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Abstract

Computational fluid dynamics tools are capable to simulate the influence of a fluid flow

passing around an object. The ability to predict the impact of such flows on a specific

product performance is time consuming and costly without some form of simulation

tool. In fact, across a wide range of engineering areas, virtual development allows the

reduction of the number of prototypes and less testing until a product is ready to the

market. Therefore, it is important to provide computational fluid dynamics users with

easy-to-use, robust, time-efficient and validated processes. Bearing this in mind, the

current thesis studies the phenomenon of vortex induced vibrations simulating a flow

around an oscillatory cylinder.

A flow passing around a rhombic body originates dynamic forces which, consequently,

induce a set of body movements that are well characterized in the literature. To perform

the numerical investigation of this phenomenon was used the OpenFOAM, an open-

source software which is numerically able to perform a detailed and accurate analysis

of this complex phenomena. Given the few scientific studies about the vortex induced

vibration phenomenon with two degrees of freedom, this thesis aims to validate the Open-

FOAM software for this case study, providing the scientific community the validation of

a new numerical tool for studies of this kind. With this goal, it was firstly performed a

mesh independence study for a flow around a fixed cylinder where it was studied the

influence of the mesh on the fundamental quantities, that is, the Strouhal number, St,

the mean drag coefficient, CD,mean, and the root mean square of the drag, CD,rms, and lift,

CL,rms, coefficients.

Then, it was carried out the study of the flow around a cylinder with one degree of

freedom. It was studied the response of the cylinder for two types of systems, mass-spring

system and mass-spring-damper system for a mesh with a 2500D domain length. The

obtained results where then compared with the data described in the literature for a 50D

length mesh, allowing to infer which is the impact of the mesh size into the obtained

results.

Finally, it was studied the phenomena generated by a flow around a cylinder with two

degrees of freedom. In order to validate this analysis, the obtained results for a 8D mesh

were compared with the data described in the literature for a similar numeric study. The

main difference obtained between both studies was the symmetry of the geometry of the
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cylinder’s oscillatory movement which was obtained by the current study whereas the

comparative study showed an asymmetric movement of the cylinder. Given this data, it

was hypothesised and proven that this fact was associated with the non-symmetry of the

mesh used by the literature paper.

Subsequently, it was studied the influence of the mesh refinement level in the response

given by the cylinder with two degrees of freedom. It was also analysed how the size of

the mesh domain influences the response given by the cylinder with two degrees of

freedom. Particularly, it was compared the geometry of the oscillatory motion and the

temporal evolution of the respective lift coefficient between meshes with 8D, 20D, 500D

and 2500D size.
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Resumo

As ferramentas de dinâmica dos fluidos computacional têm a capacidade de simular qual

a influência que um dado escoamento tem ao interagir com um corpo. De facto, sem uma

ferramenta de simulação, predizer qual o impacto que determinado escoamento tem na

performance de dado produto é moroso e dispendioso. Este facto faz com que, em diver-

sas áreas da engenharia, a análise virtual permita a redução do número de protótipos e os

testes necessários para colocar um produto no mercado. Assim, é importante fornecer aos

utilizadores de ferramentas de simulação na área de dinâmica dos fluidos ferramentas

fáceis de usar, robustas e com processos validados. Com este objetivo em mente, a pre-

sente tese pretende estudar o fenómeno de vibrações induzidas por vórtices através da

simulação de um escoamento em torno de um cilindro oscilatório.

Um escoamento ao passar por um corpo rômbico origina forças dinâmicas que provo-

cam um conjunto de movimentos característicos deste fenómeno e que estão bem carac-

terizados na literatura. Para proceder à análise numérica deste fenómeno foi utilizado o

OpenFOAM, este é um software de uso livre que se entendeu ser numericamente capaz

de realizar uma análise suficientemente detalhada e correta deste fenómeno complexo.

Tendo em conta os escassos estudos científicos sobre o fenómeno da vibração induzida

por vórtices para um corpo com dois graus de liberdade, esta tese tem como objetivo a

validação do software OpenFOAM para este caso de estudo, disponibilizando à comuni-

dade científica a validação de uma nova ferramenta numérica para realizar estudos deste

género. Para tal ser possível, começou por se estudar a independência da malha para o

escoamento em torno de um cilindro fixo analisando qual a influência que a malha tem

nas quantidades fundamentais, ou seja, o número de Strouhal, St, a média do coeficiente

de arrasto, CD,mean, e a raiz do valor quadrático médio dos coeficientes de arrasto, CD,rms,

e de sustentação, CL,rms.

De seguida, foi efetuado o estudo do escoamento em torno de um cilindro com um

grau de liberdade. Foi analisada a resposta dada pelo cilindro para dois tipos de sistemas,

sistema massa-mola e sistema massa-mola-amortecedor para uma malha de domínio

2500D. Os resultados obtidos foram posteriormente comparados com dados descritos na

literatura para uma malha de domínio 50D, possibilitando averiguar qual o impacto do

tamanho da malha nos resultados obtidos.

Por fim, foi estudado o escoamento em torno do cilindro com dois graus de liberdade.
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De modo a validar esta análise, os resultados obtidos para uma malha de domínio 8D

foram comparados com os dados descritos na literatura para um estudo semelhante. A

maior diferença entre os resultados de ambos os estudos foi a simetria do movimento

oscilatório do cilindro que foi obtida para o presente estudo enquanto que o estudo

comparativo apresentou um movimento assimétrico do cilindro. Com isto, foi proposto

e demonstrado que este facto está associado com a não-simetria da malha utilizada pelo

artigo da literatura.

Posteriormente, foi estudada a influência do nível de refinamento da malha na res-

posta dada pelo cilindro com dois graus de liberdade. Foi também analisado como a

dimensão do domínio da malha influência a resposta dada pelo cilindro com dois graus

de liberdade. Em particular, foi comparada a geometria do movimento oscilatório e a

respetiva evolução temporal do coeficiente de sustentação entre as malhas com dimensão

8D, 20D, 500D e 2500D.
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1
Introduction

1.1 Context and motivation

Engineering had a decisive role in the development of mankind, contributing to a

number of innovations that had enabled the twenty-first century way of life. Constantly

struggling with new challenges, engineering is in a permanent search of innovative ap-

proaches to address those challenges. Particularly, in terms of mechanical structures, the

materials have been stretched more frequently for its mechanical limits. With greater

exigency levels, new materials with higher levels of flexibility, strength and lightness

have been emerging to meet the demands of increasingly ambitious projects. Similarly, in

recent times, many investigations have been motivated by the engineering applications

of vibration, such as the design of machines, foundations, structures, engines, turbines,

and control systems. The development of these novel technologies is closely related with

the understanding of the physical phenomenon that they will be subjected to.

In CFD one of the most studied phenomenon is the flow around a circular cylinder.

This phenomenon became a subject of special interest in this area after it was understood

that it was not as trivial as thought to the date. In fact, it was realized that involved

complex physical aspects and was related with some interesting and particular details,

like the development of vortex shedding in unsteady flow, Williamson and Govardhan

(2004).

The flow around a circular cylinder is usually studied in the Vortex Induced Vibration

(VIV) context. There are a wide number of scientific studies where is performed the

numerical simulation of VIV around a circular cylinder with no degrees of freedom. There

are also some work for one Degree Of Freedom (DOF), particularly, for a flow which

direction is orthogonal to the cylinder displacement. Regarding the study of a flow

around a cylinder with two DOF, problem which is intended to validate in this thesis,
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there are a scarce number of articles focusing the numerical simulation of this kind of

problem.

These studies are important to better understand how aerodynamic and hydrody-

namic environments influence structures fatigue damage and stability. An example of

how crucial these studies are, was the collapse of Tacoma Bridge, built in 1940 in the

United States of America, Billah and Scanlan (1991). This bridge caved in only two

months after its inauguration due to vortex induced vibrations. More specifically, vortex

shedding induced the development of vortices on the back side of the bridge. As the wind

increased in speed, vortices were formed on alternate sides of the downwind side which,

eventually, broke loose and flew downstream exerting fluctuating vertical forces on the

bridge even though the wind was blowing across it in a transverse, horizontal direction.

The oscillating forces induced by the vortex shedding were increasingly higher with each

cycle because the wind energy was higher than the flexing of the structure was able to

dissipate and, finally, drove to the bridge failure due to excessive deflection and stress.

Thus, examples of structures subjected to vortex induced vibrations phenomenon are

bridges, high-rise buildings, high voltage towers, industrial chimneys, wind turbines,

underwater structures, offshore platforms, ship hulls, drilling and production risers in

petroleum exploration, pipelines networks such as pipelines or structures involving dif-

ferent types of cables like electric networks or suspended structures.

Whenever the natural frequency of vibration of a machine or structure coincides

with the frequency of the external excitation, there occurs a phenomenon known as

resonance, which leads to excessive deflections and failure, as the one that occurred

in Tacoma bridge. Therefore, due to the devastating effects that vibrations can have on

machines and structures, vibration testing has become a standard procedure in the design

and development of most engineering systems. With this interest comes the need for

numerical tools with the power to perform a detailed analysis of this kind of phenomena

and, at the same time, affordable enough to perform an efficient study.

In this context, the development of this work aims to validate the numerical code of

the OpenFOAM software. This is an open source tool, which is understood to be strong

enough for the numerical simulation of a flow around a cylindrical section with two DOF.

1.2 Problem formulation

The main goal of this thesis is to perform a numerical study of a flow around a cylin-

drical section with two DOF. With this purpose, it was firstly performed an OpenFOAM

analysis for a flow around a stationary cylinder, this is, in a zero DOF conformation. The

obtained results were compared with the data described in the literature so the used

methodology as well as the obtained results could be validated. At this point, it was also

studied how the mesh configuration could influence the obtained numerical results. To

perform this analysis, meshes with domain O-type were developed and for each domain

type were created three levels of refinement with quadrilateral elements. It was, then,
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performed a comparison study between the developed meshes. Comparing its dimension-

less parameters values, the simulation performance, and the obtained results with the

literature data it was possible to conclude which one of these meshes configurations was

the best fit to proceed the analysis of the flow around a cylinder with one and two DOF.

Subsequently, it was studied the VIV phenomena in a circular body with one DOF for a

Y axis motion. For this scenario, it was evaluated the cylinder perpendicular displacement

towards the flow direction.

Finally, it was studied the VIV for a circular cylinder with two DOF.

For the three cases enumerated above, the results validation was performed by com-

paring the obtained results with the data described in the literature.

1.3 Original contributions

This thesis validates the use of OpenFOAM for the numerical study of a flow around

a cylindrical section in the two DOF scenario. The validation of this tool becomes im-

portant in the development of the computational fluid dynamics area, as it validates an

alternative tool to the traditional, expensive and inaccessible software. Demonstrating

that this alternative tool has similar potential but, being open-source, can be easily avail-

able to anyone interested in performing this kind of study. Contributing, therefore, for

the knowledge to increase in this area which has so many fascinating unexplored subjects.

1.4 Thesis layout

Apart from this introduction, this thesis is structured in six chapters. In chapter 2

are introduced the main theoretical topics related with the phenomena of a flow around

a circular cylinder. Furthermore, in section 2.3 are detailed the mathematical equations

modelling the flow displacement in CFD.

Chapter 3 describes the numerical modelling methodology used to simulate an un-

steady flow around a circular cylinder. Namely, it is described the mesh generation

process in section 3.1 and specified how the CFD analysis was set using OpenFOAM in

section 3.2.

Then, in chapter 4 the CFD study of a flow around a non-oscillatory cylinder. Particu-

larly, in section 4.1 is done a mesh independence study.

Afterwards, in chapter 5 it is studied a flow around a cylinder with one DOF. Particu-

larly, it was performed an analysis for the mass-spring system in subsection 5.1.1 and for

the mass-spring-damping system in subsection 5.1.2.

Lastly, in chapter 6 is described the numerical study of the flow around a circular

cylinder for two DOF. The obtained result were compared with the ones described in

literature in section 6.1. In section 6.2 is analysed the influence of the mesh refinement in

the obtained results. Finally, in section 6.3 it was evaluated the influence of the domain

size on the obtained results.
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2
Theoretical contextualization

2.1 Fundamentals of a flow around a circular cylinder

A fluid flow around a stationary body or, similarly, a movement of a body in a fluid

at rest originates a region of disturbed flow at the body boundaries. The extension of the

affected region is largely influenced by the body shape, orientation and size and by the

fluid velocity and viscosity. This relation is translated by the Reynolds number, Re, which

is a dimensionless parameter that depends on the fluid density, ρ, velocity, U∞, cylinder

external diameter which corresponds to the body characteristic length, D, and dynamic

viscosity, µ.

Re =
ρU∞D

µ
(2.1)

Bodies subjected to a fluid flow are classified as being streamlined or bluff, depending

on their overall shape. Particularly, in this thesis context, we are interested in the interac-

tion between a bluff structure and a subsonic flow. Bluff bodies are characterized by flow

separation along a large section of the structure’s surface, Bearman (1984). The primary

purpose of these structures is to bear loads, contain flow or provide heat transfer structure

and, since these structures are not designed to minimize drag, aerodynamic optimization

is not usually a concern. Consequently, flow induced vibrations are generally considered

as a secondary design parameter, at least until a failure occurs.

The flow structure around bluff bodies are characterized by a region of disturbed flow

behind the body designated by the wake. Within the near-wake zone various forms of

flow instabilities may be triggered and amplified. These instabilities are manifested by

the generation of unsteady flow structures and eventually turbulence as the Reynolds

number is progressively increased. The most well-known instability is that leading to

the periodic development of vortices which produces a wake pattern named after von
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Kármán street. Circular cross-section bodies such as cylinders are classified as bluff

bodies since, as a result of its shape, generate particularly large and typically unsteady

flow separation structures.

2.1.1 Disturbed regions in a circular cylinder

The flow disturbed regions are defined by the variation of its velocity magnitude,

direction and time. In each region the disturbed flow is characterized by a greater, equal

or minor velocity than the free stream velocity, Zdravkovich (1997). Figure 2.1 illustrates

the flow different disturbed regions:

i. narrow region of retarded flow;

ii. boundary layers attached to the surface of the cylinder;

iii. sidewise regions of displaced and accelerated flow;

iv. wide downstream region of separated flow designated by the wake.

Figure 2.1: Disturbed flow regions, Zdravkovich (1997).

2.1.2 Transition in disturbed regions

The flow transition from laminar to turbulent state is given by the Reynolds number,

Re, which represents the ratio between inertial and viscous forces defined by equation

2.1.

Laminar flow occurs for low Reynolds numbers, where viscous forces are dominant,

and is characterized by smooth, constant fluid motion. Oppositely, turbulent flow occurs

for high Reynolds numbers and is dominated by inertial forces, which tend to produce

flow instabilities such as vortices.

For bluff bodies, the transition between laminar and fully turbulent flow states is

characterized by a succession of changes in the various regions of the disturbed flow.

Figure 2.2 shows the development of these transitions with Re in three disturbed regions:

wake (T rW ), shear layers (T rSL) and boundary layers (T rBL), Zdravkovich (1997).
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Figure 2.2: Transitions in disturbed regions: (a) T rW , (b) T rSL, (c), (d) T rBL (BL=boundary layer,
L=laminar, T=turbulent, Tr=transition, S=separation), Zdravkovich (1997).

The first disturbed region, designated by T rW , occurs in the wake and gradually

spreads along it while the free shear layers bordering the near-wake remain laminar. The

second transition, represented by T rSL, occurs in the free shear layers. This transition

is characterized by the increasing of the Reynolds number along the free shear layers

towards the separation and impacts the length and weight of the near-wake. For the third

transition, T rBL, the flow is turbulent in the free-shear-layers and the remaining flow

is in a transition state. The third transition is considered to be completed when all the

regions of disturbed flow are fully turbulent. At this point, the stagnation point, where

the fluid local velocity is zero, and the separation point, where the wall shear stress is

equal to zero, are coincident.

2.1.3 Types of the flow states

The flow around a circular cylinder is an extremely complex phenomenon. Neverthe-

less, flow patterns are expected to be confined within a fixed range of Re for genuinely

disturbance free flows, Zdravkovich (1997).

The flow states can be fully laminar, L, one of the three transitions T rW , T rSL or

T rBL, or fully turbulent, T . Each flow state can be described in a flow regime context

depending on the Reynolds number. Table 2.1 enumerates the flow regimes for a flow

around a circular cylinder.

The Reynolds number considered for the simulations developed in this work corre-

sponds to Re = 200. For this reason, in the next subsections will be discussed the L and

T rW flow regimes, the existent regimes until Re = 200. The remaining flow states and

flow regimes will not be discussed in detail in this work, since they are not relevant in

this thesis context.

2.1.3.1 Laminar state of flow, L

The laminar state of flow can be divided into three basic flow regimes:

L1 : "Creeping" flow or non-separation regime; 0 < Re < 4 to 5

L2 : Steady separation or closed near-wake regime; 4 to 5 < Re < 30 to 48

L3 : Periodic laminar regime; 30 to 48 < Re < 180 to 200
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Table 2.1: Disturbance-free flow regimes around a circular cylinder, Zdravkovich (1997). Lw =
length of near-wake (only for L2 regime), Lf = length of eddy formation region (from L3 to T2
regimes), CD Drag coefficient. Abbreviations: ր increase, ց decrease, ↓ rapid decrease, (?)
unknown.

State Regime Re Ranges
Lw

Lf
CD

L Laminar

1 No-separation 0 to 4-5 None ց
2 Closed wake 4-5 to 30-48 ր ց
3 Periodic wake 30-48 to 180-200 ց ր

T rW
Transition
in wake

1 Far-wake 180-200 to 220-250 ց ր
2 Near-wake 220-250 to 350-400 ր ց

T rSL
Transition in
shear layers

1 Lower 350-400 to 1k-2k ր ց
2 Intermediate 1k-2k to 20k-40k ց ր
3 Upper 20k-40k to 100k-200k ց ր

T rBL
Transition in

boundary layers

0 Pre-critical 100k-200k to 300k-340k ր ց
1 Single bubble 300k-340k to 380k-400k (?) ↓
2 Two-bubble 380k-400k to 500k-1M (?) ↓
3 Supercritical 500k-1M to 3.5M-6M None ր
4 Post-critical 3.5M-6M to (?) (?) ր

T Fully turbulent
1 Invariable (?) to∞ (?) ր
2 Ultimate (?) to∞ (?) (?)

2.1.3.1.1 "Creeping" flow, L1

The "creeping" flow regime occurs for low Reynolds values and is dominated by vis-

cous forces to such an extend that all disturbed regions remain laminar, as figure 2.3

shows. The creeping flow, L1, past a cylinder persists without separation up to Re ≃ 5,

Camichel and Escande (1938).

Figure 2.4 shows the streamlines and three velocity profiles superimposed at stations

−8D, 0, and 8D. The retarded region of flow is very large, being almost 20D wide at

the upstream station −8D. The thick shear layers displaced by the cylinder are not sur-

rounded by the accelerated region as illustrated in figure 2.1. The sidewise divergence of

all streamlines in figure 2.4 prevents the increase of velocity throughout the visible flow

field. The velocity deficit at 8D downstream at the wake axis is around 50%. The cylinder

is "pushing" and "dragging" a 20D wide trail by the action of large viscous forces.

The considerable divergence of streamlines downstream in figure 2.4 can be strongly

influenced by the vicinity of side walls. White (1946) discovered that a cylinder confined

in a 500D wide container was still affected by the side walls at low Reynolds.
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Figure 2.3: Creeping flow for Re = 1, Camichel and Escande (1938).

Figure 2.4: Flow field around a stationary circular cylinder at Re = 3.5, Wieselsberger (1921).

The velocity field around a circular cylinder at low Re is associated with the charac-

teristic pressure distribution around the cylinder. The measured pressure is expressed in

a non-dimensional parameter designed by pressure coefficient:

Cp =
p − p∞
1
2ρV

2
(2.2)

where p is the local pressure on surface, p∞ is the free stream static pressure and 1
2ρU

2

is the free stream dynamic pressure. The circumferential angle is usually measured from

the stagnation point, where θ = 0◦ up to 180◦.

A favourable pressure gradient extends until θ = 115◦ at Re = 3.5 followed by a very

small adverse pressure gradient that is insufficient to induce separation.

The viscous forces magnitude decreases with the Re increasing until the separation

of the boundary layers occurs. When the separation of the boundary layers occurs the

Reynolds value is designed by Res. The determination of the Res value is not trivial
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because the size of the near-wake is small and the separation occurs in a region where

the velocity is also very small. Nisi and Porter (1923) observed this separation by using

smoke visualization and noted the strong effect of the blockage on Res. In table 2.2 are

enumerated some estimated Res values and the respective wall blockage parameter, D
B ,

where D corresponds to the cylinder diameter and B to the distance between two parallel

walls of the domain.

Table 2.2: Separation Reynolds number, Res.

Authors D
B Res

Nisi and Porter (1923) 4.3

Homann (1936) 0.067 6.0

Taneda (1956) 0.01 5-6

Coutanceau and Bouard (1977)

0.12 9.6

0.07 7.2

0.00 4.4

2.1.3.1.2 Steady separation regime, L2

For Re > 4− 5, starts a new laminar flow regime. This flow regime occurs until Re <

30− 48 and is characterized by the development of a steady region confined in a closed

and symmetric near-wake, marked by a noticeable change in pressure distribution. As it

is possible to conclude from figure 2.5, the separation of the shear layers merge the wake

and make a symmetric, steady and closed near-wake.

Figure 2.5: Steady closed near-wake at Re = 23, Thom (1933).

Camichel et al. (1927) demonstrated in figure 2.6 a remarkable metamorphose of the

near-wake when Re is increased from 20 to 40, where image 1 illustrates the answer for

the lowest Re value of 20. Images 1, 2 and 3 from figure 2.6 illustrate the elongation

and images 4 and 5 the obliteration of the initially closed near-wake. The development
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of a new near-wake is accomplished by a secondary separation of the free shear layers

from the near-wake, phenomena illustrated in images 4, 5 and 6. In image 9 is shown

the approximation and, finally, the merge of the separated shear layers. The last image,

image 10, shows the steady near-wake at Re = 40.

Figure 2.6:Metamorphose of near wake with Re between 20 and 40, Camichel et al. (1927).

2.1.3.1.3 Periodic laminar regime, L3

The steady, elongated and closed near-wake becomes unstable when Re > Reosc, which

occurs for Re > 30− 48. The transverse oscillation begins at the end of the near-wake and

initiates a wave along the trail as shown in figure 2.7, Homann (1936). The maximum

adverse gradient also occurs around the confluence point at the near-wake end, where the

instability starts. The coincidence between the location of the instability and the adverse

pressure gradient suggests their correlation.

Figure 2.7: Begin of oscillating wake for Re = 54, Homann (1936).

Camichel et al. (1927) were the first to observe the initiation of the near-wake instabil-

ity when Re increases from 30 to 60, phenomena illustrated in figure 2.8. The initiation of

the near-wake instability is characterized by the development of "secondary separations"

of the free shear layers from the near-wake boundary accompanied by the transverse

oscillation of the trail. These secondary separations prevent the free shear layers from

meeting at the confluence point as they do behind the steady and closed near-wake.
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Taneda (1956) called the spiky ends in figure 2.8 by "gathers". He stated that "the

gathers first appear for Re > 35 near the downstream end of the near-wake border-line,

move towards the rear end of the near-wake, tremble there for a while and die away".

Also, he referred that the trail began to oscillate sinusoidally before the gathers were

formed, meaning that the former induced the latter. Contrary to that, Gerrard (1978)

observed that the periodic appearance of gathers resulted in a wavy trail.

Figure 2.8: Development of near-wake oscillation with the increase of Re from 30 to 60, Camichel
et al. (1927).

Figure 2.8 illustrates the near-wake oscillation with the increase of Re from 30 to 60

from image 11 to 20, respectively. Analysing figure 2.8, is visible a gradual reduction in

length of the closed near-wake from Lw
D = 3.5 to 2 and a continuous increase in amplitude

of oscillation at the end of the near-wake from 0 to 1
2D, where Lw represents the wake

length and D the cylinder diameter. Nishioka and Sato (1978) found a gradual and

continuous reduction of Lw
D for 40 < Re < 120 while Gerrard (1978) reported a sudden

shrink between 60 < Re < 70.

There is a wide range of reported Reosc values at which the near-wake instability

initiates even when the blockage is negligible. The flow visualisation data tend to be on

the lower side and hot-wire anemometry measurements on the higher side as shown in

table 2.3. The latter may be due to insensitivity of a single hot wire to a periodic change

in velocity direction. Furthermore, Kovasznay (1949) reported that Reosc did not show a

hysteresis effect, this means that the same value was found when increasing or decreasing

the velocity magnitude.

The instability of the near-wake begins when Re > Reosc. Also, when the blockage

effect is negligible, some disparity is observed in the obtained results for the Reosc values

between some authors, as it can be observed in table 2.3.

The frequency of eddy shedding was investigated by Strouhal (1878), who created a
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Table 2.3: Reosc according to various authors.

Method Author(s) Reosc

Flow visualization

Taneda (1956) 30

Coutanceau and Bouard (1977) 34

Gerrard (1966) 33

Hot-wire anemometry

Kovasznay (1949) 40

Roshko (1954a) 40

Nishioka and Sato (1978) 48

dimensionless parameter which describes oscillating flow mechanisms. This parameter

was later designed by the Strouhal number:

St =
f D

U
(2.3)

where f is the frequency of vortex shedding, D is the characteristic length of the cylinder

and U is the free stream velocity.

Zdravkovich (1985) adapted from Strouhal the measured variation of St in terms of

Re, fact illustrated in figure 2.9.

Figure 2.9: St−Re relationship non-linear in the laminar periodic regime, L3, Zdravkovich (1985).

Roshko (1954b) suggested a new dimensionless parameter, where ν corresponds to

the kinematic viscosity:

Ro =
f D2

ν
(2.4)

that makes the following linear relationship Ro −Re:

Ro = 0.212.Re − 21.2 (2.5)
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this linear relation between the eddy frequency and the velocity is illustrated in figure

2.10 and can be used to measure very low velocity values.

Figure 2.10: Roshko’s number variation in terms of Re, Zdravkovich (1997)

Tritton (1959) discovered that for Re = 80 existed a discontinuous drop in shedding

frequency using Roshko’s relationship. Nevertheless, surprisingly he also discovered that

the drag coefficient was not affected by this discontinuity. Williamson (1988, 1989) re-

solved this enigma when he proved that the discontinuity was caused by the transition

from one slanted shedding mode to another slanted mode. Figure 2.11 shows the simul-

taneous measurements of the angle of the slanted eddy filament, β, and the Strouhal

number, St, in terms of Re.

Williamson (1989) proved that the parallel shedding mode is the universal one. Any

slanted eddy shedding, St, could be transformed into the universal mode Stu , by the

trigonometric relation given by equation 2.6.

Stu = St cos(β). (2.6)

2.1.3.2 Transition-in-wake state, TrW

All laminar flows eventually become unstable above a certain Re and undergo transi-

tion to turbulent. The flow in a wake does not become fully turbulent as soon as it ceases

to follow the laws of laminar flow. This transformation occurs in a finite transition region

characterized by the random initiation and growth of irregularities. Furthermore, the

viscous diffusion and mutual interaction of laminar eddies add a greater complexity to

the periodic laminar wakes transition.

The transition-in-wake, T rW , state of flow may be divided into two flow regimes as

is shown in table 2.1:
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Figure 2.11: Effect of number of end cells on St, Williamson (1988, 1989).

T rW1 Lower transition regime, where the eddies are formed laminar and regular but

become irregular and transitional downstream.

T rW2 Upper transition regime, where the eddies are formed laminar and irregular but

become partly turbulent before they are shed and carried downstream.

Peculiar distortions of the laminar filaments adjacent to the cylinder are shown in

figure 2.12. The development of these structures occurs when a flow in laminar state is

close to the transition state. This phenomenon is related with distortions that are typically

formed in the laminar eddy filaments at this point. These distortions were designated by

fingers by Gerrard (1978) because they pointed towards the cylinder. Illustrated in figure

2.12 are two types of fingers, a finger of type A at Re = 180 and a second finger of type B

at Re = 230.

Gerrard attempted to quantify the occurrence frequency of fingers of type A and

B in terms of Re. At the lower end of T rW1 and at the upper end of T rW2 fingers A

are predominant while at the boundary between T rW1 and T rW2 fingers B are more

frequently formed. They appear in the range 150 < Re < 160 and disappear in the range

300 < Re < 400. The range of their appearance coincides with the transition between two
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Figure 2.12: Consecutive formation of fingers, Re = 180, Gerrard (1978).

modes of eddy shedding. Roshko (1954c) repeated measurements of shedding frequency

in a large low-turbulence wind tunnel and proposed the following ranges:

i. Stable range, 40 < Re < 150, regular velocity fluctuations and rising St.

ii. Unstable range, 150 < Re < 300, irregular bursts in velocity fluctuations, St unstable.

iii. Irregular range, Re > 300, irregular and periodic, St is constant.

The figure 2.13 shows a particularly large scatter of experimental points in the T rW

regime. The boundary between T rW1 and T rW2 is marked by a jump in St at Re ≃ 250

which separates rising St from St = constant.

Figure 2.13: Variation of St in terms of Re, Roshko (1954c).

Roshko suggested two empirical relations:

St = 0.212(1− 21.2

Re
) for Re < 180

St = 0.212(1− 12.7

Re
) for Re > 300

(2.7)

16



2.1. FUNDAMENTALS OF A FLOW AROUND A CIRCULAR CYLINDER

The two different St curves correspond to two different modes of eddy shedding.

Kovasznay (1949) noted that laminar eddies are not shed from the cylinder but rather

formed gradually as they are carried downstream. He attributed this low-speed mode

to the instability of the laminar wake. As an example of the low-speed mode, figure

2.14(a) shows the laminar periodic wake at Re = 140, which illustrates that all eddies are

mutually connected by the trail streak-line originated in the near-wake. Figure 2.14(b)

exhibits the salient features of high-speed mode at Re = 300 in T rW2 regime. In this

figure the trail streamline is not seen and that means that the eddies are not mutually

connected.

Figure 2.14: (a) Laminar periodic wake at Re = 140; (b) transitional periodic wake at Re = 300,
Freymuth (1985).

In Zdravkovich (1997) it was refereed the existence of two discontinuities in the St−Re
relationship. Figure 2.15 shows a rising St up to the first discontinuity at Re = 170. A

narrow frequency peak is showed in figure 2.15 when Re increases and a wide frequency

peak at a slightly lower value of St when Re decreases. A possible explanation for the

lower value of St when Re decreases, is the occurrence of the hysteresis effect in the

fingers formation. The second discontinuity in St occurs between, 225 < Re < 270. Two

suggestions were made to explain this. The first was provided by Williamson (1989) who

proposed that they do not coexist simultaneously. The other suggestion was presented

by Zdravkovich (1992) who affirmed that the two peaks represent the overlapping of two

modes of eddy shedding, and both may exist simultaneously.

2.1.4 Vortex shedding and vortex patterns

Periodic forces in the cylinder generate alternated vortices, which are released suc-

cessively from each cylinder side. The oscillatory pressure field is responsible for the
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Figure 2.15: Variation of St in terms of Re. Insert: frequency spectra at Re = 172, Zdravkovich
(1997).

alternated vortex shedding release, as shown in figure 2.16. When the pressure field is

maximum in the cylinder top, the flow is accumulated in the bottom side. As the bottom

side of this flow accumulation has a higher flow velocity, because it is in contact with the

flow free stream, and the top side of the flow accumulated is in cylinder aft and has a

lower velocity flow, the flow tends to whirl developing, this way, a vortex. The detach-

ment of the vortex is triggered by the pressure field displacement to the bottom side of

the cylinder. When the pressure field arrives the bottom side, pushes the vortex, slitting

the connection between the vortex and the cylinder. When the vortex is released, moves

in the wake, being gradually elongated and expanded. The vortex is finally dissipated

when its pressure evens the free stream velocity. This process is repeated while the fluid

flows around the circular cylinder corresponding each vortex released to a cycle in the

alternated vortex shedding, Blevins (1977). The detail of the vortex development in the

cylinder boundary wall is shown in figure 2.17.

The development of the vortex shedding phenomenon induces the creation of several

forces which promote the cylinder oscillation. This forces are designated by lift force and

drag force. Particularly, the lift force is the force caused by the interaction between the

fluid and the structure, in the problem studied in this thesis corresponds to the force ap-

plied in the cylinder in the transversal direction towards the flow displacement direction.

As the name indicates, corresponds to the force which is able to sustain the body by the

flow displacement, overcoming the gravity force that the body is also subjected too. In

the other hand, the drag force is the force generated by the interaction between the body

and the fluid in the parallel direction to the fluid motion direction. It represents the force

that the body needs to overcome to be able to move through the fluid.

Normally, for studies within the fluid mechanics’ context it is usual to represent to
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Figure 2.16:Representation of one third of one cycle of vortex shedding of the oscillation sequence
of pressure field in Re = 1.12× 105, Blevins (1977).

Figure 2.17: Vortex formation near to the cylinder, Mayes et al. (2003).

lift and drag by their one-dimensional quantities, lift coefficient and drag coefficient.

Equations 2.8 and 2.9 represent the lift and drag coefficient, respectively. Regarding

the lift coefficient, CL, FL represents the lift force and for the drag coefficient, CD , FD
represents the drag force. Common to both coefficients, ρ represents the density, D is the

body diameter and U∞ is the value of the free stream velocity.

CL =
FL

1
2ρDU2∞

(2.8)

CD =
FD

1
2ρDU2∞

(2.9)
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2.1.5 Response modes for a cylinder with one-degree-of-freedom in

transverse motion, Y-only

A high attention has been given to studying the flow around the oscillating cylinder

with one DOF, in Y-only motion (transverse to the flow motion). An example of that is

the work developed by Bearman (1984) and Sarpkaya (1979). A flow around a circular

cylinder creates a fluctuating lift force, transverse to the flow direction caused by the

alternating vortex shedding, inducing the vibration of the structure. One of the main

characteristics of flow-induced vibration is the ability of the vibration originated by the

vortex shedding to be synchronized with the natural frequency, (fn), of the structure. The

occurrence of this phenomenon during a long period of time can lead to the structure

collapse.

In the case of a cylinder oscillating transversely to the free stream, the relevant dimen-

sionless parameters in addition to the Reynolds Number, which was already presented

in section 2.1.1, is the oscillation amplitude, A and the frequency, fe (or the period Te).

However, it is common to use the wavelength which corresponds to the sinusoidal path

along which the body travels relative to the fluid. Therefore, the relevant parameters are:

Amplitude ratio =
A

D
(2.10)

Wavelength ratio =
UTe
D

=
λ

D
(2.11)

where U is the velocity in the x-direction, and Te is the cylinder oscillation period in the

transverse direction. The normalized wavelength is equivalent to what is usually referred

to as reduced velocity.

Williamson and Roshko (1988) studied the vortex wake patterns for a cylinder, trans-

lating in a sinusoidal trajectory, over a wide range of amplitudes and wavelengths. They

defined a whole set of different regimes for vortex wake modes, using controlled vibra-

tions, in the plane of (λ/D, A/D). With this, Williamson and Roshko created a map which

standardized the vortex shedding with the oscillation of the cylinder with Y -only motion

in the plane (λ/D, A/D). These authors also defined nomenclatures for each vortex wake

mode. The terminology P was assigned when a vortex pair was released in each peak

of the cylinder oscillation and the terminology S was attributed when a unique vortex

was released in each peak of the cylinder oscillation. In figure 2.18 are represented the

different types of vortex pattern shedding for each cycle defined by these authors.

Figure 2.19 displays the map created by Williamson and Roshko. Analysing this

figure, it is possible to observe the map with the different zones corresponding to the

vortex pattern shedding into the cylinder transversely to the flow in function of the

oscillation amplitude and wavelength.

The most important patterns of vortex shedding are represented by 2S , 2P and P +

S . The designation 2S means that it is released a single vortex every half cycle, 2P
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Figure 2.18: Diagram of the vortex shedding patterns described in figure 2.19. P corresponds
to a vortex pair and S to a single vortex, being each pattern defined by the number of pairs and
single vortices formed per cycle. The dashed lines encircle the vortices shed in one complete cycle.
Williamson and Roshko (1988).
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designation means it is released a vortex pair for each peak in the amplitude of the

cylinder oscillation, and the designation P + S means that is released a vortex pair in the

oscillation peak with another single vortex released in the symmetric peak, forming a

vortex pattern shedding according to asymmetric vortex swing by the cylinder axis of

symmetry. Other patterns are denoted by C(2S) and C(P + S), which means that close

to the cylinder are formed 2S and P + S vortex pattern shedding but these vortex are

small and are joined immediately behind the cylinder. The regions denoted by P and 2P∗
are referred to as the "single pair" and "double pair" by Williamson Williamson (1985).

Finally, the vortex pattern defined by 2P +2S compress two vortex pairs formed during

one oscillation cycle in the two cylinder peaks but with the release of a vortex cylinder

each time through the movement of the axis of symmetry. The part of the (λ/D, A/D)

plane in figure 2.19 which has no nomenclature associated corresponds to regions where

no periodic synchronized mode of vortex formation was observed by Williamson and

Roshko.

Figure 2.19: Map of vortex synchronization regions in the wavelength-amplitude (λ/D, A/D)
plane, Williamson and Roshko (1988).
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2.1.6 Response modes for a cylinder with two-degrees-of-freedom in

XY-motion

The cylinder 8-motion is characterized by the relation between the lift and drag forces.

Throughout the development of the phenomenon, i.e., the oscillation of the pressure field

and the variation of the lift and drag forces causing the release of vortices in the cylinder

back, the intensity of drag and lift forces vary, causing the cylinder movement along the X

and Y axis, respectively. The existence and interaction of both these forces are the reason

why a cylinder with two DOF describes a movement in an eight conformation. There are

several types of 8-motion which are influenced by the phase in which the lift and drag

forces are. Figure 2.20 illustrates the movement’s dependence on the phase in which the

drag and lift forces are, showing a set of possible 8-motions.

Figure 2.20: Map of vortex synchronization regions in the wavelength-amplitude (λ/D, A/D)
plane, Williamson and Roshko (1988).

Contrarily to the high attention given to the study of the flow around an oscillating

cylinder with one DOF, transverse to the flow direction, there are seldom studies pub-

lished about the oscillating cylinder with two DOF. Thus, one of the most interesting

subject between these two movement types, the Y -only motion and XY -motion, that still

holds is:

What differences exist between a flow around a cylinder with one DOF transversely to

the flow and a flow around a cylinder with two DOF?

Furthermore, Jauvtis and Williamson (2003) also asked a key question,

To what extend are these transverse response modes and amplitudes influenced by the

body’s freedom to respond in the streamwise direction?

Some differences were found by Jauvtis and Williamson (2003) in the standard devel-

opment of vortex shedding and response between the cylinder with the Y -only motion

and XY -motion for moderate mass ratios, m∗ < 6, parameter which is defined in table 2.4.
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They feature comparison of the cylinder amplitudes, for movements in X and Y , and the

frequency, fY , in relation to the reduced speed, U ∗ which is similarly defined in table 2.4.

These values are illustrated in figure 2.21.

Figure 2.21: Transverse and streamwise amplitudes (A∗Y and A∗X ) and frequency (f ∗Y ) response in
function of the reduced velocity (U ∗) for moderate mass ratios,m∗ = 7.0. Solid symbols correspond
to Y -only data and open symbols to XY data. Re = 2000− 11000. Jauvtis and Williamson (2003).

Interestingly, as shown in figure 2.21, the response differences between a cylinder in

a one DOF and in a two DOF conformation are not very significant even for low mass

value ratio, m∗ = 6.9, and low mass damping (m∗ +CA)ζ = 0.0115, where CA is the ideal

added mass coefficient = 1.0 and ζ is the structural damping coefficient. The response

branches are designated (I ) for initial, by (U ) for upper and by (L) for lower branches in

figure 2.21. Jauvtis and Williamson (2003) found a small increase of about 10% of the

cylinder amplitude peak response in the upper branch when comparing the XY -motion

with the Y -only motion.
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A set of amplitude peaks of the upper and lower branches, were also measured by Jau-

vtis and Williamson (2003) as illustrated in figure 2.22, depending on the mass damping

parameter (m∗ +CA)ζ. The only change noted in the response amplitude between the two

movements was between the range of values of the mass damping (m∗ +CA)ζ = 0.01− 0.1
and between the range of values of the mass ratio m∗ = 5.0− 25.0. The figure 2.22 shows

the transverse amplitude with the mass-damping parameter.

Figure 2.22: Griffin plot of the transverse amplitude peak variation (A∗Y max) with the combined
mass-damping parameter (m∗+CA)ζ, for moderate mass ratios,m∗ = 6−25. Jauvtis andWilliamson
(2003).

Jauvtis and Williamson (2003) shows that for lower mass ratios, m∗ < 6, exists a re-

markable jump that increases the amplitude of cylinder response, corresponding to a

new mode of cylinder response, which is quite distinct from the response phenomena in

Y-only motion.

The first evident difference regarding the amplitude response is the remarkably high

amplitude, about A∗Y = 1.5. For this high amplitude of the cylinder response with 2

DOF, Jauvtis and Williamson (2003) define this as the "super-upper" branch of response,

different from the "upper" branch observed in the Y-only motion.

The figure 2.23 shows the cylinder response with two DOF for reduced velocity values

between U ∗ = 2 − 13.5 observed in Jauvtis and Williamson (2003). Also, in Jauvtis and

Williamson (2003) it are described the several branches of the cylinder response.

Following the results shown in figure 2.23, in figure 2.24 it is possible to observe

the 8-motion types detected by Jauvtis and Williamson (2003) as the reduced velocity

increases for lower values of reduced mass.

In figure 2.24 shows the peak amplitude levels for super-upper branch and for lower

branch, for small mass ratios between m∗ = 2.5− 3.2 and for Reynolds number between

25



CHAPTER 2. THEORETICAL CONTEXTUALIZATION

Figure 2.23: Transverse and streamwise amplitudes (A∗Y and A∗X ) and frequency (f ∗Y ) response in
function of the reduced velocity (U ∗) for low mass ratios, m∗ = 2.6. Solid symbols correspond to
Y -only data and open symbols to XY data. Re = 2000− 11000. Jauvtis and Williamson (2003).

Re = 330−15300. About the super-upper and lower branch levels of peak response Jauvtis

and Williamson (2003) said apparently are independent of the Reynolds number for this

range investigated by Jauvtis and Williamson (2003).

Interestingly, Jauvtis and Williamson (2003) observed that when the mass ratio is

gradually reduced at a fixed mass-damping, the peak of the transverse amplitude is not

affected and remains at the value of the upper branch. This occurs until the mass ratio of

m∗ = 6, from which the streamwise amplitude starts to increase, as m∗ is further reduced.

It is only when the amplitude reaches the supper-upper branch, for a mass ratio m∗ = 4,

that the vibrations reach a stable periodic solution.
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Figure 2.24: Transverse and streamwise amplitudes (A∗Y and A∗X ) and frequency (f ∗Y ) response in
function of the reduced velocity (U ∗) for low mass ratios, m∗ = 2.6. Solid symbols correspond to
Y -only data and open symbols to XY data. Re = 2000− 11000. Jauvtis and Williamson (2003).

2.2 Fundamentals of Vibration

Anymotion that repeats itself after an interval of time is called vibration or oscillation.

The theory of vibration deals with the study of oscillatory motions of bodies and the

forces associated with them. A vibratory system, in general, includes the means for

storing potential energy (spring or elasticity), the means for storing kinetic energy (mass

or inertia), and the means by which energy is gradually lost (damper).

The vibration of a system involves the transfer of its potential energy to kinetic energy

and of kinetic energy to potential energy, alternately. If the system is damped, some

energy is dissipated in each cycle of vibration and must be replaced by an external source

if a state of steady vibration is to be maintained. However, in practice, the magnitude of

oscillation (u) gradually decreases and the pendulum ultimately stops due to the resis-

tance (damping) offered by the surrounding medium (for instance air). This means that

some energy is dissipated in each cycle of vibration due to damping by the air.

The vibration mode can be classified as Rao and Fah (2011) described:
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Figure 2.25: Griffin plot of the transverse amplitude peak variation (A∗Y max) with the combined
mass-damping parameter (m∗ +CA)ζ for low mass ratios, m∗ = 2.5 − 4. Jauvtis and Williamson
(2003).

• Free Vibration: if a system, after an initial disturbance, is left to vibrate on its

own, the ensuing vibration is known as free vibration. No external force acts on the

system. The oscillation of a simple pendulum is an example of free vibration.

• Forced Vibration: if a system is subjected to an external force (often, a repeating

type of force), the resulting vibration is known as forced vibration. The oscillation

that arises in machines such as diesel engines is an example of forced vibration. If

the frequency of the external force coincides with one of the natural frequencies

of the system, a condition known as resonance occurs, and the system undergoes

dangerously large oscillations. Failures of such structures as buildings, bridges,

turbines, and airplane wings have been associated with the occurrence of resonance.

• Undamped vibration: if no energy is lost or dissipated in friction or other resistance

during oscillation, the vibration is known as undamped.

• Damped vibration: if some energy is lost in friction or other resistance during os-

cillation, the vibration is called damped vibration. In many physical systems, the

amount of damping is so small that it can be disregarded. However, considera-

tion of damping becomes extremely important in analysing vibratory systems near

resonance.

If all the basic components of a vibratory system - the spring, the mass, and the

damper - behave linearly, the resulting vibration is known as linear vibration. If, how-

ever, any of the basic components behave non-linearly, the vibration is called non-linear
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vibration. The differential equations that govern the behaviour of linear and non-linear

vibratory systems are linear and non-linear, respectively. If the vibration is linear, the

principle of superposition holds, and the mathematical techniques of analysis are well de-

veloped. For non-linear vibration, the superposition principle is not valid, and techniques

of analysis are less well known. Since all vibratory systems tend to behave non-linearly

with increasing amplitude of oscillation, a knowledge of non-linear vibration is desirable

in dealing with practical vibratory systems.

If the value or magnitude of the excitation (force or motion) acting on a vibratory

system is known at any given time, the excitation is called deterministic. The result-

ing vibration is known as deterministic vibration. In some cases, the excitation is non-

deterministic or random and, for these situations, the value of the excitation at a given

time cannot be predicted. In these cases, a large collection of records of the excitation may

exhibit some statistical regularity. It is possible to estimate averages such as the mean and

mean square values of the excitation. Examples of random excitations are wind velocity,

road roughness, and ground motion during earthquakes. If the excitation is random, the

resulting vibration is called random vibration. In this case the vibratory response of the

system is also random and it can only be described in terms of statistical quantities.

Regarding the damping elements, viscous damping is the most commonly used damp-

ing mechanism in vibration analysis. Whenmechanical systems vibrate in a fluidmedium

such as air, gas, water, or oil, the resistance offered by the fluid to the moving body causes

energy to be dissipated. In this case, the amount of dissipated energy depends on many

factors, such as the size and shape of the vibrating body, the viscosity of the fluid, the

frequency of vibration, and the velocity of the vibrating body. In viscous damping, the

damping force is proportional to the velocity of the vibrating body.

2.2.1 Two-Degree-of-Freedom Systems

Usually, the mass, spring and damper do not appear as separate components but

as an inherent and integral part of the system. For example, in an airplane wing, the

mass of the wing is distributed throughout the wing. Also, due to its elasticity, the wing

undergoes noticeable deformation during flight so that it can be modelled as a spring. In

addition, the deflection of the wing introduces damping due to relative motion between

components such as joints, connections and support as well as internal friction due to

micro-structural defects in the material.

Assuming that the motion of the instrument is confined to the XY -plane, the system

can bemodelled as amassm supported by springs in theX and Y directions, as figure 2.26

illustrates. Thus the system has one-point mass m and two degrees of freedom, because

the mass has two possible types of motion: translations along the X and Y directions.

Thus, the general rule for the computation of the number of degrees of freedom can be

stated as the multiplication between the number of masses in the system and the number

of possible motion types for each mass.
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Figure 2.26: Schematic diagram of XY -motion in a spring-mass-damping system.

There are two equations of motion for a two DOF system, one for each degree of

freedom. They are, generally, in the form of coupled differential equations and each

equation involves all the coordinates. If a harmonic solution is assumed for each co-

ordinate, the equations of motion lead to a frequency equation that gives two natural

frequencies for the system. With the appropriate initial excitation, the system vibrates

at one of these natural frequencies. During free vibration at one of the natural frequen-

cies, the amplitudes of the two degrees of freedom are related in a specific manner and

the configuration is called a normal mode, principal mode, or natural mode of vibration.

Thus, a two DOF system has two normal modes of vibration corresponding to the sys-

tem two natural frequencies. If we give an arbitrary initial excitation to the system, the

resulting free vibration will be a superposition of the two normal modes of vibration.

Nevertheless, if the system vibrates under the action of an external harmonic force, the

resulting forced harmonic vibration occurs at the frequency of the applied force. Further-

more, under harmonic excitation the amplitudes of the two coordinates will be maximum

when the forcing frequency is equal to one of the natural frequencies of the system. This

phenomenon is designated by resonance.

The configuration of a system can be specified by a set of independent coordinates

such as length, angle, or some other physical parameters. Any such set of coordinates is

called generalized coordinates. Although the equations of motion of a two DOF system

are generally coupled so that each equation involves all the coordinates, it is always

possible to find a particular set of coordinates such that each equation of motion contains

only one coordinate. The equations of motion are then uncoupled and can be solved

independently of each other. Such a set of coordinates, which leads to an uncoupled

system of equations, is termed principal coordinates.

Considering the viscously damped two DOF spring-mass-damping system shown

in figure 2.26. The motion of the system is completely described by the coordinates
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x(t) and y(t), which define the position of the mass m at any time t from the respective

equilibrium positions. The external forces Fx(t) and Fy(t) act on the mass m, in the x and

y axis direction, respectively.

The free body diagram of the mass m, is shown in figure 2.26. The application of

the Newton’s second law of motion to each mass move in axes direction gives the linear

equation that represents the XY -motion of the cylinder with two DOF:

mẍ + cẋ + kx = FX (t) (2.12)

mÿ + cẏ + ky = FY (t) (2.13)

The equations 2.12 and 2.13 can be written in matrix form as:

[m]ẍ + [c]ẋ + [k]x = F(t) (2.14)

where [m], [c] and [k] are called the mass, damping and stiffness matrices, respectively.

For the cylinder with two DOF case these matrices are given by equations 2.15, 2.16 and

2.17 correspondingly.

[m] =


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
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The vector ~A(t) is the displacement vector and is given by equation 2.18 while the

respective representation of the displacements are represented by equations 2.19 and

2.20.

~A(t) =


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(2.18)

x(t) = AX sin(2ωt +θ) (2.19)

y(t) = AY sin(ωt) (2.20)
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The vector ~f (t) corresponds to the force vector which is given by equation 2.21. A

representation of the fluid forces on the cylinder can be written by equations 2.22 and

2.23.

~f (t) =























FX (t)

FY (t)























(2.21)

FX (t) = FX0 sin(2ωt + [φX +θ]) (2.22)

FY (t) = FY0 sin(ωt +φY ) (2.23)

Khalak and Williamson (1996) proved that by adding weights it is possible to adjust

the mass of the system and by changing the springs it is possible to adjust the stiffness

of the system. Moreover, changing the cylinder diameters also impacts the fluid mass

displacement. The variation of these parameters allow to change independentlym∗ within

limits. Khalak and Williamson (1996) also conclude that changing the system springs

do not change significantly the system damping, but it does significantly change the

critical damping. By varying these system components, the authors could operate the

experimental system in a range of reduced damping.

2.2.2 Equations of XY-motion and existence of a critical mass

Table 2.4: Principal non-dimentional parameters for the analysis of the flow cylinder displace-
ment, Blevins (1977); Khalak and Williamson (1999).

Parameter Symbol Equation

Mass ratio m∗ m
πρD2 L

4

Damping ratio ζ c
2
√
k(m+mA)

Velocity ratio or reduced velocity U ∗ U
fND

Amplitude ratios A∗Y , A
∗
X

AY
D , AX

D

Frequency ratios f ∗Y , f
∗
X

fY
fN
,
fX
fN

Force coefficients CY , CX
FY

1
2ρU

2DL
,

fX
1
2ρU

2DL

Table 2.4 enumerates the most relevant parameters in the evaluation of a flow around

a circular body. In particular, the mass ratio, m∗, represents the susceptibility of the

structure to flow-induced vibrations. The damping ratio, ζ, corresponds to the energy

dissipated by the structure as it vibrates. The velocity ratio, U ∗, is the ratio between the

length of the vibration path per cycle (U/f ) and themodel width (D), meaning that a small

velocity ratio corresponds to a strong interaction between the model and the periodic

32



2.2. FUNDAMENTALS OF VIBRATION

components of the near wake. The amplitude ratio, A∗, translates the body displacement

towards its diameter. The frequency ratio, f ∗, represents the proportion between the

oscillation frequency of the fixed and the DOF body. Lastly, the force coefficient, C,

translates the forces induced by the flow displacement in the body.

The parameter mA corresponds to the added mass which is equal to CAmd , where CA

is the added mass coefficient and md is the displaced fluid mass. fn is the system natural

frequency, D is the cylinder diameter, L is the cylinder length, ρ is the fluid density, U is

the free-stream velocity and ν is the fluid viscosity

An important relation deduced to characterize the XY -motion was formulated by

Williamson and Jauvtis (2004). This relation states that, for periodic vibrations, the

stream-wise oscillation frequency (fX ) is twice the frequency for the transverse direction

(fY ), which is given by equation 2.24.

fX = 2fY (2.24)

The X-frequency is twice the Y -frequency because when the cylinder describes an

8-motion, obviously per each cycle performed in Y direction, two cycles are describes in

the X-direction.

Khalak and Williamson (1999) defined the following set of equations:

A∗X =
CX sinφX

4π3(m∗ +CA)ζ
(
U ∗

2f ∗Y
)22f ∗Y (2.25)

A∗Y =
CY sinφY

4π3(m∗ +CA)ζ
(
U ∗

f ∗Y
)2f ∗Y (2.26)

These equations relate the cylinder oscillation amplitudes to the excitation of the body

in X and Y directions, corresponding to the cylinder displacement transverse and in-line

to the flow. The form of the equations are identical except for the frequencies relation,

that are

f ∗X = 2f ∗Y (2.27)

in accordance to the equation 2.24.

The frequencies are determined by

f ∗X =

√

m∗ +CA

m∗ +CEAX
(2.28)

f ∗Y =

√

m∗ +CA

m∗ +CEAY
(2.29)

where the coefficient CEA represents the force due to the vortex dynamics that is in phase

with the body acceleration, not being a true "added mass". These coefficients are given by

CEAX =
CX cosφX

2π3A∗X
(
U ∗

2f ∗Y
)2 (2.30)
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CEAY =
CY cosφY

2π3A∗Y
(
U ∗

f ∗Y
)2 (2.31)

where A∗ and f ∗ equations, are respectively

(
A∗X
A∗Y

) =
1

2
(
CX sinφX

CY sinφY
) (2.32)

CEAX =
1

4
CEAY −

3

4
m∗ (2.33)

Equation 2.33 results from the combination between the frequency equations 2.29

and 2.28, which relates the effective added masses in the X and Y directions, and involves

the mass ratio, m∗. This equation is particularly interesting because, if m∗ < m∗crit Govard-

han and Williamson (2002) proved that the system tends to infinite U ∗ and infinite f ∗,

meaning that equation 2.31 can be simplified to

CEAY = −m∗ (2.34)

Replacing equation 2.34 in equation 2.33 the forces due to the vortex dynamics in

X-direction and Y -direction take the same value

CEAY = CEAX (2.35)

The coefficient CA in the equations 2.26 and 2.25 is the ideal added mass coefficient,

and takes the value 1.0 according to Govardhan and Williamson (2002). With a set

of experiments these authors found a good ratio for the lower branch, deducing the

frequency of the lower response branch

f ∗Ylower =

√

m∗ +1

m∗ − 0.54 (2.36)

Equation 2.36 shows that for vortex-induced vibration of this X and Y system the

critical mass is evaluated as

m∗crit = 0.52 (2.37)

which is close to the value for Y -only motion as Govardhan and Williamson (2002) show

that exists a critical mass, below which the large-amplitude vibrations will persist, up to

infinitely high normalized velocities, U ∗.

2.3 Computational Fluid Dynamics: mathematical equations

modelling the fluid flow

CFD is a field of computational theory which attempts to model and analyse fluid

mechanic problems through the application of numerical methods and algorithms within
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a discretized computational domain. The advent of CFD practice can be tracked back to

the first use of the general-purpose digital computer in the early 1950s, and the field has

expanded over the subsequent years in proportionally to the development of computing

power, Wendt et al. (1996). CFD has become an important tool in product development

allowing the decrease of prototype testing required for a given product. Nevertheless,

CFD employment is limited by the complexity of the problem being considered given

that it is restricted to the available computational power. In fact, a case which is too large

may take too long to solve, eliminating CFD as a useful analysis tool.

The application of CFD potential requires first understanding of the physical laws that

govern the fluid displacement. These equations are presented in this section. Fluid theory

states that these equations measure the conservation of mass, momentum and energy, and

are referred to, respectively, as the continuity, momentum and energy equations. In CFD

context, these equations are used to discretize the solution across the individual mesh

cells which together constitute the computational domain of the case in study.

2.3.1 Finite Volume Method

The Finite Volume Method (FVM) is a numerical technique that transforms the par-

tial differential equations representing conservation laws into discrete algebraic equa-

tions over finite volumes, Ferziger and Peric (2001), Versteeg and Malalasekera (2007),

Moukalled et al. (2015). This method is an extension of the finite difference method

and, therefore, the first step in the solution process is the discretisation of the geometric

domain, which, in the FVM, is discretised into non-overlapping elements or finite vol-

umes. The partial differential equations are then transformed into algebraic equations by

integrating them over each discrete element. The system of algebraic equations is then

solved to compute the values of the dependent variable for each of the elements.

In this process the partial differential equations are integrated and transformed into

balance equations over an element. The result is a set of semi-discretised equations. In

the second step, interpolation profiles are chosen to approximate the variation of the

variables within the element and relate the surface values of the variables to their cell

values and thus transform the algebraic relations into algebraic equations.

In other words, the FVM turns the conservation equation into face fluxes and evaluates

the gradient at the centroids of finite control volume meshes. Because the flux entering a

given volume is identical to that leaving the adjacent volume, the FVM is strictly conser-

vative. This inherent conservation property of the FVM makes it the preferred method in

CFD. Another important attribute of the FVM is that it can be formulated in the physical

space on unstructured polygonal meshes. Finally, in the FVM it is quite easy to implement

a variety of boundary conditions in a non-invasive manner, since the unknown variables

are evaluated at the centroids of the volume elements, not at their boundary faces. These

characteristics have made the FVM quite suitable for the numerical simulation of a vari-

ety of applications involving fluid flow and heat and mass transfer, and developments in
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the method have been closely entwined with advances in CFD. From a limited potential

at inception confined to solving simple physics and geometry over structured grids, the

FVM is now capable of dealing with all kinds of complex physics and applications.

2.3.2 Conservation of Mass

The principle of conservation of mass states that a "mass can neither be created nor

destroyed", Wendt et al. (1996); Moukalled et al. (2015). The continuity equation can be

described by equation 2.38.

∂ρ

∂t
+∇.(ρU ) = 0 (2.38)

where the ∇ is the nabla operator and corresponds to the gradient of ρU given by equation

2.39, which mathematically translates the variation of the value of ρU in both magnitude

and direction with position.

∇ =
∂

∂x
i +

∂

∂y
j +

∂

∂z
k (2.39)

where i, j and k are the unit vectors in the x, y and z direction in the Cartesian coordinate

system, respectively.

2.3.3 Conservation of Linear Momentum

The principle of conservation of linear momentum indicates that in the absence of

any external force acting on a body, the body retains its total momentum, Wendt et al.

(1996); Moukalled et al. (2015).

Relating equations 2.40, 2.41 and 2.42 translate the component of the momentum

equation for the x, y and z directions, respectively.

ρfx −
∂p

∂x
+
∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

=
∂(ρu)

∂t
+∇.(ρuU ) (2.40)

ρfy −
∂p

∂y
+
∂τxy
∂x

+
∂τyy
∂y

+
∂τzy
∂z

=
∂(ρν)

∂t
+∇.(ρνU ) (2.41)

ρfz −
∂p

∂z
+
∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

=
∂(ρw)

∂t
+∇.(ρwU ) (2.42)

2.3.4 Conservation of Energy

The conservation of energy is governed by the first law of thermodynamics which

states that energy can be neither created nor destroyed during a process, it can only

change from one form into another. Consequently, in this thesis context, the energy

equation mathematically stipulates that the energy net flux into a given control volume

must be equal to the rate of energy change inside that element. Nevertheless, since both

36



2.3. COMPUTATIONAL FLUID DYNAMICS: MATHEMATICAL EQUATIONS

MODELLING THE FLUID FLOW

isothermality and incompressibility apply to all the situations simulated in thesis, there

is no need to solve the energy equation.

2.3.5 Newtonian Fluids

A Newtonian fluid is characterized by a linear relation between the fluid’s shear stress

and the velocity gradients. The Stokes equations for Newtonian stresses are stated in the

following equations, Wendt et al. (1996):

τxx = λ(∇.U ) + 2µ
∂u

∂x
(2.43)

τyy = λ(∇.U ) + 2µ
∂ν

∂y
(2.44)

τzz = λ(∇.U ) + 2µ
∂w

∂z
(2.45)

τxy = τyx = µ
(∂ν

∂x
+
∂u

∂y

)

(2.46)

τxz = τzx = µ
(∂u

∂z
+
∂w

∂x

)

(2.47)

τyz = τzy = µ
(∂w

∂y
+
∂ν

∂z

)

(2.48)

where µ is the molecular viscosity and λ is the second viscosity coefficient. In the current

thesis the simulated fluids are incompressible and isotropic and, thereby, Newtonian

fluids. In this conditions the equation of mass 2.38 assume the following form

∇.U = 0 (2.49)

2.3.6 The Navier-Stokes Equation

Substituting equations 2.43 to 2.43 in equations 2.40 to 2.42 and considering equation

2.49 which implies that the velocity must be non-divergent the equations which translate

x, y and z components of the isotropic Newtonian fluid are substantially simplified.

∂(ρu)

∂t
+∇.(ρuU ) =

∂

∂y

(

µ
[∂ν

∂x
+
∂u

∂y

]

+
∂

∂z

(

µ
[∂u

∂z
+
∂w

∂x

]

+
)

+ ρfx (2.50)

∂(ρu)

∂t
+∇.(ρνU ) =

∂

∂x

(

µ
[∂ν

∂x
+
∂u

∂y

]

+
∂

∂z

(

µ
[∂w

∂y
+
∂ν

∂z

]

+
)

+ ρfy (2.51)

∂(ρu)

∂t
+∇.(ρwU ) =

∂

∂x

(

µ
[∂u

∂z
+
∂w

∂x

]

+
∂

∂y

(

µ
[∂w

∂y
+
∂ν

∂z

]

+
)

+ ρfz (2.52)
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After this simplification, equations 2.50 to 2.51 can be converted into a conserva-

tive equation which corresponds to the Navier-Stokes equation for incompressible and

Newtonian fluids:

∂(ρU )

∂t
+∇.(ρUU ) = −∇p +µ∇2U (2.53)
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3
Numerical modelling methodology

This chapter aims to explain the numerical modelling methodology used to simulate

an unsteady flow around a circular cylinder. The steps that will be explained in the next

sub-chapters intend to model the features of this phenomena as accurately as possible.

The simulation of reality leads to large numerical models, requiring considerable compu-

tational power. To achieve that it was, firstly, formulated the problem to simulate. Next,

it was developed the respective mesh using, for that, the Gmsh software, Geuzaine and

Remacle (2009). The defined mesh was then used as an input to proceed analysis with

OpenFOAM, Weller et al. (1998). This software has a huge potential, providing a wide

range of tools that can be used in the majority of the engineering and scientific areas. Fur-

thermore, it is covered by the GNU general public license (GPL), which guarantees end

users the freedom to run, study, and modify the software without any costs associated.

Generally, it is used in UNIX operating systems, being compatible with some Linux dis-

tributions such as Ubuntu. Finally, the results obtained with OpenFOAM were analysed

by studying the variation of the drag and lift coefficients along the time, analysing the

mean and the standard deviation of the drag and lift coefficients which, at a higher level,

allowed to conclude about the influence of a fluid flowing through a circular cylinder. Ex-

amples of the examined parameters are: the cylinder oscillation frequency, the time-step

at which the vortex release stabilizes or the comparison between the simulation vortex

shedding with the vortex shedding patterns described in the literature.

Studies in CFD are characterized by three main phases: a pre-processor, a solver and

a post-processor, Versteeg and Malalasekera (2007). More precisely, the pre-processing

phase consists on the input of a flow problem into a CFD program such as the definition of

the computational domain, the mesh generation, the selection of the system of equations,

the definition of the fluid properties and the specification of the boundary conditions.

The solver phase is defined by the numerical solution of the simulated problem. And,
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lastly, in the post-processing is performed the analysis of the obtained results by the

means of plots which may include animation for dynamic result display.

3.1 Mesh generation using Gmsh

The mesh generation was done using the Gmsh software, Geuzaine and Remacle

(2009). This an open source three-dimensional finite element grid generator software

which has a graphical user interface. Nevertheless, for more complex meshes, this soft-

ware allows to change directly the input file that defines the mesh. In the current work

context, it was used the later functionality. Thus, the first step of the meshes definition

was to establish the domain center point, the cylinder and the domain boundary points

which where, subsequently, joined with a circular arc. After having the cylinder and the

domain boundary lines set, it was settled the domain area between the cylinder and the

domain. At the lines level, it was defined the number of points as well as the connections

between the mesh boundary lines, definition that will determine the mesh number of

elements. Next, it is critical to define a progression for the line’s points in order to al-

low a greater detail of the mesh near the cylinder boundary, allowing the analysis of the

physical phenomenon in this area. Finally, it was defined the mesh type of elements, tri-

angular or quadrangular. At this point, the mesh is fully described at a two-dimensional

level. Since OpenFOAM is only able to process three-dimensional meshes, it was done

an extrude with a unitary value to transpose the mesh for a three-dimensional domain.

Thenceforth, were defined the domain physical areas namely, the inlet, the outlet and

the cylinder zones. After having all these properties defined at the mesh it was done a

mirror parallel to the flow displacement direction. This is an important step since this

configuration is crucial for the movement of the cylinder calculated in the simulation.

The symmetry between the upper and the lower zone of the cylinder guarantees that the

vortex shedding induces an equal force in the cylinder higher and inferior area which

will influence the cylinder displacement into an 8-motion movement, data that will be

discussed in greater detail in chapter 6.

The Gmsh is organized in three different modules: geometry, mesh and solver. The

commands used in each one of the available modules are enumerated in table 3.1.

3.1.1 Important mesh parameters

The solution of a flow problem is defined at the mesh nodes inside each cell. The

accuracy of a CFD solution is determined by the number of cells in the mesh. Generally,

the increase of the number of cells implies the improvement of the solution accuracy.

Both the accuracy of a solution and its cost in terms of necessary computer hardware and

calculation time are dependent and calculation time are dependent on the fineness of

the mesh. Optimal meshes are non-uniform, in other words, finer in areas where large

variations occur and coarser in regions with relatively little changes from point to point.
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Table 3.1: Gmsh commands used in the meshes generation.

Command name Description

Add Point Creates an elementary point.

Add Straight line Creates a straight line segment between two points.

Add Circle arc Creates a circle arc (strictly) smaller than Pi.

Line loop Creates an oriented line loop.

Add Ruled surface Creates a ruled surface, i.e., a surface that can be interpolated
using transfinite interpolation.

Transfinite Line Selects the lines in expression-list to bemeshedwith the 1D trans-
finite algorithm.

Transfinite Surface Selects surfaces to be meshed with the 2D transfinite algorithm.

Transfinite Volume Selects five- or six-face volumes to be meshed with the 3D trans-
finite algorithm.

Recombine surface Recombines the triangular meshes of the surfaces listed in
expression-list into mixed triangular/quadrangular meshes.

Extrude surface Extrudes all elementary entities (points, lines or surfaces) in
extrude-list using a translation.

Physical Surface Creates a physical surface.

In the mesh development process is crucial to validate the mesh quality. The most

important parameters are the aspect-ratio, the skewness and the non-orthogonality of

the mesh cells. The OpenFOAM has a utility that allows to check the quality of the

mesh parameters. This functionality can be used by typing the command checkMesh in

the Ubuntu terminal. This utility has an important role in the analysis development by

allowing the evaluation of important mesh parameters informing, for instance, about the

mesh total number of cells or the total number of cells for each mesh element type. It is

also possible to evaluate the mesh maximum and minimum aspect-ratio, skewness and

non-orthogonality values.

Particularly, the mesh skewness value can vary between zero and one. The best case

scenario is having a mesh with zero skewness, meaning that the mesh cells have no

distortion and, hence, are equilateral. In opposition, when this property has values

approximate of one it indicates that the mesh cells are completely degenerated and might

compromise the accuracy of the interpolated regions.

The non-orthogonality and aspect-ratio values can be equal or superior to 1. For the

higher quality cells both these parameters have the value 1, meaning that the cells have

the square form with 90 degrees angles for each double crossed line. In other words,

when non-orthogonality and aspect-ratio are equal to 1, it means that all the cell’s angles

have the same proportionality between them and, similarly, all the cell’s lines have the
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same proportionality between them.

3.1.2 Mesh geometry

Different types of meshes can be used in different types of numerical studies, affecting

the obtained results. Particularly, in this work, were used O-type meshes.

The O-type mesh has circular exterior domain with the cylinder positioned in the

mesh center. Hence, the mesh is generated between the cylinder and the external bound-

ary. The dimension of the O-type mesh is shown in figure 3.1. The detail of the elements

near the cylinder wall is illustrated in figure 3.2. The domain with 2500D was chosen to

minimize the blockage effect in the studies performed in this thesis. Besides, the domain

dimension was also chosen to enable the mesh independence study, by performing a com-

parison study between the obtained results and the results described by Didier (2012),

work that will be presented in greater detail in the section 4.1.

Figure 3.1: Representation of the developed mesh with 2500D, full domain.

3.1.3 State-of-the-art: mesh generation tools

The Gmsh software was chosen to generate the meshes throughout this work. Never-

theless, it is important to refer that there are available several alternative tools to perform

this task. Examples of alternative software are shown in table 3.2. All these enumerated

programs provide the tools to generate meshes, using each one a specific methodology.

However, Gmsh has significant added value for its clearness and simplicity combined

with the display of all important information. Furthermore, features the possible to edit

easily in the graphical user interface the mesh geometry and properties allowing, this

way, to build, mesh, and assign zone types to a model in a simple and intuitive way. This
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Figure 3.2: Representation of the mesh with 2500D, near to the cylinder wall.

is an advantage over, for instance, the blockMesh which do not allow the instant visual-

ization of the developed mesh. A mesh built with blockMesh can be visualized by using

an additional software like the Paraview. Another alternative is GAMBIT, which is a tool

integrated in Ansys and, thus, has the disadvantage of not being open-source.

3.2 Computational fluid dynamics analysis using OpenFOAM

CFD tools are able to simulate a fluid passing through or around an object. The ability

to predict the impact of such flows on a specific product performance is time consuming

and costly without some form of simulation tool. Therefore, engineers across a wide

range of industries can benefit from CFD, such as automotive, aeronautic, life science,

environmental and machinery. Indeed, almost every design encounters fluid dynamics at

some point, whether heat or liquids, internal or external. In all the previously described

areas the virtual development allows a reduced number of prototypes and less testing.

Therefore, it is important to provide CFD users with easy-to-use, robust, time-efficient

and validated processes. In this thesis the CFD analysis was done using the OpenFOAM

software.

The OpenFOAM (Open source FieldOperation AndManipulation) - OpenFoam (2009);

Weller et al. (1998) - software is a C++ object-oriented framework composed by solvers

and utilities. The solvers are designed to solve a specific problem in continuum mechan-

ics and the utilities help the user with data manipulation. One of the great advantages

of this software towards others programs is the power that gives to its users allowing

the development of self-adjusted solvers and utilities. The OpenFOAM structure is il-

lustrated in figure 3.3. Specifically, the pre-processing phase is where the user chooses

which OpenFOAM solver best suits the simulated problem. OpenFoam contains several
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Table 3.2: Gmsh alternative software to perform mesh generation.

Software Description

blockMesh,
OpenFoam
(2009)

Mesh generation utility supplied with OpenFOAM. The principle
behind blockMesh is to decompose the domain geometry into a set
three dimensional blocks. The edges of the blocks can be straight
lines, arcs or splines. The mesh is characterized by the number of
cells in each direction of the block, information that is processed by
the blockMesh utility to generate the mesh data.

NETGEN,
Schöberl et al.

Automatic two and three-dimensional tetrahedral mesh genera-
tor which generates essentially unstructured triangular/tetrahedral
meshes. Input can be provided by simple ASCII files, or imported
from CAD programs via IGES, Step, or STL files.

enGrid,
enGits GmbH

Features surface mesher, prism layer extrusion of individual surfaces,
boundary and solver setup and export of ready-to-run case directories
for OpenFOAM.

SMESH,
CASCADE

Module integrated in the SALOME platform which allows to create
meshes on the basis of geometrical models created or imported into
GEOM. Features the possibility to add a new mesher by using the
existing plug-in mechanism.

GAMBIT,
ANSYS

Mesh building toolkit integrated in Ansys.

pre-processing utilities. Examples are blockMesh, tool that can be used in the mesh gen-

eration as referred in section 3.1, or mirrorMesh, utility which allows to mirror a mesh

around a given plane specified in the dictionary system/mirrorMeshDict ensuring the

symmetry between the mesh nodes.

In the solving section, OpenFOAMhas available some standard solvers adapted to case

studies that were already solved and validated. To the user is given the flexibility to use

one of the pre-defined solvers, change a pre-defined solver adapting it to a particular case

in study adding, for example, parts of other solvers which take into account characteristics

of the problem being solved or even create new solvers. Lastly, for the post-processing

step OpenFOAM installation package includes a complementary software, the ParaView.

The ParaView is also an open-source application developed to analyse extremely large

datasets using distributed memory computing resources. Provides, therefore, the tools to

visualize and analyse the simulated data using qualitative and quantitative techniques,

in a three dimensional graphic user interface.

Having in mind the CFD analysis steps referred in this chapter introduction, the

OpenFOAM corresponds to the solver element in the CFD methodology developed in

this thesis. The numerical algorithm used by this software begins by the integration of

the governing equations of fluid flow over all the finite control volumes of the domain,

followed by the conversion of the resulting integral equations into a system of algebraic

44



3.2. COMPUTATIONAL FLUID DYNAMICS ANALYSIS USING OPENFOAM

equations - processing designated by discretisation - and ends by solving the algebraic

equations using an iterative method.

Figure 3.3: OpenFOAM structure extracted from OpenFOAM User Guide Guide (2011).

3.2.1 Finite volume mesh

The first step of the FVM is setting up the geometrical support framework for the prob-

lem in analysis. The finite volume mesh is defined by the mesh characteristics formed by

a contiguous set of non-overlapping elements delimited by a set of faces, by the definition

of the physical boundaries through the marking of the faces boundary and by the manner

how they are related and located one with respect to the other.

Bearing in mind the considerations about the FVM in subsection 2.3.1, OpenFOAM

has implemented a finite volume cell-centred discretisation of the domain - Moukalled

et al. (2015). The data for points, faces, and elements are stored in a number of lists

(arrays). The list of points contains the three dimensional spatial coordinates, defined as

vectors, which correspond to the vertices of the actual mesh. Moreover, each vertex has a

label defined by the position in the list. The faces are defined by a list of labels referring

to points in which the ordering is such that each two adjacent points are connected by

an edge. The face list is organized in a way that all internal faces appear first in the list

followed by faces related to the first boundary, then faces related to the second boundary,

and so on. Lists of boundary faces are also named patches. It is important to remember

that internal faces belong to two cells while boundary faces belong to one cell only. Finally,

the element or cell list is defined by a list of indices, where the position in that list is the

cell index, the first index at any position is the number of faces for that element, and the

face indices at a given position represent the faces for that cell.

In OpenFOAM the mesh is named polyMesh and has to be defined with a set of proper

files. These files are placed in the directory constant/polyMesh. Based on the previ-

ous description the names of the files whose contents are self-explanatory are given by

points, faces, owner, neighbour and boundary. Particularly, for the analysis per-

formed in this thesis, it was used the Gmsh to assemble the several meshes, as mentioned
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in section 3.1. To convert the .msh file written by Gmsh to OpenFOAM it was used the

gmshToFoam tool provided by the OpenFOAM.

3.2.2 The PIMPLE Algorithm

The Pressure-Implicit Method for Pressure-Linked Equations (PIMPLE) - OpenFoam

(a) - algorithm is used to solve the Navier-Stokes equations described in section 2.3.6. This

algorithm combines the Pressure Implicit Splitting of Operators (PISO) algorithm with

the iterative Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm.

The PISO - OpenFoam (b) - algorithm is one of the most well-accepted algorithms

found in the OpenFOAM framework. This algorithm can determine the velocity and pres-

sure combination found between the continuity and Navier-Stokes equations by isolating

the pressure and velocity solving procedures in an iterative fashion. Succinctly, after

solving one field, the calculated result is plugged into the equation set as a constant in the

calculation of the other field. This process is then repeated until an acceptable error toler-

ance is reached. This algorithm is suitable for transient simulations where it is necessary

to fully solve the velocity-pressure coupling for each time step. The non-linear effects

of the velocity are reduced setting small time steps characterized by Courant numbers

below one.

The SIMPLE - OpenFoam (c) - algorithm is the algorithm generally used in steady-

state problems, where the treatment of the non-linear effects of the velocity during the

resolution is more important than the precise determination of the pressure field. Each

iteration of this algorithm corresponds to a pseudo time step and, consequently, the

solved values are under-relaxed in order to stabilize and converge the results.

The PIMPLE algorithm associates the SIMPLE loop with the solving technique imple-

mented in the PISO algorithm. The equations inside the SIMPLE loop are solved as many

times as required to reach convergence for each time-step or until the maximum number

of outer iterations is reached, value fixed by the user - Moukalled et al. (2015).

3.2.3 Case study setup - OpenFOAM File System overview

The OpenFOAM file system is constituted by three distinct folders: system, constant,

and 0, as illustrated in figure 3.4.

3.2.3.1 CaseStudy/0 folder - initial conditions

The CaseStudy/0 folder files contain the information about the simulation initial

values and boundary conditions. OpenFOAM will add to this directory several folders

which names are based on the simulated time at which the data is written. Having this in

mind and taking into account that the performed simulations start at time t = 0, it is only

logic that the problem initial conditions are stored in a directory named 0: the velocity

field U and pressure field p are initialised from files 0/U and 0/p, respectively.
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Case Study folder

0 folder
definition of the boundary

conditions and the flow initial

conditions

p

pointDisplacement

U

constant folder
set the fluid properties and

the mesh definition

polyMesh boundary

transportProperties

transportProperties

dynamicMeshDict

system folder
set the discretization and the

numerical solution procedure

controlDict

fvSchemes

fvSolution

mirrorMeshDict

decomposeParDict

Figure 3.4: OpenFOAM File System overview.

In OpenFOAM physical properties need to be specified with their associated dimen-

sions. According to SI unit system, the parameter dimensions stands for the following

physical dimensions: [kg m s K mol A cd]. For instance, the definition of the kinematic

pressure, which corresponds to the ratio between the pressure (Pa = kg.m−1.s−2) and

the mass density (kg.m3), which SI unit is m2.s−2 is represented by the [0 2 − 2 0 0 0 0]

dimensions vector. Similarly, in the U file the dimensions are defined as [0 1 − 1 0 0 0 0].

Following that, it is needed to define the internalField. This parameter defines the

values along the mesh cell volumes and might assume two distinct values: uniform, for

which a single value is assigned to all elements within the domain, and nonuniform, for

which different values can be assigned to each cell according to its ids. For the cases sim-

ulated in this thesis, it was used the atmosphere pressure as starting point and, therefore,

the internalField property assumes the value uniform 0 in the p file. For the velocity,

this parameter was set to 1m.s−1 and points in the direction of the coordinate x axis which

in the U file is translated to the value uniform (1 0 0). This format is easy to understand

since the velocity is a vector that has three different components (UxUyUz).

Finally, the boundaryField defines the mesh boundary conditions. This parameter

is a dictionary containing a set of entries whose names correspond to each of the names

of the boundary patches listed in the boundary file in the polyMesh directory. Each

patch entry is itself a dictionary containing a list of keyword entries. The pair entry

and type describe the patch field condition specified for the field. The remaining entries

correspond to the type of patch field condition selected and can typically include field

data specifying initial conditions on patch faces.

The files p and U were configured for the several simulations performed in this the-

sis. The zeroGradient, also called homogeneous Neumann boundary condition, means

that the quantity gradient is zero perpendicularly to the domain boundary. When the

boundary condition is defined as empty this means that there is no flow in the direction

perpendicular to the boundary. The fixedValue patch type, also named the Dirichlet
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boundary condition, means there is a fixed value for the correspondent boundary con-

dition along all the simulation. The movingWallVelocity parameter set in U file for

the cylinder boundary defines that the velocity is associated with the cylinder under

consideration.

In addition to the p and U files, we have the pointDisplacement file. In this file

are defined the cylinder characteristics, the problem degrees of freedom which restrict

the body movement and constraints related with the mass-spring-damper system in the

desired directions.

3.2.3.2 CaseStudy/constant folder - initial conditions

The constant directory contains in the polyMesh folder the files that fully describe

the case mesh. In this directory root are defined the boundary file which specifies the sim-

ulation boundary properties and the dynamicMeshDict, transportProperties and tur-

bulenceProperties files which specify the physical properties of the simulation fluid.

3.2.3.3 CaseStudy/system folder - system parameters

The CaseStudy/system directory files set the parameters associated with the solution

procedure itself. In this thesis context it was defined the controlDict file, where several

run control parameters were defined including start/end time, time-step and parameters

for data output. In greater detail, controlDict has defined a wide range of parameters

that determine the simulation output. For instance, the value of the the startFrom was

set to latestTime in order to allow to restart the simulation from the most recent time

step from the set of time directories. This directory contains also the fvSchemes file

where are defined the finite volume discretisation schemes used in the simulation and

the fvSolution file which sets the equation solvers and tolerances.

The OpenFOAM requires at least the definition of the previously three referred files.

Nevertheless, in this thesis context it were used two additional files: the decomposeP-

arDict which allows to perform the simulation with parallel computing, in which the

geometry and associated fields are broken into pieces and allocated to separate processors

for solution; and the mirrorMeshDict file which mirrors the mesh around a given plane.

3.2.4 State-of-the-art: computacional fluids dynamics tools

Despite the great potential of OpenFOAM, there is available alternative tools to per-

form numerical simulation the CFD field. Examples such as Ansys Fluent or Autodesk

CFD, which have a strong implementation in the market being used in several businesses

areas. Nevertheless, these tools have the disadvantage of not being open-source nor hav-

ing the flexibility to change the source code recombining allowing the implementation

of algorithms fitted for the case in analysis. Table 3.3 provides a brief description of the

possible alternatives tools within the computational fluid mechanics area.
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Table 3.3: OpenFOAM alternative softwares to perform numerical fluid simulation.

Software Description

ANSYS Fluent
(ANSYS)

Used in much of the industry and scientific world, this software is
the best known and trusted in the context of computational fluid me-
chanics. An extensive track record makes Ansys Fluent an excellent
tool that can serve as a reference for comparisons between numerical
studies.

Autodesk CFD
(Autodesk)

With the advantage of being a software implemented by the company
that developed the well-known software to handle CAD projects, the
AutoCAD, this software has the advantage of being able to numeri-
cally process CFD projects in CAD.

SU2
(SU2)

Similar to OpenFOAM, this software is open-source and enables code
customization enabling, this way, greater flexibility when compared
to traditional commercial software.

STAR-CCM+
(cd adapco)

Developed by SIEMENS, this software possesses a strong component
in the industry optical, constituting a strong alternative in the context
of computational fluid mechanics in the industrial sector.

SALOME
(CASCADE)

SALOME is an open-source software that provides a generic platform
for pre and post processing in CFD numerical simulation. It is based
on an open and flexible architecture made of reusable components.

3.3 Numerical Stability

The analysis of the numerical scheme stability is crucial in a CFD study. A numerical

method is referred to as being stable when the iterative process converges and as being

unstable when it diverges. As mentioned in chapter 2, a common methodology used in

CFD codes for steady problems is to solve the unsteady equations and march in time

until the solution converges to a steady state. Therefore, numerical stability studies

are performed in the context of time-marching, in which are evaluated the asymptotic

behaviour of a given problem at large times. So, ideally, we would like to take as large

a time-step δt as possible to reach the steady state in the least number of time-steps.

Usually the value of δt has a maximum allowable time-step δtmax beyond which the

numerical scheme is unstable. If δt > δtmax, the numerical errors will grow exponentially

in time causing the solution to diverge from the steady-state result. The δtmax value is

related with the numerical discretisation scheme and with the problem complexity.

The Courant number, Co, is a dimensionless parameter given by equation 3.1 which

translates the best temporal accuracy and numerical stability during the simulation.

Co =
δt|U |
δx

(3.1)

where δt is the time step, |U | is the magnitude of the velocity through that cell and δx is

the cell size in the direction of the velocity.
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The Courant number, Co, depends on the flow velocity, cell-size and time-step and

is typically calculated for each cell. The Courant number will change accordingly with

the velocity for a static mesh and a constant time-step. When the mesh is static and the

velocity field is nearly fully developed, changing the time step is a good way of controlling

the Courant number.

The Courant number is an important parameter because informs about how fluid is

moving through the computational cells. A particular problem has an acceptable stability

when the Courant number is ≤ 1. If the Courant number is ≤ 1 this means that the fluid

particles are moving from one cell to another within one time-step at most. If it is > 1 the

fluid particles are moving through more than one cell at each time-step and this can affect

convergence negatively. Robust systems and good solvers can deal with large Courant

numbers, but it is always important to check this parameter to confirm that there are no

convergence problems, affecting the accuracy of a transient simulation.

3.4 Simulations preformance

In this section are shown in table 3.4 the specifications of the machine used to perform

the studies described in this thesis.

Table 3.4: Specifications of the machine used to performed the CFD simulations.

Processor Graphics OS type

Computer Intel® Core i7 5820K CPU @
3.30GHz × 12

Quadro
K620/PCle/SSE2

Ubuntu 14.04

The average length of the simulation duration for a 2500D mesh with 82404 cells, was

46h12min with the simulation running in parallel mode, using six processors for each

simulation.
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Flow around a fixed cylinder

In this chapter it is described the CFD study of a flow around a non-oscillatory cylin-

der. This analysis was performed in a validation context, so we can have confidence on the

results obtained where the study with a cylinder with two DOF is described. Validation

is a crucial procedure in a good CFD analysis. Validation certifies if the pre-processing

was correctly done, namely, ensures that the numerical code definitions and the mesh

specifications are well established for the intended case study. A good definition for a val-

idation in CFD can be described as "solving the right equations and solving the equations

right", Versteeg and Malalasekera (2007). In this chapter, it is given special emphasis to

the mesh independence study which is essential to validate the meshes used throughout

this thesis.

4.1 Independence mesh study

4.1.1 Analysis of the fundamental quantities convergence with the 2500D

mesh discretisation

The domain chosen for the developed meshes was 2500D, where D corresponds to

the diameter of the cylinder. This size was defined accordingly to the studies that were

used to perform a comparison analysis in chapters 5 and 6. This diameter is big enough

so it allows the minimization of the blockage effect, which occurs when the cylinder outer

walls are excessively near to the domain boundaries. For studies with one and two DOF

this configuration enhances the development of multiple vortex shedding patterns along

the wake as well as the cylinder displacement.

The first length of the elements near the cylinder wall is determined using the geo-

metric progression 4.1.
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Sn =
n

∑

i=1

a1r
i−1 =

a1(r
n − 1)

r − 1 (4.1)

The Sn is the radial distributed nodes length, r is the progression value, a1 is the

length of the first node and the n is the number of radial nodes.

In order to conclude about the refinement level quality and the time step for which the

results converge, a considerable number of simulations were made to determine which

mesh best suited the cylinder problem. The studies were conducted with a Reynolds

number of Re = 200 and, therefore, the flow regime can be considered as laminar, with

a non-slip condition applied to the cylinder wall of (u = v = 0) and with a velocity at

infinity U∞ = 1m.s−1 on the domain boundary.

The table 4.1 compares the results of several key quantities obtained for the different

levels of mesh refinement, depending on the number of elements around the cylinder,

Nang , the number of elements in the radial direction, Nrad , and the thickness of the first

element along the cylinder wall, e
D .

It was chosen to vary the elements in the radial and angular directions progressively

to prove the mesh independence. For that, the length of the smallest element was defined

with two different values: e
D = 0.0012 and e

D = 0.0006, being these elements the ones

along the cylinder wall. With this configuration, it was observed how the results were

altered with the increase of the number of elements at radial level, angular and both

jointly with the decreasing of the size of the elements along the cylinder wall. Tests have

also been made using progressions of value 1.06, 1.04, 1.03 and 1.02 having as direction

the mesh boundary to the cylinder.

Analysing table 4.1 it is possible to conclude that the results are similar without large

fluctuations for the several studied meshes. Furthermore, the obtained results are also

congruent with the data described in the literature, subject that will be analysed in greater

detail in section 4.2.

With the incrementing of the number of elements in the mesh the simulation time

increases drastically. For this reason, it was opted for a mesh that met the "best of both

worlds", allowing good results in conjunction with an acceptable and viable simulation

time. With this in mind and since all the meshes in table 4.1 are a good approximation of

reality, it was chosen to perform the simulations carried out throughout this work with

mesh 1. This choice was also influenced by the fact that it is possible to obtain a fast

discretisation of the results with this mesh. Figure 4.1.1 sustain this statement, given

that the moment when the vortices begin to be released coincides with the start of the

graphical oscillation of drag and lift coefficient. Both these phenomena can be related

since the oscillation of the pressure field in the cylinder wake will lead to the release of

vortices.

The time-point when the flow oscillation begins for the several meshes enumerated

in table 4.1 was examined from the respective image in figure 4.1.1. From this analysis it

is possible to conclude that the mesh configuration influences the moment when the flow
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Table 4.1: Relation between the fundamental quantities convergence with the discretization vari-
ation for meshes with 2500D domain length and Re = 200.

Mesh e
D Nrad Nang Ncells r St CD,mean CD,rms CL,rms

1 0.0012 189 436 82404 1.06 0.1953 1.3187 0.0308 0.4727

2 0.0012 189 596 112644 1.06 0.1957 1.3188 0.0309 0.4722

3 0.0006 201 716 143916 1.06 0.1954 1.3189 0.0310 0.4741

4 0.0006 201 916 184116 1.06 0.1952 1.3184 0.0309 0.4645

5 0.0006 201 1116 224316 1.06 0.1957 1.3177 0.0309 0.4674

6 0.0012 271 476 128996 1.04 0.1952 1.3180 0.0308 0.4721

7 0.0012 271 716 194036 1.04 0.1951 1.3184 0.0309 0.4717

8 0.0006 289 476 137564 1.04 0.2081 1.3177 0.0309 0.4704

9 0.0006 289 716 206924 1.04 0.1952 1.3172 0.0308 0.4694

10 0.0006 289 1116 322524 1.04 0.1951 1.3161 0.0308 0.4633

11 0.0012 349 556 194044 1.03 0.1950 1.3186 0.0308 0.4715

12 0.0012 349 876 305724 1.03 0.1951 1.3161 0.0306 0.4679

13 0.0006 373 956 356588 1.03 0.1951 1.3183 0.0310 0.4648

14 0.0006 373 1236 461028 1.03 0.1958 1.3161 0.0307 0.4571

15 0.0012 501 1116 559116 1.02 0.1953 1.3176 0.0306 0.4629

16 0.0006 539 1116 601524 1.02 0.1961 1.3165 0.0308 0.4536

oscillation begins. The fact that the initiation of vortices release occurs at different times

is related with the used numerical diffusion scheme, with the used turbulence model and

with the refinement level of the mesh. Applying erroneous numerical diffusivity schemes

or steady solvers will lead to incorrect simulation results. Regarding the numerical dif-

fusivity scheme, it was used the same along the performed simulations. Concerning the

used solvers, steady solvers are not suitable to solve the problem studied in this thesis

since it will induce the fluid to "relax", in order to force the fluid unsteadiness to became

steady. This circumstance would influence negatively the numerical study results. Hence,

it was used pimpleFoam, an unsteady solver which is suitable to simulate unsteady flows,

fact that was already discussed in greater detail in section 3.2.2. Finally, it were not used

turbulence models since for a Re = 200 the fluid has a laminar flow, as can be seen in

table 2.1.

Thus, the only changed parameter was the mesh refinement level by increasing the

element’s density along the cylinder boundary wall applying a geometric progression

in the cylinder radial direction. The refinement level must be greater at the cylinder

walls where the development and respective release of vortices occurs at the cylinder
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downstream wall. Thereby, and given that this is the area most susceptible to changes

by the development of the boundary layer, it is in this domain region where we must

have smaller mesh elements so we can study in greater detail the vortices development

phenomena.

Furthermore, the mesh will also influence the time hiatus until the vortices release

occurs at a constant frequency. For mesh 1 this stabilization occurs after 90 seconds,

which is a quite acceptable result taking into account the data described by C. Y. Zhou

and Lam (1999), Conde and Lopes (2015) and T. Li and Zhu (2009). This mesh is shown

in figure 3.1 of chapter 3.

(a) Mesh 1 (b) Mesh 2

(c) Mesh 3 (d) Mesh 4

(e) Mesh 5 (f) Mesh 6
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(g) Mesh 7 (h) Mesh 8

(i) Mesh 9 (j) Mesh 10

(k) Mesh 11 (l) Mesh 11

(m) Mesh 12 (n) Mesh 13

(o) Mesh 14 (p) Mesh 15
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(q) Mesh 16
Figure 4.1: Drag, CD,mean, and lift, CL,rms, coefficients for the set of meshes shown in table 4.1.

4.1.2 Analysis of the fundamental quantities convergence with the time

step for a mesh with 2500D domain length

In table 4.2 is shown the relation between flow fundamental quantities with the time

step for the mesh 1 whereas figure 4.2 illustrates these results graphically. Analysing this

data, it is possible to conclude that from a time step of δt = 0.001s the obtained results

will not be significantly influenced by this parameter, presenting all the studied time step

values good convergence results.

Table 4.2: Relation between the fundamental quantities convergence with the time step variation
for the mesh 1 with 2500D domain length and Re = 200.

Time step (s) St CD,mean CD,rms CL,rms

0.1 0.1867 1.2280 0.0526 0.3159

0.05 0.1978 1.3126 0.0329 0.4177

0.01 0.1933 1.3172 0.0308 0.4688

0.005 0.1952 1.3184 0.0308 0.4724

0.001 0.1953 1.3187 0.0308 0.4727

0.0005 0.1954 1.3153 0.0316 0.4683

Regarding the mesh independence study, Didier (2012) states that the choice of the

mesh to study the flow fundamental quantities convergence must be performed when

between meshes these fundamental quantities vary as low as possible with the modifi-

cation of the mesh refinement level and time step. Evaluating table 4.2, it is possible to

conclude that the results variation with the change of the mesh refinement is small and

can be negligible. Similarly, it is also possible to infer that the obtained results are approx-

imately stable with the decreasing of the time step and, consequently, not affected by this

parameter. Both these facts sustain the validation of mesh 1 to proceed with the study

of the flow around a cylinder for one and two DOF, since the impact of the simulation

time step and the mesh refinement within the studied range of values are irrelevant in

the simulation result.
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(a) (b)

(c) (d)

Figure 4.2: (a) Evolution of the St with the time step; (b) Relation between theCD,mean convergence

with the time step; (c) Relation between the CD,rms convergence with the time step; (d) Relation

between the CL,rms convergence with the time step. Values for the mesh 1 with 2500D domain

length and Re = 200.

4.1.3 Analysis of the fundamental quantities convergence with the domain

length

Table 4.3 compares the simulation fundamental quantities between several mesh

domains values, Lb
D , varying between the values 8D, 20D, 500D and 2500D. For all the

developed meshes, the smallest element thickness, adjacent to the cylinder boundary, is

0.0012, the time step, δt, is 0.001s and the progression value, r, is 1.06 (equation 4.1). In

chapters 5 and 6 will be studied in greater detail how the domain extension impacts the

cylinder movement for one, Y-motion, and two DOF.
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Table 4.3: Relation between the flow fundamental quantities convergence with the domain length,
Lb, and Re = 200.

Lb

D
e
D Nrad Nang Ncells r St CD,mean CL,rms

8 0.0012 89 436 38804 1.06 0.2 1.3951 0.5131

20 0.0012 106 436 46216 1.06 0.2 1.3449 0.4806

500 0.0012 162 436 70632 1.06 0.1955 1.3243 0.4779

2500 0.0012 189 436 82404 1.06 0.1953 1.3187 0.4727

(a) (b)

(c)

Figure 4.3: (a) Evolution of the St with the domain length variation for Re = 200; (b) Relation

between the CD,mean convergence with the domain length variation for Re = 200; (c) Relation

between the CL,rms convergence with the domain length variation for Re = 200.

From the results described in the table 4.3 it is possible to conclude about the depen-

dence of the fundamental quantities with the extension of the mesh domain. The obtained

results express a clear tendency for the mesh fundamental quantities to decrease with

the increasing of the mesh length. This fact is congruent with the results obtained by

Posdziech and Grundmann (2007).
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4.1.4 Analysis of the fundamental quantities convergence with the 8Dmesh

discretisation

Table 4.4 correlates the fluid fundamental quantities between the meshes with the

8D domain. Analysing this data, it is possible to reckon that the mean drag coefficient

decreases as the level of mesh refinement increases. Regarding the lift coefficient, its

standard deviation is not influenced by the mesh refinement since this coefficient remains

in the same range of values with the domain higher discretisation.

The current validation sustains that, despite meshes with greater refinement level

translate with greater reliability the reality, for the presented discretisation values the

increase of the mesh discretisation is not crucial in the attainment of relevant better

results. The three levels of discretisation enumerated in table 4.4, will be later used to

study in chapter 6 the influence of a flow around a cylinder with 2 DOF.

Table 4.4: Relation between the fundamental quantities convergence with the discretisation vari-
ation for meshes with 8D domain length and Re = 200.

Lb

D
e
D Nrad Nang Ncells r St CD,mean CL,rms

8 0.0049 45 136 6120 1.10 0.2430 1.4156 0.5152

8 0.0012 89 436 38804 1.06 0.2 1.3951 0.5131

8 0.0012 89 536 47704 1.06 0.2233 1.3953 0.5152

4.2 Flow around a non-oscillatory cylinder

In the current section is presented the study for the flow around a fixed cylinder. Next,

the obtained results are compared with the data described in the literature to validate the

methodology described in chapter 3.

Table 4.5 shows the results described in subsection 4.1.1 for mesh 1 in comparison

with the results obtained by other authors for the flow around a fixed cylinder with

Re = 200. The fundamental quantities compared between studies, are the mean drag

coefficient, CD,mean, the standard deviation of lift coefficient, CL,rms, and the Strouhal

number, St, calculated using the Fast Fourier transform (FFT) which was determined by

the software QtiPlot (2004). In detail, the Strouhal number was determined by using

the lift coefficient values, extracting full oscillation periods after the stabilization of the

oscillation phenomenon.

The fundamental quantities determined by other authors, presented in table 4.5, were

extracted from studies performed with Re = 200. By the comparison of the data enumer-

ated in table 4.5 it is possible to conclude that the obtained results for the fixed cylinder

are congruent with the results described in the literature. Note that with the increase of

the distance between the cylinder boundary wall and the mesh outer border, the greater

is the tendency for the flow fundamental quantities values to decrease. Nevertheless, it
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is important to refer that to achieve valid fundamental quantities is not only necessary

to increase the distance between the outer boundary of the mesh and the cylinder wall,

but also the mesh refinement level has relevant influence in the numerical calculation of

fundamental quantities. This fact was not relevant in the study performed in subsection

4.1.1 because the discretisation starting values were already good enough to simulate

accurately the reality.

Table 4.5: Comparison of fundamental quantities obtained in this thesis with the data described
in the literature for a flow around a fixed cylinder, Re = 200.

Authors
Lb

D St CD,mean CL,rms

Current thesis 2500 0.1953 1.3187 0.4727

Conde and Lopes (2015) 50 0.1961 1.3326 0.4804

Didier (2012) 2500 0.1941 1.3099 0.4680

Posdziech and Grundmann (2007) 2000 0.1940 1.3090 0.4378

Posdziech and Grundmann (2007) 4000 0.1940 1.3086 0.4374

Figure 4.4(a) illustrates the spectral analysis of the lift coefficient over the FFT and

the release of vortices frequency, equivalent to the Strouhal frequency, fst which is math-

ematically translated by equation 2.3. This frequency corresponds to the amplitude peak

in figure 4.4(a) which has a value of fst = 0.1953. This value is equal to the number of

Strouhal, St, shown in table 4.5 given that it was considered both the cylinder diameter

and the flow velocity with an unitary value. Figure 4.4(b) shows the drag and lift coeffi-

cients from which it is possible to observe that the periodic regime and the consequent

stabilization of the vortices alternating release is obtained around a dimensionless time

of 90.

(a) (b)

Figure 4.4: (a) Spectral analysis of the fixed cylinder; (b) Drag and lift coefficients, CD and CL,
time series for Mesh 1.

Figure 4.5(a) shows the flow velocity field for the numerical time of t = 140s. It is

possible to observe at the cylinder upstream area the stagnation point. The top and

bottom areas of the cylinder are where the flow reaches higher speed values due to the
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"compression" of the flow induced by the rhombic body presence which causes the flow

to split to both these areas. This phenomenon is easily observable in figure 4.5(d), which

shows the flow streamlines and where it is clear the streamlines compression in the areas

where the flow reaches higher speed values. It is interesting to note that in the zone where

the vortex is developed, in this case the top zone as it can be seen in figure 4.5(c), the

flow velocity decreases considerably contrasting with the symmetrically opposite area,

in this case the bottom zone. While the flow velocity increases when the vortices are

released, the pressure is much higher when the vortex is being formed. Consequently, the

pressure value is lower on the cylinder bottom zone, where the vortex is being released,

in opposition with the cylinder top zone where the vortices are in development.

Moreover, it is also possible to observe that when the vortex is generated, the flow

gains rotational speed around a point, the center of the vortex, where the speed is zero

and the pressure is maximal. As the vortex moves on the wake, loses intensity, spreading

itself, tending its pressure and velocity to homogenize with the field value of pressure

and velocity.

(a) (b)

(c) (d)

Figure 4.5: (a) Velocity field near to the cylinder for time = 140(s); (b) Pressure field near to the

cylinder for time = 140(s); (c) Vorticity for time = 140(s); (d) Streamlines near to the cylinder for

time = 140(s).
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5
Flow around a Y-only motion cylinder

In this chapter it is studied a flow around a cylinder with one DOF. It will be per-

formed a comparative study with the work developed by Conde and Lopes (2015). More

specifically, it will be analysed for the same frequency ratios and flow conditions which

is the influence of the domain length increase. The domain used in this thesis has

Lb = 2500D while the one used by Conde and Lopes has a Lb = 50D size, having both

studies a time-step δt of 0.001. The conclusions about this subject are exposed in section

5.1.

5.1 Comparative study between a 50D and a 2500D domain

length mesh

The work developed by Conde and Lopes (2015) considered two distinct physical

systems: a mass-spring system, which neglected the existence of damping forces; and a

spring-mass-damper system, which simulates the damping caused by the structure, by

the fluid and by the material itself.

The goal in this section is to analyse for one DOF how the increase of the mesh’s

domain influences the obtained result comparing, for that, the obtained results with

the ones described by Conde and Lopes for a smaller domain. Thereby, all the other

parameters related with the fluid, structure and simulation were kept constant and equal

between both studies. In table 5.1 are enumerated the cylinder characteristics used to

perform this study. The cylinder under study has a diameter D of 1 meter, mass m equal

to 1 kg, cylinder length l of 1 meter and moments of inertia with respect to the x, y and z

axes coordinates, defined by Ixx, Iyy and Izz, respectively.

Similarly, table 5.2 introduces the fluid properties. Namely, this table lists the density

defined by ρ, the dynamic viscosity defined by µ, the kinematic viscosity defined by ν

63



CHAPTER 5. FLOW AROUND A Y-ONLY MOTION CYLINDER

Table 5.1: Cylinder properties.

D(m) m(kg) l(m) Ixx(kg.m
2) Iyy(kg.m

2) Izz(kg.m
2)

1 1 1 0.146 0.146 0.125

and the flow field velocity defined by U∞.

Table 5.2: Flow properties.

ρ(kg/m3) µ(kg/m.s) ν(m/s) U
∞
(m/s) Pressure(Pa)

1 0.005 0.005 1 Atmospheric

Asmentioned in section 4.1.1, it was employedmesh 1 to perform the flow simulations.

This is the least refined of the meshes shown in table 4.1 and it was selected among the

other tested meshes because presented the best quality and simulation time ratio. In fact,

to this mesh corresponds the lowest simulation time without prejudicing relevantly the

results quality and allowing, this way, to perform all the proposed simulations within the

deadlines establish for this work.

Table 5.3 contains the structural parameters associated with the simulation mass-

spring and mass-spring-damping physical systems. For both mass-spring and mass-

spring-damper systems the applied parameters were the same. The difference lies in

the mass-spring-damper system in which is used a damping coefficient C shown in table

5.3.

Table 5.3: Simulation parameters for the mass-spring and mass-spring-damping systems to the

cylinder with Y-only motion.

U∗ fn(Hz) k(N/m) C(Ns/m)
fn
fSt

1 1 39.5 0.63 5.1

1.5 0.667 17.6 0.42 3.4

2 0.5 9.87 0.31 2.56

2.5 0.4 6.32 0.25 2.05

3 0.333 4.38 0.21 1.71

3.5 0.286 3.23 0.18 1.46

4 0.25 2.47 0.16 1.28

4.5 0.222 1.95 0.14 1.14
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Table 5.3 - continuation: Simulation parameters for the mass-spring and mass-spring-damping

systems to the cylinder with Y-only motion.

U∗ fn(Hz) k(N/m) C(Ns/m)
fn
fSt

5 0.2 1.58 0.13 1.02

5.5 0.182 1.31 0.11 0.93

6 0.167 1.1 0.1 0.86

6.5 0.154 0.94 0.097 0.79

7 0.143 0.81 0.09 0.73

7.5 0.133 0.7 0.084 0.68

8 0.125 0.62 0.079 0.64

8.5 0.118 0.55 0.074 0.6

9 0.111 0.49 0.07 0.57

9.5 0.105 0.44 0.066 0.54

10 0.1 0.39 0.062 0.51

10.5 0.095 0.36 0.06 0.49

11 0.091 0.33 0.057 0.47

11.5 0.087 0.3 0.055 0.45

12 0.083 0.27 0.052 0.42

12.5 0.08 0.25 0.05 0.41

13 0.077 0.23 0.048 0.39

13.5 0.074 0.22 0.046 0.38

14 0.071 0.20 0.045 0.36

14.5 0.069 0.19 0.043 0.35

15 0.067 0.18 0.042 0.34

15.5 0.065 0.16 0.041 0.33

16 0.063 0.15 0.040 0.32

16.5 0.061 0.145 0.038 0.31
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Table 5.3 - continuation: Simulation parameters for the mass-spring and mass-spring-damping

systems to the cylinder with Y-only motion.

U∗ fn(Hz) k(N/m) C(Ns/m)
fn
fSt

17 0.059 0.14 0.037 0.30

17.5 0.057 0.13 0.036 0.29

18 0.056 0.12 0.035 0.286

The spring constant and the velocity ratio are intrinsically related by the equation

5.1 and 5.3 through which it is possible to obtain the spring constant value k from the

velocity ratio U ∗.

ωn =

√

k

m
(5.1)

The system natural frequency ωn is given by the square root of the ratio between the

spring constant k and the system mass m. The value of the system natural frequency can

also be resolved by equation 5.2.

ωn = 2πfn (5.2)

The system velocity ratio U ∗ can be determined by the ratio between the flow velocity

U∞ and the natural frequency fn times the cylinder diameter D which corresponds to

equation 5.3.

U∗ = U∞
fnD

(5.3)

It follows from equation 5.3 that the velocity ratio is inversely proportional to the

natural frequency of the system. Furthermore, by equation 5.1 it is observable that the

spring constant is directly proportional to the natural frequency of the system. This

means that springs with higher stiffness have associated higher natural frequency of the

system and, consequently, the flow velocity must be increased to induce oscillation in the

cylinder and overcome the forces provided by the spring to reach the same oscillation

magnitude as for a spring offering less resistance.

Given that the fluid studied by Conde and Lopes has characteristics similar to a gas,

the portion of the damping constant corresponding to the fluid damping and to the

structural damping could be discarded. Therefore, the total damping factor ζ is described

by the material damping value. For this reason, Conde and Lopes chose a common total

damping factor of ζ = 0.05, which is usually used in civil structures and is in accordance
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with Blevins (1977) considerations. Thus, the damping constant C is calculated using

equation 5.4 where CC is the critical damping coefficient.

ζ =
C

CC
(5.4)

The data in table 5.4 was extracted directly from the study developed by Conde and

Lopes. In this table are defined a set of dimensionless parameters that impact the cylinder

oscillation behaviour. These parameters are the mass ratioM∗ and m∗, the mass-damping

ratio m∗ζ, the stability parameter Ks, and the Skop-Griffin parameter SG.

Table 5.4: Obtained results to mass-spring system to cylinder with Y-only motion.

M ∗ m∗ m∗ ζ Ks SG

1 1.27 0.0635 0.628 0.152

5.1.1 Mass-Spring system

In this section it is performed the comparative evaluation between the results obtained

in this study and the results obtained by Conde and Lopes for the mass-spring system.

Figure 5.1 is a representative diagram of the mass-spring system, where the spring is

anchored to the cylinder in its geometric center and fixed at a ground point which distance

from the cylinder center is equal to the the spring’s length at rest.

mass, m

Figure 5.1:Mass-spring system schematic diagram.

In figure 5.2 are represented the drag coefficient in black, the lift coefficient in blue

and the cylinder oscillation amplitude in red. These parameters are shown in function of

the simulation time, which was defined as 150 seconds, time interval considered enough

for the cylinder oscillation to achieve a constant frequency as can be observed by the

figure 5.2 plots.
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(ag)
fn
fSt

= 0.30 (ah)
fn
fSt

= 0.29

(ai)
fn
fSt

= 0.286

Figure 5.2: Displacement, lift and drag coefficients curves of an Y-motion cylinder for a certain

frequency ratio.

Analysing the several plots in figure 5.2 it is possible to conclude that the oscillatory

response of the cylinder obtained in the current study is overall in agreement with the

data obtained by Conde and Lopes. In fact, with the velocity ratio increase both studies

present similar variations. Nevertheless, it is possible to observe differences that lie at

the level of the amplitudes of the three fundamental quantities analysed. Considering

that the only change made in this study was the implementation of a larger mesh do-

main with 2500D, the differences can be related with the blockage effect existing in the

analysis performed by Conde and Lopes which used a 50D length domain. As referred

previously, for 2500D the blockage effect is negligible. This fact can be easily confirmed

by the streamlines outlined along the cylinder. Since the cylinder size does not change,

the current study has a higher rate between the cylinder and the domain size and, conse-

quently, the flow streamlines are less confined when comparing with the study performed

by Conde and Lopes. This will also influence the flow velocity along the cylinder bound-

aries which, for the current study, has a lower value and a respectively higher pressure

when correlating with the results obtained by Conde and Lopes.

Furthermore, for all the studied velocity ratios it is visible that, after the beginning of

the phenomenon, it occurs for the current study a stabilization zone before the results de-

crease whereas Conde and Lopes present always decreasing results. This fact influences

the time hiatus for the start of the phenomenon stabilization. In the current work this

circumstance occurs for higher time values than in Conde and Lopes’s study. This matter

can be also related with the blockage effect, which is preventing the cylinder to oscillate
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freely for median velocity ratios. Indeed, when the blockage effect is negligible for ratio

velocities in the range of U ∗ = 4 to U ∗ = 6 it is visible the increase of the oscillation ampli-

tude whereas when the blockage effect occurs for these velocity ranges the amplitude is

always decreasing.

In greater detail, and likewise it was observed by Conde and Lopes, the cylinder

response for the first four figures 5.5(a), 5.5(b), 5.2(c) and 5.2(d), which correspond to the

velocity ratios U ∗ = 1, U ∗ = 1.5, U ∗ = 2 and U ∗ = 2.5, is similar to the response obtained

for the fixed cylinder. Additionally, there is a consistent geometry of the plots between

both fixed and one DOF studies.

In figure 5.2(e), which corresponds to the velocity ratio of U ∗ = 3, it is visible the beat

phenomena as noticed by Conde and Lopes. For the figure 5.2(f), which corresponds to

the velocity ratioU ∗ = 3.5, this phenomena is not visible for the mesh with 2500D used in

the current study. However, in Conde and Lopes’s study this phenomenon is evidenced

in this velocity ratio range. Contrastingly, for the mesh with 2500D it is observable

after t = 125s the stabilization of the cylinder oscillation amplitude and the lift and drag

coefficients. Yet, it is congruent the fact that U ∗ = 3.5 is associated with higher period

values than U ∗ = 3.

Regarding the velocity ratio U ∗ = 4, it is noticeable that the lift coefficient and the

displacement curves are almost superposed, fact that is also congruent with the consid-

erations made by Conde and Lopes. This means that the cylinder oscillation frequency

and vortices release are very close to each other. When this happens the vibratory system,

develops the phenomenon of resonance. This can be confirmed by the low yet constant in-

crease, from cycle to cycle, of the lift coefficient and of the cylinder oscillation amplitude.

It is also observed that the lift coefficient, which depends on the lifting force increases

more rapidly than the cylinder oscillation amplitude. This is explained by the fact that

with the increase of the cylinder oscillation amplitude, the applied forces need to be larger

(not proportionally) to overcame the resistance caused by the fluid towards the cylinder

displacement and, thus, the amplitude oscillation increment requires increasingly greater

lifting forces. This effect is more evident for fluids with greater density, because the in-

crease of the oscillation amplitude will induce the displacement of a higher mass of fluid

by its movement. Moreover, it is also observed that the maximum of the drag coefficient

for the current study is bigger than 4 while the maximum drag coefficient value obtained

by Conde and Lopes is not above 3.5. However, for both studies it is discernible that the

value of this coefficient tend to 3, after its stabilization.

For the velocity ratio of U ∗ = 4.5, the drag coefficient amplitude peak is similar to the

one observed for U ∗ = 4. However, it is evident that for this velocity ratio the value of the

drag coefficient tends to an higher value when compared with the one obtained forU ∗ = 4.

In addition, this coefficient stabilizes for higher values when compared with the one

obtained by Conde and Lopes. In the current study this value tends to approximately 3.5

while in Conde and Lopes’s study tends to 3. In this analysis it is still possible to observe

that when the vortices release phenomena start the cylinder amplitude oscillation and
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the lift coefficient are in counter-phase. This fact is not observable in Conde and Lopes’s

study. Nonetheless, as the phenomenon develops and tends to a stable value, the cylinder

oscillation amplitude and the lift coefficient will tend to be in phase with each other, fact

that is well evidenced from t = 80s.

With respect toU ∗ = 5, in both studies it is evidenced a phase shift to counter-phase of

the lift coefficient and the cylinder oscillation amplitude between t = 0s e t = 150s. This

means that the frequency of the cylinder displacement and the frequency of the vortex

release occurs in opposite directions. Analysing plot 5.2(i) it is evident that when the

cylinder displacement assumes negative values, the lift coefficient has positive values. It

is interesting to refer that until this velocity ratio this phenomenon occurred precisely in

an inverse way: the cylinder oscillation amplitude and the lift coefficient were in phase

and, thus, varied in a similar way. However, it is possible to observe that the amplitude

of the lift coefficient decreases as the simulation progresses.

It is for a velocity ratio of U ∗ = 5.5 that it is possible to infer that the lift coefficient

and the cylinder oscillation amplitude are completely off phase, remaining its amplitudes

peaks constant approximately after t = 30s. Oppositely to the study conducted by Conde

and Lopes, for the current study the lift coefficient amplitude value exceeds the cylinder

oscillation amplitude value. Actually, all the parameters have greater magnitude in the

current study when compared with Conde and Lopes’s analysis. The drag coefficient

reaches almost the amplitude value of 3.8 and stabilizes very close to that value ranging

between 3.6 and 1.5, while in Conde and Lopes’s study this parameter does not exceed

2.8 of amplitude and stabilizes between 2.5 and 1.3. Similarly, the amplitude of the

lift coefficient reaches almost 0.74 in the present study whereas in Conde and Lopes’s

study this parameter only reaches 0.25. Finally, the oscillation amplitude has a maximum

value of about 0.62 while the maximum amplitude attained by Conde and Lopes was

approximately 0.52.

From the velocity ratio of U ∗ = 6 to U ∗ = 8.5, the phenomenon described for U ∗ = 5.5

are perpetuated. As the velocity ratio increases, the coefficients and cylinder oscillation

amplitude tend to decrease. Moreover, between the present and Conde and Lopes’s

study the parameters maintained the same ratios with its magnitude decrease, with the

oscillation amplitude of the studied parameters being always superior in the current

study.

With respect to the velocity ratio U ∗ = 9, it is detectable the occurrence of a phe-

nomena that was previously detected for the velocity ratio of U ∗ = 4 but with different

characteristics. The amplitudes of the lift coefficient and of the cylinder oscillations are

virtually the same, which means that the vortices release frequency and the cylinder os-

cillation frequency have the same value, however, as figure 5.2(q) illustrates these two

frequencies are in counter-phased.

In Conde and Lopes’s study the amplitude of the lift coefficient exceeds the cylinder

oscillation amplitude value from the velocity ratio U ∗ = 9.5 whereas in the present study
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that fact occurs since U ∗ = 5.5. Furthermore, in the current analysis it is observed pre-

cisely the inverse from U ∗ = 9.5, with the lift coefficient being lower than the cylinder

oscillation amplitude. This observation is congruent until the velocity ratio of U ∗ = 18,

the maximum velocity ratio studied.

Within the velocity ratios of U ∗ = 9.5 to U ∗ = 18, there is a continuously decreasing of

the magnitude of the lift and drag coefficients and of the cylinder oscillation amplitude.

Table 5.5 contains the results obtained for the current study depending on the simu-

lated velocity ratios, from 1 to 18 with 0.5 gaps. It was calculated the maximum cylinder

oscillation amplitude for the Y-motion Y/D, the drag coefficient mean CD,mean, the lift

coefficient root mean square CL,rms and the frequency ratios
f
fn
. The values of the drag

and lift coefficients were extracted from OpenFOAM for the stipulated time-step for each

simulation. After an initial analysis in order to understand the time it takes to stabilize

the oscillatory phenomenon, it was calculated, given that time, the mean and the stan-

dard mean root of drag and lift coefficients, respectively. To extract the coordinates of the

cylinder center position it was adapted a bashscript file called extractData, which is

provided in the tutorial mesh/moveDynamicMesh/simpleHarmonicMotion. By invoking

the command line extractData log, with the log corresponding to the full simulation

log file, it was possible to extract the position of the cylinder center for each analysed

time-step. Then, using the MAX function in libreOffice it was determined the cylinder

maximum oscillation amplitude. The frequency ratio is the ratio between the cylinder

oscillation frequency for the given simulation velocity ratio U ∗ and the natural frequency

obtained for the fixed cylinder, analysis performed in chapter 4. The frequency of the

cylinder oscillation was determined by the employment of the FFT for each studied case

depending on the used velocity.

Table 5.5: Obtained results for the mass-spring system for the cylinder with Y-only motion.

U∗ Y/D CD,mean CLrms

f
fn

1 0.0084 1.2959 0.4523 0.1908

1.5 0.0216 1.3084 0.4864 0.3223

2 0.0470 1.3259 0.5478 0.3934

2.5 0.1076 1.3793 0.7026 0.5028

3 0.4321 1.4721 1.0134 0.6967

3.5 0.5502 1.5013 1.1243 0.7514

4 0.5683 2.2545 0.4660 0.9612

4.5 0.5862 2.3351 0.1405 0.9676
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Table 5.5 - continuation: Obtained results to mass-spring system to cylinder with Y-only motion.

U∗ Y/D CD,mean CLrms

f
fn

5 0.6072 2.2481 0.1565 1.051

5.5 0.6191 2.5791 0.5059 1.2132

6 0.6601 2.4481 0.5436 1.2639

6.5 0.6630 2.3170 0.5484 1.3078

7 0.6576 2.2372 0.5678 1.5315

7.5 0.6361 2.0503 0.5108 1.3774

8 0.5823 1.9621 0.4980 1.4192

8.5 0.5735 1.8521 0.4629 1.4331

9 0.5772 1.6922 0.3886 1.4270

9.5 0.5605 1.5879 0.3413 1.4333

10 0.5364 1.4821 0.2900 1.656

10.5 0.5090 1.4277 0.2670 1.44

11 0.4902 1.3573 0.2357 1.4330

11.5 0.4662 1.2969 0.2041 1.4989

12 0.4442 1.2401 0.1820 1.7313

12.5 0.4172 1.1924 0.1616 1.7313

13 0.3990 1.1614 0.1477 1.7558

13.5 0.3853 1.1400 0.1370 1.8689

14 0.3722 1.1217 0.1282 1.5169

14.5 0.3646 1.1120 0.1270 1.8768

15 0.2939 1.1192 0.1035 2.8045

15.5 0.2689 1.1771 0.1264 2.9185

16 0.2033 1.1781 0.1278 2.6794

16.5 0.1771 1.1786 0.1293 2.6492
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Table 5.5 - continuation: Obtained results to mass-spring system to cylinder with Y-only motion.

U∗ Y/D CD,mean CLrms

f
fn

17 0.1750 1.1790 0.1291 2.8644

17.5 0.1707 1.1797 0.1304 2.8667

18 0.1664 1.1804 0.1316 3.0232

Given the values presented in table 5.5 concerning the cylinder oscillation amplitude

Y/D, the drag coefficient mean CD,mean, the root square mean of the lift coefficient CLrms
,

and the frequency ratios f /fn, it were developed the plots illustrated in figure 5.3 in

which it is possible to observe the differences obtained between the current study and

Conde and Lopes’s analysis. Each point in these plots correspond to a given velocity ratio

allowing, this way, to compare in a more straightforward way the results obtained for a

2500D and for a 50D mesh domain.

Analysing the plots in figure 5.3 it is visible that the values obtained for a 2500D

mesh are lower than the ones obtained by Conde and Lopes until a velocity ratio of

U ∗ = 4. From this velocity ratio the amplitude of the fundamental quantities mentioned

in this study become higher than the value presented by Conde and Lopes. Additionally,

it is noticeable that in Conde and Lopes’s study the value of the oscillation amplitude and

of the lift coefficient start to decrease for U ∗ = 3.5 and the value of the drag coefficient

start similarly to decrease for U ∗ = 4.5 while in the current study this decline only occurs

for U ∗ = 7. Yet for U ∗ = 3.5 and U ∗ = 4.5 the lift and drag coefficient begin to decrease,

respectively, just like it was observed by Conde and Lopes. This can be explained by the

increase of the area of study which, consequently, decreases the proportion between the

cylinder and the total domain size. Given that the body existence will force the movement

of the fluid around it, the distance between the cylinder and the domain boundary layers

will influence the fluid response. Another relevant difference between both studies is the

abrupt decrease of the oscillation maximum amplitude obtained by Conde and Lopes

whereas for the current analysis this decrease is moderate and constant.

The vortex shedding phenomena occurs in a more "harmonious" mode for the 2500D

mesh than for the 50D mesh being captured, for the 2500D mesh, portions of the cylinder

oscillation evolution with the increase of the reduced velocity which were omitted for

the analysis with a 50D mesh domain. This is verified in the evolution of the oscillation

amplitude with the increase of the reduced velocity for the values between 4.5 and 7.5.

In plots 5.3(b) and 5.3(c), which describe the evolution of the lift and drag coefficients,

it is verified that the evolution of the cylinder response is slower for the 2500D domain

than for the 50D domain. For the 50D domain the response has a more abrupt evolution
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whereas for the 2500D domain it is captured with greater detail the answer given by the

cylinder with the increase of the reduced velocity.

(a) Relation between the cylinder displacement and

the simulated velocity ratios.

(b) Relation between the drag coefficient mean and

the simulated velocity ratios.

(c) Relation between the lift coefficient square mean

root and the simulated velocity ratios.

(d) Relation between the frequency ratios and the sim-

ulated velocity ratios.

Figure 5.3: Relation between the cylinder displacement and the simulated velocity ratios for the

current study (squares in red) and the analysis performed by Conde and Lopes (2015) (circles in

black). The dashed lines represent the value of the parameter for the fixed cylinder in both studies

in comparison.

5.1.2 Mass-Spring-Damping system

Similarly to the study previously described, in the current subsection it is going to

be compared the results obtained for the present thesis with the ones obtained by Conde

and Lopes (2015) for the mass-spring-damping system.

Figure 5.4 is a representative diagram of the mass-spring system, where the spring

and a damper are anchored to the cylinder in its geometric center and fixed at a point

corresponding to the spring’s and damping’s length at rest.
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mass, m

Figure 5.4:Mass-spring-damping system schematic diagram.

In figures 5.5 are represented the drag coefficient in black, the lift coefficient in blue

and the cylinder oscillation amplitude in red. These parameters are shown in function

of the time being simulated, which was defined as 150 seconds, time interval considered

enough for the cylinder oscillation to achieve a constant frequency.
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Figure 5.5: Displacement, lift and drag coefficients curves of an Y-motion cylinder for a certain

frequency ratio.

As it was referred in section 5.1.1 and congruently to the considerations made by

Conde and Lopes for the mass-spring-dumper system, the first four velocity ratios,U ∗ = 1,

U ∗ = 1.5, U ∗ = 2 and U ∗ = 2.5 display characteristics similar to the ones obtained for the

fixed cylinder. The values for these velocity ratio ranges are identical to the ones achieved

by Conde and Lopes.

With the increase of the velocity ratio to U ∗ = 3, it is observed the beat phenomena,

which was already detected for the mass-spring system. When comparing the results

with the ones obtained by Conde and Lopes, for both studies the drag coefficient has

five amplitude peaks. In fact, in Conde and Lopes’s study the drag coefficient, the lift

coefficient and the cylinder oscillation amplitude tend to a given value. Contrastingly, in

the current analysis these parameters keep the initial characteristics presented in the first

envelope.
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For a velocity ratio of U ∗ = 3.5, it is observed that both studies retain similar charac-

teristics such as a long beat period. However, in the present study is visible the tendency

of the parameters to stabilize throughout the phenomena development while for Conde

and Lopes’s results the phenomena characteristics are maintained between the first and

second beat phenomenon of the cycle.

Regarding the velocity ratio of U ∗ = 4, the conclusions are similar to the ones ex-

plained for the mass-spring system. At this velocity ratio range occurs the resonance

phenomenon with the continuous increase of the lift coefficient and of the cylinder os-

cillation amplitude. In the present study the amplitudes of the displayed parameters

are higher than the ones referred in the study developed by Conde and Lopes. The drag

coefficient reaches the value of 3.8 and decreases sharply to stabilize between 1.5 and 2.6

while in Conde and Lopes’s analysis the maximum amplitude of the drag coefficient is

3.2, stabilizing very close to the present study values. Concerning the cylinder oscillation

amplitude and the lift coefficient, the variation curves are very similar and within the

same ranges of values for both studies.

For velocity ratios of U ∗ = 4.5 and U ∗ = 5 the vortices release frequency and the

cylinder oscillation frequency are no longer in phase to pass to be in anti-phase. This

phenomenon is observable by the lift coefficient and the cylinder oscillation amplitude

curves. Likewise Conde and Lopes noted, there is a decrease in the amplitude of the lift

coefficient with the increase of the velocity ratio from U ∗ = 4.5 to U ∗ = 5. The maximum

of the drag coefficient is reached for U ∗ = 4.5. However, after its stabilization, the drag

coefficient amplitude is higher for U ∗ = 5, while in Conde and Lopes’s study this fact

occurs earlier for U ∗ = 4.5. For the mentioned velocity ratios of U ∗ = 4.5 and U ∗ = 5

the initial peak of maximum amplitude is not visible, ceasing for the velocity ratio of

U ∗ = 4. In the present study, this phenomenon is visible even at the velocity ratio of

U ∗ = 5, disappearing only for the next value of low speed U ∗ = 6.

It is for this velocity ratio, U ∗ = 6, that is possible to observe the total mismatch

between the frequency of the vortices release and the frequency of oscillation given by

the cylinder lift coefficient curves and the cylinder oscillation amplitude. Analogously

to what was verified for the mass-spring system, the amplitude of the lift coefficient is

greater than the cylinder oscillation amplitude. This phenomenon remains evident, with

a constant reduction in amplitudes of the three analysed parameters, as the velocity ratio

value increases up to the value of U ∗ = 6.

For the mass-spring-damper system is at a velocity ratio of U ∗ = 9.5, while for the

mass-spring system is at U ∗ = 9, that it is expressed the phenomena referred for the

velocity ratio of U ∗ = 4 in which the amplitude of the lift coefficient and the amplitude of

the oscillation cylinder are identical but, for this velocity ratio ranges, are in anti-phase.

From the velocity ratio of U ∗ = 10, the conclusions are similar to the ones already

mentioned for the mass-spring system. In the present study, the amplitude of the lift

coefficient returns to have values lower than the cylinder oscillation amplitude. This

fact is incongruous with the results obtained by Conde and Lopes which from a velocity
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ratio of U ∗ = 9 show lift coefficient values higher than the cylinder oscillation amplitude

values.

Equivalently to what was done for the mass-spring system, table 5.3 shows the results

obtained for this study depending on the simulated velocity ratios, from 1 to 18 with

0.5 gaps. It was calculated the maximum cylinder oscillation amplitude for Y -motion,

the drag coefficient mean CD,mean, the lift coefficient root mean square CLrms
and the

frequencies ratio
f
fn
.

The values enumerated in table 5.6 were extracted from OpenFOAM and calculated

using the same methodology used for the mass-spring system referred in subsection 5.1.1.

Table 5.6: Obtained results to mass-spring-damping system to cylinder with Y-only motion.

U∗ Y/D CD,mean CL,rms
f
fn

1 0.0084 1.2964 0.4523 0.2121

1.5 0.0216 1.3089 0.4871 0.2895

2 0.0472 1.3305 0.5513 0.3942

2.5 0.1080 1.393 0.7111 0.504

3 0.3549 1.5527 0.9044 0.6767

3.5 0.4903 1.2720 0.9926 0.6671

4 0.5293 2.0544 0.6146 0.9108

4.5 0.5540 2.1850 0.2610 0.9243

5 0.5830 2.2338 0.1585 1.018

5.5 0.5907 2.2502 0.2872 1.1170

6 0.5746 2.3246 0.4699 1.2389

6.5 0.5858 2.2199 0.4901 1.2922

7 0.5802 2.1016 0.4861 1.3329

7.5 0.5560 1.9930 0.4746 1.5459

8 0.5405 1.9044 0.4630 1.4104

8.5 0.5289 1.7936 0.4286 1.4305

9 0.5113 1.6771 0.3833 1.4477

9.5 0.4932 1.5693 0.3323 1.5343
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Table 5.6 - continuation: Obtained results to mass-spring-damping system to cylinder with Y-

only motion.

U∗ Y/D CD,mean CL,rms
f
fn

10 0.4655 1.4468 0.2768 1.432

10.5 0.4464 1.3715 0.2393 1.44

11 0.4259 1.3057 0.2079 1.4374

11.5 0.3974 1.2403 0.1771 1.4345

12 0.3770 1.1842 0.1525 1.7241

12.5 0.3674 1.1442 0.1330 1.4363

13 0.2740 1.1764 0.1208 2.1779

13.5 0.2600 1.1770 0.1213 2.5534

14 0.2245 1.1781 0.1246 2.3676

14.5 0.2133 1.1791 0.1258 2.4391

15 0.2133 1.1791 0.1258 2.5119

15.5 0.1786 1.1812 0.1295 2.5969

16 0.1674 1.1820 0.1308 2.6825

16.5 0.1648 1.1822 0.1313 2.7721

17 0.1634 1.1825 0.1318 2.8661

17.5 0.1600 1.1831 0.1332 3.1632

18 0.1565 1.1837 0.1341 3.025

The figure 5.6 demonstrates the differences in the parameters calculated and shown in

table 5.6 for the present study and the study performed by Conde and Lopes. Similarly to

the mass-spring system behaviour, it is observed in figure 5.6 that this study values have

lower amplitude than the values determined by Conde and Lopes until the velocity ratio

of U ∗ = 4. From this point, the amplitude of the fundamental quantities in the present

study become higher than the values presented by Conde and Lopes. Furthermore, for

Conde and Lopes’s study the value of the cylinder oscillation maximum amplitude and

the lift coefficient variation start to decrease from U ∗ = 3.5 and the drag coefficient root

square mean also decreases from U ∗ = 4.5, whereas in the present study the oscillation

maximum amplitude only begins to decrease from U ∗ = 7. Conforming with the results
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obtained by Conde and Lopes, the lift coefficient and the drag coefficient rootmean square

decrease for the velocity ratios of U ∗ = 3.5 and U ∗ = 4.5, respectively.

Identically to the mass-spring system, the differences obtained between the Conde

and Lopes study and the present study are due to the increase of the mesh domain. The

differences caused by the existence of a damp in the system influences the calculated

parameters range of values, simulating the effect caused by a structural damping, despis-

ing the material and the fluid damping since they present characteristics of a fluid in a

gaseous state, contributing in a insignificant way to influence the cylinder response.

(a) Relation between the cylinder displacement and

the simulated velocity ratios.

(b) Relation between the drag coefficient mean and

the simulated velocity ratios.

(c) Relation between the lift coefficient square mean

root and the simulated velocity ratios.

(d) Relation between the frequency ratios and the sim-

ulated velocity ratios.

Figure 5.6: Relation between the cylinder displacement and the simulated velocity ratios for the

current study (squares in red) and the analysis performed by Conde and Lopes (2015) (circles in

black). The dashed lines represent the value of the parameter for the fixed cylinder in both studies

in comparison.
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6
Flow around a two degrees-of-freedom

cylinder

This chapter exposes the numerical study of a flow around a circular cylinder with

two DOF. Firstly, it was performed a comparison analysis of the obtained results with

the numerical study performed by T. Li and Zhu (2009) for a mesh with the same do-

main size, subject described in section 6.1. In section 6.2 is investigated how different

refinement levels of the mesh influence the cylinder 8-motion movement, by varying the

mesh refinement level maintaining the same circular domain Lb = 8D context. Finally, in

section 6.3 three meshes with different domains sizes are used, respectively 20D, 500D

and 2500D, in order to analyse the influence of the domain size on the reliability of the

obtained results. The results obtained by T. Li and Zhu (2009) are shown in the Appendix

A.

6.1 Two degrees-of-freedom cylinder with a 8Dmesh size

The study performed by T. Li and Zhu (2009) was made for a constant Reynolds value

of Re = 200, with an uniform flow velocity U∞ = 1 m.s−1, diameter cylinder D = 1m and

viscosity υ = 5×10−3 kg.(s.m)−1. Different frequency ratios are simulated ranging between
fn
f0
= 0.9 and

fn
f0
= 2.5. fn is the natural frequency of the system and f0 is the frequency of

the vortex shedding for the fixed cylinder. The frequency ratio
fn
f0

is a quite important

parameter since it influences the phenomenon of vortex induced vibration. It is through

the frequency ratio parameter that a baseline to perform the comparison between studies

is established. Thereby, the same frequency ratio values are used among the studies being

compared, as shown in table 6.1. Moreover, it is based on the frequency ratio values and

on the Strouhal frequency value that the remaining parameters values shown in table

6.1 are obtained. The Strouhal frequency, as mentioned in chapter 4, corresponds to the
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vortex shedding frequency for the given system. This frequency is calculated from the

system when the cylinder has no DOF. It is based on this frequency, applied in the ratio

between the frequencies, that is obtained the system natural frequency.

The vortex shedding frequency obtained in chapter 4 for a flow around the fixed

cylinder with the 8D mesh, for the lower refinement level, was used to perform the

comparison study with the work developed by T. Li and Zhu. The mesh used by T. Li

and Zhu has a lower refinement level, with 64 elements on the cylinder wall, whereas in

chapter 4 it was used a mesh with 140 elements around the cylinder wall composed by

elements with a good asymmetry and orthogonality values.

The current study presents a vortex shedding frequency with a value of about fSt =

0.2430 while the same parameter is much lower for the study performed by T. Li and Zhu,

being about fSt = 0.1972. Given that both studies share the same simulation conditions,

the same properties and the same fluid cylinder characteristics the differences between

them reside in the meshes geometric differences. It is interesting to note, however, that if

the two structural systems have similar characteristics but distinct frequency ratios, then

we are dealing with systems with different stiffness. In this specific case, is the alternating

release of vortices that causes the cylinder oscillation and is the frequency with which

these vortices are released that determines the cylinder oscillation frequency. Thus, the

structural system implemented by T. Li and Zhu has a greater elasticity than the system

of the current study, which has a higher vortex shedding frequency and for that reason

can be considered as a more rigid system.

The goal of this section is to simulate the study performed by T. Li and Zhu. For that

it were used the same simulation parameters and the same vortex shedding frequency as

the ones applied by T. Li and Zhu in order to achieve the same spring elastic constants as

the ones used in this paper.

Therefore, using the vortex shedding frequency obtained in the study performed by

T. Li and Zhu, fSt = 0.1972, it was possible to determine the natural frequency fn. To

obtain that value, the natural frequency is converted fromHz to rad through equation 5.2

and applying equation 5.1 to the cylinder with mass m = 1Kg it is possible to obtain the

desired elastic constants, in order to use the same spring values as T. Li and Zhu. These

values are shown in table 6.1. The damping constant for the study developed by T. Li and

Zhu is the same for all the different values of frequency ratios, being C = 0.00306. For

this reason, it was kept the same damping value for all the simulated frequency ratios.

For each frequency ratio value, it was performed a numerical study with a circular

mesh which length from the cylinder wall to the domain boundary was Lb = 8D. This

configuration was set in order to retain the main dynamical characteristics of the mesh

which impact the results of the numerical study allowing, this way, to perform a correct

comparison between the study performed by T. Li and Zhu and the current analysis.

Figure 6.1 shows the motion geometry of the cylinder displacement for a flow around

a cylinder with the same numerical conditions as the ones used by T. Li and Zhu. To this

end, the used mesh was defined with the characteristics enumerated in table 6.2.
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Table 6.1: Simulation parameters for the cylinder with XY-motion.

fn
f0

U∗ fn k(N/m) C(Ns/m)

0.5 3.1846 0.0986 0.3838 0.00306

0.9 2.3736 0.1775 1.2435 0.00306

1.0 2.2519 0.1972 1.5352 0.00306

1.1 2.1472 0.2169 1.8576 0.00306

1.3 1.9749 0.2565 2.5945 0.00306

1.4 1.9031 0.2761 3.0091 0.00306

1.5 1.8387 0.2958 3.4544 0.00306

1.6 1.7803 0.3155 3.9302 0.00306

2.5 1.4242 0.4930 9.5951 0.00306

Table 6.2: Geometric parameters of the 8D mesh.

Mesh e
D Nrad Nang Ncells r

Present study 0.0049 45 136 6120 1.10

The simulations performed in the current study are congruent with the results ob-

tained by T. Li and Zhu, as it is possible to ascertain from the plots in figure 6.1. The

same range of values was obtained nearly for all the several frequency ratios analysed.

It is important to highlight the almost perfect symmetry of the cylinder 8-motion, fact

that is in accordance with the expected, since the mesh and the simulation conditions are

symmetrical along the X-axis, which divides the mesh and the cylinder in two semi-circles

with symmetrical domains. Divergently, the cylinder motion obtained by T. Li and Zhu

is not symmetrical and hence the 8-motion obtained in both studies are different.

The initial position of the cylinder geometric center is constant along the performed

studies, located at coordinates x = 0 and y = 0. Evaluating the plots in figure 6.1, which

graphically demonstrate the response of the cylinder with two DOF, it is possible to

observe that the cylinder has an initial motion only in the parallel direction to the flow

displacement. This movement is in line with the direction of the flow displacement, from

the left to the right. This displacement of the cylinder to the area where it starts to oscillate

cyclically is directly related with the value of the spring constant. It is possible to infer

that with the increase of the frequency ratio values and, consequently, with the increase

of the spring constant the zone of the cylinder oscillation stabilization is increasingly

closer to its original position, that is, the coordinate point x = 0 and y = 0. The zone of

cyclical oscillation corresponds to the area when the cylinder displacement stabilizes and

reaches the continuing vortex shedding. This phenomenon is observable in the figure’s

6.1 plots which illustrate the variation of the lift coefficient, of the cylinder oscillation
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amplitude parallel to the flow displacement direction x, and of the cylinder oscillation

amplitude orthogonal to the flow displacement direction y.

The movement performed by the cylinder for the frequency ratio value of
fn
f0
= 0.5 is

shown in figure 6.1(a). The obtainedmotion is similar to the one attained by T. Li and Zhu.

Furthermore, as it can be seen by figure 6.1(b), the amplitudes achieved in the current

study are also consistent with the ones obtained by T. Li and Zhu, establishing after the

stabilization of the phenomenon with a magnitude of 1.6 in the parallel direction of the

flow and with a fluctuation in the orthogonal direction of flow varying between −0.25
and 0.25. In the plot 6.1(b) it is possible to observe that the oscillation phenomenon is

present from about the time t = 120s. The starting point of the oscillation phenomenon

is constant among the several frequency ratio simulated for the 8D mesh. Comparing

with the results obtained by T. Li and Zhu, the oscillation phenomenon occurs later for

the current study. Nevertheless, this fact does not influence the quality of results, only

translating a later development of the vortex shedding phenomena. In section 6.2 will be

discussed in greater detail how the mesh refinement level influences the initiation of the

vortex shedding phenomenon.

For the lift coefficient curve and the displacement curves along the x and the y axis the

data shows a tendency to stabilize but at the final simulation time-point the phenomena

is not yet fully stabilized. Regarding the cylinder x displacement, there is no cyclic

continuation, being its development somewhat random. The lift coefficient curve shows

a greater tendency to stabilize than the x displacement curve. However, its stabilization

it is not fully evident presenting along the simulation time instabilities and a slightly

fuzzy scatter. Contrasting, the curve of the y-direction displacement stabilizes and shows

a cyclic movement which is repeated after a certain period of time.

The current frequency ratio of
fn
f0

= 0.5 is the lowest of the studied frequency ratios

and, hence, the lowest elastic constant studied of about k = 0.3838 N/m. To the lowest

elasticity value corresponds, consequently, the longest displacement of the cylinder in

the parallel direction to the fluid achieving the value of x = 1.6. On the other hand, as

the spring does not have sufficient elasticity to simulate the oscillatory movement the

oscillatory amplitude is very small.

The figure 6.1(c) demonstrates the oscillatory movement of the cylinder for the fre-

quency ratio of
fn
f0
= 0.9. For this frequency ratio, the obtained movement has the form of

an eight, named as 8-motion, with a slight tilt to the right. Moreover, the motion along

the x axis for this frequency ratio is fully symmetrical. In fact, this is the main differ-

ence between the current study and the study developed by T. Li and Zhu, in which the

asymmetry is quite evident. Regarding the oscillation amplitudes, the obtained values

are similar to the ones described by T. Li and Zhu. In detail, for the current study the

values range between −0.6 and 0.6 for the direction orthogonal to the flow displacement

with the cylinder center near the position 0.8 for the x axis. Concerning the amplitude

achieved in the parallel direction to the flow motion, it has a maximum amplitude of 0.1

and varies between 0.75 and 0.85 in the description of the 8-motion.
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Plot 6.1(d) illustrates the temporal variation of the lift coefficient and the cylinder

oscillation amplitudes in the x and y axis. From this plot it is possible to conclude that

the cylinder oscillation starts at t = 110s and stabilizes, approximately, at t = 145s.

Figure 6.1(e) shows the cylinder movement for a frequency ratio of
fn
f0

= 1.0. Com-

paring this figure with the one obtained by T. Li and Zhu, the oscillation amplitudes are

very similar ranging between −0.6 and 0.6 orthogonally to the flow displacement and the

oscillation geometric center corresponds to x = 0.7. The horizontal oscillation amplitude

is 0.1 and varies between 0.65 and 0.75. Furthermore, the tilt of the cylinder 8-motion is

greater for this frequency ratio then the verified for the previous frequency ratios. The

obtained results are in concordance with the results shown by T. Li and Zhu, except the

fact that for the current study the cylinder motion is perfectly symmetric, while for the

later study this motion is asymmetrical.

With the increase of the frequency ratio, the cylinder oscillation center approaches

the referential origin which coincides with the initial geometric center of the cylinder

at t = 0s. This fact is visible for the frequency ratio of
fn
f0

= 1.1 which has an oscillation

center in the coordinates x = 0.625 and y = 0 describing, as observed for the previous

frequency ratios, a truly symmetric motion. The amplitude of oscillation orthogonal to

the flow ranges from −0.65 to 0.65. The amplitude of oscillation parallel to the flow

varies between 0.57 and 0.68. The amplitude values between the present study and the

study developed by T. Li and Zhu are in excellent compliance. Highlighting the excellent

symmetry achieved in the current study compared to the asymmetry demonstrated by

T. Li and Zhu.

As the spring constant increases, the 8-motion described by the cylinder is increas-

ingly tilted to the right at the upper and lower movement extremities. Similarly, the

oscillation amplitude in the parallel direction towards the fluid displacement is also in-

creased as can be seen in figure 6.1(i). This figure shows several 8-motions described

from right to left by the cylinder until the stabilization of the movement in the geometric

center at x = 0.44. It is possible to identify the stabilization zone since the plot line seems

to be in bold in that area. In fact, this occurs because the cylinder does numerous pas-

sages in that area. The oscillation amplitude for this frequency ratio is, in the orthogonal

direction to the flow displacement, between −0.7 and 0.7. The amplitude of oscillation

parallel to the flow direction ranges between 0.4 and 0.56.

Figure 6.1(m) illustrates the cylinder motion for a frequency ratio of
fn
f0

= 1.5. The

cylinder response is given with two distinct motion frequencies, fact that is easily dis-

tinguishable by the analysis of the respective temporal relation which is illustrated in

figure 6.1(n). The motion which corresponds to the higher frequency value occurs when

the cylinder has a longer displacement in the x axis, ranging between 0.3 and 0.4, and in

the y axis, varying between −0.6 and 0.6. This frequency originates, clearly, the cylinder

motion which is darker and more to the right of the figure’s 6.1(m) plot, thus forming

a semi-circle. The drastic drop of the lift coefficient and of the respective amplitude of

the movement visible in the figure 6.1(n) is related with the changing of the cylinder
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frequency oscillation. This fact is also noticeable in figure 6.1(m) which shows distinct

oscillation motions. The cylinder has several random paths which constitute the link

between the two different frequencies of the cylinder motion. When the cylinder moves

from the semi-circular movement, in the right zone of the plot, to the leftmost motion the

oscillation amplitudes decrease sharply to a range of 0.24 to 0.16 on the x axis, parallel

to the motion of the flow, and between −0.15 and 0.15 on the y axis, orthogonal to the

motion of the flow.

The lift coefficient reaches its peak for the frequency ratio value of
fn
f0
= 1.5. For the

frequency ratio value of
fn
f0
= 1.6 is attained the lowest peak value of the lift coefficient. It

is also observable the increase of the temporal bandwidth in which one cycle is observable.

However, for this frequency ratio, the oscillation cycle is divided in half with a drastic

decrease of the lift coefficient value. This fact splits the cycle stability which was observed

for the frequency ratio of
fn
f0

= 1.4 until
fn
f0

= 1.6, having a duration of about t = 80s.

Taking this into account, figure 6.1(o) shows a scarcer motion for the several oscillation

frequencies, describing three distinct frequencies: the first occurs in the right zone of

figure’s 6.1(o) plot and has a greater oscillation amplitude; this gives rise to a lower

oscillation amplitude which occurs in the leftmost area of the plot; and this is followed

by a drastic reduction in the amplitude of the lift coefficient. This movement is repeated

twice every described cycle.

It is for the frequency ratio value of
fn
f0

= 2.5 that the 8-motion cylinder motion is

almost perfect, with amplitudes between 0.06 and 0.09 in the parallel direction of the

flow movement and the amplitude ranges between −0.055 and 0.055 in the orthogonal

direction of the flowmovement. It is also for this frequency ratio value that, in congruence

with the studied performed by T. Li and Zhu, the answer given by the cylinder describes

the closest 8-motion format. It is observed once more an excellent symmetry achieved in

the current study which is similarly observed by T. Li and Zhu for this frequency ratio, not

being visible the asymmetry detected for lower frequency values for the results obtained

by T. Li and Zhu.

(a) XY-motion plot of an elastic cylinder for
fn
f0

= 0.5 (b) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 0.5.
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(c) XY-motion plot of an elastic cylinder for
fn
f0

= 0.9 (d) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 0.9.

(e) XY-motion plot of an elastic cylinder for
fn
f0

= 1.0 (f) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.0.

(g) XY-motion plot of an elastic cylinder for
fn
f0

= 1.1 (h) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.1.
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(i) XY-motion plot of an elastic cylinder for
fn
f0

= 1.3 (j) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.3.

(k) XY-motion plot of an elastic cylinder for
fn
f0

= 1.4 (l) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.4.

(m) XY-motion plot of an elastic cylinder for
fn
f0

= 1.5 (n) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.5.
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(o) XY-motion plot of an elastic cylinder for
fn
f0

= 1.6 (p) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.6.

(q) XY-motion plot of an elastic cylinder for
fn
f0

= 2.5 (r) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 2.5.

Figure 6.1: XY-motion plot of an elastic cylinder for a set of frequency ratio whit an 8D mesh.

6.1.1 Asymmetric 8-motion

One of the reasons which may cause the asymmetry of the oscillating movement of the

cylinder is a bad design of the mesh, not being completely symmetric in the same zone

where the flow is also symmetrical. A non-symmetric mesh can be originated by diverse

causes, which include the not properly use of mesh blocks that allow for a larger control

in mesh generation software, such as Gmsh. Usually this kind of software performs this

generation automatically, requiring to handle the mesh generation controllably in each

mesh block. This means that each mesh block does not influence the positioning of the

nodes of the mesh elements of neighbouring blocks.

Since the studies previously described are using an O-type mesh, it is important to

make at least the split of the mesh using two distinct mesh blocks, an upper and a lower

block. This configuration allows the nodes of the mesh generated in the upper block to
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not influence the generation of the mesh’s lower block. However, the use of mesh blocks

properly positioned is not enough to ensure the symmetry of a mesh. It is required that

the elements have of the same geometry and, moreover, that the progressions used for

the different mesh blocks are correctly symmetrical. Still, with the software automatic

mesh generation the perfect symmetry is not guaranteed. It is, therefore, desirable that

to study a high sensitivity problem, as it is the case of the cylinder movement induced

by the flow displacement with two DOF, to use a utility tool which is able to perform a

mesh mirror. Such tool is available in OpenFOAM, designated by mirrorMesh. This tool

insures, hence, that all mesh nodes are symmetrically positioned.

Therefore, it was decided to reconfigure the mesh used in the previous study and

described in the table 6.2, to have asymmetrical properties. To perform that it were

defined four distinct mesh units and delineated the flow asymmetry line between both

upper and lower mesh blocks. This allows to manipulate independently the elements

of both blocks. Next, it was defined triangular elements in all four blocks. Finally, it

was changed the progression which defines the increase of the number of elements in

the cylinder direction distinctly for both mesh blocks. In detail, for the upper blocks it

was defined the progression value of 1 whereas for the lower blocks it was configured

the progression value of 1.1, becoming thereby a perfectly asymmetric mesh. The mesh

characteristics are described in table 6.3.

Table 6.3: Geometric parameters of the asymmetric 8D mesh.

Mesh e
D above

e
D below

Nrad Nang Ncells rabove rbelow

Current study 0.2 0.0012 45 136 6120 1 1.06

Figure 6.2: Representation of the asymmetric mesh with 8D, near to the cylinder wall.

98



6.1. TWO DEGREES-OF-FREEDOM CYLINDER WITH A 8D MESH SIZE

Figure’s 6.3 plots illustrate the response of the cylinder with the use of the previously

described asymmetric mesh. For the frequency ratio values, it is visible a clear asymmetry

between the upper and the lower part of the described movement. Congruently with the

results presented by T. Li and Zhu, the lower part of the movement has greater amplitude

and lower circular movement when compared to the circle described at the upper zone

of the plots. Several tests were made with different progression values between the upper

and the lower zone of the mesh. From these tests it was concluded that the distinct

motions are directly related with the size of the mesh elements. That is, by decreasing the

value of the progression in the upper part of the mesh to the value of r = 1, the spacing

between elements is equal and there is no increase or decrease of the distance between

nodes near the cylinder wall. This implies that the element width, that is, the distance

between the cylinder wall to the second element of mesh in a radial direction is much

larger than the element in the lower part of the mesh where it is used progression of

r = 1.1 from the mesh domain boundary to the cylinder boundary wall. In table 6.3 it is

possible to see the size of the element along the cylinder wall at the top of the cylinder
e
D above = 0.2 and the mesh element size at the bottom the cylinder with the cylinder

wall of e
D below = 0.0012. This difference in the element size causes that the cylinder

displacement motion is much greater, since the mesh embracing area is much greater at

the domain top given that the elements are larger and take up a significantly larger area

when compared with the mesh embracing area in the mesh inferior zone. The reverse

was also tested, using for that the progression value of r = 1.1 in the upper part and r = 1

in the lower part. The obtained cylinder motion was congruent with what was expected,

with the inverse response of the previously described one. This means that to the inverse

configuration the upward movement on the circle is tighter and reduced when compared

with the bottom movement.

The plots in figure 6.3 describe the movement obtained for the asymmetric mesh for

different frequency ratios. One can observe an excellent similarity to the cylinder motion

geometry demonstrated by T. Li and Zhu. Equivalently, it is possible to observe a good

approximation between both studies in terms of the oscillation amplitudes, according to

the parallel and the orthogonal motions to the direction of the flow displacement. The

same can be concluded for the distance between the geometric center of oscillation and

the referential origin. Nevertheless, both studies have differences in the path made by the

cylinder to stabilize its oscillatory movement.
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(a) XY-motion plot of an elastic cylinder for
fn
f0

= 0.5 (b) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 0.5.

(c) XY-motion plot of an elastic cylinder for
fn
f0

= 0.9 (d) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 0.9.

(e) XY-motion plot of an elastic cylinder for
fn
f0

= 1.0 (f) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.0.
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(g) XY-motion plot of an elastic cylinder for
fn
f0

= 1.1 (h) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.1.

(i) XY-motion plot of an elastic cylinder for
fn
f0

= 1.3 (j) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.3.

(k) XY-motion plot of an elastic cylinder for
fn
f0

= 1.4 (l) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.4.
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(m) XY-motion plot of an elastic cylinder for
fn
f0

= 1.5 (n) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.5.

(o) XY-motion plot of an elastic cylinder for
fn
f0

= 1.6 (p) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.6.

(q) XY-motion plot of an elastic cylinder for
fn
f0

= 2.5 (r) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 2.5.

Figure 6.3: XY-motion plot of an elastic cylinder for a set of frequency ratios with an asymmetric

8D mesh.
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6.2 Distinct oscillation cylinder geometries for different levels

of mesh refinement

Along with the study done in section 6.1 for the 8D mesh, it was investigated how

the increase of the 8D mesh refinement influences the obtained results and, later, these

results were compared with the results described by T. Li and Zhu.

6.2.1 8D for second level of refinement

The characteristics of the second mesh refinement are displayed in table 6.4. The

value of the elements progression in the radial direction towards the the cylinder wall

was the only maintained characteristic, with r = 1.06. The reason why it was used in this

study a mesh with characteristics so disparate, with an element size much greater than

the used for this refinement, was to mimic the mesh used by T. Li and Zhu. Therefore,

this fact was used to evaluate how the decrease of the elements size along the cylinder

boundary influences the obtained results for a first refinement level. Thus, it was decided

to scale the size of the element neighbouring the cylinder wall to e
D = 0.0012, according

to the criteria that has been used and chosen throughout this thesis. The number of

elements in the radial direction was modified to 440 and in the angular direction to 89.

Table 6.4: Geometric parameters for second level of refinement in the 8D mesh.

Mesh e
D Nrad Nang Ncells r

Current study 0.0012 89 436 38804 1.06

It is possible to observe distinct cylinder responses for this refinement level of the 8D

mesh, both in terms of amplitudes demonstrated by the cylinder movement as well as

in terms of the cylinder movement geometry. Additionally, the cylinder response for the

current refinement level is similar to one obtained when using a 20D mesh, subject that

will be discussed in section 6.3.1.

Table 6.5 shows the in-line and the transversal cylinder oscillation amplitude rela-

tively to flow direction and the x maximum initial cylinder displacement. In this table is

also illustrated the cylinder 8-motion respective to the last cycle for each frequency ratio.

For the first studied frequency ratio with this mesh refinement level,
fn
f0

= 0.5, the

variables amplitudes are amplified when compared with cylinder response demonstrated

in section 6.1 for the original 8D mesh. The geometric center of oscillation remains sim-

ilar to the one obtained for the 8D mesh demonstrated in section 6.1, corresponding to

x = 1.6. The differences between both analysis are related with the cylinder horizontal os-

cillation, namely, the oscillatory movement of the cylinder and the oscillation amplitudes

orthogonal to the flow movement, which are between −0.4 and 0.4 for this refinement

level, are not so focused as previously obtained.
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Table 6.5: Fundamental quantities and 8-motion last cycle of the 8D mesh.

fn
f0

Ymax,osc Xmax,osc Xmax 8-motion

0.5 0.5474 0.3189 1.9177

0.9 0.6941 0.1571 0.9873

1.0 0.6831 0.1340 0.8459

1.1 0.6988 0.1388 0.7691

1.3 0.7324 0.5362 0.6405

1.4 0.6662 0.4235 0.5060

1.5 0.6042 0.2231 0.4300

1.6 0.4961 0.2366 0.3569

2.5 0.0626 0.0350 0.2055
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Regarding the frequency ratio of
fn
f0
= 0.9 the cylinder oscillation displayed an oscilla-

tory movement very similar to the original analysis, having the cylinder moved around

the geometric oscillation center located lightly more to the left in about 0.9 to the right of

the referential origin. Only the orthogonal amplitudes to the flow movement increased

moderately, with the cylinder oscillating between −0.7 and 0.7.

Concerning the frequency ratio of
fn
f0

= 1.0 illustrated in figure 6.4(e) it is visible

a similar geometry to the one achieved for the 8D mesh in section 6.1. However, the

oscillatory geometric center is located slightly to the right, with a coordinate of about

x = 0.78, keeping the values of the amplitudes obtained very similar to the first study.

The same is true for figure 6.4(g) which shows the cylinder’s response for the frequency

ratio of
fn
f0
= 1.1.

Contrasting to the results obtained for the frequency ratio of
fn
f0

= 1.3 with the 8D

mesh in section 6.1 the obtained response in figure 6.4(i) has similarities with figure 6.6(i)

which exhibits the cylinder movement for the mesh with 20D length. Furthermore, this

fact is verified for the remaining frequency ratios,
fn
f0
= 1.3, fn

f0
= 1.4, fn

f0
= 1.5, fn

f0
= 1.6

and
fn
f0
= 2.5 presented for the given mesh refinement level with the 8D mesh showing,

hence, greater similarities with the results obtained for the 20D mesh.

(a) XY-motion plot of an elastic cylinder for
fn
f0

= 0.5 (b) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 0.5.
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(c) XY-motion plot of an elastic cylinder for
fn
f0

= 0.9 (d) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 0.9.

(e) XY-motion plot of an elastic cylinder for
fn
f0

= 1.0 (f) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.0.

(g) XY-motion plot of an elastic cylinder for
fn
f0

= 1.1 (h) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.1.
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(i) XY-motion plot of an elastic cylinder for
fn
f0

= 1.3 (j) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.3.

(k) XY-motion plot of an elastic cylinder for
fn
f0

= 1.4 (l) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.4.

(m) XY-motion plot of an elastic cylinder for
fn
f0

= 1.5 (n) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.5.
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(o) XY-motion plot of an elastic cylinder for
fn
f0

= 1.6 (p) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.6.

(q) XY-motion plot of an elastic cylinder for
fn
f0

= 2.5 (r) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 2.5.

Figure 6.4: XY-motion plot of an elastic cylinder for a set of frequency ratios for an 8D mesh for

the second level of refinement studied.

6.2.2 8D for third level of refinement

The current section exposes the results for a third level of refinement of the mesh in

order to verify, as was made in section 6.2.1, the influence of the mesh refinement level

in the elastic cylinder motion. Table 6.6 enumerates the characteristics of the mesh used

in this study.

Table 6.6: Geometric parameters for third level of refinement in the 8D mesh.

Mesh e
D Nrad Nang Ncells r

Current study 0.0012 89 536 47704 1.06

Some differences are observed in the amplitudes reached to this level of refinement,
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as it can be observed by the plots in figure 6.2.2. The main difference occurs for the

frequency ratio of
fn
f0
= 0.5 to which corresponds a much greater oscillation amplitude for

the in the parallel and orthogonal directions to the flow displacement when compared

with the previous refinement level.

For other frequency ratios a small difference is observed in the amplitude achieved

in the transverse direction and, in the same way, a small difference is noted for in-line

cylinder movement. It is noticeable, however, that the oscillation center is slightly farther

from the referential origin than for the second level of refinement. This observation is

common to all frequency ratios, with this small difference obtained between the two levels

of refinement. The exception is the frequency ratio of
fn
f0
= 1.6 for which the trajectory of

the cylinder oscillatory movement changes slightly between the two levels of refinement.

(a) XY-motion plot of an elastic cylinder for a second

level of refinement for
fn
f0

= 0.5.

(b) Displacement and lift coefficient curves of an elas-

tic cylinder for a second level of refinement for
fn
f0

=

0.5.

(c) XY-motion plot of an elastic cylinder for a second

level of refinement for
fn
f0

= 0.9.

(d) Displacement and lift coefficient curves of an elas-

tic cylinder for a second level of refinement for
fn
f0

=

0.9.
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(e) XY-motion plot of an elastic cylinder for a second

level of refinement for
fn
f0

= 1.0.

(f) Displacement and lift coefficient curves of an elas-

tic cylinder for a second level of refinement for
fn
f0

=

1.0.

(g) XY-motion plot of an elastic cylinder for a second

level of refinement for
fn
f0

= 1.1.

(h) Displacement and lift coefficient curves of an elas-

tic cylinder for a second level of refinement for
fn
f0

=

1.1.

(i) XY-motion plot of an elastic cylinder for a second

level of refinement for
fn
f0

= 1.3.

(j) Displacement and lift coefficient curves of an elas-

tic cylinder for a second level of refinement for
fn
f0

=

1.3.
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(k) XY-motion plot of an elastic cylinder for a second

level of refinement for
fn
f0

= 1.4.

(l) Displacement and lift coefficient curves of an elas-

tic cylinder for a second level of refinement for
fn
f0

=

1.4.

(m) XY-motion plot of an elastic cylinder for a second

level of refinement for
fn
f0

= 1.5.

(n) Displacement and lift coefficient curves of an elas-

tic cylinder for a second level of refinement for
fn
f0

=

1.5.

(o) XY-motion plot of an elastic cylinder for a second

level of refinement for
fn
f0

= 1.6.

(p) Displacement and lift coefficient curves of an elas-

tic cylinder for a second level of refinement for
fn
f0

=

1.6.
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(q) XY-motion plot of an elastic cylinder for a second

level of refinement for
fn
f0

= 2.5.

(r) Displacement and lift coefficient curves of an elas-

tic cylinder for a second level of refinement for
fn
f0

=

2.5.
Figure 6.5: XY-motion plot of an elastic cylinder for a set of frequency ratios for an 8D mesh for

the third level of refinement studied

6.3 Distinct oscillation cylinder geometries for different mesh

dimensions

The blockage effect is influenced by the distance between the cylinder and the re-

spective boundaries parallel to the direction of the flow. The boundary walls induce the

flow confinement by increasing the flow rate and decreasing the respective value of the

pressure field which subsequently influences the cylinder movement. It was conducted a

study about the influence that the distance of the boundary walls to the cylinder have in

its respective movement for two DOF in a mesh with domain size of 8D, 20D, 500D and

2500D. Having already been presented the study of the flow around the cylinder for two

DOF for the 8D mesh in section 6.2, in the current section is presented the study of the

remaining meshes and the respective comparison between these various domains.

Something that was taken into account for the four differentmeshes developedwas the

size of the element along the cylinder wall, while maintaining the same size, e
D = 0.0012,

regardless of the size of the mesh. It is also important to note that there was the concern

to maintain the progression of equal value for all four scenarios, presenting a progression

value of r = 1.06. Finally, the number of elements along the cylinder wall was also

maintained, with the value of Nrad = 440. The goal of fixing these parameters was to

exclude the possibility of changes in the cylinder response relatedwith the change inmesh

elements near the cylinder wall and in the area where the vortex shedding phenomenon

is developed. Hence, to keep these fixed parameters, the response of the cylinder to these

four different meshes, can only be determined by the change in the domain length. Thus,

it is possible to conclude about how the mesh size influences and alters the response of the

cylinder with two DOF for a flow around it with the characteristics presented in chapter

3.

112



6.3. DISTINCT OSCILLATION CYLINDER GEOMETRIES FOR DIFFERENT

MESH DIMENSIONS

6.3.1 Mesh with 20D

Table 6.7 shows the in-line and the transversal cylinder oscillation amplitude rela-

tively to flow direction and the x maximum initial cylinder displacement for the 20D

mesh. In this table is also illustrated the cylinder 8-motion respective to the last cycle for

each frequency ratio.

Table 6.7: Fundamental quantities and 8-motion last cycle of the 20D mesh.

fn
f0

Ymax,osc Xmax,osc Xmax 8-motion

0.5 0.5636 0.1490 1.8829

0.9 0.7561 0.1734 1.1108

1.0 0.7440 0.1774 0.9853

1.1 0.7260 0.1872 0.8643

1.3 0.7229 0.5419 0.6184

1.4 0.6456 0.4449 0.5172

1.5 0.5334 0.1528 0.3872

1.6 0.4632 0.2125 0.3464

2.5 0.0589 0.0309 0.1972

113



CHAPTER 6. FLOW AROUND A TWO DEGREES-OF-FREEDOM CYLINDER

With the increase of the domain length, from 8D to 20D, some variations in the

cylinder response are evident, proving that only the change of the mesh domain size

influences greatly the cylinder response.

The fact that the cylinder is not in an area so confined, allows the movement to

"release", expanding its movement so that its response is less influenced by the domain

size. Thus, the cylinder movement shall be due more to the interaction between the flow

and the cylinder for this mesh, 20D, than what was observed for the mesh 8D.

In the table 6.8 are described the 20D mesh characteristics. As mentioned above,

the parameters related to the size of the element along the cylinder wall, the number

of elements in the cylinder wall and the progression of the value of the mesh elements

were remained constant, being the size of the mesh from 8D to 20D the only changed

parameter and, consequently, the number of radial elements due to the increase of the

mesh size.

Table 6.8: Geometric parameters of the 20D mesh.

Mesh e
D Nrad Nang Ncells r

Current study 0.0012 106 436 46216 1.06

Thus, by observing the response of the cylinder to the frequency ratio of
fn
f0
= 0.5 in

figure 6.6(a) the motion geometry is preserved, showing the increase of the amplitudes

orthogonal to the cylinder movement for more than double, varying from −0.6 to 0.6,

along with the deviation of the oscillation geometric center in relation to the referential

origin, corresponding to 1.75.

For the frequency ratio of
fn
f0
= 0.9 the amplitudes increase towards the same frequency

ratio for the 8D mesh. No difference is noted in the geometry of the cylinder oscillatory

movement, describing a very similar motion with respect to the 8D mesh. The oscillation

in the direction orthogonal to the flow, registers values ranging between −0.7 and 0.7, and

the oscillation center geometry changes to the position 1.

Concerning the frequency ratio of
fn
f0
= 1.0 the cylinder begins to describe the move-

ment before stabilizing, describing a cyclically movement of an eight. This fact decreases

the oscillation geometric center to the area where the movement is stable. The amplitude

range also increases when compared to the same case analysed for the 8D mesh, having

in the direction orthogonal to the flow a variation of −0.75 to 0.75 with an oscillation

geometric center of 0.8.

Figure 6.6(g) illustrates the cylinder response for the frequency ratio of
fn
f0
= 1.1. The

displayed amplitudes are closer to the ones obtained for the 8D mesh study. The am-

plitudes recorded for the frequency ratio vary in the orthogonal direction to the fluid

between −0.75 and 0.75 with an oscillating geometric center of 0.65.

One of the major differences in the comparison between the 8D and the 20D meshes

study lies in the response of the cylinder to the frequency ratio of
fn
f0

= 1.3. For the
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8D mesh the cylinder response is characterized by a stable movement with amplitudes

and lift coefficient varying between the same values at each oscillation and describing a

movement of a perfectly noticeable eight. While the cylinder motion for the 20D mesh

shows two overlapping frequencies which can be observable in figure 6.6(i).

It is for the frequency ratio of
fn
f0

= 1.4 that both the 8D and the 20D meshes show

the superposition of two different frequencies, causing the effect demonstrated in figure

6.6(l). Among the oscillatory movement caused by the cylinder and demonstrated by

both figures 6.4(k) and 6.6(l) for the 8D and 20D meshes, respectively, it is visible the

difference between both studies.

For figure 6.6(m) it is illustrated the cylinder behaviour for the 20D mesh and for the

frequency ratio of
fn
f0
= 1.5. In this figure are noticeable the similarities with the motion

obtained for the 8D mesh. The large upper circle that ranges, approximately, from 0.15

to 0.35, reaches the same flow orthogonal amplitude for y = 0.5.

The frequency ratio of
fn
f0

= 1.6 is the one that has the greatest similarities with the

cylinder response obtained for the 8D mesh, among the frequency ratios that have two

frequencies superposition,
fn
f0

= 1.3 1.6. The resemblance between the two frequency

responses are a consequence of a symmetrical effect in the x-axis, giving two figures with

a geometry which resembles the geometry of a butterfly.

The figure 6.6(q) shows the geometry achieved by the oscillating movement of the

cylinder for the frequency ratio of
fn
f0

= 2.5. Amplitudes between the responses given

by the cylinder with different meshes, 8D and 20D, are practically the same varying

between −0.06 and 0.06 for the orthogonal movement to the flow and with a geometric

center of 0.07 to the right of the referential origin. The difference lies in the geometry of

the cylinder motion. For the 20D mesh, the geometry of the movement both at the top

and at the bottom is characterized by an elongation to the right direction in each half

of the eight movement. While for the 8D mesh the cylinder describes a symmetrically

motion in the x-axis which resembles the perfect geometry of a tear.

(a) XY-motion plot of an elastic cylinder for
fn
f0

= 0.5 (b) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 0.5.
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(c) XY-motion plot of an elastic cylinder for
fn
f0

= 0.9 (d) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 0.9.

(e) XY-motion plot of an elastic cylinder for
fn
f0

= 1.0 (f) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.0.

(g) XY-motion plot of an elastic cylinder for
fn
f0

= 1.1 (h) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.1.
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(i) XY-motion plot of an elastic cylinder for
fn
f0

= 1.3 (j) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.3.

(k) XY-motion plot of an elastic cylinder for
fn
f0

= 1.4 (l) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.4.

(m) XY-motion plot of an elastic cylinder for
fn
f0

= 1.5 (n) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.5.
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(o) XY-motion plot of an elastic cylinder for
fn
f0

= 1.6 (p) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.6.

(q) XY-motion plot of an elastic cylinder for
fn
f0

= 2.5 (r) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 2.5.

Figure 6.6: XY-motion plot of an elastic cylinder for a set of frequency ratios for the 20D mesh.

6.3.2 Mesh with 500D

Table 6.9 shows the in-line and the transversal cylinder oscillation amplitude rela-

tively to flow direction and the x maximum initial cylinder displacement for the 500D

mesh. In this table is also illustrated the cylinder 8-motion respective to the last cycle for

each frequency ratio.

This section presents the responses given by the cylinder to a mesh with size 500D.

In the table 6.10 are shown the 500D mesh characteristics. As previously described, the

only changed parameter was the domain dimension to 500D and the respective number

of elements in the radial direction, Nrad . The parameters corresponding to the size of

the element along the cylinder wall, the number of elements in the cylinder wall and the

progression value of the elements in the radial direction in the direction of the domain

external border to the cylinder boundary, are unchanged when compared to the studies
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Table 6.9: Fundamental quantities and 8-motion last cycle of the 500D mesh.

fn
f0

Ymax,osc Xmax,osc Xmax 8-motion

0.5 0.6869 0.1212 2.1212

0.9 0.7941 0.2181 1.2439

1.0 0.7853 0.1948 1.0440

1.1 0.8246 0.4777 0.9308

1.3 0.7146 0.5299 0.6169

1.4 0.6411 0.3539 0.4896

1.5 0.5345 0.1487 0.3817

1.6 0.4562 0.0824 0.3419

2.5 0.0501 0.0250 0.1943
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for 8D and 20D mesh sizes.

Table 6.10: Geometric parameters of the 500D mesh.

Mesh e
D Nrad Nang Ncells r

Current study 0.0012 162 436 70632 1.06

As observed for the mesh 20D, the variation of the domain size impacts greatly the

obtained cylinder motion. In fact, there are significant differences in the responses given

by the cylinder for the mesh with the size of 500D when compared to the results obtained

for 8D and 20D meshes. Particularly, for the frequency ratio of
fn
f0

= 0.5 the cylinder

response sketched in plot 6.7(a) has an eight form. For the previously study meshes with

smaller domain size it was observed that the cylinder motion for this specific frequency

ratio was almost only in the orthogonal direction to the movement of the flow, varying

very little in the orthogonal direction, even after stabilizing.

The amplitude of the movement described by the cylinder for the frequency ratio

of
fn
f0

= 0.5 varies between −0.7 and 0.7 orthogonally to the motion of the flow. For the

meshes 8D and 20D these range of amplitudes were achieved from the frequency ratio of
fn
f0
= 0.9. Nevertheless, the cylinder geometric center of oscillation increased once again

the distance between it and the referential origin being positioned roughly at 2.1 to the

right of the origin of the referential.

Figure 6.7(c) shows the response of the cylinder for the frequency ratio of
fn
f0

= 0.9

with a mesh size of 500D. Comparing with the cylinder response for the 20D mesh, the

cylinder oscillation center is located almost at the same distance from the origin of the

referential being at approximately x = 1. The amplitude in the parallel direction to the

flow displacement varies between 0.85 and 1.1, slightly higher than the one obtained for

the 20D mesh. Regarding the orthogonal oscillation amplitude, it varies between −0.8
and 0.8 being, hence, slightly higher than the amplitude achieved for the 20D mesh.

For the frequency ratio of
fn
f0
= 1.0 the obtained cylinder response has several similari-

ties with the results achieved for 8D and 20D meshes. Specifically, the geometric center

of oscillation is situated at x = 0.8, the oscillation amplitude orthogonal to the flow ranges

between −0.8 and 0.8. The amplitude of the oscillation parallel to the flow displacement

direction varies between 0.68 and 0.9, being slightly higher and forming a movement

with a broader form of an eight than the one observed for smaller domain sizes.

Figure 6.7(g) represents the cylinder response at the frequency rate of
fn
f0
= 1.1. The

cylinder answer for the 500D size mesh is quite different from what was achieved for the

20D mesh. The initiation of the oscillatory motion occurs at x = 0.75 and the amplitude

of the 8-motion parallel to the flow displacement varies between 0.67 and 0.84. As a

full eight movement is performed in each cycle, the geometric center moves closer to the

reference origin until a peak of the lift coefficient at time t = 105s, fact that is observable

in plot 6.7(h). The occurrence of this peak induces a complete change in the intersection
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point between the cylinder motion curve and the x axis, shifting suddenly the geometric

oscillation point nearest to the referential origin and changing the oscillation amplitude

in the parallel direction to the flowmotion between 0.37 and 0.8. It is with this oscillatory

movement that the cylinder stabilizes for this frequency ratio at t = 150s, keeping the

amplitude of the lift coefficient constant as well as the amplitude according to the y and

x axis in the temporal graph.

Figure 6.7(i) shows the cylinder’s response for the frequency ratio of
fn
f0

= 1.3. The

obtained response is very similar to the one obtained for the 20D mesh. There are two

overlapping frequencies and, hence, two types of overlapping movement as well. It is

perceptible the cylinder 8-motion which ranges between 0.26 and 0.36 along the x axis

and between −0.5 and 0.5 along the y axis, among the agglomerate of plot lines which

translate the cylinder motion.

Just as for the previously described frequency ratio, the cylinder motion obtained for

the frequency ratio
fn
f0
= 1.4 for the current mesh, shown in plot 6.7(k), is very similar to

the results achieved for the 20D mesh.

For the frequency ratio of
fn
f0
= 1.5 and

fn
f0
= 1.6 there is a clear tendency for the cylinder

to describe the movement in an eight shape, as can be seen by the dark areas in plots

6.7(m) and 6.7(o), respectively. This fact is visible fot the frequency ratio of
fn
f0
= 1.5 after

the oscillation stabilization at t = 180s. As for the frequency ratio
fn
f0
= 1.6 there is a clear

tendency for the amplitude of the coefficients and motion values to tend towards the

same oscillation maximum values.

For the frequency ratio of
fn
f0
= 2.5, which is illustrated in figure 6.7(q), the amplitudes

values according to the orthogonal and to the parallel direction of the flow motion as

well as the position of the oscillation geometric center remain very similar to what was

obtained for the 20D mesh. Once more, the difference lies in the movement geometry.

For 500D it is verified that the upper and lower circular movements are not so inclined

to the right side as the 20D ones, representing better the figure of an eight.

(a) XY-motion plot of an elastic cylinder for
fn
f0

= 0.5 (b) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 0.5.
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(c) XY-motion plot of an elastic cylinder for
fn
f0

= 0.9 (d) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 0.9.

(e) XY-motion plot of an elastic cylinder for
fn
f0

= 1.0 (f) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.0.

(g) XY-motion plot of an elastic cylinder for
fn
f0

= 1.1 (h) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.1.
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(i) XY-motion plot of an elastic cylinder for
fn
f0

= 1.3 (j) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.3.

(k) XY-motion plot of an elastic cylinder for
fn
f0

= 1.4 (l) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.4.

(m) XY-motion plot of an elastic cylinder for
fn
f0

= 1.5 (n) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.5.
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(o) XY-motion plot of an elastic cylinder for
fn
f0

= 1.6 (p) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.6.

(q) XY-motion plot of an elastic cylinder for
fn
f0

= 2.5 (r) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 2.5.

Figure 6.7: XY-motion plot of an elastic cylinder for a set of frequency ratios for the 500D mesh.

6.3.3 Mesh with 2500D

Table 6.11 shows the in-line and the transversal cylinder oscillation amplitude rela-

tively to flow direction and the x maximum initial cylinder displacement for the 2500D

mesh. In this table is also illustrated the cylinder 8-motion respective to the last cycle for

each frequency ratio.

The current section presents the cylinder response using a 2500D mesh, which was

previously used to study the fixed and the one DOF cylinder. The obtained results will

be compared with the data achieved for the 8D, 20D and 500D meshes. Table 6.12

presents the 2500D mesh characteristics. This mesh corresponds to the mesh chosen to

perform the analysis described in section 4.1 and in section 5.1. Furthermore, the mesh

parameters which define the length of the element along the wall of the cylinder, the

number of elements in the wall of the cylinder and the elements progression in the radial
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Table 6.11: Fundamental quantities and 8-motion last cycle of the 2500D mesh.

fn
f0

Ymax,osc Xmax,osc Xmax 8motion

0.5 0.7145 0.1283 2.2459

0.9 0.8013 0.2162 1.2389

1.0 0.7914 0.1997 1.0520

1.1 0.8235 0.6888 0.9167

1.3 0.7182 0.5260 0.6074

1.4 0.6408 0.4180 0.4896

1.5 0.5319 0.1132 0.3915

1.6 0.4743 0.2282 0.3588

2.5 0.0487 0.0251 0.2046
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direction towards the outside to the cylinder wall are equal to the defined for the prior

8D, 20D and 500D meshes. Hence, the number of elements in the radial direction is for

the 2500 mesh is 440.

Table 6.12: Geometric parameters of the mesh 2500D.

Mesh e
D Nrad Nang Ncells r

Current study 0.0012 189 436 82404 1.06

The meshes with the domain size of 500D and 2500D show the most similar results

in the comparative study performed in the present section, with the cylinder response

ranging very little between both these domain sizes.

The answer given by the cylinder for the frequency ratio of
fn
f0
= 0.5 for the 2500Dmesh

is nearly equal to the answer given by the cylinder for the same value of frequency ratio

for the 500D mesh. The motion geometry is very similar and as well as the amplitudes

variation in the orthogonal direction to the flow motion. It is only observable the slight

change of the oscillation geometric center to the right, stabilizing at x = 2.2.

For the frequency ratios of
fn
f0

= 0.9 and
fn
f0

= 1.0 differences between the 500D and

2500D meshes are even smaller. Having the same oscillation motion geometry, the same

value oscillation geometric center and the same amplitudes.

Concerning the
fn
f0

= 1.1 frequency ratio, the movement geometry of the cylinder

response for the 2500D mesh is shown in plot 6.8(g) which, as referred for the previous

frequency ratios, is very similar to the plot 6.7(g) obtained for the 500D mesh, keeping the

same amplitude range. The main difference occurs at the lift coefficient maximum peak,

which only occurs for the 2500D mesh for the time t = 165s. This means that the first

8-motion is extended for the current case. This fact is visible by comparing the plots for

both 2500D and 500D meshes by which it is also possible to conclude that motion before

the lift coefficient maximum peak is enhanced due to increase of the cylinder passing

through that zone.

Figure 6.8(i) and 6.7(i) show the cylinder displacement for the frequency ratio
fn
f0
= 1.3

for the 2500D and 500D meshes, respectively. By the analysis of both figures it is possible

to ascertain that the cylinder movement is very similar between both meshes. The same

applies for the frequency ratio of
fn
f0
= 1.4, for which, as shown in figures 6.8(k) and 6.7(k),

the cylinder response is also very similar between the 2500D and 500D meshes.

Regarding the frequency ratio of
fn
f0
= 1.5, by analysing plots 6.8(m) and 6.8(n) with

comparing with the respective plots for the 500D mesh it is observable that the oscillatory

motion stabilization occurs earlier for the 500D mesh than for the 2500D mesh. Conse-

quently, it is possible to identify the cylinder movement path darkened in figure 6.8(n).

The stabilization of the vortex shedding phenomenon and its parameters, such as the lift

coefficient shown in figure 6.8(n) which influences the oscillatory motion of the cylinder,

takes place from the time t = 85s.
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The difference between the cylinder oscillatory motion for the frequency ratio of
fn
f0

= 1.6 between the 500D and the 2500D meshes lies in the parameters stabilization,

namely, the stabilization of the lift coefficient and of the cylinder oscillation amplitudes in

the x and y directions shown in fig 6.8(r) and 6.7(p). For the 500D mesh, the parameters

stabilization tends towards a given range of oscillation in which each oscillation cycle

of the cylinder always achieves the same value. Contrasting, for the 2500D mesh it is

noticeable the tendency to keep the two overlapping frequencies present in the oscillation

cycles, repeating the values cycle after cycle without having any tendency to soften the

parameter values, such as the lift coefficient. This fact justifies why for the 500D mesh

it is observable an oscillatory movement which describes a better eight shape, which

is visible through the most darkened area due to the cylinder repeated passes through

these areas. Whereas for the 2500D mesh the path of the cylinder undergoes various

distinct movements and with different amplitudes forming the image shown in figure

6.8(q) agglomerated with various distinguished paths from each other.

For the frequency ratio of
fn
f0

= 2.5 the response of the cylinder for the 2500D mesh

is very similar when compared to the 500D mesh, with the same oscillatory motion

geometry, the same amplitude and the same position of the oscillatory geometric center.

(a) XY-motion plot of an elastic cylinder for
fn
f0

= 0.5 (b) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 0.5.
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(c) XY-motion plot of an elastic cylinder for
fn
f0

= 0.9 (d) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 0.9.

(e) XY-motion plot of an elastic cylinder for
fn
f0

= 1.0 (f) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.0.

(g) XY-motion plot of an elastic cylinder for
fn
f0

= 1.1 (h) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.1.
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(i) XY-motion plot of an elastic cylinder for
fn
f0

= 1.3 (j) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.3.

(k) XY-motion plot of an elastic cylinder for
fn
f0

= 1.4 (l) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.4.

(m) XY-motion plot of an elastic cylinder for
fn
f0

= 1.5 (n) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.5.
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(o) XY-motion plot of an elastic cylinder for
fn
f0

= 1.6 (p) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.6.

(q) XY-motion plot of an elastic cylinder for
fn
f0

= 2.5 (r) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 2.5.

Figure 6.8: XY-motion plot of an elastic cylinder for a set of frequency ratios for the 2500D mesh.

6.3.4 Comparison of the cylinder displacement amplitude between the 8D,

20D, 500D and 2500Dmeshes

Figure 6.9 illustrates the cylinder transverse displacements for different mesh sizes for

the elastic cylinder with two DOF for each frequency ratio studied in the current study.

With the decrease of the frequency ratio the reduced velocity increases, given that these

dimensions are inversely proportional. Similarly to what was referred in chapter 5, for

low reduced velocity values the values of the transverse amplitude are very similar for

the different mesh sizes. With the increase of the reduced velocity these values tend to be

farther from each other, observing a clear approximation of the values between the 8D

and the 20D meshes where the lock-in effect greatly influences the the cylinder response.

Divergently, for the 500D and 2500D mesh the impact of the lock-in effect is negligible.

From the frequency ratio of
fn
f0
= 1.3 until

fn
f0
= 0.5 it is evident the influence of the mesh
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size in the transverse amplitude obtained for an elastic cylinder with two DOF. Finally,

it is possible to conclude that the cylinder displacement increases with the expansion of

the mesh domain size for the sizes studied in this thesis.

Figure 6.10 shows the cylinder displacement along the x axis after the stabilization

of the oscillatory motion. In this plot it is observed an order in the values with the

several values of the studied mesh sizes. In fact, there is a consistent relation between the

values order and the order of the mesh size. However, no trend is evident regarding the

increasing of the reduced velocity or decreasing of the the frequency ratio as noted above.

In plot 6.11 are sketched the initial cylinder displacement along the x axis until the

cylinder motion stabilizes and start to oscillate with a given frequency. For low reduced

velocity, that is, for greater values of frequency ratio it is not visible the displacements

achieved between the several mesh sizes. It is just from the frequency ratios of
fn
f0
= 1.3

until
fn
f0
= 0.5 that the employment of meshes with different sizes impacts the obtained

results. Thereby, it is possible to conclude that the cylinder displacement increases which

the increase of the mesh domain size used for the four mesh sizes studies in this thesis.

Figure 6.9: Y maximum cylinder displacement after the cylinder displacement stabilization for
the 8D, 20D, 500D and 2500D meshes .
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Figure 6.10: X maximum cylinder displacement after the cylinder displacement stabilization for
the 8D, 20D, 500D and 2500D meshes .

Figure 6.11: X maximum cylinder initial displacement between the 8D, 20D, 500D and 2500D
meshes.
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7
Conclusions

The main goal of this thesis is the validation of the OpenFOAM numerical code to

solve the problem of a flow around a two DOF cylinder. The OpenFOAM software as an

high potential in the CFD context, given that it is a free usable tool which provides its

user the power and versatility to adapt and/or build his own case of study. In order to

achieve this goal, and given that there are a scarce number of numerical studies about the

flow around cylinders with two DOF, it were defined a set of steps to validate the used

methodology and, hence, only afterwards perform the study for a flow around an elastic

cylinder with two DOF, analysis described in chapter 6.

With the previous considerations in mind, this thesis begins by studying a flow around

a fixed cylinder, which is presented in the chapter 4. In this chapter it was performed a

mesh independence study, which examined the dependence of the simulation fundamen-

tal quantities, namely, number of Strouhal St, drag coefficient average CD,mean, fluctuation

of the drag coefficient CD,rms and fluctuation of the lift coefficient CL,rms. It is based on

these fundamental quantities that the study of a flow around a cylindrical section is done,

since these values demonstrated good conditions for the captation of the phenomenon

evolution. It was analysed how the fundamental quantities are influenced by the variation

of the mesh refinement, study that is presented in section 4.1.1. The meshes analysed

in this context had fundamental quantities values that are pretty reasonable allowing to

conclude that this study started with a level of refinement which already has associated

a good approximation of the reality. However, it is possible to observe a small improve-

ment of the results as the level of refinement increases. Yet, once the chosen domain

has a 2500D size in order to reduce the blockage effect, the mesh has a very large area

and, for this reason, it was decided to proceed the study with the mesh which output

valid results but required less computational power. To conclude the study for the fixed

cylinder, in order to validate that the 2500D mesh did not impact negatively the achieved
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results, it was analysed the influence of the simulation time-step in the obtained results.

Subsequently, in section 4.1.3 it was performed a convergence analysis of the obtained

results with the variation of the domain size. This analysis compares the results obtained

for a 8D, 20D, 500D and 2500D and allows to conclude that the fundamental quantities

tend to decrease with the increase of the domain size. With the intention of validate

the comparative study with T. Li and Zhu (2009) for a two DOF cylinder described in

chapter 6, it were evaluated in section 4.1.4 three different levels of mesh refinement for

the mesh with size 8D, which has the same size as the one used by T. Li and Zhu (2009).

It is concluded, as expected, that the 8D mesh is fitted to study the interactions of a flow

in a fixed cylinder. Moreover, the results for the comparative analysis made in section 4.2

shows a good coherence with the similar studies describe in the literature.

Chapter 5 describes the study which analyses a flow around a cylinder with one DOF

orthogonal to the direction of the flow motion. The results obtained from this study

were, then, compared with the ones described by Conde and Lopes (2015). It was studied

the cylinder response for two distinct types of system: mass-spring and spring-mass-

damper system, subject that was also studied by Conde and Lopes (2015). Congruently

to what was concluded by Conde and Lopes (2015), both simulations demonstrate similar

results with a consistency in the responses given by the cylinder. Nevertheless, the study

performed in this thesis uses a 2500D mesh, which properties are describe in chapter

4, whereas Conde and Lopes (2015) used a 50D mesh, which has a great bias due to

the proximity of the cylinder to the domain boundary which, consequently, induces the

development of the simulation blockage effect. The occurrence of this phenomena for a

50D mesh is the main reason of the differences found between the study developed in

this thesis and the results demonstrated by Conde and Lopes (2015). At an early stage,

until roughly the reduced velocity of U ∗ = 4, the cylinder maximum oscillation, drag

coefficient average and lift coefficient assume lower values for the current study than

the ones achieved by Conde and Lopes (2015). This fact allows to conclude that that

until U ∗ = 4 the increase of the cylinder oscillation amplitude is related with the size

of the used mesh domain. This can be related with the fact that with the increment of

the domain size the presence of the cylinder has lower impact in the fluid flow since

the fluid is less "confinement". With this in mind, to greater meshes correspond lower

flow velocities near the cylinder and, hence, a higher pressure field. This way, from the

reduced velocity of U ∗ = 4.5 until U ∗ = 6.5 the cylinder oscillation amplitude continues

to rise, until it reaches its maximum peak for U ∗ = 6.5, as it can be observed by figure

5.6(b). Furthermore, in figure 5.6(b) it is also possible to conclude that from the reduced

velocity of U ∗ = 4.5 to U ∗ = 7.5 a particular behaviour in the cylinder oscillation which

the 50D domain used by Conde and Lopes (2015) was not able to capture. From the

reduced value of U ∗ = 8 it is visible for the study performed in this thesis with a 2500D

domain the same behaviour observed from the reduced value of U ∗ = 4 for the analysis

made by Conde and Lopes (2015).

In chapter 6 it was studied a flow around the cylinder with two DOF. This study was
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based on the study developed by T. Li and Zhu (2009). This study uses a 8D mesh and,

therefore, to allow the comparison between the results described by T. Li and Zhu (2009)

and the ones obtained in the current thesis, the study for the two DOF proceeded with a

mesh which size was 8D in an orthogonal direction to the fluid flow motion. The analysis

developed by T. Li and Zhu (2009) focused on the frequency ratios of
fn
f0
= 0.5, fnf0 = 0.9, fnf0 =

1.0, fn
f0
= 1.1, fn

f0
= 1.3, fn

f0
= 1.4, fn

f0
= 1.5, fn

f0
= 1.6 and

fn
f0
= 2.5. For each of these frequency

values it were determined the parameters which characterize the simulation, such as the

natural frequency, the reduced speed and the spring elasticity constant. By using the

vortex shedding value in the frequency ratio equation it was extracted the parameters

values used by T. Li and Zhu (2009). The results outputted from this analysis show a

good agreement with the data described by T. Li and Zhu (2009), with similar amplitude

ranges for each frequencies ratio and with similar oscillatory motion geometry. The major

difference between both studies is the symmetry of the cylinder described motion, which

shows a good symmetry in the current thesis contrasting with the asymmetric motion

obtained by T. Li and Zhu (2009). This asymmetry referring to the responses given by

the cylinder, was demonstrated in section 6.1.1 where the same asymmetry that T. Li and

Zhu (2009) describes is achieved. This analysis sustains the conclusion that one possible

cause of the motion asymmetry is related to the asymmetry of the mesh itself causing

the asymmetry of the flow and its asymmetry in the cylinder response. Therefore, it

highlights how important it is to ensure the symmetry of the mesh when simulating a

symmetrical flow. To this end, it were presented some possibilities to ensure the symmetry

of the mesh, especially the use of tools able to mirror the respective positions of all mesh

elements according to a given symmetry axis. Subsequently, it was analysed how the

refinement level of the 8D mesh impacts the obtained cylinder oscillatory motion. For

that, it were developed three meshes with distinct refinement levels. From the evaluation

of the results achieved with these three different meshes it is possible to identify some

difference between them. Nevertheless, this study does not invalidate the mesh with

the finer refinement which was used to perform the comparison study with the result

described by T. Li and Zhu (2009). In fact, the mesh used by T. Li and Zhu (2009) has a

lower refinement level than the one used in this thesis and, given that one of the goals

was to mimic the results obtained by T. Li and Zhu (2009) it makes more sense to perform

the analysis with the mesh with lower refinement level.

Lastly, it was evaluated the impact of the mesh size in the development of the blockage

effect for a cylinder interacting with a flow with two DOF. For that it were used meshes

with four different sizes: 8D, 20D, 500D and 2500D. The results obtained for each one of

the meshes were then compared. Similarly, to what was concluded for a cylinder with one

DOF, the increase of the domain size has associated the increase of the cylinder oscillation

amplitude. For low reduced velocity values, it is verified the approach between the

values of the oscillation amplitude orthogonal to the flow displacement. However, as the

reduced velocity values increase, i.e. as the frequency ratio lowers, the difference between
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the amplitude of the cylinder oscillation motion regarding the orthogonal direction of

the fluid displacement become increasingly pronounced. Nonetheless, this effect is only

visible for the amplitudes regarding the direction orthogonal to the flow displacement, for

the oscillation amplitudes towards to the parallel direction of the flow it is not perceptible

any tendency.

7.1 Future Work

As a continuation of this study it would be interesting to analyse the cylinder prob-

lem with three DOF. This third degree of freedom should allow the cylinder rotation

through the z axis and the respective momentum applied to the cylinder by the vortex

shedding phenomena. Additionally, it would be interesting to evaluate how this third

DOF would influence the answer given by the cylinder induced by the interaction with

the flow displacement. This study is similar to the one performed to evaluate the cylinder

displacement along the y axis for one and two DOF. Furthermore, this study will be a

pioneer since there is no information in the literature about a similar study with three

DOF until this date.

It would also be interesting to study for two DOF the answer given by the cylinder for

the same values of reduced velocities studied for the cylinder with one DOF, in order to

perform a comparative study between the responses given by the cylinder for both types

of problem configuration.

As additional work, it would also be interesting to elongate the simulation time for

the cylinder with two DOF, mainly for the cases in which it was detected the frequen-

cies overlap. This would allow, for instance, to verify if eventually these cases stabilize

somewhere in time, if the cylinder motion stabilizes so it describes an 8-motion or if the

cases where several frequencies are superimposed the corresponding reduced velocities

at which the movement described is maintained as it was shown in this thesis.

Lastly, in the same context, it would also be interesting to add the cylinder responses

for the frequency ratios between 1.6 and 2.5, performing, this way, the connection be-

tween these two responses with the various responses that were already analysed in this

thesis.
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Results obtained by T. Li and Zhu (2009) for

a cylinder with XY-motion

(a) XY-motion plot of an elastic cylinder for
fn
f0

=

0.5.

(b) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 0.5.

(c) XY-motion plot of an elastic cylinder for
fn
f0

=

0.9

(d) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 0.9.
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(e) XY-motion plot of an elastic cylinder for
fn
f0

=

1.0

(f) XY-motion plot of an elastic cylinder for
fn
f0

=

1.1

(g) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.1.

(h) XY-motion plot of an elastic cylinder for
fn
f0

=

1.3

(i) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.3.
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(j) XY-motion plot of an elastic cylinder for
fn
f0

=

1.4

(k) XY-motion plot of an elastic cylinder for
fn
f0

=

1.5

(l) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.5.

(m) XY-motion plot of an elastic cylinder for
fn
f0

=

1.6

(n) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 1.6.
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(o) XY-motion plot of an elastic cylinder for
fn
f0

=

2.5

(p) Displacement and lift coefficient curves of an elas-

tic cylinder for
fn
f0

= 2.5.

Figure A.1:Obtained results by T. Li and Zhu (2009) for XY-motion of an elastic cylinder for a set

of frequency ratio and respective displacement and lift coefficient curves.
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