr>
<tr>
<td>Mild (1%–4%)</td>
<td>611 (29.7)</td>
</tr>
<tr>
<td>Moderate (50%–69%)</td>
<td>215 (10.5)</td>
</tr>
<tr>
<td>Severe (>70%)</td>
<td>352 (17.1)</td>
</tr>
<tr>
<td>Location of any obstructive CAD</td>
<td></td>
</tr>
<tr>
<td>RCA</td>
<td>258 (13.0)</td>
</tr>
<tr>
<td>LAD artery</td>
<td>416 (21.5)</td>
</tr>
<tr>
<td>LCX artery</td>
<td>184 (9.5)</td>
</tr>
<tr>
<td>LM</td>
<td>32 (1.6)</td>
</tr>
<tr>
<td>Per segment</td>
<td></td>
</tr>
<tr>
<td>CAD severity and extent</td>
<td></td>
</tr>
<tr>
<td>Log segment extent score</td>
<td>0.8 (0.0–1.4)</td>
</tr>
<tr>
<td>Log segment stenosis score</td>
<td>0.9 (0.0–1.6)</td>
</tr>
<tr>
<td>No. of segments with CTP</td>
<td></td>
</tr>
<tr>
<td>≥0.0</td>
<td>1,668 (82.8)</td>
</tr>
<tr>
<td>≥1</td>
<td>205 (10.2)</td>
</tr>
<tr>
<td>≥2</td>
<td>72 (3.6)</td>
</tr>
<tr>
<td>≥3</td>
<td>69 (3.4)</td>
</tr>
<tr>
<td>No. of segments with PCI</td>
<td></td>
</tr>
<tr>
<td>≥0</td>
<td>1,632 (81.0)</td>
</tr>
<tr>
<td>≥1</td>
<td>183 (9.4)</td>
</tr>
<tr>
<td>≥2</td>
<td>76 (3.8)</td>
</tr>
<tr>
<td>≥3</td>
<td>117 (5.8)</td>
</tr>
<tr>
<td>No. of segments with CPI</td>
<td></td>
</tr>
<tr>
<td>≥0</td>
<td>1,526 (75.8)</td>
</tr>
<tr>
<td>≥1</td>
<td>199 (9.9)</td>
</tr>
<tr>
<td>≥2</td>
<td>94 (4.7)</td>
</tr>
<tr>
<td>≥3</td>
<td>195 (9.7)</td>
</tr>
</tbody>
</table>

Values are n (%) or median (interquartile range), unless otherwise indicated. *Adjusted for age, hypertension, diabetes, smoking, symptoms, and use of ACEI/ARB. **for interaction = 0.004.
CACS = coronary artery calcium score; CP = calcified plaque; CTP = calcified plaque; CTA = cardiac computed tomography angiography; CI = confidence interval; CAD = coronary artery disease; OR = odds ratio; LAD = left anterior descending; LCX = left circumflex artery; PCI = percutaneous coronary intervention; TTP = target-lesion failure; TLR = target lesion revascularization; TVR = target vessel revascularization; PCI = percutaneous coronary intervention; NSTEMI = non-ST-segment elevation myocardial infarction; STEMI = ST-segment elevation myocardial infarction.
Microvascular dysfunction, whereas men tend to have a higher burden of atheroma and endothelial dysfunction in epicardial arteries (20). In addition, prior research has shown that women with nonobstructive CAD but who present with chest pain and apparently normal invasive angiograms have increased rates of microvascular dysfunction, which is associated with a higher burden of clinical outcomes (16). Differing mechanisms of plaque disruption in acute MI have been noted between men and women (3). Finally, although rigorous and clinically relevant, the measures of CAD extent used in the present study are relatively crude. Given these considerations, further studies are needed to distinguish whether there are sex-specific plaque characteristics detected by coronary CTA, and whether these are associated with a higher risk of clinical events.
observed for some of the risk estimates reported in this study. A further and important limitation is that data were not collected on post-coronary CTA modifications of pharmacotherapy or behavior. Studies in other cohorts have demonstrated variable changes in post-test medical therapy by degree of anatomic CAD (21,22). It is unknown whether such treatment choices are affected by sex, and this is a matter worthy of further study. Data were also unavailable regarding any stress testing, and so the functional significance of stenoses was unknown. Other clinically relevant outcomes (e.g., cause-specific mortality, stroke) were not collected. In light of these limitations, however, this study is the largest consecutive cohort of patients undergoing coronary CTA with long-term outcomes data available.

CONCLUSIONS

The present study emphasized the clear prognostic significance of per-vessel obstructive CAD extent as detected by coronary CTA over a 5-year period. During this time, there were no distinct sex-specific differences in the risk of MACE. Though our findings await confirmation through forthcoming studies, as an initial step preventive strategies should be encouraged for men and women who present with any atherosclerosis as detected by coronary CTA.

REFERENCES

KEY WORDS CAD, CT coronary angiography, sex differences
Long-term prognostic impact of CT-Leaman score in patients with non-obstructive CAD: Results from the CORonary CT Angiography Evaluation For Clinical Outcomes InTeRnational Multicenter (CONFIRM) study

Marques, H., Rubinshtein, R., Hindoyan, N., Gomez, M., and Min, J.K.,

Int J Cardiol, 2017

231: p. 18-25
Long-term prognostic impact of CT-Leaman score in patients with non-obstructive CAD: Results from the COronary CT Angiography Evaluation For Clinical Outcomes InteRnational Multicenter (CONFIRM) study☆

Daniele Andreini,i,⁎ Gianluca Pontone,i Saima Mushtaq,i, Heide Gransard, Edoardo Conte,i Antonio L. Bartorelli,i Mauro Pepi,i Maksymilian P. Opolski,i, Brian O Harteigh,d, Daniel S. Berman,d Matthew J. Budoff,i, Stephan Achenbach,i, Mouaz Al-Mallah,g, Filippo Cademartiri,j,y, Tracy Q. Callister,k, Hyuk-Jae Chang,l, Kavitha Chinnaiyan,m, Benjamin J.W. Chowy, Ricardo Cury,a, Augustin Delago,o, Martin Hadamitzky,r, Joerg Hausleiters, Gudrun Feuchtnert, Yong-Jin Kimu, Philipp A. Kaufmann,v Jonathon Leipsic,w, Fay Y. Lin,b Erica Maffei,y, Gilbert Raffm, Leslee J. Shaw,z, Todd C. Villines,a, Allison Dunning,c, Hugo Marques,b, Ronen Rubinsteina, Niree Hindoyan,x, Millie Gomez,x, James K Min,a

a Department of Interventional Cardiology and Angiology, Institute of Cardiology, Warsaw, Poland
b Department of Radiology, The New York-Presbyterian Hospital and the Weill Cornell Medical College, New York, NY, USA
c Department of Healthcare Policy and Research, Weill Cornell Medical College, New York, NY, USA
d Department of Imaging and Division of Cardiology, Department of Medicine, Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
e Department of Medicine, Harbor UCLA Medical Center, Los Angeles, CA, USA
f Department of Radiology, University of Erlangen, Erlangen, Germany
g King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz International Medical Research Center, Ministry of National Guard, Health Affairs, Saudi Arabia
h Department of Surgery, Curry Cabral Hospital, Lisbon, Portugal
i Department of Clinical Sciences and Community Health, University of Milan, COnsortium CardioLogic-Medica, IRCCS, Milan, Italy
j Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
k Department of Healthcare Policy and Research, Weill Cornell Medical College, New York, NY, USA
l Division of Cardiology, Severance Cardiovascular Hospital, Seoul, South Korea
m William Beaumont Hospital, Royal Oak, MI, USA
n Department of Medicine and Radiology, University of Ottawa Heart Institute, Ottawa, Canada
o Baptist Cardiovascular and Vascular Institute, Miami, FL, USA
p Department of Cardiology at the Lady Davis Carmel Medical Center, The Ruth and Bruce Rappaport School of Medicine, Technion-Irvin Institute of Technology, Haifa, Israel
q Capital Cardiology Associates, Albany, NY, USA
r Department of Cardiology, Deutsches Herzzentrum München, Munich, Germany
s Medizinische Klinik I der Ludwig-Maximilians-Universität München, Munich, Germany
t Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
u Department of Medicine and Radiology, Seoul National University Hospital, Seoul, South Korea
v Department of Cardiovascular Medicine, University Hospital Zurich, Zurich, Switzerland
w Department of Medical Imaging and Division of Cardiology, St. Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada
x Department of Cardiovascular Imaging, Cardiovascular Imaging Unit, Giovanni XXIII Hospital, Monastier, Italy
y Department of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
z Department of Medicine, Walter Reed National Medical Center, Bethesda, MD, USA

A R T I C L E I N F O
Article history:
Received 7 September 2016
Received in revised form 13 December 2016
Accepted 19 December 2016
Available online 28 December 2016

A B S T R A C T
Background: Non-obstructive coronary artery disease (CAD) identified by coronary computed tomography angiography (CCTA) demonstrated prognostic value. CT-adapted Leaman score (CT-LeSc) showed to improve the prognostic stratification. Aim of the study was to evaluate the capability of CT-LeSc to assess long-term prognosis of patients with non-obstructive CAD.

Methods: From 17 centers, we enrolled 2402 patients without prior CAD history who underwent CCTA that showed non-obstructive CAD and provided complete information on plaque composition. Patients were divided...
1. Introduction

In recent years, studies supporting the prognostic value of coronary CT angiography (CCTA), including single-center studies and a large multicenter registry, have been published [1,2]. According to these data, while the absence of identifiable plaques in the coronary tree is associated with an excellent prognosis, it has also been consistently demonstrated that the identification of non-obstructive lesions, a unique feature of CCTA as a non-invasive coronary imaging modality, has prognostic value. This has clinical implications because many patients fall in this category, as reflected by the high proportion of patients with atherosclerotic plaques in many CCTA databases [2-5]. Nevertheless, as non-obstructive CAD is a very heterogeneous and prevalent condition, there is the need for tools to quantify total coronary atherosclerotic burden in order to better stratify these patients. Recently, a new developed score, the CT-adapted Leaman score (CT-LeSc), using the comprehensive information on lesion localization, plaque composition and degree of stenosis provided by CCTA, resulted in a relatively small, single-center setting, to be an independent long-term predictor of hard cardiac events and to improve the CCTA prognostic stratification of non-obstructive CAD [6].

In the present prospective multicenter international study, we evaluated the capability of the CT-LeSc to stratify the long-term prognosis of a large cohort of patients with non-obstructive CAD at CCTA evaluation.

2. Methods

2.1. Study population

The design and rationale of the CONFIRM (CORonary CT Angiography Evaluation For Clinical Outcomes: An InteRnational Multicenter) registry has been described previously [7]. For the current study, we utilized the data from the CONFIRM long-term follow-up registry that included only patients who had a follow-up duration of more than three years. Overall, 17,181 patients who underwent CCTA at 17 centers in 9 countries (Austria, Canada, Germany, Israel, Italy, Portugal, South Korea, Switzerland, and United States) were enrolled between February 2003 and May 2011 for long-term follow-up. Inclusion criteria were age 18 years, a CCTA performed with a scanner equipped with at least 64-detectors, and CCTA images of interpretable quality. Among the 5010 patients in whom MACE data at follow-up and complete plaque characteristics data were collected we excluded those with prior history of CAD (n = 1741), myocardial revascularization performed early after CCTA (<90 days) (n = 377) and presence of obstructive coronary lesions (>50%) (n = 490). The analytic sample comprised 2402 patients. Informed consent was obtained from each patient and [2] the study protocol conforms to the ethical guidelines of the 1975 Declaration of Helsinki as reflected in a priori approval by the institution’s human research committee.

2.2. Risk factor assessment

Clinical CAD risk factors including smoking, hypertension, dyslipidemia, diabetes, and family history were collected prior to CCTA examination by direct patient interview performed by a physician or nurse research coordinator and/or with standardized site questionnaires [7].

2.3. Imaging analysis

CCTA data were acquired using multi-detector row CT scanners consisting of 64-rows or greater. Expert readers analyzed all CCTA images according to the guidelines of the Society of Cardiovascular Computed Tomography (SCCT) [8,9]. We defined coronary atherosclerosis in CCTA images as any tissue structure larger than 1 mm², which was either within the lumen of the coronary artery or adjacent to the coronary artery lumen and could be distinguished from the adjacent epicardial fat, pericardial tissue, or the artery lumen. We used a modified American Heart Association 16-segment coronary artery tree model for analysis [10]. Coronary artery luminal narrowing was defined as the presence of any plaque resulting in a % diameter reduction >0. Non-obstructive lesions were defined as coronary artery segments showing plaques with a luminal diameter stenosis <50%. Normal CCTA was defined as the absence of any coronary artery luminal narrowing. The SIS, ranging from 0 to 16, was calculated as the total number of segments with plaques (any degree of stenosis). The methodology for the CT-LeSc has been previously described [11]. Briefly, three sets of weighting factors are used for this score: 1) localization of the coronary plaques, accounting for dominance; 2) type of plaque, with a multiplication factor of 1 for calcified plaques and of 1.5 for non-calcified and mixed plaques; and 3) degree of stenosis, with a multiplication factor of 0.615 for non-obstructive (<50% stenosis) and a multiplication factor of 1 for obstructive (≥50% stenosis) lesions. The CT-LeSc was calculated on a patient level as the sum of the partial CT-LeSc of all evaluable coronary segments. For both the SIS and the CT-LeSc, prognostically validated cut-off values (>5) were used [4,6]. Analysis of coronary artery calcium score was performed when available. The total mean dose length product for CCTA was estimated to be 938 ± 379 mGy × cm, corresponding to an estimated radiation dose of 13 ± 5 mSv.

2.4. Patient follow-up

The primary outcomes of the current study were non-fatal myocardial infarction (MI) and the combined end-point of MI and all-cause mortality. As previously reported [7], the outcomes were assessed at each institution by direct interview, telephone contact, review of medical records, or using a mailed standardized questionnaire. In the USA, all-cause mortality was additionally searched by the Social Security Death Index. Site physicians defined MI according to ACC/AHA guidelines and the World Health Organization Universal Definition of Myocardial Infarction [12]. All revascularizations were recorded and patients with elective myocardial revascularization were censored at follow-up.
2.5. Statistical analysis

Categorical variables are presented as counts and proportions. Continuous variables are presented as means ± SD. A one-way ANOVA or the Kruskal–Wallis test was used to conduct continuous variables intergroup comparisons among patients without CAD, non-obstructive CAD but a LS ≥ 5 and non-obstructive CAD but a LS < 5. Pearson’s chi-square test (χ^2) was used for categorical variables comparison. Time-to-event analysis for the study endpoints were calculated using univariable Cox proportional hazards models reporting hazard ratios (HR) with 95% confidence intervals (95% CI). Multivariable Cox proportional hazards models were also constructed with variables based on clinical judgment univariate analysis results. All the analyses were performed evaluating combined endpoints (MI, MI plus all cause of death,). To avoid overfitting and multicollinearity issues, we developed four different models, for all different combined endpoints. The first model was adjusted for the CT-LeSc and the Framingham risk score. The second model was adjusted for the SIS and the Framingham risk score. The third model was adjusted for the CT-LeSc and baseline clinical characteristics. The fourth model was adjusted for the SIS and baseline clinical characteristics.

A sub-analysis were performed in patients in which CACS was available; a prognostically validated cut-off of 400 was used as previously suggested [13]. Moreover we performed a separate sub-analysis for patients with and without chest pain at baseline. Of note, in the analysis of symptomatic subjects the Morise score was included in model 1 and 2, instead of the Framingham score.

Survival curves were calculated using the Kaplan–Meier method for population stratified by the presence of non-obstructive CAD and the CT-LeSc, with each survival curve compared using the log-rank test. A two-tailed p value of <0.05 was considered statistically significant. The comparison between performance of the CT-LeSc and SIS added to a baseline model was further quantified by a continuous net reclassification index (cNRI) [14].

3. Results

3.1. Patient characteristics and MACE

Indications for CCTA were chest pain (1200 patients, 49.9%), multiple CAD risk factors (595 patients, 24.7%), and equivocal or abnormal stress test results (607 patients, 25.3%). Mean pre-test probability of CAD was low-to-intermediate (mean Morise score 11.6 ± 4.2). The mean duration of follow-up was 59.8 ± 13.9 months, up to 96 months (Table 1).

One-hundred and eighty-three patients exhibited events during follow-up (53 MI, 99 all-cause deaths and 31 late revascularizations).

3.2. Univariate predictors of events

Among clinical characteristics, therapy with aspirin was the only predictor of MI, whereas hypertension and diabetes were predictors of MI plus all-cause death. Among CCTA data, a SIS > 5 and non-obstructive CAD with a CT-LeSc > 5 were predictors of MI, whereas a SIS > 5, non-obstructive CAD with a CT-LeSc ≤ 5 and non-obstructive CAD with a CT-LeSc > 5 were predictors of MI plus all-cause death (Table 2).

3.3. Multivariate predictors of events

The only significant independent predictor of MI was non-obstructive CAD with a CT-LeSc > 5 (HR 2.84 and 2.98 in model 1 and model 3, respectively). The independent predictors of MI plus all-cause death were the Framingham score (HR 1.02 and 1.03 in model 1 and model 2, respectively), age (HR 1.04 and 1.05 in model 3 and model 4, respectively), diabetes (HR 1.84 and 1.86 in model 3 and model 4, respectively), a SIS > 5 (HR 1.95 in model 2), HR not significant in model 4), non-obstructive CAD with a CT-LeSc ≤ 5 (HR 2.05 and 1.55 in model 1 and model 3, respectively) and non-obstructive CAD with a CT-LeSc > 5 (HR 2.48 and 1.94 in model 1 and model 3, respectively) (Table 3).

Table 1

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Clinical and CCTA baseline characteristics.</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td>No CAD</td>
</tr>
<tr>
<td>Clinical characteristics</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>56 ± 12</td>
</tr>
<tr>
<td>Male</td>
<td>1208 (50.3)</td>
</tr>
<tr>
<td>BMI</td>
<td>28 ± 4.9</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1302 (54.2)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>252 (10.5)</td>
</tr>
<tr>
<td>Current smoking</td>
<td>425 (17.7)</td>
</tr>
<tr>
<td>Family history</td>
<td>798 (31.2)</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>1207 (50.3)</td>
</tr>
<tr>
<td>Morise</td>
<td>11.57 ± 4.16</td>
</tr>
<tr>
<td>Framingham</td>
<td>11.99 ± 6.3</td>
</tr>
<tr>
<td>Chest pain at baseline</td>
<td></td>
</tr>
<tr>
<td>No chest pain</td>
<td>1053 (43.8)</td>
</tr>
<tr>
<td>Non-cardiac/unspecified pain</td>
<td>418 (17.4)</td>
</tr>
<tr>
<td>Atypical chest pain</td>
<td>737 (30.7)</td>
</tr>
<tr>
<td>Typical chest pain</td>
<td>194 (8.1)</td>
</tr>
<tr>
<td>Therapy</td>
<td></td>
</tr>
<tr>
<td>ASA</td>
<td>503 (20.9)</td>
</tr>
<tr>
<td>Statin</td>
<td>506 (21.1)</td>
</tr>
<tr>
<td>CCTA characteristics</td>
<td></td>
</tr>
<tr>
<td>SIS</td>
<td>1.18 ± 1.89</td>
</tr>
</tbody>
</table>

Continuous variable are expressed as mean ± SD; Ordinal variables are expressed as n (%); BMI: body mass index; SIS: segment involvement score; LS: Leaman score; CAD: coronary artery disease.

* p < 0.0001 vs no CAD.
* p < 0.0001 vs LS < 5.
* p = 0.05 vs no CAD.
* p = 0.05 vs LS < 5.
Multivariate analysis.

Table 2
Univariate analysis.

<table>
<thead>
<tr>
<th>Clinical characteristics</th>
<th>MI HR (95% CI)</th>
<th>MI + all-cause death HR (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>1 (0.98–1.02)</td>
<td>0.871</td>
<td>1.04 (1.02–1.05)</td>
</tr>
<tr>
<td>Male</td>
<td>0.78 (0.46–1.32)</td>
<td>0.343</td>
<td>1.11 (0.79–1.51)</td>
</tr>
<tr>
<td>BMI</td>
<td>1.01 (0.99–1.07)</td>
<td>0.128</td>
<td>1.01 (1.08–1.10)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1.52 (0.87–2.67)</td>
<td>0.143</td>
<td>1.97 (1.39–2.79)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>1.85 (0.9–3.79)</td>
<td>0.095</td>
<td>1.95 (1.29–2.96)</td>
</tr>
<tr>
<td>Current smoking</td>
<td>1.60 (0.91–3.12)</td>
<td>0.066</td>
<td>1.35 (0.91–1.95)</td>
</tr>
<tr>
<td>Family history</td>
<td>1.46 (0.84–2.52)</td>
<td>0.182</td>
<td>0.86 (0.1–1.23)</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>1.17 (0.68–2.01)</td>
<td>0.573</td>
<td>0.9 (0.65–1.24)</td>
</tr>
<tr>
<td>Murine</td>
<td>0.98 (0.92–1.05)</td>
<td>0.629</td>
<td>1.03 (0.99–1.07)</td>
</tr>
<tr>
<td>Framingham</td>
<td>1.01 (0.99–1.04)</td>
<td>0.366</td>
<td>1.03 (1.02–1.04)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Special characteristics</th>
<th>MI HR (95% CI)</th>
<th>MI + all-cause death HR (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>1 (0.98–1.02)</td>
<td>0.871</td>
<td>1.04 (1.02–1.05)</td>
</tr>
<tr>
<td>Male</td>
<td>0.78 (0.46–1.32)</td>
<td>0.343</td>
<td>1.11 (0.79–1.51)</td>
</tr>
<tr>
<td>BMI</td>
<td>1.01 (0.99–1.07)</td>
<td>0.128</td>
<td>1.01 (1.08–1.10)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1.52 (0.87–2.67)</td>
<td>0.143</td>
<td>1.97 (1.39–2.79)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>1.85 (0.9–3.79)</td>
<td>0.095</td>
<td>1.95 (1.29–2.96)</td>
</tr>
<tr>
<td>Current smoking</td>
<td>1.60 (0.91–3.12)</td>
<td>0.066</td>
<td>1.35 (0.91–1.95)</td>
</tr>
<tr>
<td>Family history</td>
<td>1.46 (0.84–2.52)</td>
<td>0.182</td>
<td>0.86 (0.1–1.23)</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>1.17 (0.68–2.01)</td>
<td>0.573</td>
<td>0.9 (0.65–1.24)</td>
</tr>
<tr>
<td>Murine</td>
<td>0.98 (0.92–1.05)</td>
<td>0.629</td>
<td>1.03 (0.99–1.07)</td>
</tr>
<tr>
<td>Framingham</td>
<td>1.01 (0.99–1.04)</td>
<td>0.366</td>
<td>1.03 (1.02–1.04)</td>
</tr>
</tbody>
</table>

BMI: body mass index; SIS: segment involvement score; CT-LeSc: CT-Adapted Leaman Score; Non-Ob: non-obstructive coronary artery disease; (log-rank p value = 0.001) (Figure 1A). The end-point of MI plus all-cause mortality was used, event-free survival rates were 97%, 92% and 88% in patients without CAD, with non-obstructive CAD and a CT-LeSc ≤ 5 and with non-obstructive CAD and a CT-LeSc > 5, respectively (log-rank p value = 0.0001) (Figure 1B).

When MI was only considered as outcome, the event-free survival rates were 98% in patients without CAD, 98% in patients with non-obstructive CAD and a CT-LeSc ≤ 5 and 95% in patients with non-obstructive CAD and a CT-LeSc > 5 (log-rank p value = 0.001) (Figure 1A). When the end-point of MI plus all-cause mortality was used, event-free survival rates were 97%, 92% and 88% in patients without CAD, with non-obstructive CAD and a CT-LeSc ≤ 5 and with non-obstructive CAD and a CT-LeSc > 5, respectively (log-rank p value = 0.0001) (Figure 1B).

Reclassification index

The net reclassification analysis (Table 4) showed that a CT-LeSc > 5 is able to correctly reclassify a significant proportion of patients (0.28 and 0.23 for MI and MI plus all-cause mortality, respectively), in comparison with the baseline model including age, male gender, diabetes, hypertension, smoking, dyslipidemia, and family history of premature CAD. Conversely, reclassification using a SIS > 5 was not statistically significant in any models.

Coronary artery calcium score sub-analysis

When MI was only considered as outcome, the event-free survival rates were 98% in patients without CAD, 98% in patients with non-obstructive CAD and a CT-LeSc ≤ 5 and 95% in patients with non-obstructive CAD and a CT-LeSc > 5 (log-rank p value = 0.001) (Figure 1A). When the end-point of MI plus all-cause mortality was used, event-free survival rates were 97%, 92% and 88% in patients without CAD, with non-obstructive CAD and a CT-LeSc ≤ 5 and with non-obstructive CAD and a CT-LeSc > 5, respectively (log-rank p value = 0.0001) (Figure 1B).
were all significant predictors of events (HR 3.99, HR 2.38 and HR 2.73, respectively; \(p < 0.001 \)). At multivariable analysis CACS ≤ 400 remains a significantly predictor of \(p = 0.017 \) and for baseline clinical characteristics (HR 3.05; 95% CI 1.72–5.36, \(p = 0.001 \)) and for baseline clinical characteristics (HR 2.52; 95% CI 1.29–4.96, \(p = 0.001 \)) and for baseline characteristics. Of note, only CT-LeSc > 5 was significantly associated to MI when adjusted both for Framingham risk score (HR 2.53; 95% CI 1.54–7.3, \(p = 0.012 \)) at multivariate analysis. When the composite endpoint including MI + all cause of death was considered CT-LeSc > 5 was still associated to events both when adjusted for Framingham risk score (HR 2.53; 95% CI 1.52–4.16, \(p < 0.001 \)) and for baseline characteristics (HR 1.79; 95% CI 1.05–3.05, \(p = 0.038 \)).

In this subgroup of patients with CACS reported, the event free survival rates were 98% in those with CT-LeSc ≤ 5 and 95% in those with CT-LeSc > 5 (log-rank \(p = 0.0289 \)) (Figure 3B); on the contrary CACS > 400 score was not significantly associated to worst survival rates (Figure 2A).

3.7. Asymptomatic patients vs symptomatic patients

Among the entire cohort 1053 patients (43.8%) did not report chest pain at baseline, while 1349 patients (56.2%) were symptomatic at the time of CCTA.

A separate sub-analysis in asymptomatic subjects showed that at univariate analysis there were no predictor of MI; on the contrary, age, hypertension, diabetes and the Framingham score were the clinical characteristics associated to MI + all cause of death, while among CT parameters both SIS > 5 and CT-LeSc > 5 were associated to MI + all cause of death (Table 5).

In the subgroups of patients with chest pain at baseline only CT-LeSc > 5 was associated to MI at univariate (HR 2.5; 95% CI 1.13–5.75, \(p = 0.025 \)), while age, hypertension and the Morise score were associated to MI + all cause of death, but only CT-LeSc > 5 (HR 2.57; 95% CI 1.42–4.48, \(p = 0.002 \)) was found to be associated to this composite end-point among CCTA variables (Table 6).

At multivariate analysis SIS > 5 was not associated to endpoints both in asymptomatic and symptomatic patients. On the contrary CT-LeSc > 5 was found to be a predictor of MI in symptomatic patients (HR 2.63 and 2.76 in Model 1 and 3, respectively) and to be associated with MI + All cause of death both in asymptomatic and symptomatic patients only when adjusted for Framingham or Morise score (HR 2.56 and 2.39 in asymptomatic and symptomatic patients, respectively), but not when clinical baseline characteristics were evaluated separately (Table 7).

4. Discussion

Coronary CTA has been demonstrated to be accurate for the detection of non-obstructive CAD and coronary atherosclerosis when compared to coronary intravascular ultrasound [15]. Detection of non-obstructive CAD, which may be considered an unique feature of CCTA among other non-invasive imaging modalities, has relevant prognostic implications. Indeed, it may identify a population that has an higher event-free survival rate as compared to that of patients with obstructive disease but lower than that of patients with normal coronaries [4,5,16,17]. In order to better stratify the prognosis among the large and heterogeneous cohort of patients with non-obstructive CAD, different coronary plaque scores have been proposed. Among them, the SSS and SIS demonstrated a remarkable prognostic value [4,18]. Particularly, a single-center study by Bittencourt et al. demonstrated that among patients with obstructive CAD, a greater extent of non-obstructive plaques, as quantified by SIS, was associated with a higher event rate [16].

4.1. CT adapted-Leaman score

A recently proposed plaque score, the CT-LeSc based on lesion localization, plaque composition and degree of stenosis, was able to prove the prognostic stratification of non-obstructive CAD in an another single-center study [6]. To the best of our knowledge, this is the first prospective international multicenter study finalized to evaluate the CT-LeSc is able to stratify the long-term prognosis in a selected but large patient cohort with non-obstructive lesions. The main findings of the study are that the CT-LeSc allows to distinguish within patients with non-obstructive CAD those with a cardiac event risk similar to that shared by patients without plaques from those with a less favorable...
prognosis. Moreover, the CT-LeSc appears to be superior to the SIS, despite the latter already showed to possess a good prognostic value. In particular, analyzing the primary outcomes of the study we found that a CT-LeSc > 5 was a univariate predictor of MI and MI plus all-cause death and the only multivariate predictor of MI.

4.2. CT-LeSc vs SIS

The CT-LeSc appears to be superior to the SIS that exhibited HR systematically lower than the CT-LeSc at both univariate and multivariate analysis. This is confirmed by the net reclassification analysis showing that the CT-LeSc, but not the SIS, was able to correctly reclassify a significant proportion of patients vs. a baseline model including age, gender and risk factors for both primary and secondary endpoints.

4.3. CACS and CT-LeSc

In the sub-group of patients with calcium score, CACS > 400 has been confirmed to be a predictor of composite end-point including all cause of death, but only CT-LeSc appeared to correctly identify patients at higher risk of MI. These findings could be explained by recent studies, suggesting that non-calciﬁed plaques may be associated to higher risk of acute coronary syndrome when compared to calcified ones [19].

4.4. Asymptomatic and symptomatic patients

Approximately half of the patients included in this study were asymptomatic for chest pain at the time of CCTA. In order to better clarify the possible role of CCTA in the evaluation of asymptomatic patients, we performed a separate analysis in asymptomatic vs symptomatic patients. Of note we have found no clinical or CCTA parameters resulting to be signiﬁcantly associated to MI in asymptomatic patients. On the contrary in symptomatic patients only CT-LeSc > 5 was associated to MI both at univariate and multivariate analyses, This findings suggest that CT-LeSc could be an important tool to discriminate patients at higher risk of MI among those symptomatic for chest pain, even if CCTA results to be negative for signiﬁcant stenosis (>50%).

4.5. Survival analysis

Analyzing the survival curves for primary endpoints, we found that MI-free survival rate was 98% for patients with normal coronary arteries and for those with non-obstructive CAD and a CT-LeSc ≤ 5. Conversely, the survival rate fell to 95% in the presence of a CT-LeSc > 5, conﬁrming the power of the CT-LeSc in stratifying the prognosis of patients with non-obstructive lesions. Adding all-cause mortality to MI in the survival analysis, patients with non-obstructive stenosis and a low CT-LeSc MI-free survival rate was 98% for patients with normal coronary arteries and for those with non-obstructive CAD and a CT-LeSc ≤ 5, Conversely, the survival rate fell to 95% in the presence of a CT-LeSc > 5, confirming the power of the CT-LeSc in stratifying the prognosis of patients with non-obstructive lesions. Adding all-cause mortality to MI in the survival analysis, patients with non-obstructive stenosis and a low CT-LeSc

Table 5

<table>
<thead>
<tr>
<th>Univariate analysis for asymptomatic patients.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>Clinical characteristics</td>
</tr>
<tr>
<td>Age</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>BMI</td>
</tr>
<tr>
<td>Hypertension</td>
</tr>
<tr>
<td>Diabetes</td>
</tr>
<tr>
<td>Current smoking</td>
</tr>
<tr>
<td>Family history</td>
</tr>
<tr>
<td>Dyslipidemia</td>
</tr>
<tr>
<td>Framingham</td>
</tr>
<tr>
<td>Therapy</td>
</tr>
<tr>
<td>ASA</td>
</tr>
<tr>
<td>Statin</td>
</tr>
<tr>
<td>CCTA characteristics</td>
</tr>
<tr>
<td>SIS = 5</td>
</tr>
<tr>
<td>Non-Ob CT-LeSc ≤ 5</td>
</tr>
<tr>
<td>Non-Ob CT-LeSc > 5</td>
</tr>
</tbody>
</table>

Table 6

<table>
<thead>
<tr>
<th>Univariate analysis for symptomatic patients.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>Clinical characteristics</td>
</tr>
<tr>
<td>Age</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>BMI</td>
</tr>
<tr>
<td>Hypertension</td>
</tr>
<tr>
<td>Diabetes</td>
</tr>
<tr>
<td>Current smoking</td>
</tr>
<tr>
<td>Family history</td>
</tr>
<tr>
<td>Dyslipidemia</td>
</tr>
<tr>
<td>Morise</td>
</tr>
<tr>
<td>Therapy</td>
</tr>
<tr>
<td>ASA</td>
</tr>
<tr>
<td>Statin</td>
</tr>
<tr>
<td>CCTA characteristics</td>
</tr>
<tr>
<td>SIS = 5</td>
</tr>
<tr>
<td>Non-Ob CT-LeSc ≤ 5</td>
</tr>
<tr>
<td>Non-Ob CT-LeSc > 5</td>
</tr>
</tbody>
</table>

Fig. 2. Kaplan Meyer survival curves for MI using CACS (A) and CT-LeSc (B). CACS > 400 was not able to stratify patients at higher risk of MI. On the contrary, patients with CT-LeSc > 5 was associated to an event free survival rate of 95%, that was found to be significantly lower than patients with CT-LeSc < 5 (log-rank p = 0.0289). MI: myocardial infarction; CACS: coronary artery calcium score; CT-LeSc: computed tomography adapted Leaman score.
exhibited a prognosis that was halfway between that of patients without plaques and that of patients with a CT-LEc > 5.

4.6. Future strategies for early detection of non-obstructive CAD

Previous studies have proposed that early identification of non-obstructive CAD with CCTA may lead to a more aggressive strategy to control cardiovascular risk factors and to improve clinical follow-up [4, 20]. Recently, a sub-study of CONFIRM performed in a cohort of patients receiving baseline statin and aspirin treatment showed that statin therapy was associated with a significant mortality reduction in patients with non-obstructive CAD but had no impact on patients without CAD [18]. These are valid arguments in support of the identification of parameters, such as the CT-LEc allowing to stratify the long-term prognosis of the large and heterogeneous group of patients in whom CCTA shows non-obstructive CAD. Moreover, recent studies demonstrated the prognostic value of plaque characterization by CCTA. Indeed, this non-invasive imaging modality is able to identify some features, such as vessel positive remodeling and low-attenuation plaques, that have been associated with a higher risk of cardiac events [19]. High-risk plaques can be detected by CCTA and are independent predictors of fatal and non-fatal acute coronary syndrome, while positive remodeling has been observed in coronary stenoses that, regardless of the degree of narrowing, were found to be functionally important by invasive fractional flow reserve [21]. Therefore, additional studies are needed to integrate the CT-LEc with other features such as positive remodeling or eventually with non-invasive FFR by CCTA for improving the prognostic characterization of patients without obstructive coronary lesions.

4.7. Study limitations

In interpreting these data some limitations should be considered. First, management decisions in all patient, such as medical therapies or revascularization, were left to the discretion of the referring physicians. Because some therapies (i.e. aspirin, statin) may have a positive effect on patient outcomes and were commonly used in patients with and without plaques, we expect that differences between subgroups would be even greater in the absence of such treatments. Second, we included all-cause mortality in the primary and secondary endpoints given its unparalleled clinical importance and freedom from ascertainment bias. However, as specific causes of death for each patient were not uniformly available at all sites, the true proportion of deaths that could attributable to cardiovascular events in our patients is unknown. Third, this study included a cohort of patients who were referred for CCTA because of suspected CAD and were often symptomatic. Although it is unlikely that our patient symptoms were related to non-obstructive CAD, generalization of this study findings to asymptomatic patients remains uncertain. Fourth, data on coronary calcium score were not included in the analysis because they were available for two thirds of the study population.

5. Conclusion

The CT-adapted Leaman score is an independent predictor of major acute cardiac events and allows to distinguish, among a population with non-obstructive CAD, patients with risk of cardiac events similar to those without plaques from patients with a less favorable prognosis.

Conflict of interest

The authors report no relationships that could be construed as a conflict of interest.

References

Coronary computed tomography angiography-adapted Leaman score as a tool to noninvasively quantify total coronary atherosclerotic burden

Int J Cardiovasc Imaging, 2013

29(7): p. 1575-84
Coronary computed tomography angiography-adapted Leaman score as a tool to noninvasively quantify total coronary atherosclerotic burden

Pedro de Araújo Gonçalves • Hector M. García-García • Helder Dores • Maria Salomé Carvalho • Pedro Jerónimo Sousa • Hugo Marques • Antonio Ferreira • Nuno Cardim • Rui Campante Teles • Luís Raposo • Henrique Mesquita Gabriel • Manuel Sousa Almeida • Ana Aleixo • Miguel Mota Carmo • Francisco Pereira Machado • Miguel Mendes

Received: 19 April 2013 / Accepted: 24 April 2013 / Published online: 1 May 2013
© Springer Science+Business Media Dordrecht 2013

Abstract To describe a coronary computed tomography angiography (CCTA)-adapted Leaman score (CT-LeSc) as a tool to quantify total coronary atherosclerotic burden with information regarding localization, type of plaque and degree of stenosis and to identify clinical predictors of a high coronary atherosclerotic burden as assessed by the CT-LeSc. Single center prospective registry including a total of 772 consecutive patients undergoing CCTA (Dual-source CT) from April 2011 to March 2012. For the purpose of this study, 581 stable patients referred for suspected coronary artery disease (CAD) without previous myocardial infarction or revascularization procedures were included. Pre-test CAD probability was determined using both the Diamond–Forrester extended CAD consortium method (DF-CAD consortium model) and the Morise score. Cardiovascular risk was assessed with the HeartScore. The cut-off for the 3rd tercile (CT-LeSc ≥ 8.3) was used to define a population with a high coronary atherosclerotic burden. The median CT-LeSc in this population (n = 581, 8,136 coronary segments evaluated; mean age 57.6 ± 11.1; 55.8 % males; 14.6 % with diabetes) was 2.2 (IQR 0–6.8). In patients with CAD (n = 341), the median CT-LeSc was 5.8 (IQR 3.2–9.6). Among patients with nonobstructive CAD, most were classified in the lowest terciles (T1, 43.0 %; T2, 36.1 %), but 20.9 % were in the highest tercile (T3). The majority of the patients with obstructive CAD were classified in T3 (78.2 %), but 21.8 % had a CT-LeSc in lower terciles (T1 or T2). The independent predictors of a high CT-LeSc were: Male sex (OR 1.73; 95 % CI 1.04–2.90) diabetes (OR 2.91; 95 % CI 1.61–5.23), hypertension (OR 2.54; 95 % CI 1.40–4.63), Morise score ≥ 16 (OR 1.97; 95 % CI 1.06–3.67) and HeartScore ≥ 5 (OR 2.42; 95 % CI 1.41–4.14). We described a cardiac CT adapted Leaman score as a tool to quantify total (obstructive and nonobstructive) coronary atherosclerotic burden, reflecting the comprehensive information about localization, degree of stenosis and type of plaque provided by CCTA. Male sex, hypertension, diabetes, a HeartScore ≥ 5 % and a Morise score ≥ 16 were associated with a high coronary atherosclerotic burden, as assessed by the CT-LeSc. About one fifth of the patients with nonobstructive CAD had a CT-LeSc in the highest tercile, and this could potentially lead to a reclassification of the risk profile of this subset of patients identified by CCTA, once the prognostic value of the CT-LeSc is validated.

Keywords CCTA • Coronary artery disease • Atherosclerotic burden • Risk scores
Introduction

Coronary atherosclerosis is the leading cause of mortality and it is expected to remain the most important disease in the upcoming years [1]. Frequently, the first manifestation of coronary disease is an acute coronary syndrome (ACS), and many patients were previously asymptomatic [2]. An early detection of coronary disease is of utmost relevance and a non-invasive diagnostic test is desirable.

In the recent years, coronary computed tomography angiography (CCTA) has become widely available and adopted. The main reason for this is the high predictive accuracy of detection of obstructive coronary artery disease (CAD) compared to conventional invasive coronary angiography (CCTA) has become widely available and adopted. The main reason for this is the high predictive accuracy of detection of obstructive coronary artery disease (CAD) compared to conventional invasive coronary angiography [3, 4]. In addition, CCTA allows also the identification of nonobstructive CAD and in this way it can provide a noninvasive quantification of the total coronary atherosclerotic burden. Since the percentage of patients with nonobstructive CAD is very high, there is a need for tools to stratify cardiovascular risk by the degree of plaque burden [5]. The information regarding the localization, severity and composition of coronary plaques identified with CCTA can be collected in scores to reflect the total coronary plaque burden, and some have been already developed and validated [6].

Conventional cardiovascular (CV) risk factors relate to the risk of subsequent CV events and they can be combined in tools as it has been done in the Heart Score [7]. Notwithstanding these observations, accurate prediction of major coronary events on the individual patient level, as opposed to population based studies, remains challenging.

Therefore the aim of this study is two folded: (1) To describe a CCTA-adapted Leaman score (CT-LeSc) as a tool to quantify total coronary atherosclerotic burden including information regarding localization, type of plaque and degree of stenosis and; (2) To identify clinical predictors of a high coronary atherosclerotic burden as assessed by CT-LeSc in a population of stable patients referred for CCTA for suspected CAD.

Methods

Population

Single center prospective registry including a total of 772 consecutive patients undergoing CCTA (with Dual source CT) from April 2011 to March 2012. Patients were excluded if: (1) previous myocardial infarction and/or revascularization procedures (n = 70); (2) referred for Cardiac CT for other indications than the evaluation of possible CAD (cardiac CT for atrial fibrillation ablation or transcatheter aortic valvevalvular implantation procedures; n = 88); (3) referred for suspected ACS (n = 24); (4) with atrial fibrillation or other significant arrhythmias during scan acquisition that compromised image quality (n = 9). This resulted in a 24.7 % of the total population being excluded.

For the purpose of this study, 581 stable patients referred for suspected CAD were included in the context of: (1) Previous equivocal or inconclusive stress tests or discordant with the clinical evaluation (n = 417; 71.8 %); (2) Cardiac CT as 1st line investigation of possible CAD (n = 136; 23.4 %); (3) Preoperative CAD assessment prior to noncoronary valvular or aortic surgery (n = 17; 2.9 %); (4) Evaluation of possible CAD in cardiomyopathies (DCM or HCM; n = 11; 1.9 %; Fig. 1: Patient selection and study design).

The study was approved by the local ethics committee and all patients gave a written informed consent.

A detailed medical history with a risk factors questionnaire was obtained from the patients to assess for the presence of: (1) Diabetes mellitus (defined as a fasting glucose level of ≥7 mmol/l or the need for insulin or oral hypoglycemic agents) [8]; (2) Dyslipidemia (defined as a total cholesterol level ≥5 mmol/l or treatment with lipid-lowering drugs) [9]; (3) Hypertension (defined as blood pressure ≥140/90 mm Hg or the use of antihypertensive medication) [10]; (4) Obesity (body mass index ≥30 kg/m²); (5) Positive family history of premature CAD (defined as the presence of CAD in first-degree relatives younger than 55 [male] or 65 [female] years of age) [11]; (6) smoking (defined as previous [less <1 year] or current smoker).

Pre-test probability of CAD was determined using both the Diamond and Forrester extended CAD consortium method (DF-CAD consortium model) [12] and the Morise score [13]. The cardiovascular risk was assessed with the HeartScore [7]. As the CAD probability and CV risk of our population was shifted to lower probability and risk, the cut-offs used were: (1) for DF-CAD consortium model categories ≥30–70 and ≥70 % were gathered in a Intermediate to High (≥30 %) probability group.

For the Morise, the population was divided in terciles, and for the HeartScore the established high risk cut-off of ≥5 % was used.

Scan protocol and image reconstruction

All scans were performed with a dual-source scanner (Somatom Definition, Siemens Medical, Germany), with the patient in dorsal decubitus and in deep inspiration breath-hold. Sublingual nitroglycerin was administered to all patients except when contraindicated and intravenous metoprolol (5 mg, with a titration dose up to 20 mg) was administered in patients with heart rate ≥65 beats/min.

During the scan acquisition, a bolus of iodinated contrast (Visipaque, GE Healthcare, USA) was injected at a
6 ml/s infusion rate, followed by a 50-ml saline flush. The dose of contrast was calculated according to the following formula: (acquisition time +6 s delay) × flow (6 ml/s). Contrast timing was performed to optimize uniform contrast enhancement of the coronary arteries.

Dose reduction strategies—including electrocardiogram-gated tube current modulation, reduced tube voltage, and prospective axial triggering—were used whenever feasible. Mean estimated radiation dose was 4.6 ± 3.7 mSv, contrast dose was 98.9 ± 14.4 ml and heart rate was 65.6 ± 10.6 bpm.

Transaxial images were reconstructed with a temporal resolution of 83 ms and slice thickness of 0.75 mm with 0.4 mm increments.

Post-processing was carried out using Circulation® software, with multiplanar reconstructions, maximum intensity projection and volume rendering technique.

Coronary artery analysis

All scans were analyzed in the same session by both a cardiologist and a radiologist with Level III-equivalent experience. The Society of Cardiovascular Computed Tomography recommended classification was used regarding segmentation (16 segments), stenosis severity (<25, 25–49, 50–69, 70–99, 100 %) and plaque composition (calcified, non calcified, mixed plaque) [14].

In each coronary artery segment, coronary atherosclerosis was defined as a tissue structure >1 mm² that existed either within the coronary artery lumen or adjacent to the coronary artery lumen that could be discriminated from surrounding pericardial tissue, epicardial fat, or the vessel lumen itself [6]. Coronary atherosclerotic lesions were quantified for stenosis by visual estimation. Percent obstruction of coronary artery lumen was based on a comparison of the luminal diameter of the segment exhibiting obstruction to the luminal diameter of the most normal-appearing site immediately proximal to the plaque.

CCTA adapted Leaman score (CT-LeSc)

For the CT adaptation of the LeSc, we used three sets of weighting factors, all noninvasively provided by CCTA: (1) localization of the coronary plaques as originally described [15]. In this study, a modification was made to account for balanced dominance. In cases of balanced dominance, not taken in account in the original Leaman or in the Syntax scores, we assumed an intermediate value between right and left dominance which changed the values for the posterior descending and the proximal, mid and
distal RCA segments as well as for the left main and proximal and distal segments of the circumflex; (2) type of plaque (i.e. noncalcified, calcified or mixed plaques). To take in account the cardiac CT added information related to plaque composition, an additional weighting factor of 1.5 was added to predominantly noncalcified of mixed plaques and a factor of 1 to predominantly calcified plaques, reflecting the assumption of less plaque vulnerability of the later ones [16, 17]; (3) degree of stenosis (<50 ≥5% stenosis), the score in each segment was multiplied by 1 and for nonobstructive CAD it was multiplied by a factor of 0.615. This factor reflects the relative proportion in the published hazard ratios for mortality in the large CONFIRM registry [5] for obstructive versus nonobstructive CAD (2.6 vs 1.6 respectively) and it was assumed to reflect the relative prognostic impact of nonobstructive CAD (Table 1).

The CT-LeSc on a patient level was calculated as the sum of the partial CT-LeSc of all evaluable coronary segments. Two cases examples are shown in Fig. 2.

Statistical analysis

Continuous variables are presented as mean ± SD or medians (interquartile range) and categorical variables as frequencies with percentages.

The non-parametric Mann–Whitney or Kruskal–Wallis tests were used to compare continuous variables, and the Chi square test to evaluate differences in frequencies. Differences were regarded significant when $p < 0.05$ (two-tailed).

Since there are no previous validated cut-offs for the presently described CCTA score, the population with CAD was divided in terciles. A high CT-LeSc was defined with the cut-off for the 3rd tercile (a score ≥8.3, n = 116; 34.8 % of the CAD population) and patients in this group were compared with the remaining population.

Multivariate analyses (binary logistic regression model—enter method) were performed to identify independent predictors of a high CT-LeSc using the demographic and clinical variables presented in Table 2 that had a p value <0.2 at univariate analyses. A second multivariable analyses was performed to identify independent predictors among the clinical scores of CAD probability (Diamond–Forrester CAD consortium model and Morise score) and the CV risk score HeartScore.

SPSS version 17.0 (SPSS Inc., Chicago, IL, USA) was used for all statistical analyses.

Results

In the final study population of 581 patients, 8,136 coronary segments were evaluated. Segments <2 mm (n = 742; 9.1 %) or with suboptimal image quality related to artefacts or severe calcification (n = 120; 1.5 %) were excluded.

Most of patients were male (55.8 %) and mean age was 57.6 ± 11.1, and 14.6 % were diabetics. This was predominantly a population with low to intermediate CAD probability since 60.1 % had a DF-CAD consortium ≤30 and 87.6 % had a Morise score ≤16. A high cardiovascular risk, as assessed by an HeartScore ≥5 %, was present in 25.5 % of the patients. In this population, the median calcium score was 1 (IQR 0–93), 23.4 % had a calcium score (CaSc) ≥100 and 14.3 % had a CaSc ≥75th percentile. In the population with CAD, the median CaSc was 64 (IQR 8–200; Table 2).

CT-LeSc

Overall (n = 581), the median CT-LeSc in this population was 2.2 (IQR 0–6.8). In patients with CAD (n = 341), the

Table 1 CT-adapted Leaman Score (CT-LeSc) weighting factors

<table>
<thead>
<tr>
<th>Segment</th>
<th>Right dominance</th>
<th>Left dominance</th>
<th>Balanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCA proximal</td>
<td>1</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>RCA mid</td>
<td>1</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>RCA distal</td>
<td>1</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>PDA</td>
<td>1</td>
<td>na</td>
<td>0.5</td>
</tr>
<tr>
<td>Left main</td>
<td>5</td>
<td>6</td>
<td>5.5</td>
</tr>
<tr>
<td>LAD proximal</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>LAD mid</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>LAD distal</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1st diagonal</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2nd diagonal</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>LCx proximal</td>
<td>1.5</td>
<td>2.5</td>
<td>2.0</td>
</tr>
<tr>
<td>1st obtuse marginal</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>LCx distal</td>
<td>0.5</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td>2nd obtuse marginal</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PDA from LCA</td>
<td>na</td>
<td>1</td>
<td>na</td>
</tr>
<tr>
<td>PL branch from LCA</td>
<td>na</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>PL branch from RCA</td>
<td>0.5</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Intermediate branch</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

RCA right coronary artery, PDA posterior descending artery, LAD left anterior descending, LCx left circumflex, PL postero-lateral, CAD coronary artery disease
median CT-LeSc was 5.8 (IQR 3.2–9.6). Within this population the median CT-LeSc in patients with non-obstructive disease (n = 263) was 4.6 (IQR 2.9–7.7) and in patients with obstructive disease (n = 78) it was 11.7 (IQR 8.7–14.4). The terciles in population with CAD were: T1 = 3.7 (0.3–3.7); T2 (3.8–8.3); T3 = 8.3 (8.3–24.1).

Regarding the distribution of patients with nonobstructive versus obstructive CAD across the CT-LeSc terciles, most of the patients with nonobstructive CAD were in T1 (n = 113, 43.0 %) or T2 (n = 95, 36.1 %), but about one fifth (n = 55, 20.9 %) were in the highest tercile (T3, CT-LeSc ≥8.3). On the other hand, although most of the patients with obstructive CAD were classified in T3, 21.8 % had a CT-LeSc in lower terciles (T1, 2.6 %; T2, 19.2 %; Fig. 3).

The median CT-LeSc was significantly higher in males and in the presence of diabetes and hypertension, as well as in patients with a high cardiovascular risk assessed by an HeartScore ≥5 %. The median CT-LeSc was also significantly higher in patients with a CaSc ≥100 and CaSc ≥75th percentile (Fig. 4: Median CT-LeSc in different patient subgroups).

Univariate predictors

In the univariate analysis, a high CT-LeSc was associated with older age (≥60 years), diabetes and hypertension. The percentage of male patients and patients with dyslipidemia was also higher in the high CT-LeSc group, but not statistically significant. Patients in the high CT group had also a higher pre-test CAD probability (DF-CAD consortium ≥30 % and Morise score ≥16) as well as higher CV risk, reflected in the significantly higher percentage of patients with a HeartScore ≥5 %. Of note, some traditional risk factor as obesity, smoking status and family history of premature CAD were not differently distributed in the two groups, and this was also the case for chest pain (Table 3).

Multivariate predictors

By multivariate analysis, the independent predictors of a high CT-LeSc were: male sex, diabetes, hypertension, Morise score ≥16 and HeartScore ≥5 (Table 4; Fig. 5). Of note, regarding the modifiable risk factors, patients with
diabetes had a threefold and patients with hypertension a 2.5-fold higher probability of having a high CT-LeSc. A high HeartScore (≥5 %) and a high Morise score (≥16) were associated respectively with a 2.5 and twofold higher probability of having a high coronary atherosclerotic burden, as assessed by the CT-LeSc.

Table 2 Demographic, clinical and CCTA characteristics of the study population

<table>
<thead>
<tr>
<th></th>
<th>All patients (n = 581)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>57.6 ± 11.1</td>
</tr>
<tr>
<td>Male sex</td>
<td>324 (55.8)</td>
</tr>
<tr>
<td>Risk factors</td>
<td></td>
</tr>
<tr>
<td>Obesity (BMI ≥30)</td>
<td>109 (18.8)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>85 (14.6)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>364 (62.7)</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>360 (62.0)</td>
</tr>
<tr>
<td>Smoking</td>
<td>138 (23.8)</td>
</tr>
<tr>
<td>Family history of premature CAD</td>
<td>194 (33.4)</td>
</tr>
<tr>
<td>Chest pain</td>
<td></td>
</tr>
<tr>
<td>Asymptomatic</td>
<td>270 (46.5)</td>
</tr>
<tr>
<td>Noncardiac</td>
<td>169 (29.1)</td>
</tr>
<tr>
<td>Atypical</td>
<td>109 (18.8)</td>
</tr>
<tr>
<td>Typical</td>
<td>33 (5.7)</td>
</tr>
<tr>
<td>CCTA</td>
<td></td>
</tr>
<tr>
<td>CAD probability</td>
<td></td>
</tr>
<tr>
<td>DF-CAD consortium ≥70 %</td>
<td>11 (1.9)</td>
</tr>
<tr>
<td>DF-CAD consortium 30–70 %</td>
<td>221 (38.0)</td>
</tr>
<tr>
<td>DF-CAD consortium <30 %</td>
<td>349 (60.1)</td>
</tr>
<tr>
<td>Morise score ≥16</td>
<td>72 (12.4)</td>
</tr>
<tr>
<td>Morise score 9–15</td>
<td>369 (63.5)</td>
</tr>
<tr>
<td>Morise score 0–8</td>
<td>140 (24.1)</td>
</tr>
<tr>
<td>CV risk</td>
<td></td>
</tr>
<tr>
<td>Heart score ≥5 %</td>
<td>148 (25.5)</td>
</tr>
<tr>
<td>Calcium score</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>1 (0–93)</td>
</tr>
<tr>
<td>Median in patients with CAD</td>
<td>64 (8–200)</td>
</tr>
<tr>
<td>CaSc ≥100</td>
<td>136 (23.4)</td>
</tr>
<tr>
<td>CaSc ≥75th percentile</td>
<td>83 (14.3)</td>
</tr>
<tr>
<td>CCTA</td>
<td></td>
</tr>
<tr>
<td>Normal/no plaque</td>
<td>240 (41.3)</td>
</tr>
<tr>
<td>Nonobstructive CAD</td>
<td>263 (45.3)</td>
</tr>
<tr>
<td>Obstructive CAD</td>
<td>78 (13.4)</td>
</tr>
<tr>
<td>Technical data</td>
<td></td>
</tr>
<tr>
<td>Heart rate (bpm)</td>
<td>65.6 ± 10.6</td>
</tr>
<tr>
<td>Contrast dose (ml)</td>
<td>98.9 ± 14.4</td>
</tr>
<tr>
<td>Radiation dose (mSv)</td>
<td>4.6 ± 3.7</td>
</tr>
</tbody>
</table>

Values are mean ± SD, median (IQR) or n (%)

CAD coronary artery disease, **BMI** body mass index, **DF-CAD consortium** Diamond–Forrester CAD consortium model, **CV cardiovascular**, **CCTA** coronary computed tomography angiography, **CaSc** calcium score, **bpm** beats per minute, **mSv** millisievert

diabetes had a threefold and patients with hypertension a 2.5-fold higher probability of having a high CT-LeSc.

A high HeartScore (≥5 %) and a high Morise score (≥16) were associated respectively with a 2.5 and twofold higher probability of having a high coronary atherosclerotic burden, as assessed by the CT-LeSc.

Discussion

The main findings of this study are: (1) Calculation of a cardiac CT adapted Leaman score as a tool to quantify total (obstructive and nonobstructive) coronary atherosclerotic burden, reflecting the comprehensive information about localization, degree of stenosis and type of plaque provided by CCTA is feasible; (2) There was a significant association between the CT-LeSc and diabetes, a well recognized subset of advanced coronary atherosclerotic burden. A high CV risk (HeartScore) and a high CAD probability (Morise score) were also both associated with nearly a 2–2.5 fold higher probability of having a high coronary atherosclerotic burden, as assessed by the CT-LeSc.

Although the exclusion of obstructive CAD remains presently the main indication to refer a patient for CCTA, this noninvasive diagnostic tool can also provide information regarding the presence of nonobstructive plaques, detecting CAD at earlier disease stages. Although on a per lesion basis, vulnerability is positively associated with the degree of stenosis, on a per patient level most of the acute events come from nonobstructive lesions [18–20]. It is also recognized that many of the nonstenotic lesions can have a high plaque burden, underestimated by luminal angiograms, since they undergo expansive or positive outward enlargement, and such remodeling is a potential surrogate marker of plaque vulnerability [21]. In the multicenter virtual histology intravascular ultrasound (VH-IVUS) PROSPECT study [22], a large plaque burden, a small lumen area and the presence of a thin cap fibroatheroma were independent predictors of future nonculprit lesion major adverse cardiac events (MACE). In this study, lesions that led to MACE had a high plaque burden by...
IVUS, but were mild by baseline angiography (mean diameter stenosis 32%). The prognostic value of nonobstructive CAD has also been recently reinforced from large cardiac CT registries (CONFIRM) and meta-analysis [23]. In the large international multicenter CONFIRM registry, all-cause mortality was significantly higher for patients with nonobstructive CAD, as compared with patients without coronary atherosclerosis. One notable finding in this registry is the superimposed survival curves of nonobstructive and 1 vessel obstructive CAD, reinforcing the prognostic impact of nonobstructive coronary lesions [6].

Why a plaque burden CT score?

The main reason is because CAD represents a very heterogeneous condition and there is a need to structure the quantification of the plaque burden and to integrate the

Age ≥60	126 (56.0)	79 (68.1)	0.031
Male sex	138 (61.3)	81 (69.8)	0.121
BMI ≥30	41 (18.3)	25 (22.1)	0.404
Diabetes	26 (11.6)	36 (31.0)	<0.001
Hypertension	144 (64.0)	98 (84.5)	<0.001
Dyslipidemia	146 (64.9)	87 (75.0)	0.057
Smoking	53 (23.6)	31 (26.7)	0.520
Diabetes mellitus, HTA hypertension, CA score calcium score, CT-LeSc CT Leaman score			

| Heart score C | 29 (12.9) | 24 (20.7) | 0.060 |

Values are n (%); CAD coronary artery disease, BMI body mass index, DF-CAD consortium-diamond–Forrester CAD consortium model

most important information collected by CT and finally to homogenize the reporting of CT findings.

There are already some CT scores developed and prognostically validated namely the segment involvement score (SIS) and the segment stenosis score (SSS), but they only reflect some aspects of the coronary atherosclerotic burden, the former only takes into account the number of segments with plaque and the latter the degree of stenosis [6]. The CT-LeSc reflects some of the aspects that are partially included in the SIS (number of segments with plaque) and the SSS (degree of stenosis), and combines these two aspects, and also the localization, on a more comprehensive score.

Why these three components?

Individually, localization of the plaque within the coronary tree, the type of plaques and degree of stenosis are strong predictors of future coronary events.

Since CCTA is able to reliably collect information on these three aspects, a comprehensive score should be able to integrate these components.
Regarding localization, the original Leaman score was developed as a score to quantify obstructive coronary disease identified with invasive angiography [15]. In this score, with the rational of relative blood supply to the left ventricle, all coronary segments were given a weighting factor, reflecting the relative contribution of blood flow to the left ventricle of each vessel segment, taking also in account the specific right or left dominance systems. Recently, this score was used as the segment weighting factor for the development of the syntax score [24] which has been proven to have a strong prognostic value in different clinical scenarios [25, 26]. In our score, values were also provided for balanced dominance, reflecting more adequately the anatomical variants of the coronary tree.

Plaque composition has been found in both pathological and clinical studies associated with cardiac events [22, 27]. CCTA has shown to be able to characterize plaque composition [28]. Thin cap fibroatheroma is the most common pathological substrate of ACS and in CCTA these plaques appear as noncalcified or mixed plaques [16]. In a recent study by Maurovich-Horvat et al. [16], the frequency of a napkin-ting sign, a CCTA feature of advanced lesions by histology, was similar between noncalcified and mixed plaques, which also reinforces our weighting factor in the CT-LeSc for plaque composition that was the same between these two types (a factor of 1.5), and different from predominantly calcified plaques (a factor of 1).

Regarding the degree of stenosis, we assumed in our scoring system a factor reflecting the proportion of the hazard ratios for obstructive versus nonobstructive observed in the recently large scale CONFIRM registry. By gathering all the nonobstructive (<25, 25–49 %) and obstructive (50–69, 70–99, 100 %) in the same risk categories, this scoring system is expected to have a good intra and inter-observer correlation, since the other two weighting factors (localization and plaque calcification) have also an excellent reproducibility and are usually described in CCTA reporting.

Clinical implications

Many tools are already available to help stratifying patients at risk of a CV event and some scores have been already developed gathering the information provided by the different traditional risk factors, like the Framingham score or the HeartScore. Notwithstanding these observations, accurate prediction of major coronary events on the individual patient level, as opposed to population based studies, remains challenging.

The clinical implications of a score that reflect the extent of coronary atherosclerotic burden is related to the fact that this way we can have a tool to quantify and compare this burden, which is particularly useful when reporting a CCTA of a patient without obstructive CAD, but in whom the extent of nonobstructive CAD could lead to a reclassification of his risk profile and thereby his cardiovascular treatment.

Of note in our study is the fact that although the CT-LeSc, by having the degree of stenosis in its composition, tends to favour patients with obstructive CAD, we were able to demonstrate that a significant percentage (20.9 %) of patients with nonobstructive CAD had in fact a CT-LeSc in the highest tercile (T3). Conversely, among patients with obstructive CAD, about one fifth had a coronary...
atherosclerotic burden, as assessed by the CT-LeSc, in lower terciles.

The CT-LeSc, by having a weight related to the localization, it reflects not only the extent of CAD but also the expected clinical consequences in case that the more proximal lesions evolve to a significant stenosis or become unstable and trigger a coronary event.

In our study, a high HeartScore and a high Morise score were both associated with nearly a 2–2.5 fold higher probability of having a high coronary atherosclerotic burden, as assessed by the CT-LeSc. This could be expected for the HeartScore, as it was develop as a tool to predict cardiovascular risk. In the case of the Morise score, it was develop as a tool to predict cardiovascular outcomes [29]. The Diamond–Forrester was not an independent predictor of a high CT-LeSc and although we used the recently calibrated CAD consortium model [12], it has been developed and calibrated for obstructive CAD identified with invasive angiography and doesn’t take in account the cardiovascular risk factors in its composition.

Limitations

There are a number of limitations related to this report: (1) This is a single center data with medium size cohort; (2) High prevalence of low CAD probability/CV risk patients. The population included in our study was mainly composed of patients with low to intermediate CAD probability and CV risk. Nevertheless, CAD was present in nearly 60 % of the patients and this reflects the daily practice and the recommendations that high CAD probability patients have not an appropriate indication for CCTA [30]; (3) For the weighting factor of plaque composition, we used a multiplication factor of 1.5 for mixed and noncalcified plaques. Although this was an arbitrary factor, this is in line with several CCTA prognostic studies that demonstrated lower hazard ratios for calcified plaques and reflects an assumption of less plaque vulnerability of calcified plaques. (4) Lack of prognostic validation: the aim of this study was to describe a CCTA score to quantify total coronary atherosclerotic burden and to identify its clinical predictors. Future studies will be needed to provide a prognostic validation of this described CT-LeSc.

Conclusions

The calculation of the CCTA-adapted Leaman score as a tool to quantify total (obstructive and nonobstructive) coronary atherosclerotic burden, reflecting the comprehensive information about localization, degree of stenosis and type of plaque provided by CCTA is feasible. There was a significant association between the CT-LeSc and some traditional demographic and clinical risk factors. In face of this association, we expect this score to be a useful tool to quantify the coronary atherosclerotic burden evaluated by CCTA and it is expected to convey prognostic information, and this should be evaluated in future studies.

About one fifth of the patients with nonobstructive CAD had a CT-LeSc in the highest tercile, which could potentially lead to a reclassification of the risk profile of these subset of patients identified by CCTA, once the prognostic value of the CT-LeSc is validated.

Conflict of interest There were no sources of funding and the authors have no conflicts of interest related to this manuscript.

References

c Springer

c cont.

Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis.

Eur Heart J, 2017

38(7): p. 500-507
Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis

Manish Motwani1, Damini Dey1, Daniel S. Berman1, Guido Germano1, Stephan Achenbach2, Mouaz H. Al-Mallah3, Daniele Andreini4, Matthew J. Budoff5, Filippo Cademartiri6,7, Tracy Q. Callister8, Hyuk-Jae Chang9, Kavitha Chinnaiyan10, Benjamin J.W. Chow11, Ricardo C. Cury12, Augustin Delago13, Millie Gomez14, Heidi Gransar1, Martin Hadamitzky15, Joerg Hausleiter16, Niree Hindoyan14, Gudrun Feuchtner17, Philipp A. Kaufmann18, Yong-Jin Kim19, Jonathon Leipsic20, Fay Y. Lin11, Erica Maffei11, Hugo Marques21, Gianluca Pontone22, Gilbert Raff19, Ronen Rubinshtein24, Leslee J. Shaw25, Julia Stehli18, Todd C. Villines26, Allison Dunning27, James K. Min28, and Piotr J. Slomka16

Aims

Traditional prognostic risk assessment in patients undergoing non-invasive imaging is based upon a limited selection of clinical and imaging findings. Machine learning (ML) can consider a greater number and complexity of variables. Therefore, we investigated the feasibility and accuracy of ML to predict 5-year all-cause mortality (ACM) in patients undergoing coronary computed tomographic angiography (CCTA), and compared the performance to existing clinical or CCTA metrics.

Methods and results

The analysis included 10 030 patients with suspected coronary artery disease and 5-year follow-up from the CORonary CT Angiography EvaluatioN For Clinical Outcomes: An InteRnational Multicenter registry. All patients underwent CCTA as their standard of care. Twenty-five clinical and 44 CCTA parameters were evaluated, including segment stenosis score (SSS), segment involvement score (SIS), modified Duke index (DI), number of segments with non-calcified, mixed or calcified plaques, age, sex, gender, standard cardiovascular risk factors, and Framingham risk score (FRS). Machine learning involved automated feature selection by information gain ranking, model building with a boosted ensemble algorithm, and 10-fold stratified cross-validation. Seven hundred and forty-five patients died during 5-year follow-up.
Machine learning for prognosis in suspected CAD

Machine learning exhibited a higher area-under-the-curve compared with the FRS or CCTA severity scores alone (SSS, SIS, DI) for predicting all-cause mortality (ML: 0.79 vs. FRS: 0.61, SSS: 0.64, SIS: 0.64, DI: 0.62, P < 0.001).

Conclusions
Machine learning combining clinical and CCTA data was found to predict 5-year ACM significantly better than existing clinical or CCTA metrics alone.

Keywords
Coronary artery disease • Coronary CT angiography • Prognosis • Machine learning

Introduction
Coronary computed tomography angiography (CCTA) is an accurate non-invasive technique for the diagnosis and exclusion of obstructive coronary artery disease (CAD). In addition to coronary stenosis, CCTA also allows for evaluation of coronary atherosclerosis extent, severity, distribution, and composition. Beyond clinical variables, these imaging findings add incremental utility for prediction of future adverse events.1–2

Machine learning (ML) is a field of computer science that uses computer algorithms to identify patterns in large datasets with a multitude of variables, and can be used to predict various outcomes based on the data. Machine learning algorithms typically build a model from test inputs in order to make data-driven predictions or decisions. In recent years, ML techniques have emerged as highly effective methods for prediction and decision-making in a multitude of disciplines, including internet search engines, customized advertising, natural language processing, finance trending, and robotics.3–5

There is consensus in the ML community on the superior performance of aggregation approaches, known as ensemble methods such as ‘boosting’, and therefore we have chosen a boosting approach for this study. To date, the benefit of utilizing ML with data from CCTA to predict hard-prognostic endpoints has not been evaluated on a large scale. Therefore, the aim of this study was to utilize a large prospective multinational registry of patients undergoing CCTA to assess the feasibility and accuracy of ML to predict 5-year all-cause mortality (ACM), and then compare the performance to existing clinical or CCTA metrics.

Methods
Study population
Ten thousand and thirty stable patients with suspected CAD and with 5-year follow-up from the CONFIRM CT Angiography Evaluation for Clinical Outcomes: An InteRnational Multicenter (CONFIRM) registry were studied.2–3 CONFIRM CT Angiography Evaluation for Clinical Outcomes: An InteRnational Multicenter is an international, multicentre, observational registry collecting clinical, procedural, and follow-up data of patients undergoing clinically indicated CCTA (enrolled 2004–10).2 The study complies with the Declaration of Helsinki, all patients provided informed consent for inclusion in the registry, and institutional review board approval was obtained at each centre. Individuals with known CAD (defined as prior myocardial infarction (MI) or revascularization) or those with early revascularization after the index CCTA (defined as within 90 days) were excluded from the present study.

Clinical data
A structured interview was conducted before CCTA to collect information on symptoms and the presence of cardiovascular risk factors (Figure 1). Hypertension was defined as a history of blood pressure >140 mmHg or treatment with antihypertensive medications. Diabetes mellitus was defined by a diagnosis made previously by a physician and/or use of insulin or oral hypoglycaemic agents. Smoking history was defined as current smoking, or cessation of smoking within the last 3 months. Family history of premature CAD was defined as MI in a first-degree relative <55 years (male) or <65 years (female). Dyslipidaemia was defined as known but untreated dyslipidaemia, or current treatment with lipid-lowering medications. In addition, blood cholesterol levels of the lipid test nearest to the index examination were recorded. The primary outcome of the study was ACM recorded as a binary variable, and the study end-point was time to ACM. In U.S. sites, death status was ascertained by querying the Social Security Death Index. In non-U.S. sites, follow-up data were collected by mail or telephone contact with the patients or their families; events were verified by hospital records or contacts with the attending physician.

Coronary computed tomographic angiography data
Image acquisition
Coronary computed tomographic angiography investigations were performed on ≥64-detector row scanners from a variety of vendors (Lightspeed VCT, GE Healthcare, Milwaukee, WI, USA; Somatom Definition CT, Siemens, Erlangen, Germany). The imaging protocol adhered to Society of Cardiovascular Computed Tomography guidelines.6 Detailed methodology has been previously published.7

Image analysis
All scans were analysed by level III-equivalent cardiologists or radiologists. Images were evaluated by an array of post-processing techniques, including axial, multi-planar reformat, maximum intensity projection, and short-axis cross-sectional views.

Coronary segments were scored visually for the presence and composition of coronary plaque, and degree of luminal stenosis using a 16-segment coronary artery model.1 In each segment, plaques were classified as non-calcified, mixed, or calcified. The presence of coronary calcification was determined visually in contrast-enhanced datasets. Non-calcified plaque was defined as a tissue structure ≥1 mm² that could be clearly discriminated from the vessel lumen and surrounding tissue, with a density below the blood-pool. Plaques meeting this definition and in addition showing any calcified areas were classified as mixed. Severity of luminal stenosis in each segment was scored visually: 0 (none, 0%), 1 (mild, 1–49%), 2 (moderate, 50–69%), or 3 (severe, ≥70%).

For purposes of classification for per-vessel analyses, we considered four arterial territories: left main (LM), left anterior descending (LAD) and its diagonal branches, left circumflex (LCx) and its obtuse marginal branches, and the right coronary artery (RCA). The posterior descending artery and posterolateral branch were considered as part of the RCA or LCx system, depending on recorded dominance.
Figure 1 Feature selection. Forty-four coronary computed tomographic angiography variables (blue) and 25 clinical variables (green) were available. Information gain ranking was used to evaluate the worth of each variable by measuring the entropy gain with respect to the outcome, and then rank the attributes by their individual evaluations (top to bottom). Only attributes resulting in information gain >0 (above red line) were subsequently used in boosting. This figure shows the results from one representative fold of the cross-validation procedure. Variables are followed by units, or categorical range in parentheses—full details in Supplementary material online, Appendix. ACM, all-cause mortality; BMI, body mass index; CAD, coronary artery disease; CCS, coronary calcium score; CVA, cerebrovascular accident; D, diagonal; DM, diabetes mellitus; EF, ejection fraction; F, female; FRS, Framingham risk score; HDL, high-density lipoprotein; HTN, hypertension; LM, left main; LAD, left anterior descending artery; LCX, left circumflex; LDL, low-density lipoprotein; M, male; NoV, number of vessels; Nr., number of; OM, obtuse marginal; PAD, peripheral arterial disease; PL, posterolateral branch; RCA, right coronary artery; sev, severe; SSS, segment stenosis score; SIS, segment involvement score. ACM model

<table>
<thead>
<tr>
<th>Feature</th>
<th>Information Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>0.00</td>
</tr>
<tr>
<td>Non-calcified segs (0–16)</td>
<td>0.00</td>
</tr>
<tr>
<td>Calcified segs (0–16)</td>
<td>0.00</td>
</tr>
<tr>
<td>NoV with plaque <50% (0–3)</td>
<td>0.00</td>
</tr>
<tr>
<td>FRS (%)</td>
<td>0.00</td>
</tr>
<tr>
<td>NoV with mod CAD 50–69% (0.1)</td>
<td>0.00</td>
</tr>
<tr>
<td>NoV with CAD >50% (0–1)</td>
<td>0.00</td>
</tr>
<tr>
<td>DI category (1–0)</td>
<td>0.00</td>
</tr>
<tr>
<td>Mortar score (0–16)</td>
<td>0.00</td>
</tr>
<tr>
<td>Prox LAD stenosis (0–3)</td>
<td>0.00</td>
</tr>
<tr>
<td>NoV with sev CAD >70% (0.5)</td>
<td>0.00</td>
</tr>
<tr>
<td>Obstructive CAD (0–2) >75% scale</td>
<td>0.00</td>
</tr>
<tr>
<td>Obstructive CAD (0–2) >50% scale</td>
<td>0.00</td>
</tr>
<tr>
<td>Prox LCX stenosis (0–3)</td>
<td>0.00</td>
</tr>
<tr>
<td>EF <50% on CT (0.1)</td>
<td>0.00</td>
</tr>
<tr>
<td>Nr. mixed segs (0–16)</td>
<td>0.00</td>
</tr>
<tr>
<td>Prox RCA stenosis (0–3)</td>
<td>0.00</td>
</tr>
<tr>
<td>Mid RCA stenosis (0–3)</td>
<td>0.00</td>
</tr>
<tr>
<td>Mid LAD stenosis (0–3)</td>
<td>0.00</td>
</tr>
<tr>
<td>REA <50% (0.1)</td>
<td>0.00</td>
</tr>
<tr>
<td>Past smoking (0.1)</td>
<td>0.00</td>
</tr>
<tr>
<td>Any stenosis >50% (0.1)</td>
<td>0.00</td>
</tr>
<tr>
<td>Diamond-Forrester Score (%)</td>
<td>0.00</td>
</tr>
<tr>
<td>LAD >50% (0.1)</td>
<td>0.00</td>
</tr>
<tr>
<td>LCX >50% (0.1)</td>
<td>0.00</td>
</tr>
<tr>
<td>HTN (0.1)</td>
<td>0.00</td>
</tr>
<tr>
<td>LM stenosis (0–3)</td>
<td>0.00</td>
</tr>
<tr>
<td>Any LM stenosis (0.1)</td>
<td>0.00</td>
</tr>
<tr>
<td>DM (0.1)</td>
<td>0.00</td>
</tr>
<tr>
<td>OM1 stenosis (0–3)</td>
<td>0.00</td>
</tr>
<tr>
<td>PDA stenosis (0–3)</td>
<td>0.00</td>
</tr>
<tr>
<td>Chest pain with exertion (0.1)</td>
<td>0.00</td>
</tr>
<tr>
<td>CCS (Agitation units)</td>
<td>0.00</td>
</tr>
<tr>
<td>D1 stenosis (0–3)</td>
<td>0.00</td>
</tr>
<tr>
<td>Any stenosis >70% (0.1)</td>
<td>0.00</td>
</tr>
<tr>
<td>Non-calcified plaque only (0.1)</td>
<td>0.00</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>0.00</td>
</tr>
<tr>
<td>LM >50% (0.1)</td>
<td>0.00</td>
</tr>
<tr>
<td>Distal RCA stenosis (0–3)</td>
<td>0.00</td>
</tr>
<tr>
<td>Distal LAD stenosis (0–3)</td>
<td>0.00</td>
</tr>
<tr>
<td>Ethncity (1–7)</td>
<td>0.00</td>
</tr>
<tr>
<td>EF % on CT (%)</td>
<td>0.00</td>
</tr>
<tr>
<td>Current smoking (0.1)</td>
<td>0.00</td>
</tr>
<tr>
<td>Total cholesterol (mg/dL)</td>
<td>0.00</td>
</tr>
<tr>
<td>HDL (mg/dL)</td>
<td>0.00</td>
</tr>
<tr>
<td>Chest pain relief with GTN (0.1)</td>
<td>0.00</td>
</tr>
<tr>
<td>PL stenosis (0–3)</td>
<td>0.00</td>
</tr>
<tr>
<td>PAO (0.1)</td>
<td>0.00</td>
</tr>
<tr>
<td>Creatinine (mg/dL)</td>
<td>0.00</td>
</tr>
<tr>
<td>Renal insufficiency (0.1)</td>
<td>0.00</td>
</tr>
<tr>
<td>Mixed plaques only (0.1)</td>
<td>0.00</td>
</tr>
<tr>
<td>Right PL stenosis (0–3)</td>
<td>0.00</td>
</tr>
<tr>
<td>OMM2 stenosis (0–3)</td>
<td>0.00</td>
</tr>
<tr>
<td>D1 stenosis (0–3)</td>
<td>0.00</td>
</tr>
<tr>
<td>Right dominant (0.1)</td>
<td>0.00</td>
</tr>
<tr>
<td>Anomalous coronary (0.1)</td>
<td>0.00</td>
</tr>
<tr>
<td>Chest pain typicality (0–3)</td>
<td>0.00</td>
</tr>
<tr>
<td>CVA (0.1)</td>
<td>0.00</td>
</tr>
<tr>
<td>Family Hx (0.1)</td>
<td>0.00</td>
</tr>
<tr>
<td>Hypercholesterolaemia (0.1)</td>
<td>0.00</td>
</tr>
<tr>
<td>0.01 0.02 0.03 Sex (M, F)</td>
<td></td>
</tr>
</tbody>
</table>
Comparative metrics

Clinical and CCTA parameters were summarized with a number of existing metrics to allow direct comparison with the ML method.

Clinical data

Framingham risk score (FRS) was used as a comparative summary metric for clinical parameters. Framingham risk score was calculated with the established categorical model using low-density lipoprotein cholesterol according to Wilson et al.12 Although, FRS was originally validated for the 10-year risk of coronary heart disease in asymptomatic patients, this is a commonly adopted strategy given the absence of any more suitable clinical risk score for symptomatic patients or shorter follow-up periods. Moreover, it frames the accuracy of the ML-model in the context of a widely used and understood clinical score.2–4

 Coronary computed tomographic angiography data

Three composite CCTA-based scores assessing overall plaque burden and severity of CAD were derived. First, the segment stenosis score (SSS) was employed as an overall measure of coronary plaque extent.2 For each patient, individual coronary segments were scored 0–3 based on luminal diameter stenosis, and then summed to yield a total SSS (0–48). Second, the segment involvement score (SIS) was calculated as a measure of overall coronary plaque distribution, by summation of the absolute number of coronary segments with plaque (0–16).2 Third, the modified Duke prognostic CAD index (DI) was used, which categorizes patients into the following subsets, each with an increasing risk of 5-year death: (1) <50% stenosis, (2) ≥3 stenoses 30–49% (including 1 artery with proximal disease) or 1 vessel with 50–69% stenosis, (3) 2 stenoses 50–69% or 1 vessel with ≥70% stenosis, (4) 3 stenoses 50–69% or 2 vessels with ≥70% stenosis or proximal left anterior descending stenosis ≥70%, (5) 3 vessels ≥70% stenoses or 2 vessels ≥70% stenosis with proximal LAD, and (6) LM stenosis ≥50%.2

Machine learning

Forty-four CCTA parameters and 25 clinical parameters were available (Figure 1). Machine learning involved automated feature selection by information gain ranking, model building with a boosted ensemble algorithm, and 10-fold stratified cross-validation for the entire process (Figure 2).11–14 Machine learning techniques were implemented in the open-source Waikato Environment for Knowledge Analysis platform (3.7.12).14–15

Feature selection

Feature selection was performed using a technique known as ‘information gain attribute ranking’.11 Information gain is defined as a measure of the effectiveness of an attribute in classifying the training data. It is measured as the amount by which the entropy of the class decreases, which reflects the additional information about the class provided by the attribute. Only attributes resulting in information gain >0 were subsequently used in model building (Figure 1).

Model building

Predictive classifiers for ACM prediction were developed by an ensemble classification approach (‘boosting’), employing an iterative LogitBoost algorithm using decision stumps (single-node decision trees) for each feature-selected variable as base classifiers.12,13 The principle behind ML ensemble boosting is that a set of weak base classifiers can be combined to create a single strong classifier by iteratively adjusting their appropriate weighting according to misclassifications. A series of base classifier predictions and an updated weighting distribution are produced with each iteration. These predictions are then combined by weighted majority voting to derive an overall classifier—the ‘Logit-Boost score’ or risk probability estimate (%).

Cross-validation

The performance and general error estimation of the entire ML process (feature selection and LogitBoost) was assessed using stratified 10-fold cross-validation which is currently the preferred technique in data mining.11–13 The main advantages of this validation technique compared with the conventional split-sample (test and validation) approach are: (i) it reduces the variance in prediction error leading to a more accurate estimate of model prediction performance; (ii) it maximizes the use of data for both training and validation, without overfitting or overlap between test and validation data; and (iii) guards against testing hypotheses suggested by arbitrarily split data (Type III errors).13,14 Briefly, the dataset is randomly divided into 10 equal folds, each with approximately the same number of events; 10 validation experiments are then performed, with each fold used in turn as the validation set, and the remaining 9 folds as the training set. Therefore, each data point is used once for testing and 9 times for training, and the result is 10 experimental LogitBoost models trained on 90% fractions. The validation results from 10 experimental models are then combined to provide a measure of the overall performance (Figure 2).13

Statistical analysis

Continuous variables are presented as mean ± SD. The performance of ML to predict ACM was compared with CCTA severity scores (SSS, SIS, and DI) and FRS, using receiver-operating characteristic (ROC) analysis and pairwise comparisons according to Delong et al.15 For ML scores, the optimal thresholds for three risk categories (low, intermediate, and high) were defined using the two-graph-ROC (TG-ROC) technique at the 90% accuracy level.16 Calibration of the LogitBoost model was assessed using the Brier score method (range: 0–1)—lower scores being consistent with better model calibration.17 Calibration was also assessed graphically with plots showing the observed and predicted proportion of events, grouped by decile of risk.21 For all analyses, surviving
patients were right censored to their follow-up date. All statistical tests were two tailed and $P < 0.05$ was considered significant.

Results

Study population

Table 1 describes the baseline characteristics of the study population. There was no drop-out in this analysis and primary outcome data were determined for all patients. Seven hundred and forty-five patients died during the mean follow-up time of 5.4 ± 1.4 years.

Feature selection

Figure 1 shows the results from one representative fold of the 10-fold cross-validation procedure. In this representative fold, using the information gain ranking criteria, 54 of the available 69 variables were selected for the LogitBoost model (19 clinical and 35 from CCTA). As expected, age was the highest ranked feature for ACM prediction, but 8 of the top 10 ranked features were CCTA-derived factors rather than clinical.

Prediction all-cause mortality

Machine learning exhibited a higher area-under-the-curve (AUC) compared with FRS or CCTA data alone for prediction of 5-year ACM (ML: 0.79 vs. FRS: 0.61, SSS: 0.64, SIS: 0.64, DI: 0.62; $P < 0.001$ for all) (Figure 3). Segment stenosis score and SIS were superior to FRS for predicting ACM ($P < 0.05$).

Risk categorization by machine learning

Based on TG-ROC analysis, the intermediate-risk range for the LogitBoost model was a risk probability estimate of between 3.8 and 14%, corresponding to 90% sensitivity and specificity, respectively. Low- and high-risk ranges were considered as either side of the intermediate range. With this categorization, the number of patients assigned to low-, intermediate-, and high-risk groups in the study population by the LogitBoost model were: 3960 (39%), 4768 (48%), and 1302 (13%), respectively. The corresponding observed 5-year ACM event rates in these risk-groups were 1.8, 6.7, and 27%, respectively.

Calibration of machine learning scores

The Brier score for the LogitBoost model predicting ACM was 0.08 indicating good calibration between LogitBoost scores (estimated predicted risk) and observed 5-year risk. A calibration plot also confirmed good agreement between LogitBoost scores and the observed 5-year risk of ACM (Figure 4).

Discussion

In this study, we observed ML methods to be an effective method for the prediction of 5-year ACM. The ML method performed superiorly to clinical and CCTA summary metrics alone. To our knowledge, this is the first large-scale evaluation of ML for prognostic risk assessment using CCTA data. The observed efficacy suggests ML has an important clinical role in evaluating prognostic risk in individual patients with suspected CAD.

The ability to correctly identify high-risk patients who may benefit from intensified preventative measures is a major challenge in...
Machine learning for prognosis in suspected CAD

In the present study, which extends follow-up to 5 years, ML methods offered an incremental gain in prognostic performance while handling over 60 variables and a vast number of variable–variable interactions in each patient. The latter effectively individualizes risk assessment and overcomes many of the limitations of a standard statistical approach. The results of this study have considerable clinical impact. Prior large-scale studies have documented the inadequacies of current limited-variable methods for prediction of disease prevalence, severity, and prognosis; and highlight the need for more accurate methods to perform these important clinical tasks.27–29 As observed in other fields that require accurate prediction and decision-making in the presence of large amounts of data, ML may offer an improved alternative to current cardiovascular risk-stratification in the individual patient. These improvements may be furthered by the emergence of standard electronic health records and software capable of automated atherosclerotic plaque characterization and quantification—both of which may improve any given ML algorithm.

A limitation of the ML approach is that by using an increasing number of variables and interactions to predict risk, it can subsequently be difficult to identify the specific therapeutic targets that will reduce risk in that individual patient. However, the current therapeutic approach to CAD is very similar across all risk groups, and the benefit of an incremental improvement in risk-stratification in this context, even if a specific causative risk factor or interaction cannot be identified, is that it may allow physicians to move away from this ‘one-size fits all’ approach with confidence—with the advantage of cost-savings and reduced adverse effects in those that currently receive unnecessary treatments. Furthermore, in time those patients in whom ML re-classifies risk different from traditional approaches can be prospectively studied in greater depth to identify the causative factors and interactions—and this may finally unlock new therapeutic targets.

Study limitations

In the current study, we have only been able to discuss the feasibility and performance of ML but not its prospective practical implementation. The ability of any ML approach to handle a large number of variables is only advantageous if these variables are actually inputted into the ML algorithm—and this can be a time-consuming process, depending on the mode of data entry. However, we envisage ML working in the background of standard electronic health records or clinical reporting systems, gathering its variables automatically depending on the mode of data entry. We have observed ML working in the background of standard electronic health records or clinical reporting systems, gathering its variables automatically without additional burden on the physician—allowing on-the-fly risk score computation. This is the same principle already adopted by many ML applications—for example, the personalized advertisements that appear in real-time while web-browsing are all based on the passive collection of variables and their seamless input into ML algorithms. In this regard, the feature selection component is particularly important to future practical implementation as it
minimizes the data needed to be handled by such an on-the-fly ML application without compromising on accuracy. Although prospectively collected, the CONFIRM registry data used to derive the LogitBoost model was nevertheless observational, and the influence of selection bias cannot be discounted. Observational cohort studies, however, are the best suited to assess the initial feasibility of ML algorithms, given the requirement to both develop and validate their efficacy. Once validated, prospective randomized controlled treatment trials based upon ML risk-stratification can then be considered. Whether an objective ML approach without prior hypothesis is more effective than subjective but flexible human thinking is an issue that future prospective studies may explore. Future prospective studies may also allow comparison of our ML approach integrating CCTA and clinical data, to the alternative strategy in this study population of clinical assessment with stress-testing. Although alternative, more cardiac-specific endpoints than ACM may have been utilized, these data were not available for all centres in the CONFIRM registry. For the current study which had the aim of demonstrating feasibility of the ML approach, ACM was the most definitive end-point, with the maximal amount of patients to facilitate the best trained and validated ML model.

Although we evaluated 69 distinct variables with ML, along with variable-variable interactions, we did not consider the totality of features that may offer improved risk prediction, as we were limited to those collected for the CONFIRM registry. In particular, more detailed clinical data such as duration, magnitude and control of risk factors, as well more advanced plaque characterization with % aggregate plaque volume, arterial remodelling, or Hounsfield-unit-based plaque composition classification, may augment the current ML model. Another limitation is the use of FRS as the summary metric for evaluation of clinical parameters as it was originally validated for 10-year outcomes in asymptomatic patients. However, this is a commonly adopted strategy given the absence of any more suitable clinical risk score for symptomatic patients or shorter follow-up periods, and moreover, it frames the accuracy of the ML-model in the context of a widely used and understood clinical score. Finally, while numerous ML methods exist, we evaluated the efficacy of only a single ensemble method (LogitBoost). In particular, boosting is also available for Cox-based models (CoxBoost) which leads to the possibility of time-to-event prediction using such alternative analysis.

Conclusions

In a large, prospective 5-year multinational study of patients with suspected CAD, ML was an effective method for the prediction of ACM, and performed superiorly to the use of clinical and CCTA variables alone.

Authors’ contributions

Supplementary material

Supplementary material is available at European Heart Journal online.

Acknowledgements

We thank all staff at the participating sites for their effort to collect data for the CONFIRM registry.

Funding

This work was supported by research grants from the National Heart Lung and Blood Institute: R01-HL111141, R01-HL15150, R01-HL118019 (J.K.M), R01-2R01HL089765 (P.J.S.); the Dowager Countess Eleanor Peel Trust, Manchester, UK, and the Dickenson Trust, Manchester, UK (M.M.); National Research Foundation of Korea (Leading Foreign Research Institute Recruitment Program 2012027176) (H.J.C); Aedelon Family Foundation (D.S.B) as well as a generous gift from the Dalio Foundation, New York, NY and the Michael Wolff Foundation, New York, NY (J.K.M).

Conflict of interest

none declared.

References

CAPÍTULO IV

Objetivos
4.1. OBJETIVOS

1. Criar um normograma para caracterização da avaliação volumétrica da aurícula esquerda, na fase cardíaca mais frequentemente utilizada para avaliação coronária — diástole média — 70% do intervalo entre ondas R. Determinar uma medida que seja prática (rápida e fácil de se obter) e apresente boa correlação com o volume auricular, por forma a tornar eficiente a avaliação volumétrica da aurícula esquerda.

2. Caracterização anatômica e funcional dos doentes com FA que realizaram exame de TC em contexto prévio à realização de ablação de fibrilhação auricular e a seu contributo prognóstico para determinar o sucesso da terapêutica ablativa percutânea.

3. Otimização dos exames de TC cardíaca realizados em contexto prévio à realização de ablação de fibrilhação auricular.
CAPÍTULO V

População
SUMÁRIO

241 5.1. Introdução

241 5.2. Definição dos grupos populacionais

241 5.2.1. Normograma e caracterização anátomo-funcional e correlação prognóstica dos doentes com FA

244 5.2.2. Otimização dos exames de TC cardíaco pêvio à ablação de FA
5.1. INTRODUÇÃO

Neste trabalho de investigação foram constituídas cinco populações de estudo num total de 693 doentes, tendo por base um registo prospetivo de doentes consecutivos que realizaram TC cardíaca no Hospital da Luz.

No âmbito do registo não houve condicionamento da referenciação dos doentes.

5.2. DEFINIÇÃO DOS GRUPOS POPULACIONAIS:

5.2.1. Normograma e caracterização anátomo-funcional e correlação prognóstica dos doentes com FA

Para criação do normograma (Capítulo VIII) e caracterização anátomo-funcional e sua correlação prognóstica nos doentes com FA (Capítulo IX), foi criado o grupo A e suas divisões A1 e A2, bem como o grupo B (ver Tabela 1) num total de 423 doentes.

Grupo A — grupo “doentes com FA” — n=277

De um registo prospetivo de 2062 indivíduos que realizaram TC cardíaca de Maio de 2009 a final de Abril de 2012 — 3 anos, foram selecionados todos aqueles que a indicação foi a avaliação prévia a ablação de fibrilhação auricular (com diagnóstico prévio de FA) — 277 doentes. Assim foi constituído o grupo A.
A subconstituição sucessiva deste grupo A em grupo A1 e posteriormente em grupo A2 deveu-se aos seguintes critérios:

> O **grupo A1** é constituído por todos os doentes do grupo A em que a TC permitia avaliar função (aquisição de TC em modo retrospetivo e em ritmo sinusal durante o TC) — foi o grupo base de doentes com FA utilizado no capítulo VIII.

> Do grupo A1 foram selecionados apenas os doentes com FA paroxística, que realizaram ablação e em que foi possível obter informação de seguimento clínico, formando assim o **grupo A2**.

A caracterização mais pormenorizada da população do grupo A1 é efetuada no Capítulo VIII e a do grupo A2 no Capítulo IX.

Grupo B — grupo controlo (representativo da população normal) — n=146

De um registo prospetivo de 2062 indivíduos que realizaram TC cardíaca de Maio de 2009 a final de Abril de 2012 — 3 anos, foram selecionados todos os indivíduos que seriam representativos de uma população “normal”, por reunirem todas as seguintes condições:

> Sem doença cardíaca conhecida, incluindo doença valvular e doença coronária

> Sem hipertensão arterial — sem história de HTA, sem medicação para HTA e com a tensão arterial medida antes da realização da TC com valores sistólicos inferiores a 140mmHg e valores diastólicos inferiores a 90 mmHg

> Sem obesidade — com IMC <30kg/m²
> Sem história de arritmia cardíaca e em ritmo sinusal durante a aquisição da TC

> Ecocardiograma normal, realizado num prazo inferior a 60 dias da data da TC (incluindo menção de: normal dimensão da aurícula esquerda, ausência de disfunção diastólica do VEsq e ausência de patologia valvular mitral)

> Com resultados da TC cardíaca que revelaram:
 - Ausência de doença coronária obstrutiva (estenoses máximas <50%)
 - Sem doença valvular na TC
 - Fração de ejeção do VEsq preservada e sem disfunção segmentar.
 - Aurícula esquerda com volume máximo normal

No grupo resultante só haviam 74 mulheres pelo que, para manter o grupo com representação similar entre sexos, se selecionaram os primeiros 74 homens incluídos. Da população resultante, 148 doentes, excluíram-se dois doentes (mulheres) por informação incompleta no arquivo de imagem.

A caracterização mais pormenorizada da população do grupo B é efetuada no Capítulo VIII.
5.2.2. Otimização dos exames de TC cardíaco prévio à ablação de FA
Para a avaliação da otimização dos exames de TC cardíaca realizados num contexto prévio à ablação de FA (Capítulo X) foram criados os grupos 1, 2 e 3, independentes, num total de 270 doentes (ver Tabela 2).

Grupo 1 — n=150
De um registo prospetivo de doentes consecutivos que realizaram TC cardíaca no Hospital da Luz, selecionaram-se todos cuja indicação foi a avaliação prévia a ablação de fibrilhação auricular. Desses foram selecionados para este grupo os primeiros 150 doentes consecutivos incluídos no registo.

Grupo 2 — n=60
De um registo prospetivo de doentes consecutivos que realizaram TC cardíaca no Hospital da Luz, selecionaram-se todos cuja indicação foi a avaliação prévia a ablação de fibrilhação auricular. Desses foram selecionados para este grupo os últimos 60 doentes consecutivos incluídos no registo que realizaram o exame no aparelho de TC inicial (TC dupla-ampola 1ª geração).

Grupo 3 — n=60
De um registo prospetivo de doentes consecutivos que realizaram TC cardíaca no Hospital da Luz, selecionaram-se todos cuja indicação foi a avaliação prévia a ablação de fibrilhação auricular. Desses foram selecionados para este grupo os primeiros 60 doentes consecutivos incluídos no registo que realizaram o exame no novo aparelho de TC (TC dupla-ampola de 3.ª geração).

TABELA 2
Descrição populacional dos grupos 1, 2 e 3

<table>
<thead>
<tr>
<th></th>
<th>Grupo 1</th>
<th>Grupo 2</th>
<th>Grupo 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>150</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Idade (anos)</td>
<td>59 (48-65)</td>
<td>63 (53-69)</td>
<td>65 (56-70)</td>
</tr>
<tr>
<td>Sexo masculino</td>
<td>74% (n=111)</td>
<td>72% (n=43)</td>
<td>73% (n=44)</td>
</tr>
<tr>
<td>IMC (Kg/m²)</td>
<td>26,6 (24,2-29,1)</td>
<td>27,1 (24,0-28,6)</td>
<td>26,3 (24,5-28,9)</td>
</tr>
<tr>
<td>Doentes com FA (%)</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>
CAPÍTULO VI

TC Cardíaca

Aspetos técnicos e protocolos de aquisição
RESUMO

Neste capítulo é feita uma revisão dos aspetos técnicos dos aparelhos de TC relevantes no contexto de avaliação cardíaca e a forma como influenciam a preparação do doente (inclui-se artigo sobre a utilização de beta-bloqueantes para modulação da frequência cardíaca — Manuscrito 16) [1].

Atribui-se especial destaque à espantosa evolução da dose de radiação dos exames de TC cardíaco. Em relação a este aspeto são incluídos dois manuscritos (Manuscritos 17 e 18) [2, 3].

Faz-se igualmente uma descrição dos diversos exames englobados sob a denominação lata: “TC cardíaca”.
Terminamos por definir os protocolos de aquisição de TC efetuados em cada uma das populações de estudo desta tese.

MANUSCRITOS

Manuscrito 16

Bailout intravenous esmolol for heart rate control in cardiac computed tomography angiography.
Manuscrito 17

Effective radiation dose of three diagnostic tests in cardiology: single photon emission computed tomography, invasive coronary angiography and cardiac computed tomography angiography.

Manuscrito 18

Radiation in cardiac CT: predictors of higher dose and its reduction over time.

SUMÁRIO

251 6.1. Introdução

251 6.2. Aspetos Técnicos
251 6.2.1. Cobertura crâneo-caudal
252 6.2.2. Resolução de sinal, contraste, espacial e temporal
252 6.2.3. Técnicas de energia espetral
253 6.2.4. Dose de radiação

256 6.3. TC Cardíaca — um ou vários estudos?

257 6.4. TC Cardíaca — protocolos de aquisição nos diferentes grupos populacionais

261 Bibliografia

263 Anexos
6.1. INTRODUÇÃO

A impressionante evolução tecnológica dos aparelhos de TC tem tido paralelo no aumento de indicações apropriadas dos exames conhecidos como TC cardíaca. São abordados sumariamente neste capítulo as evoluções técnicas dos aparelhos de TC e o seu contributo na avaliação dos doentes das populações de estudo desta tese.

6.2. ASPETOS TÉCNICOS

6.2.1. Cobertura crâneo-caudal

Desde a realização dos primeiros exames de TC multidetetor (4 detetores) com capacidade de sincronização eletrocardiográfica, que se assistiu ao intensificar da corrida ao maior número de detetores.

O acréscimo do número de detetores permite uma maior cobertura crâneo-caudal, o que significa menor número de ciclos cardíacos para completar a aquisição volumétrica do coração por menor tempo de aquisição, logo menor dependência de frequências cardíacas estáveis e menor tempo de apneia necessária para obter bons exames. Atualmente já existem dois aparelhos de TC no mercado cujo o número de detetores permite numa só rotação com a mesa parada a cobertura volumétrica total de um coração.

Outra forma desenvolvida para aumentar artificialmente a cobertura crâneo-caudal são as aquisições de pitch muito elevado em TC com dupla-ampola, permitindo também a aquisição volumétrica de todo o coração apenas num batimento cardíaco.
6.2.2. Resolução de sinal, contraste, espacial e temporal

Contrastes com maior concentração de iodo por mililitro, novos detetores aliados a novas reconstruções (iterativas) e a softwares automáticos (ou semi-automáticos) de otimização de dose permitem otimizar os rácios sinal/ruído e contraste/ruído. A resolução espacial beneficiou sobretudo do desenvolvimento de novos detetores (mais finos e com menor latência), com resoluções máximas atuais de 0,23mm (Revolution CT°. GE healthcare) praticamente isotrópicas. No entanto, apesar das melhorias, não atingiram ainda os valores de 0,16mm da angiografia convencional, 0,15mm do Intravascular UltraSound (IVUS) e os 0,015mm do Optic Coerence Tomography (OCT). Estes aspetos contribuíram para a melhor definição do cálcio e a melhor definição do lúmen e parede dos vasos.

A resolução temporal talvez se mantenha atualmente como a principal limitação da avaliação coronária, sendo frequentemente necessária a diminuição da frequência cardíaca do doente antes da aquisição do exame (esta questão foi abordada no Manuscrito 16)[1]. Ainda assim sofreu grande evolução com velocidades de rotação maiores e com o desenvolvimento de aparelhos de dupla-ampola (resolução temporal duas vezes melhor do que aparelho com a mesma velocidade de rotação e só uma ampola). A melhor resolução temporal nativa (sem técnicas de aquisição segmentada) é de 66ms (Somatom Force ®, Siemens Healthcare), ainda aquém dos 33ms da angiografia convencional, mas já aproximada dos 33 a 66ms das técnicas ecocardiográficas. Há, no entanto, formas indiretas de aumentar a resolução temporal, sendo a mais promissora o desenvolvimento de softwares para o realizar ainda no espaço da reconstrução [4]. Com a evolução da resolução temporal, os artefactos de movimento foram grandemente diminuídos permitindo estudos com frequências cardíacas mais elevadas (ver Figura 1).

6.2.3. Técnicas de energia espectral

As técnicas de energia espectral podem ser utilizadas para otimização do contraste da imagem, permitindo significativa redução do volume de contraste iodado necessário por reconstrução de imagem utilizando informação apenas dos menor keV.

Estas técnicas podem ainda ser utilizadas para a codificação de substâncias na imagem, como o cálcio, o ácido úrico e até mesmo o iodo. Assim permitem fazer a avaliação quantitativa e por mapa de cores do volume de iodo por voxel.
As técnicas de energia espetral têm igualmente utilidade na avaliação de isquemia e na avaliação de realce tardio. Futuramente poderão servir para retirar o cálcio das imagens e mostrar a angiografia coronária como se fosse apenas uma técnica luminográfica (sem perda de qualidade).

6.2.4. Dose de radiação

No início, a TC cardíaca era considerada um exame de dose de radiação ionizante elevada, tendo sido esta limitação um dos maiores drivers para a evolução tecnológica. O risco da radiação ionizante utilizada na imagem médica deve-se aos seus efeitos estocásticos, pela possibilidade de doses pequenas de radiação poderem provocar mutações genéticas que por sua vez aumentariam o risco de cancro. Se a associação entre radiação e efeitos cancerígenos foi observada para doses elevadas nos sobreviventes das bombas atómicas ou na população sujeita a radiação no desastre de Chernobyl, em que uma exposição a uma dose de radiação de 100mSv aumenta a probabilidade de morte por cancro em 0,5%[5], este efeito e relação carece de informação científica suficiente para doses menores [6, 7]. Assim existem diversas teorias propostas para cálculo de risco oncogénico para doses de radiação baixa (inferiores a 100mSv), desde a teoria da Hormese que defende que
doses baixas poderão ter efeito protector, até à teoria “linear sem threshold” que serve de base para o modelo “ALARA” (*as low as reasonably achievable*) que rege a utilização dos meios complementares diagnósticos com radiação. Esta teoria diz que para cada dose de radiação (mesmo as baixas doses) existe um maior risco de desenvolvimento de cancro e que esta relação é direta [8, 9].

De todas as teorias propostas, esta é a que resulta num maior risco carcinogénico dos exames imagiológicos com radiação X.

O primeiro estudo multicéntrico prospetivo sobre dose de radiação da TC cardíaca para avaliação coronária foi publicado em 2009, com valores muito diferentes de dose média entre centros e com doses de radiação médias de 12mSv [10].

Desde então as doses de radiação têm sistematicamente diminuído devido a diversos fatores contributivos, nomeadamente: aquisições mais rápidas (num só batimento cardíaco), o desenvolvimento de ampolas que permitem maior miliamperagem com menores KV e o desenvolvimento da reconstrução iterativa.

Atualmente conseguem-se exames com doses inferiores a 1mSv (ver Figura 2).

Durante este período publicámos um trabalho em 2010 em que avaliámos a evolução temporal da dose de radiação (sendo a dose média do nosso centro para TC cardíaca para avaliação das artérias coronárias: 6,6mSv) e onde foi possível identificar predividores de dose mais alta, nomeadamente um índice de massa corporal (IMC) elevado (que não permitia utilizar menores kV na aquisição), a história de cirurgia cardíaca prévia (pela necessidade de aumentar a aquisição crâneo-caudal para observar pontagens) e a presença de arritmia (que diminui a capacidade de modulação da radiação ao longo do intervalo RR) [3].

Num outro trabalho em que participámos e publicámos: numa população de 6196 doentes comparámos a dose de radiação dos três exames mais utilizados no diagnóstico de doença coronária, a angiografia convencional (dose média de 8,1mSv), a cintigrafia de perfusão miocárdica (10,7mSv) e a angio-TC coronária (5,4mSv) [2].

Está em fase de publicação o estudo PROTECTION VI (do qual o autor desta tese é o investigador responsável do nosso centro), que irá atualizar os dados do primeiro estudo PROTECTION I [10], antevendo-se reduções da dose média em cerca de nove a dez vezes, sem diminuição da qualidade de imagem.

A otimização da dose de radiação nos exames de TC cardíaca pré-ablação de FA foi âmbito desta investigação e é descrita no Capítulo X.
De qualquer forma, importa realçar que:

> O efeito carcinogénio da radiação ionizante de baixa dose, a utilizada em imagiologia médica, é uma extrapolação do risco observado para doses de pelo menos 100mSv.

> A dose média de um exame de TC cardíaco em 2009 era de 12mSv e atualmente é provavelmente cerca de 9 a 10 vezes menor.

> Na avaliação desta problemática não pode ser excluído o benefício da informação obtida pela realização de um exame apropriado e o risco basal atual de morte por cancro na população ocidental.
6.3. TC CARDÍACA — UM OU VÁRIOS ESTUDOS?

Esta denominação engloba diferentes estudos para avaliar o coração que têm em comum a utilização de sincronização eletrocardiográfica.

Podem ser realizados sem contraste para:

- avaliar e quantificar placas calcificadas nas artérias coronárias — *score* de cálcio
- avaliar e quantificar o cálcio valvular — *score* de cálcio valvular
- obter imagens antes da administração de contraste para poder avaliar a captação de contraste por uma massa
- avaliar a presença de áreas espontaneamente densas em situações agudas, como, por exemplo, os hematomas murais.

Podem ser realizados com contraste para:

- detetar e avaliar estenoses coronárias — Angio-TC coronário — a indicação mais frequente
- avaliação de patência de pontagens
- avaliação de perfusão miocárdica — com técnicas de primeira passagem ou avaliação da perfusão estática em equilíbrio
- avaliação cardíaca extra-coronária — miocárdio, válvulas, pericárdio, massas
- ser combinado com outros exames de angiografia, nomeadamente nos estudos de duplo e triplo *rule out* (exclusão de doença coronária, tromboembolismo pulmonar e dissecção aórtica) ou para avaliar o restante leito vascular pré-intervenção percutânea.

No contexto dos doentes com FA, a TC cardíaca inclui os seguintes exames:

- avaliação coronária
- avaliação anatômica e exclusão de trombo pré-ablação de fibrilação auricular ou pré-oclusão do AAESQ
- avaliação de complicações pós ablação ou pós-oclusão.
6.4. TC CARDÍACA — PROTOCOLOS DE AQUISIÇÃO NOS DIFERENTES GRUPOS POPULACIONAIS ÂMBITO DESTA TESE (DEFINIDOS NO CAPÍTULO V)

Grupo A — grupo “doentes com FA”
TC dupla-ampola 1ª geração — 64 detetores — SOMATOM Definition®, com resolução temporal nativa de 83ms e velocidade de mesa máximo de 45,7mm/s

> Aquisição: depois de disponível optou-se por avaliação prospektiva, de acordo com o referido no protocolo de aquisição do grupo 2 (ver abaixo). Antes dessa disponibilidade realizámos exames com aquisição de acordo com o protocolo do grupo 1 (ver abaixo)
> Reconstrução — filtered back projection, com espessura de corte de 1,5mm, incremento 0,7mm e matriz 512x512
> Contraste — 320mgI/ml — injeção trifásia a 6ml/seg.
 - Primeira fase de contraste puro com volume calculado segundo a fórmula = (tempo de aquisição +tempo de espera) x6. O tempo de espera foi fixado em 7 segundos.
 - Segunda fase de 30 ml de contraste diluído (30% contraste e 70% soro).
 - Terceira fase de 30ml de soro.
> Técnica de bolus tracking com região de interesse na aorta ascendente e início de aquisição 7 segundos após atingir a densidade de 150UH (unidades Hounsfield).

Grupo B — grupo controlo (representativo da população normal)
TC dupla-ampola 1ª geração — 64 detetores — SOMATOM Definition®, com resolução temporal nativa de 83ms e velocidade de mesa máximo de 45,7mm/s

> Medicação:
 - 5mg de nitroglicerina sublingual se TArt sistólica >100mmHg
 - Metoprolol endovenoso aos doentes com FC superior a 70bpm (5mg a cada 3min até FC alvo de 70bpm até uma dose máxima de 25mg)
 - Prévia a administração de fármacos confirmadas ausências de contra-indicações ou alergias.
> Aquisição: retrospetiva, com modulação da miliamperagem — com 20% da miliamperagem fora dos intervalos de dose máxima escolhidos da seguinte forma:
 - Se rítmico e FC <70bpm — dose máxima 70-80% do intervalo RR
- Se rítmico com FC 70-80 — dose máxima de 40 a 80% do intervalo RR
- Se rítmico e FC >80 — dose máxima a 40-50% do intervalo RR.

> Determinação da kV — 100kV, excepto se IMC<18,5 quando se utilizava 80kV
> Reconstrução — *filtered back projection*, com espessura de corte de 1,5mm, incremento 0,7mm e matriz 256x256, com reconstruções de 10 em 10% de todo o intervalo RR

> Contraste — 320mgI/ml — injeção trifásica a 7ml/seg.
- Primeira fase de contraste puro com volume calculado segundo a fórmula
 \[= (\text{tempo de aquisição} + \text{tempo de espera}) \times 7\]. O tempo de espera foi fixado em 7 segundos.
- Segunda fase de 30 ml de contraste diluído (30% contraste e 70% soro).
- Terceira fase de 30ml de soro.

> Técnica de *bolus tracking* com região de interesse na aorta ascendente e início de aquisição 7 segundos após atingir a densidade de 120UH (unidades *Hounsfield*).

Grupo 1

TC dupla-ampola 1ª geração — 64 detetores — SOMATOM Definition®, com resolução temporal nativa de 83ms e velocidade de mesa máximo de 45,7mm/s

> Aquisição: retrospetiva, com modulação da miliamperagem — com 20% da miliamperagem fora dos intervalos de dose máxima escolhidos da seguinte forma:
- Se rítmico e FC <70bpm — dose máxima 70% do intervalo RR
- Se arrítmico ou rítmico com FC 70-80 — dose máxima de 40 a 80% do intervalo RR
- Se rítmico e FC >80 — dose máxima a 40-50% do intervalo RR.

> Determinação da kV — 100kV, se BMI<30, caso contrário 120kV
> Reconstrução — *filtered back projection*, com espessura de corte de 1,5mm, incremento 0,7mm e matriz 512x512

> Contraste — 320mgI/ml — injeção trifásica a 6ml/seg.
- Primeira fase de contraste puro com volume calculado segundo a fórmula
 \[= (\text{tempo de aquisição} + \text{tempo de espera}) \times 6\]. O tempo de espera foi fixado em 7 segundos.
- Segunda fase de 30 ml de contraste diluído (30% contraste e 70% soro).
- Terceira fase de 30ml de soro.
Técnica de bolus tracking com região de interesse na aorta ascendente e início de aquisição 7 segundos após atingir a densidade de 150UH (unidades Hounsfield)

Grupo 2

TC dupla-ampola 1ª geração — 64 detetores — SOMATOM Definition®, com resolução temporal nativa de 83ms e velocidade de mesa máximo de 45,7mm/s

Aquisição: prospetiva se rítmico ou arrítmico com pequena variabilidade RR. Noutros casos aquisição retrospetiva com modulação da miliamperagem (3% da miliamperagem fora dos intervalos de dose máxima (minimal dose manual), com dose máxima de 40 a 80% do intervalo RR).

Determinação da kV — 80kV se BMI<30, caso contrario 100kV se peso inferior a 100kg e 120kV se peso superior a 100kg

Reconstrução — FBP, com espessura de corte de 1,5mm, incremento 0,7mm e matriz 512×512.

Contraste — 370 mg I /ml — Injecção trifásia a 5ml/seg.

- Primeira fase de contraste puro com volume calculado segundo a fórmula \(V = (\text{tempo de aquisição} + \text{tempo de espera}) \times 5 \). O tempo de espera foi fixado em 10 segundos.
- Segunda fase de 30 ml de contraste diluído (30% contraste e 70% soro).
- Terceira fase de 30ml de soro.

Técnica de “bolus tracking” com região de interesse na aorta ascendente e início de aquisição 10segundos após atingir a densidade de 150UH (unidades Hounsfield)

Grupo 3

TC dupla-ampola 3ª geração — 192 detetores — SOMATOM Force®, com resolução temporal nativa de 66ms e velocidade de mesa (pitch) máximo em modo FLASH de 737mm/seg.

Aquisição: em modo FLASH (aquisição em batimento cardíaco único com método de velocidade de mesa muito elevado 737mm/s), excepto se doentes com FC média superior a 80 bpm onde se opta pela aquisição em método prospetivo. Aquisição retrospetiva apenas em doentes com marcada variabilidade do intervalo RR.

Determinação da kV e miliamperagem — por referência 80Kv com 200mAs/rot, com indicação de realização de angio-TC. Apenas se BMI>30, os kV de
referência passam a 100. No entanto, o novo aparelho apresenta a capacidade de avaliar a densidade do doente no topograma realizado, servindo os valores de referência, como um guia para o ruído admissível/máximo que se pretende ter na imagem, fazendo o aparelho uma modificação dos valores por forma a otimizar a dose de radiação, mantendo a qualidade da imagem.

> Reconstrução — iterativa — SAFFIRE força 3, com espessura de corte de 1,5mm, incremento 0,7mm e matriz 512x512

> Contraste — 370mg I / ml — injecção trifásia a 4ml/seg.
 > Primeira fase de contraste puro com volume calculado segundo a fórmula \[= (\text{tempo de aquisição} + \text{tempo de espera}) \times 4 \]. O tempo de espera foi fixado em 15 segundos, dado a aquisição preferencialmente utilizada (modo FLASH) durar menos de 1 segundo.
 > Segunda fase de 30 ml de contraste diluído (30% contraste e 70% soro).
 > Terceira fase de 30ml de soro.

> Técnica de *bolus tracking* com região de interesse na aorta ascendente e início de aquisição 15 segundos após atingir a densidade de 150UH (unidades Hounsfield)

Em jeito de conclusão, salientamos que a modulação da aquisição a cada doente e a cada indicação permite otimizar a dose de contraste, a dose de radiação e a acuidade do exame.
BIBLIOGRAFIA

Bailout intravenous esmolol for heart rate control in cardiac computed tomography angiography.

Aguiar Rosa, S., Ramos, R., Marques, H., Santos, R., Leal, C., Casado, H., Saraiva, M., Figueiredo, L., and Cruz Ferreira, R.

Rev Port Cardiol, 2016
35(12): p. 673-678
Bailout intravenous esmolol for heart rate control in cardiac computed tomography angiography

Silvia Aguiar Rosa a,∗, Ruben Ramos a, Hugo Marques b, Rosana Santos a, Cecilia Leal b, Helena Casado b, Márcia Saraiva b, Luísa Figueiredo b, Rui Cruz Ferreira a

a Cardiology Department, Santa Marta Hospital, Lisbon, Portugal
b Radiology Department, Santa Marta Hospital, Lisbon, Portugal

Received 9 February 2016; accepted 8 July 2016
Available online 17 November 2016

Abstract
Objective: To evaluate the efficacy and safety of a heart rate (HR) reduction protocol using intravenous esmolol as bailout for failed oral metoprolol regimens in patients undergoing coronary computed tomography angiography (CCTA) with 64-slice multidetector computed tomography (64-MDCT).

Methods: Patients who underwent cardiac 64-MDCT in a single institution between 2011 and 2014 were analyzed. Those with HR above 60 beats per minute (bpm) on presentation received oral metoprolol (50-200 mg) at least one hour before CCTA. Intravenous esmolol 1-2 mg/kg was administered as a bolus whenever HR remained over 65 bpm just before imaging. The primary efficacy endpoint was HR <65 bpm during CCTA. The primary safety endpoint was symptomatic hypotension or bradycardia up to hospital discharge.

Results: During the study period CCTA was performed in 947 cases. In 86% of these, oral metoprolol was the only medication required to successfully reduce HR <60 bpm. Esmolol was used in the remaining 130 patients (14%). For esmolol-treated patients mean baseline and acquisition HR were 74±14 bpm and 63±9 bpm, respectively (p<0.001). The target HR of <65 bpm was achieved in 82 of the 130 esmolol-treated patients (63%). Considering the whole population, esmolol use led to a significant increase in the primary efficacy endpoint from 86% to 95% (p<0.001). Esmolol also resulted in a statistically, but not clinically, significant reduction in systolic blood pressure (144±22 to 115±17 mmHg; p<0.001). The combined primary safety endpoint was only observed in two (1.5%) patients.

Conclusion: Despite optimal use of oral beta-blockers, 14% of patients needed intravenous esmolol for HR control. The pre-medication combination of oral metoprolol and on-demand administration of intravenous esmolol was safe and effective and enabled 95% of patients to be imaged with HR below 65 bpm.

© 2016 Sociedade Portuguesa de Cardiologia. Published by Elsevier España, S.L.U. All rights reserved.

∗ Corresponding author.
E-mail address: silviaguiarosa@gmail.com (S. Aguiar Rosa).

http://dx.doi.org/10.1016/j.repc.2016.07.004
0870-2551/© 2016 Sociedade Portuguesa de Cardiologia. Published by Elsevier España, S.L.U. All rights reserved.
Esмолol endovenoso em regime bail out para controlo de frequência cardíaca na tomografia computorizada cardíaca

Resumo

Objetivo: Avaliar a eficácia e segurança de um protocolo de redução de frequência cardíaca (FC) utilizando esmolol endovenoso após falência de metoprolol oral, em doentes submetidos a angiografia coronária por tomografia computorizada (CCTA) de 64 cortes.

Métodos: De 2011 a 2014 foram avaliados os indivíduos submetidos a CCTA num único centro. Os indivíduos com FC >60 bpm à admissão receberam 50-200 mg de metoprolol oral pelo menos uma hora antes da CCTA. Esmolol endovenoso em bolus (1-2 mg/kg) foi administrado se FC >65 bpm imediatamente antes da aquisição de imagem. O endpoint primário de eficácia foi FC <65 bpm durante a aquisição de imagem com contraste. O endpoint primário de segurança foi hipotensão ou bradicardia sintomática durante a permanência no hospital.

Resultados: Foram efetuadas 947 CCTA durante o período de estudo. Em 86% dos casos, metoprolol oral foi o único fármaco utilizado. Foi necessária a administração de esmolol em 130 (14%) doentes. Nos doentes que receberam esmolol, a FC basal reduziu em média de 74±14 bpm para 63±9 bpm (p<0,001). O objetivo primário de FC <65 bpm foi alcançado em 82 desses 130 doentes (63%). Considerando toda a população, o recurso a esmolol permitiu um aumento significativo da pressão arterial sistólica (144±22 para 115±17 mmHg; p<0,001). O endpoint combinado de segurança foi observado em dois (1,5%) dos doentes.

Conclusão: Apesar da utilização sistemática de betabloqueante oral, 14% dos casos necessitaram de esmolol endovenoso para controlo adequado de FC. Pré-medicacção combinada de metoprolol oral e esmolol endovenoso quando necessária foi segura e eficaz, e permitiu que 95% dos doentes apresentassem FC <65 bpm no momento da aquisição de imagem.

© 2016 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. Todos os direitos reservados.
Bailout intravenous esmolol for heart rate control

Blood pressure and HR were assessed at baseline, in the CT room before and after scanning, and before discharge until systolic blood pressure (SBP) was >100 mmHg and HR >50 bpm or had returned to baseline.

Scan protocol and image reconstruction

A single scanner was used for all cases (LightSpeed VCT XT, GE Healthcare, Milwaukee, USA). First, unenhanced prospective heart rate-triggered axial scanning of the heart was performed for calcium scoring (slice thickness 2.5 mm; voltage 120 kV, tube current 70 mA; 0.35 s partial rotation) just after sublingual nitrate administration. In view of the requirement for esmolol administration (HR on the CT table >65 bpm) a conservative acquisition approach was used and retrospective gating with dose modulation was selected for all these patients. The contrast-enhanced scan was obtained using Visipaque™ (iodixanol) 320 mg injected through a peripheral vein at 5 ml/s followed by a saline bolus chase. The scan parameters used were 0.625 mm collimation, rotation time 350 ms, pitch adjusted to each patient’s HR, tube voltage 80-120 kV, and effective mA 100-600.

Estimated effective radiation dose was calculated by applying a factor of 0.014 to the volumetric CT dose. Calcium scoring was included in the total effective radiation dose. Electrocardiographically gated datasets were reconstructed from 40% to 80% of the R-R cycle length in 10% increments.

Endpoints

The primary efficacy endpoint was HR <65 bpm during contrast image acquisition and the secondary efficacy endpoint was HR <60 bpm during contrast image acquisition.

The primary safety endpoint was symptomatic hypotension (SBP <90 mmHg) or bradycardia (heart rate <45 bpm) up to hospital discharge, while the secondary safety endpoints were SBP <90 mmHg or HR <45 bpm (with or without symptoms) up to hospital discharge.

Statistical analysis

The statistical analysis was performed using IBM SPSS Statistics (version 22; IBM SPSS, Chicago, IL). Continuous variables were expressed as mean ± standard deviation or median ± interquartile range. Normality was tested by the Kolmogorov-Smirnov test. Study group characteristics were compared using the Student’s t test or the Wilcoxon-Mann-Whitney test for continuous variables, and Pearson’s chi-square test or Fisher’s exact test for categorical measures, as appropriate.
AVALIAÇÃO POR TOMOGRAFIA COMPUTADORIZADA DA AURICULA ESQUERDA E VEIAS PULMONARES

268 | S. Aguiar Rosa et al.

Results

Of the 947 CCTAs performed (76% of all CCTAs performed in the study period), HR >65 bpm during CCTA acquisition was achieved in 830 cases (86%) using the oral metoprolol regimen alone. Intravenous esmolol was necessary in the other 130 patients (54% male, mean age 60.9 ± 13.8 years and body mass index 27.40 ± 4.42 kg/m²) (Table 1). Nearly half (53%) of the esmolol-treated patients had been pre-medicated before admission with oral beta-blockers in accordance with the indications of the referring physician.

In about one third (35%) of esmolol-treated patients, HR was <65 bpm while on presentation but on the CT table HR increased to >65 bpm on presentation was <60 bpm and thus they received no oral metoprolol, but on the CT table HR increased to >65 bpm on presentation was <60 bpm and thus they received no oral metoprolol (mean dose 0.69 mg/kg) according to the predefined study protocol. The mean time between first oral dose of metoprolol and intravenous esmolol administration was 82 ± 39 min. The mean esmolol dose administered was 1.54 mg/kg.

Initial mean HR in esmolol-treated patients was 74 ± 14 bpm, which decreased to 63 ± 9 bpm during CCTA acquisition (p < 0.001), corresponding to a significant mean reduction in HR of 15 ± 13% (Figure 2). During CCTA HR variability, defined as (maximum HR - minimum HR)/mean HR, was 6.3 ± 7.1 in esmolol patients. HR >65 bpm was achieved in 82 of the 130 esmolol-treated patients (63%). Thus, considering the entire CCTA population, the combined metoprolol/esmolol regimen led to a significant increase in the primary efficacy endpoint, from 86% to 95% (p < 0.001) (Figure 3).

The secondary efficacy endpoint (HR >60 bpm) was reached in 47 of the 130 esmolol patients (36%). Four of the esmolol-treated patients (3%) had minimum HR below 45 bpm. Mean time to HR recovery to >60 bpm in these patients was 37.8 ± 32.3 min. During CCTA, HR above 80 bpm was observed in five (4%) patients. Mean HR at discharge was 64 ± 7 bpm (Figure 2) in the esmolol group.

Esmolol use resulted in a significant reduction in mean SBP (143 ± 21 to 115 ± 17 mmHg; p < 0.001). In 11 patients (8%) SBP decreased to levels below 90 mmHg. Mean SBP at discharge was 119 ± 18 mmHg (Figure 4A). Initial diastolic blood pressure was 80 ± 12 mmHg, decreasing to 62 ± 11 mmHg after intravenous esmolol (p < 0.001). Diastolic blood pressure at discharge was 69 ± 10 mmHg (Figure 4B).

The combined primary safety endpoint (symptomatic hypotension or symptomatic bradycardia) was only observed in two patients (1.5%). Both cases resolved with supine positioning, intravenous fluids and atropine (1 mg) administration, without further complications.

In esmolol-treated patients 113 scans (87%) were of good image quality, 10 (8%) were of moderate quality, and seven (5%) were of poor quality and considered non-diagnostic. In the latter group HR during CCTA was 75 ± 9 bpm and HR variability was 5.3 (42.6).

Retrospective gating with dose modulation was selected for all esmolol-treated patient due to high baseline HR. Mean estimated radiation dose was 9.8 ± 10.6 mSv.

Discussion

HR while scanning should be less than 65 bpm and ideally less than 60 bpm for optimal image quality when a 64-slice MDCT scanner is to be used. Despite this recommendation, in 2007 an American survey showed that there were differences in beta-blocker protocols and that a cutoff higher than 65 bpm was used by 80% of centers.

Metoprolol is the most common beta-blocker agent used to achieve HR control during CCTA. However, due to its low oral bioavailability, variable metabolism and inter-subject variability, the use of intravenous esmolol is recommended to control HR during CCTA. Esmolol administration should be preceded by placebo dose to assess baseline HR. HR >65 bpm is often achieved in patients on presentation. Mean time to HR recovery while on presentation is usually <15 min. When HR >65 bpm is achieved while on presentation but HR >65 bpm on the CT table, oral metoprolol should be administered.

Table 1 Clinical characteristics of patients receiving and not receiving esmolol.

<table>
<thead>
<tr>
<th></th>
<th>Esmolol</th>
<th>No esmolol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>60.9 ± 13.8</td>
<td>61.5 ± 13.7</td>
</tr>
<tr>
<td>Male</td>
<td>54.0%</td>
<td>52.9%</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>73.9 ± 13.7</td>
<td>75.4 ± 14.3</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>27.40 ± 4.42</td>
<td>23.7 ± 2.7</td>
</tr>
<tr>
<td>Hypertension</td>
<td>69.6%</td>
<td>73.5%</td>
</tr>
<tr>
<td>Diabetes</td>
<td>27.7%</td>
<td>26.5%</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>68.6%</td>
<td>66.9%</td>
</tr>
<tr>
<td>Current smoker</td>
<td>14.5%</td>
<td>12.5%</td>
</tr>
<tr>
<td>Previous MI</td>
<td>18.7%</td>
<td>12.5%</td>
</tr>
<tr>
<td>Previous PCI</td>
<td>17.9%</td>
<td>14.0%</td>
</tr>
<tr>
<td>Previous CABG</td>
<td>16.9%</td>
<td>8.1%</td>
</tr>
<tr>
<td>Previous beta-blockers</td>
<td>55.3%</td>
<td>45.6%</td>
</tr>
</tbody>
</table>
| BMI: body mass index; CABG: coronary artery bypass grafting; MI: myocardial infarction; PCI: percutaneous coronary intervention.

Figure 2 Changes in heart rate after esmolol administration. HR: heart rate.

Figure 3 Improvement in primary efficacy endpoint (heart rate >65 bpm) when intravenous esmolol was added to the heart rate reduction protocol. CCTA: cardiac computed tomography angiography; HR: heart rate.

cont.
variability, the results are often suboptimal. This has led to the use of several alternate regimens including intravenous metoprolol, other beta-blockers such as atenolol, ivabradine, or calcium channel blockers. Nevertheless intravenous metoprolol, the most commonly used parenteral beta-blocker, has demonstrated limited efficacy in lowering HR.

Ivabradine has been suggested as an alternative to beta-blockers. Regimens of oral ivabradine proved more effective in reducing HR than oral metoprolol\(^\text{14,15}\) and an intravenous protocol demonstrated efficacy and safety in patients ineligible for intravenous beta-blockers.\(^\text{16}\)

Esmolol may be at least as efficacious as intravenous metoprolol to achieve optimal HR.\(^\text{12}\) However, to our knowledge there are no studies reporting on esmolol use as bailout when previous oral HR regimens have failed.

In our study the oral metoprolol regimen used enabled 86% of patients to achieve target HR <65 bpm. This percentage is higher than described in previous studies. De Graaf et al. demonstrated optimal beta-blockade in 73% of CCTA patients using oral metoprolol.\(^\text{17}\) Intravenous metoprolol, also commonly used, again demonstrated limited efficacy in lowering HR. In a study by Jimenez-Juan et al. only 42% of patients who did not achieve HR <60 bpm with oral metoprolol reached target HR with additional intravenous metoprolol.\(^\text{18}\) These findings highlight the need for a more effective protocol for HR control. In addition, the rapid action and short half-life of esmolol make it an attractive drug in this setting. Similarly to data reported by Degerterekin et al.,\(^\text{16}\) in our study bolus esmolol produced HR below 65 bpm in 63% (82/130) of patients. Thus, the introduction of bailout intravenous esmolol enabled 95% of the entire cohort to be imaged with HR below 65 bpm. The mean HR reduction was 11 bpm, 4% of patients were imaged with HR greater than 80 bpm and only 5% of CCTA exams were considered to be non-diagnostic.

Our study suggests that despite an aggressive beta-blocker strategy, the risk of side effects was relatively small. Only 1.5% of patients had symptomatic hypotension or bradycardia. Wang et al. reported 0.4% incidence of adverse events in a Chinese population treated with intravenous esmolol only.\(^\text{11}\) In our cohort, however, esmolol was used on top of oral metoprolol in 64% of cases, which could explain the higher incidence of side effects. Contraindications for beta-blockers are often considered a limitation for CCTA in patients with relatively high HR. Esmolol’s short half-life could make it useful for patients who cannot tolerate prolonged beta-blockade.

We reported a higher effective radiation dose than some real-world registries.\(^\text{20}\) Unlike these studies, in which both prospective and retrospective acquisition protocols are reported, herein we report on a specific population subset in which only a retrospective acquisition protocol was chosen for all patients (because of high baseline HR). Also, in our registry about 13% of esmolol-treated patients had secondary indications for scanning, such as study for transcatheter aortic valve implantation, in which the scan range is significantly greater.

The introduction of high temporal resolution (83 ms) dual-source CT in clinical practice in 2005 has enabled high image quality diagnostic CCTA studies at increased HR with less dependency on HR lowering agents.\(^\text{21}\) However, the latest generation of dual-source scanners has introduced a new scan mode, prospectively ECG-triggered helical data acquisition with very high pitch values. The high pitch enables acquisition with very low radiation exposure (<1 mSv) but low and regular HR is critical for this technique. Consequently, effective HR reduction strategies are yet again pivotal if such very low dose acquisition protocols are to be followed.\(^\text{22}\)

Study limitations

This is a retrospective study with inherent limitations including potential selection bias. However, the HR control protocol was prospectively designed and uniformly applied to all eligible patients. Also, this was a single-center experience with a relatively small sample of esmolol-treated patients. Larger multicenter trials using placebo or intravenous metoprolol as active controls will be needed to clearly establish the role of intravenous esmolol in this setting.

Conclusion

Despite optimal use of oral metoprolol for HR control before CCTA, 14% of cases still required intravenous esmolol for HR control. Bailout administration of intravenous esmolol on the CT table was safe and effective and enabled 95% of patients to be imaged with HR below 65 bpm.
Ethical disclosures
Protection of human and animal subjects. The authors declare that no experiments were performed on humans or animals for this study.
Confidentiality of data. The authors declare that they have followed the protocols of their work center on the publication of patient data.
Right to privacy and informed consent. The authors have obtained the written informed consent of the patients or subjects mentioned in the article. The corresponding author is in possession of this document.
Conflicts of interest
The authors have no conflicts of interest to declare.

References
Effective radiation dose of three diagnostic tests in cardiology: single photon emission computed tomography, invasive coronary angiography and cardiac computed tomography angiography.

dé Araujo Goncalves, P., Jeronimo Sousa, P., Cale, R., Marques, H., Borges dos Santos, M., Dias, A., Dores, H., Carvalho, M. S., Ventosa, A., Martins, T., Campante Teles, R., Almeida, M., and Mendes, M.,

Rev Port Cardiol, 2013
32(12): p. 981-6
Effective radiation dose of three diagnostic tests in cardiology: Single photon emission computed tomography, invasive coronary angiography and cardiac computed tomography angiography

Pedro de Araújo Gonçalves a,b,c, Pedro Jerónimo Sousa a,c, Rita Calé d, Hugo Marques e, Miguel Borges dos Santos f, André Dias f, Hélder Dores f, Maria Salomé Carvalho a, António Ventosa g, Teresa Martins g, Rui Campante Teles h, Manuel Almeida a, Miguel Mendes i

* Corresponding author.
E-mail address: paraujogoncalves@yahoo.co.uk (P. de Araújo Gonçalves).

© 2013 Sociedade Portuguesa de Cardiologia. Published by Elsevier España, S.L. All rights reserved.
http://dx.doi.org/10.1016/j.repce.2013.05.010

KEYWORDS
Ionizing radiation; Single photon emission computed tomography; Invasive coronary angiography; Cardiac computed tomography; Obesity

Abstract
Introduction: Diagnostic tests that use ionizing radiation play a central role in cardiology and their use has grown in recent years, leading to increasing concerns about their potential stochastic effects.

The aims of this study were to compare the radiation dose of three diagnostic tests: single photon emission computed tomography (SPECT), invasive coronary angiography (ICA) and cardiac computed tomography (cardiac CT) and their evolution over time, and to assess the influence of body mass index on radiation dose.

Methods: We assessed consecutive patients included in three prospective registries (SPECT, ICA and cardiac CT) over a period of two years. Radiation dose was converted to mSv and compared between the three registries. Differences over time were evaluated by comparing the first with the fourth semester.

Results: A total of 6196 exams were evaluated: 35% SPECT, 53% ICA and 22% cardiac CT. Mean radiation dose was 10.7±1.2 mSv for SPECT, 8.1±6.4 mSv for ICA, and 5.4±3.8 mSv for cardiac CT (p<0.001 for all). With regard to the radiation dose over time, there was a very small
reduction in SPECT (10.7 to 10.5 mSv, p=0.004), a significant increase (25%) in ICA (7.0 to 8.8 mSv, p<0.001), and a significant reduction (29%) in cardiac CT (6.5 to 4.6 mSv, p<0.001). Obesity was associated with a significantly higher radiation dose in all three exams.

Conclusions: Cardiac CT had a lower mean effective radiation dose than invasive coronary angiography, which in turn had a lower mean effective dose than SPECT.

There was a significant increase in radiation doses in the ICA registry and a significant decrease in the cardiac CT registry over time.

© 2013 Sociedade Portuguesa de Cardiologia. Published by Elsevier España, S.L. All rights reserved.

PALAVRAS-CHAVE
Radiação; Cintigrafia de perfusão miocárdica; Coronariografia invasiva; Tomografia computorizada cardíaca; Obesidade

Dose efetiva de radiação de três exames de diagnóstico em cardiologia: cintigrafia de perfusão miocárdica, coronariografia invasiva e tomografia computorizada cardíaca

Resumo
Introdução: Os exames diagnósticos que usam radiação ionizante têm um papel central na cardiologia e a par do seu uso crescente, tem aumentado a preocupação pelos seus potenciais efeitos estocásticos.

Os objetivos deste estudo foram: 1) Comparar a dose de radiação de três exames: Cintigrafia de perfusão miocárdica (SPECT), coronariografia invasiva (ICA) e tomografia computorizada cardíaca (AngioTC) e a sua evolução temporal. 2) Avaliar o impacto do índice de massa corporal na dose de radiação.

Métodos: Doentes consecutivos incluídos em três registos prospectivos (SPECT, CAT e AngioTC) durante dois anos. A dose de radiação foi convertida a mSv e comparada entre os três registos. A evolução temporal foi avaliada por comparação do 1.º e 4.º semestres.

Resultados: Foram avaliados 6196 exames: 35% SPECT, 53% CAT e 22% AngioTC. A dose de radiação foi: 10,7 ± 1,2 mSv para o SPECT; 8,1 ± 6,4 mSv para o CAT; 5,4 ± 3,8 mSv para a AngioTC (p < 0,001 todas comparações).

Evolução temporal da dose de radiação: redução muito ligeira no SPECT (10,7 para 10,5 mSv, p = 0,004); aumento significativo (25%) no CAT (7,0 para 8,8 mSv; p < 0,001); redução significativa (29%) na AngioTC (6,5 para 4,6 mSv; p < 0,001). A obesidade associou-se a níveis de radiação significativamente mais elevados nos três exames.

Conclusão: O exame associado a uma menor dose de radiação foi a AngioTC, seguida do CAT que, por sua vez, foi menor que a do SPECT. Houve um aumento significativo da dose de radiação no registo CAT e uma redução significativa no registo da AngioTC ao longo do tempo.

© 2013 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L. Todos os direitos reservados.

List of abbreviations
BMI Body mass index
CAD coronary artery disease
CT computed tomography
ICA invasive coronary angiography
SPECT single photon emission computed tomography

Introduction
In recent years, the development of imaging techniques using ionizing radiation has resulted in considerable progress in the diagnosis and treatment of heart disease. Three commonly used diagnostic modalities that involve ionizing radiation are used for assessing patients with possible coronary artery disease (CAD): single photon emission computed tomography (SPECT), cardiac computed tomography (cardiac CT) and invasive coronary angiography (ICA), the latter being considered the gold standard for the diagnosis of CAD.1

Different radiation doses have been reported for each of these exams, ranging from 5 to 10 mSv for ICA, 6 to 15 mSv for SPECT, and 4 to 21 mSv for cardiac CT.2-5 With more frequent use of these exams, there have been growing concerns about the radiation’s potential secondary effects, especially the stochastic effects of high cumulative doses over time.6,7

We have previously reported on the effective radiation dose associated with cardiac CT in a single-center registry, documenting a significant decrease in dose over time, and were able to identify the predictors of higher dose.8

New scanners and acquisition protocols have recently been developed which lead to significant reductions in radiation dose associated with cardiac CT.9,10

The aims of this study were to evaluate and compare the radiation dose used in three diagnostic tests – SPECT, ICA and cardiac CT – and their evolution over time, and to assess the influence of body mass index on radiation dose.

cont.
Effective radiation dose of three diagnostic tests in cardiology

Table 1 Demographic and clinical characteristics of the study population.

<table>
<thead>
<tr>
<th></th>
<th>Cardiac CT (n=1344)</th>
<th>ICA (n=3267)</th>
<th>SPECT (n=1585)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years, mean ± SD)</td>
<td>59±12</td>
<td>66±12</td>
<td>64±9</td>
</tr>
<tr>
<td>Male (%)</td>
<td>60%</td>
<td>61%</td>
<td>63%</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>27.3±4.3</td>
<td>27.3±4.2</td>
<td>27.5±4.4</td>
</tr>
<tr>
<td>Diabetes (%)</td>
<td>16%</td>
<td>29%</td>
<td>N/A</td>
</tr>
<tr>
<td>Hypertension (%)</td>
<td>57%</td>
<td>72%</td>
<td>N/A</td>
</tr>
<tr>
<td>Dyslipidemia (%)</td>
<td>54%</td>
<td>57%</td>
<td>N/A</td>
</tr>
<tr>
<td>Smoking (%)</td>
<td>27%</td>
<td>31%</td>
<td>N/A</td>
</tr>
<tr>
<td>Previous MI (%)</td>
<td>3%</td>
<td>17%</td>
<td>N/A</td>
</tr>
<tr>
<td>Previous PCI (%)</td>
<td>7%</td>
<td>18%</td>
<td>N/A</td>
</tr>
<tr>
<td>Previous CABG (%)</td>
<td>3%</td>
<td>7%</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Values are means (SD) or percentages. BMI: body mass index; CABG: coronary artery bypass grafting; CT: computed tomography; ICA: invasive coronary angiography; MI: myocardial infarction; N/A: not available; PCI: percutaneous coronary intervention; SPECT: single photon emission computed tomography.

Methods

From three prospective registries of SPECT, ICA and cardiac CT, we selected for this analysis the exams performed during a two-year period (October 1, 2008 to September 30, 2010) in which the indication was assessment of possible CAD.

The exams were performed with an SMV DST-XL gamma camera using 99m Tc-tetrofosmin with stress/rest or rest/stress protocols (SPECT registry), a Siemens Coroskop TOP/ARTIS dFC system (ICA registry), and a Siemens Somatom Definition dual-source scanner (cardiac CT registry). The effective radiation dose was converted to mSv in accordance with current literature and the manufacturer’s product information and compared between the registries.

Briefly, a factor of 0.014 mSv/Gy cm was used for the conversion of cardiac CT dose-length product, 9,11 a factor of 0.183 mSv/Gy cm² was used for the conversion of ICA dose-area product, 12,13 and factors of 0.0060 mSv/MBq⁻¹ (after exercise) and 0.0071 mSv/MBq⁻¹ (at rest) were used for the conversion of injected activity in SPECT. 14-16 To evaluate the evolution of radiation doses over time, the study period was divided into four semesters according to the date of the exam and effective radiation dose was compared between the first and last semesters in each registry. All prospectively collected variables in the respective registries were analyzed, looking for predictors of dose change over time.

Statistical analysis

Continuous variables are presented as mean ± standard deviation (unless otherwise specified), and categorical variables as number (n) or frequency (%). Continuous variables were analyzed using the Mann–Whitney or Kruskal–Wallis nonparametric tests. The chi-square test was used to assess differences in frequencies.

Statistical significance was accepted for two-sided p values <0.05. The statistical analysis was performed using SPSS Statistics 17.0 for Windows.

Results

During the two-year period of this analysis, 6196 exams were performed: 3267 (52.7%) ICA, 1585 (25.6%) SPECT and 1344 (21.7%) cardiac CT. The demographic and clinical characteristics of the study population are presented in Table 1. Mean effective radiation dose was 8.2±5.6 mSv for the whole population, 10.7±1.2 mSv for SPECT, 8.1±1.4 mSv for ICA and 5.4±1.3 mSv for cardiac CT (p<0.001 for all comparisons, Figure 1).

Division of the study period into semesters showed that there was a small but significant reduction in mean effective radiation dose over time for SPECT (10.7 to 10.5 mSv; p<0.01). In cardiac CT there was a significant 29% decrease in mean effective radiation dose (6.5 to 4.6 mSv; p<0.001) and in ICA a significant 25% increase (7.0 to 8.8 mSv; p<0.001) (Table 2 and Figure 2).

The factors associated with the 25% increase in mean effective radiation dose with ICA from the first to the fourth semester were the higher proportions of positive exams, radial vascular access and exams performed by fellows in
Table 2 Mean effective radiation dose for each exam over the four semesters.

<table>
<thead>
<tr>
<th>Exam</th>
<th>1st semester</th>
<th>2nd semester</th>
<th>3rd semester</th>
<th>4th semester</th>
<th>p (1st vs. 4th)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECT</td>
<td>10.7 ± 1.1</td>
<td>10.7 ± 1.4</td>
<td>10.7 ± 1.3</td>
<td>10.5 ± 0.9</td>
<td>0.004</td>
</tr>
<tr>
<td>ICA</td>
<td>7.0 ± 6.0</td>
<td>7.6 ± 5.6</td>
<td>9.0 ± 6.9</td>
<td>8.7 ± 6.9</td>
<td><0.001</td>
</tr>
<tr>
<td>Cardiac CT</td>
<td>6.5 ± 3.7</td>
<td>6.2 ± 4.2</td>
<td>5.0 ± 4.1</td>
<td>4.6 ± 3.0</td>
<td><0.001</td>
</tr>
</tbody>
</table>

CT: computed tomography; ICA: invasive coronary angiography; SPECT: single photon emission computed tomography.

The only variable associated with the decrease in effective radiation dose for cardiac CT was the use of prospective (step-and-shoot) acquisition: the use of a prospective acquisition protocol was associated with a decrease of 60% in effective radiation dose. In the first semester no exams were performed with this protocol, while in the fourth semester 45% were acquired prospectively (Table 3).

The influence of body mass index on mean effective radiation dose was also evaluated. There was a significantly higher dose in obese patients (BMI ≥30 kg/m²) compared to overweight patients, which in turn was higher that in patients with normal weight (BMI <25 kg/m²) (Figure 3).

Discussion

In this analysis, we found significantly different effective radiation doses associated with common diagnostic tests used in cardiology. The dose was highest for SPECT, followed by ICA and lowest for cardiac CT. Furthermore, we found
Effective radiation dose of three diagnostic tests in cardiology

some time trends in the mean effective radiation dose associated with ICA and cardiac CT related to particular clinical and procedural methodologies.

The biological effects of ionizing radiation are related to the cumulative effective dose, and doses above 100 mSv have been linked to stochastic effects including the development of cancer, while the effects of lower radiation levels, common in diagnostic X-ray imaging, are much less clear.1,12 Although other theoretical models based on dose-threshold and hormetic effects have been proposed, the more conservative linear no-threshold model, which assumes that no radiation dose between three different diagnostic exams, radiation dose used.

The mean effective radiation dose we found for each exam is in agreement with previous studies.1,2,3,19 Furthermore, we confirmed that certain variables influence the effective radiation dose delivered by these exams. For ICA, the effective radiation dose increased with the use of radial access and with less experienced operators, which is in line with published data.2,3,9 The higher radiation dose in the ICA registry over time was also associated with a higher proportion of positive exams; although we did not quantify the difference between positive and negative ICA, we can assume that positive tests needed more cine angiograms of the coronary arteries, with a consequent increase in the radiation dose used.

For cardiac CT, the introduction and increasingly frequent use of a prospective protocol during the study period was associated in our experience with a significant decrease in the effective radiation dose for this exam, as has been demonstrated by other authors.20-22 Finally, for SPECT, the dose change over time was very small, which is to be expected since there were no changes in protocol during the study period.

It is worth noting that during the same period, doses associated with stress-only and rest-only SPECT studies were significantly lower (with mean effective doses of 2.3±0.9 mSv and 5.8±1.0 mSv, respectively) but they were not considered for the purpose of this study, and the small number of patients involved (n=49 and n=63, respectively) would not have had a significant impact on the overall SPECT radiation dose.

Mean effective radiation doses were significantly higher for obese patients in all the exams analyzed. This was especially true for cardiac CT and ICA, with an almost two-fold increase in radiation dose compared to their normal-weight counterparts. In the SPECT registry, the effect of BMI was less pronounced. This should be taken in consideration when selecting the appropriate diagnostic exam, especially for those at higher risk from radiation exposure, like women and younger patients.21 In line with this, particular attention should be paid to cardiac CT dose, since patients in our registry undergoing cardiac CT were significantly younger than those in the ICA and SPECT registries.

Although the present study focuses on comparison of the radiation dose between three different diagnostic exams, other features should be taken into account when comparing different imaging modalities. As cardiac CT and ICA require the administration of iodinated contrast, care should be taken in the presence of impaired renal function or history of allergies; likewise, the probability of CAD is also an important factor, as SPECT and ICA are more appropriate for patients with higher probability of CAD.24,25 Thus, all these features (radiation dose, need for iodinated contrast and CAD probability) should be taken into consideration when selecting the most appropriate exam for each patient.

Conclusions

In these registries of diagnostic tests commonly used in cardiology, the mean effective radiation dose used in cardiac CT was lower than that used in ICA, which in turn was lower than the doses used in SPECT. There was a significant increase over time in the mean effective radiation dose associated with ICA, mainly related to the increased use of radial access, and a decrease in cardiac CT doses as a consequence of the implementation of a prospective protocol. Obesity was associated with a significantly higher radiation dose in all three exams.

Ethical disclosures

Protection of human and animal subjects. The authors declare that the procedures followed were in accordance with the regulations of the relevant clinical research ethics committee and with those of the Code of Ethics of the World Medical Association (Declaration of Helsinki).

Confidentiality of data. The authors declare that they have followed the protocols of their work center on the publication of patient data and that all the patients included in the study received sufficient information and gave their written informed consent to participate in the study.

Right to privacy and informed consent. The authors have obtained the written informed consent of the patients or subjects mentioned in the article. The corresponding author is in possession of this document.

Conflicts of interest

The authors have no conflicts of interest to declare.

References

cont.

25. NICE clinical guideline 95. Chest pain of recent onset: assessment and diagnosis of recent onset chest pain or discomfort of suspected cardiac origin. Available from: http://www.nice.org.uk/guidance/CG95
Radiation in cardiac CT: predictors of higher dose and its reduction over time.

Rev Port Cardiol, 2010
29(11): p. 1655-65
Radiação na AngioTC cardíaca: preditores de maior dose utilizada e sua redução ao longo do tempo [115]

PEDRO JERÔNIMO SOUSA1, PEDRO ARAÚJO GONÇALVES1, HUGO MARQUES2, LÍEIS RAPoso1, RITA CAlE1, JOÃO BRITO3, AUGUSTO GASPAR2, FRANCISCO PEREIRA MACHADO4, JOSÉ ROQUETTE1

1 Centro Cardiovascular, Hospital da Luz, Lisboa, Portugal
2 Centro de Imaginologia, Hospital da Luz, Lisboa, Portugal

RESUMO

A tomografia computorizada cardíaca é um método não invasivo de obter informação da anatomia cardíaca, permitindo avaliar a doença coronária. No entanto, uma das limitações que tem vindo a ser apontada a este exame é a utilização de radiação. O objectivo deste trabalho foi avaliar a variação da dose de radiação ao longo do tempo e identificar variáveis que se associassem ao seu aumento.

Foi analisado um registo prospectivo de 643 doentes submetidos a TC cardíaca com 64 cortes e dupla ampola (Dual source CT - Somaton Definition®, Siemens-medical) durante os anos de 2007 e 2008. A amostra foi dividida em quartis, segundo a ordem cronológica de realização dos exames. Verificou-se uma redução progressiva da mediana da dose de radiação ao longo dos quartis analisados (Q1: 8.9 [5.9-14.1], Q2: 6.6 [5.5-10.7], Q3: 6.4 [5.3-8.7], Q4: 6.1 [5.2-7.9]), significativa quando o primeiro quartil foi comparado com os restantes (p<0.05). Paralelamente a este decréscimo, verificou-se uma utilização progressivamente maior de uma voltagem da ampola de 100Kv (p<0.001). Os predictores

Radiation in cardiac CT: predictors of higher dose and its reduction over time

ABSTRACT

Introduction: Cardiac CT provides noninvasive information on cardiac anatomy, particularly in coronary artery disease. However, exposure to radiation has been identified as a limitation of this exam. The aim of this study was to evaluate variations in radiation dose over time and to identify variables associated with use of higher radiation doses.

Methods: A prospective registry of 643 patients who underwent 64-slice dual source cardiac CT scan (Dual source CT - Somaton Definition®, Siemens-Medical) during 2007 and 2008 was analyzed.

Results: The sample was divided into quartiles according to the chronological order of the exams. There was a progressive reduction in median radiation dose in the quartiles analyzed (Q1: 8.9 [5.9-14.1], Q2: 6.6 [5.5-10.7], Q3: 6.4 [5.3-8.7], Q4: 6.1 [5.2-7.9] mSv), significant when the first quartile was compared with the others.
INTRODUÇÃO

de uma dose de radiação alta foram: IMC>32, cirurgia cardíaca prévia, presença de fibrilação auricular na aquisição, maior tempo de aquisição e o uso 120 kV como voltagem da ampola. Quando pelo menos uma destas características estava presente (um terço da população), a dose de radiação foi significativamente superior [12,1 (9,5-14,8) versus 5,7 (5,0-6,7) mSv; p<0,001].

Palavras Chave: AngioTC Cardíaco; Radiação

INTRODUCTION

Invasive coronary angiography is considered the gold standard for diagnosis of coronary artery disease. However, noninvasive exams such as exercise testing, myocardial perfusion scintigraphy, stress echocardiography, computed tomography (CT) and cardiac magnetic resonance imaging are alternative methods of assessing cardiac anatomy and physiology.

Over the last thirty years, CT has come to play an important role in diagnostic evaluation. The modern era of CT angiography began around 1997 with the introduction into clinical practice of single-slice spiral systems. The development of new generations of CT scanners led to progressive improvements in spatial and temporal resolution and significant reductions in acquisition time. Since the introduction of 64-slice systems in 2004, noninvasive coronary CT angiography has aroused particular interest for its ability to exclude the presence of coronary artery disease due to its high negative predictive value (Figure 1).

Along with this reduction, there was a progressive increase in the use of a tube voltage of 100 kV (p<0.001). Predictors of a higher radiation dose were higher body mass index, previous cardiac surgery, atrial fibrillation during acquisition, longer acquisition time and use of a tube voltage of 120 kV. When one or more of these variables were present (one third of the population), the radiation dose was significantly higher (12.1 [9.5-14.8] vs. 5.7 [5.0-6.7] mSv, p<0.001).

Key words: Cardiac CT; Radiation
Paralelamente a esta evolução tecnológica, a dose de radiação utilizada na aquisição de imagens de TC tem vindo a aumentar com os aparelhos mais recentes. A exposição estimada aumentou de 5-8 mSv (TC de quatro cortes) para 15-20 mSv (TC de 64 cortes)\(^3\). Com os sistemas de última geração, em particular com os aparelhos de dupla ampola e os de 320 cortes, espera-se que a melhoria da qualidade de imagem seja acompanhada por uma redução da dose de radiação.

Existe igualmente uma grande variabilidade de nesta dose entre os vários centros e os vários aparelhos, com medianas de doses de radiação que variam entre 4,9 e 29,1 mSv\(^4\).

No entanto, esta dose de radiação elevada, apontada como uma limitação para esta técnica, pode ser eficazmente reduzida tanto pela optimização dos protocolos de aquisição existentes, como pelo desenvolvimento de novos softwares e protocolos.

O objectivo deste trabalho foi avaliar a evolução temporal da dose de radiação na TC cardíaca e identificar variáveis associadas a doses mais elevadas de radiação.

MÉTODOS

Todos os doentes submetidos a TC cardíaca recente generation scanners, particularly dual-source and 320-slice machines, will be accompanied by a reduction in radiation dose.

There are also considerable variations between different centers and systems, with median radiation doses ranging between 4.9 and 29.1 mSv\(^6\).

This high radiation dose has been identified as a limitation of the technique, but it can be significantly reduced by optimization of existing acquisition protocols and by the development of new software and protocols.

The aim of this study was to evaluate variations in radiation dose in cardiac CT over time and to identify variables associated with use of higher radiation doses.

METHODS

All patients who underwent cardiac CT with a dual-source 64-slice scanner (Somatom Definition® - Siemens Medical Systems) during 2007 and 2008 were enrolled in a prospective single-center registry. This population of 643 patients was divided into quartiles (Q1-Q4) according to the chronological order of the exams, in order to analyze radiation dose over time.

Demographic (age and gender) and clinical

cont.
AVALIAÇÃO POR TOMOGRAFIA COMPUTADORIZADA DA AURÍCULA ESQUERDA E VEIAS PULMONARES

De 64 cortes de dupla ampola (Somatom Definition® - Siemens Medical) de 2007 e 2008 foram incluídos num registo prospectivo de centro único. Esta população (643 doentes) foi dividida em quartis, de acordo com a ordem cronológica dos exames, para estudar a dose de radiação ao longo do tempo.

Variáveis demográficas (idade, sexo), clínicas [presença de factores de risco cardiovascular, índice de massa corporal (IMC), cirurgia cardíaca prévia, enfarte de miocárdio prévio e presença de fibrilhação auricular] e de protocolo (tempo de aquisição, dose de contraste, frequência cardíaca e uso de voltagem da ampola de 120 kVs) foram avaliadas de modo a identificar os predictores de uma dose de radiação mais elevada (definida como presente quando superior à mediana da população). As variáveis identificadas como predictores por análise univariada foram combinadas num modelo de regressão logística para apurar os predictores independentes da utilização de elevada dose de radiação.

Acquisition protocol and image reconstruction

All scans were performed with a dual-source 64-slice scanner (Somatom Definition, Siemens Medical Systems, Forchheim, Germany), with the patient in dorsal decubitus and in deep inspiration breath-hold. Sublingual nitroglycerin was administered to all patients except when contraindicated. No beta-blockers were administered specifically for the exam.

The contrast medium used was intravenous ioxaglate (320 mg/ml – Visipaque®) in a 6 ml/s infusion. The quantity of contrast was calculated according to the following formula: (acquisition time + 6 s delay) x flow (6 ml/s).

Contrast administration was followed by flushing with 50 ml saline (6 ml/s).

Statistical analysis

SPSS version 17.0 was used for the statistical analysis. Continuous variables are pre-
temporal de 83ms, a espessura dos cortes de 0,75mm, com incrementos de 0,4mm. Foi feito o pós-processamento numa consola com o software Circulation, sendo utilizadas reconstruções multiplanares (MPR), de projeção de intensidade máxima (MIP) e de volume (VRT).

Foi utilizado meio de contraste (Iodixanol 320 mg/mL – Visipaque®) endovenoso, a uma infusão de 6 ml/seg. A quantidade de contraste dependeu da duração da aquisição e foi calculada pela seguinte fórmula: (duração da aquisição + delay 6 seg) x fluxo (6ml/seg).

A injeção de contraste foi seguida de um flush de 50 mL de soro fisiológico (6 mL/seg).

ANÁLISE ESTATÍSTICA

A análise estatística foi efectuada utilizando a aplicação SPSS Statistics 17,0 para Windows. As variáveis contínuas apresentam-se como mediana (intervalo interquartil) e as categóricas como número (n) ou frequência (%).

Para comparar diferenças entre variáveis contínuas, utilizaram-se os testes não paramétricos de Mann-Whitney ou Kruskal-Wallis e o Chi quadrado foi aplicado para testar diferenças em frequências. A análise multivariada foi efectuada através de um modelo de regressão logística.

Aceitou-se existir diferença significativa quando p<0.05 (duas caudas).

RESULTADOS

Os resultados apresentam-se na Tabela I.

A mediana da idade foi de 59 (52-66) anos, 60% dos indivíduos eram do sexo masculino e o IMC foi de 26 (24-29) kg/m². Aquisição foram 8 (7-10) segundos, foi administrado 84 (78-96) mL de contraste e o dose de radiação foi de 6,6 (5,4-10,7) mSv. A frequência cardíaca durante a aquisição foi 65 (56-75) bpm, com não tendo sido realizada redução adicional da frequência cardíaca para a aquisição. Não se verificaram diferenças entre os quartis analisados relativamente a estas variáveis.

A mediana da dose de radiação foi de 6,6

sentado as medians (interquartile range) and categorical variables as frequencies (n) or percentages (%).

The non-parametric Mann-Whitney or Kruskal-Wallis tests were used to compare continuous variables, and the chi-square test to test differences in frequencies. Multivariate analysis was performed using a logistic regression model.

Differences were taken to be significant when p<0.05 (two-tailed).

RESULTS

The results are presented in Table I.

The patients’ median age was 59 (52-66) years, 60% were male and BMI was 26 (24-29) kg/m². Acquisition time was 8 (7-10) s, 84 (78-96) ml of contrast was administered and the radiation dose was 6.6 (5.4-10.7) mSv. Heart rate during acquisition was 65 (56-75) bpm, with no additional heart rate lowering being carried out. No differences were observed between quartiles in terms of these variables.

There was a progressive reduction in the median radiation dose over time (Q1: 8.9 [5.9-14.1], Q2: 6.6 [5.5-10.7], Q3: 6.4 [5.3-8.7], Q4: 6.1 [5.2-7.9] mSv). This difference was significant when the first quartile was compared with the others (Figure 2).

A tube voltage of 100 kV was used in 78% of the exams. There was a progressive increase in the use of this voltage over time (Q1: 54%, Q2: 79%, Q3: 87%, Q4: 91%; p<0.001) (Figure 2).

On univariate analysis, predictors of a higher radiation dose (above the median) were male gender, higher BMI, previous cardiac surgery, previous MI, atrial fibrillation during acquisition, longer acquisition time and use of a tube voltage of 120 kV (Table II).

On multivariate analysis, predictors of a higher radiation dose were higher BMI, previous cardiac surgery, atrial fibrillation during acquisition, longer acquisition time and use of a tube voltage of 120 kV (Table III).

Patients with one or more of the following:
AVALIAÇÃO POR TOMOGRAFIA COMPUTADORIZADA DA AURÍCULA ESQUERDA E VEIAS PULMONARES

(5,4-10,7) mSv e verificou-se uma redução progressiva ao longo do tempo [Q1: 8,9 (5,9-14,1), Q2: 6,6 (5,3-10,7), Q3: 6,4 (5,3-8,7), Q4: 6,1 (5,2-7,9)]. Esta diferença foi significativa quando o primeiro quartil foi comparado com os restantes (Figura 2).

Em 78% dos exames utilizou-se uma voltagem da ampola de 100 kVs. Houve um aumento progressivo da seleção desta voltagem com o tempo (Q1: 54%, Q2: 79%, Q3: 87%, Q4: 91%; p<0,001 – Figura 2).

Por análise univariada, os preditores de uma dose de radiação alta (acima da mediana) foram: sexo masculino, maior IMC, cirurgia cardíaca prévia, enfarte de miocárdio prévio, ritmo de fibrilhação auricular na aquisição, maior tempo de aquisição ou dose de contraste administrada, menor frequência cardíaca e utilização de uma voltagem da ampola de 120 kV (Tabela II).

Por análise multivariada, os preditores de uma dose de radiação alta foram: maior IMC, cirurgia cardíaca prévia, presença de fibrilhação auricular na aquisição, maior tempo de acquisition time and higher contrast dose (which, as it depends on the former, lost its predictive value on multivariate analysis) were also associated with higher radiation dose.

DISCUSSION

In this study we set out to identify the factors associated with a higher radiation dose in cardiac CT angiography. The use of a 120-kV tube voltage was a predictor of a higher radiation dose, as was higher BMI, since this meant the voltage could not be reduced. Longer acquisition time and higher contrast dose (which, as it depends on the former, lost its predictive value on multivariate analysis) were also associated with higher radiation dose.
Figura 2. Representação gráfica da evolução da dose de radiação de acordo com os quartis de tempo. A percentagem incluída nas colunas representa a proporção de utilização de 100 kV como voltagem da ampola (versus 120 kV)

<table>
<thead>
<tr>
<th>Dose de radiação</th>
<th>Abaixo da mediana (6,6mSv)</th>
<th>Acima da mediana (6,6mSv)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variáveis demográficas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idade (anos)</td>
<td>58 (52-65)</td>
<td>60 (51-68)</td>
<td>0,202</td>
</tr>
<tr>
<td>sexo masculino (%)</td>
<td>50</td>
<td>68</td>
<td><0,001</td>
</tr>
<tr>
<td>Variáveis clínicas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 1 FRCV (%)</td>
<td>83%</td>
<td>87%</td>
<td>0</td>
</tr>
<tr>
<td>IMC (kg/m²)</td>
<td>26 (24-28)</td>
<td>27 (25-30)</td>
<td><0,001</td>
</tr>
<tr>
<td>Cirurgia cardíaca prévia (%)</td>
<td>1%</td>
<td>11%</td>
<td><0,001</td>
</tr>
<tr>
<td>Enfarte de miocárdio prévio (%)</td>
<td>5%</td>
<td>10%</td>
<td>0,010</td>
</tr>
<tr>
<td>FA (%)</td>
<td>9%</td>
<td>11%</td>
<td><0,001</td>
</tr>
<tr>
<td>Variáveis do protocolo:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo de aquisição (seg)</td>
<td>7 (6-8)</td>
<td>9 (7-11)</td>
<td><0,001</td>
</tr>
<tr>
<td>Dose de contraste</td>
<td>78 (72-84)</td>
<td>90 (76-102)</td>
<td><0,001</td>
</tr>
<tr>
<td>Frequência cardíaca</td>
<td>68 (60-77)</td>
<td>63 (54-73)</td>
<td><0,001</td>
</tr>
<tr>
<td>Voltagem da ampola 120 kV</td>
<td>2%</td>
<td>41%</td>
<td><0,001</td>
</tr>
</tbody>
</table>

FA: Fibrilhação auricular; FRCV: Factores de Risco Cardiovasculares; IMC: Índice de Massa Corporal;
AVALIAÇÃO POR TOMOGRAFIA COMPUTADORIZADA DA AURÍCULA ESQUERDA E VEIAS PULMONARES

aquisição e o uso 120 kV como voltagem da ampola (Tabela III).

Doentes com pelo menos uma das seguintes variáveis de: IMC >32,4 kg/m² (melhor limiar para discriminar radiação alta), cirurgia cardíaca prévia, aquisição em fibrilação auricular ou duração da aquisição >10s (melhor limiar para discriminar radiação alta) constituíram 38% da população. Neste subgrupo, a dose de radiação foi superior, quando comparados com a ausência de todas estas características [12,1 (9,5-14,8) versus 5,7 (5,0-6,7), p<0,001].

DISCUSSÃO

Neste trabalho procurámos identificar os factores associados a uma dose de radiação superior, na AngioTC cardíaca. A utilização de uma voltagem da ampola de 120 kV foi um preditor de maior dose de radiação. Em concordância com este achado, um elevado IMC, pela impossibilidade de se reduzir a voltagem da ampola, associou-se a uma maior dose de radiação. Um maior tempo de aquisição e maior dose de contraste (que, dependendo da anterior, perdeu o valor preditor por análise multivariada) associaram-se igualmente a uma dose de radiação superior.

O tempo de aquisição maior aumenta a dose de radiação, por traduzir uma maior área corporal adquirida ou por estarmos na presença de frequências cardíacas mais lentas, aumentando o tempo de diástole e a duração da aquisição nesta fase do ciclo cardíaco. A frequência cardíaca baixa, quando analisada isoladamente, também foi um preditor de maior dose de radiação. Igualmente, a presença de cirurgia cardíaca prévia, associou-se a uma maior dose de radiação. Isto resulta de uma maior prevalência de doentes com revascularização miocárdica cirúrgica, o que aumenta a janela de aquisição, para incluir as pontagens. Já a presença de enfarde de miocárdio prévio, que também foi preditor de maior dose de radiação, perdeu este valor na análise multivariada, possivelmente pelo efeito de incluir neste grupo doentes com

Longer acquisition time increases radiation dose and may reflect a larger body surface area scanned or lower heart rate causing prolonged diastole and hence acquisition time. Low heart rate, when analyzed in isolation, also predicted higher radiation dose, as did previous cardiac surgery (due to the high proportion of patients with previous CABG who required a longer acquisition window in order to include the grafts). Previous MI, which was a predictor of higher radiation dose on univariate analysis, lost its predictive value on multivariate analysis, possibly because this group included patients with previous CABG. Finally, atrial fibrillation during acquisition was associated with higher radiation dose, since it prevented ECG pulsing (see below).

Other studies have likewise found that greater body weight and absence of a stable sinus rhythm are associated with higher radiation doses.

After excluding the main predictors of higher radiation dose (BMI >32.4 kg/m2, previous cardiac surgery, atrial fibrillation during acquisition, and acquisition time >10 s), a subgroup of two-thirds of the population was identified in whom the radiation dose was significantly lower (5.7 mSv), a reduction of 53%.

As well as identifying the variables associated with higher radiation dose, we found that there was a progressive reduction in radiation dose over time, due to the increasing availability of low-radiation protocols, such as limiting tube voltage to 100 kV, which did not exist when our center began operating. There has also been progressive optimization of acquisition protocols to individual patient characteristics, which also helps reduce radiation dose.

There have been few studies analyzing changes in radiation dose over time. A study by Hausleiter et al. showed that a 12-month increase in experience in cardiac CT angiography was associated with a reduction of 1% in radiation dose. Another, presented by Bettencourt de Sousa et al. at the 2008 Congress of the European Society of Cardiac Radiology, demonstrated an inverse relation.
revascularização miocárdica cirúrgica prévia. Finalmente, a presença de fibrilação auricular na aquisição associou-se a maior dose de radiação administrada por prejudicar a aquisição com “ECG gating” (descrito abaixo).

Em concordância com o encontrado, outros estudos verificaram que maior peso e a ausência de um ritmo sinusal estável, se associava a uma maior dose de radiação utilizada(4).

Após exclusão dos principais preditores de elevada dose de radiação (IMC>32,4 kg/m², cirurgia cardíaca prévia, aquisição em fibrilação auricular, duração da aquisição >10seg), foi identificado um subgrupo, correspondente a 2/3 da população, em que a dose de radiação foi significativamente menor (5,7 mSv, redução de 53%).

A informação disponível no que respeita à ship between a center’s experience and radiation dose, with a 22% reduction after 1000 exams(5).

Reductions can be achieved by tailoring the acquisition protocol to individual patient characteristics(6). Firstly, instead of rigidly scanning from carina to diaphragm, the scan range can be adjusted to the patient’s anatomy, according to a prior low-dose scan for calcium scoring(4). This is a simple way to reduce the radiation used, since each 1 cm increase in scan range is associated with an increase of 5% in radiation dose(4). Secondly, the tube voltage should be reduced to the lowest value that will allow image quality to be maintained for a given patient’s anatomic shape and for the equipment used(4). Reducing tube voltage from 120 to 100 kV considerably reduces radiation dose, since this varies with the square of the tube voltage(7). In suitable patients (nonobese), this measure can lead to a reduction of 40-46% in radiation dose with- out compromising image quality(4, 8). Finally, since cardiac motion is least during diastole, diastolic image reconstructions are most likely to be free of motion artifacts, and so restricting maximum tube current to a predefined time window during diastole and decreasing it during the rest of the cycle (ECG pulsing) can reduce total radiation while maintaining image quality(4, 9, 10).

Table III. Independent predictors of higher radiation dose on multivariate analysis.

<table>
<thead>
<tr>
<th>Variable</th>
<th>HR</th>
<th>CI (95%)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI</td>
<td>1.129</td>
<td>1.038-1.229</td>
<td>0.045</td>
</tr>
<tr>
<td>Previous cardiac surgery</td>
<td>5.776</td>
<td>1.042-32.28</td>
<td>0.003</td>
</tr>
<tr>
<td>AF</td>
<td>30.874</td>
<td>3.247-293.617</td>
<td><0.001</td>
</tr>
<tr>
<td>Acquisition time</td>
<td>1.975</td>
<td>1.672-2.334</td>
<td><0.001</td>
</tr>
<tr>
<td>120 kV tube voltage</td>
<td>71.394</td>
<td>23.363-218.170</td>
<td><0.001</td>
</tr>
</tbody>
</table>

AF: atrial fibrillation; BMI: body mass index; CI: confidence interval; HR: hazard ratio

Tabela III. Preditores independentes de dose de radiação elevada por análise multivariada

<table>
<thead>
<tr>
<th>Variável</th>
<th>HR</th>
<th>IC (95%)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMC</td>
<td>1,129</td>
<td>1,038-1,229</td>
<td>0,045</td>
</tr>
<tr>
<td>Cirurgia cardíaca prévia</td>
<td>5,776</td>
<td>1,042-32,28</td>
<td>0,003</td>
</tr>
<tr>
<td>FA</td>
<td>30,874</td>
<td>3,247-293,617</td>
<td><0,001</td>
</tr>
<tr>
<td>Duração da aquisição</td>
<td>1,975</td>
<td>1,672-2,334</td>
<td><0,001</td>
</tr>
<tr>
<td>120 kV</td>
<td>71,394</td>
<td>23,363-218,170</td>
<td><0,001</td>
</tr>
</tbody>
</table>

FA: Fibrilhação Auricular; HR: Hazard Ratio; IC: Intervalos de Confiança; K: Índice de Massa Corporal

Note: The text is in Portuguese and the tables are in English.
análise da variação da dose de radiação com a evolução temporal é escassa. Um trabalho de Hausleiter demonstrou que um aumento de 12 meses de experiência na realização de AngioTC cardíaca se associou a uma diminuição da dose de radiação de 1%[4]. Um outro trabalho, apresentado por Bettencourt de Sousa no Congresso da Sociedade Europeia de Radiologia Cardíaca 2008, demonstrou a presença de uma relação inversa entre a experiência do centro e a dose de radiação utilizada (redução de 22% após 1000 exames)[5].

Esta redução na dose de radiação pode conseguir-se ajustando os parâmetros do protocolo de aquisição às características individuais dos doentes[4]. Em primeiro lugar, em vez da aquisição de imagens se estender sistematicamente da carina ao diaphragma, esta deve ser ajustada de acordo com a anatomia de cada doente, de acordo com uma primeira passagem com baixa dose de radiação para score de cálcio[4]. Esta é uma técnica fácil para reduzir a radiação utilizada, já que por cada centímetro a mais na extensão de aquisição de imagens há um aumento de 5% na dose de radiação[4]. Em segundo lugar, a corrente da ampola deve ser reduzida para o valor mais baixo que se espere manter uma boa qualidade de imagem para determinado biótipo de doente e aparelho de AngioTC. Uma redução da voltagem da ampola de 120 kV para 100 kV diminui consideravelmente a dose de radiação, já que esta varia com o quadrado da voltagem[7]. Em doentes apropriados (IMC não elevado) esta medida pode levar a uma redução de 40-46% da dose de radiação sem comprometer a qualidade da imagem[4, 8]. Finalmente, tendo em conta que o movimento cardíaco é menor durante a diástole, as reconstruções de imagem efectuadas nesta fase serão, com maior probabilidade, livres de artefatos de movimento. Assim, limitando a corrente máxima da ampola a uma porção pré-definida da diástole e diminuindo-a no res- tante ciclo cardíaco, pode diminuir-se a radiação total utilizada, mantendo a possibilidade de obter imagens de qualidade (técnica denominada “ECG pulsing”)[8, 9, 10]. Levando este protocolo ao extremo, pode ligar-se ape-

protocol, prospective gating, the X-ray tube is only switched on during part of diastole and is switched off for the rest of the cardiac cycle, resulting in sequential rather than spiral scanning. This protocol requires a stable heart rate below 65 bpm and hence intravenous beta-blockers are often needed[5]. Although it results in a substantial reduction in radiation dose, this technique does not provide functional information such as ventricular or valve function[6, 9]. A combination of 100 kV tube voltage and prospective gating can achieve an impressive reduction of 90%[8].

Although the debate on the use of radiation in imaging studies has focused on cardiac CT angiography, it should be remembered that other common techniques use radiation. In 2006, cardiac CT angiography accounted for only 3% of the collective radiation exposure resulting from medical exams in the US[11]. Considering only cardiological exams, the mean radiation dose in coronary angiography is 7 mSv, while for myocardial perfusion scintigraphy it is 15.7 mSv. The latter exam accounted for 22.1% of radiation exposure resulting from diagnostic exams (cardiac or non-cardiac) in the US[12].

CONCLUSION

In this study of consecutive patients undergoing cardiac CT angiography, independent predictors of higher radiation dose were higher body mass index, previous cardiac surgery, atrial fibrillation during acquisition, longer acquisition time and use of a tube voltage of 120 kV. In two-thirds of the study population, none of these characteristics was present and radiation dose was significantly lower (5.7 mSv). Over time, it has been possible to reduce the radiation dose used in these exams, as a result of the development of new protocols and progressive optimization of existing protocols and by adapting them to individual patient characteristics.
nas a ampola durante parte da diástole e desligá-la no restante ciclo cardíaco com aquisição não helicoidal (“gating prospectivo”). Este protocolo requer uma frequência cardíaca estável e inferior a 65 batimentos por minuto, com necessidade frequente da utilização de betabloqueantes endovenosos⁸. Apesar de diminuir bastante a dose de radiação utilizada, não permite obter informação funcional (ex: função ventricular ou valvular)⁹, ¹⁰. A combinação da utilização de uma voltagem da ampola de 100 kV e a aquisição prospectiva podem conseguir uma impressionante redução de 90%⁸.

Embora o debate sobre o uso de radiação em exames de imagem se tenha centrado na AngioTC cardíaca, deve referir-se que outras técnicas frequentemente utilizadas usam radiação. Em 2006, a AngioTC cardíaca correspondeu apenas a cerca de 3% da dose colectiva de radiação recebida em consequência de exames médicos¹¹. Considerando apenas os exames na área da cardiologia, referimos que a dose de radiação usada numa coronariografia é 7 mSv e de uma cintigrafia de perfusão miocárdica é de 15,6 mSv. Este último exame foi responsável por 22,1% da exposição de radiação em consequência da realização de exames complementares de diagnóstico (cardíacos ou não cardíacos)²².

CONCLUSÃO

Nesta análise de doentes consecutivos submetidos a AngioTC cardíaca, foram preditores independentes de maior dose de radiação um elevado índice de massa corporal, antecedentes de cirurgia cardíaca, presença de fibrilhação auricular na aquisição, maior tempo de aquisição e o uso 120 kV como voltagem da ampola. Em 2/3 da nossa população, nenhuma destas características está presente e a dose de radiação é significativamente mais baixa (5,7mSv). Ao longo do tempo tem sido possível diminuir a dose de radiação utilizada nestes exames, resultante do aparecimento de novos protocolos e por uma progressiva optimização dos já disponíveis, adaptando-os às características individuais de cada doente.

Pedido de Separatas para:
Address for Reprints:
Pedro Jerónimo Sousa
Centro Cardiovascular
Hospital da Luz
Av. Luísda
1500-650 Lisboa
e-mail: p965675551@gmail.com

BIBLIOGRAFIA / REFERENCES

CAPÍTULO VII

Avaliação dimensional 2D, volumétrica, funcional e classificação anatómica

Base de dados e análise estatística
RESUMO

Neste capítulo definem-se as medições efetuadas, por forma a torná-las reproduzi-veis noutros trabalhos de investigação.
Faz-se a avaliação da variabilidade intra-observador, inter-observador e inter-fases do ciclo cardíaco.
Definimos as classificações anatómicas utilizadas para a caracterização do AAEsq e da drenagem das veias pulmonares.
O pós-processamento foi efetuado em consola Terarecon®.
Por fim descrevemos a forma de colher, registar e analisar estatisticamente os dados obtidos.
SUMÁRIO

297 7.1. Introdução

297 7.2. Avaliação dimensional 2D, volumétrica, funcional e classificação anatómica

297 7.2.1. Avaliação dimensional 2D

300 7.2.2. Avaliação volumétrica

300 7.2.3. Avaliação funcional da AEsq

302 7.2.4. Avaliação da variabilidade intra-observador, inter-observador e inter-fase

302 7.3. Classificação anatómica do apêndice auricular esquerdo e das veias pulmonares

302 7.3.1. Classificação das Veias Pulmonares

303 7.3.2. Classificação do Apêndice Auricular Esquerdo

305 7.4. Bases de dados e análise estatística

307 Bibliografia
7.1. INTRODUÇÃO

Neste capítulo descrevem-se as formas estandardizadas de obtenção da informação dimensional 2D, volumétrica e funcional da AEsq e do AAEsq. Avaliamos a variabilidade intra-observador, inter-observador e inter-fases cardíacas. Descrevem-se as classificações utilizadas para caracterização morfológica do AAESq e da drenagem das veias pulmonares. Por fim descrevemos a forma de colher, registar e analisar estatisticamente os dados.

7.2. AVALIAÇÃO DIMENSIONAL 2D, VOLUMÉTRICA, FUNCIONAL E CLASSIFICAÇÃO ANATÓMICA

7.2.1. Avaliação dimensional 2D

No decorrer desta tese foram diversas as avaliações dimensionais 2D que foram efetuadas, segue-se a definição da sua obtenção:

Avaliação das dimensões de um ostium:

> Utilizado para avaliar a dimensão dos ostiae das veias pulmonares e do AAESq.
> Após obter a imagem *en face* do ostium pela obtenção de um plano bi-perpendicular (ver *Figura 1*), mede-se o maior diâmetro e o diâmetro perpendicular a esse. A divisão dos diâmetros permite avaliar o grau de ovalidade do ostium.
FIGURA 1
A avaliação das dimensões dos ostia é efetuada em plano 2D, bi-perpendicular (em cima) obtendo-se o maior diâmetro e traçando-se o menor perpendicular ao primeiro (em baixo).

(Imagens Hugo Marques – UNICA – Hospital da Luz.)

Avaliação da área máxima da aurícula esquerda em plano axial direto e obtenção dos diâmetros nesse plano (ver Figura 2):

> Faz-se avaliação visual da maior área da AEsq (excluindo o AAEsq e as veias pulmonares) visualizando consecutivamente a AEsq em plano axial transversal.
> Após a sua determinação, obtém-se a área ao desenhar uma região de interesse com limites coincidentes com a parede da aurícula, excluindo o AAEsq e as veias pulmonares (se estiverem no plano), unindo em curva os dois pontos
da parede da AESq de cada lado dessa(s) estrutura(s) por forma a manter a curvatura da parede da AESq.

- Os diâmetros máximos são medidos em latero-lateral e ântero-posterior estrito.

FIGURA 2
Dois doentes, mostrando os locais habituais do plano de maior área (o mais frequente é visualizar o plano da VPIEsq (seta)).

(Imagens Hugo Marques – UNICA – Hospital da Luz)

Avaliação do diâmetro máximo crânio-caudal em plano sagital (ver **Figura 3**):

- Faz-se avaliação visual da maior área da AESq em plano sagital, excluindo o AAESq e as veias pulmonares. Na maioria das vezes este plano encontra-se muito próximo do bordo vertebral esquerdo.

- Após a sua determinação obtém-se o diâmetro máximo crânio-caudal estrito.

FIGURA 3
Maior diâmetro crânio-caudal em plano sagital direito.

(Imagens Hugo Marques – UNICA – Hospital da Luz)
7.2.2. Avaliação volumétrica

Os volumes foram obtidos pela soma dos vóxeis das áreas desenhadas. Na obtenção da volume da AEsq, excluíram-se as veias pulmonares e o AAesq, utilizando a forma de desenho de área referido acima.

Descreve-se abaixo a obtenção dos diversos volumes da AEsq, com os mesmos princípios utilizados para a avaliação volumétrica do AAesq.

Escolha das fases do ciclo cardíaco para avaliação do volume da AEsq:

> avaliação qualitativa da dimensão da aurícula esquerda nos 2 planos cardíacos (eixo longo do VEsq e 4 câmaras) em fases consecutivas, com observação do movimento da válvula mitral. Escolha da fase do ciclo de volume máximo (normalmente aos 40% do intervalo RR), do volume mínimo (normalmente aos 100% do intervalo RR) e do volume pré-sístole AEsq (frequentemente aos 80% do intervalo RR) (ver Figura 4 e 5).

7.2.3. Avaliação funcional da AEsq

Após os cálculos dos diversos volumes, a avaliação funcional seguiu as definições internacionais nomeadamente:

<table>
<thead>
<tr>
<th>Função reservatório</th>
<th>Índice de expansibilidade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(VAEsqMax –VAEsqMin) / VAEsqMin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Função conduto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fração de Ejeção Passiva</td>
</tr>
<tr>
<td>Volume sistólico passivo da AEsq</td>
</tr>
<tr>
<td>(VAEsqMax –VAEsqPS) / VAEsqMax</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Função ativa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fração de Ejeção ativa (FejACT)</td>
</tr>
<tr>
<td>Volume sistólico ativo da AEsq</td>
</tr>
<tr>
<td>(VAEsqPS –VAEsqMin) / VAEsqPS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Função AEsq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fração de Ejeção (Fej)</td>
</tr>
<tr>
<td>(VAEsqMax –VAEsqMin) / VAEsqMax</td>
</tr>
</tbody>
</table>
A avaliação funcional da aurícula esquerda é efetuada com medição do volume máximo da aurícula esquerda antes da abertura da válvula mitral (neste caso a 50% do intervalo RR), do volume após esvaziamento passivo – volume pré-sístole auricular (neste caso a 80% do intervalo RR) e do volume mínimo (após esvaziamento ativo) após o fecho da válvula mitral (neste caso 100% do intervalo RR).

(Imagens Hugo Marques — UNICA — Hospital da Luz.)

Nos planos cardíacos longo eixo e 4 câmaras observamos as diferentes fases do ciclo que nos permitem definir a fase de volume máximo 40% do intervalo RR (1ª linha de imagens); fase pré-sístole da AEsq (2ª linha de imagens); início da sístole auricular (3ª linha de imagens), o que faz com que a fase anterior seja a do volume pré-sístole auricular; volume mínimo (4ª linha de imagens).

(Imagens Hugo Marques — UNICA — Hospital da Luz.)
7.2.4. Avaliação da variabilidade intra-observador, inter-observador e inter-fase

Para avaliação da variabilidade intra-observador, foram medidas três vezes os volumes auriculares de 30 doentes, em tempos diferentes e sem acesso aos resultados anteriores.

Para avaliação da variabilidade inter-observador, mediram-se uma vez os volumes auriculares de 30 doentes, quer pelo autor da tese, quer por um técnico de radiologia com experiência em TC cardíaca.

A variabilidade inter-fase foi testada pela medição de volumes de 30 doentes consecutivos a 70% do intervalo RR e numa reconstrução adicional a 75% do intervalo RR.

7.3. CLASSIFICAÇÃO ANATÔMICA DO APÊNDICE AURICULAR ESQUERDO E DAS VEIAS PULMONARES

7.3.1. Classificação das Veias Pulmonares

A classificação das veias pulmonares adotada foi a publicada por Marom(1), dada a sua simplicidade e utilização frequente noutras séries: letra maiúscula representa o lado (“R” – right – direita; “L” – left – esquerda), seguindo-se um número que representa o número de ostiae das veias pulmonares do lado em questão. Associando-se ainda uma letra minúscula que pode ter diferentes significados, como é perceptível na esquematização representada na Figura 6 (1).
7.3.2. Classificação do Apêndice Auricular Esquerdo

Foram utilizadas duas classificações:

> para a avaliação do tipo de AAEsq adotámos a classificação descrita por Wang e Di Biase (2) (ver Figura 7).

> Para a avaliação do número de lobos utilizámos a classificação de Erol(3) que representa o número de câmaras principais/lobos do AAEsq, mas com uma modificação. Erol descreve três como o número máximos de câmaras máximo e nós verificámos que havia conjunto relevante de AAEsq que apresentavam mais do que três câmaras. Assim Erol definiu para o AAEsq, um número de lobos de 1 a 3 e nós descrevemos de 1 a 5 (ver Figura 8).
Classificação morfológica dos AAEsq baseada em Wang e Di Biase. Com correlação dimensional de Kimura. **Tipo 1** — Cactus; **Tipo 2** — Chicken Wing; **Tipo 3** — Windsock; **Tipo 4** — Cauliflower.

(Imagens Hugo Marques — UNICA — Hospital da Luz.)
7.4. BASES DE DADOS E ANÁLISE ESTATISTICA

Os dados demográficos, fatores de risco, antecedentes cardiovasculares, indicação para a realização da angio TC, dados técnicos respeitantes à aquisição do exame, bem como do seu resultado após processamento das imagens adquiridas (incluindo parâmetros morfológicos, dimensionais e funcionais dos doentes com FA) foram colhidos numa folha especificamente elaborada para este motivo, que sofreu evolução adaptativa de acordo com a utilização de novo aparelho de TC. Estes dados foram posteriormente introduzidos numa base de dados.

A análise estatística foi realizada no programa IBM SPSS STATISTICS SUBSCRIPTION. As variáveis contínuas são apresentadas como médias e desvio padrão e as variáveis categóricas como frequências e percentagens. Foram usados testes não paramétricos (Mann-Whitney ou Kruskal-Wallis) para comparar as variáveis contínuas e o teste Qui Quadrado para comparar variáveis categóricas. As diferenças foram consideradas significativas para um valor de p<0,05.
No capítulo VIII para obter um envelope de confiança a 95% do grupo “normal” (grupo B) no espaço volume e idade, foi utilizada a distância de Mahalanobis. Foi realizada análise multivariável (regressão logistic and linear, com seleção “stepwise”) para identificar os preditores independentes de recidiva após ablação percutânea de FA, usando as variáveis do score ATLAS. Foram efetuada curvas de sobrevida Kaplan-Meier para detetar diferenças no prognóstico após ablação de diferentes grupos de doentes para variáveis discretas. Para as variáveis contínuas utilizámos a regressão de Cox.
BIBLIOGRAFIA

CAPÍTULO VIII

Normograma volumétrico da aurícula esquerda em fase médio-diastólica

Aplicabilidade a doentes com fibrilhação auricular
RESUMO

Este capítulo aborda um dos objetivos desta tese: a criação de um normograma que permita a caracterização da avaliação volumétrica da aurícula esquerda, na fase cardíaca mais frequentemente utilizada para avaliação coronária — diástole média — 70% do intervalo RR. Procurámos ainda determinar uma medida prática (rápida e fácil de se obter mesmo sem software dedicado), que apresente boa correlação com o volume auricular, por forma a tornar eficiente a avaliação volumétrica da aurícula esquerda em qualquer TC cardíaco.

O normograma foi testado nos dados obtidos nos doentes com fibrilação auricular, tendo sido construído uma regressão entre o volume em fase médio-diastólica (a 70% do intervalo RR) e o volume máximo.

Este trabalho resultou num artigo original submetido a uma revista indexada internacional, incluído em anexo neste capítulo.

ARTIGO SUBMETIDO

Reference mid-diastolic left atrium volume by ECG gated computed tomography angiography (CTA) and its utility in atrial fibrillation patients.

Marques, H; Ferreira, AM; Adragão, P; Lopes, J; Radu, L; Goyri O’Neill, JE; Pisco, JM; Araújo Gonçalves, P.
submetido ao The International Journal of Cardiovascular Imaging
SUMÁRIO

315 8.1. Introdução

317 8.2. Métodos

319 8.3. Resultados

324 8.4. Discussão

325 8.5. Conclusão

326 Bibliografia

329 Anexos
8.1. INTRODUÇÃO

A dimensão e a função da AEsq variam com a disfunção diastólica VEsq, com a cardiopatia isquémica, com diversos tipos de miocardiopatias e com a patologia valvular.

São poucas as medições em Cardiologia com um impacto tão amplo como o da dimensão da AEsq, que está independentemente associada ao risco de:

- FA e à sua recorrência;
- eventos tromboembólicos;
- insuficiência cardíaca;
- enfarte do miocárdio;
- causa de morte cardiovascular.

Assim sendo, uma adequada avaliação da AEsq é importante para o diagnóstico clínico, estratificação de risco e monitorização terapêutica.

O seu valor prognóstico em relação à população geral, aplica-se também a doentes com patologia cardíaca (1-13).

Em doentes com FA, o volume da aurícula esquerda é mais importante preditor de sucesso da terapêutica ablativa percutânea do que o próprio tipo de fibrilação.

A avaliação dimensional da AEsq é geralmente efetuada por ecocardiografia com dimensões bidimensionais (14) usadas para extrapolar o volume.

Apesar das diversas técnicas de medição da AEsq, esta foi sempre considerada problemática. Atualmente a avaliação volumétrica por RM é tida como *gold standard*, correlacionando-se, em modo decrescente, com a TC, a ecografia 3D e a ecografia 2D sendo que a ecografia tende a subestimar a verdadeira dimensão (5, 15).
Os padrões da normalidade definidos para a AEsq têm por base o seu volume máximo, que se atinge na porção terminal do tempo sistólico do VEsq (normalmente próximo dos 40% do intervalo entre ondas R consecutivas — RR).

Tem havido um rápido crescimento do número de exames de TC cardíaco, sobretudo para avaliação de doença coronária, acompanhando o evoluir das indicações tidas como apropriadas, havendo guidelines, como por exemplo as do NICE (National institute for health and care excellence) do Reino Unido, que consideram a TC cardíaca para avaliação coronária (em aparelho com pelo menos 64 cortes) como o exame de primeira linha em todos os doentes com dor torácica que possa ser de etiologia cardíaca (independentemente da probabilidade pré-teste de doença cardíaca) (16).

Nos exames de TC é possível avaliar outras estruturas cardíacas e extra-cardíacas, sendo possível medir a aurícula esquerda. No entanto, a tecnologia de TC mais avançada, associada aos novos protocolos, permite obter a informação necessária para avaliar as artérias coronárias com elevada acuidade apenas numa fase do ciclo (normalmente na diástole média — cerca de 70% do intervalo RR). Sem informação em telediástole e telesístole, não se pode fazer avaliação funcional, nem caracterizar dimensionalmente a aurícula esquerda por ausência de normogramas em fase médio-diastólica (igualmente ausentes para outras técnicas imagiológicas como a ecocardiografia e a ressonância magnética).

Neste capítulo tivemos por objetivo

> Definir o padrão da normalidade da dimensão da AEsq para a fase médio-diastólica (MD) do ciclo cardíaco
> Determinar uma medida prática (rápida e fácil de se obter mesmo sem software dedicado), que apresente boa correlação com o volume auricular, por forma a tornar eficiente a avaliação volumétrica da aurícula esquerda em qualquer TC cardíaco.
> Determinar a correlação entre o volume da AEsq em tempo MD e o volume máximo
> Determinar se o normograma e a correlação podem ser aplicados nos doentes com FA
8.2. MÉTODOS

As populações de estudo foram definidas no Capítulo V; o protocolo de aquisição definidos no Capítulo VI e a forma de avaliação dimensional no Capítulo VII.

Resumidamente:
Foram constituídos dois grupos: um constituído com doentes com FA (Grupo A1 — 145 doentes) e outro representativo da população normal (grupo B — 146 indivíduos saudáveis).

A Figura 1 sumariza a constituição da população de doentes com FA

Figura 1

Doentes consecutivos referenciados para TC cardíaca
Maio 2009–Março 2012
n=2065

Excluídos
Doentes não referenciados para TC em contexto prévio à ablação de FA

Incluídos n= 277
GRUPO A

Excluídos
• Doentes que não se encontravam em ritmo sinusal
• Protocolo não-retrospetivo

Incluídos n= 145
GRUPO A1

O Grupo B foi constituído da seguinte forma:
De um registo prospetivo de 2062 indivíduos que realizaram TC cardíaca de Maio de 2009 a final de Abril de 2012 — 3 anos, foram selecionados todos os indivíduos que seriam representativos de uma população “normal”, por reunirem todas as seguintes condições:

> Sem doença cardíaca conhecida, incluindo doença valvular e doença coronária
Sem hipertensão arterial — sem história de HTA, sem medicação para HTA e com a tensão arterial medida antes da realização da TC com valores sistólicos inferiores a 140mmHg e valores diastólicos inferiores a 90 mmHg
Sem obesidade — com IMC <30kg/m²
Sem história de arritmia cardíaca e em ritmo sinusal durante a aquisição da TC
Ecocardiograma normal, realizado num prazo inferior a 60 dias da data da TC (incluindo menção de: normal dimensão da aurícula esquerda, ausência de disfunção diastólica do VEsq e ausência de patologia valvular mitral)
Com resultados da TC cardíaca que revelaram:
 - Ausência de doença coronária obstrutiva (estenoses máximas <50%)
 - Sem doença valvular na TC
 - Fracção de ejeção do VEsq preservada e sem disfunção segmentar.
 - Aurícula esquerda com volume máximo normal

No grupo resultante só haviam 74 mulheres pelo que, para manter o grupo com representação similar entre sexos, se selecionaram os primeiros 74 homens incluídos. Da população resultante 148, excluíram-se dois doentes (mulheres) por informação incompleta no arquivo de imagem.

A forma de obtenção das medidas de volume e das medidas de áreas e diâmetros relevantes para este estudo estão definidas no Capítulo VII.

A avaliação estatística utilizada está referenciada no Capítulo VII.

A variabilidade intra-observador, inter-observador e inter-fases do ciclo cardíaco foi avaliada da forma definida no Capítulo VII.
8.3. RESULTADOS

Na tabela 1 estão reunidos os dados demográficos dos grupos de estudo.

<table>
<thead>
<tr>
<th></th>
<th>Grupo A1</th>
<th>Grupo B</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>145</td>
<td>146</td>
</tr>
<tr>
<td>Homens (n, %)</td>
<td>107 (73,8%)</td>
<td>74 (51%)</td>
</tr>
<tr>
<td>Idade na altura do procedimento (anos)*</td>
<td>57,04 +/- 12,42</td>
<td>45,41 +/- 12,97</td>
</tr>
<tr>
<td>Altura (cm)*</td>
<td>172,02 +/- 8,27</td>
<td>167,59 +/- 10,21</td>
</tr>
<tr>
<td>Peso (kg)*</td>
<td>79,41 +/- 12,95</td>
<td>71,73 +/- 14,07</td>
</tr>
<tr>
<td>ASC (m²)*</td>
<td>1,94 +/- 0,19</td>
<td>1,82 +/- 0,22</td>
</tr>
<tr>
<td>IMC (kg/m²)*</td>
<td>26,78 +/- 3,74</td>
<td>25,43 +/- 3,75</td>
</tr>
</tbody>
</table>

* média e desvio padrão

No Gráfico 1 (abaixo) visualizamos: em cima, as curvas do normograma do volume da aurícula esquerda a 70% do intervalo RR (intervalo de confiança a 95); nas curvas que se encontram a meio visualizamos as curvas por género; e na região inferior as curvas do volume indexado. O Gráfico 2 (abaixo) é semelhante mas para a avaliação do volume máximo.
GRÁFICO 1
Avaliação gráfica em envelope do intervalo de confiança a 95% do volume da AEsq a 70% do RR para a população normal

GRÁFICO 2
Avaliação gráfica em envelope do intervalo de confiança a 95% do volume da AEsq máximo para a população normal
A **Tabela 2** apresenta o normograma do volume da AEsq a 70% por grupo etário dos 20 aos 70 anos e a **Tabela 3** o normograma do volume máximo da AEsq para o mesmo grupo.

TABELA 2

Apresenta os valores dos limites superiores e inferiores (intervalo de confiança 95%) para o volume da AEsq médio-diastrólico para toda a população normal e divididos por gênero. As últimas colunas apresentam os valores para o volume indexado à área de superfície corporal.

<table>
<thead>
<tr>
<th>Idade</th>
<th>VAEsq (70% do intervalo RR) U</th>
<th>VAEsq (70% do intervalo RR) L</th>
<th>VAEsq (70% do intervalo RR) Homens U</th>
<th>VAEsq (70% do intervalo RR) Homens L</th>
<th>VAEsq (70% do intervalo RR) Mulheres U</th>
<th>VAEsq (70% do intervalo RR) Mulheres L</th>
<th>VAEsq indexado (70% do intervalo RR) U</th>
<th>VAEsq indexado (70% do intervalo RR) L</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-29</td>
<td>70</td>
<td>14.3</td>
<td>76.9</td>
<td>15.8</td>
<td>57.3</td>
<td>17.6</td>
<td>35.5</td>
<td>10.2</td>
</tr>
<tr>
<td>30-39</td>
<td>78.5</td>
<td>14</td>
<td>85.4</td>
<td>15.8</td>
<td>65.1</td>
<td>17.3</td>
<td>39.8</td>
<td>10.1</td>
</tr>
<tr>
<td>40-49</td>
<td>83.1</td>
<td>14.8</td>
<td>90.7</td>
<td>17.7</td>
<td>69.6</td>
<td>18</td>
<td>42.5</td>
<td>11</td>
</tr>
<tr>
<td>50-59</td>
<td>84.4</td>
<td>19.1</td>
<td>92.4</td>
<td>22.8</td>
<td>71.1</td>
<td>21.6</td>
<td>43.5</td>
<td>13.6</td>
</tr>
<tr>
<td>60-69</td>
<td>84.2</td>
<td>26.9</td>
<td>92.4</td>
<td>31.3</td>
<td>71</td>
<td>28.5</td>
<td>43.5</td>
<td>17.9</td>
</tr>
</tbody>
</table>

*U = limite superior do intervalo confiança 95%
L = limite inferior do intervalo confiança 95%*
TABELA 3
Apresenta os valores dos limites superiores e inferiores (intervalo de confiança 95) para o volume da AEsq máximo para toda a população normal e divididos por género. As últimas colunas apresentam os valores para o volume indexado à área de superfície corporal

<table>
<thead>
<tr>
<th>Idade</th>
<th>VAEsqMax U</th>
<th>VAEsqMax L</th>
<th>VAEsqMax Homens U</th>
<th>VAEsqMax Homens L</th>
<th>VAEsqMax Mulheres U</th>
<th>VAEsqMax Mulheres L</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-29</td>
<td>99.1</td>
<td>27.3</td>
<td>106.8</td>
<td>29.5</td>
<td>88.1</td>
<td>26.8</td>
</tr>
<tr>
<td>30-39</td>
<td>107.8</td>
<td>25.3</td>
<td>115.1</td>
<td>28.4</td>
<td>97.3</td>
<td>25.6</td>
</tr>
<tr>
<td>40-49</td>
<td>111.6</td>
<td>25.4</td>
<td>118.2</td>
<td>27.5</td>
<td>102</td>
<td>26.8</td>
</tr>
<tr>
<td>50-59</td>
<td>111.9</td>
<td>28.3</td>
<td>118.3</td>
<td>30.4</td>
<td>102.9</td>
<td>29.5</td>
</tr>
<tr>
<td>60-69</td>
<td>110.5</td>
<td>36.3</td>
<td>116.3</td>
<td>38.3</td>
<td>102.5</td>
<td>37.2</td>
</tr>
</tbody>
</table>

U = limite superior do intervalo confiança 95%
L = limite inferior do intervalo confiança 95%

Por forma a estimar os volumes máximos a partir de dados obtidos a 70% do intervalo RR, criámos 3 regressões da seguinte forma:

No Grupo B – representante de individuos normais

1 — Prever o VAEsqMax a partir do VAEsq a 70%, incluindo a idade em anos, o sexo (0=masculino; 1 = feminino) e a ASC (m²). Por regressão linear multivariável e seleção stepwise, o sexo e a ASC forma excluídos do modelo.

\[\text{VAEsqMax} = 1,211x\text{VAEsq a 70%} - 0,216x\text{idade} + 18,992 \]

\[R \text{ square} = 0,876 \text{ e VAEsq a 70% e Idade correlacionados com o VAEsqMax com p<0,000.} \]

\[\text{Standard error of estimate} = 6,375 \]

2 — Prever o VAEsqMax a partir da idade em anos, o sexo (0=masculino; 1 = feminino) e a ASC (m²); a maior área da AEsq em plano axial estrito, o maior diâmetro ântero-posterior e látero-lateral da AEsq no plano da área axial máxima; a altura máxima no plano sagital; a área da AEsq em plano 4 câmaras e os maiores diâmetros bi-perpendiculares da AEsq no plano 4 câmaras.

Por regressão linear multivariável e seleção stepwise, todos os fatores foram excluídos excepto a maior área em plano axial, a altura em plano sagital e a idade.
VIII — NORMOGRAMA VOLUMÉTRICO DA AURÍCULA ESQUERDA EM FASE MÉDIO-DIASTÓLICA

\[
\text{VAEsqMax} = 3,688 \times \text{área máxima axial} + 1,174 \times \text{altura máxima sagital} - 0,166 \times \text{idade} - 41,750
\]

\(R\ square = 0,770\) e a área axial máxima e a altura máxima sagital, correlacionados com o VAEsqMax com \(p<0,000\).

\text{Standard error of estimate} = 8,628

\text{No Grupo A1 – doentes com FA}

3 — Prever o VAEsqMax a partir do VAEsq a 70%, incluindo a idade em anos, o sexo (0=masculino; 1=feminino) e a ASC (m²). Por regressão linear multivariável e seleção \text{stepwise}, o sexo e a ASC forma excluídos do modelo.

\[
\text{VAEsqMax} = 0,867 \times \text{VAE}sq\ a\ 70\% - 0,112 \times \text{idade} + 29,632
\]

\(R\ square = 0,856\) e VAEsq a 70% e Idade correlacionados com o VAEsqMax com \(p<0,000\).

\text{Standard error of estimate} = 12,556

Para avaliar a utilidade da aplicabilidade dos normogramas criados na população normal nos doentes com FA fizemos a avaliação da sensibilidade e especificidade tendo por base a classificação real pelo volume máximo \(\nu s\) a classificação efetuada com base no volume a 70% do RR de forma dicotômica (acima e abaixo do limite superior do intervalo de confiança a 95%).

Utilizando os valores das tabelas obtivemos uma sensibilidade de 98% e uma especificidade de 66%

Ao utilizar os dados do \text{Gráfico 1} — a sensibilidade é de 100% e a especificidade de 81,5%.

\text{Variabilidade intra-observador, inter-observador e inter-fases do ciclo cardíaco}

Esta avaliação foi efetuada por \textit{average measure correlation}, tendo-se verificado mínima variabilidade, com coeficientes de \textit{reliability} altos de 0,999; 0,998; 0,998.
8.4. DISCUSSÃO

A dilatação da AEsq tem valor prognóstico independente e a sua dilatação poderá estar relacionada com diagnóstico alternativo que poderia explicar os sintomas dos doentes referenciados para TC cardíaca para avaliação das coronárias. Assim e como cada vez mais estes exames contêm informação cardíaca apenas em fase MD, a possibilidade da caracterização dimensional da aurícula esquerda nesta fase do ciclo é importante e efetuada sem radiação ou custo adicionais.

Há apenas um estudo que define um normograma para a aurícula esquerda na fase de MD, no entanto tem por base uma amostra 40% menor; não apresenta indexação etária da população referência (tida como normal); não foi excluída doença valvar latente ou disfunção diastólica do VEsq por ecocardiografia; não foi estudada a aplicabilidade do normograma em doentes com FA (aspeto que apresenta maior relevância nestes doentes, dado o volume da AEsq ser marcador independente de prognóstico e ser o principal fator que se correlaciona com o risco de recidiva da terapêutica ablativa percutânea) (17).

O nosso normograma apresenta intervalos de confiança menores e valores de limite máximo mais aproximados com os do gold standard — RM (15), reflectindo muito provavelmente uma maior “normalidade” da nossa amostra.

Foi possível criar uma regressão com boa precisão para estimar o volume máximo a partir de dados obtidos a 70% do intervalo RR, quer tendo por base o volume, quer dados mais fáceis de obter como a idade, a área axial máxima e a altura sagital máxima da AEsq. Esta regressão é um contributo para, de forma eficiente e sem necessitar de softwares de pós-processamento, ser possível avaliar o volume auricular máximo em todo e qualquer estudo de TC cardíaco para avaliar coronárias.

Verificámos ainda a aplicabilidade do nosso normograma a 70% do RR nos doentes com FA (ainda não avaliado em publicações prévias). Verificámos uma ótima capacidade para identificar doentes com FA com AEsq dilatadas com sensibilidades de 98% (utilizando a tabela 2) e de 100% (utilizando o gráfico 1).
8.5. CONCLUSÃO

Estabelecemos, com base na maior amostra analisada, o padrão de normalidade do volume da aurícula esquerda em fase médio-diastólica e verificámos uma ótima relação entre esses volumes e os volumes máximos. Desenvolvemos uma forma eficiente de estimar o volume máximo da AEsq com base em medidas facilmente obtidas na fase médio-diastólica, como a área axial máxima e a altura sagital máxima, podendo ser utilizado para avaliar dimensionalmente a AEsq em qualquer exame de coronariografia por TC. Verificámos que o normograma proposto identifica adequadamente indivíduos com FA que apresentem volumes auriculares aumentados, aspecto que tem relevância clínica e prognóstica.
BIBLIOGRAFIA

ANEXOS
Reference mid-diastolic left atrium volume by ECG gated computed tomography angiography (CTA) and its utility in atrial fibrillation patients.

Marques, H; Ferreira, AM; Adragão, P; Lopes, J.; Radu, L.; Goyri O’Neill, JE; Pisco, JM; Araújo Gonçalves, P.

submetido ao The International Journal of Cardiovascular Imaging
The International Journal of Cardiovascular Imaging
Reference mid-diastolic left atrium volume by ECG gated computed tomography angiography (CTA) and its utility in atrial fibrillation patients.
--Manuscript Draft--

Reference mid-diastolic left atrium volume by ECG gated computed tomography angiography (CTA) and its utility in atrial fibrillation patients.

Purpose
With newer scanner technology, image acquisition in coronary CT angiography (CCTA) tends to be performed only at mid-diastole. The aims of this study were 1) to provide reference values for left atrium (LA) mid-diastolic volume (MDV); 2) to assess whether and how can LA end-systolic volume (ESV) be derived from simple MD measurements; 3) assess the diagnostic accuracy of the resulting reference values in a population of patients with atrial fibrillation (AF).

Methods
The study group consisted of 146 individuals without known cardiovascular disease and normal findings on CCTA, and 145 patients with AF undergoing CCTA prior to ablation. End-diastolic, ES and MD LA volumes were measured. Mahalanobis distance was used to create a 95% envelop of the normal group in a space age by volume and determine upper and lower limits of normal.

Results
The mean LAMDV in normal subjects was 27.0 ml/m² (95% limits 14.7-41.5) and 26.7 ml/m² (95% limits 14.7-38.7) for men and women, respectively. LAMDV correlated closely to ESV and could accurately predicted LAESV by a regression equation both in...
normal and AF populations (R²>0.8, p<0.001). LAMDV indexed nomogram by age can predict LAESV enlargement in AF population with a sensitivity of 100%.

Conclusions
This study provides reference values for mid-diastolic LA volume adjusted by age, gender and BSA. End-systolic LA volume can be accurately predicted from simple mid-diastolic measurements both in normal subjects and AF patients. This benchmark can accurately be used to access LA volume enlargement in AF patients.
Introduction:
Left atrium (LA) size provides important prognostic information, both in general population and in the setting of heart disease [1-6]. LA size is usually assessed by echocardiography, using 2D measures in specific cardiac planes at end-systolic (ES) phase, with LA volume often extrapolated from these measurements.
Coronary CT angiography (CCTA) has become a fast growing non-invasive test for ruling out coronary artery disease. CCTA allows for extra-coronary cardiac evaluation, with very accurate chamber size measurements when compared to MRI [7] [8]. Current reference values for LA volumes in CCTA were determined for ES and end-diastolic (ED) phases. However, with newer scanner technology, image acquisition tends to be performed only at mid-diastole (MD) in order to minimize radiation exposure [9]. So, with no ES and ED images, chamber function cannot be assessed and LA measurements lack suitable reference values.
The aims of this study were 1) to provide reference values for mid-diastolic LA volume (at 70% of the cardiac cycle) relative to gender, age and body surface area (BSA); 2) to assess whether and how can ES LA volume be accurately derived from simple MD measurements; 3) assess the diagnostic accuracy of the resulting reference values in a population of patients with atrial fibrillation (AF).
Materials and Methods:

Study Population

Normal subjects group:
From a population of 2062 consecutive subjects undergoing CCTA for suspected coronary artery disease (CAD) between May 2009 and April 2012, we selected consecutive individuals who fulfilled the inclusion criteria and had the exam done with retrospective ECG gating.

The criteria that defined our “normal” group were: 1) normal echocardiogram less than 60 days before CCTA (including no LA enlargement, no left ventricular diastolic dysfunction and no mitral valve disease); 2) no known heart disease (including valvular diseases or CAD); 3) no know history of hypertension or anti-hypertensive medication (including systolic blood pressure <140mmHg and diastolic blood pressure <90 mmHg at the time of CCTA); 4) body mass index < 30 kg/m2; 5) no history of arrhythmias; 6) sinus rhythm during CCTA; 7) no evidence of structural heart disease or obstructive CAD (> 50% stenosis) on CCTA. Two of the patients were excluded because of incomplete imaging archive data, yielding a final population of 146 normal subjects.

AF patients group (AF Group):
From 277 consecutive patients undergoing CCTA prior to AF ablation between May 2009 and April 2012, we selected 145 who were in sinus rhythm during image acquisition and had the exam performed with retrospective ECG gating.

The study was approved by the local ethics committee and all patients gave written informed consent.

CCTA acquisition
CCTA was performed on a dual-source 64-slice first generation scanner (Somatom Definition ®, Siemens, Germany), with a native temporal resolution of 83ms.

Normal Group CT protocol:
In the absence of contra-indications, IV metoprolol was used prior to image acquisition whenever the heart rate was above 70 bpm (5mg every 3 min until target heart rate (HR) of 70bpm or total metoprolol dose of 25 mg). All patients whose systolic blood pressure was above 100mmHg received 5mg of sublingual nitroglycerine. Image acquisition was done with retrospective gating with tube current modulation to reduce radiation outside 40-80% of the RR interval if HR was between 70-80 beats per minute (bpm), outside 70-80% of the RR interval if HR below 70bpm and outside 40-50% of the RR interval if HR >80bpm.

Tube voltage was set to 100kV, except for patients with BMI < 18.5 Kg/m^2, where tube voltage was changed to 80kV. We used a “bolus tracking” technique, with trigger set at 120HU on the ascending
aorta. A triphasic IV contrast protocol was used (320mgI/ml) with volumes calculated as follows: 1st phase of 100% contrast with volume = (time of acquisition + 7seconds - waiting time between bolus tracking and breathing instructions) x 7 (flow rate); 2nd phase with 30 ml of a mix with 30% contrast and 70% saline; 3rd phase with 30 ml of 100% saline.

AF Group CT protocol:
No beta-blockers or nitroglycerine were used. Acquisition was done with retrospective gating with tube current modulation to reduce radiation. If HR<70bpm, maximal dose at 70% of the RR, if HR 70-80bpm maximal dose between 40-80% of the RR interval, and if HR >80bpm, maximal dose between 40-50% of the RR interval.
Tube voltage was set to 100kV, except for patients with BMI < 18.5 Kg/m² or > 30 Kg/m², where 80kV and 120kV were used, respectively. We used a “bolus tracking” technique, with trigger set at 150 HU on the ascending aorta, together with a triphasic IV contrast protocol defined as above, but with a lower flow rate of 6ml/s.

Calculation of LA size
Images were reconstructed at every 10% of the RR interval (10 phases of axial data from 0-90% of the RR interval) with 1.5 mm thickness and 0.7mm increment, 256x256 matrix, using filtered back projection reconstruction and a medium smooth convolution kernel (B25f). The phase showing maximal atrial volume was identified from visual assessment of the different series (mitral valve opening and LA size). Mid diastolic phase was set at 70% of the RR interval. Volumes were generated by voxel count by manually drawn left atrium endocardial contours in contiguous axial planes, excluding the left atrium appendage and the pulmonary veins.

We also measured LA areas in the 4-chamber and transverse axial planes. The largest LA diameters were also measured in transverse axial plane (lateral-lateral and antero-posterior) and in the sagittal plane (largest craniocaudal diameter – maximal height in sagittal plane). These measurements in axial and sagittal planes were chosen for their simplicity, since they can be easily done very quickly and without need for special software. (figure 1). A radiologist with large experience in CCTA (HM) analyzed all scans on an Aquarius workstation (Terarecon Inc., Foster City, California, USA) according to current Society for Cardiovascular Computed Tomography and European Society for Cardiovascular Radiology guidelines.

Inter-observer, intra-observer, and interphase variability
To test inter-observer variability two readers (the radiologist and a radiology technician with experience in cardiac CT) both measured, independently, the LA volumes of 30 patients. To test intra-observer variability, the radiologist measured the LA volumes of 10 patients 3 times (2 days apart and blinded for previous results). Interphase variability was assessed by measuring LA volumes of 30 consecutive patients both on 70% and on an additional reconstruction made at 75% of the RR interval.
Categorical variables are presented as number and percentage, and continuous variables as mean ± SD. Unpaired t test and Fisher exact test were used to compare continuous and categorical data, respectively. Mahalanobis’ distance was used to create a 95% envelop of LA volumes (mid-diastolic and end-systolic) for the normal group in the age-volume space and determine upper and lower limits of normal.

The ability to predict end-systolic LA volume from mid-diastolic LA volume was assessed using multivariable linear regression analysis further including age, BSA, and a stepwise selection for gender. The capability of extrapolating end-systolic LA volumes using 2D measures (area and diameters in the axial and 4-chamber planes, and LA height in the sagittal plane) was evaluated by multivariable linear regression including these measurements, age, and gender, in a stepwise selection with p<0.10 as criterion. The correlation between predicted and observed LA volumes was assessed by Pearson’s correlation coefficient. Finally, indexed mid-diastolic and end-systolic LA volumes of AF patients were categorized into dichotomous variables (above or below the upper limit of reference in normal subjects), allowing the calculation of sensitivity, specificity, positive and negative predictive values for the mid-diastolic cut-offs. The level of agreement between categorized mid-diastolic and end-systolic indexed LA volumes was also assessed using Cohens K coefficient.

All analyses were performed with Statistical Pack for Social Sciences version 12.0 (SPSS Inc., Chicago, Illinois). Statistical significance was set at two-tailed p<0.05.
RESULTS

Baseline characteristics of “normal” and AF groups are summarized in table 1.

Normal values
We depicted the MD nomogram both on graph (figure2) and on table (table 2 and 3) with normal reference absolute and indexed (to BSA) values by age and gender.
The mean left atrium MD volume indexed (LAMDVI) was 26,9ml/m2 with 6,8ml/m2 of standard deviation, with a 95% confidence interval of (13,6 – 40,2)
We also created a nomogram for maximal left atrium volume based on the same population. This results are presented in the same way as above, in figure 3 and table 2 and 3., with mean ES volume indexed (LAESVI) of 37,5ml/m2 with 8,7ml/m2 of standard deviation, with a 95% confidence interval of (20,4 – 54,6).

Relationship between mid –diastole data and maximum volumes
For the normal group we estimated maximum volumes from MD data in two different ways:
One included the MD volume information and age. The other included only maximal area in axial plane and maximal craniocaudal diameter in sagittal plane, as well as age.
For the AF group we estimated ES volumes based on MD volumes and age.
All multivariable linear regressions showed a strong relationship between MD and ES volumes, with high correlation coefficients (R = 0,876; 0,770 and 0,856 respectively) and small standard error of the estimate (SEE) (6.375ml; 8,628ml and 12.556ml, respectively (table 4).

Estimated volumes were compared with actual ES volumes with Blant-Altman analysis demonstrating a tight fit with no evidence of a systematic difference between Measured and Predicted LAESV for all groups (figure 4-6), and 95% confidence interval of +/- 12,3ml for normal population including MD volume information; +/- 16,4ml for normal population without including MD volume information and +/- 25,7ml for AF patients including MD volume information on the regression

Ability of MD nomogram to detect left atrium ES volume enlargement in AF patients

Indexed volumes LAMDVI and LAESVI for all FA subjects were categorized into dichotomous variables, above or below the upper limit reference values form table 2.
With this method increased LAMDVI detected increased LAESVI in 53/54 cases, giving a sensitivity of 98% and specificity of 66% (50/76).
(88/108).
Using our nomogram we over predicted LAESVI in AF patients, that resulted in some false positives but very few or none (depending on the method used) false negative

Interobserver, intraobserver, and interphase variability.
Interobserver, intraobserver and interphase variability was accessed by average measure correlation, with very good results, with measured reliability coefficient of 0.998, 0.999 and 0.998, respectively
DISCUSSION

The increased utilization of prospective CCTA, with acquisition only at MD, hampers the ability of functional and chamber size evaluation, sacrificing its potential prognostic information. Prospective gating (which includes several types of acquisitions such as single heart beat with full heart coverage detector or with very high pitch – “FLASH acquisition”) has resulted in significant less radiation exposure [10] with no impact in the exam accuracy [11], so this type of scan protocols with lower radiation and without information on all RR interval are now recommended whenever possible [12], and by far the most used.

Left atrium size has independent prognostic value, and left atrium dilatation may be related to alternative diagnosis (in the absence of obstructive CAD by CCTA) that could help explain the symptoms that prompted the CT in the first place. So the ability of assessing LA size with measures done only in MD would be clinically relevant, and at no extra cost.

We have provided a left atrium volume nomograms at MD and ES, both absolute and indexed to BSA, as well as by age and gender.

Lin et al [13] published normal left atrium ES volumes are higher and with a wider confidence interval than ours, probably due to inclusion of left atrium appendage on the atrium volume, and a less strict “normality” definition of the normal subjects studied.

A recent study by Walker et al [14] assessed normal values for MD left atrium volumes and its ability to detect chamber enlargement, but there was no age group indexation and latent valvular disease and left ventricular diastolic dysfunction were not excluded by cardiac ultrasound. “Normal” group size was 40% smaller. The applicability of that information to AF patients was not tested. Our results are consistent with CT and CMR reference values for normal maximum size of the left atrium [15,13] and similar to those for mid diastole reported by Walker[14]. Nevertheless, being MR the gold standard for volume, our results correlate closely to that of MR published by Maceira et al (23) than the ones previously published by Walker and the confidence intervals are smaller, probably because of a better definition of “normality” of the normal group. As far as we know our study is the largest to date to provide normal values and upper limits for left atrium size at MD in gated CTA, and the only one to provide it by age group.

We demonstrated that MD volumes correlate very well to ES volumes, both on the normal subjects group and in AF patients. This correlation in the AF population has special value as maximum volume is the main driver for AF ablation therapy failure [16,17].
We also provided an accurate, easy and time-efficient way to determine LA ES volume from axial and sagittal MD reconstruction. This facilitates quantitative assessment of left atrium for the great majority of patients that undergo coronary CTA.

Lastly we tested the ability to use the nomogram in AF population to detect left atrium enlargement in AF patients and found a very high sensitivity 98-100%, with some false positives due to overestimation. When using the data by age group (table) specificity increased from 66% to 81.5%, probably because age is important in this estimation.

Limitations
Our MD volumes are gathered from 70% RR interval. We tested and found no significant variability between measures made at 70% to the ones at 75%, and this part of the cardiac cycle is used because of less cardiac motion, so measuring volumes in a slightly different MD phase reconstruction should incur significant differences in values.

Our normal subjects group were given sublingual nitroglycerin immediately before the CT scan that might reduce the preload, which might affect the LA size.

Conclusions
This study established normal LA dimensions at MD cardiac phase, adjusted by age, gender and BSA and creates a regression to predict maximum LA volume from MD data.

This benchmark can accurately be used to assess LA dilation in AF patients with very high sensitivity.

BIBLIOGRAFIA

Figure 1 – measures in axial and sagittal planes
a) Drawing of the biggest LA area and maximal antero-posterior and latero-lateral diameters in axial plane.
b) Drawing of the biggest craniocaudal diameter in the sagittal plane
Figure 2 – Graph depicted nomogram for left atrium volume at MD
Above – Absolute LAMDV by age
Middle – Absolute LAMDV by age and gender
Under – LAMDVI (body surface area) by age
Figure 3 – Graph depicted nomogram for left atrium ES volume
Above – LAESV by age
Middle – LAESV by age and gender
Under – LAESVI by age
Figure 4 – Refers to the regression equation to predict LAESV from maximal LA area in axial plane and maximal cranio-caudal diameter in sagittal plane (without LAMDV information) in the normal group. The graph below shows a Bland-Altman plot comparing LAESV estimated with the real value.
Figure 4 – Refers to the regression equation to predict LAESV from maximal LA area in axial plane and maximal craniocaudal diameter in sagittal plane (without LAMDV information) in the normal group. The graph below shows a Bland-Altman plot comparing LAESV estimated with the real value.
Figure 6 – Refers to the regression equation to predict LAESV from LAMDV in the AF group.
The graph below shows a Bland-Altman plot comparing LAESV estimated with the real value. We superimposed normal population for comparison.
Table 1 – Population Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Healthy ("normal") Subjects</th>
<th>AF Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>146</td>
<td>145</td>
</tr>
<tr>
<td>Males</td>
<td>74 (51%)</td>
<td>107 (73.8%)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>45.41 +/- 12.97</td>
<td>57.04 +/- 12.42</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>167.59 +/- 10.21</td>
<td>172.02 +/- 8.27</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>71.73 +/- 14.97</td>
<td>79.41 +/- 12.95</td>
</tr>
<tr>
<td>BSA (m²)</td>
<td>1.82 +/- 0.22</td>
<td>1.94 +/- 0.19</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>25.43 +/- 3.75</td>
<td>26.78 +/- 3.74</td>
</tr>
</tbody>
</table>

BMI – body mass index
BSA – body surface area
AF – atrial fibrillation
Table 2 – Normal reference values for LA measures

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>Females</th>
<th>Males</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAMDV (ml)</td>
<td>49.1 [20.9 - 77.3]</td>
<td>44.2 [22.6 – 65.8]</td>
<td>53.8 [22.8 – 84.8]</td>
</tr>
<tr>
<td>Ax area at MD (cm^2)</td>
<td>15.8 [8.4 – 23.2]</td>
<td>14.4 [8.7 – 20.1]</td>
<td>17.1 [9.3 – 24.9]</td>
</tr>
<tr>
<td>Sag height at MD (mm)</td>
<td>51.3 [39.5 – 63.1]</td>
<td>50.2 [38.2 – 62.2]</td>
<td>52.4 [41.2 – 63.6]</td>
</tr>
<tr>
<td>LAESV (ml)</td>
<td>68.5 [33.8 – 103.2]</td>
<td>64.3 [33.3 – 95.3]</td>
<td>72.5 [36 – 109]</td>
</tr>
<tr>
<td>LAESVI (ml/m^2)</td>
<td>37.5 [20.4 – 54.6]</td>
<td>38.1 [20.9 – 55.3]</td>
<td>36.9 [19.8 – 54]</td>
</tr>
</tbody>
</table>

LAMDV – left atrium mid diastolic volume
Ax area at MD – maximal LA area in axial plane at mid diastolic phase
Sag height at MD – maximal LA craniocaudal diameter in sagittal plane at mid diastolic phase
LAESV – left atrium end systolic volume
LAMDVI - left atrium mid diastolic volume indexed
LAESVI – left atrium end systolic volume indexed
Table 3 – Reference values 95% confidence interval for LA volume

<table>
<thead>
<tr>
<th>Age</th>
<th>LAMDV U (ml)</th>
<th>LAMDV L (ml)</th>
<th>LAMDV Male U (ml)</th>
<th>LAMDV Male L (ml)</th>
<th>LAMDV Female U (ml)</th>
<th>LAMDV Female L (ml)</th>
<th>LAMDVI U (ml/m²)</th>
<th>LAMDVI L (ml/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-29</td>
<td>70</td>
<td>14.3</td>
<td>76.9</td>
<td>15.8</td>
<td>57.3</td>
<td>17.6</td>
<td>35.5</td>
<td>10.2</td>
</tr>
<tr>
<td>30-39</td>
<td>78.5</td>
<td>14</td>
<td>85.4</td>
<td>15.8</td>
<td>65.1</td>
<td>17.3</td>
<td>39.8</td>
<td>10.1</td>
</tr>
<tr>
<td>40-49</td>
<td>83.1</td>
<td>14.8</td>
<td>90.7</td>
<td>17.7</td>
<td>69.6</td>
<td>18</td>
<td>42.5</td>
<td>11</td>
</tr>
<tr>
<td>50-59</td>
<td>84.4</td>
<td>19.1</td>
<td>92.4</td>
<td>22.8</td>
<td>71.1</td>
<td>21.6</td>
<td>43.5</td>
<td>13.6</td>
</tr>
<tr>
<td>60-69</td>
<td>84.2</td>
<td>26.9</td>
<td>92.4</td>
<td>31.3</td>
<td>71</td>
<td>28.5</td>
<td>43.5</td>
<td>17.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age</th>
<th>LAESV U (ml)</th>
<th>LAESV L (ml)</th>
<th>LAESV Male U (ml)</th>
<th>LAESV Male L (ml)</th>
<th>LAESV Female U (ml)</th>
<th>LAESV Female L (ml)</th>
<th>LAESVI U (ml/m²)</th>
<th>LAESVI L (ml/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-29</td>
<td>99.1</td>
<td>27.3</td>
<td>106.8</td>
<td>29.5</td>
<td>88.1</td>
<td>26.8</td>
<td>51.5</td>
<td>16.6</td>
</tr>
<tr>
<td>30-39</td>
<td>107.8</td>
<td>25.3</td>
<td>115.1</td>
<td>27.4</td>
<td>97.3</td>
<td>25.6</td>
<td>56.1</td>
<td>16.1</td>
</tr>
<tr>
<td>40-49</td>
<td>111.6</td>
<td>25.4</td>
<td>118.2</td>
<td>27.5</td>
<td>102</td>
<td>25.8</td>
<td>58.4</td>
<td>16.3</td>
</tr>
<tr>
<td>50-59</td>
<td>111.9</td>
<td>28.3</td>
<td>118.3</td>
<td>30.4</td>
<td>102.9</td>
<td>29.5</td>
<td>58.6</td>
<td>18.2</td>
</tr>
<tr>
<td>60-69</td>
<td>110.5</td>
<td>36.3</td>
<td>116.3</td>
<td>38.3</td>
<td>102.5</td>
<td>37.2</td>
<td>58.3</td>
<td>22.6</td>
</tr>
</tbody>
</table>

LAMDV – left atrium mid diastolic volume
LAESV – left atrium end systolic volume
LAMDVI - left atrium mid diastolic volume indexed
LAESVI – left atrium end systolic volume indexed
U – upper limit of 95% confidence interval
L – lower limit of 95% confidence interval
Table 4 – Regression Equations for estimating ESV (maximum volumes) from MD information

<table>
<thead>
<tr>
<th>Regression Equation</th>
<th>Normal Population</th>
<th>SEE</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAESV = 1.211LAMDV -0.216Age +18.992</td>
<td>6.375</td>
<td>0.876</td>
<td></td>
</tr>
<tr>
<td>LAESV = 3.688* Axarea +1.174* Sagheight - 0.166*Age - 41.750</td>
<td>8.628</td>
<td>0.770</td>
<td></td>
</tr>
<tr>
<td>LAESV = 0.867LAMDV - 0.112Age +29.632</td>
<td>12.556</td>
<td>0.856</td>
<td></td>
</tr>
</tbody>
</table>

LAMDV – left atrium mid diastolic volume
LAESV – left atrium end systolic volume
Axarea – maximal LA area in axial plane
Sagheight – maximal LA height in sagittal plane
CAPÍTULO IX

Caracterização anatómica e funcional da Aurícula Esquerda nos doentes com FA e seu contributo prognóstico para prever o sucesso da terapêutica ablativa percutânea
RESUMO

Este capítulo faz a descrição da AEsq nos doentes com FA submetidos a realização de TC cardíaca num contexto prévio a ablação de FA. Estes doentes foram seguidos após a terapêutica ablativa e avaliado o seu sucesso.
Nos doentes em que foi possível obter informação funcional no exame de TC (aquisição retrospectiva), fez-se esta caracterização quer a nível da AEsq quer do AAEsq, sendo avaliado o timing de recidiva e a sua correlação com os parâmetros anátomo-funcionais disponíveis.
SUMÁRIO

359 9.1. Introdução e Objetivos

360 9.2. Material e métodos
360 9.2.1. População
361 9.2.2. Protocolo de aquisição da TC
361 9.2.3. Classificação das veias pulmonares
361 9.2.4. Classificação do apêndice auricular esquerdo

362 9.3. Resultados
363 9.3.1. Grupo A
364 9.3.2. Grupo A2 – Grupo de doentes FA paroxística com FUP
368 9.3.3. Avaliação Dimensional e Funcional
371 9.3.4. Avaliação Prognóstica

375 9.4. Discussão

378 9.5. Conclusão

380 Bibliografia
9.1. INTRODUÇÃO E OBJETIVOS

Foi abordado no Capítulo II a relevância clínica da AESq, bem como a sua correlação com a arritmia crónica mais frequente, a FA.
Conhece-se a relevância das alterações estruturais da parede da AESq, no desenvolvimento da FA, na sua perpetuação e recidiva pós terapêutica (1).

O desenvolvimento embriológico da AESq, com um componente a originar a “câmara” propriamente dita e as veias pulmonares, e outro a resultar no AAEsq, é o responsável pelas primeiras questões a abordar (2):

> Haverá nestes componentes disparidades de remodeling estrutural que condicionem a origem, desenvolvimento e perpetuação da fibrilhação auricular?
 - Haverá boa correlação entre os volumes da AESq e do AAEsq?
 - Haverá boa correlação entre a função da AESq e a do AAEsq?

Esta modificação estrutural poderá ser o fator determinante do sucesso terapêutico, nomeadamente do tratamento ablativo percutâneo.
Assim, estudámos não só morfologia, mas igualmente a função da AESq e do AAEsq, procurando responder às seguintes questões:

> Será o componente funcional um marcador mais precoce e/ou com maior correlação com o remodeling causador de recidiva?
> Haverá outros marcadores anatômicos que se correlacionem com a recidiva?

Por fim e procurando otimizar toda a informação que o exame de TC nos pode transmitir, nomeadamente em relação ao AAEsq, relativamente a aspetos que poderão associar-se a um maior risco de formação de trombo atendendo à tríade de Virchow,
procurámos verificar se existe correlação com o score de risco tromboembólico CHA$_2$DS$_2$VASc e procurar dar resposta às seguintes questões:

> Estará um score de risco CHA$_2$DS$_2$VASc não baixo correlacionado com AEsq maiores?
> Estará um score de risco CHA$_2$DS$_2$VASc não baixo correlacionado com AEsq com menor função ativa?
> Estará um score de risco CHA$_2$DS$_2$VASc não baixo correlacionado com AAESq maiores?
> Estará um score de risco CHA$_2$DS$_2$VASc não baixo correlacionado com AAESq com menor função ativa?
> Estará um score de risco CHA$_2$DS$_2$VASc não baixo correlacionado com os tipos de AAESq?
> Estará um score de risco CHA$_2$DS$_2$VASc não baixo correlacionado com a necessidade de 2ª aquisição na TC (para exclusão de trombos)?

Para isto tomámos como score de risco CHA$_2$DS$_2$VASc baixo o valor de score 0; e como score de risco CHA$_2$DS$_2$VASc não baixo o valor de score superior a 0.

9.2. MATERIAL E MÉTODOS

9.2.1. População

De um registo prospetivo de 2062 indivíduos que realizaram TC cardíaca de Maio de 2009 a final de Abril de 2012 – 3 anos, foram selecionados todos aqueles que a indicação para TC foi a avaliação prévia a ablação de fibrilhação auricular – 277 doentes. Assim foi constituído o **grupo A**.
A subconstituição sucessiva deste grupo A em grupo A1 e posteriormente em grupo A2 deveu-se aos seguintes critérios:

> O grupo **A1** é constituído por todos os doentes do grupo A em que a TC permitia avaliar função (aquisição de TC em modo retrospetivo e em ritmo sinusal durante o TC) – foi o grupo base de doentes com FA utilizado no capítulo VIII.

> Do grupo A1 foram selecionados apenas os doentes com FA paroxística, que realizaram ablação e em que foi possível obter informação de seguimento clínico, formando assim o **grupo A2**.

9.2.2. Protocolo de aquisição da TC
Descrito no **Capítulo VI**.

9.2.3. Classificação das veias pulmonares
A classificação das veias pulmonares adotada foi a publicada por Marom (3) e já descrita em maior detalhe no **Capítulo VII**.

9.2.4. Classificação do apêndice auricular esquerdo
Utilizamos duas classificações, a de Wang e Di Biase (4) para o tipo de AAEsq e a de Erol (5) para o número de câmaras. As classificações estão descritas no **Capítulo VII**.
9.3. RESULTADOS

Na Tabela 1 fazemos a descrição geral da população do grupo A e dos seus dois sub-constituintes A1 e A2.

TABELA 1
Comparação geral da população grupo A, e seus subconstituintes A1 e A2

<table>
<thead>
<tr>
<th></th>
<th>Grupo A</th>
<th>Grupo A1</th>
<th>Grupo A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>277</td>
<td>145</td>
<td>116</td>
</tr>
<tr>
<td>Homens (n, %)</td>
<td>199 (72%)</td>
<td>107 (73,8%)</td>
<td>84 (72,4%)</td>
</tr>
<tr>
<td>Idade (anos)*</td>
<td>56,23 +/-12,31</td>
<td>57,04 +/-12,42</td>
<td>58,14 +/-11,68</td>
</tr>
<tr>
<td>Altura (anos)*</td>
<td>171,26 +/-10,68</td>
<td>172,02 +/-8,27</td>
<td>171,94 +/-8,74</td>
</tr>
<tr>
<td>Peso (kg)*</td>
<td>79,94 +/-14,14</td>
<td>79,4 +/-12,951</td>
<td>79,43 +/-12,64</td>
</tr>
<tr>
<td>ASC (m²)*</td>
<td>1,95 +/-0,2</td>
<td>1,94 +/-0,19</td>
<td>1,94 +/-0,19</td>
</tr>
<tr>
<td>IMC (kg/m²)*</td>
<td>27,07 +/-3,98</td>
<td>26,78 +/-3,74</td>
<td>26,67 +/-3,70</td>
</tr>
</tbody>
</table>

DM#	9,10%	6,20%	2,6%
HTA#	47,40%	46,90%	30,2%
Dislipidémia#	37,20%	35,90%	12,1%
Fumador#	21,40%	22,80%	5,2%

* média e desvio padrão
percentagem
9.3.1. Grupo A

Na Tabela 2 fazemos a descrição dos resultados do protocolo de TC utilizado nos doentes que realizaram o exame num contexto prévio à ablação percutânea. Inclui-se a média da dose de radiação total: 5,7 +/- 3,27 mSv.

Salientamos a presença de achados extra-cardíacos major em 7% da população, alertando para a importância da leitura de todo o tórax incluído na aquisição (os achados foram considerados major se necessitassem de intervenção diagnóstica subsequente ou terapêutica). Destacam-se nestes 7%: 2 neoplasias do pulmão, 1 metastização hepática, 1 sequestro pulmonar, 5 pneumopatias inflamatórias.

TABELA 2

<table>
<thead>
<tr>
<th>Grupo A — dados do exame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquisição retrospetiva*</td>
</tr>
<tr>
<td>FC média (bpm)</td>
</tr>
<tr>
<td>Ritmo durante aquisição*</td>
</tr>
<tr>
<td>Sinusal</td>
</tr>
<tr>
<td>FA</td>
</tr>
<tr>
<td>outro</td>
</tr>
<tr>
<td>Aquisição com 100kV*</td>
</tr>
<tr>
<td>2ª aquisição efetuada*</td>
</tr>
<tr>
<td>Número de trombos</td>
</tr>
<tr>
<td>Achados extra cardíacos major*</td>
</tr>
<tr>
<td>dose radiação total (DLP x 0,014) (mSv)</td>
</tr>
<tr>
<td>Dose contraste (ml)</td>
</tr>
</tbody>
</table>

* média e desvio padrão
percentagem
9.3.2. Grupo A2 – Grupo de doentes FA paroxística com FUP

A descrição geral do Grupo A2 encontra-se na tabela 1 (acima).

O risco clínico de episódio isquémico neste grupo foi avaliado pelo score de risco CHA$_2$DS$_2$VASc, com a distribuição no gráfico abaixo.

9.3.2.1. Avaliação Morfológica

A descrição morfológica dos doentes do grupo A2 é efetuada no conjunto de gráficos e tabelas que se seguem.

Sumariamente fazemos a sua exposição.

9.3.2.1.1. Avaliação da drenagem das veias pulmonares (Gráfico 2)

À direita o padrão de drenagem dominante, com 2 ostiae está presente em 80,2% dos doentes, sendo que quase metade do total dos doentes (49%) têm o padrão R2a – veia média drenando para a veia superior a menos de 1cm do ostium (ver Figura 2).

Salientamos ainda que em cerca de 5% de doentes, não são possíveis de caracterizar totalmente com a classificação de Marom (ver Figura 3 e 4).

À esquerda o padrão de drenagem mais frequente são igualmente os dois ostiae (78%) (ver Figura 5), com cerca de 62% da população total a apresentar o padrão L2b, onde não há parede auricular “livre” entre os ostiae.
FIGURA 2
Exemplo da forma mais prevalente de drenagem das VP à direita, com 2 ostiae e drenagem da VP média na superior a menos de 1cm do ostium.
(Imagens Hugo Marques – UNICA – Hospital da Luz.)
FIGURA 3
Exemplo de variantes anatômicas da drenagem das VP à direita. No caso Rx - “5”, 3 dos ostiae têm origem na VPIDrt. A drenagem das veias à esquerda exemplificada L1b - padrão de drenagem com tronco comum e comprimento superior a 1cm – foi o 3º mais prevalente na nossa série.

(Imagens Hugo Marques – UNICA – Hospital da Luz.)

FIGURA 4
Imagem volumétrica 3D de variante anatômica da drenagem das veias pulmonares, com VPSESq a apresentar ostium conjunto e veia supranumerária subsegmentar do lobo superior direito, com drenagem isolada. Este caso é um bom exemplo das vantagens e desvantagens de uma classificação, por um lado permite agrupar doentes para serem estudados, por outro perde a granularidade, aquilo que nos faz muitas vezes únicos. A classificação daquele padrão seria L2a (embora tivesse ostium conjunto da VPSESq) para as veias pulmonares à esquerda e R3 (por haver 3 ostiae) para as veias pulmonares à direita, sem determinante de “letra”, pela anatomia não coincidir com a descrita na classificação.

(Imagens Hugo Marques – UNICA – Hospital da Luz.)
Exemplo das duas formas mais prevalentes de drenagem das VP à esquerda, com dois ostiae (L2), no caso “b” sem parede auricular livre e no caso “a” com parede auricular livre entre os ostiae.

(Imagens Hugo Marques – UNICA – Hospital da Luz.)

9.3.2.1.2. Avaliação do ostium das veias pulmonares por padrão dominante
Na Tabela 3 podemos verificar qual a dimensão do ostium das veias pulmonares superiores e inferiores à direita e à esquerda, quando o seu padrão de drenagem é dos mais comuns (R2a; R2b; L2a; L2b).

Verificámos que não há diferença estatística entre a dimensão e ovalidade dos ostiae das veias pulmonares, em relação ao seu padrão, nomeadamente entre R2a e R2b; entre L2a e L2b.

TABELA 3
Avaliação do ostium das veias pulmonares por padrão dominante

<table>
<thead>
<tr>
<th>Padrão VPD</th>
<th>Padrão VPE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R2a</td>
</tr>
<tr>
<td></td>
<td>VPSE diâmetro max do ostium*</td>
</tr>
<tr>
<td></td>
<td>VPSE diâmetro min do ostium*</td>
</tr>
<tr>
<td></td>
<td>VPID diâmetro max do ostium*</td>
</tr>
<tr>
<td></td>
<td>VPID diâmetro min do ostium*</td>
</tr>
<tr>
<td></td>
<td>VPID ovalidade do ostium*</td>
</tr>
</tbody>
</table>

	L2a	L2b		
	VPSE diâmetro max do ostium*	17,74	19,20	
	VPSE diâmetro min do ostium*	+/-2,94	+/-3,01	
	VPID diâmetro max do ostium*	18,66	18,18	
	VPID diâmetro min do ostium*	+/-2,71	+/-3,2	
	VPID ovalidade do ostium*	1,19	1,24	0,56

*média e desvio padrão
9.3.2.1.3. Avaliação da morfologia do apêndice auricular esquerdo e presença de apêndices acessórios (Gráfico 3)

O tipo de apêndice mais prevalente foi o tipo 2 — chicken wing representando 43% dos apêndices estudados.

A maioria dos apêndices tiveram 2 câmaras/lobos, representando 45% do total.

Cerca de 7% dos doentes apresentaram pelo menos um apêndice acessório.

9.3.3. Avaliação Dimensional e Funcional

A informação dimensional e funcional da aurícula da AESq e do AAEsq está reunida na tabela (ver Tabela 4).

9.3.3.1. Avaliação estatística dos dados morfológicos, dimensionais e funcionais

Procurámos avaliar se existem diferenças significativas de acordo com o tipo de AAEsq em relação aos volumes máximos indexados do AAEsq, e AESq, assim como em relação à função ativa do AAEsq.

Observámos que, nos nossos resultados, apenas o volume auricular máximo indexado (VAEsqMaxi) é significativamente diferente de acordo com o tipo de AAEsq.

Os doentes com AAEsq do tipo Chicken Wing têm AESq com volume máximo indexado significativamente menor (p=0.031 na comparação AAEsq tipo 2 vs não 2; e p=0.057 na comparação individual dos 4 tipos) (ver Tabela 5).
TABELA 4

<table>
<thead>
<tr>
<th></th>
<th>Média</th>
<th>Desvio Padrão</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAEsqMax (ml)</td>
<td>103.40</td>
<td>33.57</td>
</tr>
<tr>
<td>VAEsqMaxi (ml/m²)</td>
<td>53.30</td>
<td>16.54</td>
</tr>
<tr>
<td>VAEsqMin (ml)</td>
<td>66.41</td>
<td>35.98</td>
</tr>
<tr>
<td>VAEsqPS (ml)</td>
<td>81.88</td>
<td>30.13</td>
</tr>
<tr>
<td>AESq função ativa</td>
<td>0.29</td>
<td>0.14</td>
</tr>
<tr>
<td>AESq função global</td>
<td>0.39</td>
<td>0.16</td>
</tr>
<tr>
<td>n = 116</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Média</th>
<th>Desvio Padrão</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAAEsqMax (ml)</td>
<td>9.60</td>
<td>5.00</td>
</tr>
<tr>
<td>VAAEsqMaxi (ml/m²)</td>
<td>4.95</td>
<td>2.71</td>
</tr>
<tr>
<td>VAAEsqMin (ml)</td>
<td>4.96</td>
<td>2.93</td>
</tr>
<tr>
<td>VAAEsqPS (ml)</td>
<td>8.20</td>
<td>4.31</td>
</tr>
<tr>
<td>AAEsq função ativa</td>
<td>0.41</td>
<td>0.18</td>
</tr>
<tr>
<td>AAEsq função global</td>
<td>0.48</td>
<td>0.19</td>
</tr>
<tr>
<td>n = 56</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABELA 5

<table>
<thead>
<tr>
<th>Tipo AAEsq</th>
<th>VAEsqMaxi (ml/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Média</td>
</tr>
<tr>
<td>not chicken wing</td>
<td>59.18</td>
</tr>
<tr>
<td>chicken wing</td>
<td>48.98</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo AAEsq</th>
<th>VAAEsqMaxi (ml/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Média</td>
</tr>
<tr>
<td>cactus</td>
<td>61.42</td>
</tr>
<tr>
<td>chicken wing</td>
<td>48.98</td>
</tr>
<tr>
<td>winsock</td>
<td>59.48</td>
</tr>
<tr>
<td>cauliflower</td>
<td>53.92</td>
</tr>
</tbody>
</table>
Como forma de avaliar correlação volumétrica e funcional entre os dois componentes embriologicamente diferentes da AE – câmara da AE e o AA, avaliamos a correlação entre o volume máximo e a fração de ejeção de ambos.

Nos nossos resultados, houve uma moderada correlação positiva entre volumes da AE e do AA (r=0.53; p =0.001), com uma correlação semelhante entre as suas funções globais (r=0.51; p=0.002).

Comparámos parâmetros morfológicos, dimensionais e funcionais com a probabilidade de um CHA2DS2VASc não baixo (ver Tabela 6).

Os parâmetros do AA não mostraram ser significativamente diferentes, nomeadamente o tipo de AA classificados como chicken wing e não chicken wing (r=0.224), o volume máximo e o volume mínimo do AA, e a função ativa do AA.

| TABELA 6 |
|---|---|---|---|
| **CHA2DS2VASc** | 0 | 1+ |
| | Média | Desvio Padrão | Mean | Standard Deviation | p |
| AEsqFejACT | 0.33 | 0.14 | 0.26 | 0.14 | 0.04 |
| VAEsqMaxi (ml/m²) | 49.38 | 14.97 | 54.59 | 17.44 | 0.08 |
| VAEsqMini (ml/m²) | 28.25 | 13.45 | 36.27 | 18.75 | 0.02 |
| AAFejACT | 0.38 | 0.18 | 0.44 | 0.21 | 0.28 |
| VAAEsqMaxi (ml/m²) | 4.43 | 1.40 | 5.39 | 3.29 | 0.77 |
| VAAEsqMini (ml/m²) | 2.31 | 1.22 | 2.71 | 1.71 | 0.75 |

No entanto o volume auricular mínimo indexado (VAEsqMini) e a função ativa da AE (FEjAct) são significativamente diferentes entre os grupos de risco baixo e não baixo de evento tromboembólico, estando um score de zero (risco baixo) associado a um menor volume mínimo indexado e a uma maior função ativa da AE.
9.3.4. Avaliação Prognóstica

Estes 116 doentes foram seguidos, em média, durante 4,8 anos, tendo sido avaliada a presença de recidiva após ablação percutânea de fibrilhação auricular por radiofrequência com navegação magnética.

Houve uma percentagem de recidiva de 34,5% (não entrando nesta contabilidade, como convencionado internacionalmente, as recidivas nos 3 primeiros meses após ablação por não serem consideradas falha do tratamento).

9.3.4.1. Análise univariada variáveis contínuas

As informações estão agregadas na Tabela 7 e Gráficos 4.

Como se pode observar, não houve diferenças significativas entre os grupos, para nenhum parâmetro testado.

<table>
<thead>
<tr>
<th>TABELA 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECÍDIVA</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Idade na altura do procedimento (anos)</td>
</tr>
<tr>
<td>Altura (cm)</td>
</tr>
<tr>
<td>Peso (kg)</td>
</tr>
<tr>
<td>IMC (kg/m²)</td>
</tr>
<tr>
<td>VAEsquMax (ml)</td>
</tr>
<tr>
<td>VAEsquMin (ml)</td>
</tr>
<tr>
<td>VAEsquPS (ml)</td>
</tr>
<tr>
<td>VAEsquMaxi (ml/m²)</td>
</tr>
<tr>
<td>AEsq Função reservatório</td>
</tr>
<tr>
<td>AEsq Função conduto</td>
</tr>
<tr>
<td>AEsq Função ativa</td>
</tr>
<tr>
<td>AEsq Função global</td>
</tr>
<tr>
<td>VAAEsquMax (ml)</td>
</tr>
<tr>
<td>VAAEsquMin (ml)</td>
</tr>
<tr>
<td>VAAEsquPS (ml)</td>
</tr>
<tr>
<td>VAAEsquMaxi (ml/m²)</td>
</tr>
</tbody>
</table>

cont.
RECIDIVA

<table>
<thead>
<tr>
<th></th>
<th>sem recidiva</th>
<th>com recidiva</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Média</td>
</tr>
<tr>
<td>AAEsq Função reservatório</td>
<td>37</td>
<td>1.27</td>
</tr>
<tr>
<td>AAEsq Função conduto</td>
<td>37</td>
<td>0.19</td>
</tr>
<tr>
<td>AAEsq Função ativa</td>
<td>37</td>
<td>0.42</td>
</tr>
<tr>
<td>AAEsq Função global</td>
<td>37</td>
<td>0.48</td>
</tr>
</tbody>
</table>

GRÁFICOS 4

Média +/- DP VAEsq

![Gráfico 1](image1)

Média +/- DP Função AEsq

![Gráfico 2](image2)

Média +/- DP VAEEsq

![Gráfico 3](image3)

Média +/- DP Função AAEsq

![Gráfico 4](image4)
9.3.4.2. Análise univariada variáveis discretas

Apenas o padrão de drenagem das veias pulmonares à direita teve impacto prognóstico, como se pode observar nas curvas de “sobrevida” (recidiva) de Kaplan Meier, com o padrão R2a a condicionar um número significativamente menor de recidivas, com a maior diferença a ocorrer até aos 2 anos de seguimento (ver Gráficos 5 e 6). No Gráfico 7, verificámos não haver diferença relacionável com o padrão de drenagem das veias pulmonares à esquerda.

GRÁFICO 5
Curva de Kaplan Meier, mostrando a diferença significativa de recidiva entre os doentes com padrão de drenagem das VPDrt (R2a vs R2b)

GRÁFICO 6
Curva de Kaplan Meier, mostrando a diferença significativa de recidiva entre os doentes com padrão de drenagem das VPDrt (R2a vs R2b e (R3 ou mais ostiae))
GRÁFICO 7
Curva de Kaplan Meier, não mostrando diferença significativa de recidiva entre os doentes com padrão de drenagem das VPEsq (L2a vs L2b)

Os parâmetros dimensionais e funcionais não traduziram impacto prognóstico significativo, nem mesmo a comparação entre grupos com aurícula dilatada vs não dilatada (com base no volume máximo indexado) (p= 0.339) (ver Gráfico 8).

GRÁFICO 8
Curva de Kaplan Meier, não mostrando diferença significativa de recidiva entre os doentes com aurículas dilatadas vs não dilatadas — caracterizadas pelo VAEsq Maxi acima ou abaixo do limite superior do intervalo de confiança a 95%
9.3.4.3. Análise multivariável
No entanto, na avaliação multivariável, ajustando para os fatores do score ATLAS (idade; tipo de FA; sexo; tabagismo), o volume da aurícula esquerda passou a ter relevância prognóstica significativa, com \(p=0,022 \).
Avaliando igualmente o padrão de drenagem das veias pulmonares à direita, incluindo os fatores que participam no score ATLAS, verificamos que o padrão R2a é de facto um preditor independente de melhor prognóstico (menor recidiva) após ablação.

9.4. DISCUSSÃO
A constituição do nosso grupo de estudo com informação prognóstica (grupo A2), procurou utilizar todos os doentes a quem tinha sido realizada uma TC cardíaca pré-ablação de FA com capacidade de reconstruções em diferentes fases para avaliação funcional. Procurámos ainda homogeneizar a amostra avaliando apenas doentes com FA paroxística. No entanto, estes são os doentes que mais frequentemente realizam ablação, pelo que a diminuição da dimensão da amostra foi marginal.
Os nossos dados de avaliação morfológica estão em linha com séries de outros países, nomeadamente no padrão mais frequente de drenagem das veias pulmonares com dois ostia de cada lado (6, 7) ou na prevalência de todos os tipos de AAESq. Tal como na série de Di Biase (8), o AAESq tipo II — chicken wing foi o mais prevalente 43% vs 48%, sendo o menos frequente em ambas as séries o tipo IV — cauliflower, no entanto nos nossos resultados surge como quatro vezes mais prevalente do que na Di Biase 12% vs 3%. Estas diferenças poderão dever-se à variabilidade inter-observador na classificação nos tipos de AAEs.
Os apêndices acessórios da AEsq apresentam prevalências entre os 5-10% (9, 10), sendo o nosso resultado de 7% dentro do espectável. Salientamos, no entanto, a importância destas estruturas no contexto do doente com FA, nomeadamente na terapêutica de encerramento do AAEs, dado estes doentes não fazerem sempre TC prévio à terapêutica percutânea. A ecografia tem baixa acuidade para o seu diagnóstico e a oclusão do AAEs principal costuma acompanhar-se de redução de medidas
farmacológicas de prevenção de eventos tromboembólicos, não protegendo assim o doente da formação de trombos no apêndice acessório.

Em relação às questões formuladas no início do capítulo, no que concerne a avaliação dimensional e funcional, verificámos apenas uma moderada associação entre a função e o volume do AAEsq e a AESq, provavelmente traduzindo a génese embriónaria diferente.

Não houve correlação entre o risco de eventos tromboembólicos calculado pelo score CHA$_2$DS$_2$VASc (baixo vs não baixo, conforme descrito acima) e a morfologia do AAEsq (mesmo com aquelas que estão associadas a maior estase como o tipo não chicken wing (15)) ou o seu volume máximo indexado, o volume mínimo indexado ou a função ativa.

Outro marcador para estase no AAEsq avaliável por TC é a necessidade de segunda aquisição (tardia) por fraca homogeneização contraste-sangue (16). No nossos resultados, não houve correlação entre a necessidade de segunda aquisição e o risco de eventos tromboembólicos.

No entanto, a função ativa da AESq é significativamente maior no grupo de baixo risco pelo score CHA$_2$DS$_2$VASc ($p = 0.042$), assim como é menor o volume mínimo indexado ($p=0.022$), dois marcadores de possível estase auricular.

Em relação ao contributo prognóstico, não confirmámos que houvesse, na nossa série, um marcador de prognóstico do resultado da terapêutica ablativa a nível morfológico, dimensional ou funcional no AAEsq.

Muito recentemente (11) foi publicada uma série com 52 doentes e seguimento até 24 meses, que demonstrou o volume máximo do AAEsq como marcador independente de recorrência da FA após ablação. Essa série apresenta volumes máximos da AESq e do AAEsq com médias aproximadas aos nossos resultados. A inclusão de doentes com FA permanente poderá estar na génese das diferenças observadas.

Da avaliação da AESq, só na avaliação multivariada, se verificou o VAEsqMax como preditor independente de recidiva, não havendo nenhum marcador funcional com relevância prognóstica neste grupo, neste contexto.
Explorando a possibilidade de haver morfologias de drenagem das veias pulmonares que possam dificultar a sua ablação, verificámos que o padrão das veias pulmonares à direita R2a confere um significativo maior tempo livre de recidiva após terapêutica ablativa do que o padrão R2b e de que os outros padrões de drenagem de veias à direita. A avaliação multivariável incluindo os elementos do score ATLAS, permitiu verificar e confirmar a importância do padrão R2a, como marcador independente de melhor prognóstico. Outros estudos verificaram que a inclinação das veias pulmonares (12), a dimensão dos ostiae (13) e a presença de variantes anatômicas de drenagem (14), têm igualmente valor prognóstico. Nós avaliámos a dimensão dos ostiae das veias pulmonares à direita e a sua ovalidade e verificámos que não divergem significativamente entre padrão R2a e R2b, pelo que os resultados na nossa série atribuem-se a outras razões. Ao reparármos que a grande diferença de recidiva ocorre cedo no seguimento (ver gráfico 5, 6 e 9) e que na análise das curvas, as curvas são quase paralelas após dessa primeira fase, leva-nos a especular que a grande diferença entre estes grupos ocorre no procedimento e não no substrato da doença. Ou seja, poderá ser importante intensificar o procedimento de ablação sempre que um doente tiver um padrão de drenagem das veias pulmonares à direita não R2a.

Análise multivariável em curvas de Kaplan Meier, incluindo para além do padrão das veias pulmonares à direita os elementos que participam no score ATLAS (idade, tipo de FA, VAEsqMaxi, sexo, ser fumador). A avaliação por regressão de Cox, demonstra o padrão R2a como preditor independente de menor recidiva.
Limitações:
O tamanho da amostra do grupo A2 poderá ter limitado a correlação das variáveis funcionais com o prognóstico após a terapêutica ablativa. No entanto, com a tecnologia atual, não há justificação para a realização de exames retrospetivos no contexto pré-ablação de FA. Portanto ao procurar, como nós, otimizar o exame a todo o doente e não modificando o protocolo considerado adequado por estarmos a realizar estudo investigacional, não será possível aumentar a amostra. Este aspeto foi o principal determinante para que não se aumentasse o tempo de inclusão de doentes neste trabalho investigacional, uma vez que em Abril de 2012 praticamente a totalidade dos doentes em ritmo sinusal que realizaram o exame de TC cardíaca num contexto pré-ablativo foram efetuados com protocolo prospetivo (que não permite a avaliação funcional).
Foi apenas avaliada a função do AAESq em 56 doentes, a avaliação preliminar dos dados levou-nos a dirigir o nosso trabalho para a avaliação de outros parâmetros.

A escolha de só avaliar doentes com FA paroxística prendeu-se com dois fatores: tornar a amostra homogénea e excluir doentes que, por terem FA não paroxísticas mais “avançadas” no decorrer do continuum patogénico, pudessem apesar do reduzido número confundir os resultados do grupo paroxístico.

9.5. CONCLUSÃO
Entre a AESq e o AAESq em doentes com FA paroxística existe apenas moderada correlação no que concerne os seus volumes e função.
Identificámos fatores da AESq, como uma maior fração de ejeção e um menor volume mínimo indexado, que se associam a uma maior probabilidade de score CHA2DS2-VASc baixo.
Nesta população de 116 doentes com seguimento médio de 4,8 anos, a presença de um padrão de drenagem pulmonar direita R2a associa-se a melhor prognóstico, mesmo quando ajustado para os fatores do score ATLAS.
O volume auricular em análise multivariada é um preditor independente de recidiva após ablação.
Restantes características volumétricas e funcionais da AESq e do AAEsq não tiveram relevância prognóstica significativa.
Salientamos dois fatores identificados por TC relevantes no contexto destes doentes, nomeadamente os 7% de apêndices acessórios e os 7% de achados extra-cardíacos major.
BIBLIOGRAFIA

CAPÍTULO X

Otimização dos exames de TC cardíaca prévios a ablação de Fibrilhação Auricular
RESUMO

Este capítulo aborda um dos objetivos da tese: a otimização dos exames de TC cardíaca realizados num contexto prévio à realização de ablação de fibrilhação auricular. Foi efetuada uma avaliação de exames consecutivos em três períodos temporais diferentes, nomeadamente: no início da nossa atividade, no final da nossa atividade com o primeiro aparelho de TC disponível e no início de atividade no novo aparelho de TC, como parte de um controlo de qualidade de uma otimização que se quer constante.

Na comparação entre o primeiro e o segundo períodos temporais é sobretudo avaliado o contributo do aumento da experiência. Na comparação entre o segundo e o terceiro períodos temporais é analisado particularmente o papel da evolução tecnológica.

Esta avaliação sistematizada permitiu objetivar os ganhos em redução da dose de radiação e volume de contraste, associados à avaliação qualitativa e quantitativa da imagem de TC e resultou num artigo original submetido a revista indexada nacional.

ARTIGO SUBMETIDO

Tomografia computorizada cardíaca prévia a ablação de fibrilhação auricular — efeitos da evolução tecnológica e otimização de protocolos

Hugo Marques, Pedro de Araújo Gonçalves, António Miguel Ferreira, Rita Cruz, João Lopes, Rosana dos Santos, Lucian Radu, Francisco Costa, João Mesquita, Pedro Carmo Diogo Cavaco, Leonor Parreira, João Pisco, João Goyri o’Neill, Pedro Adragão

Submetido à Revista Portuguesa de Cardiologia
10.1. INTRODUÇÃO

O campo da TC cardíaca é ainda recente, com experiência que se tem acumulado rapidamente, associado a uma evolução tecnológica vertiginosa, do qual resultou um campo investigacional fértil.
A otimização de protocolos de TC deve ser um trabalho contínuo, com controlo de qualidade periódico, trabalhando-se sob a máxima: “Cada exame é realizado para uma indicação, um doente e numas condições específicas”.
Assim é possível verificar, no desenho do nosso protocolo de aquisição dos exames de TC pré-ablação (informação adicional abaixo e no capítulo VI), um conjunto de componentes variáveis que visam sobretudo esta adaptação ao doente e às suas características – “one size can fit all but only if it is too large for many”.

10.2. MÉTODOS

Foram incluídos 270 doentes de um registo prospetivo de doentes consecutivos de centro único de grande volume, que realizaram TC cardíaco num contexto de avaliação prévia a ablação de fibrilhação auricular.
Formaram-se 3 grupos independentes:
> o grupo 1 – os TC cardíacos efetuados aos primeiros 150 doentes
> o grupo 2 - os TC cardíacos efetuados aos últimos 60 doentes efetuados com o mesmo aparelho de TC do grupo 1
> o grupo 3 - os TC cardíacos efetuados aos primeiros 60 doentes do novo aparelho de TC.
Avaliámos a otimização do protocolo com base na dose de radiação, no volume de contraste, na necessidade de aquisição complementar e na avaliação objetiva da
qualidade de imagem, incluindo os rácios sinal/ruído, contraste/ruído, bem como homogeneização de densidade auricular esquerda/apêndice auricular esquerdo.

10.3. RESULTADOS

Houve uma redução significativa da dose de radiação entre cada um dos grupos e da dose de contraste entre os primeiros e o último grupo (5,6mSv e 100ml contraste para o grupo1; 1,3mSv e 90ml no grupo2; 0,6mSv e 65ml no grupo3). Realçamos que houve uma redução da dose de radiação de grupo em cerca de 3 vezes em média, o que significa que os exames atuais estão a ser realizados com cerca de 10% da dose inicial.

Apesar desta redução de dose de radiação e de volume de contraste utilizados, o grupo 3 revelou resultados significativamente melhores na avaliação quantitativa da qualidade de imagem, com rácios sinal/ruído de 13,5; contraste/ruído de 14,8 e de homogeneização de densidade de 0,92 (p<0,001).

Houve uma tendência (embora não significativa) para uma menor necessidade de aquisição complementar tardia (2ª aquisição) ao longo das séries, dos 11% no grupo 1 para os 5% no grupo 3 (p=0,057).

TABELA 1
Descrição dos grupos e avaliação comparativa.

<table>
<thead>
<tr>
<th></th>
<th>Grupo 1 (G1)</th>
<th>Grupo 2 (G2)</th>
<th>Grupo 3 (G3)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>150</td>
<td>60</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Idade, anos</td>
<td>59 (48-65)</td>
<td>63 (53-69)</td>
<td>65 (56-70)</td>
<td>0.001†</td>
</tr>
<tr>
<td>Sexo masculino</td>
<td>74% (n=111)</td>
<td>72% (n=43)</td>
<td>73% (n=44)</td>
<td>0.805</td>
</tr>
<tr>
<td>IMC, Kg/m²</td>
<td>26.6 (24.2-29.1)</td>
<td>27.1 (24.0-28.6)</td>
<td>26.3 (24.5-28.9)</td>
<td>0.987</td>
</tr>
<tr>
<td>% ritmo sinusal</td>
<td>75% (n=112)</td>
<td>70% (n=42)</td>
<td>70% (n=42)</td>
<td>0.590</td>
</tr>
<tr>
<td>Frequência cardíaca, bpm</td>
<td>68 (59-77)</td>
<td>66 (58-75)</td>
<td>65 (58-80)</td>
<td>0.746</td>
</tr>
<tr>
<td>Protocolo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Protocolo Retrospetivo</td>
<td>100% (n=150)</td>
<td>5% (n=3)</td>
<td>3% (n=2)</td>
<td></td>
</tr>
<tr>
<td>% Protocolo Prospetivo</td>
<td>NA</td>
<td>98% (n=59)</td>
<td>5% (n=3)</td>
<td></td>
</tr>
<tr>
<td>% Protocolo FLASH</td>
<td>NA</td>
<td>NA</td>
<td>91.7% (n=55)</td>
<td></td>
</tr>
</tbody>
</table>

cont.
A TC cardíaca, num contexto prévio a ablação de fibrilhação auricular, permite dispensar outros métodos de imagem, sendo capaz de fornecer um excelente mapa anatômico e excluir a presença de trombos intra-cardíacos (1, 2). No entanto, para que a...
AVALIAÇÃO POR TOMOGRAFIA COMPUTADORIZADA DA AURÍCULA ESQUERDA E VEIAS PULMONARES

presença de falsos positivos não diminua a acuidade da técnica e consequentemente o seu valor como “exame único” prévio à técnica ablativa, é necessário diferenciar trombos verdadeiros de imagens referidas como pseudotrombos, que não são infrequentes e resultam de insuficiente homogeneização contraste-sangue entre a AEsq e o AA&AEsq (3).

Existem diferentes formas de diferenciar estas entidades, nós optámos sempre por avaliar as imagens da primeira aquisição logo após a sua reconstrução e caso a homogeneização de densidade AEsq/AA&AEsq não permitisse a exclusão de trombo, repetimos a aquisição limitada ao AA&AEsq sem a administração de mais contraste, dentro de um período temporal de 3 minutos após a primeira aquisição.

O timing da aquisição do nosso protocolo, procura, para além de diminuir a necessidade de segundas passagens, otimizar a qualidade de imagem mantendo bons rácios de sinal/ruído e contraste/ruído, sem aumentar a dose de contraste ou a dose de radiação final. Este aspeto foi conseguido com doses de contraste e radiação significativamente menores. Para este resultado, contribuíram, em grande medida, a experiência acumulada e o avanço tecnológico dos equipamentos.

Salientamos ainda que a comparação quantitativa da qualidade de imagem entre os dois aparelhos de TC foi traduzida por uma melhoria da qualidade de imagem apesar da redução da radiação e contraste. Acresce também que todos os exames foram considerados com acuidade diagnóstica para exclusão de trombo, de forma independente, por um radiologista e um cardiologista muito experiente em TC cardiaca, apesar dos 17% de casos (74 exames) realizados em FA.

Como referido anteriormente, existem outras formas de otimizar estes protocolos, sumariamente descritas nesta tabela (ver Tabela 3, descrito em maior detalhe no artigo submetido).

Consideramos que a realização deste protocolo de TC, num contexto prévio a ablação de FA, como exame único, representa um protocolo com menor dose de radiação, sem sacrifício da qualidade conforme confirmado pela avaliação quantitativa da qualidade da imagem.
TABELA 3
Comparação com outras publicações

<table>
<thead>
<tr>
<th></th>
<th>Marques et al. Protocolo atual - G3</th>
<th>Lazoura et al</th>
<th>Teunissen et al</th>
<th>Iwayama et al</th>
<th>Annoni et al</th>
</tr>
</thead>
<tbody>
<tr>
<td>n do grupo referência (n total do estudo)</td>
<td>60 (270)</td>
<td>122</td>
<td>605</td>
<td>20 (60)</td>
<td>100 (200)</td>
</tr>
<tr>
<td>Sincronização eletrocardiográfica</td>
<td>sim</td>
<td>sim</td>
<td>sim</td>
<td>não</td>
<td>não</td>
</tr>
<tr>
<td>Dupla administração de contraste</td>
<td>não</td>
<td>não</td>
<td>sim</td>
<td>não</td>
<td>não</td>
</tr>
<tr>
<td>Realizado para exclusão de trombo</td>
<td>sim</td>
<td>sim</td>
<td>sim</td>
<td>não</td>
<td>não</td>
</tr>
<tr>
<td>% de exames em que não foi possível excluir trombo</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>% de 2.ª aquisição</td>
<td>5%</td>
<td>100%</td>
<td>4,30%</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Necessidade de 2.ª aquisição</td>
<td>5%</td>
<td>16%</td>
<td>4,30%</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>ETE prévio à ablação de FA</td>
<td>não necessária</td>
<td>não necessária</td>
<td>não necessária</td>
<td>necessária</td>
<td>necessária</td>
</tr>
<tr>
<td>Dose de radiação</td>
<td>0,6mSv</td>
<td>3,5mSv</td>
<td>3,1mSv</td>
<td>1,1mSv</td>
<td>0,4mSv</td>
</tr>
<tr>
<td>Dose de contraste</td>
<td>64ml</td>
<td>90ml</td>
<td>100ml</td>
<td>28,7ml</td>
<td>80ml</td>
</tr>
</tbody>
</table>

ETE — Ecocardiograma Transesofágico; FA — Fibrilhação Auricular; mSv — milisievert
10.5. CONCLUSÃO

A experiência acumulada e os avanços tecnológicos contribuem para a otimização dos exames de TC cardíaca em contexto de pré-abação de fibrilação auricular, sendo possível reduções significativas do volume de contraste utilizado e da dose de radiação, para valores médios submilisievert, sem diminuição da qualidade de imagem.
BIBLIOGRAFIA

ANEXOS
ARTIGO SUBMETIDO

Tomografia computorizada cardíaca prévia a ablação de fibrilhação auricular — efeitos da evolução tecnológica e otimização de protocolos

Hugo Marques, Pedro de Araújo Gonçalves, António Miguel Ferreira, Rita Cruz, João Lopes, Rosana dos Santos, Lucian Radu, Francisco Costa, João Mesquita, Pedro Carmo Diogo Cavaco, Leonor Parreira, João Pisco, João Goyri o’Neill, Pedro Adragão

Submetido à Revista Portuguesa de Cardiologia
Manuscript Details

Manuscript number REPC_2017_404

Title Tomografia computorizada cardíaca prévia a ablação de fibrilhação auricular – efeitos da evolução tecnológica e optimização de protocolos

Short title Tomografia computorizada cardíaca prévia a ablação de fibrilhação auricular

Article type Original article

Abstract

RESUMO: Introdução: A capacidade da TC cardíaca fornecer um mapa anatômico preciso e excluir a presença de trombo intra-cardíaco é conhecida. O objectivo deste estudo foi avaliar o impacto da optimização de protocolos e evolução tecnológica nas doses de radiação e contraste, e na qualidade de imagem dos exames de TC cardíaca previo a ablação de fibrilhação auricular (FA). Métodos: Registo prospectivo de doentes consecutivos de centro único, sendo incluídos os que realizaram TC cardíaca num contexto de avaliação prévia a ablação de FA (n=270), distribuídos em 3 grupos: Grupo1 constituído pelos primeiros 150 doentes; Grupo2 os últimos 60 doentes realizados no mesmo aparelho; Grupo3 os primeiros 60 doentes do novo aparelho. Avaliámos a optimização do protocolo com base na dose de radiação, volume contraste, necessidade de aquisição complementar e na avaliação objectiva da qualidade de imagem (rácios sinal/ruido, contraste/ruido e homogeneização de densidade AE/AAE). Resultados: Houve uma redução significativa da radiação entre cada um dos grupos e da dose de contraste entre o primeiro e último grupo (G1: 5,6mSv e 100ml; G2: 1,3mSv e 90ml; G3: 0,6mSv e 65ml). Apesar das menores doses de radiação e contraste, o Grupo3 apresentou resultados significativamente melhores de qualidade de imagem (racios sinal/ruido 13,5; contraste/ruido 14,8; homogeneização de densidade 0,92). Conclusão: A optimização de protocolos e a evolução tecnológica permitiram reduções significativas nas doses de radiação e de contraste utilizadas na TC cardíaca pré-ablação de FA, sem prejudicar a qualidade de imagem.

ABSTRACT: Background: Cardiac computed tomography (CT) can provide a precise tridimensional anatomic map and exclude intra-cardiac thrombus. We aimed to access the impact of CT protocol optimization and technological evolution on the contrast and radiation dose as well as on image quality previous to atrial fibrillation (AF) ablation. Methods: From a prospective registry of consecutive patients who underwent cardiac CT in a single center, we selected 270 patients in whom the CT was done for evaluation prior to AF ablation and they were distributed in 3 groups: Group1: the first 150 patients included; Group2: the last 60 patients performed with the same CT scanner; Group3: the first 60 exams performed with the new CT scanner. Quality of the protocol was access based on radiation dose, contrast volume used, the use of a second (delayed) acquisition, and on quantitative image quality analisis (signal to noise and contrast to noise ratios; density homogeneity racio between LA and LAA). Results: We found a significant radiation dose as well as contrast dose reduction between the first and last subgroups (G1: 5.6mSv and 100ml; G2: 1.3mSv and 90ml; G3: 0.6mSv and 65ml). Even though group 3 had less radiation and contrast used it still had better quantitative image quality (signal/noise of 13.5; contrast/noise 14.8; density homogeneity racio of 0.92). Conclusion: Protocol optimization and technology both contributed to significant lower radiation dose and contrast volume used on cardiac CTs prior to AF ablation, without compromising image quality.

Keywords Palavras chave: Tomografia computorizada cardíaca; Fibrilhação auricular; dose de radiação; aurícula esquerda Keywords: Cardiac computed tomography; Atrial fibrilation; radiation dose; left atrium

Corresponding Author Pedro de Ara?jo Gon?alves

Order of Authors Hugo Marques, Pedro de Ara?jo Gon?alves, Antonio Ferreira, Rita Cruz, João Lopes, Rosana dos Santos, Lucian Radu, João Mesquita, Francisco Costa, Pedro Carmo, Diogo Cavaco, Leonor Parreira, Joao Pisco, João Goyri O’Neill, Pedro Adragao

cont.
Tomografia computorizada cardíaca prévia a ablação de fibrilhação auricular – efeitos da evolução tecnológica e optimização de protocolos

Cardiac computed tomography previous to atrial fibrillation ablation – effects of technological improvements and protocol optimization.

Hugo Marques¹,²,³, Pedro de Araújo Gonçalves¹,²,³,⁴, Rosana dos Santos¹,², António Miguel Ferreira¹,⁴, Rita Cruz², João Lopes², Leonor Parreira⁶, João Pisco³, João Goyri O’Neill³, Pedro Adragão⁴,⁶

¹ - UNICA – Unidade de Imagem Cardiovascular por TC e RM – Centro de Imagioologia- Hospital da Luz Lisboa
² - Serviço de Radiologia - Hospital de Santa Marta, CHLC, Lisboa
³ – Nova Medical School, Lisboa
⁴ - Serviço de Cardiologia, Hospital de Santa Cruz, CHLO, Lisboa
⁵ – Serviço de Imagioologia - Hospital Beatriz Angelo, Loures
⁶ – Centro Cardiovascular- Hospital da Luz Lisboa

Corresponding author:
Pedro de Araújo Gonçalves,
Email: paraujogoncalves@yahoo.co.uk
Telemovel: 966866455
Fax: +351214241388
Morada: Hospital de Santa Cruz, Avenida Professor Doutor Reinaldo dos Santos, 2790-134 Carnaxide Hospital da Luz, Avenida Lusiada, Lisboa.
Nova Medical school, Campo dos Martires da Pátria, Lisboa.

Contagem de palavras: 3064
RESUMO:

Introdução:
A capacidade da TC cardíaca fornecer um mapa anatômico preciso e excluir a presença de trombo intra-cardíaco é conhecida.
O objectivo deste estudo foi avaliar o impacto da optimização de protocolos e evolução tecnológica nas doses de radiação e contraste, e na qualidade de imagem dos exames de TC cardíaca previo a ablação de fibrilhação auricular (FA).

Métodos:
Registo prospectivo de doentes consecutivos de centro único, sendo incluídos os que realizaram TC cardíaca num contexto de avaliação prévia a ablação de FA (n=270), distribuídos em 3 grupos: Grupo1 constituído pelos primeiros 150 doentes; Grupo2 os últimos 60 doentes realizados no mesmo aparelho; Grupo3 os primeiros 60 doentes do novo aparelho. Avaliámos a optimização do protocolo com base na dose de radiação, volume contraste, necessidade de aquisição complementar e na avaliação objectiva da qualidade de imagem (rácios sinal/ruído, contraste/ruído e homogeneização de densidade AE/AEE).

Resultados:
Houve uma redução significativa da radiação entre cada um dos grupos e da dose de contraste entre o primeiro e último grupo (G1: 5,6mSv e 100ml; G2: 1,3mSv e 90ml; G3: 0,6mSv e 65ml). Apesar das menores doses de radiação e contraste, o Grupo3 apresentou resultados significativamente melhores de qualidade de imagem (racios sinal/ruído 13,5; contraste/ruído 14,8; homogeneização de densidade 0,92).

Conclusão:
A optimização de protocolos e a evolução tecnológica permitiram reduções significativas nas doses de radiação e de contraste utilizadas na TC cardíaca pré-ablação de FA, sem prejudicar a qualidade de imagem.

Palavras chave: Tomografia computorizada cardíaca; Fibrilhação auricular; dose de radiação; auricula esquerda
ABSTRACT:

Background:
Cardiac computed tomography (CT) can provide a precise tridimensional anatomic map and exclude intracardiac thrombus.

We aimed to assess the impact of CT protocol optimization and technological evolution on the contrast and radiation dose as well as on image quality prior to atrial fibrillation (AF) ablation.

Methods:
From a prospective registry of consecutive patients who underwent cardiac CT in a single center, we selected 270 patients in whom the CT was done for evaluation prior to AF ablation and they were distributed in 3 groups: Group1: the first 150 patients included; Group2: the last 60 patients performed with the same CT scanner; Group3: the first 60 exams performed with the new CT scanner.

Quality of the protocol was assessed based on radiation dose, contrast volume used, the use of a second (delayed) acquisition, and on quantitative image quality analysis (signal to noise and contrast to noise ratios; density homogeneity ratio between LA and LAA).

Results:
We found a significant radiation dose as well as contrast dose reduction between the first and last subgroups (G1: 5.6mSv and 100ml; G2: 1.3mSv and 90ml; G3: 0.6mSv and 65ml). Even though group 3 had less radiation and contrast used it still had better quantitative image quality (signal/noise of 13.5; contrast/noise 14.8; density homogeneity ratio of 0.92).

Conclusion:
Protocol optimization and technology both contributed to significant lower radiation dose and contrast volume used on cardiac CTs prior to AF ablation, without compromising image quality.

Keywords: Cardiac computed tomography; Atrial fibrillation; radiation dose; left atrium
INTRODUÇÃO E OBJECTIVOS
O isolamento percutâneo das veias pulmonares está bem estabelecido para o tratamento da fibrilhação auricular, sendo uma área de grande desenvolvimento clínico e tecnológico nos últimos anos (1). Antes da sua realização, é necessária a exclusão de trombo intra-cardíaco, nomeadamente no apêndice auricular esquerdo (AAEsq) (2-4). A obtenção prévia de mapa anatômico 3D da aurícula esquerda (AEs) e veias pulmonares facilita o procedimento contribuindo para a sua segurança, reduz a radiação a que o doente é submetido durante a ablação e poderá aumentar a sua acuidade(5-8).
A tomografia computorizada (TC) cardíaca é um método imagiológico com capacidade para fornecer toda esta informação (exclusão de trombo e informação anatômica) de forma não invasiva (9), pelo que tem ganho preponderância nestes doentes (Figura 1) (10). Este trabalho tem por objectivo avaliar a optimização dos protocolos de TC cardíaca prévia a ablação de fibrilhação auricular (pré-ablação), tendo por base a dose de radiação e de contraste e a qualidade diagnóstica, tendo em conta o aumento da experiência do centro e os avanços tecnológicos disponíveis.

MÉTODOS:
Desenho do estudo e população:
De um registo prospectivo de centro único de grande volume doentes submetidos a avaliação por TC cardíaca já descrito anteriormente(11), selecionaram-se todos aqueles cuja indicação foi a avaliação prévia a ablação de fibrilhação auricular (pré-ablação). Desses foram constituídos 3 grupos de doentes consecutivos, independentes: Grupo 1 - Os primeiros 150 doentes consecutivos incluídos no registo; Grupo 2 - Os últimos 60 doentes efectuados com o mesmo aparelho de TC que tivemos disponível – TC dupla-ampola de 1ª geração, com 64 cortes (SOMATOM Definition®, Siemens Healthcare); Grupo 3 foi constituído com os primeiros 60 doentes efectuados com o novo aparelho de TC dupla-ampola 3ª geração – 192 detectores (SOMATOM Force®, Siemens Healthcare). (Figura 2). O grupo 1 serviu de grupo controlo quando comparado com o grupo 2, para avaliação da experiência na optimização dos exames. O grupo 2 serviu de grupo controlo quando comparado com o grupo 3 para avaliação da evolução tecnológica na optimização dos exames.

Protocolo de Aquisição
Todos os exames foram realizados dentro das 24h prévias à realização do procedimento ablativo.

Protocolo de aquisição para o grupo 1:
Exames realizados em TC dupla-ampola 1ª geração – 64 detectores – SOMATOM Definition®, com resolução temporal nativa de 83ms e velocidade de mesa (“pitch”) máximo de 45,7mm/s.
Aquisição com protocolo retrospectivo, com modulação da miliamperagem - com 20% da miliamperagem fora dos intervalos de dose máxima, escolhidos da seguinte forma: se ritmico e frequência cardíaca (FC) inferior a 70 batimentos por minuto (bpm) – dose máxima apenas aos 70% do intervalo RR; se arrítmico ou
rítmico com FC 70-80bpm - dose máxima de 40 a 80% do intervalo RR; se rítmico e FC superior a 80bpm –

dose máxima a 40-50% do intervalo RR.

A kilovoltagem (kV) foi determinada da seguinte forma: 100kV se índice de massa corporal (BMI)<30, caso

contrário 120kV.

As imagens forma reconstruídas com protocolo de “filtered back projection” (FBP), com uma espessura de

1,5mm e um incremento de 0,7mm, matriz 512x512.

O contraste utilizado tinha a concentração de 320mgI/ml e foi administrado num protocolo trifásico com um
débito de 6ml/seg, da seguinte forma: primeira fase com administração de contraste puro com volume

calculado segundo a fórmula: volume de contraste administrado = (tempo de aquisição +tempo de espera) x 6

(valor do fluxo de administração). O tempo de espera foi fixado em 7 segundos; segunda fase com a

administração de 30 ml de contraste diluído (30% contraste e 70% soro); terceira fase com administração de

30ml de soro.

Foi utilizado a técnica de “bolus tracking” com região de interesse na aorta ascendente e início de aquisição 7

segundos após atingir a densidade de 150HU (unidades de Hounsfield).

Protocolo de aquisição para o grupo 2:

Exames realizados em TC dupla-ampola 1ª geração – 64 detectores – SOMATOM Definition®, com

resolução temporal nativa de 83ms e velocidade de mesa (“pitch”) máximo de 45,7mm/s

Aquisição com protocolo prospectivo se doente rítmico ou arrítmico com pequena variabilidade RR; noutros

casos aquisição retrospectiva (modulação da milha de aplicação com 20% da milha de aplicação fora dos intervalos

de dose máxima, com dose máxima de 40 a 80% do intervalo RR).

A kV foi determinada da seguinte forma: 80kV se BMI < 30, caso contrario 100kV se peso inferior a 100kg e

120kV se peso superior a 100kg.

As imagens forma reconstruídas com protocolo de “filtered back projection” (FBP), com uma espessura de

1,5mm e um incremento de 0,7mm, matriz 512x512.

O contraste utilizado tinha a concentração de 370mgI/ml e foi administrado num protocolo trifásico com um
débito de 5ml/seg, da seguinte forma: primeira fase com administração de contraste puro com volume

calculado segundo a fórmula: volume de contraste administrado = (tempo de aquisição +tempo de espera) x 5

(valor do fluxo de administração). O tempo de espera foi fixado em 10 segundos; segunda fase com a

administração de 30 ml de contraste diluído (30% contraste e 70% soro); terceira fase com administração de

30ml de soro.

Foi utilizado a técnica de “bolus tracking” com região de interesse na aorta ascendente e início de aquisição 7

segundos após atingir a densidade de 150HU (unidades de Hounsfield).

Protocolo de aquisição para o grupo 3:

Exames realizados em TC dupla-ampola 3ª geração – 192 detectores - SOMATOM Force®, com resolução

temporal nativa de 66ms e velocidade de mesa (“pitch”) máximo em modo FLASH de 737mm/seg.

cont.
Aquisição com protocolo FLASH (aquisição em batimento cardíaco único com método de velocidade de mesa muito elevado 737mm/s), excepto se doentes com FC média superior a 80bpm onde se opta pela aquisição em método prospectivo. Aquisição retrospectiva apenas em doentes com marcada variabilidade RR.

A determinação da kV e da miliamperagem (mA) é efectuada de forma automática tendo em conta a densidade do topograma e os parâmetros de referência, os quais optámos por definir 80kV com 200mAs/rot, com indicação de realização de angio-TC. Apenas se BMI>30, os kV de referência passam a 100kV. Os valores de referência, servem como um guia para o ruído admissível/máximo que se pretende ter na imagem, fazendo o aparelho uma modificação dos valores por forma a optimizar a dose de radiação, mantendo a qualidade da imagem.

As imagens foram reconstruídas com protocolo iterativo – SAFFIRE “força” 3, com 1,5mm de espessura e 0,7mm de incremento, com matriz 512x512.

O contraste utilizado tinha a concentração de 370mgI/ml e foi administrado num protocolo trifásico com um débito de 4ml/seg, da seguinte forma: primeira fase com administração de contraste puro com volume calculado segundo a fórmula: volume de contraste administrado = (tempo de aquisição + tempo de espera) x 4 (valor do fluxo de administração). O tempo de espera foi fixado em 15 segundos (compensa a marcada diminuição do tempo de aquisição que no protocolo FLASH é inferior a 1 segundo); segunda fase com a administração de 30 ml de contraste diluído (30% contraste e 70% soro); terceira fase com administração de 30ml de soro.

Foi utilizado a técnica de “bolus tracking” com região de interesse na aorta ascendente e início de aquisição 15 segundos após atingir a densidade de 150HU (unidades de Hounsfield).

Avaliámos a optimização do protocolo com base em diversos parâmetros:

A) na dose de radiação em mSv, calculada a partir dos DLP (dose length product) totais, disponibilizados pelo aparelho, multiplicados pelo factor de conversão 0,014 (12-14); B) no volume de contraste utilizado em ml; C) na avaliação subjectiva da qualidade diagnóstica, definida por exame com acuidade diagnóstica para excluir trombo na aurícula esquerda e apêndice auricular esquerdo, avaliada por dois médicos diferentes, (com nível III de formação em TC cardíaca), de forma independente, bem como pelo número de doentes em que foi considerado necessário uma segunda aquisição, mais tardia (sem nova administração de contraste, para avaliar adequadamente o apêndice auricular esquerdo e permitir a exclusão de trombo); D) na avaliação objectiva da qualidade do exame, efectuada para avaliação da capacidade de optimização do protocolo entre aparelhos diferentes (aplicada ao grupo 2 e 3), caracterizada pelo rácio sinal/ruído, o rácio contraste/ruído e a homogeneização de densidade entre a AEsq e o AAESq.

Definição dos parâmetros de avaliação quantitativa da qualidade de imagem:

O rácio sinal/ruído é obtido por desenho de uma região de interesse no centro da aurícula esquerda e dividindo a densidade média pelo desvio padrão. (Figura 3).

Em relação ao rácio contraste/ruído, neste tipo de exame e tendo em conta a importância de exclusão de trombo, optámos por definir este parâmetro em relação à densidade do miocárdio do ventrículo esquerdo e não em relação à gordura epicárdica, uma vez que o miocárdio do ventrículo esquerdo é a estrutura limítrofe...
com o AAQs com menor diferença de densidade em relação ao lúmen do mesmo. Para o cálculo deste parâmetro foram desenhadas regiões de interesse no AAQs (local de menor densidade visual) e intra-miocárdico, no segmento do miocárdio em maior proximidade do AAE. O rácio foi obtido da seguinte forma (densidade média do AAQs – densidade média do miocárdio)/ desvio padrão do AAQs. A homogeneização de densidade entre a AESq e o AAQs é obtida pela divisão da densidade média da AESq obtida na região de interesse desenhada no local visual de maior densidade com a densidade média obtida da região de interesse desenhada no local de menor densidade visual no AAQs. (Figura 3)

Dentro de cada grupo foram ainda registadas características demográficas (gênero, idade, peso, altura), bem como o ritmo cardíaco e frequência cardíaca (máxima, mínima e média) durante a aquisição, variáveis do protocolo utilizado (retróspetivo, prospectivo, flash; kV da aquisição; DLP do exame), o volume auricular, a presença de trombo intra-cardíaco e a presença de complicações tromboembólicas após o procedimento de ablação até à alta clínica.

Todos os exames foram efectuados com sincronização com ECG, procurando optimizar os parâmetros do protocolo ao doente.

Os exames foram avaliados logo após a sua realização para decisão de necessidade de aquisição complementar (2ª aquisição) quando a opacificação do AAQs era determinada insuficiente para exclusão segura de trombo ou quando, por qualquer outra causa, o exame era considerado não diagnóstico. Esta segunda aquisição era efetuada nos primeiros 3 minutos após a aquisição inicial, sem utilizar mais contraste e limitada ao AAQs (Figuras 4-5).

Análise estatística:
As variáveis contínuas apresentam-se como mediana (intervalo interquartil) e as categóricas como número (n) e frequência (%). Para comparação entre variáveis contínuas utilizaram-se os testes não paramétricos de Mann-Whitney ou Kruskal-Wallis. O teste exacto de Fisher foi usado para testar diferenças nas frequências de variáveis categóricas. Foi utilizado o software Statistical Pack for Social Sciences (IBM SPSS) versão 20 para Mac OSX. Aceitou-se existir diferença significativa quando p<0,05 (duas caudas).

RESULTADOS:
Os resultados da avaliação dos 3 grupos e da comparação entre grupos são apresentados na Tabela 1.

Dose de Radiação:
Os exames do grupo 1 tiveram radiação mediana de 5,6mSv (402DLP “dose length product” x0,014), os do grupo 2 - 1,3mSv (95DLPx0,014) e 0,6mSv para os doentes do grupo 3 (41DLPx0,014).

Salientamos a diferença significativa no tipo de protocolo utilizado e na kV dos exames, aspecto que contribui decisivamente para a diferença significativa na dose média de radiação dos exames.

Dose de Contraste:
A evolução do protocolo permitiu ainda uma redução significativa entre os grupos da dose de contraste, dos 100ml de volume no grupo 1 para os 65ml utilizados no grupo 3.
Avaliação qualitativa da imagem:
Todos os exames foram considerados diagnósticos. Apesar de não ter atingido significância, existe uma tendência para a menor necessidade de 2ª aquisição com o evoluir do protocolo, com percentagem de 2ª aquisições de 11% no grupo 1 (destes 17 casos apenas num caso a área de menor densidade traduzia imagem “correta” dado corresponder a verdadeiro trombo, confirmado por ecocardiografia trans-esofágica) (figuras 4-5) e de apenas 5% no grupo 3 (p = 0,057).

Avaliação quantitativa da qualidade da imagem:
Na avaliação quantitativa da qualidade de imagem (Tabela 2) entre o grupo 2 e o grupo 3, verificamos que apesar da redução da dose de radiação e do volume de contraste, os exames apresentaram melhor qualidade com rácios sinal/ruído e contraste/ruído significativamente maiores e com maior homogeneização de densidade entre a AEesq e o AAesq.

Na tabela 3 verificamos que a necessidade de 2ª aquisição não se correlacionou com o volume auricular (apesar parecer existir uma tendência para ser necessária em aurículas maiores, p=0,087), mas apenas com a aquisição em fibrilação auricular e com a frequência cardíaca média durante a aquisição.

DISCUSSÃO:
A TC cardíaca num contexto prévio a ablação de fibrilação auricular, permite dispensar outros métodos de imagem, sendo capaz de fornecer um excelente mapa anatômico e excluir a presença de trombos intra-cardíacos [9, 15]. No entanto, para que a presença de falsos positivos, não diminua a acuidade da técnica e consequentemente o seu valor como “exame único” prévio à técnica ablativa, é necessário diferenciar trombos verdadeiros de imagens referidas como pseudotrombos, que não são infrequentes e resultam de insuficiente homogeneização contraste-sangue entre a AEesq e o AAesq [16].

Existem diferentes formas de diferenciar estas entidades, optámos por avaliar sempre as imagens da primeira aquisição logo após a sua reconstrução e, caso a homogeneização de densidade AEesq/AAesq, não permitisse a exclusão de trombo, repetimos a aquisição limitada ao AAesq sem mais contraste, dentro de um período temporal de 3 minutos após a primeira aquisição. Para diminuir a necessidade de 2ª aquisições, que são infrequentes (11% no Grupo 1 e 5% no Grupo 3), atrasámos o início da aquisição inicial aumentado o valor de densidade para início de aquisição (“trigger”) no “bolus tracking”, assim como o tempo de espera entre esse “trigger” e o início da aquisição propriamente dita.

Apesar destas modificações de protocolo não terem resultado numa diminuição significativa do número de 2ª aquisições necessárias, parece existir uma tendência nesse sentido (de 11% no grupo 1 para 5% no grupo 3, p=0,057).

O timing da aquisição do nosso protocolo procura, para além de diminuir a necessidade de segundas passagens, optimizar a qualidade de imagem mantendo bons rácios de sinal/ruído e contraste/ruído, sem aumentar a dose de contraste ou a dose de radiação final. Este aspecto foi conseguido com doses de contraste e radiação significativamente menores (p<0,001). Já anteriormente o nosso grupo publicou que a aquisição em fibrilação auricular era um preditor de maior dose de radiação, pelo que se torna ainda mais
relevante a adopção de protocolos que visam reduzir a sua dose, sobretudo em doentes que com frequência necessitam de vários exames seriados com radiação ionizante ao longo da sua vida\(^\text{17, 18}\).

Salientamos ainda que a comparação quantitativa da qualidade de imagem entre os dois aparelhos de TC foi traduzida por uma melhoria da qualidade de imagem apesar da redução da radiação e contraste. Acresce também que: todos os exames foram considerados com acuidade diagnóstica para exclusão de trombo, de forma independente, por um radiologista e um cardiologista com larga experiência em TC cardíaca, apesar dos 17% de casos (74 exames) realizados em FA.

Como referido anteriormente existem outras formas de procurar optimizar estes protocolos, nomeadamente:

A) Com protocolo de dupla aquisição, incluindo sempre aquisição tardia, como efectuado por Lazoura et al \(^\text{19}\), que estudou 122 doentes, com 16% de defeitos de replecção do AAEsq na primeira aquisição, dos quais todos foram diagnóstico na segunda aquisição (como na nossa série), tendo-se identificado cerca de 3% de trombos. Neste artigo, verifica-se ainda que a necessidade de segunda passagem avaliada através da percentagem de defeitos de replecção do AAEsq era de apenas 16% (5% no Grupo 3 do nosso estudo), pelo que a decisão de segunda aquisição apenas se necessário, como efectuado no nosso estudo, parece-nos a mais acertada. Comparativamente com o nosso estudo, a dose de contraste e radiação foi superior:

B) Com protocolo de dupla injecção de contraste e apenas adquirindo uma vez, após a segunda administração, como efectuado por Teunissen et al \(^\text{20}\), que estudou 605 doentes, com doses médias de contraste de 100ml e de radiação de 3,1mSv. A percentagem de necessidade de segunda aquisição foi de 4,3%. Comparativamente com o nosso estudo, este protocolo obteve resultados semelhantes na necessidade de 2ºs aquisições, mas à custa de maiores doses de contraste e radiação.

C) Protocolo sem sincronização electrocardiográfica, como o realizado por Iwayama et al \(^\text{21}\), que estudou 60 doentes, mas não avaliou a presença de trombo. Obteve dose de radiação média de 1,1mSv.

No entanto a não exclusão de trombo neste protocolo, não permite a dispensa da realização de ecocardiograma trans-esofágico (ETE), o que acresce custo e fonte de morbidade aos doentes. Mesmo realizando o exame sem sincronização electrocardiográfica, a dose de radiação foi superior à utilizada no nosso estudo.

Noutro estudo, igualmente com exames realizados sem sincronização electrocardiográfica, Annoni et al \(^\text{22}\) estudou 200 doentes, 100 dos quais no grupo de menor dose de radiação. Não avaliou a presença de trombo e obteve uma dose de radiação média de 0,4mSv. Tal como no estudo de Iwayama, a não exclusão de trombo não dispensa da realização de ETE. Salientamos que a dose de radiação do estudo de Annoni et al é a mais reduzida com valores médios de 0,4mSv (valores semelhantes aos utilizados no grupo 3 do nosso estudo - 0,6mSv) \(^\text{Tabela 4}\).

Consideramos que, face aos resultados apresentados, este protocolo de TC num contexto prévio à ablação de FA, como exame único, representa um protocolo com menor dose de radiação, sem sacrifício da qualidade conforme confirmado pela avaliação quantitativa da qualidade da imagem.

Limitações

Como possíveis limitações deste estudo, salientamos:

\(^{\text{cont.}}\)
A) Não foi realizado ecocardiograma trans-esofágico sistemático em todos os doentes, mas apenas para confirmação dos trombos identificados na TC cardíaca. No entanto, apesar de poder ser considerada uma limitação, a acuidade para excluir trombo da TC cardíaca é muito elevada e quando acompanhada de aquisição tardia, o número de falsos positivos é igualmente muito baixo (9); B) Entre o grupo 1 e o grupo 2 houve uma mudança na concentração de iodo do contraste utilizado (320 para 370mg/l/ml), mas que foi compensada pelo menor fluxo de administração do mesmo no grupo 2.; C) a nossa série apresenta um número reduzido de trombos, mas este aspecto é uma característica frequente na população que realiza exame de TC pré-ablação de FA; D) apenas foi avaliada quantitativamente a qualidade da imagem do grupo 2 e 3, dado ter coincidido com a introdução de uma tecnologia nova. Houve avaliação subjectiva da qualidade de imagem em todos os grupos; E) Não testámos um protocolo sem sincronização electrocardiográfica, que poderia estar associado a menor dose de radiação (22). No entanto, em aquisição em modo FLASH, a redução de dose não deveria ser significativa, além disso a acuidade para exclusão de trombo não foi ainda estabelecida, o que limitaria a sua adopção como exame único prévio à ablação.

CONCLUSÕES:
A optimização de protocolos e a evolução tecnológica permitiram reduções significativas nas doses de contraste e de radiação (para valores submilisvients) na TC cardíaca pré-ablação de fibrilhação auricular, sem diminuição da qualidade de imagem.
LEGENDAS DAS FIGURAS:

Figura 1: Avaliação por AngioTC cardíaca da AEsq e do AAESq.
1. Avaliação a permeabilidade do AAEsq.
2. Avaliação da morfologia da AEsq e do padrão de drenagem das veias pulmonares
3. Maior detalhe da drenagem da veia pulmonar inferior direita
4. Detalhe morfológico do AAESq
5. Avaliação volumétrica da AEsq
6. Presença de veia pulmonar supra-numerária com drenagem directa na AESq.
7. Presença de pequeno apêndice acessório.

Figura 2: População do estudo

Figura 3: Cálculo dos índices de sinal/ruído e contraste/ruído.
A) Região de interesse (ROI) na AESq; B) ROI no AAESq; C) ROI na parede do VE
Cálculo sinal/ruído = Densidade média AESq / Desvio Padrão AESq
Cálculo contraste/ruído = (densidade média AAESq-densidade média da parede VE)/ Desvio Padrão AAESq
Avaliação da homogenização de contraste AESq/AAESq = Densidade média AESq / Densidade média da área de menor densidade no AAESq

Figura 4: Avaliação do AAESq – necessidade de 2ª aquisição (mais tardia) para diferenciação entre trombo e pseudotrombo. Exemplo de trombo – com a correspondência no ETE (avaliação dimensional muito aproximada).

Figura 5: Avaliação do AAESq – necessidade de 2ª aquisição para diferenciação entre trombo e pseudotrombo. Exemplo de pseudotrombo – identificado pelo ganho de contraste na 2ª aquisição (mais tardia), a sua densidade média e a homogenização de densidade com a restante aurícula.

Figura 6: Avaliação do AAESq – diferenciação entre trombo e pseudotrombo. Exemplo de pseudotrombo que pela densidade média elevada não necessita de segunda aquisição.
BIBLIOGRAFIA

Figura 1

Figura 2

Gruop 1
Primeiros 150 doentes que realizaram TC cardíaco pré-ablação de FA
TC Dupla-ampola 1ª geração
Junho de 2007 – Fevereiro de 2010

Gruop 2
Últimos 60 doentes que realizaram TC cardíaco pré-ablação de FA no
TC Dupla-ampola 1ª geração
Dezembro 2015 – Outubro de 2016

Gruop 3
Primeiros 60 doentes que realizaram TC cardíaco pré-ablação de FA no
TC Dupla-ampola 3ª geração
Outubro de 2016 a Junho de 2017

População estudada
n = 270 doentes
Figura 3

Figura 4
Tabela 1: Descrição dos grupos e avaliação comparativa.

<table>
<thead>
<tr>
<th></th>
<th>Grupo 1 (G1)</th>
<th>Grupo 2 (G2)</th>
<th>Grupo 3 (G3)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>150</td>
<td>60</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Idade, anos</td>
<td>59 (48-65)</td>
<td>63 (53-69)</td>
<td>65 (56-70)</td>
<td>0.001†</td>
</tr>
<tr>
<td>Sexo masculino</td>
<td>74% (n=111)</td>
<td>72% (n=43)</td>
<td>73% (n=44)</td>
<td>0.805</td>
</tr>
<tr>
<td>IMC, Kg/m²</td>
<td>26.6 (24.2-29.1)</td>
<td>27.1 (24.0-28.6)</td>
<td>26.3 (24.5-28.9)</td>
<td>0.987</td>
</tr>
<tr>
<td>% ritmo sinusal</td>
<td>75% (n=112)</td>
<td>70% (n=42)</td>
<td>70% (n=42)</td>
<td>0.590</td>
</tr>
<tr>
<td>Freqüência cardíaca, bpm</td>
<td>68 (59-77)</td>
<td>66 (58-75)</td>
<td>65 (58-80)</td>
<td>0.746</td>
</tr>
<tr>
<td>Protocolo</td>
<td></td>
<td></td>
<td></td>
<td><0.001†¶</td>
</tr>
<tr>
<td>% Protocolo Retro</td>
<td>100% (n=150)</td>
<td>5% (n=3)</td>
<td>3% (n=2)</td>
<td></td>
</tr>
<tr>
<td>% Protocolo Prospectivo</td>
<td>NA</td>
<td>98% (n=59)</td>
<td>5% (n=3)</td>
<td></td>
</tr>
<tr>
<td>% Protocolo FLASH</td>
<td>NA</td>
<td>NA</td>
<td>91.7% (n=55)</td>
<td></td>
</tr>
<tr>
<td>Volume de contraste</td>
<td>100 (90-108)</td>
<td>90 (80-100)</td>
<td>65 (60-65)</td>
<td><0.001†¶</td>
</tr>
<tr>
<td>Radiação 1ª aquisição, mGy.cm</td>
<td>402 (286-670)</td>
<td>95 (72-146)</td>
<td>41 (28-50)</td>
<td><0.001†¶</td>
</tr>
<tr>
<td>% 2ª aquisição</td>
<td>11% (n=17)</td>
<td>10% (n=6)</td>
<td>5% (n=3)</td>
<td>0.165</td>
</tr>
<tr>
<td>kV</td>
<td></td>
<td></td>
<td></td>
<td><0.001†¶</td>
</tr>
<tr>
<td>% de aquisição 70kv</td>
<td>0</td>
<td>0</td>
<td>33.3% (n=20)</td>
<td></td>
</tr>
<tr>
<td>% de aquisição 80kv</td>
<td>0</td>
<td>82% (n=49)</td>
<td>57% (n=34)</td>
<td></td>
</tr>
<tr>
<td>% de aquisição 90kv</td>
<td>0</td>
<td>0</td>
<td>3% (n=2)</td>
<td></td>
</tr>
<tr>
<td>% de aquisição 100kv</td>
<td>83% (n=125)</td>
<td>20% (n=12)</td>
<td>2% (n=1)</td>
<td></td>
</tr>
<tr>
<td>% de aquisição 120kv</td>
<td>17% (n=25)</td>
<td>2% (n=1)</td>
<td>5% (n=3)</td>
<td></td>
</tr>
<tr>
<td>Presença de trombo</td>
<td>1% (n=1)</td>
<td>2% (n=1)</td>
<td>0</td>
<td>0.556</td>
</tr>
<tr>
<td>Acuidade diagnóstica qualitativa</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>1.00</td>
</tr>
<tr>
<td>Vol AEsq a 70% do ciclo cardíaco</td>
<td>83 (65-105)</td>
<td>80 (69-96)</td>
<td>87 (66-99)</td>
<td>0.767</td>
</tr>
</tbody>
</table>

IMC: Índice de massa corporal;
FLASH: protocolo de aquisição num só batimento cardíaco utilizando velocidade de mesa muito rápida;
AE – aurícula esquerda; kV: quilovoltagem
* Grupo 1 vs. Grupo 2 p < 0.01; † Grupo 1 vs. Grupo 3 < 0.01; ¶ Grupo 2 vs. Grupo 3 < 0.01

Tabela: Avaliação quantitativa da qualidade de imagem:

<table>
<thead>
<tr>
<th></th>
<th>Grupo 2</th>
<th>Grupo 3</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>60</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Sinal/ruído AEsq</td>
<td>10.0 (8.3-12.1)</td>
<td>13.5 (11.0-16.2)</td>
<td><0.001</td>
</tr>
<tr>
<td>Contraste/ruído (densidade AAEsq-VEsq / DP AAEsq)</td>
<td>8.8 (7.1-11.7)</td>
<td>14.8 (12.6-17.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>Rácio densidade média AEsq/AAEsq</td>
<td>1.04 (0.93-1.14)</td>
<td>0.92 (0.86-0.99)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

cont.
Tabela 3: Factores preditores de 2ª aquisição

<table>
<thead>
<tr>
<th></th>
<th>Sim (n=26)</th>
<th>Não (n=244)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idade, anos</td>
<td>60 (53-67)</td>
<td>61 (51-67)</td>
<td>0.836</td>
</tr>
<tr>
<td>Sexo masculino</td>
<td>73% (n=19)</td>
<td>73% (n=178)</td>
<td>1.000</td>
</tr>
<tr>
<td>IMC, Kg/m²</td>
<td>27.9 (24.1-30.1)</td>
<td>26.5 (24.4-29.1)</td>
<td>0.455</td>
</tr>
<tr>
<td>% ritmo sinusal</td>
<td>50% (n=13)</td>
<td>75% (n=183)</td>
<td>0.011</td>
</tr>
<tr>
<td>FC média, bpm</td>
<td>73 (65-89)</td>
<td>66 (58-77)</td>
<td>0.039</td>
</tr>
<tr>
<td>Protocolo</td>
<td></td>
<td></td>
<td>0.381</td>
</tr>
<tr>
<td>% Protocolo Retrospectivo</td>
<td>65.4% (n=17)</td>
<td>52.5% (n=128)</td>
<td></td>
</tr>
<tr>
<td>% protocolo prospectivo</td>
<td>26.9% (n=7)</td>
<td>26.2% (n=64)</td>
<td></td>
</tr>
<tr>
<td>% protocolo FLASH</td>
<td>7.7% (n=2)</td>
<td>21.3% (n=52)</td>
<td></td>
</tr>
<tr>
<td>Volume de contraste, mL</td>
<td>95 (80-103)</td>
<td>90 (65-102)</td>
<td>0.397</td>
</tr>
<tr>
<td>Volume AE a 70% do ciclo cardíaco</td>
<td>93 (70-118)</td>
<td>82 (67-99)</td>
<td>0.087</td>
</tr>
</tbody>
</table>

IMC: Índice de massa corporal; FLASH: protocolo de aquisição num só batimento cardíaco utilizando velocidade de mesa muito rápida; AE – aurícula esquerda

Tabela 4 – Comparação com outras publicações

<table>
<thead>
<tr>
<th></th>
<th>Marques et al</th>
<th>Lazoura et al</th>
<th>Teunissen et al</th>
<th>Iwayama et al</th>
<th>Annoni et al</th>
</tr>
</thead>
<tbody>
<tr>
<td>n do grupo referência (n total do estudo)</td>
<td>60 (270)</td>
<td>122</td>
<td>605</td>
<td>20 (60)</td>
<td>100 (200)</td>
</tr>
<tr>
<td>Sincronização electrocardiográfica</td>
<td>sim</td>
<td>sim</td>
<td>sim</td>
<td>não</td>
<td>não</td>
</tr>
<tr>
<td>Dupla administração de contraste</td>
<td>não</td>
<td>não</td>
<td>sim</td>
<td>não</td>
<td>não</td>
</tr>
<tr>
<td>Realizado para exclusão de trombo</td>
<td>sim</td>
<td>sim</td>
<td>sim</td>
<td>não</td>
<td>não</td>
</tr>
<tr>
<td>% de exames em que não foi possível excluir trombo</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>% de 2ª aquisição</td>
<td>5%</td>
<td>100%</td>
<td>4,30%</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>necessidade de 2ª aquisição</td>
<td>5%</td>
<td>16%</td>
<td>4,30%</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>ETE prévio à ablação de FA</td>
<td>não necessária</td>
<td>não necessária</td>
<td>não necessária</td>
<td>necessária</td>
<td>necessária</td>
</tr>
<tr>
<td>Dose de radiação</td>
<td>0,6mSv</td>
<td>3,5mSv</td>
<td>3,1mSv</td>
<td>1,1mSv</td>
<td>0,4mSv</td>
</tr>
<tr>
<td>Dose de contraste</td>
<td>64ml</td>
<td>90ml</td>
<td>100ml</td>
<td>28,7ml</td>
<td>80ml</td>
</tr>
</tbody>
</table>

ETE: Ecocardiograma transesofágico; FA: Fibrilhação auricular; mSv: milisievert
Responsabilidades éticas

Proteção de pessoas e animais. Os autores declararam que para esta investigação não se realizaram experiências em seres humanos e/ou animais.

Confidencialidade dos dados. Os autores declararam que não aparecem dados de pacientes neste artigo.

Direito à privacidade e consentimento escrito. Os autores declararam que não aparecem dados de pacientes neste artigo.
CAPÍTULO XI

Discussão Global
11.1. INTRODUÇÃO

A discussão pormenorizada dos resultados desta tese encontra-se nos Capítulos VIII, IX e X.

O presente capítulo pretende sumarizar e agregar, correlacionando, a informação disponível neles.

11.2. DISCUSSÃO GLOBAL

O trabalho que foi desenvolvido no âmbito desta tese reflete a importância clínica da aurícula esquerda (1-7) e o papel crescente da TC cardíaca no âmbito das doenças cardiovasculares (8-10).

Desde o início, na UNICA (Unidade de Imagem Cardiovascular por TC e RM), unidade que criámos com o colega Pedro Gonçalves que a TC cardíaca, na altura em fase emergente, se impôs com uma crescente expressão no arsenal diagnóstico. Decorrente do fato de estarmos inseridos num Hospital com uma unidade de Arritmologia de referência que se tinha proposto realizar técnicas ablativas percutâneas por radiofrequência com controlo magnético para tratamento de FA, foi, do acordo entre ambas as Unidades, que a TC cardíaca surgiu como o exame único a realizar em contexto pré-ablativo.

Foi com naturalidade também e pela ligação com a Faculdade de Ciências Médicas que foram sendo equacionados projetos de investigação que envolvessem as duas unidades.
Neste contexto e antecipando as evoluções tecnológicas dos aparelhos de TC, que julgávamos conduzir inexoravelmente para avaliações apenas em fase médio-diastólica, percebemos que o gap de conhecimento existente não iria permitir a avaliação dimensional das câmaras cardíacas nesses exames por falta de normogramas. Assim surge o nosso primeiro objetivo — a criação de um normograma para a aurícula direita em fase médio-diastólica.

A primeira publicação sobre este tema surge apenas em 2016 por Walker (11). O trabalho desenvolvido nesta tese permite-nos dar um contributo para o conhecimento nesta área, nomeadamente por termos:

> desenvolvido um normograma com menor intervalo de confiança, provavelmente relacionável com um grupo de estudo maior e com uma melhor definição de “normal” (sem doença) dado termos incluído dados ecocardiográficos.

> avaliado a capacidade do uso do normograma de TC em doentes com FA paroxística, onde o valor dimensional da aurícula se reveste de uma importância particular (12), dado ser o fator que mais se correlaciona com a possibilidade de recidiva após a ablação. A identificação destes fatores levou à criação, pelo nosso grupo, de um score de risco de recidiva – ATLAS (13).

> criado uma regressão que permite calcular o volume auricular máximo com base em dados de fácil obtenção na fase medio-diastólica. Assim a AESq pode ser avaliada eficientemente em qualquer exame de coronariografia por TC de forma quantitativa.

Ao termos acesso à informação imagiológica de TC de um grande grupo de doentes com FA paroxística, interessámo-nos pelo seu estudo morfológico, dimensional e funcional. Num contexto de crescente utilização de aquisições de TC prospetivas, o grupo de doentes com informação funcional por TC tenderia a diminuir rapidamente. Direcionámos assim a nossa investigação para áreas sobretudo funcionais, associadas ao seguimento dos doentes que faziam a terapêutica ablativa. Estas informações poderiam contribuir para a melhor definição dos doentes que eram selecionados para a terapêutica ablativa, diminuindo um elevado número de recidivas que a caracterizam (14, 15).

Neste âmbito, apesar de dispormos de um grupo de 116 doentes com seguimento médio de 4,8 anos, com 34,5% de taxa de recidiva não foi possível estabelecer
nenhum valor prognóstico para valores funcionais da AEsq ou do AAEsq, ao contrário de outras séries (16, 17). Este aspecto, apesar de negativo, pode ser importante, por evidenciar (pelo menos no nosso grupo) a ausência de um marcador funcional precoce de recidiva após ablação. Na nossa série, apenas o volume máximo indexado da AEsq se revelou preditor independente de recidiva, na análise multivariada, quando ajustado para os fatores do score ATLAS (13).

No entanto, verificámos a existência de um marcador morfológico, de drenagem das veias pulmonares à direita que confere melhor prognóstico após a terapêutica ablativa. Este marcador (drenagem das veias pulmonares à direita, tipo R2a) poderá fazer equacionar a intensificação do procedimento de ablação nos doentes que tenham outra anatomia de drenagem, dado que a maior diferença na incidência de recidiva ocorre precocemente (sugerindo menor eficácia do tratamento). Quando efetuámos a avaliação deste preditor ajustando para os parâmetros do score ATLAS, ele manteve-se estatisticamente significativo de forma independente.

Explorámos a relação de características imagiológicas com scores de risco embólico, abrindo a possibilidade de associar ao score clínico marcadores imagiológicos.

Por ser Radiologista de formação, a relevância de otimização de cada exame de todo e qualquer doente e condição clínica faz parte da nossa génese. Assim surgiu o terceiro objetivo desta tese, avaliar o grau de otimização ao longo do tempo dos exames de TC cardíaca efetuados aos doentes em contexto prévio à ablação de FA. Foi-nos possível concluir que, ao longo do tempo e aproveitando a evolução tecnológica, realizamos hoje exames com dez vezes menor dose de radiação do que no início, sem qualquer compromisso na qualidade objetiva da imagem de TC obtida.

O nosso protocolo atual permite doses submilisiviert – 0,6mSv (0,39 – 0,7), com uma necessidade de 5% de segundas aquisições (tardias), num contexto de utilização da TC como exame único (dispensando a necessidade de ETE). Em contexto de TC cardíaca como exame único para avaliação de doentes em contexto prévio à ablação de FA, estes valores são, após consulta da literatura de referência, os valores mais baixos até agora descritos (18, 19) (ver Tabela 1).

Finalizamos com uma preocupação igualmente intrínseca ao Radiologista, a procura de toda a informação contida num exame:
Assim foi possível identificar a presença de apêndices acessórios da aurícula esquerda em 7% dos doentes avaliados. Este aspeto é relevante na escolha do tratamento e na equação do risco de evento tromboembólico, sendo a TC o melhor método não invasivo para o seu diagnóstico.

De realçar também que, nos exames realizados em contexto de pré-ablação de FA, cerca de 7% dos doentes apresentaram achados extra-cardíacos major (incluindo 3 neoplasias).

FIGURA 1

<table>
<thead>
<tr>
<th></th>
<th>Marques et al. Protocolo atual - G3</th>
<th>Lazoura et al</th>
<th>Teunissen et al</th>
</tr>
</thead>
<tbody>
<tr>
<td>n do grupo referência (n total do estudo)</td>
<td>60 (270)</td>
<td>122</td>
<td>605</td>
</tr>
<tr>
<td>Sincronização eletrocardiográfica</td>
<td>sim</td>
<td>sim</td>
<td>sim</td>
</tr>
<tr>
<td>Dupla administração de contraste</td>
<td>não</td>
<td>não</td>
<td>sim</td>
</tr>
<tr>
<td>Realizado para exclusão de trombo</td>
<td>sim</td>
<td>sim</td>
<td>sim</td>
</tr>
<tr>
<td>% de exames em que não foi possível excluir trombo</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>% de 2ª aquisição</td>
<td>5%</td>
<td>100%</td>
<td>4,30%</td>
</tr>
<tr>
<td>Necessidade de 2ª aquisição</td>
<td>5%</td>
<td>16%</td>
<td>4,30%</td>
</tr>
<tr>
<td>ETE prévio à ablação de FA</td>
<td>não necessária</td>
<td>não necessária</td>
<td>não necessária</td>
</tr>
<tr>
<td>Dose de radiação</td>
<td>0,6mSv</td>
<td>3,5mSv</td>
<td>3,1mSv</td>
</tr>
<tr>
<td>Dose de contraste</td>
<td>65ml</td>
<td>90ml</td>
<td>100ml</td>
</tr>
</tbody>
</table>
BIBLIOGRAFIA

CAPÍTULO XII

Conclusões e direções para futura investigação
12.1. CONCLUSÕES

Criámos um normograma para avaliação volumétrica e dimensional da AEsq em fase médio-diastólica. Determinámos que a maior área da aurícula esquerda em plano axial associado ao maior diâmetro crâneo-caudal em plano sagital se correlacionam muito bem com o volume máximo, permitindo eficiência na avaliação quotidiana da dimensão da aurícula esquerda em qualquer TC cardíaca, incluindo na angio-TC coronária.

\[(artigo submetido — Capítulo VIII) \]

Determinámos a morfologia, a dimensão e a função da AEsq e do AAEsq, assim como o padrão de drenagem das veias pulmonares numa população com FA paroxística. Identificámos variáveis imagiológicas contidas no exame de TC como um menor volume mínimo indexado da AEsq e uma maior fracção de ejeção, que se associam a um score de risco de evento embólico (score CHA$_2$DS$_2$VASc) baixo.

Verificámos que o volume máximo indexado da AEsq, em análise multivariada, incluindo os fatores do score ATLAS, é um preditor independente de recidiva.

Em análise tipo “curvas de sobrevivência”: em que se integram a presença de recidiva assim como o tempo a que essa recidiva ocorreu, verificámos que o padrão mais prevalente de drenagem das veias pulmonares à direita (R2a) confere benefício prognóstico estatisticamente significativo, inclusive em análise multivariável incluindo os elementos do score ATLAS. Este aspeto poderá levar à intensificação da ablação aos doentes portadores de outro padrão de drenagem.

A otimização dos exames de TC cardíaca prévia ao tratamento ablativo percutâneo de fibrilhação auricular permitiu ganhos na dose de radiação do exame, num fator
de ordem das dezenas (radiação do exame actual cerca de 10% do exame com protocolo inicial), com doses médias de 0,6mSv (0,39 – 0,7). O volume de contraste utilizado também diminuiu significativamente para os 65ml (60-65). No entanto, esta otimização do protocolo com menor dose de radiação e contraste, ficou igualmente associada a uma melhoria quantitativa da qualidade de imagem significativa, traduzida pelos rácios sinal/ruído; contraste/ruído e homogeneização da densidade AEsq/AAEsq.

> (artigo submetido — Capítulo X)

12.2. DIRECÇÕES PARA FUTURA INVESTIGAÇÃO

12.2.1. Relacionáveis com a área da otimização de protocolos de TC cardíaca, num contexto de exame único prévio a ablação de FA

1. A otimização de protocolos per si é constante, pelo que é uma área de investigação contínua.

2. Avaliação de fibrose

Sabemos hoje da capacidade de estudos de RM, de avaliarem a fibrose da AEsq de forma não invasiva, com relevância prognóstica isolada (1), como no contexto pré-ablação, peri-ablação e pós-ablação (2-6).

Não é, no entanto, uma técnica perfeita, com fraca resolução espacial (exacerbada num contexto de avaliação de uma parede fina) aliada a tempos de aquisição longos a traduzirem alguns exames não interpretáveis e outros com conclusões dispares (7-9).

Existem duas formas de obter imagens de fibrose miocárdica na TC: por avaliação do realce tardio ou por utilização de técnicas de energia espetral. Ambas as técnicas apresentam já resultados interessantes no diagnóstico de fibrose miocárdica (10). As técnicas na TC de energia espetral têm vindo a ser desenvolvidas com evidentes melhorias nos últimos anos fruto da evolução tecnológica.

Apesar da menor resolução de contraste em relação às técnicas de RM, a TC ao ter uma resolução espacial muito melhor e dado ao facto de ser hoje o exame
de eleição prévio à terapêutica ablativa poderá ter utilidade neste contexto. A avaliação de fibrose por TC, o desenvolvimento de um protocolo otimizado e a sua comparação com outros métodos não invasivos como a RM representam uma das áreas mais aliciantes de investigação atual neste contexto e podem ser integradas no protocolo de exame único prévio a ablação FA.

3. **Avaliação de gordura e/ou inflamação**

Sabemos hoje que a inflamação está implicada na génese da fibrose/remodelagem da aurícula esquerda (11). A TC é um excelente método para quantificar gordura de forma não invasiva. Diferentes definições de densidade de gordura poderão ser utilizadas num mesmo doente, permitindo separar o volume de gordura mais densa (possivelmente inflamada) de gordura menos densa. Poderíamos então avaliar o volume de gordura epicárpica, o volume de gordura peri-auricular, as suas densidades, e a percentagem de um componente mais denso e estudar se permitem identificar um subgrupo de doentes que beneficiaria mais da terapêutica ablativa.

12.2.2. Relacionáveis com o trabalho desenvolvido nesta tese:

4. A correlação entre o score de risco de evento embólico CHA2DS2VASc e alguns dos parâmetros imagiológicos que se correlacionam com estase na AESq ou no AAEsq poderá permitir a criação de um score com maior acuidade juntando parâmetros imagiológicos aos clínicos.

12.2.3. Relacionáveis com a TC no contexto de doença coronária

5. **TC como exame pluripotencial no contexto de doença coronária**

> Presentemente, integramos um grupo de investigação de três dos maiores registos de TC cardíaco coronário – CONFIRM (avaliação de prognóstico relacionável com a placa coronária); PARADIGM (avaliação das características de placa aterosclerótica e sua progressão documentada por TC); ICONIC (estudo da aterosclerose de doentes que tiveram um evento cardiovascular major). Se, a estes aspetos, juntarmos a avaliação de risco cardiovascular em doentes
assintomáticos pelo score de cálcio, a capacidade de avaliação de isquemia (técnicas de perfusão de primeira passagem vs técnicas espectrais vs FFR-virtual) e a avaliação de fibrose (por técnicas de realce tardio ou de energia espetral), verificamos o grau de globalidade de avaliação do doente e da doença coronária possível por TC. Enquanto se espera pelo desenvolvimento de novos contrastes marcadores de instabilidade de placa, é já possível por técnicas de inteligência artificial condensar toda esta informação (grande parte não perceptível ao olho humano treinado) para benefício do doente. A área da inteligência artificial irá revolucionar a medicina, começando pela imagem.
BIBLIOGRAFIA

10. Lee HJ, Im DJ, Youn JC, et al. Assessment of myocardial delayed enhancement with cardiac computed tomography in cardiomyopathies: a prospective comparison with
