K-shell width, fluorescence yield, and K_{β}/K_{α} intensity ratio calculation for Fe in the Dirac-Fock approach

This content has been downloaded from IOPscience. Please scroll down to see the full text.

(http://iopscience.iop.org/1742-6596/635/9/092094)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 193.136.124.152
This content was downloaded on 28/03/2017 at 17:56

Please note that terms and conditions apply.

You may also be interested in:

Average fluorescence yields for multiply-ionized neon
C P Bhalla

Higher order resonant intershell electronic recombination for highly charged ions
P H Mokler, C Beilmann, S Bernitt et al.

Calculations on the hyperfine constants of the ground states for lithium-like system
Wu Xiao-Li, Yu Kai-Zhi, Gou Bing-Cong et al.

Oxygen and Nitrogen Fluorescence EXAFS Measurements by Gas Scintillation Proportional Counters
Satoshi Maeyama, Munehiro Sugiyama, Masaharu Oshima et al.

Resonant Raman scattering and inner-shell hole widths in Cu, Zn and Ho
K Hamalainen, S Manninen, P Suortti et al.

K-shell ionization of Al induced by ions near the threshold energy
Xing Wang, Yongtao Zhao, Rui Cheng et al.

Multiplet fluorescence yields for double K-shell vacancy configurations of neon
C P Bhalla

Relativistic calculation of K-, L- and M-shell x-ray fluorescence yields for Ba
T I Madeira, J M Sampaio, M Guerra et al.
K-shell width, fluorescence yield, and K_{β}/K_{α} intensity ratio calculation for Fe in the Dirac-Fock approach

J. P. Marques*, M. Guerra†, F. Parente†, J. P. Santos†, P. Indelicato†, J. M. Sampaio*

* BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal

† Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Monte da Caparica, 2892-516 Caparica, Portugal

Synopsis K-shell fluorescence yield, width, and K_{β}/K_{α} intensity ratio for Fe are calculated using the Dirac-Fock approach. Results are compared with available data.

The knowledge of accurate values of atomic decay rates and fluorescence yields is fundamental in quantitative analysis in X-ray spectroscopy, plasma physics, nuclear physics, dosimetry, radiation protection, among many other areas [1]. Despite the increasing number of theoretical and experimental work concerning the determination of fluorescence yields for several elements, the available data are still scarce. Iron is one of the most abundant elements in the universe and is of extreme importance in the analysis of stellar objects like stars and galaxies. Iron spectral lines are used in plasma diagnostics and help us to know physical properties such as temperature and electron density as well as for abundance studies [2].

In this work, we present a relativistic calculation of the K-shell width, fluorescence yield and K_{β}/K_{α} intensity ratio in Fe using the multi-configuration Dirac-Fock (MCDF) code of Desclaux and Indelicato [3, 4]. The code was used in a single-configuration approach, with Breit interaction and the vacuum polarization terms included in the self-consistent field calculations, and other QED effects included as perturbations.

Since iron has an open outer shell (3d6), electron coupling leads to 348105 possible radiative and radiationless transitions from the initial K hole configuration. Preliminary results for the K-shell fluorescence yield, width and K_{β}/K_{α} intensity ratio are consistent with the available data (Table 1).

This work was supported by FCT Project PEstOE/FIS/UI0303/2011, Portugal. We also thank the Allianz Program of the Helmholtz Association, contract No. EMMI HA-216 Extremes of Density and Temperature: Cosmic Matter in the Laboratory. BioISI is supported by the centre grant UID/MULTI/04046/2013 from FCT/MCTES/PIDDAC, Portugal.

References

Table 1. K-shell fluorescence yield (\(\omega_K\)), width (eV), and K_{β}/K_{α} intensity ratio for iron

<table>
<thead>
<tr>
<th></th>
<th>(\omega_K)</th>
<th>width</th>
<th>(K_{\beta}/K_{\alpha})</th>
</tr>
</thead>
<tbody>
<tr>
<td>This work</td>
<td>0.378</td>
<td>1.14</td>
<td>0.134</td>
</tr>
<tr>
<td>McGuire</td>
<td>0.386</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krause</td>
<td>0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campbell</td>
<td>0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carreras et al [8]</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scofield [9]</td>
<td>0.139</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jankowsky et al [10]</td>
<td>0.134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bé et al [11]</td>
<td>0.142</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E-mail: jmmarques@fc.ul.pt

Published under licence by IOP Publishing Ltd