Challenges on the Automatic Translation of Collocations

Ângela Costa
L2F/INESC-ID
CLUNL
angela@l2f.inesc-id.pt

Teresa Lino
CLUNL
tlino@mail.telepac.pt

Luísa Coheur
L2F/INESC-ID
IST
luisa.coheur@l2f.inesc-id.pt

Abstract

As a linguistic phenomenon, collocations have been the subject of numerous researches both in the fields of theoretical and descriptive linguistics, and, more recently, in automatic Natural Language Processing. In the area of Machine there is still improvements to be done, as major translation engines do not handle collocations in the appropriate way and end up producing literal unsatisfactory translations. Having as a starting point our previous work on machine translation error analysis (Costa et al., 2015), in this article we present a corpus annotated with collocation errors and their classification. To our believe, to have a clear understanding of the difficulties that the collocations represent to the Machine Translations engines, it is necessary a detailed linguistic analysis of their errors.

1 Introduction

According to (MELcUK, 1998), collocations are particularly relevant in the context of lexical combinatory as they are “the absolute majority of phrasemes and represent the main challenge for any theory of phraseology”. (Tutin Agnés, 2002) defines them as “a privileged lexical co-occurrence of two (or more) linguistic elements that establish a syntactic relationship between them”. (Hausmann, 1989), (Hausmann, 1985) and (Hausmann, 1984) observed that the status of the constituents are not similar, registering between them an hypotactic relationship. Hausmann calls “base” to the word that determines the choice of the co-occurring element and “collocate” the determined constituent.

The relationship between base and collocate is, in most cases, unpredictable, and does not demonstrate a particularly clear semantic motivation that can explain it. This idiosyncratic character and the fact that they cannot yet be considered lexicalized expressions, standing between lexicon and grammar, makes them very complex structures, from the production point of view. In fact, (Cruse, 2004) considers them “idioms of encoding”, as they do not particularly cause problems from the decoding perspective, being relatively transparent constructions and syntactically regular. The problem lies on producing them, since the relationship between the base and collocate is, in most cases, arbitrary. Considering the translation task, we can imagine the number of problems that can occur, as a word-by-word translation may not always be the best choice. For instance, break a record cannot literally be translated into French casser un record, but as battre un record (lit. to beat a record).

In this article we briefly describe the role of collocations on machine translation, then we describe the corpus and error typology used in our study, finally we present the error analyses and the conclusions.

2 Collocations in Machine Translation

Collocations have been the subject of numerous researches both in the fields of theoretical and descriptive linguistics, and, more recently, in Natural Language Processing (NLP), as they can be useful for many language processing tasks, like parsing, word sense disambiguation, text generation and machine translation.

Although there are several methods for the extraction of collocations from corpora and evaluation of extraction results, the area of post-processing of this structures and their application to various branches of NLP is still at the beginning, especially in the area of machine translation (Seretan and Wehrli, 2007). Because of their semantic irregularities, collocations cannot always be translated word-by-word, creating a problem for automatic translation. In this example of a
Google translation the collocation high wind was literally translated to vento alto (lit. tall wind) instead of vento forte. On the other side, sometimes a literal translation may be correct, make the bed was translated to fazer a cama which is correct. Just as for a student learning a foreign language, also for an MT system is not always easy to know when the correct option is a word-by-word translation.

Error analysis of collocations in machine translation is still lacking. For instance two of the most used error taxonomies by (Bojar, 2011) and (Vilar et al., 2006) do not consider collocational errors on their classification. As previously mentioned, collocations have at least two elements, so the errors may concern any of the elements of the collocation (base, collocate) or the collocation as a whole. Finding the error within is compositional parts can help improve the translation of these structures.

3 Error Analysis

3.1 Corpus

Having as a starting point our previous work on machine translation errors (Costa et al., 2015), the error analysis of collocations was carried out on a corpus generated by four different systems: Google Translate\(^1\) (Statistical), Systran\(^2\) (Hybrid Machine Translation) and two in-house Machine Translation systems trained using Moses\(^3\), and the two popular models: the phrase-based model (Koehn et al., 2007) (PSMT) and the hierarchical phrase-based model (Chiang, 2007) (HSMT), in three scenarios representing different challenges in the translation from English to European Portuguese:

- 250 sentences taken from TED talks\(^4\);
- 250 sentences taken from the bilingual Portuguese national airline company: TAP magazine “UP”\(^5\);
- 250 questions taken from a corpus made available by (Li and Roth, 2002), from the TREC collection (Li and Roth, 2002; Costa et al., 2012).

The Ted talks, in the original text in English had 3,346 tokens, the TAP and the corpus of Questions had 3,346 and 1,856, respectively. We were able to find a total of 172 collocations: 41 were found on the TED corpus, 84 on the TAP magazines and 47 on the Questions corpus. As previously mentioned, the three datasets were translated by four translation engines, so in total we have evaluated 164 collocations on the TED corpus, 336 on the TAP corpus and 188 on the Questions corpus.

3.2 Error types

To assess the errors that we have found, we used the location dimension of (Wanner et al., 2011) taxonomy to evaluate students errors when producing collocations. The first two categories show errors that were found on one of the two elements of the collocation (cf. (1) wrong collocate use and (2) wrong base use) and the third type problems that affected the collocation as a whole (cf. (3)).

3. **wrong collocation**: pagamento de separação, lit. “payment of separation” (instead of indemnização, “compensation”), ter ceta, lit. “have supper” (instead of jantar, “have diner”)

The errors found on a collocation can be rooted in the lexicon or in the grammar. A lexicon error concerning the base or the collocate consists in the incorrect translation of one of the two elements or both. This error can be caused by a literal translation from English that does not work in the context of the collocation, a near-synonym or even the non-translation of an element (see examples (1)
and (2)). When the error concerns the whole collocation, we found that new expressions with the structure of a collocation were created, meanwhile a single word should have been used (see examples (3)).

Grammatical errors can also affect the collocation as a whole or all of its parts (base and collocate). We were able to find four types: erroneous absence or presence of determiner, wrong number use, wrong order of the words and wrong government; cf:

5. **number**: mudar os canais, lit. “change the channels” (instead of mudar o canal, “change the channel”).

4 Results

Figure 1 shows the number of errors present on each translation engine per error type. The correct translations are not represented on the graphic, but they were the majority of the cases, as Google, HSMT, PSMT and Systran produced 144, 114, 111 and 92 correct translation, respectively. From Figure 1, we can observe that:

- choosing the correct base of the collocation is not as problematic as deciding on the collocate, as this is the most common error for all engines;
- between 14% and 19% of the errors affect the collocation as a whole;
- determinant, number, reordering and government errors are not so common.

5 Conclusions

From this study we could observe that only between 14% and 19% of the errors affect the collocation as a whole. Determinant, number, reordering and government errors are not so common, as there is a relatively high congruence between English and Portuguese, although this may not be valid for other languages.

On all four MT systems the majority of the errors occur when choosing the collocate. This was also observed on foreign language learners on the already mentioned study by (Wanner et al., 2011). The source of the errors are literal translations of the collocate (“grey” - cinzento), use of a wrong synonym (“angle” - perspectiva) or untranslations (e.g. “flopped”).

Although our analysed corpus is still very small, we think that it is a good contribution to have a clear understanding of the difficulties that the collocations represent to Machine Translations engines. Only after a detailed linguistic analysis of the errors, we can implement solutions, like finding and automatically correcting collocations.

Acknowledgments

This work is supported by national funds through FCT - Fundação para a Ciência e a Tecnologia, under project UID/CEC/50021/2013. Ângela Costa is supported by a PhD fellowship from Fundação para a Ciência e a Tecnologia (SFRH/BD/85737/2012).

References

