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Abstract 

 

The main goal of this investigation is to characterize the turbulent structures in compound 

channel flows considering two geometrical conditions, a simple asymmetric compound channel 

and the same compound channel but with the placement of rods on the upper bank.  

For the simple asymmetric compound channel, three different water depths were 

analyzed, one corresponding to deep flows and two corresponding to shallow flows. For the 

compound channel with rods, three different spacing between elements were studied, including 

two different water depths for each spacing condition.   

The measurements were taken with a 2D Laser Doppler Velocimiter, at 9.0 m from the 

inlet for simple compound channel. For the compound channel with rods, three cross-section 

around 9.0 m from the inlet of the channel were measured, corresponding to locations 

downstream of the rod, in the middle of two rods and upstream of the rod. The measurements 

were performed under quasi-uniform flow condition and streamwise and vertical instantaneous 

velocity components were obtained.  

The raw data was filtered and processed in order to estimate the time-averaged 

velocities U and W, the turbulent intensities U' and W', Reynolds stress ''wu , streamwise 

integral length scale Lx, turbulence dissipation rate ε and Taylor’s micro scale x. Taylor's frozen 

field hypothesis was adopted in order to transform the time record into a space record, using a 

convection velocity Uc. The autocorrelation function was built and the integral length scale 

estimated using three different stop methods of the integral: the second zero of the 

autocorrelation function, the first minimum, and assuming the integral length scale as 

the wavenumber value when the autocorrelation function reaches 1/e (this was concluded to be 

the most consistent method). For estimating the dissipation rate, the following methods were 

used: from the third order structure function, from the second order structure function and 

finally, and from the energy spectrum of the velocity (this was concluded to be the most 

consistent method).   

In the case of a simple compound channel, the deep flows are characterized by macro 

vortices with streamwise axis between the interface and main channel and between interface and 

floodplain, having a notable separation in the "main channel vortex" and the "floodplain 

vortex" meeting, due the double shear layer of the streamwise depth-averaged velocity. Shallow 

flows are characterized by macro vortices with vertical axis confined between the interface and 

main channel and originated by the depth average velocity gradient between the main channel 

and floodplain. A clear linear relation exists between the streamwise integral length scale, 

Lx, the dissipation rate, ε, and the streamwise turbulent intensity U’. Contrary to 2D 
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fully developed open-channel flow equations that relation appears to be constant for all 

water depths. 

For the compound channel with rods, new turbulent structures are generated due the 

interaction between rods and flow. Downstream of rods, the horseshoes-vortex system is 

perfectly observed and a strong descendant flow dominate both sides of rod, turning invalid the 

universal laws for 2D fully developed open-channel flows. The integral length scale presents 

almost constant values in the vertical direction, which indicates that the wakes generated by the 

rods influence the entire water column. The turbulent microscale and dissipation rate acquire a 

streamwise variation due to the vortex propagation in the downstream direction, both presenting 

higher values than the ones corresponding to 2D flows. 
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Resumo 

O principal objetivo desta investigação é a caracterização das estruturas turbulentas em 

escoamentos em canais de secção composta tendo em consideração duas condições geométricas: 

um simples e outro com elementos cilíndricos na parte superior do talude. 

Para tal, três alturas diferentes de água foram analisadas para o caso do canal simples, 

uma altura correspondente a escomento profundos “deep flows” e dois relativos a escoamentos 

rasos “shallow flows”. Para o canal composto assimétrico com elementos cilíndricos, foram 

estudados três espaçamentos entre cilindros e duas alturas de água para cada um dos 

espaçamentos. Os espaçamentos estudados foram S1 = 1m; S2 = 0.2m; e S3 = 0.04m, e os 

elementos cilíndricos colocados foram barras de alumínio de 0.01m de diâmetro e 0.1m de 

comprimento. 

Foi utilizado um Laser Doppler Velocimeter 2D para a realização das medições, as quais 

foram realizadas a 9.0m da entrada do canal composto simples. No caso do canal composto com 

elementos cilíndricos, foram medidas três secções transversais localizadas nas proximidades de 

9.0 m desde a entrada, sendo uma secção medida à jusante do elemento, outra secção no meio 

de dois elementos e a última a montante do elemento cilíndrico. As medições foram executadas 

em condições de escoamento quasi-uniforme, obtendo-se as velocidades instantâneas das 

componentes longitudinal e vertical. 

Depois de medir a secção transversal, os dados foram filtrados e processados de forma a 

obter uma estimativa da velocidade média temporal U e W, das intensidades turbulentas U' e W', 

tensões de Reynolds u'w', da macro escala longitudinal Lx, da taxa dissipativa longitudinal εx e 

da micro escala de Taylor's longitudinal x. Para isso, adotou-se a hipótese de Taylor de forma a 

transformar o registo temporal num registo espacial com a implementação de uma velocidade de 

convecção Uc. Neste sentido, a função de autocorrelação foi construída, podendo-se estimar o 

comprimento da macro escala "integral length scale" utilizando três métodos para definir o 

limite superior da integral, nomeadamente, encontrando o segundo zero da função de 

autocorrelação; encontrando o primeiro mínimo da função de autocorrelação; e assumindo o 

valor da macro escala integral como o valor do número de onda quando a função de 

autocorrelação atinge 1/e. No caso da taxa de dissipação, foram utilizados três métodos. A 

estimativa da taxa de dissipação através da função de estrutura de terceiro ordem, através da 

função de estrutura de segundo ordem e, finalmente, a partir do espectro da velocidade. A micro 

escala longitudinal de Taylor foi estimada como uma função da taxa de dissipação turbulenta, 

assumindo um escoamento turbulento isotrópica homogénea incompressível. 

No caso do canal composto simples, os escoamentos profundos "deep flows" são 

caracterizados pela existência de macro vórtices de eixo longitudinal entre a zona da 

interface/leito principal e entre a interface/planície de inundação, existindo uma separação 
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notável na confluência entre o vórtice do leito principal "main channel vortex" e o vórtice da 

planície de inundação "floodplain vortex", devido à dupla camada limite da velocidade média 

em profundidade. Os escoamentos rasos "shallow flows" são caracterizados por macro vórtices 

de eixo vertical confinados entre a interface e o leito principal, os quais são originados pelo 

gradiente da velocidade média em profundidade entre o leito principal e a planície de 

inundação. 

Para o canal composto com elementos cilíndricos, novas estruturas turbulentas são 

geradas devido a interação entre estes elementos e o escoamento. A jusante das hastes, o sistema 

de vórtices em forma de ferradura "horseshoes-vortex system" é perfeitamente observada e um 

forte fluxo descendente domina o escoamento em ambos os lados da haste. No entanto, este 

processo é dissipado na direção longitudinal, onde o comportamento do escoamento começa a 

exibir uma maior interação entre a planície de inundação e o leito principal, até chegar ao 

encontro do seguinte haste. 
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List of Abreviations and Symbols 

 

Latin alphabet 

 

Symbol  Description       Units 

A  Cross-section of the flow     [m
2
] 

B  Channel wide       [m] 

BMC  Main channel width      [m] 

BFP  Floodplain width      [m] 

BI  Interface width       [m] 

Cv  Specific heat       [J/KgºC] 

dm  Measurement control volume diameter    [m] 

D  Rod diameter       [m] 

Dij  Second-order velocity structure function   [m
2
/s

2
] 

DLL  Longitudinal second-order structure function   [m
2
/s

2
] 

DLLL  Longitudinal third-order structure function   [m
3
/s

3
] 

DNN  Transversal second-order structure function   [m
2
/s

2
] 

e  Internal energy       [m
2
/s

2
] 

E  Energy spectrum      [m
3
/s

2
] 

fD  Doppler frequency      [Hz] 

Fr  Froude number       [-] 

g  Gravitational acceleration     [m/s
2
] 

h  Interface depth       [m] 

H  Water depth       [m] 

HMC  Main channel water depth     [m] 

Hr  Relative water depth      [-] 

k  Thermal conductivity; von Kármán constant   [W/mK]; [-] 

ks  Size of the roughness      [m] 

kw  Frequency spectrum or wavenumber    [1/m] 

K  Kinematic energy      [m
2
/s

2
] 

K'  Fluctuation of kinematic energy     [m
2
/s

2
] 

lm  Measurements control volume length    [m] 

L  Macro-scale; channel length     [m]; [m] 

L  Integral timescale      [s] 

Lx  Longitudinal macro-scale     [m] 
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n  Manning number      [sm
-1/3

] 

N  Total number of measured particles    [-] 

p  Pressure       [N/m
2
] 

q  Heat flux       [W/m
2
] 

Q  Heat contained into control volume; discharge   [W/kg];  

r  Period of space       [m] 

R  Autocovariance       [m
2
/s

2
] 

Rh  Hydraulic radius      [m] 

Re  Reynolds number      [-] 

s  Side slope of the bankfull; period of time   [-]; [s] 

S  Spacing between rods      [m] 

SMC  Main channel slope      [-] 

SFP  Floodplain slope      [-] 

S0  Bed slope       [-] 

S'  Skewness       [-] 

t  Time; period of time      [s]; [s] 

tmax  Maximum time in the measurement record   [s] 

T  Temperature of the flow     [ºC] 

T0  Period of time       [s] 

u  Longitudinal instantaneous velocity    [m/s] 

u'  Longitudinal velocity fluctuation    [m/s] 

U  Longitudinal time-average velocity    [m/s] 

Uc  Convection velocity      [m/s] 

UCS  Velocity of the cross-section     [m/s] 

Umax  Maximum velocity      [m/s] 

Usup  Free-surface velocity      [m/s] 

U0  Time-average velocity of the flow    [m/s] 

U*  Friction velocity      [m/s] 

U*(y)  Local friction velocity      [m/s] 

U'; Urms  Longitudinal turbulent intensity     [m/s] 

u'w'  Reynolds stress       [m
2
/s

2
] 

v  Transversal instantaneous velocity    [m/s] 

V  Control volume       [m
3
] 

w  Vertical instantaneous velocity     [m/s] 

w'  Vertical velocity fluctuation     [m/s] 

W  Vertical time-average velocity     [m/s] 
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W'; Wrms Vertical turbulent intensity     [m/s] 

x  Longitudinal direction      [-] 

y  Transversal direction      [-] 

z  Vertical direction      [-] 

 

Greek alphabet 

 

Symbol  Description       Units 

ij  Delta of Kronecker      [-] 

f  Spacing between fringes     [m] 

  Taylor's micro-scale; wavelength of light   [m]; [m] 

x  Longitudinal Taylor's micro-scale    [m] 

w  Transversal Taylor's micro-scale    [m] 

ε  Dissipation rate of TKE      [m
2
/s

3
] 

  Angle between LDV beams     [º] 

  Density of the fluid; autocorrelation function   [kg/m
3
]; [-] 

  Kolmogorov's micro scale     [m] 

µ  Dynamic viscosity      [kg/ms] 

  Kinematic viscosity      [m
2
/s] 

ij  Stress tensor       [N/m
2
] 

  Time macro-scale; time step     [s]; [s] 

w  Wall shear stress      [N/m
2
] 

ij  Shear stress tensor      [N/m
2
] 

  Coles' wake strength parameter 

 

Abbreviations and Acronims 

 

Symbol  Description       

DCM  Divided channel method 

LDA  Laser Doppler anemometry 

LDV  Laser Doppler velocimetry 

PDM  Photodetector module 

PMT  Photomultiplier tube 

SCM  Single channel method 

SNR  Signal to noise ratio 
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TKE  Turbulence kinetic energy 

1D, 2D, 3D One-, two- and three-dimensional 
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Background and Motivation 

In most cases, rivers present a compound cross-section constituted by a main channel 

flanked by floodplains. In natural flood conditions, the flow inundates the floodplains climbing 

the banks of the main channel. On this regards, and taking into account that in recent years there 

is an increment in magnitude and frequency of floods, as shown fig. 1.1, the study of this kind 

of flows is critical to obtain more reliable estimates of flood levels, as well as the 

characterization of the velocity field of the flow, allowing the identification of floodplains, 

predict floods in real time or estimate the impact of mitigation measures. 

 

 

Figure 1.1 Number of floods by decade (Millennium Ecosystem Assesment) 

The interaction between the main channel and the floodplains flows originates a complex 

turbulent flow filed. Due to the flow velocity difference between the main channel and the 

floodplains, a mixing layer is created which induces horizontal and vertical orientated vortices, 

as well as mass and momentum transfer, and other kind of phenomena related with the flow 

acceleration/deacceleration. The phenomenon of momentum transfer was initially observed by  

Sellin (1964) who identified the presence of vertical orientated vortices in the interface between 

flows (main channel and floodplains flows). According to Myers (1978), the momentum 

transfer can be studied as an apparent shear stress caused by the velocity lateral gradient, 

resulting in turbulent structures that increase the flow resistance. 

The complexity of compound channel flow field has attracted the attention of several 

researchers, and over the last decades there have been an innumerous number of studies 

regarding this issue. In the 90s, several researchers (Knight and Shiono, 1990; Nezu and 

Nakayama, 1997) measured the instantaneous velocity using high precision equipments, as 
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Laser Doppler Velocimeter (LDV). These measurements were one-dimensional (1D) or bi-

dimensional (2D) due to equipment limitations. However, they allowed to reveal the presence of 

complex three-dimensional (3D) turbulent structures of different scales, namely, the presence of 

helix secondary currents with horizontal axis that overlap the vertical oriented vortices observed 

by Sellin (1964). The characterization of the turbulent structures is very important since the 

momentum transfer is not only a function of the lateral Reynolds stresses, but also depends on 

the secondary currents (Myers, 1978). Although much was achieved in identifying the main 

turbulent structures within the flow and how they were affected by the water level (Nezu et al., 

1997), the detailed characterization of the turbulent field is still missing. The most detailed 

experimental study is still the one by (Tominaga and Nezu, 1991), where two velocity 

components were measured using LDV technology. Nevertheless, only turbulent intensities 

were presented and discussed. As far as the author knowledge, there is not any information 

available regarding fundamental turbulence quantities such as the integral length scale or the 

turbulence energy dissipation rate.    

Therefore, the renewed interest in studying compound channel flows arises not 

only from their practical importance, but also from the recent capacity of measuring 

detail turbulence quantities in the vicinity of the narrow flow regions. These quantities 

are important to understand the turbulent structures that efficiently transport mass and 

momentum over larger distances, thus greatly contributing to reducing velocity 

differences in narrow regions. 

Additionally, floodplains are occupied by a plurality of obstacles, namely, natural (e.g., 

vegetation, topography irregularities) and man-made (e.g., roads, embankments, buildings), that 

in flood conditions can be partially or totally submerged. On this regards, the roughness of 

floodplains is usually much higher and more variable than the main channel one, having a 

fundamental role in the momentum transfer at the interface, since it depends on the velocity 

difference between the main channel and floodplain flows (Sellin et al., 2003; Shiono, Chan, et 

al., 2009a, 2009b; Yen, 2002). Therefore, the evaluation of the effect of these obstacles in the 

turbulence field is important to understand real flow configurations. 
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Objectives and Methodology 

Considering the mentioned before, the main goal of this study is to charaterize in detail the 

turbulence in compound channel uniform flow and how it is affected by the presence of rigid 

elements at the interface between main channel and floodplain. To reach this objective, this 

investigation was focus in the following specific objectives: 

1. Characterize the turbulent field and its influence on the momentum transfer 

between the main channel and floodplain flow for different water depths. 

2. Study the influence of different roughness elements density, placed in the upper 

bank, on the turbulent field. 

3. Evaluate different data processing and analisys methodologies to characterize the 

turbulent field. 

To achieve these objectives, instantaneous velocity measurements where carried out in an 

asymmetric compound channel flow at the hydraulic laboratory of the University of Beira 

Interior. The measurements were taken using a 2D Laser Doppler Velocimeter System (LDV), 

which allow to obtain the instantaneous longitudinal u and vertical w velocity components. The 

LDV has a positioning system which allows the automatic displacement between the 

measurement points with 0.1 mm accuracy. 

To evaluate the mass and momentum transfer, three different relative water depths were tested, 

corresponding to "deep flows" and "shallow flows" (Nezu and Nakayama, 1997) . These 

different water depth conditions are expected to originate different turbulent fields, where a 

stronger mixing layer with vertical oriented vortices will be present for the “shallow flow” and 

strong secondary currents with streamwise oriented vortices will dominate the “deep flow”. 

On the other hand, three different roughness elements density were analyzed in order to study 

its influence on the turbulent field. The roughness elements selected were aluminum rods with 

10 mm of diameter and 100 mm length which simulate trees in flood condition. The spacing 

between rods were selected according to environment observations, where most spacings 

founded are around 4 < S/D < 20, being S the spacing between rods and D the diameter of rods 

(Esfahani and Keshavarzi, 2010; Notes, 1998; Shiono, Ishigaki, et al., 2009; Terrier, 2010)  

To estimate the main turbulent quantities as the integral length scale, the dissipation rate and the 

micro scale, different methods were used, assuming incompressible homogeneous isotropic 

turbulent flow. In the integral length scale case, the integral of the autocorrelation function must 

be defined until a finite value. Thus, three different integral-stop-values were defined, namely, 

the second zero found on the autocorrelation function, the first minimum found on the 

autocorrelation function and finally, the wavenumber value when the autocorrelation function 
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reach 1/e (Tropea et al., 2007). In the case of the dissipation rate, three methods were tested. 

The first method was using the third order structure function, the second method was using the 

second order structure function and finally, the dissipation rate is also estimate from the 

spectrum of the velocity. To estimate the longitudinal and vertical micro scale, an equation 

presented in chapter 2 is used. 

  

 Thesis Outline 

The present work is divided into five chapters and one appendix, as following: 

Chapter 1 introduces the reader to the studied topic, where it is given to know the motivation 

that carried out the execution of this study. The main goal is presented following, as well the 

specific objectives. This chapter is finalized with a description of the methodology used and 

presenting the outline of the thesis. 

Chapter 2 aims to inform the reader about the main equations that govern the behavior of the 

flow in compound channels. Moreover, some partical approaches for modeling of turbulence are 

also presented. On this regards, this chapter gives to the reader some glimpses on the 

experimental data processing. 

In chapter 3 an overall description of the laboratory conditions is presented to the reader. Thus, 

the asymmetric compound channel and the measuring equipments are described. Further, in this 

chapter the reader can meet with the different roughness conditions studied. 

Chapter 4 summarizes the results which will be presented in individual research papers, 

allowing the reader to have an overall view of the link between research papers and its 

sequence. 

Chapter 5 resumes the main conclusions founded on this investigation and suggests topics for 

further research. 

Appendix A contains the main algorithms developed to process the experimental data. These 

algorithms were developed using Matlab
TM

 software and they are presented with the goal of 

giving a better understanding on the data processing and also to allow their use by future 

researchers.  
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A thorough analysis of the hydrodynamic behavior of flow streams encountered in 

compound channels, requires to review fundamental concepts and the state of the art in 

turbulence measurements, especially in anisotropic conditions as expected in this investigation. 

Therefore, this chapter begins describing the fundamental equations of fluid mechanics 

written in differential form, namely mass, momentum and energy conservation equations. 

Additionally, it will present the decomposition of Reynolds as a valid approach to analyze 

turbulent flow properties. Afterwards, the Reynolds decomposition concept will be introduced 

into the governing differential equations, accounting for all relevant involved variables 

(velocity, pressure, etc.). Further, the concept of statistically stationary processes will be 

introduced, in order to present the function that correlates events that occur at different periods 

of time and/or space.  

Next, Kolmogorov´s energy cascade theory will be introduced. Through this theory, the 

energy transfer between different turbulent scales is explained, as well as, the relation between 

the Reynolds number and the characterization in time, space and frequency of those scales. 

Particularly, the -5/3 Law of Kolmogorov and its respective hypotheses will be revised to 

support the explanation of conditions for energy transfer among the different eddy scales. 

In following section, it will be presented how direct measurements will be processed 

and analyzed either in temporary or spatial domain by adopting the frozen field hypothesis or 

Taylor hypothesis, which establishes a convection velocity that allows the transformation of the 

time record (corresponding to the measured data of the velocity) to the space domain. 

The structure functions will be defined in the next section. On this regard, the concept of 

the autocorrelation function is used to correlate two and three points spaced by a distance r, so 

as to obtain expressions that are related with the energy dissipation rate between eddies in the 

inertial sub-range, assuming locally isotropic flow. 

Once the expressions for the large scales and dissipation rate are introduced, it will be 

introduced expressions for the smaller scales, which are strongly associated to viscous effects. 

Finally, the expressions to characterize the behavior of the mean flow in fully developed 

2D flow will be presented, which will be used as a base for comparison with the 3D compound 

channel flows studied in this study. 
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2.1. Differential Conservation Equations  

In this section, a brief review of the fundamental equations of fluid mechanics are 

presented, assuming that the fluid properties are describe as a function that varies uniformly 

with time and position, as  tzyxuu ,,,


 . The notation used trhough the thesis can either be 

referred to the standard Cartesian coordinates or to tensorial notation (for example, the space 

coordinate vector    321 ,,,, xxxxzyxx i 


 or the velocity vector 

   321 ,,,, uuuuwvuu i 


). 

For an incompressible fluid, where the density variations are neglected, the mass 

conservation equation can be written (e.g. Pope 2000) 

0




i

i

x

u
 (2.1) 

where u is the instantaneous velocity and subscript i represents each spatial direction and 

its repetition means summation.  

For Newtonian and incompressible fluids, the momentum equation (Newton’s 2
nd

 law) 

also known as Navier-Stokes equations can be written: 
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The RHS term represents the inertia or the total variation of momentum in time 

(including a local time variation term and a convection term). The first term in the LHS 

represents the contribution of the volume (body) external forces (where only gravity is 

considered). The second and third terms in the LHS represent the external surface forces. 

 

The total energy balance (1st law of thermodynamics), including the thermal and kinetic 

contributions, can be written (White, 2011): 
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where 


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x

u

x

u
  is associated to the stress tensor corresponding to the work that 

generates surface deformations, e is the internal energy, Q and q are related to the heat flux 
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changes. This expression is constituted by two parts, a first part corresponding to the thermal 

energy balance 
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and a second part corresponding to the kinetic energy balance 
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 (2.5) 

All the three conservation laws (mass, momentum and energy) were presented for 

instantaneous quantities. To describe the behavior of the variables of the flow, regardless of 

their condition (laminar or turbulent), Osborne Reynolds (1894) decomposed each of the 

variables associated to the fluid motion as a function of two terms: average and fluctuation. 

In this investigation, U, V and W denote the components of mean (or time-averaged) 

velocity in the x-direction (streamwise with the origin at the channel entrance), y-direction 

(spanwise with the origin at the windows side) and z-direction (vertical with the origin at the 

channel bottom), respectively, u, v and w represents the instantaneous velocity, u', v' and w' the 

velocity fluctuations and U', V' and W' denote the turbulence intensities or r.m.s. 

In this regard, the time-averaging function, represented by an overbar, is defined as: 


0

0
0

1 T

iii dtu
T

uU  (2.6) 

where T0 is a period of time long enough to include any period of the fluctuations. However, 

since the measurement technique used to obtain the velocity field was a Laser Doppler 

Velocimeter (LDV), the time-averaged velocity calculated through eq. 2.6 will present a bias 

associated to the high velocity particles detected by LDV. One way to diminish this bias for the 

streamwise component, is calculating the time-averaged velocity from eq. 2.7, were the low 

velocity particles have more weight (McLaughlin and Martin, 1975) 

1

1

11

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






 

N

n

nu
N

uU  (2.7) 

where N is the total number of measured particles. 

Further, the fluctuation for the same turbulent function is defined as the deviation of u 

from its average value. 
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Uuu '  (2.8) 

Importantly, by definition, the average of the fluctuations is zero, as shown in eq. 2.9, 

while the mean square of the fluctuations is different from zero, which is considered as a way to 

obtain a measure of turbulent intensity, eq. 2.10. However, to ensure the validity of eq. 2.9, the 

time-averaged velocity must be calculated from eq. 2.6 and not from eq. 2.7. 

  
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2 0'
1
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dtu
T

u  (2.10) 

On the other hand, since the w instantaneous velocity varies around zero (in most of the 

cases studied in this investigation), the equation used to calculate the w time-averaged velocity 

was always eq. 2.6. 

Clarified the Reynolds decomposition, the three conservation laws presented above, can 

be rewritten in terms of time-averaged and fluctuations. In this regards, the mass conservation 

equation eq. 2.1 is given by  

0
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U
 (2.11) 

where, Ui represents the i-th time-averaged velocity component 

In the case of momentum equation (eq. 2.2), it takes the following form applying the 

Reynolds decomposition and taking the time-averaging of each term (Pope, 2000) : 
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The last term in the equation are the so called Reynolds stress that arise from the 

fluctuanting velocity field. 

Finally, applying the Reynolds decomposition on the kinetic energy equation (eq. 2.15), 

the two following expressions are obtained, one for the time-averaged kinetic energy due to the 

mean flow ( 2/2

iU ) and the other for the turbulence kinetic energy (TKE) due to turbulent 

fluctuations ( 2/'2iuk  ) (Nikora and Roy, 2012). 

 



Chapter 2: Literature Review 

 

13 

 

   
2

2

2

222

''
2

''
22 






























































































j

i

j

i
ji

i

j

jii

j

j

j

ii
i

j

j
i

x

U

x

U
uu

U

x
uuU

x
Up

x
Ug

U

x
U

U

t


 
(2.13) 

 
2

2

2 '

2

'''
''''













































































j

i

j

jii

j

j

jj

i
ji

j

j
x

u

x

kuuu

x
up

xx

U
uu

x

k
U

t

k


 

(2.14) 

This last equation, can also be written as: 
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  is the dissipation rate of 

TKE. Considering a homogeneous and isotropic turbulent flow, the dissipation rate of TKE can 

be simplified through eq. 2.16. 
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2.1.1 Momentum balance equation for compound channel flow 

Given the expressions obtained for the conservation laws using the Reynolds 

decomposition, eq. 2.17 shows the combination of momentum and continuity equations in 

compound channel flows for steady ( 0 t ) uniform ( 0 x ) turbulent flow in the 

streamwise direction (cf. Shiono and Knight 1991), as shown in fig. 2.1. 
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where xzS bo   is the bed slope, being zb the bed elevation. 

A depth integration of this equation can be found in Shiono and Knight (1991), where 

experimental data from straight compound open cannel were conducted, rendering  
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where H is the flow depth, 
b  is the bed shear stress, s is the side slope, 
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H 0

''1  are depth-averaged quantities 
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which are referenced with a subscript d . A physical interpretation of eq. 2.18 corresponding to 

the turbulent field skecteched in fig. 2.1, renders that the LHS term represents the secondary 

flows, the first term on the RHS account for the gravity contribution, the second term represents 

the momentum transfer by the interface vortices and the last one accounts for bed friction.  

 

 

Figure 2.1 Flow field associated with a straight compound channel (Shiono and Knight, 1991). 

 

2.2 Modeling of Turbulence 

For a physical phenomenon to occur steadily in space and time it is not sufficient to verify 

the conservation laws. It is necessary that the flow parameters are stable to small perturbations. 

Sometimes, these perturbations can grow to reach a new state. This new state, at the same time, 

could be unstable to other perturbations, generating again a new state and so on. Finally, the 

flow becomes a conjunction of many random instabilities non-linearly interconnected, which is 

known as turbulent flow. 

However, the presence of perturbations is not a sufficient factor to explain the random 

behavior of the turbulent flow. In fact, most of the laminar flows are subject of numerous 

perturbations. The generation of a turbulent flow is triggered by combination of these 

perturbations, which can be associated with small changes in initial conditions, boundary 

conditions or/and properties of materials, in presence of a high Reynolds number flow, resulting 

into chaotic behavior Lorenz (1963).  
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In practical words, this means that despite repeated uncountable times the same experiment, 

under similar initial and boundary conditions, an identical behavior of the variables in time is 

never obtained, as shown fig. 2.2. Thus, it is practically impossible to predict the exact value of 

the velocity or pressure of the flow under certain conditions. On the contrary, it is much more 

realistic to determine the range of values that these variables can achieve under these 

conditions, or the probability that they can reach a certain value. 

 

Figure 2.2 Ensemble of repeated experiments under similar initial boundary conditions. (Tropea et 

al., 2007) 

One way to characterize the behavior of a random variable is calculating the probability 

density function (PDF) of the variable itself, which describes the relative probability that this 

variable takes a particular value or be located in a given range of possible values. However, to 

fully characterize a random process, it is necessary to know for every instant of time the PDF, 

which is an impossible task. 

For a deeper reading in characterizing random variables through the probability functions, 

the reference Pope (2000) , Chap. 3 is recommended. 

 

2.2.1 Statistically Stationary Processes 

In the case of stationary processes, in which most of the turbulent flows can be 

encountered, the behavior of the variables reaches a statistically steady state after an initial 

transition period where, although the variables vary in time, are statistically independent from it. 

Assuming that fig. 2.2 shows the behavior of the velocity u(t) of a statistically stationary 

process, the behavior of the time-average velocity and the variance, after an initial transition 

period, is independent of time, as shown in fig. 2.3 (t ≥ 5). 
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Figure 2.3 Mean  tU  (solid line) and variance  2
')var( tuu   from three repetitions of a 

turbulent-flow experiment (Pope, 2000) 

Further, in turbulent flows the occurrence of certain phenomena (especially 

eddies/vortices) that occur with a certain frequency is usually observed. Specifically in 

compound channel flows, these phenomena occur by the interaction between main channel flow 

and floodplain flow (causing vortices of longitudinal and vertical axis), or by the interaction 

between main channel/floodplain flows and roughness placed over the floodplain region, where 

the roughness geometry (roughness diameter, spacing between rough elements, etc.) have an 

important role to play on the eddies propagation. 

The study of such flows has been focused on understanding the frequency with which 

vortices are originated and how they interact with the flow. For this purpose, it is necessary to 

analyze the correlation existent in the behavior of a same variable for different intervals of time 

and/or space. The autocorrelation function verifies the correspondence between events 

occurring at different periods of time/space, being able to analyze the frequency and lengthscale 

of these events. The autocorrelation function in normalized form can be expressed as (e.g. Pope 

2000): 

 
   

 2
'

''

tu

stutu
s


  (2.19) 

where      tUtutu ' . Equation 2.19 provides a correlation coefficient between lagged 

process in time/space t and t+s. For   100  s , whereas that for   10  ss  . In 

the case of periodic functions with periodicity T0 ( )()( 0Ttftf  ), the autocorrelation function 

also present a periodic behavior. Figure 2.4 shows, the behavior of the autocorrelation function 

for some known signals. 
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Figure 2.4 a) Sine function. b) Narrowband random noise. c) Broadband random noise 

In general, the autocorrelation function can be correlated to events in space and time 

with one, two or three components of the reference system, obtaining nine combinations of the 

flow field. Thereby, events occurred in one direction can be correlated with events occurred in 

other directions (Tropea et al., 2007). 
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
  (2.20) 

The real expected behavior of the autocorrelation function is as shown in fig. 2.5, where 

the events correlation decrease rapidly as the intervals of time (s) or space (r) increase, and 

where the correlation coefficients start to exhibit oscillations due to poor statistics and to the 

random nature of the phenomenon. The duration time of the process is defined as the integral 

timescale (eq. 2.21) or the integral length scale (eq. 2.22). However, in practical terms, the 

integral of the autocorrelation function must be defined until a finite value. In this investigation, 

different integral-stop-values were used in order to analyze the behavior of the integral length 

scale under several conditions (see section 4.4). The integral-stop-values used were: 

1º Method: the integral-stop-value is defined as the second maximun found on the 

autocorrelation function. 

2º Method: the integral-stop-value is defined as the first minimun found on the autocorrelation 

function. 

3º Method: the integral length scale is defined as the wavenumber value when the 

autocorrelation function reaches 1/e, i.e., the value expected if an exponential decay of the 

autocorrelation function is assumed. 
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4º Method: the integral length scale is defined bycalculating the power spectrum of the 

autocorrelation function when its tends to zero, as shown in eq. 2.23 (Nezu and Nakagawa, 

1993). 

 

Figure 2.5 The integral-stop-values used to determine the macro-scale.  xr  autocorrelation 

function; 
xr  intervals of space in the longitudinal direction (Tropea et al., 2007). 
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The non-normalized autocorrelation funtion (autocovariance) of the signal 

         stustutusR 
2

'''  , is associated with the frequency spectrum  wkE  of the 

same signal, forming a Fourier transform pair: 
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Both eqs. 2.24 and 2.25, contain the same information but expressed in different ways, 

which allows rewriting the integral timescale as: (Nezu and Nakagawa, 1993) 
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2.2.2 The energy cascade and Kolmogorov hypotheses 

Andrey Kolmogorov (1945) did the first relevant effort in quantifying turbulence and his 

work, which is valid for all isotropic and homogenous turbulent flows, describes the energy 

content distribution between eddies (energy cascade). The energy cascade suggests the 

existence of different scales through which the energy is flowing from larger ones to smaller 

ones until it dissipates as heat due to viscosity. Most of the kinetic energy of turbulent motion is 

in the larger structures, where aspects such as the system geometry, define the size and shape of 

the vortices (production sub-region/small wave numbers). These larger structures are broken 

down into smaller structures (inertial sub-region / larger wave numbers) until the energy is 

dissipated by viscous effects (viscous sub-region / larges wavenumbers). 

In a turbulent flow, the Kolmogorov´s hypotheses state that the correlation of velocities 

between two points separated by a distance "l", into the inertial sub-region, is equal to   3/2
lC  , 

where C is a universal constant and   is an average flow of energy per unit mass. 

Also, the Kolmogorov´s hypotheses propose the existence of an interval of scales where 

the turbulent behavior is universal, i.e., the flow is homogeneous, isotropic and statistically 

stationary. This last attribute indicates that, on average, the state does not change in time 

(statistically), i.e., the flow only depends on two parameters to describe the energy dissipation, 

the energy flow ( )̅ and the viscosity (ν). The size of the larger scales, where the friction 

effects still have an important role, is given by the combination between the energy flow and 

viscosity, so as to form a length scale. This scale is denoted as Kolmogorov’s scale . 

4/34/1    (2.27) 

  4/1
 u  (2.28) 

2/12/1    (2.29) 

Generally, the different vortices scales existing in any turbulent flow can be grouped in 

three scale regions. The first region is bounded by the integral length scale, which is associated 

with larger vortices and the Reynolds number is the same as the main flow: 



UL
L Re  (2.30) 

Then, there is an intermediate region where energy production still exists, and finally a 

last region that starts at the so-called micro-scale (λ), that is the smaller scale, having an 

isotropic character and for which the energy is dissipated into heat. 
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Doing an analysis of the Kolmogorov´s hypotheses for larger vortices (integral length 

scale), the energy contained per unit of time is given by: 

1312

2

2   LUTU
T

U

eL  (2.31) 

at the same time, the specific energy dissipated per unit of time in the integral length scale is: 
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The relation between the energy contained and the energy dissipation is: 
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With this last relation, it is deduced that the energy dissipation is negligible in the larger 

scales region. Therefore, all the energy is transferred to the vortices of the intermediate scales 

region. 

1313    uLUeeL
 (2.34) 

In the intermediate scales region, the relation between the energy contained and the 

dissipation is also equal to the Reynolds number associated to this scale, 
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Since the ratio between the length scales is not negligible, the Reynolds number 

associated to these scales still has a significant value, so that the energy dissipation is still 

negligible. Therefore, it can be stated that: 

1313    uLUeeL
 (2.37) 
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As the energy contained is of the same order as the energy dissipated, 
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This last equation relates the characteristics length scales of the micro-scale with the 

integral length scale. Notably, as the Reynolds number present in the main flow increases, the 

difference between the micro-scale and integral length scale increases. 

Using a similar analysis, the velocity and time terms of the Kolmogorov’s and integral 

length scales can be related. Using the initial nomenclature, the expressions that relate the 

Komogorov’s scale with the integral length scale are: 

43Re L
L


 (2.41) 

41Re L
U

u
 (2.42) 

21Re L
T


 (2.43) 

Being ULT / , eq. 2.43 can be rewritten as follows: 

21Re L
U

L
  (2.44) 

The previous equation is very useful because it provides a reference value of the temporal 

Kolmogorov’s scale or, in other words, the minimum frequency of data acquisition if the study 

of this scale is desired. 

The diagram of the energy cascade explained above is represented in fig. 2.6. 
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Figure 2.6 Schematic representation of the Energy Cascade. 

Figure 2.6 shows how the energy contained in the vortices of large scale (integral length 

scale) is transferred to smaller scale vortices, until this energy is dissipated into heat by viscous 

effects (micro-scale). As mentioned above, the integral length scale only depends on the mean 

average velocity of the flow and of the system geometry (in compound channel flow, for a 

given channel this is represented by the depth of the main flow stream), while the micro-scale 

depends only on the viscosity of the fluid. 

In the inertial sub-range, the energy spectrum is given by the known law of -5/3 of Kolmogorov 

and its expression is (Pope, 2000): 

  3/53/2 
 wkCkE   (2.45) 

The power law -5/3 corresponds to the inertial range where the integrals of kw and ε 

converge. For larger wavenumbers, the energy contained in vortices decreases following the 

relationship 


wk , with 3/5 , while for lower wavenumbers, the energy dissipation follows 

a similar relationship, but with 3/5 . 

Figure 2.6 does a schematic exemplification of vortices arising when the flow pass 

through a grid, as well as the different types of power spectra obtained depending of the area in 

which the measurements are perform. 

As shown in fig. 2.7, in the first stage eddies are originate and a transition of the flow 

until a fully developed turbulent flow occurs. In the next two stages (stage ii and stage iii), a 

fully developed turbulent flow exists. However, in the last stage the turbulence in the flow 

decreases since the smaller eddies are dissipated by viscous effects (energy cascade). 
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Figure 2.7 Turbulence generated through a grid. b) Development of the different stages of the 

turbulence. Stage(i) Transition to a fully developed turbulent flow. Stage (ii) and (iii) Fully developed 

turbulent flow. Stage (iii) Dissipation of the smallest eddies. 

The power spectra for each of these stages (see fig. 2.8) shows the variation of the kinetic 

energy contained. The first stage (fig. 2.8a), where the turbulence is generated, is characterized 

by a large presence of large eddies (macro-vortexes) transporting large amounts of energy, and 

by absence of smaller vortices. In the second stage (fig. 2.8b), vortices of large and small scales 

are found, having an energy transfer from largest vortices towards smallest vortices. That is why 

in the second stage a smoother decay of energy due to the transfer of energy for different 

wavenumbers (existence of a variety of sizes of vortices) is visualize. For the first stage, the 

energy decay is not so smooth because in this stage there is not a variety of sizes of vortices and 

therefore, the wavenumber is limited. In the third stage (fig. 2.8c), the power curve is similar to 

the curve obtained in the second stage, however, as in this stage the vortices have a smaller 

scale, the specific energy transported by them will be smaller (but distributed among many 

more eddies). 
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Figure 2.8 Variation of the kinetic energy for the different stages of flow. 

 

2.2.3 Taylor's or Frozen-Field Hypothesis 

Taylor's hypothesis allows us to relate the behavior of a variable in space and time 

considering only a convection velocity Uc, i.e., when measurements are made only as function 

of time, convection velocity allows transforming the time-record to a space-record. In this way, 

the spatial autocorrelation function can be determined through the temporal autocorrelation 

function. 
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Despite being a hypothesis that fits quite well to most flow conditions, the great 

challenge is to define the convection velocity that best fits all scales of flows. As a first 

approximation, the convection velocity can be taken between 0.7U and 0.9U, where U 

represents the time-average velocity of the flow, depending on the distance between the 

measurement point and the wall. 

The convection velocity for different scales, according to Tropea et al. (2007), can be 

estimated as: 
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where f(I) is the ratio between the root-mean-square of the fluctuations and the mean velocity 

and the Reynolds number is based on the large scale. If the turbulent intensity is less than 20%, 

the convection velocity can be considering as the one for large scales. In the present 
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investigation the time-average velocity of each measurement point (U, V and W) was assumed 

as the convection velocity. 

 

2.2.4 Structure Functions 

Second-order Structure Function 

By definition, the second-order velocity structure function is the velocity covariance 

between two points separated by r, which is expressed as, 

           txUtrxUtxUtrxUtxrD jjiiij ,,,,,,   (2.48) 

A flow can be considered locally isotropic, in a small domain and in a turbulent flow at 

high Reynolds numbers, if the behavior of the turbulence does not have a favorite direction, i.e., 

if the energy transfer and the fluctuation statistics are the same in all directions. For this, the 

flow domains should not be near boundaries or singularities. 

In this case, eq. 2.48 is independent of x, and Dij will just depend only on r, as shown in 

fig. 2.9. Thus, the correlation between the components of the velocity field can be express in 

terms of the longitudinal and transversal correlation functions, as shown in eq. 2.49 (Pope, 

2000). 

 

Figure 2.9 Sketch showing the points x and x+r in terms of x
(n)

 and y
(n)
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where DLL and DNN are the longitudinal and transversal structures function, respectively, ij is 

the delta Kronecker and ri and rj are the coordinates along the reference axis of the first and 

second point, separated by a distance r. However, when considering an incompressible flow, 

and as a result of the equation of continuity, 0),(  iij rtrD , the transversal correlation 

function can be expressed solely in terms of the longitudinal function, as follows: 
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  (2.50) 

At the same time, and considering the Kolmogorov’s hypotheses, for values of r in the 

inertial subrange, where r is much larger than the Kolmogorov’s scale and much smaller than 

the integral length scale,  Lr  , the longitudinal structure function is independent of  

and can be calculated as: 

    3/2

2, rCtrDLL   (2.51) 

where C2 is a universal constant that does not depend on the Reynolds number. Further, the 

transversal structure function is given by: 

    3/2

2
3

4
, rCtrDNN   (2.52) 

Figure 2.10 shows the second order structure functions for the three components, longitudinal 

D11 and transversal D22 and D33, as well as, the way to calculate the constant C2. 

 

The Kármán-Howarth equation 

Using the Navier-Stokes equations and deriving the double-point correlation, an 

expression with three kind of terms is obtained: the convection term, the pressure gradient and 

the viscous term. However, for isotropic incompressible turbulent flows, the pressure term 

disappears and an expression that depend on functions of double and triple velocity correlations 

arises as (Pope, 2000): 

 (2.53) 

where f and k represent the double and triple correlations, respectively. However, using the 

second and third-order structure functions, an equivalent expression is obtained, as shown in eq. 

2.54. 
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Figure 2.10 Second-order velocity structure functions. Horizontal lines show the predictions of the 

Kolmogorov hypotheses in the inertial subrange, eqs. 2.51 and 2.52. (Pope, 2000) 
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Integrating eq. 2.54 renders: 
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For a local isotropic flow, the term in the right side of eq. 2.55 is zero and the viscous 

term can be neglected in the inertial sub-range, so that the third-order structure function is equal 

to: 

  rtrDLLL 
5

4
,   (2.56) 

Further, Kolmogorov showed that the skewness is constant and it is related with the 

second and third-order functions as: 

 
  2/3

,

,
'

trD

trD
S

LL

LLL  (2.57) 

Substituting from eq. 2.56, leads to: 
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    3/2

3/2

'5

4
, r

S
trDLL 







 
  (2.58) 

Considering the hypothesis of similarity in the inertial sub-range, the energy spectral 

function is: 

  3/53/2 
 ww kCkE   (2.59) 

where C = 0.53 - 1.5 is the universal constant of Kolmogorov and kw is the wavenumber. 

 

2.2.5 Taylor microscales 

The Taylor microscale is the largest scale for which vortices are still strongly affected by 

the viscosity of the fluid. To determine the value of the Taylor microscale, an expansion of the 

Taylor series of the spatial autocorrelation function  r  near the origin is required, which 

gives: 
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Considering that   1,0,2'
tx

iu
  and neglecting the values greater than r

2
, an approximation of 

the parabola equation for the autocorrelation coefficient is obtain, 
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 (2.61) 

Taking into account that the first derivative of the autocorrelation function at r = 0 is equal to 

zero  0 r , and that the second derivative at r = 0 is negative, then it is obtain:  
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2 2
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
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
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r


  

(2.62) 

Therefore, the behavior of the autocorrelation function can be approximate to the 

following expression: 

  











2

2

'
1,,2

x

u

r
trx

i 
  (2.63) 

Thus, as shown in fig. 2.11, the parabola intersects the axis at xr   
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Figure 2.11 Evaluation of Taylor's microscale. Tropea et al. (2007) 

Another way to express eq. 2.62, is calculating directly the second derivative of the 

autocorrelation function, as: 
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(2.64) 

Substituting in the eq. 2.62, it leads to: 

 
(2.65) 

For an incompressible homogeneous isotropic turbulent flow, and using eq. 2.16, the 

longitudinal Taylor microscale can be express as a function of the turbulent dissipation ε, as 

follows: 






2
2 '30 i
x

u
  (2.66) 

Moreover, the square of the transversal Taylor microscale is given as the half of the 

square of the longitudinal microscale 22 2 wx   . 

 

2.2.6 Dissipation Rate 

Once the integral length scale, second- and third-order velocity structure functions and 

Taylor microscale have been introduced, the next variable to characterize is the dissipation rate. 

In this investigation, six methods are used to estimate it, assuming an isotropic turbulent flow. 

1º Method: this relation is useful in evaluating the TKE dissipation rate from the large-scale 

variable: 
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 
xL

u
2/3

2'
  (2.67) 

2º Method: the dissipation rate is calculated from eq. 2.16. 

3º Method: the dissipation rate is calculated from eq. 2.66. 

4º Method: the third-order velocity structure function, i.e., eq. 2.56. 

5º Method: the second-order velocity structure function, i.e., eqs. 2.51 and 2.52. 

6º Method: considering the second hypothesis of similarity in the inertial sub-range, i.e., eq. 

2.59. 

 

2.3 Two-Dimensional Flow Structures 

2.3.1 Flow Velocity 

In 1930, an investigation carry out by Prandtl concluded that the behavior of U  should 

be independent of the boundary layer thickness, following a similar behavior of eq. 2.68, where 

  2/1

*  bU  ,  being b  the wall shear stress and *U  the friction velocity. 












*

*

zU
F

U

U
U  (2.68) 

On the other hand, von Kármán concluded in 1933 that the behavior of the time-

averaged velocity of the flow in the outer region, must be independent of the viscosity, and its 

difference with the free-surface velocity Usup, should depend on the boundary layer thickness  

and other properties. In this sense, the behavior of the outer region obeys the following 

expression, which is denominated the velocity defect relation: 















z
G

U

UU

*

sup
 (2.69) 

After determining the expressions for the mean velocity in the near wall region (viscous 

sublayer) and in the region near the free-surface (free-surface region), Millikan showed in 1937 

that, in order to have both expressions engaging smoothly, the velocity distribution must have a 

logarithmic behavior, given by the following expression, 

A
zU

U

U









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*

*

ln
1

 (2.70) 
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where the von Kármán constant is 41.0 .  

More recent research, conducted by Coles in 1956, determined that eq. 2.70 is valid 

solely in the wall region (z/H < 0.2), while for z/H > 0.2, the time-averaged velocity behavior is 

fitted adding a wake function as shown in eq. 2.71. 





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
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






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H

z
wakeA

zU

U

U


*

*

ln
1

 (2.71) 

Coles proposed empirically that the wave function  Hzwake  can be considered as: 









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







H

z

H

z
wake

2
sin

2 2 


 (2.72) 

where   is Coles' wake strength parameter. Basically, eq. 2.71 represents the difference 

between eq. 2.70 and the real behavior of the velocity, including free-surface effects that cannot 

be neglected for z/H > 0.6. To determine the   value, eq. 2.70 must be extended until z/H = 1 

to obtain its difference. Only in this case (for z/H = 1), the wake function is equal to 

     22 sup UUHzwake , where    is the non-dimensional 

time-averaged velocity in the free-surface and *UUU 
 is the non-dimensional time-

averaged velocity for z/H = 1, calculated through eq. 2.70. 

Figure 2.12 shows the behavior of the   value for different Reynolds numbers 


*

*Re
HU

  and 


CS
h

HU4
Re   (UCS is the cross-section averaged velocity), which presents 

a steep increase at small values of *Re , until reaching a constant value equal to 0.2 for 

2000Re*  , approximately. 

*supsup UUU 
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Figure 2.12 Wake strength parameter   and maximum velocity 

maxU  as functions of Reynolds 

number 
*Re  and 

hRe . Nezu and Nakagawa (1993) 

Moreover, in the region closest to the wall of the channel, the behavior of the time-

averaged velocity does not follow the eq. 2.70. These regions are known as the viscous sublayer 

and the buffer sublayer. The viscous sublayer presents a linear behavior of the velocity 
U  

according to the vertical distance 


*zU
z  , as shown in eq. 2.73, and it is valid for 5z . 

  zU  (2.73) 

The region known as buffer sublayer is located at 305  z  and makes the transition 

between eqs. 2.73 and 2.70. In this region, the velocity behavior follows the expression for the 

dimensionless velocity gradient, given by: 

 
 

H
zl

H
z

dz

dU











1411

12

2

 (2.74) 

where   


 *exp1
lU

B
zzl 
  represents the dimensionless mixing length and 

26B  was obtained empirically for boundary layers by Van Driest (1956) and by Nezu and 

Rodi (1986). 
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Synthesizing, in an open channel flow, under conditions of fully developed 2D flow and 

smooth bed, the cross-section of a statistically developed flow can be divided into three regions 

according to the water depth, as shown in fig. 2.13. 

 

Figure 2.13 Sub-division of the flow field in open channels (cf. Nezu and Nakagawa 1993). 

 

2.3.2 Turbulence Intensity 

According to Nezu and Nakagawa (1993), the expressions that better fit the behavior of 

the turbulence intensities U', V' and W'are the following: 





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U
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 (2.75) 


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
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H

z
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*

 (2.76) 











H

z
CD

U

W
kw exp

'

*

 (2.77) 

where 1kC , 30.2uD , 63.1vD  and 27.1wD . 

The equations presented above are semi-theoretical expressions, which arise adopting 

the k  turbulent model and neglecting the viscous diffusion term of the turbulent kinetic 

energy equation. However, this term can be neglected only in the region of the flow away from 

the wall and at high Reynolds number. In consequence, for the viscous sublayer, eqs. 2.75 to 

2.77 are not valid. 
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Furthermore, within the viscous sublayer, 
*' UU  was correlated using experimental 

data carried out by Van Driest (1956) and it is given by the following expression: 

    




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
 zCzz

z
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U
u 1

Re
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'

**

 (2.78) 

where, 

  

















B

z
z exp1  (2.79) 

The value of B  is approximately 10, C is approximately 0.3 and the behavior of 
*' UU  

presents a maximun for 2010z , indicating that the viscous effects begin to lose 

importance. 

 

2.3.3 Effect of rough beds 

To determine the effect of the roughness of channel bottom on the flow behavior, it is 

necessary to calculate the average size of its elements. For homogeneous roughness, i.e., 

spheres with same diameter, the size of the roughness ks is given by the diameter of the spheres, 

as can be seen in fig. 2.14. 

However, in most cases, to determine the size of the roughness is not a simple task. To do 

this, Te Chow (1959), Massey and Ward-Smith (1998), Sturm and Tuzson (2001), developed 

three expressions which allow estimating the average bottom roughness as a function of the 

geometrical characteristics of the channel and the flow field, under uniform flow condition, as 

presented in eqs. 2.80-82. 
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Figure 2.14 Turbulent flow over smooth and rough beds. a) Smooth bed. b) Rough bed. Nezu and 

Nakagawa (1993) 
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
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Massey: 
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(2.81) 

Sturm: 

6

0391.0










n
k s  (2.82) 

where n is the Manning number 
Q

ASR
n oh

2/13/2

 , being Rh the hydraulic radius, So the channel 

slope, A the cross-section flow and Q the discharge. 

In this case, the flow behavior can be classified depending of the dimensionless bottom 

roughness 


*Uk
k s

s 
, as: 

 Hydraulically smooth bed ( 5
sk ). 

 Incompletely rough bed ( 705  
sk ). 

 Completely rough bed ( 70
sk ). 

For completely rough bed, the flow viscous effects near to the wall disappear, since 

roughness elements disrupt the viscous sublayer and penetrate the logarithmic layer. On the 

other hand, for hydraulically smooth bed the viscous sublayer is dominant over the roughness 

effects. In this last case, the time-averaged velocity behavior is defined by equations (2.68 - 



36 

 

2.74). However, in presence of rough effects, the behavior of the time-averaged velocity is 

given by: 









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



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
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U r

s

ln
1


 (2.83) 

where,   AkA sr  ln1


 can be assumed constant for completely rough bed and equal to 

8.5. The wake function can be neglected for z/H ≤ 0.2. 

If ks
+
 > 70, eq. 2.83 fits the logarithmic behavior of the velocity for 0 <  < ks, due to 

the destruction of the viscous sublayer caused by the roughness penetration. According to Grass 

(1971), Blinco and Partheniades (1971) and Nakagawa et al. (1975),  value is between 0.15 - 

0.3 (see Nezu and Nakagawa, 1993, for more information) 

The turbulent intensity in the streamwise direction is given by the following expression: 

   
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considering that     3
*

3/13/1

1
U

H
H

zk
H

z 


 in the energy equilibrium region, 50 < z
+
 < 

0.6Re*. Moreover, the value of K is an expression that relates the integral length scale Lx with its 

respective wave number k0, as shown in eq. 2.85. The expression of K is simply the combination 

of the -5/3 power law of Kolmogorov, eq. 2.59, with the spectral function based on an extension 

of the Heisenberg formula in the viscous subrange, resulting in the eq. 2.85. However, in 1972 

Rotta adjusted the value of K for values of 200
'




x
L

LU
R  and assuming a value of C = 0.5, 

through the eq. 2.86. 
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


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


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
 (2.85) 

LR
K

98.3
691.0   (2.86) 

Figure 2.15 shows the behavior of K for differnt values of RL and C. 
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Figure 2.15 Variation of coefficient K against the Reynolds number RL. Nezu and Nakagawa 

(1993) 

 

2.3.4 Integral length scale of eddies 

By definition, the integral length scale value Lx (or alternatively the integral time scale Lτ) 

is given as the integral of the autocorrelation function (eq. 2.21) or by spectral analysis (eq. 

2.26). However, in this particular case, being the measurements records of the instantaneous 

velocity vs. time, the Taylor's hypothesis was adopted to transform the temporal record into a 

space record, so as to obtain an estimate of the streamwise and transversal turbulent terms 

distribution. Moreover, adopting a convection velocity, it assumes the alteration of the spectral 

signal distribution, especially for lower frequencies. In this sense, Nezu (1977) proposed a 

correlation to correct the integral length scale values from the -5/3 law of Kolmogorov, as 

shown in eq. 2.87. 
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m

t
xx LL



 (2.87) 

where, xL


 is the corrected value. The 
t  and 

m  values are obtained through the follow 

expression, respectively: 

3/2KCt   (2.88) 
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  3/5

wx
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w
m kL

L

kS
  (2.89) 

where . Once the Lx values are corrected, they present a 
1
/2 power behavior 

in the wall layer, as well as, in the intermediate layer, reaching values that appear to remain 

constant in the free-surface layer. Equations 2.90 and 2.91, describe such behavior. 
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z  (2.91) 

where B1 = 1 for Re* = 1600. According to Nezu (1977) the B1 value increases slightly as the 

Reynolds number based on the friction velocity Re* decreases, i.e., B1 = 1.1 for Re* = 600. 

Moreover, and returning to the origin of the eq. 2.85, which comes from the 

combination of the spectral function based on the Heisenberg extention and eq. 2.59, it is 

possible to obtain an expression that relates the turbulent dissipation rate with the integral length 

scale, as: 

xL

U
K

3'
  (2.92) 

The importance of eq. 2.92, is that it allows us to obtain new expressions that relate the 

turbulent integral length scale with the Taylor's and Kolmogorov’s microscales, through the 

following equations: 
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 (2.94) 

 

2.3.5 Microscale of eddies 

Combining eqs. 2.75, 2.90, 2.92, 2.93 and 2.94, semi-theoretical distributions of Taylor’s 

and Kolmogorov’s microscales are obtained as: 
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(2.96) 

where B1 = 1.0 for Re* = 1600. 

Figure 2.16 shows the experimental values of the Taylor’s microscale distribution, taken 

by Raichlen (1967) and Nezu (1977), in an open channel for high Reynolds numbers and 

different Froude numbers, according to eq. 2.95. Nezu and Nakagawa (1993) argueed that the 

deviation between experimental data and curve 2.95 is mainly due to the lower acquisition 

frequencies that does not allow to obtain a suitable spectral analysis for the viscous sublayer. 

 

Figure 2.16 Distributions of Taylor’s micro-scale 
H

  varying Reynolds and Froude numbers. 

Nezu and Nakagawa (1993) 

 

2.3.6 Dissipation rate of turbulent energy 

With regard to the turbulent energy dissipation rate, a semi-theoretical expression is 

obtained from equations 2.75, 2.90 and 2.92, expressed as: 
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For Reynolds numbers between 10
4
 - 10

5
, the first coefficient of equation 2.97 is equal to 

8.9
2.12

1


B

K
, approximately. 
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The expressions presented to fit the integral lenth scale, Taylor’s and Kolmogorov’s 

microscales and the turbulent energy dissipation rate behavior, are expressions that have been 

developed through experimental settings for fully developed 2D flows. In this sense, it is 

important to note that, these expressions will be taken in this research as a reference to compare 

the turbulent structure observed in a compound channel under different flow conditions, as well 

as, to determine to which extent these expressions can be used to describe the behavior of 

different turbulent parameters in compound channel flows. 

 

2.3.7 Shear or Friction Velocity 

The friction velocity is one of the most important parameters to describe the velocity field 

and turbulent field of the flow. By definition, the shear velocity is given by the square root of 

the fluid shear stress in the wall over fluid density, i.e.,   2/1

*  bU  . However, to obtain a 

value of the friction velocity, different methods can be used, depending on the required 

accuracy and the measurement equipment available. 

The most popular method used to calculate the shear velocity is the geometrical method. 

This method can be used only if the flow is statistically uniform and developed, i.e., the 

ascendant/descendant flows and the streamwise variation of the flow can be neglected. In this 

case, the friction velocity is given by the following expression: 

oh SgRU *  (2.98) 

The second method is based on the calculation of the friction velocity directly from eq. 

2.70 and using the measurements of time-averaged velocity profiles. For this purpose, a linear 

fit of the velocity measurements in the range 30
+
 < z

+
 < 0.2Re* is performed, obtaining the 

integration constant A value and the U* value. 

A third method requires to calculate U* from the Reynolds stresses distribution '' wu , 

where u' represents the streamwise velocity fluctuations and w' the velocity fluctuations normal 

to the channel bottom. 

On the other hand, if the flow has a viscous sub-layer, the friction velocity can be 

determined taking measurements of the velocity field in this area and using eq. 2.73. However, 

in most cases, the thickness of the viscous sub-layer is not sufficiently large to be measured 

with some current available instruments or measurement techniques or to take a sufficient 

number of measurements to allow us to obtain an acceptable fit. Finally, the U* can also be 

measured directly through a Preston tube. 

As mentioned above, each of these methods present an accuracy that will depend on the 

assumed simplifications or on the measurement technique used to acquire the associated data. 
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The first method, eq. 2.98, allows us to obtain a total value of U* in a fairly simple way. 

However, sometimes, this value is not the most appropriate to characterize some of the turbulent 

terms. 

Moreover, and according to Nezu and Nakagawa (1993), measurements taken by Nezu 

(1977) with a hot-film showed that the U* value calculated by the first three methods differ in 

up to 30% among themselves. Whereas, measurements taken by Nezu and Rodi (1986) showed 

that these same methods differ in up to 5% among themselves using LDA measurements. 
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3.1 Experimental Setup 

The experiments were carried out in an asymmetric compound flume channel located at 

the Hydraulic Laboratory of University of Beira Interior, Portugal, built over a concrete 

structure. The flume channel water feeding was made through a centrifugal pump Pentax model 

CM65-125B with a nominal power of 7.5 hp. Since the hydraulic system was limited by the size 

of the reservoir, 3.5 m
3
 with a water depth of 0.7 m, the pump suction was connected through a 

manifold to diminish the likelihood of cavitation, as shown in fig. 3.1. The flume channel has an 

in-built set of glass windows distributed longitudinally and located on the side wall, through 

which the LDV measurements were performed. 

 

Figure 3.1 Hydraulic system. a) Pump and electromagnetic flowmeter. b) Location of the pumping 

system.c) Pump suction. d) Manifold. 

To determine the flow discharge, an electromagnetic flowmeter was installed at the pump 

outlet. To reduce the lateral transference of momentum at the inlet of the flume channel between 

the main channel and the floodplain, a set of 1"-diameter tubes was located in this section with 

0.3 m length, as well as a plate dividing both sub-regions (main channel and floodplain), as 

shown fig. 3.2. Thus, the uniform flow is attained in a smaller streamwise distance from the 

entrance (Bousmar et al., 2005; Bousmar and Zech, 1999; Uijttewaal, 2005). Further, to 

promote a fully developed flow, gravel with d50 ≈ 0.5 cm was placed along the first 0.5 m of the 

main channel inlet, as shown in fig. 3.2. The entrance of the floodplain sub-channel was left 

without artificial roughness since its low water depth required a smaller distance to promote a 

fully developed flow. On the other hand, to control the water depth, a single gate, located in the 

final section of the flume, was used. To establish the uniform flow, measurements of the water 
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depth with a point gauge were made each 0.5 m length in inflow-outflow direction on the 

middle of the main channel and on the middle of the floodplain. 

 

Figure 3.2 Components of the Experimental Rig. 

The flume channel is 11.60  0.001 m long and 0.79  0.002 m wide. To determine the 

total width of the channel measurements were taken each 0.5 m, for both main channel and 

floodplain. In the case of the flume slope, it was determined through a topographic laser level 

device. For that, 14 transversal measurement points (11 points on the floodplain and 5 points on 

the main channel) were used each 0.5 m. Table 3.1 presents the mean geometrical 

characteristics of the flume and fig. 3.3 shows a sketch of the asymmetric compound flume. 

 

3.1.1 Roughness Coefficient 

In compound channel flows, the Manning/Strickler equation, eq. 3.1, can be used in two 

different manners to determine the characteristic roughness coefficient of the channel sk , where 

n
ks

1  and n is the Manning coefficient. The first avenue is the so called Single Channel 

Method (SCM) which consists in considering the hydraulic radius and area of the total cross-

section in order to obtain the characteristic roughness coefficient of the channel. The second 

way, known as Divide Channel Method (DCM), consist in calculating the hydraulic radius and 

area of each sub-division of the cross-section, i.e., the main channel and the floodplain, 
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separately, obtaining one roughness coefficient for each sub-division. However, the discharge 

through each sub-division must be known. 

Table 3.1 Main geometry of the channel. 

Channel Length L (m) 11.600  0.001 

Channel Width B (m) 0.790  0.002 

Main Channel Width BMC (m) 0.205  0.002 

Floodplain Width BFP (m) 0.531  0.001 

Interface Width BI (m) 0.054  0.002 

Interface/bankfull Depth h (m) 0.051  0.001 

Main Channel Slope SMC (%) -0.099  0.004 

Floodplain Slope SFP (%) -0.091  0.003 

Channel Slope So (%) -0.095  0.003 

 

 

Figure 3.3 Channel geometry. 

ASRkQ ohs

2/13/2
  (3.1) 

In this case, since the channel flow is established through a single pump and no devices 

were installed to obtain the discharge of each sub-division, the roughness evaluation was made 

in a single cross-section configuration (i.e. using just the main channel). Therefore, the water 

depth cannot exceed the interface/bankfull depth h. The maximum flow discharge was set to 2.5 

L/s, obtaining a water depth of 0.0391 m. Table 3.2 shows the experimental conditions in quasi-

uniform flow conditions settled to determine the roughness of the channel, where Q is the inlet 
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flow, HMC the water depth in the middle of the main channel, A the area of the flow cross-

section, Rh the hydraulic radius, So the free-surface slope and Re the Reynolds number. Table 

3.3 shows the ks and the Manning coefficient n values, as well the mean roughness of the 

channel calculated from Chow, Massey and Sturm equations, eq. 2.79, 2.80 and 2.81, 

respectively. 

Table 3.2 Experimental conditions to determine the channel roughness. 

Q (m
3
/s) 1.2 x 10

-3
 1.4 x 10

-3
 1.8 x 10

-3
 2.4 x 10

-3
 

HMC (m) 0.0235 0.0285 0.0318 0.0391 

A (m
2
) 0.0051 0.0062 0.0070 0.0087 

Rh (m) 0.0195 0.0228 0.0249 0.0292 

So 1.035 x 10
-3

 0.968 x 10
-3

 0.982 x 10
-3

 0.968 x 10
-3

 

Re 5.44 x 10
3
 6.50 x 10

3
 8.29 x 10

3
 10.83 x 10

3
 

 

Table 3.3 Channel roughness. 

ks 95.83 

n 0.0104 

Chow (mm) 1.33 

Massey (mm) 0.46 

Sturm (mm) 0.37 

 

The values presented in Table 3.3, correspond to the roughness of the walls measured 

only in the main channel. However, and limited by experimental resources, these values will be 

assumed similarly as the roughness of the bottom of the floodplain. On the other hand, and 

considering the physical bottom roughness of the channel, Chow's equation shows a higher 

value, not corresponding to the reality, while Massey's and Sturm's equations, present more 

credible values. 

 

3.2 Measuring Technique: Laser Doppler Velocimeter 

Laser Doppler Velocimeter is a technique based on the Doppler effect which measures 

the instantaneous velocity of a fluid in a given control volume during a period of time long 

enough to capture statistically valid mean values of the velocity field and its corresponding 
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fluctuating components. In this particular case, this technique is being used by a Coherent Laser 

Doppler Velocimeter of the Innova 70C Argon series with a maximum output power of 2W, 

which allows us to obtain 2D measurements of the velocity field through one probe. 

The process to obtain the instantaneous fluid velocity field with a LDV system, involves 

measuring the velocity of small particles passing through a control volume formed for two light 

beams emitted by the system (so small that it can be assumed that the velocity of the particle is 

equal to the fluid velocity). This control volume is established for bright fringes and fringes not 

so bright, separated by a known distance δf, as shown in fig. 3.4. When a particle passes through 

the control volume, it gives rise to a succession of pulses or light reflections, which are captured 

by a photomultiplier tube. The sequence of pulses is known as Doppler frequency fD. To 

calculate the particle velocity, eq. 3.2 is used: 

Df fu   (3.2) 

However, the fringe spacing depends of the wavelength of light () and the angle 

formed between both light beams (), as shown by eq. 3.3. If the input beams from the probe do 

not undergo a refraction, due to traveling through medium changes, e.g., air-glass-water or 

another combination of continuous matter, the control volume will not capture changes from the 

theoretical values (fringe spacing, number of fringes, control volume dimensions, etc.). 

However, if the input beams travel through different media, as in this investigation, the new 

values of the geometric control volume must be calculated. 

 



sin2

f  (3.3) 

 

Figure 3.4 Control volume of measurement. 

Assuming that both beams have the same frequency, the bright fringes remain stationary. 

In this case, the frequency emitted by a particle traveling immersed in the flow stream at a 

velocity V1, is f1. Now, if we visualize a particle traveling at the same velocity V1 but in the 

opposite direction to the main flow, the particle also emits a frequency f1. Obviously, the 
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software is able to calculate the velocity of the particle, however, it cannot predict the direction 

of the particle. 

To solve this problem, the system adds an additional frequency to one of the beams. With 

this, the beams observed in fig. 3.4 does not remain static, but instead moves from the beam 

which was added with an additional frequency towards the beam that has not been modified, 

known as unshifted beam. This phenomenon is achieved through a Bragg Cell, also known as 

Acoustic-Optic Modulator, AOM. 

Thus, when the particle moves from the unshifted to the shifted beam, the "relative" 

frequency of the particle will be the frequency added in the shifted beam (which in this case is 

40 MHz) over the Doppler frequency, i.e. equal to the particle velocity divided by the distance 

between the fringes generated in the control volume. Otherwise, when the particle travels from 

the shifted beam towards the unshifted beam, the "relative" frequency of the particle is 40 MHz 

minus the Doppler frequency, therefore resulting evident what is the particle direction. 

The measurements from the probe are sent to the Photodetector Module (PDM), which 

through a high pass filter, allows removing the pedestal and low frequency signal. Once this 

procedure is performed, the signal follows to the flow size analyzer (FSA) where its frequency 

is mixed with another frequency between 0-40 MHz, and filtered by a band-pass filter to 

eliminate the noise and other unwanted frequencies. Finally, the signal is processed by the FSA 

and sent to the computer for further analysis. Figure 3.5 shows a diagram of each of the LDV 

system components. 

Table 3.4 shows the relevant optics characteristics of the Laser Doppler Velocimeter used 

in this investigation, where dm and lm represent the measurement control volume diameter and 

length, respectively. 

 

Figure 3.5 Components of the LDV system. 
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Table 3.4 Main characteristics of the LDV system. 

 Channel 1 Channel 2 

Wavelength (nm) 514.5 488 

Focal Length (mm) 363 363 

Beam Separation (mm) 50 50 

Brag Cell Freq. (MHz) 40 40 

Theo. Fringe Spacing (µm) 3.7441 3.5513 

Theo. Nº of Fringes 24 24 

Theo. Angle  (rad) 3.94 3.94 

Theo. dm (mm) 0.0899 0.0853 

Theo. lm (mm) 1.3060 1.2388 

Exp. Fringe Spacing (µm) 4.9422 4.6877 

Exp. Nº of Fringes 18 18 

Exp. Angle  (rad) 2.98 2.98 

Exp. dm (mm) 0.0898 0.0852 

Exp. lm (mm) 1.7239 1.6352 

 

3.2.1 Probe Calibration 

This kind of measuring technique does not need to be calibrated to obtain the correct 

particle velocity crossing the control volume, contrary to other techniques such as the constant 

temperature anemometer technique (CTA). However, in order to obtain a greater number of 

captured particles by the Photodetector Module, the intensity of the flashes reflected from the 

particles must reach a minimum intensity to be processed. Thus, the higher the intensity of the 

output beams of the probes, the greater the intensity of the flashes reflected from the particles. 

To increase the intensity of the output beams of the probes, the power supplied to the laser must 

be increased accordingly. However, to ensure that the laser beam, that enters to the Multi Beam 

Separator, is transmitted correctly to the sensors through the optical fiber, the coupler should be 

aligned to maximize the output power. Figure 3.6 shows a schematic of the mirrors located 

within the coupler, and their role in the alignment process. 
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Considering that the alignment of the couplers is a methodological process that has 

great influence on the quality of the measurements, and being this a step whose description is 

not easily found in the literature, the procedure used in this research to align the couplers is 

explained in the following lines: 

1. Start by turning the focus knob or screw all the way down (clockwise), and adjust 

both sets of x-y translation knobs so that they are near the center of their range of 

motion. 

2. Open the shutter on the bottom of the corresponding working coupler unit. Close 

all others. 

3. Begin adjusting the focus upward (counter clockwise) until some light is seen out 

of the probe. 

4. If no light is seen, return the focus-adjust knob to the bottom of its range 

(clockwise). Turn the coarse x-y adjustment knobs 1 or 2 turns in either direction, 

and repeat the process. 

5. When even a small amount of light is seen out of the probe, this is a good signal. 

From now on, use an iterative technique adjusting the x-y and focus until the 

intensity of the output spot is maximized. 

6. Adjust the focus knob 
1
/2 turn counter-clockwise (the spot may initially become 

weaker with a focus adjustment). 

7. Adjust the x-translation (fine and coarse) until the output is at its brightest point. 

8. Adjust the y-translation (fine and coarse) until the output is at its brightest point. 

9. Repeat steps 6, 7 and 8 until the output is no longer getting brighter. 
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Figure 3.6 Scheme of Couplers 

 

3.2.2 FlowSizerTM Software 

The use of the Laser Doppler Velocimeter measurement technique requires the 

adjustment of some parameters to perform measurements with high quality. All these 

parameters, involved in this investigation, are controlled through the FlowSizer
TM

 software, such 

as the different frequency filters (photodetector module - PDM, downmixing, band-pass filters 

and SNR), burst threshold, measurement time, etc. Each of these elements is explained as 

follows: 

PMT Voltage: the photodetector module (PDM) is the equipment responsible to convert the 

reflected light from particles seeding in the flow into electrical signals. This reflected light is 

detected from a photomultiplier tube, PMT, which presents a voltage between 0-1000 V, 

allowing an amplification of the signal, i.e. increasing the voltage and, consequently, increasing 

the number of particles detected through the measurement control volume. However, all the 

electrical signals and noise increase as well. In most applications, the optimum voltage is 

between 350 and 600 V. Voltages higher than 600 V do not necessarily imply an increase of the 

number of particles detected, but imply an increase of the noise signal, i.e. it is necessary to 

adjust the PMT Voltage until the system shows a higher quantity of particles detected. The 

values used in this investigation were between 450 and 600 V. 

High-pass Filter: once the light intensity distribution emitted from the beams presents a 

Gaussian behavior, the light scattering from the particles crossing the control volume will result 
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in a light scattering pattern similar to the one shown in fig. 3.7. However, the lower frequencies 

generated due to the Gaussian behavior, also called pedestal, can be removed using one of two 

default pedestal frequencies: 5 MHz is used when a high velocity reversing flow exists, or a 20 

MHz filter is used for most applications and for very short transit time signals. The reader 

should remember that the frequencies for reversing flows will be lower than 40 MHz, while the 

frequencies for normal or streamwise flows will be higher than 40 MHz. In this case, a 20 MHz 

frequency filter was used.  

 

Figure 3.7 Light scattering pattern - Gaussian distribution. 

Downmixing: once the pedestal frequency is removed, the signal is sent to the flow size 

analyzer (FSA), where the signal is captured by the PDM and afterwards processed and 

transmitted to the computer. The first process developed by the FSA is the analysis of the 

existing recirculating flows or the velocities close to zero. For this, the downmixing process 

subtracts the downmix frequency from the input signal. Downmix frequency varies between 0 – 

40 MHz. If a downmix frequency of 40MHz, is selected, all the Bragg Cell Shift will be 

eliminated, so only the Doppler frequency is left. On the other hand, entering 39 MHz means 

that 1 MHz is still added onto the Doppler frequency (39 MHz – 40 MHz, this last is the Bragg 

Cell Shift frequency), allowing 1 MHz of reversal flows. In terms of velocity, if the fringe 

spacing δf  is 3.74 µm, the velocity of the allowed reversal flows is 3.74 m/s. In this case, the 

experimental fringe spacing of both channels are 4.94 µm and 4.69 µm, and the downmix 

frequency of 39.5 MHz and 39.2 MHz, respectively, allowing reversal velocities until 2.47 m/s 

and 3.75 m/s, respectively. If 0MHz is entered, then the downmixing process is ignored. 

Band Pass Filter: the main goal of the band pass filter is to eliminate the noise and the 

higher frequencies left in the downmixing process. For this purpose, the band pass filter has 20 

default band filters choices. Knowing the frequency range of the flow in study (given by the 

particle velocity divided by the fringe spacing), we need to choose the band pass filter that best 

fits. However, the downmixing frequency left in the previous step must be added to the flow 

frequency, i.e., if the expected flow velocity is between -0.1 m/s and 0.8 m/s, which represents -
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0.02 MHz and 0.16 MHz (using 4.69 µm as fringe spacing), and the downmixing frequency left 

was 0.8 MHz, the expected frequencies are between 0.78 MHz and 0.96 MHz, which represents 

the frequencies for -0.1 m/s and 0.8 m/s, respectively. In this case, the band pass filter that best 

fits is 0.1 - 1 MHz. Figure 3.8 shows a cut-off frequency histogram for a bad choice of the band 

pass filter (fig. 3.8a) and a good frequency histogram (fig. 3.8b). 

 

Figure 3.8 Frequency histogram a) Bad choice of the band pass filter b) Good choice of the band 

pass filter. 

Burst Threshold: it is another very important variable to obtain good quality LDV data. 

When the particles cross the measurement control volume, they scatter some amount of light 

with a given electrical signal amplitude. Larger particles scatter more light and thus, they will 

have higher signal amplitude. Typical Burst Threshold values will range from 30 mV to 300 

mV. For applications with small particles (< 10 µm) the optimum voltage will probably be 30 

mV. On the other hand, with larger particles an optimized value might be 100 mV or 200 mV. 

In situations with high levels of background light, such as near-wall measurements, Burst 

Threshold over 500 mV may be needed to achieve the best data rate. In this investigation the 

particles seeded into the water were aluminum oxide powder with a diameter of less than 10 

µm, so the Burst Threshold value used was 30 mV. 

SNR: the signal-to-noise ratio is the second requirement necessary to process a particle 

(the first requirement is the Burst Threshold). Through the SNR box, the operator can define the 

quality of the signal to be processed. Entering "High" means that the best signal quality will be 

processed, while entering "Very Low" means that the signals processed will have a wide noise 

levels. However, choosing "Very Low" increases the number of processed particles. In this 

investigation, the signal-to-noise ratio was selected as "Medium", since it ensured a good 

quality of signals without compromising too much the amount of particles to be detected. 

Table 3.5 shows the most important parameters used in this investigation for both 

channels. 
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Table 3.5 Adjustment of the main parameters of the LDV system. 

 Channel 1 Channel 2 

PMT Voltage 600 V 600 V 

High-Pass Filter 20 MHz 20 MHz 

Downmixing 39.5 MHz 39.2 MHz 

Band-Pass Filter 0.1 - 1 MHz 0.1 - 1 MHz 

Burst Threshold 30 mV 30 mV 

SNR Medium Medium 

Measuring Time 210 s 210 s 

 

3.3 Seeding Particles Characteristics used for LDV System 

When a LDV system is used to characterize the velocity field, particles must be seeded 

into the flow. The quality of the measurements not only depends on the adjustment of the above 

parameters, but also on the characteristics of the particles seeded into the flow. Particles with a 

high reflection capacity can be detected easily by the LDV, increasing the frequency of 

measured particles. Statistically, frequencies of 30 Hz are suitable to investigate the behavior of 

the mean properties or mean velocities of the flow. However, when a detailed analysis is 

required, as for example a spectrum analysis, higher frequencies are required. 

Four kind of seeding particles were studied: pepper powder, talcum powder, titanium 

dioxide powder and aluminum oxide powder. In a first phase, the pepper powder and talcum 

powder were compared in order to determine which one presented better results. Figure 3.9 

shows the distribution for both kind of seeding particles. In the case of the pepper powder, the 

mean particle diameter is 46.85 µm, while the mean particle diameter of the talcum powder is 

14.16 µm. 

Once the mean particle diameter of both particles was determined, the PMT voltage and 

the Burst Threshold parameters were adjusted in order to increase the data acquisition rate. The 

talcum powder presented better results than the pepper powder. fig. 3.10 shows the behavior of 

the Data Rate vs. PMT voltage and the Data Rate vs. Burst Threshold for three different water 

depth conditions. The higher values of Data Rate as a function of the PMT voltage are obtained 

for 575 V and 625 V, for channel 1 and 2, respectively. Only for z/H = 0.90, the higher values 
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of Data Rate are achieved for 675 V in both channels. However, this voltage increases the 

electrical noise of the signal, as mentioned above, and is not recommended. 

 

 

Figure 3.9 Distribution of the particles diameter. 

In the case of the Burst Threshold, fig. 3.10 shows that the LDV system detects more 

talcum powder particles if the threshold is adjusted between 30 - 35 mV for all cases. This 

values correspond very well with the information found in the technical manual of the LDV, 

which recommends that for applications with small particles (< 10 µm) the optimum voltage 

would likely be 30 mV. 

Although talcum powder presents better results than white pepper, the attained data rate 

was not sufficient to estimate the turbulent parameters correctly. Therefore, other types of 

particles were tested as titanium dioxide (particle size < 40 µm) and aluminum oxide (particle 

size < 10 µm) and afterwards, a similar study of the behavior of the particles was performed. 

The results showed that titanium oxide powder has a similar behavior than talcum powder. 

However, aluminum oxide powder presents data rates 5 times higher, approximately. 

Figure 3.11 shows a cross-section of the flume-channel where data rate distribution can 

be observed using aluminum oxide powder as seeding particles. One of the most difficult issues 

associated to the use of the LDV technique is to ensure a statistically homogeneous particles 

distribution into the flow over time. In order to prevent the decantation process of particles, the 

measurements were stopped every 3-4 hours and the bottom of the flume-channel was swept to 

remove all particles before continuing the experiments. When using aluminum oxide, it was 

noticed that some particles remained attached to the pipe system, accounting for 50 gr. 

approximately. Therefore, that amount of extra aluminum oxide particles was added during all 
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the experimental campaign. The initial dosage of particles placed in the water was 250 gr. On 

the other hand, due the low velocities obtained close to the side walls, the data rate acquisition 

decreased in these regions. 

The higher data rates obtained using aluminum oxide powder demonstrated that it is the 

best quality of seeding particles when compared to the other three types of particles studied. 

Additionally, it was also considered glass spheres as seeding particles since it was expected to 

obtain even higher acquisition data rates than for aluminum oxide, however, it resulted to be 

very expensive and not economically feasible, since it would have required to install a very 

expensive system to recover the particles after each measurement run. The variables used in the 

FlowSizer
TM

 software were presented in tab. 3.5. 

 

Figure 3.10 Adjustment of the PMT Voltage and Burst Threshold. 
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Figure 3.11 Distribution of the frequency data on the cross-section at 9.0 m. 

 

3.4 Experimental Campaign  

In this investigation, the main goal is to characterize the turbulent structures in 

compound channel flows under two very special conditions: (a) without roughness or smooth; 

and (b) with roughness. Additionally, it was also a major objective to analyze how the turbulent 

structures are affected when operating under different inlet water depths. On this regards, three 

different relative water depths for the smooth case were tested: (a) Hr = 0.50; (b) Hr = 0.31; and 

(c) Hr = 0.23, where   HhHHr   is the relative water depth, H is the water depth and h is 

the interface/bankfull depth. The roughness effect was evaluated by using vertical cylinders 

placed at the interface with three different spacing between roughness elements: (a), Sd1 = 1 m; 

(b) Sd2 = 0.2 m; and (c) Sd3 = 0.04 m, and two relative water depth for each spacing:,(a) Hr = 

0.51 and Hr = 0.31 for Sd1 = 1 m; (b) Hr = 0.45 and Hr = 0.28 for Sd2 = 0.2 m; and (c) Hr = 0.34 

and Hr = 0.25 for Sd3 = 0.04 m.  

The most common spacing between trees in the environment is in the range of 4 < S/D 

< 20 (Esfahani and Keshavarzi, 2010; Notes, 1998; Shiono, Ishigaki, et al., 2009; Terrier, 2010), 

being S the spacing between trees and D the mean diameter of the tree. In order to evaluated the 

effect of the spacing between trees on the turbulence structures, the rough elements consist of 

aluminum cylindrical rods with 10.0 mm of diameter and 100.0 mm length placed in vertical 

position. In this case, the S/D values to study are S/D = 100, S/D = 20 and S/D = 4. 

As mentioned in the previous paragraph, all measurements were performed under quasi-

uniform flow condition. For smooth bottom conditions, the quasi-uniform flow was established 

measuring the water depth in the middle of the main channel and in the middle of the floodplain 

each 0.5 m, starting at 1.0 m from the inlet until 10.0 m from the entrance. To determine the 
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free-surface slope, each measure of the water depth was added to the bottom elevation 

corresponding at this exact measurement point. The bottom elevation or the bottom slope was 

determined through a topographic laser level device as mentioned at the beginning of this 

section. The uniform flow was established when the difference between the free-surface slope 

on each region (middle of the main channel and middle of the floodplain) and the bottom slope 

was less than 0.1 mm/m, as shown in fig.3.12. The water depth was controlled with a gate 

located in the final section of the flume. Table 3.6 shows the mean characteristics for each flow 

discharge. 

 

 

Figure 3.12 Free-surface slope for the smooth case with Hr = 0.50, Hr = 0.31 and Hr = 0.23 a) 

Free-surface slope in the Main Channel b) Free-surface slope in the Floodplain. 

Moreover, the mean water depth measured in the middle of the main channel was 

compared with the Single Channel Method (SCM) and with the Divided Channel Method 

(DCM) in order to verify that this value lied between the estimations from both methods 

(Bousmar et al., 2005). For low inlet flow rates, the Single Channel Method over-estimates the 

water depth expected to be attained for the quasi-uniform flow, while the Divided Channel 

Method under-estimates it. However, increasing the inlet flow rate the difference between both 

methods decreases, becoming more accurate the calculation by either method. Figure 3.13 

shows the mean water depth for the three conditions considered above. For Hr = 0.31 and Hr = 

0.23, the experimental mean water depth lies between both methods, as expected. Nevertheless, 

for Hr = 0.50 the experimental mean water depth is 0.90% less than the value calculated from 

the Divided Channel Method. However, considering the error obtained, 0.0006 m, the value of 

the mean water depth in fact lies between both the estimation by both methods, SCM and DCM, 

respectively. 
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Table 3.6 Mean experimental conditions for smooth case. 

 Hr = 0.50 Hr = 0.31 Hr = 0.23 

 
Main 

Channel 
Floodplain 

Main 

Channel 
Floodplain 

Main 

Channel 
Floodplain 

Discharge 

(m
3
/h) 

83.38  0.29 35.50  0.09 24.59  0.07 

Mean water 

depth (m) 

0.1033  

0.0006 

0.0519  

0.0007 

0.0744  

0.0005 

0.0233  

0.0006 

0.0666  

0.0007 

0.0154  

0.0006 

Bottom slope 

(%) 
-0.1005 -0.0886 -0.1005 -0.0886 -0.1005 -0.0886 

Free-surface 

slope (%) 
-0.0985 -0.0958 -0.0965 -0.0964 -0.0956 -0.0945 

Slopes 

difference 

(mm/m) 

0.020 0.072 0.040 0.078 0.049 0.059 

 

Additionally, vertical profiles in the middle of the main channel, lower interface, upper 

interface and in the middle of the floodplain, along the whole channel, were measured in order 

to verify the development of the boundary layer. These measurements were performed for the 

three relative water depths at distances 4.5 m, 6.0 m, 7.5 m and 9.0 m from the inlet of the 

channel. In all cases, the difference of the streamwise depth-averaged velocity between 7.5 m 

and 9.0 m is less than 5%. Moreover, the cross-section selected to take the measurements and 

characterize the behavior of the flow was the cross-section at 9.0 m from the inlet of the 

channel. Figure 3.14 shows the vertical profiles for Hr = 0.50 at that streamwise position. 

For the rough bottom case, the water depth measurements were carried out each 0.5 m 

starting at 5.0 m from the inlet up to 10.0 m downstream. The rough elements were placed 

between 4.75 m and 10.75 m from inlet and were located at the interface between the main 

channel and floodplain, as shown in fig. 3.15. In order to determine the evolution of the velocity 

field along the channel, measurements were carried out in three cross sections located relative to 

the rods: (a) downstream; (b) middle; and (c) upstream of them. All these cross sections were 

taken at around 9.0 m length from the inlet. 
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Figure 3.13 Mean water depth. Comparison between measurements and estimations from Divided 

Channel Method and Single Channel Method. 

 

 

Figure 3.14 Verticals velocity profile at different cross-section. 

 

 

Figure 3.15 Channel geometry for roughness cases. x = 8.77 m, downstream of the rod; x = 9.27 

m, in the middle of the rods; x = 9.73 m, upstream of the rod. 
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As mentioned above, three different spacing between rods were used, Sd1 = 1 m, Sd2 = 0.2 

m and Sd3 = 0.04 m, and two different relative water depth for each spacing. In order to establish 

the quasi-uniform flow for each spacing condition, the gate was fixed and the discharge was 

adjusted until free-surface slope was parallel with the bottom slope, as shown in fig. 3.16. To do 

that, and knowing the location of the gate for each relative water depth set in the smooth 

conditions, the gate was placed in the position for Hr = 0.50 in the smooth condition and then, 

the discharge was adjusted for each spacing condition. The same procedure was performed but 

placing now the gate for Hr = 0.31 in smooth conditions. It was not an easy task to set a uniform 

flow due to the free-surface perturbation caused by the rods, obtaining in some cases differences 

between the bottom slope and the free-surface slope of up to 0.4 mm/m. However, the uniform 

flow was established, in this investigation, when the free-surface slope matched the bottom 

slope in the main channel and when similar conditions occurred between the free-surface and 

bottom slope in the floodplain. Table 3.7 shows, the experimental conditions for roughness 

cases.  

In total, 9 inlet conditions were studied, 3 inlet conditions for the smooth case and 6 for 

the roughness case, and 21 cross sections were measured. In each cross section, 775 points were 

measured during 210 s each one to obtain statistically mean steady values, resulting in 45 hours 

of measuring by cross section. These 775 measured points, corresponded to 31 vertical profiles 

with 25 measurement points each one, for which 11 vertical profiles were located in the main 

channel, 11 vertical profiles in the interface (region between main channel and floodplain) and 9 

in the floodplain. Each vertical profile contains 25 measured points, 10 points were 

concentrated in the wall region (20% below from the wall), 10 points in the intermediate region 

(between 20% and 60% of the water depth) and 5 points in the free-surface region. 

 

Figure 3.16 Free-surface slope for roughness case for Hr = 0.50 and Hr = 0.31 and Sd1 = 1.00 m 

a) Free-surface slope in the Main Channel b) Free-surface slope in the Floodplain. 
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Table 3.7 Mean experimental conditions for roughness case. 

 Sd1 = 1.00 m Sd2 = 0.20 m Sd3 = 0.04 m 

 Hr = 0.51 Hr = 0.31 Hr = 0.45 Hr = 0.28 Hr = 0.34 Hr = 0.25 

 
Main 

Channel 
Floodplain 

Main 

Channel 
Floodplain 

Main 

Channel 
Floodplain 

Main 

Channel 
Floodplain 

Main 

Channel 
Floodplain 

Main 

Channel 
Floodplain 

Discharge 

(m
3
/h) 

82.99  0.26 35.50  0.08 62.72  0.15 31.31  0.09 36.36  0.13 26.41  0.07 

Mean water 

depth (m) 

0.1033  

0.0009 

0.0523  

0.0011 

0.0749  

0.0005 

0.0234  

0.0006 

0.0941  

0.0005 

0.0422  

0.0008 

0.0718  

0.0005 

0.0204  

0.0006 

0.0784  

0.0004 

0.0270  

0.0005 

0.0683  

0.0005 

0.0170  

0.0005 

Bottom slope 

(%) 
-0.1005 -0.0886 -0.1005 -0.0886 -0.1005 -0.0886 -0.1005 -0.0886 -0.1005 -0.0886 -0.1005 -0.0886 

Free-surface 

slope (%) 
-0.0885 -0.1260 -0.0987 -0.1099 -0.1176 -0.1008 -0.0954 -0.1028 -0.0987 -0.0982 -0.0998 -0.0980 

Slopes 

difference 

(mm/m) 

0.120 0.374 0.018 0.212 0.171 0.121 0.051 0.141 0.018 0.096 0.008 0.094 

Cross Section 

Measured (m) 

8.770 8.770 8.965 8.965 9.005 9.005 

9.250 9.250 9.050 9.050 9.010 9.010 

9.730 9.730 9.135 9.135 9.015 9.015 
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3.5 Data Acquisition and Pre-processing 

The u and w instantaneous velocities were obtained from FlowSizerTM software, 

measured at a given cross section. However, before calculating any turbulence parameters, the 

instantaneous velocity must be filtered to remove some signal perturbations associated to noise. 

On this regards, a filtering method was used to detect the noise spikes, namely Phase-Space 

Thresholding Method. 

The Phase-Space Thresholding Method uses the Poincaré map concept which relates a 

variable and its derivatives, concentrating the points in an ellipsoid defined through the so 

called Universal criterion and considering the points outside of the ellipsoid as spikes. The 

Universal criterion results from the normal probability distribution theory which for a normal 

random variable, whose standard deviation is estimated by ̂  and the mean is zero, has an 

expected absolute maximum given by: 

 
ˆln2ˆ nU   (3.4) 

The Phase-Space Thresholding Method proves to be useful detecting spikes, as noted 

by Goring and Nikora (2002), for measurement points located very near to the walls, where the 

instantaneous velocity of a large number of particles captured by LDV system presents values 

well defined in two ranges. However, when the first range of values corresponds to the real 

velocity of the measurement point and a second range corresponds to spikes caused by light 

reflection from the wall, the method fails, since there exists a dichotomy on which of these two 

ranges of values is the real instantaneous velocity (see fig. 3.17). To correct this issue, a pre-

filtering was developed in order to eliminate the values obtained by reflections. In this case, a 

threshold was defined for the values that exceed UuU  , where u  is between 0.5 - 0.8. 

Completed the pre-filtering process, the Phase-Space Thresholding Method was executed. 

For this purpose, the following steps were developed: 

1. Calculate the instantaneous fluctuations from instantaneous velocity. 

2. Calculate the acceleration coefficient for the first and second derivatives from: 

  2''' 11   iii uuu  (3.5) 

  2''' 11
2

  iii uuu  (3.6) 

3. Calculate the standard deviation of all three variables, 
'u , 

'u  and 
'2u

 . To 

calculate the standard deviation, eq. 3.7 was used: 
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4. Calculate the rotation angle   of the principal axis of iu'2  vs. 
iu' , 













 





i

ii

u

uu
2

2
1

'

''
tan . Note that for 

iu'  vs. 
iu' , and iu'2  vs. 

iu'  0  

because of symmetry. 

5. Calculate the major and minor axes of the ellipse for each pair of variables. On this 

regard, for 
iu'  vs. 

iu' , the major axis is 
uu  and the minor axis is 

uu  ; for iu'2  

vs. 
iu' , the major axis is 

uu   and the minor axis is 
uu 2

 ; and for iu'2  vs. 
iu' , 

the major and minor axes are given by a and b, respectively, being a and b the solution 

of: 

   22222
sincos baxx   (3.8) 

   22222
cossin2 ba

xx 


 (3.9) 

6. Identify the points outside of each ellipse and replace them. Once the outlier points for 

each spike (outside points of the ellipse) are replaced, all steps must be repeated until 

further spikes replacements have no effect in the size of the ellipsoid. This is an iterative 

process. 

 

3.5.1 Spike Replacement 

To replace the spikes, a third-order polynomial was used. In this case, the 

following steps were executed: 

1. Identify a spike and replace it momentarily by the time-averaged record. 

2. Use 12 points on either side of the spike to fit a third-order polynomial. 

3. Replace the spike by the value obtained from the third-order polynomial. 

4. Follow step 1, 2 and 3 for each spike. 

 

Figure 3.17 shows an example of the data obtained after using the Phase-Space 

Thresholding Method. 
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Figure 3. 17 Pre-processing of the data a) Pre-filtering b) Spike replacement after applying the 

Phase-Space Thresholding Method. 
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4.1 Influence of the sidewall effect on asymmetric compound channel flows 

Azevedo, R., et al. (2011). Influencia del efecto pared-lateral en flujos en canales asimétricos compuestos 

(Influence of the sidewall effect on asymetric compound channel flows). IX Congreso Anual de 

Ingenieria ASME USB 2011. U. S. Bolívar. Caracas - Venezuela. 

Abstract: Depending on the relationship between the main channel width and the flow depth, the 

influence of the sidewall can have an important role in the development of Prandtl’s second 

kind secondary currents. These can have a major effect on the mean flow and on turbulence 

structures developed at the mixing layer between the floodplain and main channel. To check the 

influence of the sidewall effect, the velocity field was measured with a Laser Doppler 

Velocimeter (LDV). The discharge values used for the measurements were of 23.0 L/s and 9.8 

L/s which correspond to relative depths (floodplain depth/flow depth) of 0.50 and 0.31, 

respectively. The results show that as a consequence of sidewall effect the maximum velocity 

presented by the flow in the streamwise direction occurs quite below the free surface. This 

effect, named “velocity-dip” phenomenon, has been investigated by several researchers. 

Furthermore, the secondary currents located between the main channel and the floodplain, 

generate a downstream flow on the interface (region between main channel-floodplain), which 

stimulates further the momentum and energy transfer between the sidewall and the center of the 

main channel, promoting the dip phenomenon. These effects were observed for both discharges, 

however, as the main channel width-depth aspect ratio increases, the influence of the sidewall 

effect decreases. 

Key words: Compound open-channel, secondary currents, sidewall effect. 

 

Resumen: Dependiendo de la relación entre el ancho del canal principal y el tirante del flujo, la 

influencia de la pared lateral puede jugar un papel importante en el desenvolvimiento de las 

corrientes secundarias de segundo orden de Prandtl. Esto puede tener un mayor impacto sobre el 

flujo medio y dependiendo de la estructura turbulenta en la capa de mezcla, entre la planicie de 

inundación y el canal principal, las corrientes secundarias de segundo orden de Prandtl pueden 

ser intensificadas. Para verificar la influencia que tiene el efecto de la pared lateral, el campo de 

velocidad fue medido con un Laser Doppler Velocimeter (LDV). Los caudales empleados 

fueron de 23.0 L/s. y 9.8 L/s. correspondientes a alturas relativas (altura en la planicie de 

inundación/tirante del flujo) de 0.50 y 0.31, respectivamente. Los resultados señalan, que uno de 

los efectos que tiene la pared lateral sobre el comportamiento del flujo en el canal principal, y 

que ya ha sido evidenciado por otros investigadores, es que la velocidad máxima que presenta el 

flujo en el sentido longitudinal, se encuentra por debajo de la superficie libre. Dicho fenómeno 
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es conocido como el fenómeno dip. Asimismo, las corrientes secundarias formadas entre el 

canal principal y la planicie de inundación, generan un flujo descendente en la interfaz (zona 

entre canal principal-planicie de inundación) que estimula aún más la transferencia de momento 

y energía entre la pared lateral y el centro del canal principal, promoviendo el fenómeno dip.  

Estos efectos fueron observados para ambos caudales, sin embargo, a medida que la relación 

entre el ancho del canal principal y el tirante del flujo aumenta, la influencia que tiene la pared 

disminuye, siendo la transferencia de flujo desde la pared hacia el centro del canal principal 

menos intenso y ubicándose la velocidad máxima, en sentido longitudinal, más próxima a la 

superficie libre. 

Palabras claves: Canal compuesto, corrientes secundarias, efecto pared-lateral. 

 

4.1.1 Introduction 

To determine the behavior of rivers it is essential to formulate mathematical models in 

order to predict the new currents caused when the level of rivers go beyond its natural course 

and flood surrounding areas, which are characterized as areas of recreation, agriculture or even 

inhabited. To study the impact that this natural phenomenon can cause, several investigations 

have been conducted on different types of experimental open channels. The first aspect that has 

been studied is the distribution of shear stress across the width of a rectangular channel. 

Keulegan (1938), proposed a method in which the cross sectional area of the flow is divided 

into three areas using the bisector of the angle formed between the side wall and the bottom of 

the channel. Einstein (1942) proposed a method in which the cross section of the flow is divided 

into two areas and then relates the weight of both areas with the resistance of the bottom and 

walls of the channel. Both methods have been used by several researchers and have undergone 

certain modifications to be adjusted to the velocity profiles measured near the sidewall. 

One phenomenon commonly observed in open channels is that the maximum flow 

velocity is below the free surface. This phenomenon, called "velocity dip", has been observed 

not only in rectangular channels (Kang and Choi, 2006; Yang et al., 2004) but also in 

asymmetric compound channels (Shiono and Komatsu, 2000). The "dip" phenomenon has been 

attributed by many researchers to secondary currents originated near the side walls of the 

channel. Nezu and Rodi (1985) found that the "dip" phenomenon occurs when the relationship 

between the width of the rectangular channel and the water depth is less than or equal to 5. 

Yang et al. (2004) presented a modification of the "log-law" which shows a traditional good fit 

with the velocity distribution, including the inertial region. 

In the case of compound open channels, the “dip” phenomenon remains a research 

topic. The behavior of secondary currents observed by Shiono and Knight (1991) is described in 
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Figure 4.1. Moreover, measurements taken by Stocchino et al. (2011) of flow velocities at the 

free surface, using "Particle Image Velocimetry" (PIV) in a symmetrical compound channel, 

show macrovortices of vertical axis (normal to the channel bottom) near the side wall of the 

floodplain when the relation of the water depth between main channel and floodplain is less 

than 2. They indicate that these macro vortices were observed only in the side wall region and 

not in the interface region. This shows the complex formation of secondary currents close to the 

side wall as the water depth increases. 

In this study measurements made in an asymmetric compound channel will be presented 

where the “dip” phenomenon is again observed. The first objective will be to present the time-

averaged velocity fields U and W, in order to observe how the side wall of the main channel and 

secondary currents, generated by the interaction of flows between the main channel and 

floodplain, influence on the emergence of the “dip” phenomenon. Further, the turbulent 

intensities U' and W' will be presented. All results will be compared with results reported in 

rectangular and compound channels by other researchers. 

 

Figure 4.1 Secondary Currents observed by Shiono and Knight (1991) in a straight compound 

channel. 

 

4.1.2 Experimental Setup 

The measurements were performed in an asymmetric compound open channel built on a 

concrete structure. To make the bottom of the channel smoother, a layer of mastic was added. 

Figure 4.2 shows the side wall of the flume, which presents a set of glass windows that allow 

taking measurements with Doppler Velocimeter Laser (LDV). However, to avoid the effects of 
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the windows edges on the flow, a 0.01 m thick acrylic sheet was placed between the sidewall 

and the channel. 

The feeding system of the channel was carried out by a single pump and the water level is 

adjusted through a gate located in the final section of the channel. The total flow rate is 

determined for an electromagnetic flowmeter located in the supply pipe and the water level is 

obtained with a water gauge level. 

 

 

Figure 4.2 Asymmetric Compound Channel Description a) Set of windows through measurements 

are made b) Inlet of the channel. c) Cross-section of the channel. 

 

Figure 4.2b shows the initial section of the channel, where the floodplain and main 

channel are separated by a plate in order to decrease the mass transfer between them. Thus, the 

entry conditions are improved to establish uniform flow conditions (Bousmar et al., 2005) 

The flume is 11.60 m. long and 0.790 ± 0.002 m. wide. The main channel has a width of 

0.259 ± 0.002 m. and an average slope of 0.0985%, while the floodplain has a width of 0.531 ± 

0.001 m. and an average slope of 0.0910%. Table 4.1 shows the most important parameters of 

the compound channel. 

Velocity measurements were made using a LDV Innova 70C Argon-ion with a 

maximum power of 2W. In this system, two light beams crossing at the focal length of the fiber 

probe (measurement volume) are needed in order to measure one component of velocity. For 

measuring two velocity components, the system displays two pairs of beams. This measurement 

technique is a non-invasive technique based on the Doppler effect. When a particle crosses the 

measurement volume, it emits a sequence of light reflections that are captured by the system and 

stored as a measurement frequency. To determine the direction of the particle, the wave 

frequency of one of the two light beams is modified (shifted beam). In this case, the frequency 
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of the shifted beam is 40 MHz, causing a displacement of fringes formed in the measuring 

volume, from the shifted beam to the unshifted beam. Therefore, when a particle crosses the 

measuring volume from the unshifted beam to the shifted beam direction, the measurement 

frequency will be the aggregate frequency (40MHz) plus the Doppler frequency (the frequency 

emmitted by a particle when crossing the measuring volume without altering the wave 

frequency of the shifted beam, i.e. the fringes remain static in the measurement volume). 

Otherwise, if the particle crosses the measurement volume from the shifted beam to the 

unshifted beam, the measurement frequency will be the aggregate frequency (40 MHz) minus 

the Doppler frequency (TSI, 2006). 

Table 4.1 Main Geometrical Characteristics of the Channel. 

Channel Length L (m) 11.60 

Channel Wide B (m) 0.790 ± 0.002 

Number of Floodplains 1 

Floodplain Width BFP (m) 0.531 ± 0.001 

Floodplain Slope 0.0910 % 

Main Channel Width BMC (m) 0.259 ± 0.002 

Main Channel Slope 0.0985 % 

Interface Depth h (m) 0.051 ± 0.001 

Manning Coefficient n (s/m1/3) 0.01044 

 

Once the beams travel through different refraction materials, the focal length and size of 

the measurement volume change. Table 4.2 shows the main features of LDV. To perform 

measurements, particles of talcum powder with an average diameter of D50=14.16 μm were 

used. However, recent studies show that the use of aluminum oxide particles as seeding 

increases the acquisition rate. The measurement time at each point was 210 s. which allows data 

rates between 5 Hz - 150 Hz. The velocity measurements were performed at a cross-section 

located 7.5 m from the channel entrance, where mass transfer between the floodplain and main 

channel, due to overfeeding of the floodplain region, is almost balanced (Bousmar et al., 2005). 

Discharges of 23 L/s. and 9.8 L/s were used, corresponding to a relative water depth of 0.50 and 

0.31, respectively. The number of measurement points for a relative height of 0.50 were 1748, 

corresponding to 70 verticals distributed along the cross section of the channel, and the number 

of measurement points for a relative water depth of 0.31 were 1050, corresponding to 42 

verticals. The measurements were performed from the main channel lateral wall until 0.40 m 

from that wall due to the configuration used with LDV. Moreover, due to some interference 
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between LDV beams and the channel bottom, measurements below 0.05 m and 0.02 m could 

not be developed in the main channel and floodplain regions, respectively. 

 

Table 4.2 Main Characteristics of LDV. 

 
Beam 1 

(u) 

Beam 2 

(w) 

Beam Color Green Blue 

Wavelength (nm) 514.5 488.0 

Focal Length (mm) 363 363 

Beam Separation (mm) 50 50 

Laser Beam Diameter (mm) 2.65 2.65 

Theoretical Measurement Beam Waist (μm) 89.95 85.31 

Experimental Measurement Beam Waist (μm) 99.29 94.18 

Theoretical Measurement Beam Length (mm) 1.31 1.24 

Experimental Measurement Beam Length (mm) 1.91 1.81 

Theoretical Fringe Spacing (mm) 0.0037 0.0036 

Experimental Fringe Spacing (mm) 0.0049 0.0047 

Theoretical Number of Fringes 24 24 

Experimental Number of Fringes 20 20 

 

Table 4.3 shows the flow conditions used for both relative water depths. The relative water 

depth is calculated as the ratio of the water depth in the floodplain and the water depth in the 

main channel (Hr = (H–h) / H). The friction velocity was calculated by the geometric 

characteristics of the channel (U* = (gRhS)
0.5

) and the cross-section averaged velocity was 

calculated with the rate between the flow discharge and the section area. 

Table 4.3 Experimental Flow Conditions. 

Q (m
3
/s) H (m) Hr Area (m

2
) UCS (m/s) U* (m/s) Re  (x10

3
) Fr 

0.0098 0.0745 0.31 0.0302 0.324 0.0179 10.02 0.567 

0.0230 0.1022 0.50 0.0521 0.441 0.0229 22.73 0.606 

 

4.1.3 Results and Analysis of Results 

This section describes the velocity fields and turbulent intensities measured at the 

asymmetric compound open channel. 
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Figure 4.3 shows the distribution of velocities U and W. For both flow discharges, it can 

be verified that the maximum velocity of the U is below the free surface in the main channel 

region (“dip” phenomenon). In the case of fig. 4.3a (Hr = 0.31), the maximum velocity is 

located at 80% of the water depth, whereas in fig. 4.3b (Hr = 0.50), the maximum velocity is 

reached at 70% of the water depth. However, in the floodplain region the maximum velocity is 

attained at the free surface. A similar behavior was observed by Shiono and Komatsu (2000) in 

an asymmetric compound channel.  A bulge of the isolines in the upper interface is also 

observed in fig. 4.3b, due to an ascendant flow located in this region. Isolines of the velocity W 

(fig. 4.3c and 4.3d) show that in the main channel, close to the interface, there is a descendant 

flow, while in the upper interface an ascendant flow is observed. The behavior of the movement 

of the secondary currents between the main channel and floodplain are consistent with 

observations made by Shiono and Knight (1991). Due to the loss of the measurement field of 

the W component for Hr = 0.31, the ascendant flow in the upper interface is not clearly 

observed. 

According to Nezu and Nakagawa (1993), for rectangular channels, there is a vortex of 

high intensity originated near the free surface and called "free-surface vortex", rotating in 

clockwise direction, which generates a downward flow of great intensity, causing a momentum 

transfer from the side wall towards the center of the main channel and from the free surface 

towards the bottom of the channel. The descendant flow in the main channel causes an 

immersion of the vortex located near the free surface, resulting in the aforementioned “dip” 

phenomenon. In this case, the existence of a descendant flow of high intensity is clearly 

observed in the area of the main channel near the interface, resulting from the interaction 

between the flows of the main channel and floodplain, which generates such momentum transfer 

between side-wall / center of the main channel, and free surface / half depth in the main 

channel. 

As for Hr = 0.50, the descendant flow has greater intensity than for Hr = 0.31, the 

maximum velocity presented in fig. 4.3b is attained deeper than the one presented in fig. 4.3a. 

Moreover, it is also expected that as more intense the secondary currents originated in the 

interface region are, a greater momentum transfer exists from the side wall and from the free 

surface, causing the “dip” phenomenon. However, increasing the width of the main channel, the 

effect of momentum transfer between the sidewall and the center of the main channel decreases. 
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Figure 4.3 Isolineas of Velocities U and W. 

 

According to Nezu and Nakagawa (1993), the velocity distribution in rectangular 

channels fits nicely to the "log-law", except for the vicinity of the side walls, where there is 

turbulence anisotropy. For those regions, where the flow behavior is 3D, it is necessary to know 

a priori the von Kármán constant and the constant of integration. For 2D flows, the values 

recommended by Nezu and Nakagawa (1993) for those constants are 0.41 and 5.3, respectively. 

Figure 4.4 shows the behavior of the velocity profiles in the main channel. For the 

velocity profile near to the side wall, the profile does not have a good fit with the "log-law". For 

Hr = 0.50, the velocity profile near to the side wall has a larger deviation than the one presented 

for Hr = 0.31. This is due to a greater intensity of the turbulence anisotropy. However, as the 

profiles move away from the side wall, they begin to progressively resemble the traditional 

"log-law". 

The velocity profiles closest to the interface region (Y ≈ 0.20) do not have a good fit with 

the traditional “log-law”. However, for both cases Hr = 0.31 and Hr = 0.50, the velocity profiles 

show a similarity between them. Moreover, these profiles have a logarithmic behavior in the 

bottom section, except for the velocity profile taken in the main channel at the lower interface. 

Probably, adjusting the values of the von Kármán constant and the integration constant of the 

traditional "log-law", an expression that fits better the velocity profile could be obtained. 
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Figure 4.4 Vertical Velocity Profiles of U/U* in the main channel. 

 

Yang et al. (2004) proposed a modification of the traditional "log-law" in order to 

describe the behavior of the velocity distribution across the width of a rectangular channel, 

considering the “dip” phenomenon. They consider two logarithmic distances, one from the 

bottom of the channel and the other from the free surface, and a correction factor of the distance 

where the maximum velocity U occurs. A similar analysis can be made in compound channels 

where secondary flows are more complex. However, in this section we will only consider the 

influence of the side wall and the secondary currents formed between the main channel and 

floodplain, on the “dip” phenomenon. 

Figure 4.5 shows the distribution of turbulent intensities U' and W' normalized by friction 

velocity U*. In the case of isolines of turbulent intensity U', fig. 4.5a and 4.5b show a 

resemblance with the isolines of velocity U. The turbulent intensity is greater near to the bottom 

and side wall of the channel, while the lower turbulent intensity is below the free surface due to 

the “dip” phenomenon. On the other hand, fig. 4.5c and 4.5d show how the higher turbulent 

intensity W' is located near to the bottom and the side wall of the channel and decreases towards 

the free surface. These observations were also reported by Kang and Choi (2006) and Nezu and 

Rodi (1985) in rectangular channels. 
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Figure 4.5 Normalized Isolineas of Turbulent Intensity U’ and W’. 

 

4.1.4 Conclusions 

According to the results shown in this work it can be concluded that the “dip” 

phenomenon occurs not only in rectangular channels, product of the lateral wall of the channel, 

but also in compound channels where additional secondary currents are formed by the 

interaction between the main channel and floodplain flows. 

The existence of a descendant flow of high intensity in the main channel region close to 

the interface due to the interaction between the main channel and floodplain flows was 

observed. This flow generates a momentum transfer between the side wall and the center of the 

main channel, and between the free surface and the half depth area, rendering the maximum 

velocity below the free surface. This allows concluding that, as higher are the secondary 

currents in the interface region, more intense will be the “dip” phenomenon. 

Velocity profiles measured in the main channel do not fit the traditional "log-law", 

corroborating the existence of a 3D flow. However, the velocity profiles have a logarithmic 

trend near the bottom of the channel (wall region). 

In the case of the turbulent intensity U', it has a similarity with the isolines of velocity 

U. However, the greater turbulent intensity is in the vicinity of the side wall and the bottom of 

the channel. Also, lower turbulent intensity is just below the free surface due the dip 

phenomenon. In the case of the turbulent intensity W', the highest intensity is located near the 

side wall and the bottom of the channel and decreases in the direction of the free surface. 
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4.2 Experimental Characterization of Straight Compound-Channel 

Turbulent Field  

Azevedo, R., Rojas-Solórzano, L., & Leal, J. (2012). Experimental characterization of straight compound-

channel turbulent field. In in 2nd European IAHR Congress 2012 Munich. 

Abstract: Straight compound-channel flows have been studied by many authors, mainly 

concerned with mean flow variables. Detailed information on the complex turbulent field of 

these flows is still scarce. In the present paper, high data rate measurements were obtained for 

the streamwise and vertical velocity components, using a 2D Laser Doppler Velocimeter in an 

experimental compound flume. The filtered velocities time series allowed the computation of 

relevant turbulence statistics: autocorrelation functions, dissipation spectra, turbulence scales 

and dissipation rate. The results are analyzed by comparison with universal laws drawn for 

isotropic turbulent 2D fully developed open-channel flow. The presence of strong secondary 

currents does not affect the universal law in the floodplain, as long as the constants are changed. 

In the main channel the 3D behavior of the flow is more pronounced and the universal laws fail 

to reproduce accurately the experimental results. 

  

4.2.1 Introduction 

Straight compound-channel flows have been studied by many authors due to their 

practical importance related to floods in rivers. In terms of physical interpretation and numerical 

modeling they constitute a challenge, since they present a complex 3D structure that can include 

large scale horizontal vortices and helicoidal longitudinal vortices, also known as secondary 

currents (Shiono and Knight, 1991). Despite the presence of these structures, most studies are 

focused only in the mean flow variables. The studies of Knight and Shiono (1990), Shiono and 

Knight (1991), Tominaga and Nezu (1991), Nezu et al. (1999),Van Prooijen et al. (2005), 

Stocchino and Brocchini (2010) and Stocchino et al. (2011) are among the few studies where 

the turbulent field in straight compound-channel was addressed. Nevertheless, the influence of 

the vortex structure in the turbulent scales and in the dissipation rate was not assessed. 

In the present study, high data rate measurements were obtained for the streamwise and 

vertical velocity components, using a 2D Laser Doppler Velocimeter in an experimental 

compound flume with a deep flow, where secondary currents are dominant (Nezu et al., 1999). 

The analysis of the effect of secondary currents in the turbulent scales and in the dissipation rate 

is made by comparison with universal laws drawn for isotropic turbulent 2D fully developed 

open-channel flow (Nezu and Nakagawa, 1993). 
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4.2.2 Experimental Setup 

The experiments were conducted in an asymmetric compound flume built in cement at 

University of Beira Interior. The flume is 11.60 m long and 0.790 m wide. The main channel 

width is 0.205 m, while the floodplain width is 0.540 m. The width of the region between the 

main channel and floodplain, called interface, is 0.054 m and the bank full depth is 0.051 m, as 

shown in fig. 4.6.  

 

Figure 4.6 Description of the asymmetric compound flume. 

 

The average longitudinal bottom slope of the main channel and floodplain is 0.986 and 

0.911 mm/m, respectively. To set the quasi-uniform flow it was necessary to measure the water 

depth in the middle of the main channel and also in the floodplain to verify that the value of the 

free-surface slope, in both sub-regions, was between the value of the main channel and the 

floodplain longitudinal bottom slope. 

The measurements of the velocity field were made with a 2D Laser Doppler Velocimeter 

(LDV) in a cross-section located 9.0 m from the inlet of the channel, where the downstream gate 

does not influence the flow. Measurements in backscattering mode were performed through a 

glass window located on the main channel lateral wall of the channel next to the main channel. 

The total number of points measured to characterize the cross-section was 1,148. The 

measurement time was 210 s per point and aluminum oxide powder was used as seeding. 

The discharge used during the experiments was 23.16 l/s and the quasi-uniform flow 

water depth was 0.1033 m. The relative water depth, Hr, calculated through eq. 4.1 was 0.50. In 

that equation Hfp and Hmc are the floodplain and main channel water depths, respectively.  
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r fp mcH H H  (4.1) 

4.2.3 Results and Discussion 

The terms used to describe the velocity field are u and w for the instantaneous velocity; 

u’ and w’ for the velocity fluctuations; U and W for the time-averaged velocity; and U’ and W’ 

for the root mean square or turbulence intensity in the longitudinal direction, X, and vertical 

direction, Z, respectively (see fig. 4.6). 

Table 4.4 shows the experimental conditions where measurements were made. The cross-

section mean velocity, Ucs, was calculated by the relation between the inlet discharge and the 

area of the cross section. The geometrical method ( * 0hU gR S , where 9.8g  m/s
2
 is the 

gravitational acceleration and
 hR  is the hydraulic radius) was used to compute the friction 

velocity of the section. Further, the Reynolds number and Froude number were calculated by 

the expression 4 cs hRe U R   (ν = 7.96x10
-7

 m
2
/s is the kinematic viscosity of water at 30º C) and 

cs mcFr U gH respectively. 

Table 4.4 Experimental Conditions. 

Q Hmc  
Hr 

Ucs  U* Re  
Fr 

(l/s) (m) (m/s) (m/s) (x10
-4

) 

23.16 0.1033 0.50 0.4301 0.0227 11.78 0.425 

 

4.2.3.1 Velocity Distribution 

Figure 4.7 shows the time-averaged velocity distribution U and W measured in the cross 

section at 9.0 m from the inlet of the cannel, as well as turbulent intensity distribution U’/ U* 

and W’/U*. The interaction between the main channel flow (with higher velocity and inertia) 

and floodplain flow (with lower velocity and inertia) generates a momentum transfer causing 

the formation of different types of turbulent structures as vertical axis vortex, due to the shear 

layer between the main channel and floodplain flows, or longitudinal axis vortex, called 

secondary currents, due to the anisotropy of turbulence (Nezu et al., 1999; Shiono and Knight, 

1991). 

In fig. 4.7a, an ascendant flow in the interface region near the upper interface is evident, 

as well as the descendant flow in the floodplain region near the interface (0.26 m ≤ Y ≤ 0.29 m) 

and in the main channel region near the lower interface. The generation of the 

ascendant/descendant flow (secondary currents) is caused by the strong anisotropy between the 

floodplain and main channel flows, resulting in a vortex on the interface/floodplain region, 
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called “floodplain vortex”, and a vortex in the main channel/interface region called “main 

channel vortex” (Tominaga and Nezu, 1991). 

 

Figure 4.7 Isovels of mean velocity U and vectors of mean velocity W; (b) Isovels of turbulent 

intensity U’; (c) Isovels of turbulent intensity W’. 

 

The magnitude of W velocity in the main channel and interface region is similar, around 

30% of U*. In the floodplain region near the interface, the magnitude of the W velocity 

decreases until approximately 10% of U*. The strong descendant flow in the main channel 

region is due to the meeting of two vortexes, the “main channel vortex” and the “free-surface 

vortex”, that is caused by the anisotropy of lateral wall and free-surface turbulence (Nezu and 

Nakagawa, 1993). On the other hand, fig. 4.7a shows how the isovels are affected by the 

momentum transport of the secondary currents. Since there is an ascendant flow in the interface 

region, the U isovels are displaced upwards by influence of the W velocity. The same effect 
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occurs with the descendant flows. Further, due to effects of the “free-surface vortex”, the 

maximum U velocity is in the middle of the main channel at 65% of the water depth. 

For the U’ turbulent intensity (fig. 4.7b) a similarity with the isovels of U is observed. 

However, the bulging of the isovels U’ is more intense and corresponds with the 

ascendant/descendant flows of the cross section. On the other hand, the lower turbulent intensity 

U’ is observed in the middle of the main channel below the free-surface due to the dip-velocity 

phenomenon. In the case of the turbulent intensity W’ (fig. 4.7c), a bulging of the isovels in the 

upper interface is again observed. The main difference between U’ and W’ is that, while the 

lower turbulent intensity U’ is below the free-surface, the W’ turbulent intensity decreases 

towards the free-surface. Further, the magnitude of W’ is slightly smaller than the magnitude of 

U’. 

Figure 4.8 shows the vertical distribution of U
+
 for Y = 0.104 m, 0.205 m, 0.253 m and 

0.380 m, with U
+
 and Z

+
 defined as: 

 * YU U U   (4.2) 

 * YZ ZU    (4.3) 

where the term U*(Y) is the local friction velocity. The local friction velocity was determined 

using the log-law, considering that the vertical location of the measured point could have some 

uncertainties. Therefore, a displacement ΔZ was considered in the vertical location. The ΔZ was 

adjusted so that the integral constant of the log-law (eq. 4.4, where κ = 0.41 is the von Kármán 

constant) was equal to A = 5.3, valid for 2D open-channel flow (Nezu and Nakagawa, 1993). 

The log-law is presented in fig. 4.8 by a line. 

   *1
ln

YZ Z U
U A

  
  

   

 (4.4) 

The velocity profiles in the upper interface and floodplain present a trend similar to 2D 

open-channel flows, i.e. they follow the log-law in the inner layer and as they approach the free-

surface they depart from the log-law to a log-wake law (Nezu and Nakagawa, 1993). In the 

main channel and lower interface the velocity profiles also follow the log-law, but they decrease 

abruptly near the free-surface, which is due to the presence of strong secondary currents. 
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Figure 4.8 Vertical distribution of time-averaged velocity U. 

 

Figure 4.9 shows the distribution of turbulent intensity U
’
 against Z/H. In the figure is 

also included the universal eq. 4.5 valid for the intermediate region (0.1< Z/H <0.6) of 2D fully 

developed flows (Nezu and Nakagawa, 1993). 

 

Figure 4.9 Vertical distribution of turbulent intensity U’. 

 

 *' 2.30expU U Z H   (4.5) 

 

The experimental results for the upper interface and floodplain seem to follow a similar 

trend to eq. 4.5, although with higher turbulent intensities. This means that the flow at those two 

verticals behaves like a 2D flow but with higher turbulence intensity. In the main channel the 

experimental data follows the universal equation until Z/H around 0.6. As the flow approaches 
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the free surface the turbulent intensity starts to increase, which is due to the presence of strong 

secondary currents. For the lower interface, until Z/H around 0.3, the turbulent intensity 

decreases and stays below the universal equation. For Z/H  >0.3 the turbulent intensity reaches a 

plateau. The discrepancies between the experimental results and the universal eq. 4.5 clearly 

highlight the 3D character of the flow. 

 

4.2.3.2 Turbulent longitudinal scales and dissipation 

The velocities time series can be transformed into an equally spaced temporal record by 

taking an averaged time step,  : 

maxt n   (4.6) 

being maxt  the maximum time in the record and n

 

the number of measurements in the record. 

The instantaneous velocity values for each time can be obtained from the original record 

through linear regression. Adopting Taylor’s frozen-field hypothesis, the time record can be 

transformed into a space record, using a convection velocity, cU , with a space interval 

cr U   (4.7) 

In the present study, for each record, cU  was considered constant and equal to the time-

averaged velocity U. Although this criterion implies that the convection velocity is the same for 

all flow scales, which is not true for most cases, it holds for large and intermediate scales if 

turbulent intensity is less than 20% (Tropea et al., 2007). The space record allows the 

computation of the longitudinal autocorrelation function (Pope, 2000) 

 
   

2

' '

'

u r u x r
r

u


   (4.8) 

One example of autocorrelation function is presented in fig. 4.10 for the point Z/H = 

0.46 in the main channel vertical. In the figure, the integral length scale obtained by eq. 4.9 

(Pope, 2000) is also presented 

 
0

dxL r r



   (4.9) 
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Figure 4.10 Longitudinal autocorrelation function. 

 

Figure 4.11 shows the vertical distribution of the longitudinal integral scales obtained 

from the autocorrelation function for all points. In the figure, eq. 4.10 is also plotted with B1 = 

1.0, 1.5, 2.5 and 3.5. This equation was proposed by (Nezu and Nakagawa, 1993) for 2D fully 

developed open-channel flow, with B1 approximately equal to 1.0.  

 

Figure 4.11 Vertical distribution of the longitudinal integral length scale, Lx. 

 

 
1 2

1

1

  for 0.6

0.77           for 0.6

xL B Z H Z H

H B Z H

 
 



 (4.10) 

The upper interface and the floodplain results fairly follow eq. 4.10, but with higher 

coefficient B1. Near the free surface, contrary to eq. 4.10, the experimental data do not present a 

plateau, instead the integral length scale continue to increase towards the free-surface. For the 

main channel vertical the integral length scale is almost constant through the depth, with a value 
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close to the flow depth. This indicates that the secondary current in the main channel dictates 

the characteristic size of the large turbulent structures. The lower interface present a similar 

pattern of the one observed for the main channel, but with smaller integral scale. 

In fig. 4.12 the longitudinal dissipation spectrum is presented for point Z/H = 0.8 in the 

lower interface. The spectrum was obtained using a Yule-Walker spectral estimator which is 

extremely smooth (Stoica and Moses, 2005), but allows an easy identification of the inertial 

subrange. The dissipation spectrum can be computed from the velocity power spectrum, E11, 

using the Kolmogorov 5 3
 
law for the inertial subrange (Pope, 2000). 

  
3 2

5 3 2 3 5 3
11 1 11 1w wE C k E C k       (4.11) 

where ε is the turbulent dissipation rate, kw is the wave number and C1 is a universal constant 

equal to ≈0.53. In the figure the dissipation rate, ε, was taken from the plateau and the integral 

scale, Lx, and the microscale, λx, are also presented. 

 

 

Figure 4. 12 Longitudinal dissipation spectrum for point Z/H = 0.8 in the lower interface. 

 

The microscale was obtained from the dissipation rate by assuming isotropic turbulence 

(Tropea et al., 2007) 

230 '
x

U
 


 (4.12) 

Figure 4.13 shows the vertical distribution of the longitudinal microscale for all points. 

In the figure is also plotted the semi-theoretical relation proposed by Nezu and Nakagawa 

(1993) for 2D fully developed open-channel flow 
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1 4
1

*

15
exp

2.3 2

x B Z Z

H KRe H H

    
    

   
 (4.13) 

where 

* *Re U H   (4.14) 

0.691 3.98 LK Re   (4.15) 

'L xRe U L   (4.16) 

In eq. 4.13 to 4.16 Lx is computed using eq. 4.10 and U’ using eq. 4.5. 

 

 

Figure 4.13 Vertical distribution of the longitudinal microscale, λx. 

 

The results of the microscale for the floodplain and the upper interface are almost 

coincident and present a similar trend to the theoretical curves. The experimental values are 

higher than the theoretical ones, which can be attributed to the underestimation of U’ values 

given by eq. 4.5 (see fig. 4.9). For the main channel and lower interface the experimental results 

depart from the theoretical curves, mostly due to the wrong estimation of U’ caused by the 

influence of strong secondary currents.  

Figure 4.14 shows the vertical distribution of the dissipation rate for all points, 

computed through the dissipation spectra as mentioned before (see fig. 4.12). In the figure, the 

equation proposed by Nezu and Nakagawa (1993) for 2D fully developed open-channel flows is 

included 
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1 2

3
1*

12.2 3
exp

H K Z Z

B H HU


    

    
   

 (4.17) 

The experimental results show good agreement with the theoretical curves, except for 

the lower interface where the dissipation is substantially higher for the free-surface region. The 

extra dissipation must be linked to the strong secondary currents observed. 

 

Figure 4.14 Vertical distribution of the dissipation rate, ε. 

 

4.2.4 Conclusions 

For deep water flow in straight compound channel the results presented above allow to 

extract the following conclusions: 

 The universal laws for 2D fully developed open-channel flows are valid in the upper 

interface and floodplain, although the coefficients have to be increase, mostly due to the 

increase of turbulent intensity. This should be a consequence of the shallowness of the 

flow which contributes to maintain boundary turbulence as the dominant process. 

 For the lower interface and main channel, the presence of strong secondary currents 

contributes to the non validity of the universal laws, even if their coefficients are 

changed. This means that the 3D character of the flow is “printed” in the turbulent field 

and boundary turbulence should not be dominant. 
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4.3 Influence of Vegetation on Compound-channel Turbulent Field 

Azevedo, R., Leal, J. B., & Rojas-Solórzano, L. (2012). Influence of vegetation on compound-channel 

turbulent field. River Flow 2012, Murillo, R. ed, Taylor & Francis, 209-216 (ISBN 978-0-415-62129-8). 

Abstract: During floods, rivers generally present a compound section configuration, constituted 

by a faster flow in the main channel and a slower one in the floodplains. The interaction of these 

flows has a complex turbulent 3D field composed by large-scale horizontal structures and 

secondary cells. These turbulent structures are responsible for significant lateral momentum 

transfer. Most rivers present also vegetation, namely trees along the floodplains edges. The 

wakes formed in front of the vegetation elements alter the classical compound channel turbulent 

field. In this paper, rods were placed at the edge of the floodplain of an experimental flume, 

simulating trees. A 2D LDV was used to measure the velocity field. The velocity distribution is 

modified by the rods due the formation of wakes. In particular, the 2D flow equations are not 

applicable and the turbulent scales and dissipation rate acquire a longitudinal variation due to 

longitudinal vortex propagation. 

 

4.3.1 Introduction 

During floods, rivers generally present a compound section configuration, constituted 

by a faster flow in the main channel and a slower one in the floodplains. The interaction of these 

flows has been studied by several authors (Bousmar and Zech, 1999; Knight and Shiono, 1990; 

Proust et al., 2010; Shiono and Knight, 1991; Tominaga and Nezu, 1991; Van Prooijen et al., 

2005) that observed a complex turbulent 3D field composed by large-scale horizontal structures 

and secondary cells. These turbulent structures are responsible for significant lateral momentum 

transfer, increasing flow resistance and diminishing the total conveyance. 

Most rivers present also vegetation, namely trees along the floodplains edges. The presence 

of these vegetation elements originates another source of flow resistance caused by drag force 

on the elements. The wakes formed in front of the vegetation elements also alter the classical 

compound-channel turbulent field. There have also been many studies focused on the effect of 

vegetation in compound channel flows, usually considering a vegetated floodplain (Naot et al., 

1996; Nezu and Onitsuka, 2001; Rameshwaran and Shiono, 2007). From these studies it can be 

inferred that the drag force due to rigid vegetation is mainly dictated by stem geometry, stem 

displacement, stem density and flow conditions. The turbulence length scale is of the order of 

the stem diameter and turbulence intensities increase with the introduction of sparse vegetation 

due to the wake. 
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Although vegetation exists in most river floodplains, vegetation such as trees and shrubs are 

also common along the edges of the floodplains. Therefore, recently, several authors 

investigated the effect of rigid elements placed along the floodplain edge (Sanjou and Nezu, 

2010; Sun and Shiono, 2009). Those authors associated their results with lateral momentum 

transfer. Analyzing the differences on turbulent field behind the natural vegetation and rigid 

stem is important since the secondary currents are strongly affected by the turbulence as well as 

the mean flow structure (Sun and Shiono, 2009) 

In this paper, rods were placed at the edge of the floodplain of an experimental flume, 

simulating trees. Large rod spacing was tested to study its influence on the turbulent field, 

taking as reference the measurements made in the same flume without vegetation (Azevedo et 

al., 2012). A 2D Laser Doppler Velocimeter was used to measure the streamwise and vertical 

velocity components at different stations. The velocity distribution without vegetation is 

completely altered by the rods due the formation of wakes. In particular, the secondary currents 

become weaker, and the mixing layer horizontal vortices are replaced by two weaker horizontal 

vortices travelling in parallel on both sides of the bank region (Sun and Shiono, 2009). 

 

4.3.2 Experimental Setup 

The experiments were carried out in the asymmetric compound flume located at the 

Hydraulics Laboratory of University of Beira Interior, Portugal. The flume has a length of 11.60 

m, a width of 0.79 m and was built over a cement structure. The floodplain has a width of 0.531 

m and a mean longitudinal slope of 0.0911% while the main channel has a width of 0.205 m and 

a mean slope of 0.0986%. The region that separates the main channel and the floodplain is 

called interface and has a width of 0.054 m and a bankfull depth of 0.051 m. Figure 4.15 shows 

a scheme of the geometry of the asymmetric compound channel. 

The water height was controlled using a gate at the final section of the channel and 

measured with a point gauge both in the main channel and in the floodplain. In order to reduce 

the lateral transfer between the floodplain and the main channel, a stainless steel sheet was 

placed at the channel entrance between the two sub-regions. 

The flow velocity field was measured with a laser Dopler Velocimeter Innova 70C Argon 

series with a maximum power of 2W. Particles placed into the fluid were aluminum oxide 

powder with a diameter of 10μm, approximately. 
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Figure 4.15 Description of the asymmetric compound open-channel flow. 

 

To observe the influence of vegetation on the turbulent structure of the flow, several tubes 

were placed along the top of the interface, named upper interface. The tubes are of aluminum 

with 10 mm diameter. The separation distance between the tubes was of 1 m and the placement 

of the tubes started at 4.75 m from the inlet channel to 10.75 m. In order to determine the 

evolution of the velocity field along the channel, measurements took place in three cross 

sections, which were at 8.77 m, 9.25 m and 9.73 m from the inlet channel, as shown in fig. 4.16. 

 

 

Figure 4. 16 Description of the measuring cross-sections 

 

4.3.3 Results and Discussion 

4.3.3.1 Test characterization 

The terms used to describe the velocity field are u and w for the components of the instant 

velocity; u’ and w’ for the velocity fluctuations; U and W for the mean average velocity; and U’ 

and W’ for the turbulent intensity or r.m.s. values in the longitudinal direction, X, and vertical 

direction, Z. 

 

X = 8.77 m 

X = 9.25 m 

X = 9.73 m 
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Table 4.5 indicates the conditions at which the tests were performed. The discharges 

used were of 83.38 m
3
/h, for the case without rods, and 82.99 m

3
/h, for the case with rods, 

corresponding to an average water depth of 0.1033 and 0.1034 m, respectively. Determining the 

uniform depth with rods is not a simple process due to the disturbance of the free surface. In this 

case, the disturbance can be up to 3 mm. Figure 4.17 shows this disturbance. 

 

Table 4.5 Experimental Conditions. 

 

* Calculated with the water depth of the cross-section. 

    0.1044 m tests without rods. 

    0.1035 m tests with rods. 

 

 

 

 

Figure 4.17 Schematic view of 3D turbulent structures around rigid stem (Schnauder and 

Moggridge, 2009) (Photograph of the experiments). 

 

4.3.3.2 Velocity and turbulent intensity distribution 

Figure 4.18 shows the U isovels distribution for the cases without rods measured at 9.0 m 

from the inlet of the channel (fig. 4.18a) and with rods measured at 8.77 m, 9.25 m and 9.73 m 

from the inlet of the channel (fig. 4.18b-4.18d), as well as W velocity distribution for each case.  

In Figure 4a, the behavior of U isovels is governed by the momentum transfer due to the 

interaction between the main channel and floodplain flows, causing the formation of two strong 

longitudinal axis vortex (secondary currents) caused by the anisotropy of turbulence. Further, 

the main channel side-wall plays an important role in the formation of those two vortices, called 

“bottom vortex” and “free-surface vortex”. The latter vortex is responsible for the maximum 

velocity U being achieved below the free-surface (Shiono and Knight, 1991). 

 

Q (m
3
/h) Hmc (m) Hr Ucs (m/s)

* U* (m/s)
* Re (x 10

4
)

* Fr
* 

83.38 0.1033 0.5 0.430 0.023 11.78 0.43 

82.99 0.1034 0.5 0.435 0.023 11.07 0.43 
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The turbulent structure known to smooth channels is abruptly modified when rods are 

placed on the upper interface. New turbulent structures are generated due the interaction 

between rods and flow. Figure 4.18b shows the U isovels at approximately 2 cm after the rod, 

where new bulging is observed around the rod. Schnauder and Moggridge (2009) comment that 

for impermeable rod a recirculation of the flow exists behind the obstacle which explains the U 

velocity bulging in this region. Therefore, the approaching flow is slowed and part of the flow is 

deflected downward until the rod base, causing a horseshoes-vortex system as presented in fig. 

4.17. This horseshoes-vortex system is the responsible for the U isovels bulging at both side of 

the rod in fig. 4.18b. 

Further, the U velocity is accelerate in the middle of the main channel in the experiments 

with rods for water depths higher than Z/H = 0.4. However, for depths minor than Z/H = 0.4 the 

flow do not present significant disturbance compared with the measurements without rods. For 

the case with rods the maximum U velocity is in the middle of the main channel at a water depth 

of Z/H ≈ 0.85, while for case without rods that value is located at Z/H ≈ 0.65 

In the case of W velocity for the section located between rods in the zone close to the 

interface, it can be seen the existence of an ascendant flow with higher intensity in the direction 

of the free surface (fig. 4.18c). This ascendant flow is not observed in sections located before 

and after the rods (figs. 4.18d, 4.18b, respectively). The presence of this ascendant flow is 

probably due to the decreasing of the wake intensity and the increasing of the interaction of the 

floodplain flow and the main channel flow, as seen in compound channel flows with rods. The 

magnitude of this ascendant flow as well as the magnitude of the descendant flow, observed in 

the vicinity of the upper interface, are of approximately 0.40U*. These magnitudes are slightly 

higher than the ascendant/descendant flows observed in the main channel and the interface for 

the case without rods (≈ 0.30U*). Additionally, the magnitude of the velocity W upstream of the 

roughness is 0.40U*, showing a maximum value of 0.55U* at Z/H between 0.60 and 0.75 (see 

fig. 4.18d). It should be noted that the descendant flow is responsible for the generation of 

horseshoes-vortex explained by Schnauder and Moggridge (2009). In the case of the velocity W 

downstream of the rod, the value is much higher, around 4.45U* (fig. 4.18b). 
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Figure 4.18 Isovels of mean velocity U and vectors of mean velocity W: a) without rods, X = 9.00 

m; b) with rods, X = 8.77 m; c) with rods, X = 9.25 m; d) with rods, X = 9.73 m. 

The turbulence intensities distribution U’ and W’ are presented in figs. 4.19 and 4.20, 

respectively, which corresponds to the cross section downstream of the rod. For the turbulent 

intensity U’, it is observed again a bulging of the isolines in the region near the rods due to the 

secondary currents generated by the interaction between the rods and the flow. Also, the 

minimum turbulent interaction U’ is at the center of the main channel below the free surface and 

then starts to increase in the direction of the free surface due to the interaction of diverging flow 

from the rods and the boundary layer of the main channel side wall as seen in fig. 4.19. This 

same behavior is observed for the turbulent intensity W’, fig. 4.20. 
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Figure 4.19 Isovels of turbulent intensity U’ in the lee of the rod. 

In the section near the free surface with rods, fig. 4.19, it can be seen that turbulent 

intensity U’ increases in the direction of the free surface. It should be noted that in this zone the 

free surface suffers a concavity caused by the rod, as seen in fig. 4.17. Moreover, fig. 4.19 and 

fig. 4.20 show how the maximum turbulent intensity U’ and W’ are located behind the 

roughness, due to the existing recirculation. 

 

Figure 4.20 Isovels of turbulent intensity W’ in the lee of the rod. 

Figure 4.21 shows the U velocity distribution at the center of the main channel, at the 

lower interface, at the upper interface and at the floodplain for the three measuring cross-

sections as well as for the case without rods. 
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Figure 4.21 Vertical distribution of time-averaged velocity U: a) Main channel; b) Upper Interface; 

c) Lower Interface; d) Floodplain. 

The velocity profiles measured at the center of the main channel are very similar to each 

other, except for the area near the free surface Z/H ≈ 0.85, where the profiles measured before 

and after the rod (X = 9.73 m and X = 8.77 m, respectively) have their maximum value due to 

the secondary currents originated by the rods. 

In the case of the velocity profile taken in the main channel at X = 9.25 m, it can be seen 

that it is very similar to the profile taken without rods; this is due to the decrease of the 

influence caused by the secondary currents. In the case of the profiles taken at the lower 

interface, fig. 4.21c shows that the maximum velocity is reached in the area near the free 

surface, except for the profile measured without rods, showing a large increase in speed for Z/H 

≈ 0.3 due to the mass transfer generated by the particular secondary currents for compound 

channels without rods. Figure 4.21b shows the distribution of the velocity U in the region of the 

upper interface. For X = 8.77m it can be observed that the maximum velocity is reached at 

approximately Z/H ≈ 0.8 due to the deformation caused in the free surface which can be seen in 

fig. 4.17. It is also showed a deep slowdown of the flow from X = 8.77 m (area downstream of 

the rod) to X = 9.73 m (area upstream of the rod). Again, this deceleration/acceleration of the 

flow before and after the rod is due to the secondary currents existing in that area. As expected, 

the velocity profile that most closely matches the measured profile without rods is that 

measured at X = 9.25 m, where the influence of the secondary currents generated by the rods is 

lower. In the case of the floodplain region, fig. 4.21d shows how the velocity U for X = 9.25 m 
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and 9.73 m is slightly lower than the one for the profile measured without rods except for the 

profile measured at X = 8.77 m which is very similar to the velocity U without rods. 

Figure 4.22 shows the distribution of turbulent intensity U
’
 against Z/H for tests without 

and with rods. In the figure is also included the universal eq. 4.18 valid for the intermediate 

region (0.1< Z/H <0.6) of 2D fully developed flows (Nezu and Nakagawa, 1993)  

 *' 2.30expU U Z H   (4.18) 

 

Figure 4.22 Vertical distribution of turbulent intensity U’: a) without rods, X = 9.00 m; b) with 

rods, X = 8.77 m; c) with rods, X = 9.25 m; d) with rods, X = 9.73 m. (◊) Main channel, (□) Lower 

interface, (Δ) Upper interface, (×) Floodplain, (—) equation (4.18). 

For the situation with rods, the main channel and lower interface turbulent intensities 

follow the universal eq. 4.18 bellow the bankfull depth (i.e., Z/H ≈0.5). Above that level U’ 

increases due to the vortex structure generated by the rods. In the upper interface, the behavior 

of U’ is highly influence by the rods. In the section near the rod, U’ presents high values (fig. 

4.22b) that decrease downstream (figs. 4.22c, 4.22d). In the floodplain, U’ is always higher than 

the values given by eq. 4.18, and is similar for all sections with and without rods. 

The discrepancies between the experimental results and the universal eq. 4.18 clearly 

highlight the 3D character of the flow, while the differences between the tests without rods (fig. 

4.22a) and with rods (figs. 4.22b-4.22c) show the influence of the rods in the increase of U’, 

specially for elevation above the bankfull depth. 
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4.3.3.3 Turbulent longitudinal scales and dissipation 

The velocities time series can be transformed into an equally spaced temporal record by 

taking an averaged time step, τ: 

maxt n   (4.19) 

where tmax = maximum time in the record; and n = number of measurements in the record. The 

instantaneous velocity values for each time can be obtained from the original record through 

linear regression. Adopting Taylor’s frozen-field hypothesis the time record can be transformed 

into a space record, using a convection velocity, Uc, with a space interval 

cr U   (4.20) 

In the present study, for each record, Uc was considered constant and equal to the time-

averaged velocity U. Although this criterion implies that the convection velocity is the same for 

flow scales, which is not true for most cases, it holds for large and intermediate scales if 

turbulent intensity is less than 20% (Tropea et al., 2007). The space record allows the 

computation of the longitudinal autocorrelation function (Pope, 2000) 

 
   

2

' '

'

u r u x r
r

u


   (4.21) 

The integral length scale can be obtained by (Pope, 2000) 

 
0

dxL r r



   (4.22) 

Figure 4.23 shows the vertical distribution of the longitudinal integral scales obtained 

from the autocorrelation function for all points. In the figure is also plotted eq. 4.23 proposed by 

(Nezu and Nakagawa, 1993) for 2D fully developed open-channel flow, where B1 is 

approximately equal to 1.0. 

 
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1

1

  for 0.6

0.77           for 0.6
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 
 


 (4.23) 
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The presence of the rods increases the integral scales in the lower interface and in the 

floodplain due to the vortex structure. In the upper interface, near the rods (fig. 4.23b), the 

integral scales are smaller and then increase downstream (figs. 4.23c, 4.23d). The experimental 

results are always higher than the 2D flow results (eq. 4.23). Moreover, the integral scale for 

each vertical appears to reach a constant value for the inner layer (i.e., Z/H < 0.2), indicating 

that bottom turbulence limits the integral scale but does not decrease it like in 2D flows. 

 

Figure 4.23 Vertical distribution of the longitudinal integral length scale, Lx: a) without rods, X = 

9.00 m; b) with rods, X = 8.77 m; c) with rods, X = 9.25 m; d) with rods, X = 9.73 m. (◊) Main channel, 

(□) Lower interface, (Δ) Upper interface, (×) Floodplain, (-) equation (4.23) 

In fig. 4.24, the longitudinal dissipation spectrum is presented for point Z/H = 0.8 for the 

upper interface of all tests. The spectrum was obtained using a Yule-Walker spectral estimator 

which is extremely smooth (Stoica and Moses, 2005), but allows an easy identification of the 

inertial subrange. The dissipation spectrum can be computed from the velocity power spectrum, 

E11, using the Kolmogorov 5 3
 
law for the inertial subrange (Pope, 2000)  

 5 3 5 3
11 1 11 1 wE C E C k       (4.24) 

The microscale was obtained from the dissipation rate by assuming isotropic turbulence 

(Tropea et al., 2007) 
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
 (4.25) 

The dissipation spectra (fig. 4.24) shows some differences between tests without rods 

and with rods, and in this last one also presents different behavior depending on the longitudinal 

coordinate. The intermediate region, between the integral and the microscale, shrinks from case 

without rods to case with rods just after the rod. For sections downstream of the rod the 

intermediate region seems to maintain its dimensions, enlarging for the section located further 

downstream. The procedure to compute the dissipation from the inertial subrange appears to be 

valid, since a plateau exists. For the section near the rod the procedure can give worst 

predictions, since the plateau is almost inexistent. 

 

Figure 4.24 Longitudinal dissipation spectrum for point Z/H = 0.8 in the upper interface: a) 

without rods, X=9.00 m; b) with rods, X = 8.77 m; c) with rods, X = 9.25 m; d) with rods, X = 9.73 m. 

Figure 4.25 shows the vertical distribution of the longitudinal microscale for all points. In 

the figure is also plotted the semi-theoretical relation proposed by Nezu and Nakagawa (1993) 

for 2D fully developed open-channel flow 

1 4
1

*

15
exp

2.3 2

x B Z Z

H KRe H H

    
    

   
 (4.26) 

where 
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* *Re U H   (4.27) 

0.691 3.98 LK Re   (4.28) 

'L xRe U L   (4.29) 

 

where Lx is computed using eq. 4.23 and U’ using eq. 4.18. 

 

 

Figure 4.25 Vertical distribution of the longitudinal microscale, λx: a) without rods, X = 9.00 m; b) 

with rods, X = 8.77 m; c) with rods, X = 9.25 m; d) with rods, X = 9.73 m. (◊) Main channel, (□) Lower 

interface, (Δ) Upper interface, (×) Floodplain, (—) equation (4.26). 

The microscales for all tests are higher than the 2D flow values given by eq. 4.26. The 

trend of the experimental results follows approximately that equation in the outer region (i.e., 

Z/H), but is different for the inner layer, where a plateau exists. The values for the rods case 

increase from the section near the rod (fig. 4.25b) to the section located immediately 

downstream (fig. 4.25c). As the flow develops downstream the microscales increase again (fig. 

4.25d) and have similar values for all verticals. 
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Figure 4.26 shows the vertical distribution of the dissipation rate for all points, 

computed through the dissipation spectra as mentioned before (see fig. 4.24). In the figure, the 

equation proposed by Nezu and Nakagawa (1993) for 2D fully developed open-channel flows is 

included 

 

Figure 4.26 Vertical distribution of the dissipation rate, ε: a) without rods, X = 9.00 m; b) with 

rods, X = 8.77 m; c) with rods, X = 9.25 m; d) with rods, X = 9.73 m. (◊) Main channel, (□) Lower 

interface, (Δ) Upper interface, (×) Floodplain, (—) equation (4.30). 
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3
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12.2 3
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H K Z Z

B H HU


    

    
   

 (4.30) 

All experimental results present smaller dissipation than the one for 2D flows given by 

eq. 4.30, excepting the vertical in front of the rod (fig. 4.26b). Therefore vortex structure 

originated at the rods seems to block the usual interaction between main channel and floodplain 

flows. For the mean channel, lower interface and floodplain verticals the dissipation is smaller 

for the section near the rod (fig. 4.26b) and increases immediately downstream (fig. 4.26c). 

Further downstream (Figure 4.26d) the dissipation decreases again. These results indicate that 

the vortex structure created by the rods influences dissipation for all verticals and produces a 

longitudinal variability. 

 

4.3.4 Conclusions 

For deep water flow in straight compound channel with rigid elements along the 

floodplains edges the results presented above allow to extract the following conclusions: 
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 The universal laws for 2D fully developed open-channel flows are not valid for the case 

with rods, due to the dominant influence of the wakes generated by the rods that govern the 

turbulent field instead of the boundary layer. 

 The integral length scale seems to have an almost constant value in the studied verticals, 

which indicates that the wakes exert their influence not only near the free-surface but also in 

regions close to the bottom. 

 The turbulent microscale and dissipation rate acquire a longitudinal variation due to the 

vortex propagation in the downstream direction. Excluding the vertical at the upper 

interface, the microscale scale is higher and the dissipation is lower in the section nearest to 

the rod. Further downstream the microscale decreases and the dissipation increases. After, 

the behavior is inverse and the microscale increases whereas the dissipation decreases. 

 At the upper interface vertical near the rod the microscale is minimum, but still above the 

2D flow values, and the dissipation is maximum exceeding the 2D flow values. 
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4.4 Turbulent Structures, Integral Length Scale and Dissipation Rate in 

Compound Channel Flow 

Azevedo, R., Leal, J. B., & Rojas-Solórzano, L. (2016). “submitted to Flow Measurements and 

Instrumentation”  

 

Abstract: In the present study, high data rate measurements were obtained for the 

streamwise and vertical velocity components using 2D Laser Doppler Velocimeter, allowing the 

characterization of the turbulent field in a straight compound-channel flow for three different 

uniform flow water depths, corresponding to “deep flows”, “intermediate flows” and “shallow 

flows” conditions. Several methodologies were studied to process the data and to obtain 

autocorrelation functions, integral length scale and dissipation rate. The Sample and Hold 

method was adopted to interpolate the unevenly spaced record and calculate the autocorrelation 

function; the integral-stop-value 1/e was used to estimate the integral length scale; and the 

dissipation rate was estimated through the velocity energy spectrum. A double shear layer 

composed of two counter-rotating vertical oriented vortices, interacting with the secondary 

currents, is observed in the interface region for deep flow conditions. By decreasing the water 

depth, the interface region becomes dominated by a strong mixing layer of vertical oriented 

vortices with high dissipation rate and large integral length scale, acting as a vertical wall to the 

weak secondary currents that develop at the main channel. The determination of the integral 

length scale permits to confirm the existence and the strength of these turbulence structures, 

unveiling the strong mixing layer as the origin of the highest integral length scales, even higher 

than the flow depth, and as the most efficient mechanism to redistribute turbulence generated at 

the bottom towards upper flow regions. Despite the high complexity of turbulence structures 

present in the flow, for all water depths, a linear dependence is depicted between integral length 

scale, dissipation rate, and streamwise turbulent intensity. 

4.4.1 Introduction 

 

The most natural water streams and artificial channels located in the environment are 

classified as compound channel due the shape of their cross-section in flood condition. Over the 

past decades, a great effort has been made to understand the physical laws that define the 

behavior of the mean flow variables in straight compound-channel flows (Knight and Shiono, 

1990; Shiono and Knight, 1991; Tominaga and Nezu, 1991). However, few studies have been 

focused in the distribution of scales and dissipation rate of turbulence due to the difficult task of 

characterizing the turbulent field. 
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In the present study, several methodologies were used to characterize the turbulent field 

and estimate the streamwise integral length scale and the dissipation rate. For that purpose, high 

data rate measurements in uniform flow conditions were obtained using 2D Laser Doppler 

Velocimeter in an experimental compound flume. Special attention was given to alternative 

methodologies for data processing. In order to estimate the integral length scale and dissipation 

rate of turbulence structures, a time-step and interpolation method were defined to resample the 

instantaneous velocity record. Moreover, several methodologies were studied to estimate the 

integral length scale and dissipation rate. Throughout the data processing, Taylor’s frozen-field 

approximation was adopted (Tropea et al., 2007). 

Three different discharge rates were used, corresponding to the relative water depth Hr = 

0.50, Hr = 0.31 and Hr = 0.23 (Hr is defined as the ratio between floodplain and main channel 

water depths), in order to compare the results between “deep flows”, “intermediate flows” and 

“shallow flows”. For “deep flows”, the existence of a local minimum of the depth-averaged 

streamwise velocity Ud at the interface due the ascendant flow, originates two counter-rotating 

vertical oriented vortices that interact with the secondary currents. However, for lower water 

depth, the two counter-rotating vertical vortices are replaced by one strong vertical oriented 

vortex that acts as a “vertical wall” in the interface region, diminishing the secondary currents 

that develop at the main channel (Stocchino and Brocchini, 2010). 

The different restructuration of the flow for deeper and shallower flows has also impact 

on the turbulent intensity. For deeper flows, the turbulent intensity distribution follows the 

behavior of the secondary currents throughout the cross-section, presenting similar turbulent 

intensity distribution and normalized isolines of mean velocity, while for shallower flow the 

turbulent intensity distribution is dictated by the mixing layer present at the interface region 

(Nezu et al., 1999; Stocchino and Brocchini, 2010). However, few information is known about 

how the restructuration of the flow between “deep flows”, “intermediate flows” and “shallow 

flows” affect the integral length scale and dissipation rate distribution. 

In this paper, a methodology to process high data rate measurements as well as an 

estimation of the turbulent field, the integral length scale distribution and the dissipation rate 

distribution throughout the cross-section will be presented, which never has been referred before 

for compound channel flows. 
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4.4.2 Experimental Setup 

Experimental tests comprising three different water depths were conducted in an 

asymmetric compound flume channel, located at the Hydraulic Laboratory of University of 

Beira Interior - Portugal. Figure 4.27 presents the main geometrical characteristics of the 

experimental flume. 

The channel was fed through a pump with an electromagnetic flowmeter installed at the 

outlet to control the flow discharge. A single gate weir located in the final section of the flume 

was used to control the water depth. In order to reduce the entrance lateral momentum transfer 

between the main channel and the floodplain, at the inlet of the flume channel a separating plate 

and a set of 1"-diameter/ 0.3m-long tubes were installed. Additionally, 6 mm-diameter stones 

were placed along the first 0.5 m at the inlet main channel to promote the development of the 

turbulent boundary layer in a short streamwise distance (Bousmar and Zech, 1999; Van Prooijen 

et al., 2005). 

 

Figure 4.27 Main geometrical characteristics of the flume 

Velocity field measurements were made using a 2D Laser Doppler Velocimeter (LDV) in 

backscattering mode through a glass window located on the main channel lateral wall. Once the 

uniform flow conditions were established, measurements were made in a cross-section located 

at 9.0 m from the inlet, as explained in details in next paragraphs. The measurement time was 

210 s per point and aluminum oxide powder with diameter less than 10 µm was used as seeding. 

The maximum data sampling acquisition frequency measured was around 1000 Hz. However, 

the acquisition frequency decreased for measurement points close to the walls, sampling at 

frequencies around 30 Hz, since flow velocity in those regions is smaller and uniform spreading 

of the seeding in the cross-section is not typically possible to ensure. 

Table 4.6 indicates the conditions at which the tests were performed. In that table  

MCfp HHHr 
 is the relative water depth, CSCS AQU 

 is the cross-section averaged 
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velocity, CSA  is the cross-section area, oh SgRU *  is the friction velocity, where g = 9.8 

m/s2, Rh is the hydraulic radius, So is the bottom slope, 
CShURRe 4

 is the Reynolds 

number, where  is the kinematic viscosity of water, and MCCS gHUFr 
 is the Froude 

number. 

Table 4.6 Flow properties for the three experimental tests. 

Q 

(l/s) 

HMC 

(m) 
Hr 

T 

(ºC) 

UCS 

(m/s) 

U* 

(m/s) 

Re 

×10
4
 

Fr 

23.16 0.1033 0.50 30.0 0.4301 0.0226 11.78 0.43 

9.86 0.0744 0.31 26.0 0.3170 0.0176 4.88 0.37 

6.83 0.0666 0.23 26.5 0.2713 0.0159 3.47 0.33 

 

To establish the uniform flow, measurements of the water depth along the middle of the 

main channel and in the middle of the floodplain were taken allowing the comparison between 

the free-surface and bottom slopes. The water depth obtained for each flow condition was 

compared with the predicted value by Divide Channel Method and Single Channel Method, to 

ensure that its value was bounded by both methods (Bousmar et al., 2005). To verify the 

development of boundary and mixing layers, four velocity vertical profiles (see fig. 4.28) at 

cross-sections 4.5, 6.0, 7.5 and 9.0 m from the inlet were measured. For Hr = 0.50, the 

difference of the depth-averaged velocity (Ud) between vertical profiles taken at 7.5 and 9.0 m 

was 0.47%, 0.59%, 2.62% and 1.13% for main channel, lower interface, upper interface and  

floodplain, respectively. These small differences confirm the establishment of a quasi-uniform 

flow. The same procedure was also followed for the other relative water depths. 
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Figure 4.28 Vertical profiles of streamwise velocity at different cross-sections (Hr = 0.5). a) 

Middle of main channel; b) Lower interface; c) Upper interface; d) Middle of floodplain 

To characterize the cross-section at 9.0 m from the inlet, 1148, 1050 and 766 points were 

measured for Hr = 0.50, 0.31 and 0.23, respectively, concentrating more points near the bottom 

and at the interface (see fig. 4.29b). Due to the lateral set-up of the LDV, it was not possible to 

measure the w component near the free-surface and bottom of the channel (see fig. 4.29a), since 

the laser beams interfered with those boundaries. 

 

Figure 4.29 Description of the measurement points in a cross-section with LDV equipment in the 

compound channel flow. a) Measurement field visualization for u component velocity and w component 

velocity. b) Measurement mesh to characterize the turbulent structures for Hr = 0.50 (1148 points) and 

location of points P1, P2, P3 and P4. 
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4.4.3 Methodology 

4.4.3.1 Resampling 

The raw data was filtered defining a maximum turbulent intensity which was well over 

the expected natural random fluctuation of the velocity (0.8 times the mean average velocity for 

u component and 0.3 for w component). This procedure was useful to clean outliers mainly in 

points near the walls that presented obvious erroneous behavior. Finally, the measurements 

were filtered with the Phase-Space Thresholding Method developed by Goring and Nikora 

(2002). 

In all the analysis presented through this section, four measurement points will be used 

(see fig. 4.29b). These points were chosen as representatives of different flow regions: free-

surface (point P1), interaction between vortices (point P2), near wall (point P3), and 2D flow 

(point P4). 

Throughout the analysis, Taylor’s frozen-field approximation was adopted to transform 

the time record to a space record using a convection velocity Uc. The convection velocity is 

influenced by the turbulent intensity of the flow (Tropea et al., 2007). That influence can be 

incorporated as suggested by L’vov et al. (1999): 
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(4.31) 

where U is the streamwise time-averaged velocity and iu'  is the velocity turbulent fluctuation in 

direction i.  

To characterize the turbulent field, different methods were used in order to estimate the 

integral length scale and the dissipation rate, involving the FFT computation in the 

determination of the autocorrelation function, energy spectrum and structure functions. For that 

purpose the unevenly spaced record had to be transformed into an equally spaced record. This 

requires the definition of a time-step (i.e. of a resampling frequency) and an interpolation 

method. The average sampling rate was chosen as resampling frequency of the record (Biron et 

al., 1995). 

The choice of interpolation method to resample the instantaneous velocity record was 

made based on the comparison of results from the linear, cubic and nearest neighbor 

interpolation, and sample and hold (S-H) methods. The nearest neighbor interpolation method 

selects the value of the nearest point to rebuild the new record, while the S-H method selects the 

immediately previous value (Benedict et al., 2000). Figure 4.30a shows the autocorrelation 

function, ρ, for each interpolation method, calculated through: 
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where rx is the space lag in the streamwise direction. From fig. 4.30a it can be observed that all 

methods present similar results. 

Figure 4.30b presents the streamwise integral length scale value of the autocorrelation 

function until the first zero found. For the four points studied, the linear and cubic methods 

present the highest values of the integral length scale due to the highest values of the 

autocorrelation function. However, nearest neighbor and S-H methods present closer values. 

Considering the results obtained in this investigation and the results obtained by Benedict et al. 

(2000), the S-H method will be used to resample the unevenly spaced record. 

 

Figure 4.30 a) Streamwise autocorrelation function using different interpolation methods to rebuild 

the instantaneous velocity for P4, and b) Streamwise integral length scale for four different measurement 

points (P1 to P4, see fig. 4.29b). 

 

4.4.3.2 Velocity and turbulent intensity estimation 

The notation used to describe the velocity field in the compound channel flow are u and 

w for the components of the instant velocity in the streamwise direction, X, and vertical 

direction, Z, respectively; u' and w' for the velocity fluctuations; U and W for the time-averaged 

velocity; and U' and W' for the turbulent intensity or r.m.s. values in their corresponding 

directions. Table 4.7 shows the equations used to calculate velocities and turbulent intensities. 

The time-averaged velocity U was calculated using the equation in tab. 4.7. Since the LDV 

system captures a greater number of particles associated to higher velocities than for lower 

velocities, McLaughlin and Tiederman (1973) proposed the equation used for the time-averaged 

velocity U to reduce the velocity bias impact due this imbalance on the particle concentration. 

For the mean average velocity W, the former equation cannot be applied since the instantaneous 

velocity w presents values around zero. For this velocity component, a standard mean average 

equation was used (see tab. 4.7). 
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Table 4.7 Description of equations of turbulence terms. 

Description Equation Comments 

Streamwise mean average 

velocity U 

1

1

11
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
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iw
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1
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4.4.3.3 Integral length scale estimation 

By definition, the streamwise integral length scale, Lx, is obtained through. 

 



0

xxx drrL 
 

(4.33) 

However, in practical terms, the integral of the autocorrelation function must be defined 

until a finite value. In this study, three integral-stop-values were used in order to analyze their 

influence on the results under different conditions, namely: the second zero found on the 

autocorrelation function; the first minimum found on the autocorrelation function; and the 

integral length-scale defined as the wavenumber value when the autocorrelation function 

reaches 1/e, i.e. the value expected if an exponential decay of the autocorrelation function is 

assumed (Tropea et al., 2007). 

Figure 4.31a shows the behavior of the autocorrelation function as well as, the three 

integral-stop-values and the evolution of the integral length scale. For the first minimum 

integral-stop-value the evolution of the integral length scale is still developing, while for the 

second zero integral-stop-value the evolution of the integral length scale is completely 

developed. However, integral length scale values obtained using the first minimum or the 

second zero exhibit an unsystematic behavior, presenting high differences between neighboring 
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measurement points (results are not shown here, but this conclusion was achieved by comparing 

all measuring points results for all methods using similar figures to fig. 4.36). This is a result of 

the randomness of the autocorrelation function for higher space lags, rx, which makes that the 

location of the second zero is not always found when the evolution of the integral length scale is 

completely developed. Therefore, the estimator using 1/e is chosen to compute the integral 

length scale in the entire cross-section measuring mesh (see fig. 4.36), since it is the most 

consistent method to understand the behavior of Lx, even knowing that the values will certainly 

be underestimated (Bewley et al., 2012; Tritton, 1988). 

 

  

Figure 4.31 a) Streamwise autocorrelation function and evaluation of three integral-stop-values for 

P4, and b) Streamwise integral length scale for four different measurement points (P1 to P4, see fig. 

4.29b). 

 

4.4.3.4 Dissipation rate estimation 

For estimating the dissipation rate, three methods were used, being the first one a 

derivation from the third-order structure function; the second one a derivation from the second-

order structure function and the last one from the energy spectrum of the velocity (Frisch, 

1995). 

Assuming a local isotropic flow and that an inertial sub-range exists, the third-order 

structure function is equal to: 

   xx rtrS 
5

4
,3 

 

(4.34) 

The dissipation rate will be the value when the normalized third-order structure function 

reaches a plateau (see fig. 4.32a). To find a plateau the algorithm obtains the maximum value in 

the third-order structure function distribution and calculates the mean value taking data points 

before and after the maximum until the difference between them is less than 1%, as shown fig. 

4.32a. However, for points with low acquisition frequencies, the third-order structure function 

starts to exhibit less correlation for low space steps rx, being more difficult to find a plateau 
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(results are not shown here, but this conclusion was achieved by comparing all measuring points 

results using similar figures to fig. 4.32a). On the other hand, the assumption of a local isotropic 

turbulent flow can be debated and the presence of a large inertial sub-range should not be so 

obvious.  

The second method to estimate the dissipation rate is derived from the second-order 

structure function, eq. 4.35, where C2 is a universal constant equal to 2 and it does not depends 

on the Reynolds number (Pope, 2000). Figure 4.32b shows the distribution of the normalized 

second-order structure function where the plateau was found using the same algorithm used in 

the third-order method. However, for points with high acquisition frequency, the correlation of 

the velocity fluctuations does not present a plateau (results are not shown here, but this 

conclusion was achieved by comparing all measuring points results using similar figures to fig. 

4.32b). This should be a consequence of noise increase for low space steps which is not 

cancelled out by opposite sign peaks for the second-order structure function as it is in the case 

of the third-order structure function. 

     3/2

2

2 , xx rCtrS 

 

(4.35) 

Finally, the dissipation rate is also estimated from the spectrum of the streamwise 

velocity. In this case, the Yule-Walker spectral estimation algorithm was used, which is highly 

smoothed but allows identifying a clear plateau in the inertial sub-range. This plateau occurs at 

around 1.5 times the wavenumber of integral length scale, 
x

w L
k 5.1 , as shown in fig. 4.32c, 

where the distribution of the dissipation rate is given by 
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(4.36) 

being Exx the streamwise velocity energy spectrum, kw the wave number and C the universal 

constant of Kolmogorov equal to 0.53 (Pope, 2000).  

Figure 4.32d shows a comparison between dissipation rate values obtained using the three 

methods. As mentioned before, the third and second order structure function methods are much 

more sensitive to acquisition frequencies, exhibiting a poor trend between neighboring points. 

On the other hand, the method based on the energy spectrum is much more robust and less 

sensitive to the acquisition frequency and for that reason is the one chosen for estimating the 

dissipation rate in the entire cross-section measuring mesh (see fig. 4.37). 
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Figure 4.32 Estimation of the dissipation rate from three methods: a) third-order structure function 

for point P4; b) Second-order structure function for point P4; c) Spectrum of the velocity for point P4. d) 

Dissipation rate from the three methods for four different measurement points (P1 to P4, see fig. 4.29b). 

 

4.4.4 Results 

4.4.4.1 Velocity and Turbulent Intensity 

Figures 4.33a, 4.33c and 4.33e show the distribution of the time-averaged velocity U/U* 

and vectors of W/Umax, while fig. 4.33b, 4.33d and 4.33f, show the depth-averaged streamwise 

velocity Ud. For the cases Hr = 0.23 and 0.31, the high difference between the depth-averaged 

streamwise velocity in the main channel and the floodplain (fig. 4.33d and 4.33f) originates 

vertical axis vortices at the interface, which can also be depicted by the inflection of the velocity 

isolines near the free-surface from the interface to the main channel (fig. 4.33c and 4.33e). 

These turbulent structures constitute a mixing layer with a strong momentum transfer between 

main channel and floodplain flows (Shiono and Knight, 1991).  However, for Hr = 0.50 it is 

clear, from the inflection of the velocity isolines at the interface region (see fig. 4.33a), that the 

2D shear layer is replaced by a 3D turbulent field, where streamwise orientated vortices interact, 

known as secondary currents due to the anisotropy of turbulence (Azevedo et al., 2012; Nezu et 

al., 1999; Shiono and Knight, 1991). The difference between the depth-averaged streamwise 

velocity Ud is in this case small and a local minimum exist at the interface (fig. 4.33b), which 

can be originated by two counter-rotating vertical oriented vortices that interact with the 

secondary currents resulting in a complex 3D turbulence field, as mentioned by Nezu et al. 

(1999) for deep flows. 

In all cases, the maximum velocity U in the middle of the main channel is located at 

around 65% of the flow depth (see dotted line in fig. 4.33a, 4.33c and 4.33e). The location of 

the maximum velocity U under the free-surface is generated by effects of the descendant flow 
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which are caused by the encounter of the "main channel vortex" and the "free-surface vortex"  

Nezu and Nakagawa (1993), for Hr = 0.50, and by the interaction between the side-wall effect 

and the shear layer effect (interface region) with the main channel flow, for Hr = 0.31 and 0.23. 

In other words, the shear layer effect on the secondary currents is similar to a vertical wall, 

which is corroborated by the resemblance of the secondary currents observed for Hr = 0.23 (fig. 

4.33e) and the ones observed in narrow rectangular channels (Nezu and Nakagawa, 1993). 

The strong descendant flow located in the main channel reaches 30% of the friction 

velocity U* for all cases (fig. 4.33a, 4.33c and 4.33e). However, it is displaced towards the main 

channel lateral wall) as the relative water depth decreases (from y/B = 0.19 for Hr = 0.50 to y/B 

= 0.14 for Hr = 0.23). This transverse displacement of the descendant flow is due to the 

differences in the turbulent field. Namely, for the deeper flow the mixing layer is weak 

(eventually composed of two counter rotating vertical oriented vortices) and the secondary 

currents are strong extending their influence towards the interface. By opposition, for shallower 

flows the mixing layer is strong (composed of single vertical orientated vortices) acting as a 

vertical wall to the weak secondary currents that develop at the main channel, as mentioned 

before.  

 

Figure 4.33 a), c) and e) Cross-section distribution of the normalized mean velocity U/U* and 

vectors of mean velocity W/Umax. b), d) and f) Lateral distribution of the depth-averaged streamwise 
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velocity Ud for Hr = 0.50, Hr = 0.31 and Hr = 0.23. The dotted line in a), c) and e) Corresponds to the 

maximum streamwise velocity in each vertical. 

Figure 4.34 presents the turbulent intensity distribution U'/U* on the left side and W'/U* 

on the right side. Turbulent intensity U'/U* follows the trends of U/U*, but with inverse values, 

i.e. with highest values near the walls and lowest values deep below the free-surface in the 

middle of the main channel and close to the free-surface in the floodplain region. For the deeper 

flow (fig. 4.34a and 4.34b) it is clear that the strong secondary currents dictate the turbulence 

distribution throughout the cross-section. Namely, they convey higher turbulent flow from near 

the walls up into the free-surface in ascending flow regions (like the interface) and convey less 

turbulent flow from the free-surface region into the near wall region in descending flow regions 

(like the main channel corners). For the shallower flow (fig. 4.34e and 4.34f) one can observe 

that the vertical oriented vortices in the mixing layer convey high turbulent flow from the 

interface bottom into the main channel direction. It is interesting to note that the high turbulence 

intensity region occupies the interface region, while for the deeper flow it is located in the upper 

corner of the interface (fig. 4.34a and 4.34b). This indicates that the vertical orientated vortices 

seem to be a more efficient mechanism to redistribute the turbulence generated at the bottom 

than the secondary currents. For the intermediate flow depth Hr = 0.31 (fig. 4.34c and 4.34d), a 

mixed behavior of the ones referred for deeper and for shallower flows exists, i.e. the mixing 

layer vortices influence the interface region but not up to the free-surface, while in the upper 

interface corner a bulging of the isolines is still observed due to weak secondary currents. 
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Figure 4.34 Cross-section distribution of the normalized streamwise and vertical turbulent 

intensities (U'/U* in left side and W'/U* in right side, respectively). For Hr = 0.50, Hr = 0.31 and Hr = 

0.23. 

4.4.4.2 Reynolds Stress 2
*

''
U

wu  Distribution 

Figure 9 shows isolines of the normalized Reynolds stresses 2

*'' Uwu .  

For all cases, maximum values are observed near the bottom of the main channel 

diminishing towards the free-surface. Also, a negative Reynolds stress is observed in the corner 

between the side-wall and free-surface, where an ascendant flow exists. This region of negative 

Reynolds stress is originated on the momentum transfer from the side-wall towards the middle 

of the main channel (Kara et al., 2012).  

For Hr = 0.50 (fig. 4.35a), a strong positive Reynolds stress occurs in the interface 

between main channel and floodplain due to secondary currents, confirming the high values of 

the streamwise and vertical turbulent intensities (fig. 4.34a and 4.34b). For shallower flows (fig. 

4.35b and 4.35c) the Reynolds stress at the interface region is small and can even be negative. 

This seems contrary to the results of the streamwise and vertical turbulent intensities that show 

an increase of both values in the interface region (fig. 4.34c, 4.34d, 4.34e and 4.34f). The 

explanation for high values of U'/U* and W'/U* and low values of 2

*'' Uwu  can be explained 

based on the conceptualization of the topographical forcing proposed by Van Prooijen et al. 
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(2005). In fact, the mixing layer at the interface will have vortices with flow going from the 

main channel to the floodplain at their front (accelerating upwards) and flow going in the 

opposite direction at their back (decelerating downwards). The time-averaging of successive 

vortices can render a null or small 2

*'' Uwu  contribution.  

 

Figure 4.35 Cross-section distribution of the Reynolds stress w'u'  normalized by U*
2
 for a) Hr = 

0.50, b) Hr = 0.31 and c) Hr = 0.23 

 

4.4.4.3 Integral length scale and dissipation rate distribution 

Figure 4.36 shows the integral length scale distribution (normalized by the water depth 

HMC) estimated according to third method presented in section 4.4.3.3 (i.e., Lx is defined as the 

wavenumber value for which the autocorrelation function reaches 1/e). For all cases, the 

streamwise integral length scale increases close to the bottom in the main channel, due to the 

interaction between the descendant flow in the middle of the main channel and the side walls. 

For the deeper flow Hr = 0.50, a large value of the integral length scale is observed near 

the free-surface in the interface region. As mentioned before, according to Nezu et al. (1999) 

and Stocchino and Brocchini (2010), the surface velocity is characterized by weak double shear 

layers, which are caused by an ascendant flow (secondary currents), as shown in fig. 4.33a and 

4.33b. The integral length scale results in fig. 4.36a confirm this double shear layer, 

corresponding to macro vortices (i.e. high integral length scale values) located between the 

interface and the main channel, around y/B = 0.25, and between the interface and the floodplain, 

around y/B = 0.32. These macro vortices are bigger near the free-surface. For the shallower flow 

Hr = 0.23, the interface region, where a strong mixing layer exists, presents high values of the 

integral length scale, even higher than the flow depth HMC, confirming the results for shallow 

mixing layers (Uijttewaal, 2014). 
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Although the method used to estimate the integral length scale is based in premises that 

can be debated, the results showed in fig. 4.36 help to understand the turbulent field and confirm 

the observations of other researchers. 

 

Figure 4.36 Cross-section distribution of the streamwise integral length scale normalized by HMC 

for a) Hr = 0.50, b) Hr = 0.31 and c) Hr = 0.23. 

Figure 4.37 shows the dissipation rate obtained by the energy spectrum method (see 

section 4.4.3.4). The figure shows that the highest dissipation rate occur near the side wall and 

the bottom of the channel, decreasing towards the free-surface. This behavior is independent of 

the relative water depth. Three differences exist between each case, the first one is that the lower 

dissipation rate is well below the free-surface for Hr = 0.50, but it moves towards the free-

surface as the relative water depth decreases. The second one is that the dissipation rate increase 

for Hr = 0.31 and Hr = 0.23 in the interface region. It may be due effects of the vertical axis 

vortex caused by the shear layer. The last difference is that high values of the dissipation rate in 

the floodplain extend to the free-surface for Hr = 0.31 and Hr = 0.23. 

Results in fig. 4.37 and 4.34 show no correspondence suggesting that the dissipation rate 

is independent of the anisotropy. Bewley et al. (2012) carried out measurements of the velocity 

field of air jets pointed towards the center of a spherical chamber, concluding also that the 

normalized dissipation rate is independent of the anisotropy. Likewise, they suggest that the 

ratio between two integral length scales (for example Lz/Lx) depended on the anisotropy in the 

fluctuations W’/U’. In our case, due the poor results obtained of the integral length scale for the 

Z direction, this dependence could not be verified. However, a clear relation between the 

streamwise integral length scale, Lx, the dissipation rate, ε, and the streamwise turbulent 

intensity U’, can be observed as shown in fig. 4.38. 
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Figure 4.37 Cross-section distribution of the dissipation rate for a) Hr = 0.50, b) Hr = 0.31 and c) 

Hr = 0.23. 

As reference, fig. 4.38 also shows the semi-theoretical equation Lxε
1/3

 for 2D fully 

developed open-channel flow (Nezu and Nakagawa, 1993), where 
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with B1 = 1.0. The data plotted in fig. 4.38 was divided in four groups, “+” for verticals near to 

the side wall (y/B < 0.075), “○” for verticals in the main channel (0.075 < y/B < 0.260), “×” for 

verticals in the interface region (0.260 < y/B < 0.330), and “□” for verticals in the floodplain 

(0.330 < y/B). 

The behavior of the turbulent intensity U’ appears to have a strong dependence with the 

interaction between the streamwise integral length scale and the dissipation rate, where the 

behavior of the trend can be assumed as 1:1 (see dashed line in fig. 4.38), except the verticals 

located near to the side wall for Hr = 0.50. On the other hand, decreasing the water depth the 
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verticals located in the interface region and floodplain begins to departure from the trend 1:1, 

but maintain a linear relationship. This is caused by the high dissipation rate presented in those 

regions. 

Contrary to 2D fully developed open-channel flow equations, the linear relation appear to 

be constant for all the water depths and no apparent change occurs for Z/H = 0.60, as predicted 

by eq. 4.37. 

 

Figure 4.38 Lxε
1/3

 vs. U’ for each vertical profile where “+”, “o”, “x” and “” represent verticals 

near the side-wall, in the main channel, in the interface region and in the floodplain, respectively. 

Continuous line “-” represents the semi-theoretical equation Lxε
1/3

 for 2D fully developed open-channel 

flow. Dashed line “..” represents a line with slope 1:1. 

 

4.4.5 Conclusions 

The characterization of turbulence structures in compound channel flows under shallow, 

intermediate and deep flows conditions, using LDV high data rate measurements and several 

methodologies to determine its fundamental features were presented. After analyzing the results 

obtained using four interpolation methods to resample the instantaneous velocity record, three 

integral-stop-values of the autocorrelation function to obtain an estimation of the integral length 

scale and three methods to estimate the dissipation rate, the following conclusions can be 

extracted: 

 The resampling data from the linear and cubic interpolation methods present the highest 

values of the streamwise integral length scale while the nearest neighbor and S-H 

methods present closer values. The latter was consider the best interpolation method to 

rebuild the unevenly spaced record. 
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 The integral-stop-value 1/e is the most consistent method to estimate the integral length 

scale of the methods studied in this investigation, presenting similar results between 

neighboring measurement points. An opposite behavior was found using the first 

minimum and the second zero as integral-stop-value due to the randomness of the 

autocorrelation function for higher space lags. 

 The comparison between dissipation rate values obtained through the three methods 

studied show that the third and second order structure function methods are much more 

sensitive to acquisition frequencies, exhibiting a poor trend between neighboring 

measurement points, while the method based on the energy spectrum, using the Yule-

Walker spectral estimation algorithm, is much more robust and less sensitive to 

acquisition frequencies. 

According with the results obtained for deep water flow, intermediate water flow and 

shallow water flow, the conclusions are: 

 The mixing layer observed for deeper flow is weak and a local minimum of the depth-

averaged streamwise velocity Ud exists at the interface, which is originated by two 

counter-rotating vertical oriented vortices that interact with the secondary currents. For 

shallower flows the mixing layer strongly acts as a vertical wall to the weak secondary 

currents that develop at the main channel. 

 For deeper flow, the turbulent intensity distribution is clearly dictated by the secondary 

currents throughout the cross-section. However, for shallower flow the vertical oriented 

vortices in the mixing layer represent the mechanism who defines the turbulent intensity 

behavior, conveying high turbulent flow from the interface bottom into the main 

channel direction. For intermediate flow, a mixed behavior exists between deeper and 

shallower flows. 

 The normalized Reynolds stresses 2

*'' Uwu distribution can be explained with the 

streamwise and vertical turbulent intensities for deeper flow. However, for intermediate 

and shallower flows the Reynolds stress distribution is dictated by the topographical 

forcing. 

 A double shear layer can be observed in the integral length scale distribution for Hr = 

0.50, where macro vortices are located between the interface/main channel and 

interface/floodplain interacting with the secondary currents. Decreasing the water depth, 

the interface region transforms into a strong mixing layer composed of single vertical 

orientated vortices, presenting high values of the integral length scale, even higher than 

the flow depth. 

 For all relative depths, the dissipation rate is highest near the sidewall and the bottom of 

the channel, decreasing towards the free-surface. However, by effect of the vertical 



126 

 

orientated vortices caused by the shear layer in the interface region, the dissipation rate 

is larger for Hr = 0.31 and Hr = 0.23. 

 A clear linear relation exists between the streamwise integral length scale, Lx, the 

dissipation rate, ε, and the streamwise turbulent intensity U’. Contrary to 2D fully 

developed open-channel flow equations, that relation appears to be constant for all 

water depths. 
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The results presented in chapter 4 allowed to characterize the turbulent structures 

originated in compound channels flows under different inlet conditions, namely, deep flows and 

shallow flows, and also, considering the placement of rods on the upper bank between main 

channel and floodplain. 

Regarding the first experimental campaign of this investigation (objective 1 in p. 5), the 

following conclusions can be listed: 

 A strong descendant flow in the middle of the main channel was observed for all 

relatives water depths studied. For Hr = 0.23 and Hr = 0.31, which correspond to 

shallow flows, this descendant flow is caused by a momentum transfer from the lateral 

side-wall to main channel and from the floodplain to main channel. This last caused by 

the gradient velocity between both sub-regions. For Hr = 0.50, the momentum transfer 

observed from floodplain to main channel is due to the strong ascendant flow located in 

the upper interface. 

 The maximum longitudinal average velocity U is located below free-surface for all 

relative water depth. This phenomenon, known as “dip” phenomenon, is a consequence 

of the descendant flow explained before. 

 For Hr = 0.50, the universal laws for 2D fully developed open-channel flows are valid 

in the upper interface and floodplain, although the coefficients have to be increase, 

mostly due to the increase of turbulent intensity. This should be a consequence of the 

shallowness of the flow which contributes to maintain boundary turbulence as the 

dominant process. 

 The turbulent intensity distribution U'/U* follows the same tendency of isovels U/U*, 

where the higher turbulent intensity is located close to the walls and the lower turbulent 

intensity is below free-surface in the middle of main channel, due to the dip-velocity 

phenomenon. The secondary currents have an important role in the turbulent intensity 

distribution U'/U* in the interface region, causing a bulging of isovels U'/U*. 

 In the case of turbulent intensity W'/U*, it presents the higher values close to the walls 

and decrease towards the free-surface. As turbulent intensity U'/U*, W'/U* presents also 

a bulging of the isovels in the interface region due secondary currents. 

 The negative Reynolds shear stresses 
2

*'' Uwu  are located close to the free-surface 

and they increase towards the bottom of the channel. The “dip” phenomenon causes a 

negative shear stress in the corner between side-wall and free-surface. Decreasing the 

relative water depth, the Reynolds shear stresses decrease in the interface region but 

increase close of the bottom in the main channel. 

 In the case of the integral length scale distribution, the double shear layer caused by an 

ascendant flow in the interface region, originates vortices rotating clockwise with 
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vertical axis between main channel and interface, while vortices rotating anticlockwise 

are observed between interface and floodplain, for Hr = 0.50. High values of the 

integral length scale are not observed in the upper interface, y/B = 0.3, which 

corresponds with the ascendant flow location. For Hr = 0.31 and Hr = 0.23, high 

values of the integral length scale are confined in the interface region with 

vortices rotating in clockwise direction. For all cases, the integral length scale 

increases close to the bottom in the main channel. 

 The turbulence dissipation rate increases close to the walls and decreases towards the 

free-surface. For Hr = 0.31 and Hr = 0.23, high values of the dissipation rate are pulled 

until the free-surface in the interface region, due to vertical axis vortexes originated by 

the shear layer. 

 For Hr = 0.5, the maximum integral length scale is close to the free-surface in 

the middle of the main channel, between 0.5 < z/H < 1, and in the floodplain for 

Hr = 0.31 and 0.23, decreasing towards the walls of the flume. Decreasing the 

relative water depth increases Taylor’s micro scale. 

On the other hand, for the case where rods were placed on the upper bank (objective 2 in p. 

5), the following conclusions can be listed: 

 For Hr = 0.50, the universal laws for 2D fully developed open-channel flows are not 

valid for the case with rods, due to the dominant influence of the wakes generated by 

the rods that govern the turbulent field instead of the boundary layer. 

 The integral length scale presents almost constant values in the vertical direction, which 

indicates that the wakes generated by the rods influence the entire water column. 

 The turbulent microscale and dissipation rate acquire a streamwise variation due to the 

vortex propagation in the downstream direction. 

 At the upper interface near the rod the microscale is minimum, but still above the 2D 

flow values, and the dissipation is maximum exceeding the 2D flow values. 

Finnally, the conclusions about the different approaches to estimate the integral length 

scale, dissipation rate and micro scale (objective 3 in p. 5) are: 

 The most consistent method to estimate the integral length scale is when the 

autocorrelation function reaches the value 1/e. 

 The estimation of the integral length scale through the autocorrelation function 

with integral-stop-values second zero and first minimum, presents a random 

behavior. 



Chapter 5: Conclusions and Future Researc 
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 The third order structure function can be used to get good estimation of the 

dissipation rate. However, a high acquisition frequency is necessary (> 100 Hz). 

 The second order structure function does not allow getting good estimation of 

the dissipation rate since a plateau was not found. Possible, a higher acquisition 

frequency is necessary (>100Hz). 

 The most consistent way of estimating the dissipation rate is from the energy spectrum 

of the velocity, where the plateau occurs at 1.5 times the wavenumber of the 

integral length scale. 

 The Taylor’s microscale was estimated from incompressible homogeneous 

isotropic turbulent flow equation and considering the dissipation rate from the 

third order structure function. 

 

Future Research 

In this investigation, several inlet discharges have been studied taking into account the 

placement or not of roughness, in a straight asymmetric compound channel and under the quasi-

uniform flow condition. Also, the measurements were made through a 2D Laser Doppler 

Velocimeter. On this regards, some progress can be developed as follow: 

 Improve the LDV system in order to take the third velocity component. With this 

improvement, the tree velocity components can be measured at the same time, allowing 

the evaluation of the shear stress ''vv ; ''vu and ''wu , as well the turbulence kinetic 

energy k . 

 Placement of new configuration of rods should be evaluated, e.g. vegetated regions over 

floodplain using rods with different spacing configuration; placement of flexible 

vegetation, shrubbery, etc. The study of different kinds of vegetation will allow to 

understand the behavior of mass and momentum transfer between main channel and 

floodplain under different roughness conditions, as well the turbulent structures 

originated. 

 Different approaches should be evaluated in order to characterize the turbulent field.  
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- Filter based on Phase-Space Thresholding Method, Goring and Nikora 2002 

 

In this section, the codes used to filter the raw data from LDV will be presented 

for u component. The codes were developed in Matlab and must be processed in this 

software. To run the code, a previous folders distribution must be made in order to the 

code find the raw data from LDV and create a new folder with the filter data. The code 

below presents the u component case. However, in the case of w component, the main 

structure of the filter used was similar. 

 

 Filter code for u component 

% This code performs a simple filter that removes negative velocities and velocities 

that exceed 50% of turbulent intensity. Basically this is needed in the closest to the 

main channel side wall and for verticals in the transition. 

 

% Written by Joao Leal and Ricardo Azevedo, February 2012. 

  

clc 

clear all 

close all 

  

%DATA THAT NEEDS TO BE CHANGED 

root_path='G:\'; % needs to be changed according to the computer 

folder_tests='Ensaios'; % should be keept constant 

rough_type='smooth'; % smooth or rough 

if strcmp(rough_type,'smooth') 

    relative_water_depth='Hr_02'; % Choices: Hr_05; Hr_03; Hr_02 

    relative_depth=relative_water_depth; 

elseif strcmp(rough_type,'rough') 

    rod_diameter='D_10'; % Choices: D_10; D_6 

    rod_spacing='S_1000'; % Choices: S_1000; S_200; S_40 

    relative_water_depth='Hr_05'; % Choices: Hr_05; Hr_03; Hr_02 

    relative_depth=strcat(rod_diameter,'\',rod_spacing,'\',relative_water_depth); 

end 

section='X8750'; % cross section (X7500, X8000, X9000,...) 

vel_component='U'; % velocity component (U, W or U_W) 

data_path='raw_data'; % should be keept constant 

files=dir(strcat(root_path,'\',folder_tests,'\',rough_type,'\',relative_depth,'\',

section,'\',vel_component,'\',data_path,'\*.csv')); 

number_points=length(files); % number of files in the raw data directory (number 

of points in each section) 

data_file_name='STR18105'; % begining of name of the file 

% creates the directory of filtered data 
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filtered_path=strcat(root_path,'\',folder_tests,'\',rough_type,'\',relative_depth,

'\',section,'\',vel_component,'\','filtered_data'); 

mkdir(filtered_path);  % creates the directory of results 

count=0; 

j=0; 

for k=1:number_points 

    disp(['Treating file: ', num2str(k),'    still missing 

',num2str(number_points-k),' files']); 

    % reads the data from the raw files 

file_name=strcat(root_path,'\',folder_tests,'\',rough_type,'\',relative_depth,'\',

section,'\',vel_component,'\',data_path,'\',data_file_name,'_',num2str(k),'.csv'); 

    data_matrix=csvread(file_name,1,0); 

    original_T=data_matrix(1:end,1); 

    U_Tseries=data_matrix(1:end,2); 

    XXXX=data_matrix(1,3); 

    YYYY=data_matrix(1,4); 

    ZZZZ=data_matrix(1,5); 

    if length(U_Tseries)>100 % files with few samples are not considered 

        U_filtered=U_Tseries; 

        T_filtered=original_T; 

        % filter to remove values equal or below zero (U<=0.1) 

        i=1; 

        while i<=length(U_filtered) 

            if U_filtered(i)<=0.1 

                U_filtered=[U_filtered(1:i-1);U_filtered(i+1:length(U_filtered))]; 

                T_filtered=[T_filtered(1:i-1);T_filtered(i+1:length(T_filtered))]; 

                i=i; 

            else 

                i=i+1; 

            end 

        end 

        n_zeros=length(U_Tseries)-length(U_filtered); 

        percent_zeros=n_zeros/length(U_Tseries)*100; 

        disp(['Number of zeros in the series: ', num2str(n_zeros),'       

Percentage: ',num2str(percent_zeros),'%']); 

        if length(U_filtered)>100 

            mean_U = ((1/length(U_filtered))*sum(U_filtered.^(-1)))^(-1); %Mean-

average Velocity --> Correction of the Velocity Bias 

            median_U=median(U_filtered); 

            u_filtered=U_filtered-mean_U; 

            TI=(mean(u_filtered.^2))^0.5; 

            if strcmp(rough_type,'smooth') 

                max_TI=0.5; % limit of turbence intensity 

            elseif strcmp(rough_type,'rough') 

                max_TI=0.8; % limit of turbence intensity 

            end 

            max_u=max_TI*mean_U; 
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        % filter for the cases where the median is well bellow the mean 

            if median_U<0.8*mean_U 

                i=1; 

                while i<=length(U_filtered) 

                    if (U_filtered(i)>=median_U-

*max_u)&&(U_filtered(i)<=median_U+2*max_u) 

                        U_filtered=[U_filtered(1:i-

1);U_filtered(i+1:length(U_filtered))]; 

                        T_filtered=[T_filtered(1:i-

1);T_filtered(i+1:length(T_filtered))]; 

                        i=i; 

                    else 

                        i=i+1; 

                    end 

                end 

            end 

            mean_U = ((1/length(U_filtered))*sum(U_filtered.^(-1)))^(-1); %Mean-

average Velocity --> Correction of the Velocity Bias 

            median_U=median(U_filtered); 

            u_filtered=U_filtered-mean_U; 

            TI=(mean(u_filtered.^2))^0.5; 

            max_u=max_TI*mean_U; 

        % filter to remove values that exceeds 50% of turbulence intensity 

            i=1; 

            while i<=length(U_filtered) 

                if (U_filtered(i)<mean_U-max_u)||(U_filtered(i)>mean_U+max_u) 

                    U_filtered=[U_filtered(1:i-

1);U_filtered(i+1:length(U_filtered))]; 

                    T_filtered=[T_filtered(1:i-

1);T_filtered(i+1:length(T_filtered))]; 

                    i=i; 

                else 

                    i=i+1; 

                end 

            end 

            mean_U = ((1/length(U_filtered))*sum(U_filtered.^(-1)))^(-1); %Mean-

average Velocity --> Correction of the Velocity Bias 

            n_TI=length(U_Tseries)-length(U_filtered); 

            percent_TI=n_TI/length(U_Tseries)*100; 

            disp(['Total number of removed samples: ', num2str(n_TI),'     

Percentage: ',num2str(percent_TI),'%']); 

            fLDA=length(U_filtered)/T_filtered(end); 

            disp(['Mean frequency of the series: ', num2str(fLDA)]); 

            figure(1) 

            plot(original_T,U_Tseries,'k.',T_filtered,U_filtered,'r.'),hold 

            plot([0 original_T(end)],[mean_U mean_U],'k-',[0 

original_T(end)],[mean_U-max_u mean_U-max_u],'k--',[0 original_T(end)],[mean_U+max_u 

mean_U+max_u],'k--'), hold 

            %save figure with raw and filtered data 
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fig_path=strcat(root_path,'\',folder_tests,'\',rough_type,'\',relative_depth,'\',section

,'\',vel_component,'\raw_and_filtered_velocity_',num2str(k-count)); 

            saveas(gcf, fig_path, 'fig'); 

            %Goring_filter(T_filtered,U_filtered) 

            [T_filtered1,U_filtered1]=Goring_filter_U(T_filtered,U_filtered); 

%calls function Goring_filter 

            mean_U1 = ((1/length(U_filtered1))*sum(U_filtered1.^(-1)))^(-1); 

%Mean-average Velocity --> Correction of the Velocity Bias 

            figure(2) 

            plot(T_filtered,U_filtered,'k.',T_filtered1,U_filtered1,'r.'),hold 

            plot([0 T_filtered(end)],[mean_U mean_U],'k-',[0 

T_filtered1(end)],[mean_U1 mean_U1],'k--'), hold 

            %save figure with filtered and GORING filtered data 

fig_path=strcat(root_path,'\',folder_tests,'\',rough_type,'\',relative_depth,'\',section

,'\',vel_component,'\filtered_and_Goring_filtered_velocity_',num2str(k-count)); 

            saveas(gcf, fig_path, 'fig'); 

            %saves the filtered values in a csv flie 

            filtered_name=strcat(filtered_path,'\',data_file_name,'_',num2str(k-

count),'.csv'); 

            % saves the header to the file 

            fid = fopen(filtered_name,'w'); 

            fprintf(fid,'Time Ch. 1 (sec),Velocity Ch. 1 (m/sec),X Axis Position,Y 

Axis Position,Z Axis Position\n'); 

            fclose(fid); 

            % saves the first line of values with 5 colums 

            dlmwrite(filtered_name,[T_filtered1(1) U_filtered1(1) XXXX YYYY 

ZZZZ],'-append') 

            % saves the values after the first line 

            dlmwrite(filtered_name,[T_filtered1(2:end) 

U_filtered1(2:end)],'precision', '%.9f','-append') 

        else 

            j=j+1; 

            elim=k; 

            count=count+1; 

            name_elim{j}=[strcat(data_file_name,'_',num2str(elim),'.csv')]; 

        end 

    else 

        j=j+1; 

        elim=k; 

        count=count+1; 

        name_elim{j}=[strcat(data_file_name,'_',num2str(elim),'.csv')]; 

    end 

    save var_filtro; 

end 

if j==0 

    disp('No files were eliminated by the filter'); 

else 

    disp(['Number of files eliminated by the filter: ', num2str(count)]); 

    disp('Name of eliminated files by the filter: '); 
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    disp(name_elim); 

end 

 

 

 

To run the code above, the function “Goring_Filer_U” will be called. In this 

regards, the function is described following: 

 

 Goring Filer Function 

%This function performs a filter that removes peaks contained in a sample. 

%This filter is based on the paper of Goring and Nikora 2002. 

%This filter does not remove the peaks founds in the sample. The filter 

%relocated the peaks using a polynomial curve of 3º order taken 12 points 

%before and after of the peak. 

  

%Written by Ricardo Azevedo, May 2012 

  

function [T_filtered1,U_filtered1]=Goring_filter_U(T_filtered,U_filtered) 

clear T_filtered1 U_filtered1 

  

mean_U = ((1/length(U_filtered))*sum(U_filtered.^(-1)))^(-1); %Mean-average %Velocity --

> Correction of the Velocity Bias 

u(:,1) = U_filtered - mean_U; %Velocity fluctuations 

  

n_picos=11; 

iteracoes=0; 

warning('off');   %Remove the warnings -> The polyfit funtion produced some warnings 

  

    while n_picos > 0   %First stop condition (All peaks were relocated) 

        picos1=0; 

        picos2=0; 

        picos3=0; 

        n_picos=0; 

        iteracoes=iteracoes+1;      

     %____Delta_ui 

        Delta_u(1,1) = (U_filtered(2,1)-U_filtered(1,1))/2;                                                         

%First line of Delta_u 

        Delta_u(length(U_filtered),1) = (U_filtered(length(U_filtered),1)- 

U_filtered(length(U_filtered)-1,1))/2;    %last line of Delta_u 

        i=2; 

        while i<length(U_filtered) 

           Delta_u(i,1)=(U_filtered(i+1,1)-U_filtered(i-1,1))/2;%Calculation of Delta_u 

           i=i+1; 

        end 

  

     %____Delta2_ui 

        i=2; 

        while i<length(U_filtered) 

           Delta2_u(i,1)=(Delta_u(i+1,1)-Delta_u(i-1,1))/2;%Calculation of Delta^2_u 

           i=i+1; 

        end 

     

        Delta2_u(1,1) = (Delta_u(2,1)-Delta_u(1,1))/2;                                                         

%First line of Delta2_u 

        Delta2_u(length(U_filtered),1) = (Delta_u(length(U_filtered),1)-

Delta_u(length(U_filtered)-1,1))/2;    %Last line of Delta2_u 

  

     %____Original Data 

        if iteracoes==1 

            original_data(:,1)=u; 

            original_data(:,2)=Delta_u; 

            original_data(:,3)=Delta2_u; 

        end  
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     %____Program Control -> Second stop condition 

        p_picos=1; 

        if iteracoes>10 %The second stop condition start on the iteration %10 (If during 

5 iterations the number of peaks is same, the program stop) 

            if picos(iteracoes-1)==picos(iteracoes-6)||(picos_1(iteracoes-

1)==picos_1(iteracoes-6))||... 

               (picos_2(iteracoes-1)==picos_2(iteracoes-6))||(picos_3(iteracoes-

1)==picos_3(iteracoes-6)) 

               p_picos=0; 

            else  

               p_picos=1; 

            end 

        end 

             

        if p_picos==1 

          %____Calculation of variables for replacement of peaks 

          %____Standard desviation (u; Delta_u; Delta^2_u) 

          %____Step 2 Goring paper (2002): Phase_space Thresholding Method 

            Stand_dev(1)=std(u); 

            Stand_dev(2)=std(Delta_u); 

            Stand_dev(3)=std(Delta2_u); 

  

          %____Delta_ui vs ui 

            Major_axis1 = sqrt(2*log(length(U_filtered)))*Stand_dev(1);%Eq.2 

            Minor_axis1 = sqrt(2*log(length(U_filtered)))*Stand_dev(2); 

             

          %____Delta_ui2 vs delta_ui 

            Major_axis2 = sqrt(2*log(length(U_filtered)))*Stand_dev(2);%Eq.2 

            Minor_axis2 = sqrt(2*log(length(U_filtered)))*Stand_dev(3); 

            

          %____Delta_ui2 vs ui 

            theta=atan(sum(u.*Delta2_u)/sum(u.^2)); %Results in radians - %Eq. 9 

            eq10 = Major_axis1^2; %Eq. 10 

            eq11 = Minor_axis2^2; %Eq. 11 

            A = [eq10 ; eq11]; 

            B = [(cos(theta)).^2 (sin(theta)).^2 ; (sin(theta)).^2 (cos(theta)).^2]; 

            El = B^(-1)*A; %Solve the equations system 

            Major_axis3 = sqrt(El(1,1)); %Value of a of the eq. 10 and 11 

            Minor_axis3 = sqrt(El(2,1)); %Value of b of the eq. 10 and 11 

             

          %____Focal Points of the ellipses 

            c1=sqrt((Major_axis1)^2-(Minor_axis1)^2); %Delta_ui vs ui 

            c2=sqrt((Major_axis2)^2-(Minor_axis2)^2); %Delta_ui2 vs %delta_ui 

            c3=sqrt((Major_axis3)^2-(Minor_axis3)^2); %Delta_ui2 vs ui; 

            c3x=c3*cos(theta); 

            c3y=c3*sin(theta); 

     

          %____Max. distance of each ellipse to the focal points 

            dmax1=2*sqrt(c1^2+Minor_axis1^2); 

            dmax2=2*sqrt(c2^2+Minor_axis2^2); 

            dmax3=2*sqrt(c3^2+Minor_axis3^2); 

         

          %____Distance of each point to the focal points 

            %____Delta_ui vs ui 

            dist1 = sqrt((u-c1).^2+(Delta_u).^2)+sqrt((u+c1).^2+(Delta_u).^2); 

            %____Delta_ui2 vs delta_ui 

            dist2 = sqrt((Delta_u-

c2).^2+(Delta2_u).^2)+sqrt((Delta_u+c2).^2+(Delta2_u).^2); 

            %____Delta_ui2 vs ui 

            dist3 = sqrt((u-c3x).^2+(Delta2_u-

c3y).^2)+sqrt((u+c3x).^2+(Delta2_u+c3y).^2); %Confirmar eixos     

  

           %____Count and relocation of peaks 

            %__Mat_dados_c will be use to relocate the peaks 

            Mat_dados_c(:,1) = T_filtered; 

            Mat_dados_c(:,2) = u; 

            Mat_dados_c(:,3) = Delta_u; 

            Mat_dados_c(:,4) = Delta2_u; 

                 

            i=1;  

            while i < length(U_filtered) 

                j=0; 

                if dist1(i,1)>dmax1 

                    j=1; 
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                    picos1=picos1+1; 

                end 

                if dist2(i,1)>dmax2 

                    j=1; 

                    picos2=picos2+1; 

                end 

                if dist3(i,1)>dmax3 

                    j=1; 

                    picos3=picos3+1; 

                end 

                 

                if j>0 

                    %__The peak is replaced at the moment by the mean 

                    %__average velocity 

                    Mat_dados_c(i,2)= ((1/length(u))*sum(u.^(-1)))^(-1); 

  

               %___Analysis of Delta_ui vs ui                   

                    if dist1(i,1)>dmax1 

                        if i+12>length(U_filtered) 

                            Coef=polyfit(Mat_dados_c(i-12:i-1,1),Mat_dados_c(i-12:i-

1,2),3); 

                            u(i,1) = 

Mat_dados_c(i,1)^3*Coef(1)+Mat_dados_c(i,1)^2*Coef(2)+Mat_dados_c(i,1)*Coef(3)+Coef(4); 

                        elseif i-12<1 

Coef=polyfit(Mat_dados_c(1:i+12,1),Mat_dados_c(1:i+12,2),3); 

                            u(i,1) = 

Mat_dados_c(i,1)^3*Coef(1)+Mat_dados_c(i,1)^2*Coef(2)+Mat_dados_c(i,1)*Coef(3)+Coef(4); 

                        else 

                            M1 = vertcat(Mat_dados_c(i-12:i-

1,1),Mat_dados_c(i+1:i+12,1)); 

                            M2 = vertcat(Mat_dados_c(i-12:i-

1,2),Mat_dados_c(i+1:i+12,2)); 

                            Coef=polyfit(M1,M2,3); 

                            u(i,1) = 

Mat_dados_c(i,1)^3*Coef(1)+Mat_dados_c(i,1)^2*Coef(2)+Mat_dados_c(i,1)*Coef(3)+Coef(4); 

                        end 

                    end 

                     

               %___Analysis of Delta_ui2 vs delta_ui                     

                    if dist2(i,1)>dmax2 

                        if i+12>length(U_filtered) 

                            Coef=polyfit(Mat_dados_c(i-12:i-1,1),Mat_dados_c(i-12:i-

1,2),3); 

                            u(i,1) = 

Mat_dados_c(i,1)^3*Coef(1)+Mat_dados_c(i,1)^2*Coef(2)+Mat_dados_c(i,1)*Coef(3)+Coef(4); 

                        elseif i-12<1 

Coef=polyfit(Mat_dados_c(1:i+12,1),Mat_dados_c(1:i+12,2),3); 

                            u(i,1) = 

Mat_dados_c(i,1)^3*Coef(1)+Mat_dados_c(i,1)^2*Coef(2)+Mat_dados_c(i,1)*Coef(3)+Coef(4); 

                        else 

                            M1 = vertcat(Mat_dados_c(i-12:i-

1,1),Mat_dados_c(i+1:i+12,1)); 

                            M2 = vertcat(Mat_dados_c(i-12:i-

1,2),Mat_dados_c(i+1:i+12,2)); 

                            Coef=polyfit(M1,M2,3); 

                            u(i,1) = 

Mat_dados_c(i,1)^3*Coef(1)+Mat_dados_c(i,1)^2*Coef(2)+Mat_dados_c(i,1)*Coef(3)+Coef(4); 

                        end 

                    end 

                     

               %___Analysis of Delta_ui2 vs ui                     

                    if dist3(i,1)>dmax3 

                        if i+12>length(U_filtered) 

                            Coef=polyfit(Mat_dados_c(i-12:i-1,1),Mat_dados_c(i-12:i-

1,2),3); 

                            u(i,1) = 

Mat_dados_c(i,1)^3*Coef(1)+Mat_dados_c(i,1)^2*Coef(2)+Mat_dados_c(i,1)*Coef(3)+Coef(4); 

                        elseif i-12<1                          

Coef=polyfit(Mat_dados_c(1:i+12,1),Mat_dados_c(1:i+12,2),3); 

                            u(i,1) = 

Mat_dados_c(i,1)^3*Coef(1)+Mat_dados_c(i,1)^2*Coef(2)+Mat_dados_c(i,1)*Coef(3)+Coef(4); 

                        else 

                            M1 = vertcat(Mat_dados_c(i-12:i-

1,1),Mat_dados_c(i+1:i+12,1)); 
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                            M2 = vertcat(Mat_dados_c(i-12:i-

1,2),Mat_dados_c(i+1:i+12,2)); 

                            Coef=polyfit(M1,M2,3); 

                            u(i,1) = 

Mat_dados_c(i,1)^3*Coef(1)+Mat_dados_c(i,1)^2*Coef(2)+Mat_dados_c(i,1)*Coef(3)+Coef(4); 

                        end 

                    end 

                end 

                i=i+1; 

            end 

             

        %___n_picos count the number of peaks in each iteration 

            n_picos=picos1+picos2+picos3; 

            picos(iteracoes)=n_picos; 

            picos_1(iteracoes) = picos1; 

            picos_2(iteracoes) = picos2; 

            picos_3(iteracoes) = picos3; 

            number_picos = n_picos; 

            percent_picos_u = (picos1/length(U_filtered))*100; 

            percent_picos_deltau = (picos2/length(U_filtered))*100; 

            percent_picos_delta2u = (picos3/length(U_filtered))*100; 

            disp(['Iteration: ',num2str(iteracoes),'     Relocated samples by Goring 

filter: ', num2str(number_picos)]); 

            disp(['                 u Vs Delta_u: ',num2str(picos1),'             

Percentage: ',num2str(percent_picos_u),'%']); 

            disp(['                 Delta_u Vs Delta^2_u: ',num2str(picos2),'     

Percentage: ',num2str(percent_picos_deltau),'%']); 

            disp(['                 Delta^2_u Vs u: ',num2str(picos3),'           

Percentage: ',num2str(percent_picos_delta2u),'%']); 

        elseif p_picos==0 

            n_picos=0; 

        end 

    end 

     

    T_filtered1 = T_filtered; 

    U_filtered1 = u+mean_U; 

     

%___This variables are cleaning because the size of this variables change 

%___in each file 

    clear T_filtered U_filtered Mat_dados_c picos picos_1 picos_2 picos_3 u Delta_u 

Delta2_u 

end 

 

Filtered the data, the “Data Processing” code is runned. In this code, .xls file is 

created where the experimental conditions are saved. Likewise, the information of each 

measurement points are organized and saved for vertical profiles. This organization of 

the information is essential to run the “Turbulence” code. 

 

 Data Processing 

% This function transforms the raw data into a directory/file structure and creates the 

xls input file that can be used by the program turbulence.m. 

 

% Written by Joao Leal and Ricardo Azevedo, February 2012 

clc 

clear all 

close all 

  

%_____________________DATA THAT NEEDS TO BE CHANGED_______________________% 

%-------------------------------------------------------------------------- 
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filter=1; % 0 - no filter; 1 - filter 

discharge=26.41; % flow discharge in m3/h 

discharge=discharge/3600; 

mean_water_depth=0.0683; % water depth in the midle of the main channel 

slope=0.000948216621; % mean longitudinal slope (should be keept constant)  

Temperature=27.0; % water temperature in ºC 

Y_reference=5.56; % location of the window in the "y" direction 

Z_reference=0.13795; % location of the bottom in the "z" direction in meters 

Y_lower_int=156.00; % location of the lower interface 

Y_upper_int=197.68; % location of the upper interface 

root_path='G:\'; % needs to be changed according to the computer 

folder_tests='Ensaios'; % should be keept constant 

  

rough_type='rough'; % smooth or rough 

  

if strcmp(rough_type,'smooth') 

    relative_water_depth='Hr_02'; % Choices: Hr_05; Hr_03; Hr_02 

    relative_depth=relative_water_depth; 

elseif strcmp(rough_type,'rough') 

    rod_diameter='D_10'; % Choices: D_10; D_6 

    rod_spacing='S_40'; % Choices: S_1000; S_200; S_40 

    relative_water_depth='Hr_03'; % Choices: Hr_05; Hr_03; Hr_02 

    relative_depth=strcat(rod_diameter,'\',rod_spacing,'\',relative_water_depth); 

end 

  

section='X9015'; % cross section (X7500, X8000, X9000,...) 

vel_component='W'; % velocity component (U, W or U_W) 

if filter==0 

    data_path='raw_data'; % should be keept constant 

else 

    data_path='filtered_data'; % should be keept constant 

end 

  

files=dir(strcat(root_path,'\',folder_tests,'\',rough_type,'\',relative_depth,'\',

section,'\',vel_component,'\',data_path,'\*.csv')); 

number_points=length(files); % number of files in the raw data directory (number 

of points in each section) 

data_file_name='R901503'; % begining of name of the file 

%-------------------------------------------------------------------------- 

  

% Finds and interpolates the bottom of the cross-section where the 

% measurement was made 

x_section=strread(section,'%d','delimiter','X'); 

x_section=x_section(2); 

[y_flume,z_flume]=Channel_geometry(x_section); 
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n_vertical=1; 

cont=0; 

k=1; 

% reads the data from the raw files or from the filtered data files 

file_name=strcat(root_path,'\',folder_tests,'\',rough_type,'\',relative_depth,'\',

section,'\',vel_component,'\',data_path,'\',data_file_name,'_',num2str(k),'.csv'); 

data_matrix=csvread(file_name,1,0); 

t{n_vertical}{k-cont}=data_matrix(1:end,1); 

U{n_vertical}{k-cont}=data_matrix(1:end,2); 

Y{n_vertical}(k-cont)=data_matrix(1,4); 

Z{n_vertical}(k-cont)=data_matrix(1,5); 

t1=t; 

U1=U; 

Y1=Y; 

Z1=Z; 

  

for k=2:number_points 

    % reads the data from the raw files or from the filtered data files 

    

file_name=strcat(root_path,'\',folder_tests,'\',rough_type,'\',relative_depth,'\',sectio

n,'\',vel_component,'\',data_path,'\',data_file_name,'_',num2str(k),'.csv'); 

    data_matrix=csvread(file_name,1,0); 

    t1{n_vertical}{k-cont}=data_matrix(1:end,1); 

    U1{n_vertical}{k-cont}=data_matrix(1:end,2); 

    Y1{n_vertical}(k-cont)=data_matrix(1,4); 

    Z1{n_vertical}(k-cont)=data_matrix(1,5); 

    if Y1{n_vertical}(k-cont)==Y1{n_vertical}(k-cont-1) 

        t{n_vertical}{k-cont}=data_matrix(1:end,1); 

        U{n_vertical}{k-cont}=data_matrix(1:end,2); 

        Y{n_vertical}(k-cont)=data_matrix(1,4); 

        Z{n_vertical}(k-cont)=data_matrix(1,5); 

    else     

        cont=k-1; %Count the number of points per vertical 

        if n_vertical==1 

            n_point(n_vertical)=cont; %The number of points of each vertical are 

save in n_point 

        else 

            n_point(n_vertical)=cont-sum(n_point(1:n_vertical-1)); 

        end     

        n_vertical=n_vertical+1; %When the coordinate "Y" change, n_vertical 

change too 

        t{n_vertical}{k-cont}=data_matrix(1:end,1); 

        U{n_vertical}{k-cont}=data_matrix(1:end,2); 

        Y{n_vertical}(k-cont)=data_matrix(1,4); 

        Z{n_vertical}(k-cont)=data_matrix(1,5); 

        t1=t; 

        U1=U; 
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        Y1=Y; 

        Z1=Z; 

    end  

end 

n_point(n_vertical)=number_points-cont; %Save the number of points in the last 

vertical 

  

for i=1:n_vertical 

    Yexp{1,i}=((Y{1,i}-Y_reference)*1.331081081)/1000; %coordinate y (El 

Coeficiente fue corregido por los valores Teóricos de los Ángulos de Refracción) 

    Zexp{1,i}=Z{1,i}/1000; %coordinate z related to the bottom (used in the 

vertical profiles) 

end 

  

% Look the Lower Interface and Upper Interface 

Y_lowerinterface = ((Y_lower_int-Y_reference)*1.331081081)/1000; 

Y_upperinterface = ((Y_upper_int-Y_reference)*1.331081081)/1000; 

% Look the window reference 

ref_window = abs((y_flume(5,1))-Y_lowerinterface); 

  

if (Y_lowerinterface>(y_flume(5,1))) 

    for i=1:n_vertical 

        Yexp{1,i} = Yexp{1,i}-ref_window; % Adjust the Y distance 

    end 

elseif(Y_lowerinterface<(y_flume(5,1))) 

    for i=1:n_vertical 

        Yexp{1,i} = Yexp{1,i}+ref_window; % Adjust the Y distance 

    end 

end 

  

for i=1:n_vertical 

    Y_vert(i,1) = Yexp{1,i}(1); 

    if Y_vert(1)<0 

        Y_vert(1)=0; 

    end 

    Z_vert(i,1) = interp1(y_flume,z_flume,Y_vert(i)); 

end 

  

Z_vert = Z_vert+abs(z_flume(3,1)); % Middle of the Main Channel 

width_mc = 0.205; 

width_fp = 0.531; 

width_i = 0.054; 

depth_i = 0.051; 

  

% Cross-Section parameters; Friction Velocity 

area_cross_section = (((width_mc*2)+width_i)*depth_i/2)+((mean_water_depth-

depth_i)*(width_mc+width_i+width_fp)); 
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wetted_perimeter = mean_water_depth+width_mc+width_fp+(mean_water_depth-

depth_i)+(((width_i^2)+(depth_i^2))^(1/2)); 

hydraulic_radius = area_cross_section/wetted_perimeter; 

U_friction = (9.81*hydraulic_radius*slope)^(1/2); 

  

% Adjust de Z reference 

for i=1:n_vertical 

    Z_contour{1,i} = Z_reference-Zexp{1,i}; 

end 

% Look the bottom reference 

for i=1:n_vertical 

    dz_bot(1,i) = Z_vert(i,1)-(min(Z_contour{1,i})); 

end 

dz_bottom = max(dz_bot); 

  

disp('start creating files') 

for i=1:n_vertical 

    water_depth(i) = mean_water_depth-Z_vert(i,1); %Water depth for each velocity 

profile 

    u_atri(i) = U_friction; % Friction velocity determined by gravity method 

    Z_contour{1,i} = Z_contour{1,i}+dz_bottom; %coordinate Z related a reference 

level (used in the isolines) 

    Zexp{1,i} = Z_contour{1,i}-Z_vert(i,1); %coordinate Z related with each 

velocity profile 

  

file_path{i}=strcat(root_path,'\',folder_tests,'\',rough_type,'\',relative_depth,'\',sec

tion,'\',vel_component,'\','V',num2str(i)); 

    mkdir(file_path{i}); 

  

    for j=1:n_point(i) 

        P(:,1) = t{1,i}{j}; 

        P(:,2) = U{1,i}{j}; 

        Point = ['P',num2str(j),'.txt']; 

dlmwrite(strcat(file_path{i},'\',Point),P,'delimiter','\t','newline','pc','precision', 

'%.6f'); 

        clear P 

    end 

end 

rough_name=char(rough_type); 

rd_name=char(relative_water_depth); 

section_name=char(section); 

  

%creates the xls file to be used in turbulence.m 

if strcmp(rough_type,'smooth') 

     

xls_file_name=strcat('input_',rough_name(1),'_',rd_name(4:5),'_',section_name(2:5),'_',v

el_component,'.xls'); 

elseif strcmp(rough_type,'rough') 
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    rod_d=char(rod_diameter); 

    rod_s=char(rod_spacing); 

    

xls_file_name=strcat('input_',rough_name(1),'_',rod_d(3:end),'_',rod_s(3:end),'_',rd_nam

e(4:5),'_',section_name(2:5),'_',vel_component,'.xls'); 

end 

  

%creates the data spreadsheet 

%-------------------------------------------------------------------------% 

%Run this code to opens the activex server. We need to run xlswrite11 

Excel = actxserver ('Excel.Application');  

File=strcat('C:\Users\Ricardo\Documents\MATLAB\',xls_file_name);  

if ~exist(File,'file')  

    ExcelWorkbook = Excel.workbooks.Add;  

    ExcelWorkbook.SaveAs(File,1);  

    ExcelWorkbook.Close(false);  

end  

invoke(Excel.Workbooks,'Open',File) 

%-------------------------------------------------------------------------% 

line1={'Root directory',root_path,'(place the path until the folder tests it will 

depend on the computer)'}; 

xlswrite1(xls_file_name,line1,'Data','A1'); 

line2={'Folder of tests',folder_tests,'(should not change)'}; 

xlswrite1(xls_file_name,line2,'Data','A2'); 

line3={'Roughness type',rough_type,'(smooth or rough)'}; 

xlswrite1(xls_file_name,line3,'Data','A3'); 

line4={'Relative depth',relative_depth,'(Hr_03, Hr_02 or Hr_05, depending on the 

relative depth)'}; 

xlswrite1(xls_file_name,line4,'Data','A4'); 

line5={'Section',section,'(X7500, X8000 or X9000, depending on the longitudinal 

location of the section)'}; 

xlswrite1(xls_file_name,line5,'Data','A5'); 

line6={'Velocity',vel_component,'(U, W or U_W, depending on the measured 

component)'}; 

xlswrite1(xls_file_name,line6,'Data','A6'); 

line8={'Flow discharge',discharge,'(in m3/s, depends on the relative depth and 

roughness type)'}; 

xlswrite1(xls_file_name,line8,'Data','A8'); 

line9={'Channel slope',slope,'(equal to the mean slope, should not change)'}; 

xlswrite1(xls_file_name,line9,'Data','A9'); 

line10={'Temperature',Temperature}; 

xlswrite1(xls_file_name,line10,'Data','A10'); 

line11={'Number of veticals',n_vertical,'(number of verticals in the section)'}; 

xlswrite1(xls_file_name,line11,'Data','A11'); 

  

%creates the verticals spreadsheets 

header1={'Vertical','Y transversal coordinate','H water depth','U* friction 

velocity','Number of points for each vertical'}; 
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xlswrite1(xls_file_name,header1,'Verticals','A1'); 

for i=1:n_vertical 

    

lines1={strcat('V',num2str(i)),Yexp{i}(1),water_depth(i),u_atri(i),n_point(i)};  

    xlswrite1(xls_file_name,lines1,'Verticals',strcat('A',num2str(i+1))); %writes 

the lines in spreadsheet 'Verticals' 

  

    header2={'Point','Z elevation for vertical profiles','Z elevation for 

isolines'}; 

    xlswrite1(xls_file_name,header2,strcat('V',num2str(i)),'A1'); 

    for j=1:n_point(i) 

        lines2={strcat('P',num2str(j)),Zexp{i}(j),Z_contour{i}(j)}; 

        

xlswrite1(xls_file_name,lines2,strcat('V',num2str(i)),strcat('A',num2str(j+1))); %writes 

the lines in spreadsheet of each vertical 

    end    

end   

%-------------------------------------------------------------------------% 

%Run this code to close the activex server 

invoke(Excel.ActiveWorkbook,'Save');  

Excel.Quit  

Excel.delete  

clear Excel 

%-------------------------------------------------------------------------% 

close all 

disp('end') 

 

 

The “Turbulence” code is the most complex code developed in this investigation 

where the main variables of turbulence are calculated. 

 

Turbulence U 

% This function calculates the main turbulent characteristics of the 2 component 

LDV signal. Includes: 

% - time averaged u and w velocity 

% - Reynolds stresses (u'2) 

% - Autocorrelation functions (of u and w along x, using corrected Taylor 

hypothesis) 

% - Taylor u and w macroscales from the autocorrelation functions  

% - Taylor microscale, lamda, from the osculating parabola; dissipation rate from 

lamda 

% - dissipation rate from the derivative of the signal (requires isotropy) 

% - Second order structure functions for u and w (dissipation rate from the second 

order u function) 

% - Third order structure function (dissipation rate from the third order u 

function) 
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% - Taylor microscale and Kolmogorov microscale from the dissipation rate 

% - Spectra for u 

% - dissipation spectra and dissipation rate 

% - quadrant decomposition 

 

% Adaptado por Ricardo Azevedo a partir de Rui Ferreira (2009) 

 

clc 

clear all 

close all 

nome_fich_dados='input_s_05_9000_U'; 

 

 [~, root_path] = xlsread(nome_fich_dados, 'Data', 'B1');    % root directory 

root_path=strcat(root_path,'\'); 

[~, folder_tests] = xlsread(nome_fich_dados, 'Data', 'B2');  % main folder of 

tests 

[~, rough_type] = xlsread(nome_fich_dados, 'Data', 'B3');    % folder of the 

roughness type 

[~, relative_depth] = xlsread(nome_fich_dados, 'Data', 'B4');    % folder of the 

relative depth 

[~, section] = xlsread(nome_fich_dados, 'Data', 'B5');       % folder of the 

cross-section 

[~, vel_component] = xlsread(nome_fich_dados, 'Data', 'B6');     % folder of the 

velocity component 

discharge = xlsread(nome_fich_dados, 'Data', 'B8');     % discharge m^3/s 

slope = xlsread(nome_fich_dados, 'Data', 'B9'); % channel slope 

Temperature = xlsread(nome_fich_dados, 'Data', 'B10'); % temperature 

kvisc=kinetic_viscosity(Temperature); 

N_verticals = xlsread(nome_fich_dados, 'Data', 'B11'); % number of verticals in 

the cross-section 

  

% creates the directory of results 

results_path=strcat(root_path,folder_tests,'\',rough_type,'\',relative_depth,'\',s

ection,'\',vel_component,'\','results'); 

mkdir(results_path{1});  % creates the directory of results 

  

% MAIN CYCLE - runs through all verticals in the section 

vert_initial=1; 

vert_final=N_verticals; 

  

  

for n=vert_initial:vert_final 

    cell=strcat('E',mat2str(n+1)); 

    N_points(n)=xlsread(nome_fich_dados, 'Verticals', cell); % reads the number of 

points in each vertical 

end 

  

t{1,vert_final} = []; 
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x{1,vert_final} = []; 

% longitudinal 

U_Tseries_all{1,vert_final}     = []; 

u_Tseries_all{1,vert_final}     = []; 

uref_all{1,vert_final}          = []; 

AC11adim_all{1,vert_final}      = []; 

S11_all{1,vert_final}           = []; 

S311_all{1,vert_final}          = []; 

kw_all{1,vert_final}            = []; 

spectra_uWK_all{1,vert_final}   = []; 

spectra_uWHmm_all{1,vert_final} = []; 

spectra_uPer_all{1,vert_final}  = []; 

spectra_uY_all{1,vert_final}    = []; 

spectra_uPer1_all{1,vert_final} = []; 

freq_uWK_all{1,vert_final}      = []; 

freq_uWHmm_all{1,vert_final}    = []; 

freq_uPer_all{1,vert_final}     = []; 

freq_uY_all{1,vert_final}       = []; 

freq_uPer1_all{1,vert_final}    = []; 

  

Z_all                 = zeros(max(N_points),vert_final); 

fLDA_all              = zeros(max(N_points),vert_final); 

mean_u_all            = zeros(max(N_points),vert_final); 

sample_variance_u_all = zeros(max(N_points),vert_final); 

m3111_all             = zeros(max(N_points),vert_final); 

skewU_all             = zeros(max(N_points),vert_final); 

m41111_all            = zeros(max(N_points),vert_final); 

kurtU_all             = zeros(max(N_points),vert_final); 

MacroTu_all           = zeros(max(N_points),vert_final); 

MacroTu1_all          = zeros(max(N_points),vert_final); 

MacroTu2_all          = zeros(max(N_points),vert_final); 

MacroTu3_all          = zeros(max(N_points),vert_final); 

MacroTut_all          = zeros(max(N_points),vert_final); 

MacroTut1_all         = zeros(max(N_points),vert_final); 

MacroTut2_all         = zeros(max(N_points),vert_final); 

MacroTut3_all         = zeros(max(N_points),vert_final); 

epsilonNIL_all        = zeros(max(N_points),vert_final); 

epsilonNIL1_all       = zeros(max(N_points),vert_final); 

epsilonNIL2_all       = zeros(max(N_points),vert_final); 

epsilonNIL3_all       = zeros(max(N_points),vert_final); 

epsilonA_all          = zeros(max(N_points),vert_final); 

microTuA_all          = zeros(max(N_points),vert_final); 

microTwA_all          = zeros(max(N_points),vert_final); 

KolmLA_all            = zeros(max(N_points),vert_final); 

KolmVA_all            = zeros(max(N_points),vert_final); 
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microTuB_all          = zeros(max(N_points),vert_final); 

epsilonB1_all         = zeros(max(N_points),vert_final); 

KolmLB1_all           = zeros(max(N_points),vert_final); 

KolmVB1_all           = zeros(max(N_points),vert_final); 

epsilonCa_all         = zeros(max(N_points),vert_final); 

epsilonCb_all         = zeros(max(N_points),vert_final); 

epsilonC_all          = zeros(max(N_points),vert_final); 

microTuC_all          = zeros(max(N_points),vert_final); 

microTwC_all          = zeros(max(N_points),vert_final); 

KolmLC_all            = zeros(max(N_points),vert_final); 

KolmVC_all            = zeros(max(N_points),vert_final); 

epsilonD_all          = zeros(max(N_points),vert_final); 

microTuD_all          = zeros(max(N_points),vert_final); 

microTwD_all          = zeros(max(N_points),vert_final); 

KolmLD_all            = zeros(max(N_points),vert_final); 

KolmVD_all            = zeros(max(N_points),vert_final); 

epsilonE_all          = zeros(max(N_points),vert_final); 

microTuE_all          = zeros(max(N_points),vert_final); 

microTwE_all          = zeros(max(N_points),vert_final); 

KolmLE_all            = zeros(max(N_points),vert_final); 

KolmVE_all            = zeros(max(N_points),vert_final); 

C2uC_all              = zeros(max(N_points),vert_final); 

C2uE_all              = zeros(max(N_points),vert_final); 

C1uC_all              = zeros(max(N_points),vert_final); 

C1uE_all              = zeros(max(N_points),vert_final); 

 

for n=vert_initial:vert_final 

    % read verticals data in the input file 

    cell=strcat('A',mat2str(n+1)); 

    [~, vertical(n)] = xlsread(nome_fich_dados, 'Verticals', cell);    % reads the 

name of each vertical 

    cell=strcat('B',mat2str(n+1)); 

    Y(n) = xlsread(nome_fich_dados, 'Verticals', cell);    % reads the Y 

coordinate of each vertical 

    cell=strcat('C',mat2str(n+1)); 

    water_depth(n) = xlsread(nome_fich_dados, 'Verticals', cell);    % reads the 

water depth in each vertical 

    cell=strcat('D',mat2str(n+1)); 

    u_atri(n) = xlsread(nome_fich_dados, 'Verticals', cell);    % reads the 

friction velocity in each vertical 

    %cell=strcat('E',mat2str(n+1)); 

    %N_points(n)= xlsread(nome_fich_dados, 'Verticals', cell);    % reads the 

number of points in each vertical 

  

    %%OPEN_FIGURES ----------------------------------------------------------- 

    f11 = figure('outerposition',[20 20 800 600],'color',[1 1 1]); 

    f111 = figure('outerposition',[20 20 800 600],'color',[1 1 1]); 
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    f12 = figure('outerposition',[20 20 800 600],'color',[1 1 1]); 

    f13 = figure('outerposition',[20 20 800 600],'color',[1 1 1]); 

    f14 = figure('outerposition',[20 20 800 900],'color',[1 1 1]); 

    f15 = figure('outerposition',[20 20 800 600],'color',[1 1 1]); 

    f16 = figure('outerposition',[20 20 800 600],'color',[1 1 1]); 

    f17 = figure('outerposition',[20 20 800 600],'color',[1 1 1]); 

    % creates the directory of results for each vertical 

    vertical_path{n} = strcat(results_path{1},'\V',num2str(n)); 

    mkdir(vertical_path{n});  % creates the directory of results 

  

    point_final=N_points(n); 

    point_initial=1; 

     

    % Pre-allocating the main variables. 

    t{n}{1,point_final} = []; 

    x{n}{1,point_final} = []; 

    % longitudinal 

    U_Tseries_all{n}{1,point_final}     = []; 

    u_Tseries_all{n}{1,point_final}     = []; 

    uref_all{n}{1,point_final}          = []; 

    AC11adim_all{n}{1,point_final}      = []; 

    S11_all{n}{1,point_final}           = []; 

    S311_all{n}{1,point_final}          = []; 

    kw_all{n}{1,point_final}            = []; 

    spectra_uWK_all{n}{1,point_final}   = []; 

    spectra_uWHmm_all{n}{1,point_final} = []; 

    spectra_uPer_all{n}{1,point_final}  = []; 

    spectra_uY_all{n}{1,point_final}    = []; 

    spectra_uPer1_all{n}{1,point_final} = []; 

    freq_uWK_all{n}{1,point_final}      = []; 

    freq_uWHmm_all{n}{1,point_final}    = []; 

    freq_uPer_all{n}{1,point_final}     = []; 

    freq_uY_all{n}{1,point_final}       = []; 

    freq_uPer1_all{n}{1,point_final}    = []; 

     

    for j = point_initial:point_final 

  

        % read points data in the input file 

        cell=strcat('A',mat2str(j+1)); 

        [ndata, point] = xlsread(nome_fich_dados, vertical{n}, cell);    % reads 

the name of each vertical 

        clear ndata 

        cell=strcat('B',mat2str(j+1)); 

        elevation = xlsread(nome_fich_dados, vertical{n}, cell);    % reads the 

elevation of each point 
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        % creates a directory for the results of each elevation 

        point_path = strcat(vertical_path{n},'\P',num2str(j)); 

        mkdir(point_path); 

  

        % opens the data file of each point 

nome_fich=(strcat(root_path,folder_tests,'\',rough_type,'\',relative_depth,'\',section,'

\',vel_component,'\',vertical{n},'\',point,'.txt')); 

        [original_T,U_Tseries] = textread(nome_fich{1},'%f %f'); 

  

        % basic manipulation of the data 

        if (length(U_Tseries)/2-round(length(U_Tseries)/2))==0 % procedure to turn 

even the number of time values 

        else 

            U_Tseries=U_Tseries(1:length(U_Tseries)-1); 

            original_T=original_T(1:length(original_T)-1); %real time vector 

        end 

        dt = ( original_T(length(original_T)) - original_T(1) ) ... 

            / ( length(original_T) - 1 ); % average dt 

        fLDA = round(1/dt); 

         

        disp(['Vertical: ', num2str(n)]) 

        disp(['Ponto: ', num2str(j)]) 

        disp(['Frequencia: ', num2str(fLDA),' Hz']) 

         

        if fLDA > 30 % condição para excluir os pontos com frequência inferior a 

30 Hz 

  

        % builds the vector of equispaced time 

        T_equi = 0:1:length(original_T)-1; % NOTE: vector must be even 

        time = T_equi*dt; % NEW equispaced time series 

  

%---------------------------- Metodo S + H -------------------------------- 

        disp('Start S-H Method Calculation') 

        % Pre-allocating variables. 

        dist = zeros(1,length(time)); 

        u_Tint = zeros(1,length(time)); 

        %u_Tint1 = zeros(1,length(time)); 

         

        for it = 1:length(time) 

            [d p] = min(abs(original_T-time(it))); 

            if time(it) >= original_T(p) 

                u_Tint(it) = U_Tseries(p); 

            elseif (time(it) <= original_T(p)) && (p>1) 

                u_Tint(it) = U_Tseries(p-1); 

            else 

                u_Tint(it) = U_Tseries(1); 
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            end 

        end 

         

        clear it 

        disp('End S-H Method Calculation') 

%-------------------------------------------------------------------------- 

        if sum(isnan(u_Tint))~=0 % if there are NaN 

            [ii,jj]=find(isnan(u_Tint)==1); % finds the matrix index of NaN 

            jj=max(jj); % maximum index of cells with NaN 

            u_Tint = u_Tint(jj+1:length(u_Tint)); % cut the NaN at the beggining 

            for i=1:jj 

                u_Tint = [u_Tint, u_Tint(i)]; % completes the series introducing 

at the end the first values 

            end 

        end 

        U_Tseries = u_Tint; 

%************************************************************************** 

        % basic statistics for this run (1st, 2nd, 3rd and 4th moments) 

        % vectors of fluctuations of velocity, mean, variance and other statistics 

        % longitudinal 

        mean_u = ((1/length(U_Tseries))*sum(U_Tseries.^(-1)))^(-1); %Mean-average 

Velocity --> Correction of the Velocity Bias 

        u_Tseries = U_Tseries - mean(U_Tseries);  % longitudinal velocity series 

is now a fluctuation of velocity 

        sample_variance_u = var(u_Tseries); % porque quero o estimador enviesado 

 

        % higher order moments 

        % 3rd order 

        m3111 = mean(u_Tseries.^3); 

        skewU = mean(u_Tseries.^3)/sample_variance_u^(3/2); 

  

        % 4th order 

        m41111 = mean(u_Tseries.^4); 

        kurtU = mean(u_Tseries.^4)/sample_variance_u^2; 

%************************************************************************** 

        %   MAIN TURBULENT FUNCTIONS: autocorrelation x of u (AC11) and w (AC31), 

        %      second order structure functions, in x, of u (S11) and w (S31), 

        %      third order longitudinal structure function (S311) and 

        %      u and w spectra 

         

         

 

        % Longitudinal autocorrelation function 

        AC11 = xcorr(u_Tseries);    % this will return a vector with 2*length - 1 

entries (length is the size of the velocity series, MUST be EVEN); 

        % only the entries (length (AC11)+1)/2 to length(AC11) will be retrieved 

        % (the series will be length (u_Tseries) long) 
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        AC11 = AC11((length(AC11)+1)/2:length(AC11)); 

        AC11adim = AC11/max(AC11); % igual a AC11adim = AC11/AC11(1); 

        AC11 = AC11adim*sample_variance_u; % to retrive the physical meaning! the 

xcorr function does not preserve the right variance (there is sort of a signal 

amplification) 

        % Second order structure function (longitudinal) FOR HOMOGENEOUS 

        %   TURBULENCE 

        S11 = 2*(AC11(1)-AC11); 

        % calculations necessary for the third order structure function 

(longitudinal) and the estimate 1 

        %   of the dissipation rate 

        if j>1 

            clear S311 

            S311(1:length(u_Tseries)) = 0; 

        end 

         

        % Pre-allocating variables. 

        derU = zeros(1,length(u_Tseries)-1); 

        for k = 0:length(u_Tseries)-1 

  

            % auxiliary calculations for the THIRD order structure function 

            % only the longitudinal component is relevant (see Frisch 

"Turbulence", p. 76) 

            aux3a_u = 

(u_Tseries(1+k:length(u_Tseries)).^2).*u_Tseries(1:length(u_Tseries)-k); 

            aux3b_u = 

u_Tseries(1+k:length(u_Tseries)).*(u_Tseries(1:length(u_Tseries)-k).^2); 

            aux3c_u = u_Tseries(1+k:length(u_Tseries)).^3; 

            aux3d_u = u_Tseries(1:length(u_Tseries)-k).^3; 

             

            zero_pad = zeros(1,k); 

            aux3a_u = [zero_pad, aux3a_u]; %this is the correct way for 

periodogram-based spectra and structure functions (follows the definition) (it is 

biased) 

            aux3b_u = [aux3b_u, zero_pad]; 

            aux3c_u = [zero_pad, aux3c_u]; %this is the correct way for 

periodogram-based spectra and structure functions (follows the definition) (it is 

biased) 

            aux3d_u = [aux3d_u, zero_pad]; 

  

            aux3ma_u(k+1) = mean(aux3a_u); 

            aux3mb_u(k+1) = mean(aux3b_u); 

            aux3mc_u(k+1) = mean(aux3c_u); 

            aux3md_u(k+1) = mean(aux3d_u); 

            %  The longitudinal third order structure function FOR HOMOGENEOUS 

TURBULENCE 

            %  The longitudinal third order structure function FOR NON-HOMOGENEOUS 

TURBULENCE 

            S311(k+1) = aux3md_u(k+1)+3*(aux3ma_u(k+1) - aux3mb_u(k+1))-

aux3mc_u(k+1);  
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            % calculation of the derivative of the time series for the 

            % calculation of the dissipation rate 

            % NOTE that this is valid for homogeneous turbulence (see Chassaing p. 

158) 

            % and also for isotropic turbulence (isotropy is a strong restriction 

in this definition) 

            % the definition is equation 4-63, Chassaing 

            % will be using first order differences 

            if ( (k >= 1) && (k <= length(u_Tseries) - 1) ) 

                derU(k+1) = u_Tseries(k+1) - u_Tseries(k); 

            end 

        end 

%************************************************************************** 

        % CALCULATION OF THE SPECTRA 

        %  Longitudinal and vertical spectra are calculated in the original time 

        %  domain. They are plotted however against wavenumbers 

  

        % calculation of the spectra with a Kaiser window (because it can 

approximate a Rectangular window (beta = 0) or a Hamming window beta > 5) 

  

        % Create a Welch spectral estimator with Kaiser window. beta = 2 

        % approximates a rectangular window 

        % 2^7 = 128 points per segment and a overlapping of 25% 

        % longitudinal 

        h_uWK = spectrum.welch({'Kaiser',1},2^7,25); 

        % this is the default:    h_uWH = spectrum.welch('Hamming',2^6,50); 

        h_uWHmm = spectrum.welch('Hamming',2^7,50);   % Create a ? spectral 

estimator. 

  

        % Create a Yulear spectral estimator which is extremely smooth - it 

        % will be used to calculate the dissipation rate from the 

        % dissipation spectra 

        h_uY = spectrum.yulear; 

  

        % Create periodogram 

        h_uPer = spectrum.periodogram({'Hamming'}); 

         

        uref = sqrt(mean_u^2+sample_variance_u); % correction for medium urms 

(according to l'vov et al. 1999) 

        space = time*uref;  % space coordinate 

        dl = dt*uref;        % space increment 

         

        kw=fLDA/uref;  % definiçao do numero de ondas       

         

        Hpsd_uWK = psd(h_uWK,u_Tseries,'Fs',kw);     % Calculate the PSD 

        Hpsd_uWHmm = psd(h_uWHmm,u_Tseries,'Fs',kw); % Calculate the PSD 
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        Hpsd_uPer = psd(h_uPer,u_Tseries,'Fs',kw);   % Calculate the PSD 

        Hpsd_uY = psd(h_uY,u_Tseries,'Fs',kw);       % Calculate the PSD 

  

  

        % other estimates for ther periodogram 

        nfft = round(round(length(u_Tseries)/2 + 1)/3); 

        [Per_u.data,Per_u.freq] = periodogram(u_Tseries,[],nfft,fLDA); 

%************************************************************************** 

        % Cálculo das grandezas dependentes (Macroescalas e microescalas de 

Taylor, 

        %    microscalas de Kolmogorov e estimativas de taxas de dissipação e 

constantes 

        %   das funções de estrutura e dos espectros) 

  

        % ------- TAYLOR MACROSCALE ---------------------------------------------- 

        % Procedure: compute the integral of the autocorrelation function. 

        %   Note that it is a very long series and, if considered fully, 

        %   would inevitably render very small 

        %   integral scales (the integral of the first points will have a small 

importance 

        %   in the overall integral; do not forget the AC series has, for large 

scales, 

        %   zero mean). Hence, the first step is the calculation of the 

integration 

        %   limit: it is considered that the limt should correspond to the second 

        %   local maximum of the cumulative integral of the AC series. This is 

        %   equivalent to finding the second point where the series plunge into 

        %   negative values. 

        %   Note: it assumes that the cumulative integral is positive in the first 

        %   two segments (quivalently, it needs that the third point is positive). 

        %   This is true in general for time series acquired with high frequencies 

        %   (more than 50 hz should be sufficient). 

        %   Note also that the integral is that of the non-dimensional AC function 

        %   and that it is performed in the space domain (not time). Hence the 

        %   integral scale is directly Taylor's macroscale 

  

        %   LONGITUDINAL 

        MacroTaylor_u(1:length(space)) = NaN; 

  

        i = 3; %needs sufficient discretization so that the 2nd segment is still 

of positive slope 

        found = 0;  % found counts the number of local maxima (number of plunges 

into negative values) 

  

        while ( (found < 2) && (i <= length(space)) ) % searches the AC series 

until the second maximum (or the end of the series) 

            MacroTaylor_u(i) = trapz(space(1:i),AC11adim(1:i));   % cumulative 

integral (integral of AC from the beginning until entry i) 
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            if ( (MacroTaylor_u(i) < MacroTaylor_u(i-1)) && (MacroTaylor_u(i-1) >= 

MacroTaylor_u(i-2)))  % this represents a local peak 

                found = found + 1;  % found one local maximum (the AC series 

plunges to negative values) 

            end 

            i = i+1; 

        end 

        % at this point it has found 2 local maxima; goes back two steps to 

        % retain the actual local maximum 

        MacroTu = max(MacroTaylor_u(max(i,3)-2),1e-8); % integral scale in m 

        if found<2 

            save problemas j elevation(j) 

        end 

        % this is a 2nd estimate of the integral length scale based on 

        % the 1st minimum (Tropea et al. 2007, p. 787) 

        k = 2; %needs sufficient discretization so that the 2nd segment is still 

of positive slope 

        found = 0;  % found counts the number of local maxima (number of plunges 

into negative values) 

        while ( (found < 1) && (k <= length(space)-1) ) % searches the AC series 

until the 1st minimum (or the end of the series) 

            if ( (AC11adim(k) > AC11adim(k-1)) && (AC11adim(k+1) > AC11adim(k)))  

% this represents a local peak 

                found = found + 1;  % found one local maximum (the AC series 

plunges to negative values) 

            end 

            k = k+1; 

        end 

        MacroTu1 = trapz(space(1:k-1),AC11adim(1:k-1));   % cumulative integral 

(integral of AC from the beginning until entry i) 

        % this is a 3rd estimate of the integral length scale based on 

        % the value 1/e (Tropea et al. 2007, p. 787) 

        nn = 2; %needs sufficient discretization so that the 2nd segment is still 

of positive slope 

        found = 0;  % found counts the number of local maxima (number of plunges 

into negative values) 

        while ( (found < 1) && (nn <= length(space)) ) % searches the AC series 

until the 1st minimum (or the end of the series) 

            if ( (AC11adim(nn) <= 1/exp(1)) && (AC11adim(nn-1) >= 1/exp(1)))  % 

this represents a local peak 

                found = found + 1;  % found one local maximum (the AC series 

plunges to negative values) 

            end 

            nn = nn+1; 

        end 

        MacroTu2 = space(nn-1);   % cumulative integral (integral of AC from the 

beginning until entry i) 

         

        % este é 4 método de estimação do comprimento de escala 

        % Lx = pi/2*S(0) sendo S(0)=E(0)/u'^2 (Nezu and Nakagawa, 1993)         

        S = Hpsd_uY.data./sample_variance_u; 
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        S0 = max(S); 

        MacroTu3 = S0/2; 

        numero_ondas = Hpsd_uY.frequencies; 

         

        figure(f17) 

        plot(numero_ondas,S,'b',[0 200],[S0 S0],'k--'); 

        xlabel('\itk_w\rm (1/m) ','Fontsize',11,'Fontname','Times'), 

        ylabel('S (m)','Fontsize',11,'Fontname','Times'), 

        set(gca,'Fontsize',11,'Fontname','Times'); 

        file_and_path_fig=strcat(point_path,'\Espectro do numero de ondas , 

elevation ',num2str(j)); 

        saveas(gcf, file_and_path_fig, 'fig'); 

                

        figure(f15) 

        plot([0 max(space)],[0 0],'k',space,AC11adim,'k-

',space,MacroTaylor_u(1:length(space)),'b-',[MacroTu MacroTu],[0 1],'k--',[space(i-2) 

space(i-2)],[0 1],'k:',[MacroTu1 MacroTu1],[0 1],'r--',[space(k-1) space(k-1)],[0 

1],'r:',[MacroTu2 MacroTu2],[0 1],'b--',[space(1) space(nn-1)],[1/exp(1) 

1/exp(1)],'b:',[MacroTu3 MacroTu3],[0 1],'g--'); 

        axis([0 2 -0.2 1]); %escalas dos eixos 

        xlabel('\itr_x\rm (m) ','Fontsize',11,'Fontname','Times'), 

        ylabel('\rho\rm(\itr_x\rm) (-)','Fontsize',11,'Fontname','Times'), 

        set(gca,'Fontsize',11,'Fontname','Times'); 

        if ( MacroTu == 1e-8) 

            MacroTu = ERR; 

            disp(['X Macroscale wrong, elevation ', num2str(j)]) 

        end 

        MacroTut = MacroTu/uref;   % integral scale in s 

        MacroTut1 = MacroTu1/uref;   % integral scale in s 

        MacroTut2 = MacroTu2/uref;   % integral scale in s 

        MacroTut3 = MacroTu3/uref;   % integral scale in s 

         

        l_end_u = min( space(max(i-1,1)), 10*water_depth(n)) ;        % second 

point post plunge (in m) 

        if ( l_end_u == (10*water_depth(n))) 

            disp(['X Macroscale unreliable, elevation ', num2str(j)]) 

        end 

        t_end_u = l_end_u/uref; % second point post plunge (in s) 

        file_and_path_fig=strcat(point_path,'\Auto-correlation, elevation 

',num2str(j)); 

        saveas(gcf, file_and_path_fig, 'fig'); 

          

        %   AT THIS POINT THE INTEGRAL MACROSCALES u and w ARE COMPUTED 

        % ------- Isotropic turbulence estimates of the dissipation rate  --------

------ 

        % note that the dimensions of the dissipation rate are V^3/L 

        % estimate Zero, Chassaing, p. 285, equation 8-15 - energy contained in 

large 

        % ISOTROPIC scales (that is not the case of rough boundary layers, 
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        % this should be very wrong) 

        epsilonNIL = sample_variance_u^(3/2)/MacroTu; 

        epsilonNIL1 = sample_variance_u^(3/2)/MacroTu1; 

        epsilonNIL2 = sample_variance_u^(3/2)/MacroTu2; 

        epsilonNIL3 = sample_variance_u^(3/2)/MacroTu3; 

        % estimate A 

        derU2 = (derU/(1*dl)).^2; % square of the vector of space derivatives 

        % esta definição de \epsilon é válida para turbulência isotrópica, 

        %   equation 4-63, Chassaing, p. 159 (not a good estimate) 

        epsilonA = 15*kvisc*mean(derU2); % atenção, a estimativa da viscosidade 

pode ter que ser refinada 

        microTuA = sqrt( 30*kvisc*sample_variance_u/epsilonA ); % not a very good 

estimate 

        microTwA = sqrt( 15*kvisc*sample_variance_u/epsilonA ); % not a very good 

estimate 

        KolmLA = ( kvisc^3/epsilonA )^(1/4);     % Kolmogorov length scale, 

Chassaing, p. 8-25 and may others 

        KolmVA = ( kvisc*epsilonA )^(1/4);     % Kolmogorov velocity scale, 

Chassaing, p. 8-25 and may others 

  

        % estimate B - microT from the osculating parabola (not very good either) 

        % Chassaing, p. 144, p. 159 

        % the LESS bad is epsilonB2 

        microTuB = (sqrt(2)/2)*dl/(1-AC11adim(2))^0.5; 

        epsilonB1 = 30*kvisc*sample_variance_u/microTuB^2; % atenção, a estimativa 

da viscosidade pode ter que ser refinada 

        KolmLB1 = ( kvisc^3/epsilonB1 )^(1/4);     % Kolmogorov length scale, 

Chassaing, p. 8-25 and may others 

        KolmVB1 = ( kvisc*epsilonB1 )^(1/4);     % Kolmogorov length scale, 

Chassaing, p. 8-25 and may others 

  

        %-------------------------------------------------------------------------

- 

        %  ESTIMATE OF THE DISSIPATION RATE FROM THE THIRD ORDER STRUCTURE 

FUNCTION 

        %   this is a very good estimate but only if the data is noise free and 

the 

        %   adquisition frequency is high! 

        %  Rationale: Frisch, p. 76 and following, the 4/5ths law. At small 

scales, 

        %   the (longitudinal) third order structure function should be linear in 

the 

        %   distance with slope equal to -4/5*epsilon (this is valid for TIH but 

it 

        %   is generally a good assumption that there is isotropy at small scales 

- 

        %   it should be confirmed in the spectra if the u and w spectra colapse 

at 

        %   small scales) 

        %  Procedure: first step is calculate S311/(-(4/5) x ) - there should be a 

plateau after the 
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        %   first few points (corresponding to noise) and until a larger scale 

where 

        %   isotropy is lost. The plateau is the dissipation range epsilonC = 

S311/(-(4/5) x ) 

        %   for l_noise < x < l_non_iso. 

        %   Second step is finding the maximum which should occur somewhere in the 

        %   plateau. 

        %   Third step is performing a mean of the values around the maximum 

(first to 

        %   the left and then to the right) while evaluating the rate of change of 

the gradient. 

        %   Step three stops when the average of the points changes above a 

certain 

        %   threshold. 

  

        Nss = 75;   % number of points in the subseries where the plateau will be 

searched 

        eMl = 1;    % maximum error in percentage , left 

        eMr = 1;    % maximum error in percentage , right 

        NDS311 = S311./( (-4/5)*space ); % first step 

        % the first point is eliminated; it is ASSUMED that the plateau occurs 

        % in the first N points (it is dangerous to use a too long series because 

        % other maxima might occour at larger scales) (a small series is dangerous 

too) 

        subVec = NDS311(1:Nss); subVec(1) = 0; %(otherwise it would be nan) 

  

        [eps, max_plat, ~, ~, ~] = plateau(subVec, eMl, eMr); 

        epsilonCa = eps;  % THIS IS THE BEST ESTIMATE FOR THE DISSIPATION RATE 

                          % NOT ALL THE DATA SETS ARE GOOD ENOUGH TO ALLOW FOR 

THIS CALCULATION 

                          % BE WEARY OF LOW FREQUENCY DATA AND NOISY DATA (check 

the longitudinal spectra 

                          % and the plot of the 3rd order function) 

                          % RA: I DO NOT SEE ANY INFLUENCE OF THE WALL IN 

                          % THE BEHAVIOR OF THE NDS311. HOWEVER, FOR LOW 

                          % FREQUENCY DATA THE BEHAVIOR IS WEARY 

        if ( 100*abs( (eps-max_plat)/max_plat ) > (eMl+eMr+8) ) 

            disp(['Calculation of the dissipation rate from the 3rd order 

structure function is unreliable. See figure elevation ',num2str(j)]) 

       %     faulty3rd = 1; 

       % else 

       %     faulty3rd = 0; 

        end 

  

        % ------------------------------------------------------------------------ 

        %   Construct to derive epsilon from the third order structure function 

        % 

        TOPLOT = S311./( (-4/5)*space ); 

        figure(f11) 
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        plot(space,TOPLOT,'ok','MarkerSize',6), hold on, 

        plot( [ 0 0.4 ],  [ epsilonCa epsilonCa ],'k-.','LineWidth',1.0); 

        hold off 

  

        axis([0 2 -1e-4 5e-4]) 

        xlabel('\itr_x\rm (m)','Fontsize',11,'Fontname','Times'), 

        ylabel('\itS\rm^(^3^)\it_x_x\rm/((-4/5)\itr_x\rm)(m^2s^-

^3)','Fontsize',11,'Fontname','Times'), 

  

        set(gca,'Fontsize',11,'Fontname','Times'); 

        file_and_path_fig=strcat(point_path,'\Plateau, dissipation 3rd order 

structure function, elevation ',num2str(j)); 

        saveas(gcf, file_and_path_fig, 'fig'); 

  

        %-------------------------------------------------------------------------

- 

        %  ANOTHER ESTIMATE OF THE DISSIPATION RATE FROM THE THIRD ORDER STRUCTURE 

FUNCTION 

        %   this is a very good estimate but only if the data is noise free and 

the 

        %   adquisition frequency is high! 

        %  Rationale: Frisch, p. 76 and following, the 4/5ths law. At small 

scales, 

        %   the (longitudinal) third order structure function should be linear in 

the 

        %   distance with slope equal to -4/5*epsilon (this is valid for TIH but 

it 

        %   is generally a good assumption that there is isotropy at small scales 

- 

        %   it should be confirmed in the spectra if the u and w spectra colapse 

at 

        %   small scales) 

        %  Procedure: first step is calculate the reach where S311 is linear; the 

        %   first few points (corresponding to noise) should not obey a linear 

law. 

        %   Second step is finding the slope of this reach. 

        %   Third step is evaluating the correlation coefficient. 

        %   Step three stops when the correlation drops below a certain threshold. 

  

        Nss = 75;   % number of points in the subseries where the plateau will be 

searched 

        eMl = 0.9;    % minimum coef correl, left 

        eMr = 0.95;    % minimum coef correl, right 

        NDS311 = S311; % first step 

        NDS311H = S311./( (-4/5)*space ); 

        % the first point is eliminated; it is ASSUMED that the linear reach 

        % in the first N points (it is dangerous to use a too long series because 

        % other maxima might occour at larger scales) (a small series is dangerous 

too) 

        subVec = NDS311(1:Nss);      % subseries 
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        subVecH = NDS311H(1:Nss);  subVecH(1) = 0; % first entry would be nan 

        subspace = space(1:Nss); 

  

        [eps, beps, r_coef, locusM, ~, mright ] = linear_reach(subVec, subVecH, 

subspace, eMl, eMr); 

  

        epsilonCb = eps;  % THIS IS THE BEST ESTIMATE FOR THE DISSIPATION RATE 

                          % NOT ALL THE DATA SETS ARE GOOD ENOUGH TO ALLOW FOR 

THIS CALCULATION 

                          % BE WEARY OF LOW FREQUENCY DATA AND NOISY DATA (check 

the longitudinal spectra 

                          % and the plot of the 3rd order function) 

        if ( r_coef < eMr ) 

            disp('Calculation of the dissipation rate from the 3rd order structure 

function is unreliable. See figure') 

        end 

        % I will consider that the dissipation rate is the mean of thos 

        % computed by the two methods 

        epsilonC = 0.5*( epsilonCa + epsilonCb ); 

        microTuC = sqrt( 30*kvisc*sample_variance_u/epsilonC ); % not a very good 

estimate 

        microTwC = sqrt( 15*kvisc*sample_variance_u/epsilonC ); % not a very good 

estimate 

        KolmLC = ( kvisc^3/epsilonC )^(1/4);     % Kolmogorov length scale, 

Chassaing, p. 8-25 and may others 

        KolmVC = ( kvisc*epsilonC )^(1/4);     % Kolmogorov length scale, 

Chassaing, p. 8-25 and may others 

  

        % ------------------------------------------------------------------------ 

        %   Construct to derive epsilon from the third order structure function 

        TOPLOT = S311(1:Nss); 

        XtoPlot = space(1:Nss); 

        figure(f111) 

        plot(XtoPlot,TOPLOT,'ok','MarkerSize',6), hold on, 

        plot( [ space(1) space(locusM + mright + 5) ],  [ beps+(-

4/5)*space(1)*epsilonCb beps+(-4/5)*space(locusM + mright + 5)*epsilonCb 

],'b','LineWidth',1.0); 

        plot( [ space(1) space(locusM + mright + 5) ],  [ (-

4/5)*space(1)*epsilonCa (-4/5)*space(locusM + mright + 5)*epsilonCa 

],'r','LineWidth',1.0); 

        plot( [ space(1) space(locusM + mright + 5) ],  [ (-4/5)*space(1)*epsilonC 

(-4/5)*space(locusM + mright + 5)*epsilonC ],'k','LineWidth',1.0); 

        hold off 

        axis([0 2 -1e-4 2e-5]) 

        xlabel('\itr_x\rm (m)','Fontsize',11,'Fontname','Times'), 

        ylabel('\itS\rm^(^3^)\it_x_x\rm (m^3s^-

^3)','Fontsize',11,'Fontname','Times'), 

        set(gca,'Fontsize',11,'Fontname','Times'); 

        file_and_path_fig=strcat(point_path,'\3rd order structure function, 

elevation ',num2str(j)); 

        saveas(gcf, file_and_path_fig, 'fig'); 
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        %-------------------------------------------------------------------------

- 

        %  ESTIMATE OF THE DISSIPATION RATE FROM THE SECOND ORDER STRUCTURE 

FUNCTION 

        %   Note that it is only a good estimate if there is a large range of 

scales 

        %    where isotropy holds. 

        %   Rationale: If the Kolmogorov constant C2 is universal and C2 = 2.0, 

        %    and if there is an inertial range where isotropy holds, then there 

        %    should be a plateau in the function S11./( 2*space.^(2/3) ). 

        %    Power (3/2) of this plateau is the dissipation rate. 

        %    Note that the universality of the constant C2 is disputed (Landau 

remark, 

        %    Frisch, pp. 93-99). The constant will be computed later assuming 

other 

        %    estimates of epsilon 

  

        Nss = 75;   % number of points in the subseries where the plateau will be 

searched 

        eMl = 1;    % maximum error in percentage , left 

        eMr = 1;    % maximum error in percentage , right 

        KC2 = 2.0;  % Kolmogorov constant (ATTENTION might not be universal but 

only scale independent!) 

        NDS11 = ( S11./( KC2*space.^(2/3) ) ).^(3/2); 

        subVec = NDS11(1:Nss); subVec(1) = 0; 

        [eps, max_plat, locusM, mleft, mright] = plateau(subVec, eMl, eMr); 

        epsilonD = eps;  % BE WEARY OF LOW FREQUENCY DATA AND NOISY DATA (check 

the longitudinal spectra 

                         % and the plot of the 2nd order longitudinal 

                         % function) 

        if ( 100*abs( (eps-max_plat)/max_plat ) > (eMl+eMr+8) ) 

            disp(['Calculation of the dissipation rate from the 2nd order 

longitudinal structure function is unreliable. See figure elevation',num2str(j,n)]) 

        end 

        microTuD = sqrt( 30*kvisc*sample_variance_u/epsilonD ); % not a very good 

estimate 

        microTwD = sqrt( 15*kvisc*sample_variance_u/epsilonD ); % not a very good 

estimate 

        KolmLD = ( kvisc^3/epsilonD )^(1/4);   % Kolmogorov length scale, 

Chassaing, p. 8-25 and may others 

        KolmVD = ( kvisc*epsilonD )^(1/4);     % Kolmogorov length scale, 

Chassaing, p. 8-25 and may others 

        % ------------------------------------------------------------------------ 

        %   Construct to derive epsilon from the second order structure function 

        % 

        TOPLOT = ( S11./( KC2*space.^(2/3) ) ).^(3/2); 

        figure(f12) 

        plot(space,TOPLOT,'ok','MarkerSize',6), hold on, 

        plot( [ 0 0.04 ],  [ epsilonD epsilonD ],'k-.','LineWidth',1.0); 
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        hold off 

        axis([0 space(Nss) 0 5e-4]) 

        xlabel('\itr_x\rm (m)','Fontsize',11,'Fontname','Times'), 

        ylabel('[\itS\rm^(^2^)\it_x_x\rm/(2\itr_x\rm^2^/^3)]^3^/^2 (m^2s^-

^3)','Fontsize',11,'Fontname','Times'), 

        set(gca,'Fontsize',11,'Fontname','Times'), 

        file_and_path_fig=strcat(point_path,'\Plateau, dissipation 2nd order 

structure function, elevation ',num2str(j)); 

        saveas(gcf, file_and_path_fig, 'fig'); 

        %-------------------------------------------------------------------------

- 

        %  ESTIMATE OF THE DISSIPATION RATE FROM THE SPECTRUM OF THE LONGITUDINAL 

        %       VELOCITY 

        %   Note that this estimate should be very similar to that obtained with 

        %    the second order structure function because they are conjugates. 

        %   Rationale: In the inertial range the spectra should obey 

        %       E11 = C1*epsilon^(2/3)*k^(-5/3) 

        %    The constant should be C1 = 0.53 (Chassaing, p. 300) if it is 

universal 

        %      (this is disputed the constant will be calculated later). 

        %   Procedure: as before, a plateau should exist in the function 

        %       e = ( E11/( C1*k^(-5/3) ) )^(3/2) 

        %     the plateau is epsilonE 

        %   The Yulear estimate of the spectrum is highly smoohted but presents a 

        %     clear plateau in the inertial range that is approximately the 

        %     moving average of the periodogram. Tests carried out 26-30 dec 2009 

        %     showed that at 1.5 times the Macroscale the corresponding scale is 

at the 

        %     plateau(!). Thus, the value of plateau is taken as e(1.5*MacroTu). 

  

        KC1 = 0.53; % universal? should not be... 

        %    first step - find the entry in the frequncy array that corresponds to 

        %    the frequency of the longitudinal integral scale 

        [ minimo ponto ] = min(abs(Hpsd_uY.frequencies - 1.5*1/MacroTut2)); %RA: 

the better integral length scale is through 1/e 

        %    step two - 

        epsilonE = ( Hpsd_uY.data(ponto)/(KC1*uref^(5/3) 

*(Hpsd_uY.frequencies(ponto)^(-5/3))) ).^(3/2); 

        % Verify the quality of the estimate in the figure of the disspation 

spectra 

        microTuE = sqrt( 30*kvisc*sample_variance_u/epsilonE ); % not a very good 

estimate 

        microTwE = sqrt( 15*kvisc*sample_variance_u/epsilonE ); % not a very good 

estimate 

        KolmLE = ( kvisc^3/epsilonE )^(1/4);     % Kolmogorov length scale, 

Chassaing, p. 8-25 and may others 

        KolmVE = ( kvisc*epsilonE )^(1/4);     % Kolmogorov length scale, 

Chassaing, p. 8-25 and may others 

        % ------------------------------------------------------------------------ 

        %   Construct to derive epsilon from the longitudinal dissipation spectra 
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        % 

        wavenum = Hpsd_uY.frequencies/uref; 

        spectrumU = ( Hpsd_uY.data./(KC1* uref^(5/3) *(Hpsd_uY.frequencies.^(-

5/3))) ).^(3/2); 

        wavenum1 = Hpsd_uPer.frequencies/uref; 

        spectrumU1 = ( Hpsd_uPer.data./(KC1* uref^(5/3) 

*(Hpsd_uPer.frequencies.^(-5/3))) ).^(3/2); 

        wavenum2 = Hpsd_uWHmm.frequencies/uref; 

        spectrumU2 = ( Hpsd_uWHmm.data./(KC1* uref^(5/3) 

*(Hpsd_uWHmm.frequencies.^(-5/3))) ).^(3/2); 

        wavenum3 = Hpsd_uWK.frequencies/uref; 

        spectrumU3 = ( Hpsd_uWK.data./(KC1* uref^(5/3) *(Hpsd_uWK.frequencies.^(-

5/3))) ).^(3/2); 

  

        figure(f13) 

        loglog(wavenum,spectrumU,'k-'), hold on 

        loglog(wavenum1,spectrumU1,'r-'), 

        loglog(wavenum2,spectrumU2,'b-'), 

        loglog(wavenum3,spectrumU3,'g-'), 

        if ( ~isnan(epsilonE) ) 

            loglog( [ 1 1000 ],  [ epsilonE epsilonE ],'-.k','LineWidth',1.0), 

        end 

        if ( ~isnan(1/MacroTu2) ) %RA: the better integral length scale is through 

1/e 

            loglog( [ 1/MacroTu2 1/MacroTu2 ],  [ 1e-7 10 ],'--

k','LineWidth',0.5), %RA: the better integral length scale is through 1/e 

            loglog( [ 1.5*1/MacroTu2 1.5*1/MacroTu2 ],  [ 1e-7 10 ],'-

k','LineWidth',0.5), %RA: the better integral length scale is through 1/e 

        end 

        if ( ~isnan(1/microTuE) ) 

            loglog( [ 1/microTuE 1/microTuE ],  [ 1e-7 10 ],':k','LineWidth',0.5), 

        end 

        hold off 

        if isnan(epsilonE) 

            yuplim = 10; 

        else 

            yuplim = max(10*epsilonE,10); 

        end 

        axis([1e-1 1e3 1e-7 yuplim]);    % the plot scale is fixed for the first 

run 

        xlabel('\itk_x\rm (1/m)','Fontsize',11,'Fontname','Times'), 

        ylabel('[\itE_x_x\rm/(\itC\rm_1\itk_x\rm^-^5^/^3]^3^/^2 (m^2s^-

^3)','Fontsize',11,'Fontname','Times'), 

        set(gca,'xtick',[0.1 1 10 100 1000],'Fontsize',11,'Fontname','Times'), 

        set(gca,'ytick',[1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1 10 

100],'Fontsize',11,'Fontname','Times'), 

        set(gca,'Fontsize',11,'Fontname','Times'), 

        file_and_path_fig=strcat(point_path,'\Dissipation spectra u, elevation 

',num2str(j)); 
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        saveas(gcf, file_and_path_fig, 'fig'); 

  

  

        %     AT THIS POINT ALL THE ESTIMATES FOR THE DISSPATION RATE HAVE BEEN 

        %     COMPUTED 

        

%************************************************************************** 

        % ESTIMATES OF THE CONSTANTS OF THE SECOND ORDER STRUCTURE FUNCTIONS AND 

OF 

        % THE LONGITUDINAL SPECTRUM 

        %-------------------------------------------------------------------------

- 

        % CONSTANT OF THE SECOND ORDER LONGITUDINAL STRUCTURE FUNCTION 

        % The constant will be calculated from the dissipation rate calculated 

        % from the third order structure function,  from the estimate from the 

        % osculating parabola and from the estimate from the dissipation spectra 

  

        epsilonX = [ epsilonC epsilonE ] ; 

        Nss = 75;   % number of points in the subseries where the plateau will be 

searched 

        eMl = 1;    % maximum error in percentage , left 

        eMr = 1;    % maximum error in percentage , right 

         

        % Pre-allocating variables. 

        C2uX = zeros(1,2); 

  

        for xi = 1:2 

            NDS11 = S11./( (epsilonX(xi)^(2/3)).*(space.^(2/3)) ) ; 

            subVec = NDS11(1:Nss); subVec(1) = 0; 

            [eps, max_plat, locusM, mleft, mright] = plateau(subVec, eMl, eMr); 

            C2uX(xi) = eps;  % BE WEARY OF LOW FREQUENCY DATA AND NOISY DATA 

(check the longitudinal spectra 

                             % and the plot of the 2nd order longitudinal 

                             % function) 

            if ( 100*abs( (eps-max_plat)/max_plat ) > (eMl+eMr+8) ) 

                disp(['Estimate ',num2str(xi),' of the constant of the 2nd order 

l. s. f. is unreliable. See figure elevation ',num2str(j,n)]) 

            end 

            if (isnan(C2uX(xi))) 

                C2uX(xi) = 0; 

            end 

        end 

        C2uC = C2uX(1); C2uE = C2uX(2); 

  

  

        % ------------------------------------------------------------------------ 

        %   construct to derive the constant of the longitudinal second order 
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        %   structure function 

        clear TOPLOT; 

  

        for xi = 1:2 

            TOPLOT(Sun and Shiono) = S11./( space*epsilonX(xi) ).^(2/3); 

        end 

        figure(f14) 

        subplot(2,1,1) 

        plot(space,TOPLOT{1},'ok','MarkerSize',6), hold on, 

        plot( [ 0 0.04 ],  [ C2uC C2uC ],'k-.','LineWidth',1.0); 

        hold off 

        axis([0 0.2 0 5.0]) 

        xlabel('\itr_x\rm (m)','Fontsize',11,'Fontname','Times'), 

        ylabel('\itS\rm^(^2^)\it_x_x\rm/(\itr_x\rm\epsilon_1)^2^/^3 (-

)','Fontsize',11,'Fontname','Times'), 

        set(gca,'Fontsize',11,'Fontname','Times'), 

        subplot(2,1,2) 

        plot(space,TOPLOT{2},'ok','MarkerSize',6), hold on, 

        plot( [ 0 0.04 ],  [ C2uE C2uE ],'k-.','LineWidth',1.0); 

        hold off 

        axis([0 0.2 0 5.0]) 

        xlabel('\itr_x\rm (m)','Fontsize',11,'Fontname','Times'), 

        ylabel('\itS\rm^(^2^)\it_x_x\rm/(\itr_x\rm\epsilon_2)^2^/^3 (-

)','Fontsize',11,'Fontname','Times'), 

         set(gca,'Fontsize',11,'Fontname','Times'), 

        file_and_path_fig=strcat(point_path,'\Plateau, non-dimensional 2nd order 

structure function, elevation ',num2str(j)); 

        saveas(gcf, file_and_path_fig, 'fig'); 

  

  

        %-------------------------------------------------------------------------

- 

        % CONSTANT OF THE LONGITUDINAL SPECTRUM 

        %   The constant of the u-spectrum will be calculated from the dissipation 

rate calculated 

        % from the third order structure function,  from the estimate from the 

        % osculating parabola and from the estimate from the dissipation spectra 

  

        clear epsilonX 

        epsilonX = [ epsilonC epsilonE ]; 

        Nss = 75;   % number of points in the subseries where the plateau will be 

searched 

        eMl = 1;    % maximum error in percentage , left 

        eMr = 1;    % maximum error in percentage , right 

         

        % Pre-allocating variables. 

        C1uX = zeros(1,2); 
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        for xi = 1:2 

            % variable ponto was computed above (it is the frequency for 1.5 the 

macroscale) 

            C1uX(xi) = Hpsd_uY.data(ponto)/( uref^(5/3) * 

(epsilonX(xi)^(2/3))*(Hpsd_uY.frequencies(ponto)^(-5/3))); 

            if (isnan(C1uX(xi))) 

                C1uX(xi) = 0; 

            end 

        end 

        C1uC = C1uX(1); C1uE = C1uX(2); 

  

        % ------------------------------------------------------------------------ 

        %   Construct to derive the constant of the longitudinal dissipatin 

spectra 

        figure(f16) 

        subplot(2,1,1) 

        wavenum = Hpsd_uY.frequencies/uref; 

        spectrumU = Hpsd_uY.data./(epsilonX(1)^(2/3)* uref^(5/3) 

*(Hpsd_uY.frequencies.^(-5/3))) ; 

        wavenum1 = Hpsd_uPer.frequencies/uref; 

        spectrumU1 = Hpsd_uPer.data./(epsilonX(1)^(2/3)* uref^(5/3) 

*(Hpsd_uPer.frequencies.^(-5/3))) ; 

        wavenum2 = Hpsd_uWHmm.frequencies/uref; 

        spectrumU2 = Hpsd_uWHmm.data./(epsilonX(1)^(2/3)* uref^(5/3) 

*(Hpsd_uWHmm.frequencies.^(-5/3))) ; 

        wavenum3 = Hpsd_uWK.frequencies/uref; 

        spectrumU3 = Hpsd_uWK.data./(epsilonX(1)^(2/3)* uref^(5/3) 

*(Hpsd_uWK.frequencies.^(-5/3))) ; 

  

        semilogx(wavenum,spectrumU,'k-'), hold on 

        semilogx(wavenum1,spectrumU1,'r-'), 

        semilogx(wavenum2,spectrumU2,'b-'), 

        semilogx(wavenum3,spectrumU3,'g-'), 

  

        if ( ~isnan(C1uC) ) 

            semilogx( [ 1 1000 ],  [ C1uC C1uC ],'-.k','LineWidth',1.0), 

        end 

        if ( ~isnan(1/MacroTut) ) 

            semilogx( [ 1/MacroTu 1/MacroTu ],  [ 1e-7 10 ],'--

k','LineWidth',0.5), 

        end 

        if ( ~isnan(1/microTuC) ) 

            semilogx( [ 1/microTuC 1/microTuC ],  [ 1e-7 10 

],':k','LineWidth',0.5), 

        end 

        hold off 

        axis([1e-1 1e3 0 1]);    % the plot scale is fixed for the first run 

        xlabel('\itk_x\rm (1/m)','Fontsize',11,'Fontname','Times'), 
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        ylabel('[\itE_x_x\rm/(\epsilon_1^2^/^3\itk_x\rm^-^5^/^3]^3^/^2 (-

)','Fontsize',11,'Fontname','Times'), 

        set(gca,'xtick',[0.1 1 10 100 1000],'Fontsize',11,'Fontname','Times'), 

  

  

        subplot(2,1,2) 

        wavenum = Hpsd_uY.frequencies/uref; 

        spectrumU = Hpsd_uY.data./(epsilonX(2)^(2/3)* uref^(5/3) 

*(Hpsd_uY.frequencies.^(-5/3))) ; 

        wavenum1 = Hpsd_uPer.frequencies/uref; 

        spectrumU1 = Hpsd_uPer.data./(epsilonX(2)^(2/3)* uref^(5/3) 

*(Hpsd_uPer.frequencies.^(-5/3))) ; 

        wavenum2 = Hpsd_uWHmm.frequencies/uref; 

        spectrumU2 = Hpsd_uWHmm.data./(epsilonX(2)^(2/3)* uref^(5/3) 

*(Hpsd_uWHmm.frequencies.^(-5/3))) ; 

        wavenum3 = Hpsd_uWK.frequencies/uref; 

        spectrumU3 = Hpsd_uWK.data./(epsilonX(2)^(2/3)* uref^(5/3) 

*(Hpsd_uWK.frequencies.^(-5/3))) ; 

  

        semilogx(wavenum,spectrumU,'k-'), hold on 

        semilogx(wavenum1,spectrumU1,'r-'), 

        semilogx(wavenum2,spectrumU2,'b-'), 

        semilogx(wavenum3,spectrumU3,'g-'), 

        if ( ~isnan(C1uE) ) 

            semilogx( [ 1 1000 ],  [ C1uE C1uE ],'-.k','LineWidth',1.0), 

        end 

        if ( ~isnan(1/MacroTu) ) 

            semilogx( [ 1/MacroTu 1/MacroTu ],  [ 1e-7 10 ],'--

k','LineWidth',0.5), 

        end 

        if ( ~isnan(1/microTuE) ) 

            semilogx( [ 1/microTuE 1/microTuE ],  [ 1e-7 10 

],':k','LineWidth',0.5), 

        end 

        hold off 

        axis([1e-1 1e3 0 1]);    % the plot scale is fixed for the first run 

        xlabel('\itk_x\rm (1/m)','Fontsize',11,'Fontname','Times'), 

        ylabel('[\itE_x_x\rm/(\epsilon_2^2^/^3\itk_x\rm^-^5^/^3]^3^/^2 (-

)','Fontsize',11,'Fontname','Times'), 

        set(gca,'xtick',[0.1 1 10 100 1000],'Fontsize',11,'Fontname','Times'), 

        set(gca,'Fontsize',11,'Fontname','Times'), 

        file_and_path_fig=strcat(point_path,'\Normalised dissipation spectra u, 

elevation ',num2str(j)); 

        saveas(gcf, file_and_path_fig, 'fig'); 

  

        

%************************************************************************** 

        %   keep all the functions of this point in arrays of cells 

        t{n}{j} = time; 
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        x{n}{j} = space; 

        % longitudinal 

        U_Tseries_all{n}{j} = U_Tseries; 

        u_Tseries_all{n}{j} = u_Tseries; 

        uref_all{n}{j}=uref; 

        AC11adim_all{n}{j} = AC11adim; 

        S11_all{n}{j} = S11; 

        S311_all{n}{j} = S311; 

        kw_all{n}{j} = kw; 

        spectra_uWK_all{n}{j} = Hpsd_uWK.data; 

        spectra_uWHmm_all{n}{j} = Hpsd_uWHmm.data; 

        spectra_uPer_all{n}{j} = Hpsd_uPer.data; 

        spectra_uY_all{n}{j} = Hpsd_uY.data; 

        spectra_uPer1_all{n}{j} = Per_u.data; 

        freq_uWK_all{n}{j} = Hpsd_uWK.frequencies; 

        freq_uWHmm_all{n}{j} = Hpsd_uWHmm.frequencies; 

        freq_uPer_all{n}{j} = Hpsd_uPer.frequencies; 

        freq_uY_all{n}{j} = Hpsd_uY.frequencies; 

        freq_uPer1_all{n}{j} = Per_u.freq;  

        Z_all(j,n)=elevation; 

        fLDA_all(j,n)=fLDA; 

        mean_u_all(j,n)=mean_u; 

        sample_variance_u_all(j,n)=sample_variance_u; 

        m3111_all(j,n)=m3111; 

        skewU_all(j,n)=skewU; 

        m41111_all(j,n)=m41111; 

        kurtU_all(j,n)=kurtU; 

        MacroTu_all(j,n)=MacroTu; 

        MacroTu1_all(j,n)=MacroTu1; 

        MacroTu2_all(j,n)=MacroTu2; 

        MacroTu3_all(j,n)=MacroTu3; 

        MacroTut_all(j,n)=MacroTut; 

        MacroTut1_all(j,n)=MacroTut1; 

        MacroTut2_all(j,n)=MacroTut2; 

        MacroTut3_all(j,n)=MacroTut3; 

        epsilonNIL_all(j,n)=epsilonNIL; 

        epsilonNIL1_all(j,n)=epsilonNIL1; 

        epsilonNIL2_all(j,n)=epsilonNIL2; 

        epsilonNIL3_all(j,n)=epsilonNIL3; 

        epsilonA_all(j,n)=epsilonA; 

        microTuA_all(j,n)=microTuA; 

        microTwA_all(j,n)=microTwA; 

        KolmLA_all(j,n)=KolmLA; 

        KolmVA_all(j,n)=KolmVA; 

        microTuB_all(j,n)=microTuB; 
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        epsilonB1_all(j,n)=epsilonB1; 

        KolmLB1_all(j,n)=KolmLB1; 

        KolmVB1_all(j,n)=KolmVB1; 

        epsilonCa_all(j,n)=epsilonCa; 

        epsilonCb_all(j,n)=epsilonCb; 

        epsilonC_all(j,n)=epsilonC; 

        microTuC_all(j,n)=microTuC; 

        microTwC_all(j,n)=microTwC; 

        KolmLC_all(j,n)=KolmLC; 

        KolmVC_all(j,n)=KolmVC; 

        epsilonD_all(j,n)=epsilonD; 

        microTuD_all(j,n)=microTuD; 

        microTwD_all(j,n)=microTwD; 

        KolmLD_all(j,n)=KolmLD; 

        KolmVD_all(j,n)=KolmVD; 

        epsilonE_all(j,n)=epsilonE; 

        microTuE_all(j,n)=microTuE; 

        microTwE_all(j,n)=microTwE; 

        KolmLE_all(j,n)=KolmLE; 

        KolmVE_all(j,n)=KolmVE; 

        C2uC_all(j,n)=C2uC; 

        C2uE_all(j,n)=C2uE; 

        C1uC_all(j,n)=C1uC; 

        C1uE_all(j,n)=C1uE; 

         

        %   Builds and saves pictures 

        else  

             

            disp('"Nao foi calculado porque fLDA < 30 Hz"') 

                

%************************************************************************** 

        %   keep all the functions of this point in arrays of cells 

        t{n}{j} = NaN; 

        x{n}{j} = NaN; 

        % longitudinal 

        U_Tseries_all{n}{j} = NaN; 

        u_Tseries_all{n}{j} = NaN; 

        uref_all{n}{j}=NaN; 

        AC11adim_all{n}{j} = NaN; 

        S11_all{n}{j} = NaN; 

        S311_all{n}{j} = NaN; 

        kw_all{n}{j} = NaN; 

        spectra_uWK_all{n}{j} = NaN; 

        spectra_uWHmm_all{n}{j} = NaN; 

        spectra_uPer_all{n}{j} = NaN; 
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        spectra_uY_all{n}{j} = NaN; 

        spectra_uPer1_all{n}{j} = NaN; 

        freq_uWK_all{n}{j} = NaN; 

        freq_uWHmm_all{n}{j} = NaN; 

        freq_uPer_all{n}{j} = NaN; 

        freq_uY_all{n}{j} = NaN; 

        freq_uPer1_all{n}{j} = NaN;  

        Z_all(j,n) = NaN; 

        fLDA_all(j,n) = NaN; 

        mean_u_all(j,n) = NaN; 

        sample_variance_u_all(j,n) = NaN; 

        m3111_all(j,n) = NaN; 

        skewU_all(j,n) = NaN; 

        m41111_all(j,n) = NaN; 

        kurtU_all(j,n)=NaN; 

        MacroTu_all(j,n)=NaN; 

        MacroTu1_all(j,n)=NaN; 

        MacroTu2_all(j,n)=NaN; 

        MacroTu3_all(j,n)=NaN; 

        MacroTut_all(j,n)=NaN; 

        MacroTut1_all(j,n)=NaN; 

        MacroTut2_all(j,n)=NaN; 

        MacroTut3_all(j,n)=NaN; 

        epsilonNIL_all(j,n)=NaN; 

        epsilonNIL1_all(j,n)=NaN; 

        epsilonNIL2_all(j,n)=NaN; 

        epsilonNIL3_all(j,n)=NaN; 

        epsilonA_all(j,n)=NaN; 

        microTuA_all(j,n)=NaN; 

        microTwA_all(j,n)=NaN; 

        KolmLA_all(j,n)=NaN; 

        KolmVA_all(j,n)=NaN; 

        microTuB_all(j,n)=NaN; 

        epsilonB1_all(j,n)=NaN; 

        KolmLB1_all(j,n)=NaN; 

        KolmVB1_all(j,n)=NaN; 

        epsilonCa_all(j,n)=NaN; 

        epsilonCb_all(j,n)=NaN; 

        epsilonC_all(j,n)=NaN; 

        microTuC_all(j,n)=NaN; 

        microTwC_all(j,n)=NaN; 

        KolmLC_all(j,n)=NaN; 

        KolmVC_all(j,n)=NaN; 

        epsilonD_all(j,n)=NaN; 

        microTuD_all(j,n)=NaN; 
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        microTwD_all(j,n)=NaN; 

        KolmLD_all(j,n)=NaN; 

        KolmVD_all(j,n)=NaN; 

        epsilonE_all(j,n)=NaN; 

        microTuE_all(j,n)=NaN; 

        microTwE_all(j,n)=NaN; 

        KolmLE_all(j,n)=NaN; 

        KolmVE_all(j,n)=NaN; 

        C2uC_all(j,n)=NaN; 

        C2uE_all(j,n)=NaN; 

        C1uC_all(j,n)=NaN; 

        C1uE_all(j,n)=NaN; 

        end 

        % cleans all variables 

        clear point cell elevation point_path nome_fich original_T U_Tseries YYYY 

ZZZZ dt fLDA T_equi time u_Tint 

        clear mean_u u_Tseries sample_variance_u m3111 skewU m41111 kurtU AC11 

AC11adim S11 S311 

        clear aux3a_u aux3b_u aux3ma_u aux3mb_u zero_pad derU 

        clear h_uWK h_uWHmm h_uY h_uPer Hpsd_uWK Hpsd_uWHmm Hpsd_uPer Hpsd_uY nfft 

uref space dl 

        clear MacroTaylor_u MacroTu MacroTu1 MacroTu2 MacroTut MacroTut1 MacroTut2 

l_end_u t_end_u 

        clear epsilonNIL epsilonNIL1 epsilonNIL2 derU2 epsilonA microTuA microTwA 

KolmLA KolmVA 

        clear microTuB epsilonB1 KolmLB1 KolmVB1 epsilonCa epsilonCb epsilonC 

microTuC microTwC KolmLC KolmVC 

        clear epsilonD microTuD microTwD KolmLD KolmVD epsilonE microTuE microTwE 

KolmLE KolmVE C2uC C2uE C1uC C1uE 

        clear Nss eMl eMr NDS311 subVec eps max_plat locusM mleft mright faulty3rd 

TOPLOT yuplimit NDS311H subVecH 

        clear subspace beps r_coef XtoPlot ybottlimit KC2 faulty2nd KC1 minimo 

ponto C2uX C1uX       

    end  

     

    save(strcat(results_path{1},'\tudo.mat')) 

    close all 

  

end  

save(strcat(results_path{1},'\velocity.mat'),'t','U_Tseries_all','u_Tseries_all') 

save(strcat(results_path{1},'\general.mat'),'kvisc','Z_all','water_depth','fLDA_al

l') 

save(strcat(results_path{1},'\autocorelation.mat'),'x','AC11adim_all','S11_all','S

311_all') 

save(strcat(results_path{1},'\spectra.mat'),'freq_uWK_all','spectra_uWK_all','freq

_uWHmm_all','spectra_uWHmm_all','freq_uPer_all','spectra_uPer_all','freq_uY_all','spectr

a_uY_all','freq_uPer1_all','spectra_uPer1_all') 

save(strcat(results_path{1},'\mean.mat'),'mean_u_all','sample_variance_u_all','m31

11_all','skewU_all','m41111_all','kurtU_all','uref_all') 

save(strcat(results_path{1},'\macroscale.mat'),'MacroTu_all','MacroTut_all','Macro

Tu1_all','MacroTut1_all','MacroTu2_all','MacroTut2_all') 
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save(strcat(results_path{1},'\dissipation.mat'),'epsilonNIL_all','epsilonNIL1_all'

,'epsilonNIL2_all','epsilonA_all','epsilonB1_all','epsilonCa_all','epsilonC_all','epsilo

nCb_all','epsilonD_all','epsilonE_all') 

save(strcat(results_path{1},'\microscale.mat'),'microTuA_all','microTwA_all','micr

oTuB_all','microTuC_all','microTwC_all','microTuD_all','microTwD_all','microTuE_all','mi

croTwE_all') 

save(strcat(results_path{1},'\kolmogorov_scale.mat'),'KolmLA_all','KolmVA_all','Ko

lmLB1_all','KolmVB1_all','KolmLC_all','KolmVC_all','KolmLD_all','KolmVD_all','KolmLE_all

','KolmVE_all') 

save(strcat(results_path{1},'\constants.mat'),'C2uC_all','C2uE_all','C1uC_all','C1

uE_all')  

status = fclose('all'); 

close all 

disp('end') 

 


