TOWARDS A GIS-T DATABASE DESIGN AND IMPLEMENTATION FOR PUBLIC TRANSIT PLANNING

The case study of Dar-es-Salaam metropolitan city, Tanzania

Zakaria Robert Ngereja

Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
TOWARDS A GIS-T DATABASE DESIGN AND IMPLEMENTATION
FOR PUBLIC TRANSIT PLANNING

The case study of Dar-es-Salaam metropolitan city, Tanzania

Dissertation supervised by

Professor Pedro da Costa Brito Cabral, PhD

Dissertation co-supervised by

Professor Marco Octávio Trindade Painho, PhD

Professor Michael Gould, PhD

March 2009
DEDICATION

This dissertation is dedicated to my beloved wife Olipa and daughter Elizabeth as well as my parents.
ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to the Education, Culture, and Youth Commission of the European Union for granting Erasmus Mundus Scholarship, which has made my study towards MSc. Degree in Geospatial Technology possible, and has contributed significantly to building human resource capacity for my country and my employer at Ardhi University.

I greatly appreciate the coordinators of the program from Universitat Jaume I in Spain where I started my first semester, Institute for Geoinformatics (IFGI), University of Münster, Germany for the second semester and ISEGI, New University of Lisbon, where my dissertation project was done and completed for their facilitation and support that made life go through smoothly in all countries. Thanks Professor Michael Gould from Universitat Jaume I, Castellon, Spain; Dr. Christoph Brox from Institute for Geoinformatics (IFGI), University of Münster, Germany and Professor Marco Octávio Trindade Painho of the Higher Institute for Statistics and Information Management, New University of Lisbon, Portugal.

I wish to extend deep gratitude to my main supervisor, Professor Pedro da Costa Brito Cabral for his guidance and constructive inputs to my project. I also appreciate the kindness and willingness of his consultation time he gave from time to time. My very special thanks go to my loving wife Olipa Simon for her encouragement and support throughout the entire period of studies. I sincerely appreciate the effort, and time she used in taking care of family in my absence.

Zakaria Robert Ngereja,
Lisbon,
March 2009.
TOWARDS A GIS-T DATABASE DESIGN AND IMPLEMENTATION
FOR PUBLIC TRANSIT PLANNING

The case study of Dar-es-Salaam metropolitan city, Tanzania

ABSTRACT

In the last decade, we have witnessed tremendous advances and developments in the applications of Geographic Information Systems (GIS), in terms of technological hardware, software, methods, and data models. One of the applications that have attracted much attention in the use of GIS is the transportation sector mainly for planning, public transport routing, management and operations. This has made it important to have a unified or universal GIS-T standard data model, specifically, in the area of transportation applications. Several data models have been developed over the past 20 years, like the ArcInfo route system, National Cooperative Highway Research Program (NCHRP) Project 20-27, Federal Geographic Data Committee, Enterprise GIS-T data model and the UNETRANS data model to mention just few. This research project focused into the GIS-T database design and implementation for public transit planning and management in the Dar-es-Salaam City, and used part of the UNETRANS data model. As part of this research, the UNETRANS data model was thoroughly examined, and extracted useful elements useful for the geodatabase design of GIS-T for Dar-es-Salaam City. The outcome of the project is a designed GIS-T database model for Dar-es-Salaam and its prototype implementation in ArcGIS 9.3. In addition, an output of the network analysis for determining the closest bus stop to hospitals, shortest routes from an incident location as well as service area surrounding hospital facilities, and recommendations for future works are presented.
KEYWORDS

Database
Data Model
Geographic Information Systems
Geographic Information Systems for Transportation
UNETRANS
ACRONYMS

ESRI - Environmental Systems Research Institute

GDFS - Geographic Data File Standard

GIS - Geographic Information System

GIS-T - Geographic Information System for Transportation

IRA - Institute of Resource Assessment

NCGIA - National Centre for Geographic Information Analysis

NCHRP - National Cooperative Highway Research Program

SUMATRA - Surface and Maritime Transportation Regulatory Authority

TIS - Transportation Information System

UNETRANS - UNified NETwork for TRANSportation
TABLE OF CONTENTS

DEDICATION.. iii
ACKNOWLEDGEMENTS.. iv
ABSTRACT.. v
ACRONYMS... viii
INDEX OF TABLES.. x
INDEX OF FIGURES... xi

1. INTRODUCTION .. 1
 1.1 AN OVERVIEW... 1
 1.2 RESEARCH PROBLEM... 3
 1.3 RESEARCH OBJECTIVES... 3
 1.4 RESEARCH QUESTIONS... 3
 1.5 RESEARCH HYPOTHESIS... 4
 1.6 STRUCTURE OF THE THESIS... 4

2. LITERATURE REVIEW... 6
 2.1 INTRODUCTION... 6
 2.2 CONCEPTS AND COMPONENTS OF GIS... 6
 2.3 GIS FOR TRANSPORTATION... 8
 2.3.1 Applications within GIS-T.. 10
 2.3.2 Users of GIS-T.. 11
 2.4 GIS-T DATA MODEL... 12
 2.4.1 The Enterprise GIS-T Data Model... 13
 2.4.2 The UNETRANS Data Model.. 15
 2.4.3 Improved UNETRANS Data Model... 18
 2.5 CONCLUSIONS.. 19

3. BUILDING A TRANSPORTATION DATA MODEL FOR DAR ES SALAAM... 21
 3.1 INTRODUCTION... 21
 3.2 THE STUDY AREA... 21
 3.3 DATA AVAILABILITY, QUALITY AND COMPLETENESS.. 23
 3.4 METHODS.. 24
 3.4.1 Conceptual Model design... 25
INDEX OF TABLES

Table 1: GIS Application groups as identified by Sutton (Sutton, 2004)11
Table 2: The entity types and definitions for the Enterprise data model14
Table 3: Entity definitions of the basic enterprise data model (Duecker, 1997) ...15
Table 4: Event subtypes for the enterprise data model (Duecker, 1997)...........15
Table 5: The layer view descriptions of the UNETRANS data model (Curtin, 2003)...15
Table 6: Analysis view descriptions of the UNETRANS data model (Curtin, 2003)...15
Table 7: Aggregated package definition of the UNETRANS data model (Butler, 2008)...19
Table 8: The type of data used in the research and their source24
Table 9: Object and Feature class definitions for the conceptual design of the Network Package...26
Table 10: Object and Feature Classes definition for the Events Package...........28
INDEX OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Structure and Organization of the thesis</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>GIS-T as an integrated GIS and Transportation Information System (TIS)</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>The role of data model in GIS (Longley, 2005)</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>The basic enterprise GIS-T data model (Duecker, 1997)</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>Analysis diagram of the UNETRANS data model (Curtin, 2003)</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>The improved UNETRANS packages (Butler, 2008)</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>Location of the study area: Dar-es-Salaam, Tanzania</td>
<td>22</td>
</tr>
<tr>
<td>8</td>
<td>Research methods</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>Data model packages for Dar-es-Salaam</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>Conceptual design of the network package for Dar-es-Salaam case study</td>
<td>26</td>
</tr>
<tr>
<td>11</td>
<td>Conceptual design of Events Package</td>
<td>27</td>
</tr>
<tr>
<td>12</td>
<td>Logical design of the Network package</td>
<td>29</td>
</tr>
<tr>
<td>13</td>
<td>Logical design of the Events package</td>
<td>30</td>
</tr>
<tr>
<td>14</td>
<td>ArcGIS Geodatabase types (ESRI, 2007b)</td>
<td>31</td>
</tr>
<tr>
<td>15</td>
<td>Primary dataset types in geodatabase</td>
<td>32</td>
</tr>
<tr>
<td>16</td>
<td>The creation of geodatabase in ArcGIS-ArcInfo</td>
<td>33</td>
</tr>
<tr>
<td>17</td>
<td>Part of road feature dataset of Dar-es-Salaam city</td>
<td>34</td>
</tr>
<tr>
<td>18</td>
<td>Part of Bus Routes feature dataset of Dar-es-Salaam city</td>
<td>35</td>
</tr>
<tr>
<td>19</td>
<td>Part of transport junctions within road feature dataset</td>
<td>36</td>
</tr>
<tr>
<td>20</td>
<td>The Network dataset for DarRoads (a) and BusRoutes (b) respectively</td>
<td>37</td>
</tr>
<tr>
<td>21</td>
<td>An example showing the closest bus stops to the network location (Hospital facilities)</td>
<td>41</td>
</tr>
<tr>
<td>22</td>
<td>An example showing routes to nearest hospitals from a simulated accident location on a network</td>
<td>42</td>
</tr>
<tr>
<td>23</td>
<td>Illustrated service area at 1000m ring from Hospital facilities</td>
<td>43</td>
</tr>
<tr>
<td>24</td>
<td>Depicted service area at 2000m overlapping rings from Hospital facilities</td>
<td>44</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

1.1 An Overview

A Geographic Information System (GIS) is a technology with unique and valuable applications for policy makers, planners, engineers, and managers in many fields, including the transportation sector. In a broad sense, a GIS is an information system specializing in the input, storage, manipulation, analysis, reporting, and visualization of geographically referenced data (de By 2004, Worboys 2004, Longley 2005, Shaw 2006).

Among the wide range of potential applications of GIS, the transportation sector has received a lot of attention and has become of much interest in recent years (Shaw 2006). This is in the context that many transport information problems exist in a geographic context (geographic location). The result of this is the emergence of a new and specific branch within GIS applied to transportation issues commonly referred to as GIS-T. GIS-T is a GIS for Transportation, and has been defined as “principles and applications of applying geographic information technologies to transportation problems” (Miller and Shaw 2001 cited in (Shaw 2006)).

The transportation sector has many dimensions in which GIS-T can be applied, they cover a wide range of transportation issues such as infrastructure planning, design and management, transportation safety analysis, travel demand analysis, traffic monitoring and control, public transit planning and operations, environmental impacts assessment, hazards mitigation, and Intelligent Transportation Systems (ITS) (Shaw 2006). A GIS-T integrates transport network databases and spatial databases in a GIS-based information system to facilitate planning functions and decision-making processes. This also provides an efficient means for organizing basic
transportation related data in order to facilitate the input, analysis, and display of transport networks.

The use of GIS for transportation applications gained momentum in the 2000’s when Environmental Systems Research Institute (ESRI), which is a software development and services company, initiated and funded a project to develop a generic data model for transportation applications. Under the project, ESRI in collaboration with the National Centre for Geographic Information Analysis (NCGIA) at the University of California, Santa Barbara; developed a transportation data model called the Unified Network for Transportation (UNETRANS) using ESRI ArcGIS 8 software (Huang 2003, NCGIA 2003). The data model is now an ESRI's ArcGIS standard transportation data model which is implemented in ArcGIS 8.3 and its subsequent upgrades of ArcGIS 9.X. UNETRANS is a comprehensive conceptual object model for transport features, incorporating multiple modes of travel, and accommodating multiple scales of interpretation of the real world (NCGIA 2003).

A data model for transportation, in this case UNETRANS is complex because it cater for varied uses of transportation data. Therefore, the model may be customized to specific uses based on the type of transportation data. This research is aimed at studying the UNETRANS data model and extract relevant packages, classes and attributes to design and implement a prototype GIS-T for Dar-es-Salaam city. Some of the packages, classes, and attributes may not be relevant depending on the country’s way of keeping and recording transportation data, which is the case for Dar-es-Salaam city.
1.2 Research Problem

Dar-es-Salaam city experiences poor public transport system (Kanyama 2004), the existing transport system lacks among other characteristics; passenger trip guidance, bus route maps and a GIS for transportation route planning and operations. Therefore, there is a need for implementing a geographic database for public transportation planning and operations within the city. This will greatly enhance efficiency and facilitate transportation planning and operations of the public transportation within the city.

1.3 Research Objectives

The main objective of the research is to design and create a prototype of Geographic Information System for Transportation (GIS-T) database for public transport route planning and operations in Dar-es-Salaam City. The specific objectives of the research are to:

i. Review and analysis of the existing GIS for Transportation data model, specifically the ESRI’s ArcGIS standard Unified Network Transportation (UNETRANS) data model;

ii. Design a GIS-T database for public transport route planning and operations for Dar-es-Salaam City;

iii. Apply the design through prototyping.

1.4 Research Questions

The questions that this research will address are: what are appropriate packages, classes and attributes in GIS-T data model that will support public transport planning and operations for Dar-es-Salaam City? This question may be assisted by other sub-questions:
i. Is the Unified Network for Transportation (UNETRANS) data model as a whole suitable for Dar-es-Salaam city public transport planning and operations?

ii. Is the available spatial data for Dar-es-Salaam city fit in the UNETRANS data model?

1.5 Research Hypothesis

The overall hypotheses that my research argues are the following:

i. It is possible to build an effective transportation data model for Dar-es-Salaam City based on part of the UNETRANS GIS-T data model;

ii. Building an effective GIS-T data model for Dar-es-Salaam City requires comprehensive spatial data and technology;

iii. Lack of well-documented and organized transportation data is a hurdle to effective GIS-T database design and implementation.

1.6 Structure of the Thesis

This dissertation is organised into four main parts (see Figure 1). Part 1 is the introduction and consists of an overview, statement of the problem, research objectives, research questions, and hypotheses of the research. Part 2 examines the literature review related to Geographic Information System, a highlights of general concepts and definitions of GIS is given as well as applications for transportation (GIS-T). It also reviews an enterprise GIS-T data model and the Unified Network Transportation (UNETRANS) Data Model. Part 3 is about building a transportation data model for Dar-es-Salaam. In this section; the study area, methods used, and results are presented. Part 4 draws the conclusions and recommendations from the
research, it also underscore some limitations and future work that need to be undertaken.

Figure 1: Structure and Organization of the thesis
2. LITERATURE REVIEW

2.1 Introduction

This chapter describes briefly the general overview of GIS and highlights the key concepts, key components and data structure applied in GIS systems. A brief and general overview of the GIS-T is also presented, highlighting the applications within GIS-T, some selected examples of GIS-T applications and users of GIS-T. In part two, the GIS-T Data model is explained with more emphasis on the Unified Network Transportation (UNETRANS).

2.2 Concepts and Components of GIS

The general concepts and components of GIS are quite familiar to almost all who deals with GIS. Since the emergency of GIS in the 1960’s, there have been developments in the field, which has lead to the refinement of the GIS definition, core components, and its key functions. There is no single definition of the term GIS, and the definitions vary from one user to another to suit his/her application area. However, the following definitions are prominent and acceptable among GIS users and researchers.

Longley (2005) defined GIS as follows; “Geographic information systems are a special class of information systems that keep track not only of events, activities, and things, but also of where these events, activities, and things happen or exist.”

de By (2004) defined a geographic Information System as “a computerized system that facilitates the phases of data entry, data
analysis, and presentation especially in cases when we are dealing with geo-referenced data”

Burrough was quoted in Maguire (1991) defined it as “a powerful set of tools for collecting, storing, retrieving at will, transformation and displaying spatial data from the real world’.

Worboys (2004) have defined Geographic information system (GIS) as “a computer-based information system that enables capture, modeling, storage, retrieval, sharing, manipulation, analysis, and presentation of geographically referenced data”

The main common and important element in all definitions is that GIS deals with data that has a geographic location (geo-referenced data or spatially referenced data. All definitions tell what GIS does; specifically the one given by Worboys (2004) is a functional-based definition that enlists the functions of GIS-based information system.

In the last decade from 1990s, Goodchild (1991) defined the well known four components of GIS which operate in institutional settings and comprised of the following: computer hardware, computer software, data and people. However, today, due to advances and developments that has evolved in the GIS field in the 2000s, the network is today’s most fundamental GIS component, and of course procedures. Thus, there are six main components of GIS as maintained by Longley (2005) and Worboys (2004), namely:

i. Computer hardware;
ii. Computer software;
iii. Data;
iv. People;

v. Procedures, and

vi. Network.

Another vital concept is data structure, GIS employ two types of data structures for representing objects in the computer environments, the two famous structures are vector and raster data. Much have already been written about GIS data structures or data models, as it can be found in many literatures like (Maguire 1991, Bernhardsen 1992, Burrough 1998, de By 2004, Worboys 2004, Longley 2005, Neteler 2005, and Galati 2006).

In the GIS definition given by (Worboys 2004), he has enlisted some functions which a GIS does. Generally, the functions of a GIS can be generalized into five core functions, namely;

i. Data capture and editing;

ii. Data manipulation (storage, management, retrieval & updating);

iii. Spatial analysis and modelling;

iv. Data integration;

v. Geovisualization (Output/Display).

2.3 GIS for Transportation

GIS have been widely used in the field of transportation since location information is critical for transportation applications such as transportation planning, intermodal facility management, pavement management, bridge inventory and modelling, accident analysis, fleet management, transit service planning and many more applications (Zhao 1997, Sutton 2007). All
transportation applications require transportation network data, and GIS has been used for representation and analysis of transportation networks.

Thus, the GIS-T acronym was coined to refer to Geographic Information Systems for Transportation. In the introduction section of this report, GIS-T is defined as “principles of applying geographic information technologies to transportation problems” (Miller and Shaw 2001) cited in (Shaw 2006). GIS-T is a very broad term that encompasses all of the activities that involve the use of geographic information systems for some aspects of transportation planning and management. Government institutions, agencies and private companies are just some of the entities that build and use GIS-T applications (Curtin 2003, Rodrigue 2006).

GIS-T Application requires the design and development of a geographic database that has the following key items:

i. Development of geo-database;

ii. Development of attribute or non-spatial database;

iii. Development of spatial referencing system.

Therefore, in general, transportation data that can be supported in GIS-T includes nodes, links and networks, paths, and origin-destinations data. As a matter of facts, GIS-T combines the use of GIS and Information Technology in the transportation field known as Transportation Information System (TIS) into one integrated system framework called GIS-T as shown in Figure 2.
2.3.1 Applications within GIS-T

Due to its broadest nature, GIS-T applications are very diverse; this report is only mentioning a small sampling of the applications as examples cited by (Curtin 2003, Rodrigue 2006) includes:

- Alternative Transport Planning;
- Bus Route Development;
- Emergence Dispatch and Route Planning;
- Fleet Management;
- Hazardous Waste Transport;
- Location Referencing Systems;
- Package and Service Delivery;
- Road Surveying and Engineering;
- Street Signage;
- Traffic Counts;
- Traffic Demand Modelling;
- Intersection Inventory.

A survey conducted by Sutton (2007) for the transportation research board in the USA categorized GIS-T application into five groups, in which
almost all applications of GIS-T falls in one or more of these groups listed below (table 1).

<table>
<thead>
<tr>
<th>Group</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning</td>
<td>Includes route and facility planning, automatic passenger counting systems, demographic analysis, and modelling tool.</td>
</tr>
<tr>
<td>Information Technology</td>
<td>It involves hardware, software, custom tools, and standards.</td>
</tr>
<tr>
<td>Operations</td>
<td>Consists of vehicle and facility maintenance, vehicle location, routing and scheduling, and real-time traffic information.</td>
</tr>
<tr>
<td>Management</td>
<td>This is about safety, security and incident response, system performance and reporting, asset management, and finance.</td>
</tr>
<tr>
<td>Customer service</td>
<td>Deals with route planning, customer relations, real-time customer information, public information, and marketing.</td>
</tr>
</tbody>
</table>

Table 1: GIS Application groups as identified by Sutton (Sutton, 2004)

2.3.2 Users of GIS-T

In section 2.3.1 on the applications within GIS-T, it is obvious that users of GIS-T are also diverse group. In many cities and municipalities, departments of transportation, urban planning, engineering & survey and mapping, are using GIS-T. However, private sectors also do uses GIS-T for activities such as fleet management, package and service delivery to mention just few.

All users are in some way implementing a database of its kind that requires some type of spatial datasets and business information. The common datasets for all users will be transportation networks and place names. On the other hand, users have to develop and implement a database to facilitate several functions and activities of their processes. The common items within several users provide an opportunity of data modelling, which encourages cooperation and collaboration among users.
2.4 GIS-T Data Model

Any GIS is built under certain data model; according to Longley et al (2005), data model is the heart of any GIS. There are several definitions of the term “data model”, which essentially mean the same thing. Butler (2008) define data model as “a set of construction plans for a database”, while Longley et al (2005) define it as “set of constructs for representing objects and processes in the digital environments of the computer”. This means in order to represent transportation data which are having both spatial and non-spatial characteristics in a computer environment, there must be a way of representing all the objects and processes in a geographic database. Through data model, people can implement, interact, query, and make analysis within a geographic database. Therefore, data model plays a key role in GIS functionality as illustrated in Figure 3.

![Figure 3: The role of data model in GIS (Longley, 2005)](image)

There has been several data models developed in the past 20 years, specifically, for the special needs of transportation datasets and applications. They include the ArcInfo route system structure, National Cooperative Highway Research Program (NCHRP) Project 20-27(3), the Transportation Feature Identification Standard (TFIS) proposed by the Federal Geographic Data Committee (FGDC), and the Geographic Data File format (GDF) (Butler
2008). However, Duecker (1997) came up with the data model named Enterprise GIS-T Data Model which tried to bring consistency to the representation as well as sharing of transportation data. In reviewing GIS-T data sharing issues, Dueker (1999) noted the two specific data models namely Geographic Data File Standard (GDFS) and the NCHRP 20-27 as the mostly used by transportation agencies in the USA. The later data model was the one tried to standardize GIS-T data models in the United States of America.

Effortless endeavours to develop a universal industry standard GIS-T data model continued, the result of which is the Unified Network Transportation data model abbreviated as UNETRANS. This was a result of collaboration between software developer and provider, ESRI and the National Centre for Geographical Information Analysis (NCGIA), University of California at Santa Barbara. The developed UNETRANS is to be a unified or universal as well as industry standard GIS-T data model. This data model is an ESRI’s ArcGIS standard transportation data model.

It is not the intention of this research to make a detailed review of all mentioned data models, but only two data models are dealt with in the following two sub-sections. More importantly, the UNETRANS data model is the focus of this research and thoroughly reviewed.

2.4.1 The Enterprise GIS-T Data Model

The enterprise GIS-T data model was developed by (Duecker and Butler (1997) and aimed at providing a universal enterprise-level data model and physical database design for GIS to be used by transportation agencies. The model developed using entity-relationship diagrams, and the entire model comprised of the basic data model in figure 4 having the following added entities in the complete data model in table 2.
<table>
<thead>
<tr>
<th>Entity Type</th>
<th>Entity definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intersections of transportation features</td>
<td>Keeps all the junctions and intersection on a transportation network.</td>
</tr>
<tr>
<td>Topological entities</td>
<td>Creates topology as a means to define path through a transportation systems, it provide information on how the various transportation features connect to one another.</td>
</tr>
<tr>
<td>Cartographic entities</td>
<td>Adds cartographic data used to draw maps, it adds elements found on transportation maps.</td>
</tr>
<tr>
<td>Linear datum entities</td>
<td>Adds elements for linear referencing on transportation system, such as reference point and geographic datum.</td>
</tr>
<tr>
<td>Non-transportation features</td>
<td>This adds support for non-transportation features that are not directly related to transport activities.</td>
</tr>
</tbody>
</table>

Table 2: The entity types and definitions for the Enterprise data model (Duecker, 1997)

Developers of this data model were focusing on transportation data sharing between various transportation agencies. This is one of the transportation data models that tried to unify the way transportation data can be represented and shared among GIS-T users.

Figure 4: The basic enterprise GIS-T data model (Duecker, 1997)

The following tables 3 and 4 below give the definitions for the entities of the enterprise data model presented in figure 4 and definitions for the event subtypes.
Table 3: Entity definitions of the basic enterprise data model (Duecker, 1997)

<table>
<thead>
<tr>
<th>Entity Type</th>
<th>Entity definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jurisdiction</td>
<td>The political or other context for designating transportation features and their names, which may be merely numerical references unique within the jurisdiction.</td>
</tr>
<tr>
<td>Transportation Feature</td>
<td>An identifiable element of the transportation system. A transportation feature can be like a point (interchange or bridge), a line (road or railroad), or an area (rail yard or airport).</td>
</tr>
<tr>
<td>Event Point</td>
<td>The location where an event occurs. Event Point is defined initially as an offset distance from the beginning of the transportation feature.</td>
</tr>
<tr>
<td>Event</td>
<td>An attribute, occurrence, or physical component of a transportation feature. Attributes include functional class, speed limit, pavement type, and state road number—things that are not tangible but describe a tangible element, such as a road. Occurrences include traffic crashes and projects. Physical components include guard-railing, signs, bridges, intersections, and other tangible things that are field-identifiable elements.</td>
</tr>
</tbody>
</table>

Table 4: Event subtypes for the enterprise data model (Duecker, 1997)

<table>
<thead>
<tr>
<th>Subtype Event</th>
<th>Subtype event definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point Event</td>
<td>A component or attribute that is found at a single location (one event point). Point events may occur independently or on transportation features of the linear or area form</td>
</tr>
<tr>
<td>Linear Event</td>
<td>A component or attribute that is found along a segment of a linear transportation feature. Linear events are defined by two event points (beginning and ending). Linear events may occur only on linear transportation features</td>
</tr>
<tr>
<td>Area Event</td>
<td>A transportation feature component or a non-transportation entity that affects a transportation feature. Areas can be explicitly represented as polygons or implicitly represented as to where they intersect transportation features.</td>
</tr>
</tbody>
</table>

2.4.2 The UNETRANS Data Model

The UNETRANS data model has a primary focus on the needs of organizations that manage road and rail transportation networks. The model is intended to provide a usable transportation GIS data model to: simplify
enterprise project implementation, encourage consistency in data structures to facilitate data sharing and provide a common starting point for application developers (Curtin et al 2003). In principle, the UNETRANS data model has become the ESRI’s ArcGIS standard transportation data model designed to help in the development of transportation applications. According to Curtin et al (2003), the UNETRANS data model is presented in two ways: a layer view of the data model, and an analysis diagram view of objects that comprise the data model.

2.4.2.1 Layer View of UNETRANS data model

The best way of visualizing geographic data is to separate objects from one another into layers of objects that share some similarity and functions. These transportation layers can be combined to develop a transportation application. Therefore, the UNETRANS data model separates three types of transportation layers as shown in table 5 below.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Network</td>
<td>The transportation network consists of several sets of data that represents the roads, railroads, waterways and other pathways along which transportation activities take place in a linear spatial representation.</td>
</tr>
<tr>
<td>Route Feature</td>
<td>Route feature layer that are built from the links in the Reference Network Layer.</td>
</tr>
<tr>
<td>Events</td>
<td>Transportation-related objects that are related to the Reference Network or Route Feature but are not part of the network itself. However, these events are integral to the operation of the transportation system.</td>
</tr>
</tbody>
</table>

Table 5: The layer view descriptions of the UNETRANS data model (Curtin, 2003)

2.4.2.2 Analysis diagram view of UNETRANS data model

The analysis diagram view illustrated in figure 5 is a layout of all the data objects that comprise the data model. Different objects specified with names and their attributes, and relationships between objects specified with
connections. Therefore, all the objects and features comprising the UNETRANS data model are presented in the analysis diagram. These diagrams contain set of packages that contains subsets of these feature classes and tables. Each feature class represents a table of information in the database that is represented by a single class box in the diagram. The analysis diagram uses the Unified Modelling Language (UML) notations.

The UNETRANS data model is sub-divided into six logical groups called packages of related objects and feature classes. A package of objects may be related by function or type. The six packages are:

- Reference Network;
- Routes and Location Referencing;
- Assets;
- Activities;
- Incidents;
- Mobile Objects.

Each package illustrated in figure 5 above represent some activities or functions in the data model; thus, table 6 below present the definitions related to each of the above packages.
2.4.3 Improved UNETRANS Data Model

According to Butler (2008) the evolution and advancement of ArcGIS technology has necessitated the refinement and improvements of the original data model. The improved data model consists of four packages because of aggregation of the original six packages. The aggregated new packages are as shown in the analysis diagram in figure 6, and the associated package definitions in table 7.

The improved data model include support for transportation facilities of all types, including their characteristics and elements, it also include editing support offered by ArcGIS software, another improved feature is the ability to support temporal data and a separation of position data from other entity attributes. This feature allows multiple datums to be accommodated in the geodatabase for both linear referencing and geographic position.

<table>
<thead>
<tr>
<th>Package</th>
<th>Definition</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Network</td>
<td>A representation of physical, semi-permanent infrastructure features intended to facilitate a channeling or control of traffic</td>
<td></td>
</tr>
<tr>
<td>Street Names and Address Ranges</td>
<td>Attribute objects associated with one or many objects from the Reference Network</td>
<td></td>
</tr>
<tr>
<td>Location Referencing</td>
<td>Objects and procedures for associating transportation related</td>
<td></td>
</tr>
<tr>
<td>Routing</td>
<td>Primarily tabular related data needed to support transportation planning processes</td>
<td></td>
</tr>
<tr>
<td>Assets, Activities, Incidents</td>
<td>A representation of physical features, planned projects, and unplanned occurrences which are located in reference to Reference Network, but are not part of the network itself</td>
<td></td>
</tr>
<tr>
<td>Mobile Objects</td>
<td>An object representing any type of medium through which people or commodities are transported along the Reference Network.</td>
<td></td>
</tr>
</tbody>
</table>

Table 6: Analysis view descriptions of the UNETRANS data model (Curtin, 2003)
The following table explains various package definitions of the improved UNETRANS data model.

<table>
<thead>
<tr>
<th>Package</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventory</td>
<td>This package includes support for all types of transportation facilities, including their characteristics and elements</td>
</tr>
<tr>
<td>The Network</td>
<td>This takes care of the transportation-specific network data model used by ArcGIS Network Analyst extension, which replaces the geometric network model used by the original UNETRANS</td>
</tr>
<tr>
<td>The Events</td>
<td>This combines the former Activities and Incidents packages into a comprehensive group of entities that represent things that happen on and to transport facilities.</td>
</tr>
<tr>
<td>The Mobile Objects</td>
<td>This package involves users of the transport system and it expands the original Mobile Object package.</td>
</tr>
</tbody>
</table>

Table 7: Aggregated package definition of the UNETRANS data model (Butler, 2008)

2.5 Conclusions

This chapter has reviewed in brief the concepts of GIS. It has also highlighted the concepts of GIS-T and its various transportation applications within GIS-T. Finally, it has discussed issues related to data models, specifically GIS-T data models used in the transportation sector, namely, the Enterprise GIS-T and the UNETRANS data models. Parts of the discussed ideas are used in chapter three to build a Transportation data model for Dar-es-Salaam. This literature review will also answer some of the research
questions and hypothesis argued in chapter one which will be given in detail in part four.
3. BUILDING A TRANSPORTATION DATA MODEL FOR DAR ES SALAAM

3.1 Introduction

This chapter is about building a transportation data model and designing a database for Dar-es-salaam. It will detail the methodology and approach used for achieving the main objectives, hypothesis and research questions that are addressed in this project. Situation analysis of Dar-es-Salaam road network and availability of data are among the issue discussed. Ultimately, the results achieved and observations that are drawn from the project are given out.

3.2 The Study Area

The Dar-es-Salaam city (Figure 7) is located on the eastern part of Tanzania between 6°34’S and 7°10’E along the Indian Ocean. It had a population of 2.5 million according to 2002 census (National Bureau of Statistics) which increased to approximately 4.0 million in 2008 (Kimbisa 2008). The city’s spatial extent was 30 km radius until 2001 (Kanyama 2004). The city is having public transportation problems and road congestion caused by poor road network infrastructure, increased number of vehicles and unavailability of an efficient transport planning system which could ease public transportation planning and management (Kanyama 2004).

Dar-es-Salaam city is currently in a process to implement a Rapid Transport System named Dar-es-Salaam Rapid Transit (DART) (Kimbisa 2008). The need for implementation of new transport mechanism requires not only an information system, but also an information system that integrates databases and spatial databases that can be useful for public transport users
as well as transportation planners and managers. Therefore, GIS-T is the right technology for the intended purpose.

![Figure 7: Location of the study area: Dar-es-Salaam, Tanzania](image)

A GIS-T integrates both non-spatial and spatial databases of transport network to facilitate planning and routing functions and decision-making processes. This also provides an efficient means for organizing basic transportation related data in order to facilitate the input, analysis, and display of transport networks.
The road network in Dar-es-Salaam is characterized and limited to major trunk road network of national and regional level. The major trunk road is arterial road network, which are the main entrance and exit to and from the city respectively. The city consists of other roads at district and local level known as access or collector roads and local or feeder roads. All together form the core transportation network of the city. Most of access and feeder roads are two directional single lane roads, and arterial roads are dual carriageway (2 x 2) lanes at a certain length within the city.

3.3 Data Availability, Quality and Completeness

Data for this project were obtained from the Ardhi University, Institute of Resource Assessment (IRA) of the University of Dar-es-Salaam and the Surface and Maritime Transport Regulatory Authority (SUMATRA). The types of data obtained were a GIS layer for Dar-es-Salaam roads and routes information from SUMATRA’s website. However, the GIS layer for roads was somehow incomplete because it lacked annotation of road names. Therefore, other means like Google earth and personal experience with the city were used to get those roads annotated. The quality of data sufficed the need of this project, though the attributes of the data was not comprehensive and incomplete to fit into the UNETRANS data model.

The following table 8 below shows the type of data used in this research, type of feature, and source of data. The main GIS layers were vector road data and scanned topographic map of Dar-es-Salaam City dated 1994.
<table>
<thead>
<tr>
<th>Name of layer</th>
<th>Type of feature</th>
<th>Source</th>
<th>Date</th>
<th>Projection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road layer</td>
<td>Vector</td>
<td>IRA</td>
<td>1994</td>
<td>UTM Zone 37S</td>
</tr>
<tr>
<td>DAR Raster</td>
<td>Raster (Scanned topographic map)</td>
<td>IRA</td>
<td>1994</td>
<td>Not georeferenced</td>
</tr>
<tr>
<td>Bus routes</td>
<td>Text</td>
<td>SUMATRA</td>
<td>2008</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 8: The type of data used in the research and their source

3.4 Methods

In order to tackle the stated problem in section 1.2 and accomplish the outlined objectives in section 1.3, and ultimately answer the questions in section 1.4, as well as the hypothesis in section 1.5 the following methodological approach was used:

- Review of existing GIS-T data model, two data model were reviewed, namely; GIS-T Enterprise data model and the UNETARANS model. Also comprehensive Internet search from reliable websites such as ESRI and published academic sources;
- Having studied the two existing data model, two packages have been adopted for the proposed GIS-T database model for Dar-es-Salaam City; the packages are the Network and Events packages. Detailed explanation about the data model which includes; conceptual, logical and physical model design is presented in subsequent sections 3.4.1 through 3.4.3;
- Lastly, the proposed model design was implemented through prototyping. During implementation, only a small part of the model was implemented. Specifically, the Events Package was not implemented. The Network package was implemented in ArcGIS 9.3 desktop software. Selected classes were populated with data, but
others were not populated due to unavailability of data. The methods used are illustrated in figure 8 below.

![Figure 8: Research Methods](image)

3.4.1 Conceptual Model design

The conceptual model design for Dar-es-Salaam is a simplified model that follows the UNETRANS data model because it is very comprehensive. Thus, the conceptual model adapts two packages of the improved UNETRANS data model, namely: the **Network Package** and **Events Package** that are illustrated in figure 9. The proposed data model has been for simplicity, taking into consideration the limitation of available spatial data. The Network Package comprises a low-level description of the transportation network that includes basic transportation features (Road network, transport routes, Junctions, bus stops, bus terminals).

![Figure 9: Data model packages for Dar-es-Salaam](image)
Classes form packages, which can be either feature classes for spatial data or object classes for non-spatial data. These feature and object classes are depicted in figure 10 and figure 11 with their relationships as it will be implemented in the geodatabase. The corresponding feature and object class definitions are given in table 8 and table 9.

![Diagram of network package](image)

Figure 10: Conceptual design of the network package for Dar-es-Salaam case study

The following table presents features and object classes definitions for the Network Package.

<table>
<thead>
<tr>
<th>Object/Feature Class</th>
<th>Object/Feature class definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SimpleJunctionFeature</td>
<td>A simple feature class representing simple spatial feature of transport network.</td>
</tr>
<tr>
<td>ObjectClass</td>
<td>A list of tables representing non-spatial data related to any transport network.</td>
</tr>
<tr>
<td>FeatureClass</td>
<td>A spatial feature representing points, lines, or polygon on transport network.</td>
</tr>
<tr>
<td>TransportJunction</td>
<td>A feature that bounds a Route Link or any significant point of interaction between transport routes.</td>
</tr>
<tr>
<td>BusRoutes</td>
<td>An object that associates RouteFeature, BusStop or BusTerminal into a comprehensive set of travel information.</td>
</tr>
<tr>
<td>RoadFeature</td>
<td>Any linear object intended to represent a right-of-way for transportation activities</td>
</tr>
</tbody>
</table>

Table 9: Object and Feature class definitions for the conceptual design of the Network Package
<table>
<thead>
<tr>
<th>Object/Feature Class</th>
<th>Object/Feature class definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BusStop</td>
<td>A point where passengers can board or alight a public transport.</td>
</tr>
<tr>
<td>BusTerminal</td>
<td>One or more stops point close to each other. It is also a type of TransportJunction representing a hub location for bus travel where passengers can board busses, transfer between busses, and obtain travel information.</td>
</tr>
<tr>
<td>BusInformation</td>
<td>Records of all buses registered to carry transport business as city buses.</td>
</tr>
</tbody>
</table>

Table 9 (Continues): Object and Feature class definitions for the conceptual design of the Network Package

![Diagram showing the conceptual design of Events Package: Feature and Object Classes](image)

Figure 11: Conceptual design of Events Package: Feature and Object Classes (Butler, 2008)
The following is a Features/Object Classes definition for the events package.

<table>
<thead>
<tr>
<th>Feature Class</th>
<th>Feature Class definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity</td>
<td>An Activity is one of several types of feature that represents a planned operation. Activities are linearly referenced to the network. Activities can have point, line, or polygon spatial representations.</td>
</tr>
<tr>
<td>Incident</td>
<td>Any type of unplanned, transient occurrence with a reference to the Transport Network.</td>
</tr>
<tr>
<td>ActivityPoint</td>
<td>The abstract feature class for any Activity that has a point spatial representation.</td>
</tr>
<tr>
<td>ActivityLine</td>
<td>The abstract feature class for any Activity that has a linear spatial representation.</td>
</tr>
<tr>
<td>ConstructionPoint</td>
<td>A construction activity with a point spatial representation, referenced to the transportation network.</td>
</tr>
<tr>
<td>ConstructionLine</td>
<td>A construction activity with a linear spatial representation, referenced to the transportation network.</td>
</tr>
<tr>
<td>IncidentPoint</td>
<td>Any type of Incident with a point representation.</td>
</tr>
<tr>
<td>IncidentLine</td>
<td>Any type of Incident with a linear representation.</td>
</tr>
<tr>
<td>TrafficAccident</td>
<td>A type of IncidentPoint representing a transient, unplanned occurrence that must be maintained in the database.</td>
</tr>
<tr>
<td>LaneClosure</td>
<td>A type of IncidentLine representing the transient, unplanned closure of a lane on a BusRoute or RoadFeature due to a TrafficAccident or other Incident.</td>
</tr>
<tr>
<td>Spill</td>
<td>A type of IncidentPolygon representing the area affected by an Incident such as a toxic spill or oil spill from a TrafficAccident on a TransportRoute.</td>
</tr>
<tr>
<td>RoadImprovementProject</td>
<td>An object class representing any information about road construction project undertaken on RouteFeature or Transport Network.</td>
</tr>
<tr>
<td>ConstructionPolygon</td>
<td>A construction activity with a polygon spatial representation, referenced to the transportation network.</td>
</tr>
</tbody>
</table>

Table 10: Object and Feature Classes definition for the Events Package

3.4.2 Logical Model design

The purpose of logical design is to translate the conceptual schema design into a logical schema customized to the specified database’s management system. A logical schema is a description of the structure of the
database that can be processed by the database management software; it includes attributes for each class or entity and data types for each attribute. Therefore, a logical data model is the blueprint for designing and creating a physical geodatabase (Baynon-Davies 2004, Butler 2008). In this case, the designed logical schema is processed in the ArcGIS geodatabase model.

In fulfilling this, a logical design has been created using ArcInfo UML model toolset template that is integrated into the ArcGIS-ArcInfo software, and were developed using Microsoft Visio software. Thus, the conceptual schema is mapped into logical design as presented in figures 12 & 13, and whose entity descriptions were exemplified in tables 9 & 10 respectively.

Figure 12: Logical design of the Network package developed for the Dar-es-Salaam city case study.
3.4.3 Physical Model Design

Physical data model is the actual implementation of the logical data model design where entities or classes are converted to relational tables in specified database management systems (Baynon-Davies 2004, Butler 2008). Therefore, the physical model design is implemented in ArcGIS 9.3 software through geodatabase data model. A brief account about geodatabase is given in the next section.
3.5 Setting-up the geodatabase

According to Esri’s ArcGIS 9.3 Software documentation (ESRI 2007a), Geodatabase is short form for “geographic database” and is data storage format for ArcGIS products. Geodatabase is a collection of geographic datasets of various types held in a common file system folder, a Microsoft Access database, or a multiuser relational database management system. A fundamental geodatabase concept is the dataset. It is the primary method used to organize and use geographic information in ArcGIS products. ArcGIS has three types of geodatabases (see also figure 14), namely:

i. File geodatabases - Stored as folders in a file system and designed for use by one or a few people;

ii. Personal geodatabases - All datasets are stored within a Microsoft Access data file. Like File geodatabase, it is also designed for use by one or a few people;

iii. ArcSDE geodatabases - Stored in multi-user relational database management system and designed to be accessed and edited simultaneously by many users.

Figure 14: ArcGIS Geodatabase types (ESRI, 2007b)
The geodatabase contains three primary dataset types as illustrated in figure 15.

i. Feature classes

ii. Raster datasets

iii. Tables

![Diagram showing the primary dataset types in geodatabase](image)

Figure 15: Primary dataset types in geodatabase (ESRI, 2008)

The geodatabase designed such that there is a systematic data management with common reference systems within the feature datasets and all feature classes will have the same reference system.

3.5.1 Creating Geodatabase in ArcGIS-ArcInfo

The proposed database model consists of two packages that may be implemented for Dar-es-salaam Rapid Transit planning and operations. However, in this research project, only one package, the Network package is been implemented in a prototype; and only four out of six classes were populated with data. A personal geodatabase was manually created in ArcGIS as seen in figure 16. This involved creating the personal geodatabase itself, personal geodatabase feature dataset, feature classes, and personal geodatabase tables. Attributes and data types were set accordingly to correspond with the type of data to be stored.
3.5.2 Creating Roads and Bus Route Feature Datasets

Road feature and bus route feature datasets of the Metropolitan portion of Dar-es-salaam City were created through on-screen digitization of scanned topographic map of 1994 at 1:20,000 scale. The scanned map was made from aerial photograph of 1992. This dataset was a base road map for geodatabase development. It is true that the spatial dataset is 14 years old, meaning that, significant changes have occurred to some of the roads. However, changes, can be in terms of road improvements and may not affect its spatial location of the. The digitized road dataset comprised of all road classes, namely; regional roads, main roads and street roads. All roads are represented with one symbol; a distinction was not made with regard to their classification. The following maps in figures 17 depict portion of the digitized road feature dataset, and figure 18 illustrate portion of the bus routes feature dataset for Dar-es-Salaam City.
Figure 17: Part of road feature dataset of Dar-es-Salaam city
Figure 18: Part of bus routes feature dataset of Dar-es-Salaam city

3.5.3 Creating Transport Junctions Feature Class

Transport Junctions feature class were created from a base road feature dataset. Transport junctions comprised of all intersections where roads or streets intersect, railroad crossing, bus stops, bus terminals and road
or street dead-ends. The map in figure 19 depicts some of the created transport junctions.

![Figure 19: Part of transport junctions within road feature dataset](image)

3.5.4 Creating Network Datasets

Creating network dataset from existing road feature class was one of the important procedures in order to have a network dataset required for network analysis. Therefore, two network datasets (DarRoadNetwork and BusRoutes Network Datasets) were created as displayed in figures 20(a) and
(b). The DarRoadNetwork Dataset incorporates all feature classes in the geodatabase (transport junctions, RoadFeature, and BusRoutes), while the BusRoutes Network Dataset incorporates BusRoute and BusStopsTerminal Feature Classes. Principally, Network Datasets comprises of junctions and edges of the feature class formed at every junction of feature class and at the vertex of polylines. The two figures below present the created Network Datasets.

![Network dataset for DarRings (a) and BusRoutes (b) respectively](image)

Figure 20: The Network dataset for DarRoads (a) and BusRoutes (b) respectively

3.5.5 Populating Geodatabase

In the course of creating of the physical geodatabase tables and feature classes, not all attributes were populated with respective non-spatial data, due to unavailability of such data. There are few data populated in the geodatabase table for prototyping and implementing part of the created database model.
3.5.6 Network Analysis Applications

Network analysis is a way to solve network problems such as finding the best route, finding the closest facility, and identifying a service area around a location, to mention just few. This section details two network applications that have been done; namely, finding the closest facility (Closest Bus Stop to hospitals), and identifying a service area around hospitals’ location.

The closest facility is the nearest service facility such as emergency vehicle (i.e. Ambulance or fire tender), and hospital facility, to mention but few. In case of any incident (i.e. car accident or fire) along the route, rescuers will want to know the closest hospital or emergency vehicle to an incident location. On the other hand, as far as public transport is concerned, people using public transport and travelling to any point of interest may want to know the closest bust stop to a network location or the best route to a certain facility such as a hospital, a tourist location within the city, etc.

In order to carry out a simple network analysis on bus routes, a hospital facility layer was created and used along with the Bus Stops Network dataset to determine the closest Bus Stops to a designated network location. The procedure used was to use a graphic pick tool on a network analysis extension, which allows creation of the point of interest and the closest bus stops were automatically determined based on the shortest distance from a number of bus stops near a network location, in this case, hospital locations were selected to be the points of interest.

Service area is an area around a facility that may be served by the facility. The service area is determined by distance criteria from the facility.
This area is a polygon buffer created after specifying a distance criteria in which a certain community must be served using the network.

3.6 Results

The process of building transportation geodatabase for Dar-es-Salaam has several results that are found in sections 3.5.1 through 3.5.6 in this report. From conceptual design to physical design of the geodatabase, and its prototype implementation gives some kind output of the project that fulfil the goals and objectives of this research project.

3.6.1 GIS-T Database Model

One of the objectives in this project was to design a GIS-T database for public transport route planning and operations for Dar-es-Salaam City. In order to come up with a functional database, a database model has to be developed. In the project, a GIS-T database model has been developed and implemented in ArcGIS 9.3. Though, the model is customised based on the UNETRANS data model, it gives an opportunity for starting-up a GIS database for transportation application, with specific emphasis on route planning and operations for Dar-es-Salaam city.

The developed geodatabase consists of feature classes and object classes. The former are tables holding spatial data, and the latter are tables mainly for non-spatial data. In implementation through prototyping, all tables were created in ArcGIS and partially populated with data, specifically, spatial data in feature classes. However, populating object class tables was not possible, almost all attributes remained with null values, this makes the need
for the future work to ensure the database is comprehensive and fully populated with associated data, be it spatial or non-spatial.

The developed GIS-T database model is not comprehensive due to several reasons among them are the lack of both spatial and non-spatial data, which are vitally important in building-up geodatabases. In addition, lack of specific and well properly organized transportation data for Dar-es-Salaam City hinders the comprehensively of the desired GIS-T.

When reviewing the UNETRANS data model, it was found that UNETRANS model was developed to fit the US and other developed world transportation infrastructural environments, this is not the case for Dar-es-Salaam, Tanzania or any other Sub-Saharan African counties where its transportation infrastructures are not yet stable and not comparable to that of developed world like USA. Therefore, the GIS-T database for Dar-es-Salaam, though customised based on some part of the UNETRANS data model reflects the real and actual environment of roads network in Dar-es-Salaam city, and availability of both spatial and non-spatial data related to transportation.

3.6.2 Network analysis on a network location

The developed geodatabase may be used in a number of applications; one of them is to carry out network analysis as already explained in section 3.5.6. In this specific project, two types of network analysis were conducted, that is, a network analysis aimed at determining service area and closest bus stop facilities to certain locations on a network datasets (Examples are major hospitals in the city). In urban public transport, knowing the closest bus stop to certain location is of vitally important as it also enable travellers to find the
appropriate bus routes plying to those areas. Figure 21 depicts some bus stops closest to hospitals.

Two examples of network analysis applications based on simulated incidences are presented in figure 22, figure 23, and figure 24. Figure 22 shows the route to the closest hospital facility from a simulated accident location. The example in figure 22 does not take into consideration information about two ways or one way nor does it consider time. It would be better to consider time if available, however, for this case, only distance is used. Figures 23 & 24 depict the service area for hospital facilities at 1000m and 2000m rings respectively.

Figure 21: An example showing the closest bus stops to the network location (Hospital facilities)
Figure 22: An example showing routes to nearest hospitals from a simulated accident location on a network
From the above illustration (Figure 23), it has been established by means of selection by location method (*and verified by selection statistics function*) in ArcGIS, that there are 98 out of 282 bus stops that are completely within the service area (Polygons) of 1000m from the hospital facilities. This account to 34.8% of all bus stops on a transport network and the hospitals are fairly covered. However, some hospitals are not well covered.
From the above illustration (Figure 24), it has been established by means of selection by location method (and verified by selection statistics function) in ArcGIS, that there are 200 out of 282 bus stops that are completely within the service area (Polygons) of 2000m from the hospital facilities, which is 70.9% of all the bus stops recorded on the geodatabase.
3.7 Conclusions

A designed GIS-T that has been dealt with in this chapter is a good milestone and basis for future roadmap towards a comprehensive GIS-T for Dar-es-Salaam City. More work still need to be done with emphasis on the availability of required data, format, and organisation of data in an interoperable manner. This chapter has therefore, completed a major tasks for this project as outlined in the research objectives. In the next chapter, the main conclusions and verification of the set hypothesis and research questions are discussed together with the future works.
4. CONCLUSIONS AND RECOMMENDATIONS

This chapter presents the conclusions and recommendations for the project as detailed in chapters one, two, and three. The conclusions drawn here are a reflection of the author’s view based on the work done and perusal of the literature review.

4.1 Main Conclusions

The main objectives of this project as listed in section 1.3 were to review and make analysis of existing GIS-T data model, specifically, the UNETRANS; to design a GIS-T database for public transport route planning and operation for Dar-es-Salaam city, and to implement the design through prototyping.

The conclusion about these is that all objectives have been achieved, few-selected GIS-T data model (the focus was on UNETRANS) were reviewed and studied in detail, and customised GIS-T data model made out of it for Dar-es-Salaam city. The designed and implemented database is not full and comprehensive system, but a mere prototype, which can be further, improved, and expanded.

Due to unavailability of enough spatial and non-spatial data, there exist in the prototype many null values in the geodatabase tables; all these need to be collected, documented, and implemented. A network analysis on selected application was done to find the routes to existing hospital facilities within the city.
4.2 Verification of research questions and hypothesis

This research argued for two research questions and three hypothesis as stipulated in sections 1.4 and 1.5 respectively, and which are discussed in subsequent sections.

4.2.1 Verification of research questions

The major question addressed in this project was to know which package and classes in GIS-T data model can support public transport planning and operations for Dar-es-Salaam. This question is answered after review of the UNETRANS data model discussed in section 2.2.2. It is my opinion that two packages are required to support GIS-T data model for Dar-es-Salaam, the packages are the Network and Events package. The prototype in the project is implemented using one package only (the Network Package). The other two sub-questions are answered as follows based on a detailed review of the UNETRANS data model

i. UNETRANS is a comprehensive GIS-T model that caters for both uni-modal and multi-modal transport systems, therefore, its full implementation for Dar-es-Salaam city will require an infrastructural setting that resembles the classes and features in the model itself. In fact, the data model as a whole is not suitable for implementation unless customized and use part of the packages and classes from UNETRANS to reflect the real situation of Dar-es-Salaam infrastructure and availability of spatial data.

ii. UNETRANS data model was developed in the US, so it fully reflect the US infrastructural settings, open access to spatial data as well as organised and harmonised spatial data. This is not the case for
Dar-es-Salaam city, and probably, most of developing African countries.

iii. With regard to whether the available spatial data that can fit into the UNETRANS data model, it can be concluded that, UNETRANS data model requires complete spatial data for its full implementation, the data that may not available for Dar-es-Salaam. Thus, the available geodata does not fit in the current UNETRANS GIS-T data model.

4.2.2 Verification of research hypothesis

Three-research hypothesis argued in this project are justified for as follows:

i. The first hypothesis contended that it is possible to build an effective transportation data model for Dar-es-Salaam based on part of UNETRANS GIS-T data model. This hypothesis is accepted. Through customization, part of the UNETRANS data model components may be used to build an effective data model for Dar-es-Salaam. The designed and implemented prototype in this project is an example of the positivity of the hypothesis.

ii. The second hypothesis claimed that: Building an effective GIS-T data model requires comprehensive spatial data and technology. This hypothesis is also accepted. An effective and exhaustive GIS-T data model will require extensive spatial data, but also, the right technologies in terms of hardware, software, and humanware. However, this does not mean that a simple GIS-T data model like the one developed and prototyped in this
project may not be effective to some extent based on available fragmented data.

iii. The third and last hypothesis said that, *Lack of well-documented and organized transportation data is a hurdle to effective GIS-T database design and implementation.* This argument is true for the following reasons: In Dar-es-Salaam City and Tanzania in general, Spatial Data Infrastructure is not in place yet. Spatial data is highly fragmented in different organisations and government entities. It is not known, which and what type of spatial data is available and in which format or standards. This is a major bottleneck to effective implementation of GIS for transport planning in Dar-es-Salaam city.

4.3. Limitations and Future Work

This section details the limitations and future work required for same project. The information provided is based on what has been done so far and the encountered shortcomings. The development and design of the GIS-T for Dar-es-Salaam city was based on the limited available spatial and non-spatial data. Thus, the developed GIS-T database is not comprehensive.

The future work for this part of project may require full collection of spatial data and corresponding auxiliary data so that a comprehensive transportation geodatabase for Dar-es-Salaam may be built. Consultation with relevant government and municipal authorities, such as Tanzania Roads Agency, and Dar-es-Salaam City Council is required to determine the exact information required that best suit the daily activities for a workable customised geodatabase. The Dar-es-salaam Rapid Transit (DART) being the
major user of the geodatabase and its functionalities should also be consulted to layout the requirements for urban transport GIS.

4.4 Recommendations

Based on the work done in this project and challenges faced during implementation, some of which were limitations of available spatial and non-spatial data, the following recommendations are advanced for effective and comprehensive design and implementation of GIS-T for Dar-es-Salaam City:

i. In order to have well collected and organised spatial data related to the transportation sector, there is a need to have a spatial data infrastructure for Dar-es-Salaam city, which can make available all spatial data for the city. This will facilitates and make easy use of standardized data for various activities including development of GIS-T for the city;

ii. Technological developments that are happening in the geospatial technology field require a considerable investment in hardware, software and proper training to manage and develop GIS-T for the city. Therefore, decision makers need to be aware of the importance of the GIS-T for decision-making process, in addition, should be aware of the benefit of having such a geodatabase in support of urban transport planning systems.
BIBLIOGRAPHIC REFERENCES

