Information Technology Service Management:
An Experimental Approach Towards IT Service Prediction

João Carlos Palmela Pinheiro Caldeira
(Licenciado)

Dissertation presented to obtain a Masters degree in Computer Science

Lisboa
(2009)
[This page has been intentionally left blank]
This dissertation was prepared under the supervision of
Professor Fernando Brito e Abreu,
Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa
Acknowledgements

“If I have seen further it is by standing on the shoulders of giants.”

Isaac Newton (1643 - 1727)

I would like to thank and express my sincere appreciation and recognition to my supervisor Fernando Brito e Abreu, PhD, for his permanent encouragement and endless support in the preparation and conclusion of this dissertation. During this work, he was an inexhaustible source of valuable knowledge and friendship. Highlighting his merits is not only appropriate and just, but yet an expression of my gratitude for his commitment and professionalism.

Even taking the chance of forgetting someone, I would like to thank to all of those that more actively, silently or anonymously have contributed to this dissertation. They were:

- All my professors along my earlier studies and later in my academic live. With no exception they are the truly “giants” behind any of my modest achievements;

- Marko Jäntti, PhD from the Department of Computer Science of University of Kuopio in Finland for the interest demonstrated in this area of work, for the careful review and valuable suggestions to improve this dissertation;

- Anita Gupta, PhD from University of Science and Technology in Norway, for reviewing this document and for suggestions given on the dissertation alignment and topics explanation;

- José Silva Pinto and Jack Albuquerque for their contributions to improve this document and endless support in my personal live and professional career. For their tremendous knowledge and for being an example of honesty in the business software market. Finally, for always pushing me to go one mile further;

- Emilio Frischknecht, Isalinda Matos and Jorge Gama, my colleges and friends during the last 10 years, for their constant support, knowledge sharing and all the good moments we have been through, either at a professional or personal level;
- Carlos Almeida and Fernando Gomes, for being my interminable source of knowledge, and for their friendship in the last 20 years;

- Mario Bravo, at WeDo Technologies in Portugal, for suggestions about Service Desk and Incident Management and careful review of this document;

- My colleges at QUASAR, for the valuable contributions and knowledge sharing in the last 2 years;

- My family members in general, for their active support and for being my foundation of inspiration, determination and courage at all times;

- My wife, Fátima, for constant support, patience, love and also for giving me the chance to realize that life can be much superior when it is not planned.

Lisboa, April 2009

João Carlos Palmela Pinheiro Caldeira
Dedications

To Fátima
Summary

Software development and software quality improvement have been strong topics for discussion in the last decades. Software Engineering has always been concerned with theories and best practices to develop software for large-scale usage. However, most times those theories are not validated in real live environments. Therefore, the need for experiments is immense.

The incidents database can be an important asset for software engineering teams. If they learn from past experience in service management, then they will be able to shift from a reactive approach to a more proactive one. The main goal of this dissertation is shedding some light on the influential factors that affect incidents lifecycle, from creation to its closure, and also to investigate to what accuracy the ARIMA models are a valid approach to model and predict not only the ITIL incident management process, but also other ITIL processes and services in general.

The dissertation presented herein is on the crossroads of Empirical Software Engineering and of the emerging area of Services Science. It describes an experiment conducted upon a sample of incident reports, recorded during the operation of several hundred commercial software products, over a period of three years (2005-2007), on six countries in Europe and Latin America. The incidents were reported by customers of a large independent software vendor.

The primary goal of an Incident Management process is to restore normal service operation as quickly as possible and minimize the adverse impact on business operations, thus ensuring that the best possible levels of service quality and availability are maintained. As a result of this, a software company can make use of a good incident management process to improve several areas of their business, particularly product development, product support, the relation with its customers and their positioning in the marketplace.

The underlying research questions refer to the validation of which are the influencing factors affecting the incidents management lifecycle, and also aims at finding the existence of patterns and/or trends in incident creation and resolution based on a time series approach. Additionally, it presents the estimation, evaluation and validation of several ARIMA models created with the purpose of forecasting upon incident resolution based on incident creation historic data.

Understanding causal-relationships and patterns on incident management can help software development organizations on optimizing their support processes and in allocating the adequate resources; people and budget.

Keywords: Empirical Software Engineering, ITIL, Incident Management, IT Service Management, ARIMA models, IT Services prediction
Sumário

O desenvolvimento de software e a melhoria na qualidade do software têm sido tópicos de grande discussão nos últimos tempos. A Engenharia de Software sempre se preocupou com teorias e melhores práticas no desenvolvimento de software para uso em larga escala. Contudo, geralmente essas teorias não são validadas em ambientes reais, sendo que a necessidade de experiências é imensa.

Uma base de dados de incidentes pode ser essencial para as equipas de engenharia de software. Se for possível aprender com a experiência passada da gestão de serviços, uma abordagem mais proactiva pode tomar o lugar das abordagens tradicionais, tendencialmente reactivas. O contributo pretendido por esta dissertação é identificar factores de influência no ciclo de vida dos incidentes, desde a sua criação até ao seu termo, e ainda, investigar até que nível os modelos ARIMA são uma aproximação válida para modelar e fazer previsões não apenas no processo de gestão de incidentes, mas também em outros processos ITIL e serviços em geral.

A dissertação aqui apresentada, insere-se no âmbito da Engenharia de Software Experimental e da área emergente da Ciência dos Serviços. É descrita uma experiência executada com base numa amostra de incidentes reportados durante a exploração de várias centenas de produtos de software comercial, num período de três anos (2005-2007), em seis países da Europa e América Latina. Os incidentes foram reportados pelos clientes de uma empresa de software independente.

O objectivo do processo de Gestão de Incidentes é restaurar o funcionamento normal de um serviço no mais curto espaço de tempo possível, minimizando o impacto adverso no negócio, garantindo que os melhores níveis de serviço e de disponibilidade são mantidos. Como resultado disto, as empresas de software podem fazer uso de uma boa gestão de incidentes para melhorar várias áreas do negócio, particularmente, o desenvolvimento de software, o suporte aos produtos, a relação com os seus clientes e o seu posicionamento no mercado.

As questões de pesquisa subjacentes referem-se à validação de quais são os factores que afectam o ciclo de vida dos incidentes, e ainda à busca de padrões e/ou tendências na criação e resolução de incidentes recorrendo a uma aproximação baseada em séries temporais. Complementarmente, são estimados, analisados e validados vários modelos ARIMA criados com o objectivo de fazerem a previsão da resolução de incidentes com base no histórico de criação dos mesmos.

Compreender relações causais e padrões na gestão de incidentes pode ajudar as empresas de software na optimização dos seus processos de suporte e na afectação dos recursos adequados; pessoas e orçamentos.

Palavras-chave: Engenharia de Software Experimental, ITIL, Gestão de Incidentes, Gestão de Serviços de Tecnologias de Informação, modelos ARIMA, previsões em serviços de tecnologias de informação.
Symbols and notations

ACF – Autocorrelation Function
ACM – Asset and Configuration Management
ANOVA – Analysis of Variance
AR – Auto Regressive
ARIMA – Auto Regressive Integrated Moving Average
CAM – Capacity Management
CM – Change Management
CSV – Comma Separated Values
ERR – The residual component of the series for a particular observation
IM – Incident Management
ITIL – Information Technology Infrastructure Library
ITSM – Information Technology Service Management
H0 – Null hypothesis
H1 – Alternative hypothesis
MA – Moving Average
MAPE – Mean Absolute Percent Error
MaxAPE – Maximum Absolute Percent Error
PACF – Partial Autocorrelation Function
PDCA – Plan, Do, Check, Act
PM – Problem Management
RDM – Release and Deployment Management
SAF – Seasonal Adjustment Factors
SAS – Seasonality Adjusted Series
SLA – Service Level Agreements
SLM – Service Level Management
SM – Service Management
SPSS – Statistical Package for Social Sciences
STC – Smoothed Trend Cycle
SWEBOK – Software Engineering Body of Knowledge
Contents

1. Introduction .. 2

1.1 Motivation .. 2

1.2 Problem context ... 3

1.2.1 ITIL (The Information Technology Infrastructure Library) .. 6

1.2.2 Services science ... 8

1.2.3 Services .. 8

1.2.4 Service management ... 9

1.2.5 Incident management ... 10

1.3 Current research challenges .. 11

1.4 Expected contributions .. 12

1.5 Methodological approach ... 13

1.6 Dissertation outline and typographical conventions ... 16

2. Related Work ... 18

2.1 Research work .. 18

2.2 A taxonomy ... 18

2.2.1 ITIL process coverage .. 18

2.2.2 Service concern coverage .. 19

2.2.3 Data collection .. 20

2.2.4 Methodological approach .. 20

2.2.5 Evolution analysis ... 21

2.2.6 Contributions to software development lifecycle management 21

2.3 Studied works ... 23

2.3.1 Evaluation 1 - [Barash, Bartolini et al., 2007]... 23

2.3.2 Evaluation 2 - [Sjöberg, Hannay et al., 2005]... 25

2.3.3 Evaluation 3 - [Niessink and Vliet, 2000].. 26

2.3.4 Evaluation 4 - [Jansen and Brinkkemper, 2006]... 28

2.3.5 Evaluation 5 - [Mohagheghi and Conradi, 2007]... 29

2.3.6 Evaluation 6 - [Kenmei, Antoniol et al.]... 31

2.3.7 Evaluation 7 - [Yuen, 1988].. 32

2.4 Comparative analysis ... 34

3. Influential Factors on Incident Management ... 38

3.1 Introduction ... 38

3.2 Research questions ... 38

3.3 Experiment process .. 40

3.4 Sample demographics .. 41

3.4.1 Incident reporting methods .. 43

3.4.2 Incident origin platform ... 44

3.4.3 Incidents by customers businesses area ... 45

3.4.4 Incident metrics summary ... 47

3.4.5 Variables and scale types .. 48

3.5 Hypotheses identification and testing .. 51

3.6 Results discussion .. 58

4. Diachronic Aspects on Incident Management ... 62
Figure Index

Figure 1. Software vendor / Customer interactions ... 4
Figure 2. Incident lifecycle .. 5
Figure 3. Incidents lifecycle timing variables ... 5
Figure 4. ITIL v3 – Service lifecycle approach (adapted from [Office_of_Government_Commerce, 2007]) .. 7
Figure 5. Service Logic (adapted from [Office_of_Government_Commerce, 2007]) 9
Figure 6. This dissertation evaluation analysis ... 22
Figure 7. This dissertation comparing to Evaluation 1 ... 24
Figure 8. This dissertation comparing to Evaluation 2 ... 26
Figure 9. This dissertation comparing to Evaluation 3 ... 27
Figure 10. This dissertation comparing to Evaluation 4 .. 29
Figure 11. This dissertation comparing to Evaluation 5 .. 30
Figure 12. This dissertation comparing to Evaluation 6 .. 32
Figure 13. This dissertation comparing to Evaluation 7 .. 33
Figure 14. Experiment workflow – High level steps ... 40
Figure 15. Experiment process – Detail steps ... 41
Figure 16. Entities involved in the study .. 43
Figure 17. Incident source histogram .. 44
Figure 18. Incident histogram by platform .. 45
Figure 19. Incidents histogram by Business Type .. 46
Figure 20. QQ Plots for the schedule variables ... 51
Figure 21. Percentage of incident reports per country ... 57
Figure 22. Experiment Process ... 65
Figure 23. Incident frequencies by category .. 66
Figure 24. Incident frequencies per week of the year ... 68
Figure 25. Incident frequencies per week day .. 70
Figure 26. Autocorrelation Function (ACF) .. 72
Figure 27. Partial Autocorrelation Function (PACF) ... 73
Figure 28. Time Series - Incidents Resolved per day ... 74
Figure 29. STC series - Incidents Resolved per day with systematic seasonal variations removed ... 74
Figure 30. ERR series for the SAS ... 75
Figure 31. Q-Q Plot of the ERR Series... 76
Figure 32. Time Series with Differencing (1).. 78
Figure 33. PACF for the time series after Differencing (1)... 78
Figure 34. ACF for the regular time series.. 79
Figure 35. PACF for the regular time series.. 79
Figure 36. PACF for the time series after seasonal differencing (1)........................... 80
Figure 37. ACF for the time series after seasonal differencing (1)........................... 80
Figure 38. Plot of ARIMA(2,1,2)(1,1,1) model... 81
Figure 39. Plot of ARIMA(2,1,2)(1,0,1) model... 83
Figure 40. Plot of ARIMA(2,1,2)(1,0,1) model (estimation period from week 1 to 95) ... 84
Figure 41. Plot of ARIMA(0,1,0)(0,0,0) model – A Random Walk Model................... 85
Figure 42. ACF after Differencing(1)... 87
Figure 43. PACF after Differencing(1)... 87
Figure 44. Plot of ARIMA(1,1,1) forecast to week 157 with observed values............. 89
Figure 45. 4-Plot adapted graph for model validation.. 90
Figure 46. Forecast values for the weekly Random-Walk model - ARIMA(0,1,0)....... 91
Figure 47. Predicted support members for the third year (2008)................................. 94
Figure 48. Predicted and average support members comparison.................................. 95
Figure 49. Service Strategy.. 110
Figure 50. Service Design.. 111
Figure 51. Service Transition... 112
Figure 52. Service Operation... 113
Figure 53. Continual Service Improvement... 114
Figure 54. ITIL process flow.. 115
Figure 55. Random walk autocorrelation correlogram... 127
Figure 56. Weak autocorrelation correlogram.. 128
Figure 57. Strong autocorrelation correlogram.. 129
Figure 58. Sinusoidal model correlogram... 130
Figure 59. Partial autocorrelation correlogram... 131
Figure 60. 4-Plot for residuals validation – Invalid ARIMA model............................. 136
Table Index

Table 1. Software maintenance categories (in SWEBOK [Abran, Moore et al., 2004]) 3
Table 2. Study type categorization (adapted from [Mohagheghi and Conradi, 2007]) 14
Table 3. ITIL process coverage ... 19
Table 4. Service concern ... 20
Table 5. Data collection ... 20
Table 6. Evolution analysis ... 21
Table 7. Contributions to software development lifecycle management 22
Table 8. Evaluation 1 .. 24
Table 9. Evaluation 2 .. 25
Table 10. Evaluation 3 .. 27
Table 11. Evaluation 4 .. 28
Table 12. Evaluation 5 .. 30
Table 13. Evaluation 6 .. 31
Table 14. Evaluation 7 .. 33
Table 15. Summary of related work .. 34
Table 16. Countries with their zones and languages .. 42
Table 17. Incident source .. 43
Table 18. Incidents by platform ... 44
Table 19. Incident frequencies by Business Type .. 45
Table 20. Metrics summary ... 47
Table 21. Days to resolve incidents (average) .. 48
Table 22. Variables used in this experiment, their scale types and description 49
Table 23. Impact variable details .. 49
Table 24. Priority variable details ... 50
Table 25. Category variable details .. 50
Table 26. Testing Normal distribution adherence with the Kolmogorov-Smirnov test 52
Table 27. Testing the influence of the impact on incident schedules with the Kruskal-Wallis one-way analysis of variance test ... 53
Table 28. Testing the influence of the priority on incident schedules with the Kruskal-Wallis one-way analysis of variance test ... 54
Table 29. Testing the influence of the originating country on incident schedules with the Kruskal-Wallis one-way analysis of variance test ... 55
Table 30. Testing the influence of the originating zone on incident schedules with the Kruskal-Wallis one-way analysis of variance test ... 55
Table 31. Testing the influence of the category on incident schedules with the Kruskal-Wallis one-way analysis of variance test .. 56
Table 32. Results of applying the Chi-Square Test procedure to assess if the distribution of critical priority incidents is the same across countries .. 57
Table 33. Critical priority incidents observed and expected across countries 58
Table 34. Top 5 Incident Categories ... 67
Table 35. Incident frequencies (Year 2006 and 2007) ... 68
Table 36. Days of week and incident frequencies .. 70
Table 37. Variables and Scale types .. 71
Table 38. Average number of days to resolve an incident .. 80
Table 39. Model Description for ARIMA(2,1,2)(1,1,1) ... 81
Table 40. Model ARIMA(2,1,2)(1,1,1) statistics .. 82
Table 41. Model description for ARIMA(2,1,2)(1,0,1) ... 83
Table 42. Model ARIMA(2,1,2)(1,0,1) statistics .. 83
Table 43. Model ARIMA(2,1,2)(1,0,1) statistics (estimation period from week 1 to 95) 84
Table 44. Model description for ARIMA(0,1,0)(0,0,0) .. 85
Table 45. Model ARIMA(0,1,0)(0,0,0) statistics .. 85
Table 46. Daily model comparison .. 86
Table 47. ARIMA(1,1,1) ... 88
Table 48. Model ARIMA(1,1,1) statistics ... 89
Table 49. ARIMA(0,1,0) ... 91
Table 50. Model ARIMA(0,1,0) statistics ... 91
Table 51. Weekly model comparison .. 92
Table 52. What-if scenario details ... 93
Table 53. What-if scenario statistics .. 93
Table 54. Summary of findings .. 101
Table 55. Hypothesis testing and errors .. 123
Introduction

Contents

1.1 Motivation ... 2
1.2 Problem context .. 3
1.3 Current research challenges ... 11
1.4 Expected contributions ... 12
1.5 Methodological approach .. 13
1.6 Dissertation outline and typographical conventions ... 16

This chapter introduces the main concepts that are present throughout this dissertation and the motivation to Incident Management and associated experiments. It also enumerates the main contributions of this dissertation and presents its outline, with a brief summary of each of the remaining chapters.
1. Introduction

“If knowledge can create problems, it is not through ignorance that we can solve them.”
Isaac Asimov (1920 - 1992)

1.1 Motivation

Organizations with in-house software development strive in finding the right number of resources (with the right skills) and adequate budgets. A good way to optimize those figures is avoiding expenditures on overhead activities, such as excessive customer support. This can be achieved by identifying incident’s root causes and by using that knowledge to improve the software evolution process.

Software development and software quality improvement have been strong topics for discussion in the last decades [Humphrey, 1989; El-Eman, Drouin et al., 1997]. Software Engineering has always been concerned with theories and best practices to develop software for large-scale usage. However, most times those theories are not validated in real live environments [Sjøberg, Hannay et al., 2005]. Several factors were identified that explain this lack of experimental validation [Jedlitschka and Ciolkowski, 2004].

In real-live operation environments end-users/customers face software faults, lack of functionalities and sometimes just lack of training. These incidents should be somehow reported. According to the ITIL good practices [Cannon, 2007; Case, 2007; Iqbal, 2007; Lacy, 2007; Loyd, 2007], in an organization with a Service Management approach, this problem is addressed by two specific processes: Incident Management [Cannon, 2007], which deals with the restoration of the service to the end-user within the Service Level Agreements [Case, 2007; Loyd, 2007] (if they exist), and Problem Management [Cannon, 2007] which aims at finding the underlying cause of reported incidents.

When an organization implements these ITIL processes, it is assumed that it will address all types of incidents (software, hardware, documentation, services, etc) raised by the end-users/customers. This dissertation is concerned only about software-related incidents.

The incidents database can be an important asset for software engineering teams. If they learn from past experience in service management, then they will be able to shift from a reactive approach to a more proactive one. The latter approach is referred in the Software
1. Introduction

Maintenance chapter of the SWEBOK [Abran, Moore et al., 2004], as reproduced in Table 1, although seldom brought to practice.

<table>
<thead>
<tr>
<th></th>
<th>Correction</th>
<th>Enhancement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proactive</td>
<td>Preventive</td>
<td>Perfective</td>
</tr>
<tr>
<td>Reactive</td>
<td>Corrective</td>
<td>Adaptive</td>
</tr>
</tbody>
</table>

Table 1. Software maintenance categories (in SWEBOK [Abran, Moore et al., 2004])

This dissertation presents a statistical-based analysis of software related incidents resulting from the operation of several hundred commercial software products, from 2005 to 2007, on six countries in Europe and Latin America. The incidents were reported by customers of a large independent software vendor.

The main goal of this work is shedding some light on the influential factors and patterns that affect incidents lifecycle from creation to its closure, namely the schedule of its phases and their diachronic aspects. Understanding this lifecycle can help software development organizations in allocating adequate resources (people and budget), increasing the quality of services they provide and finally improving their image in the marketplace.

1.2 Problem context

To a clear understanding of this work it is important to frame its contextual areas. This dissertation is a study based on software incidents reported by customers of a large software vendor. Those incidents include software bugs, errors and defects found by the customers on their day-to-day business operations. Technical doubts about the software, requests for information and other questions in general were also reported by the customers. The incidents being reported to the Service Desk were recorded and managed in a Service Management solution which maps and implements the ITIL Incident Management process [Cannon, 2007]. Figure 1 is a representation of the involved parts which are the focus of this study. Following the main goal, our task is to analyze quantitative data about the incidents and the interactions (using schedule variables like time to respond, time to resolve, etc) between the Service Desk (technical support staff) [Cannon, 2007] and the
customers (as identified in red). A sub-set of the incidents database was exported, a quantitative analysis took place and the results obtained are presented in the next chapters.

As relevant as the entities involved, also is the process by which mean the incidents are being managed. This process comprises a set of activities performed sequentially in order to achieve a result: the resolution of the incident. In the activities performed by the support staff, we include the logging, categorization, prioritization, investigation and resolution of the incidents.

Crucial to this study, is the understanding of the incident status. Incidents status change during their lifecycle, as represented in Figure 2. The process is a set activities performed by the support staff and its goal is to guide those to act with good practices to solve incidents. The incident status is the incident state within each process activity. The incident status is extremely important to this work because it is the base for all the computation and measuring of times used in this dissertation. How and why an incident move from one state to another is guided by the incident management process.
Figure 2. Incident lifecycle

Figure 3 represents the incidents lifecycle, since the moment they are created by a customer or the support staff until their closure. During this period an incident can assume several states as mentioned in Figure 2. The variables TimeToRespond, TimeToResolve and TimeToConfirm detailed and studied in chapter III of this work were computed based on this schema.

Figure 3. Incidents lifecycle timing variables

An incident typically starts when a user reports it either by telephone, email or web. In the first phase it assumes the state of New. This state is when the incident is categorized, and a priority and impact is given to it. This state is maintained until the person assigned to work
on the incident really starts to investigate a possible solution for it. Once the technical analyst assigned begin to search for solutions, the incident state changes to \textit{InProgress}. This period is computed by the \textit{TimeToRespond} variable. The incident will continue \textit{InProgress} until a potential solution is found. In certain situations it may be helpful to put the incident in \textit{Pending} state, for instance, when a support analyst requests information (log files, software versions, etc) from the user. In \textit{Pending} state an incident clock is stopped, and the variable \textit{TimeToResolve} is not affected. This variable is only affected when the incident changes again to \textit{InProgress} and finally is said to be \textit{Resolved}, meaning that a potential solution was found. This state is maintained if the solution needs further investigation and is not immediately given to the user. The incident state changes to \textit{EndUserVerifySolution} when the solution was really provided to the user. In this case the user should check if the solution was really valid for the incident and should give feedback to the support about it. If the potential solution solved the incident, the incident is closed and its status updated to \textit{Closed} in order to reflect the positive effect of the solution. This time span between a potential solution is given and a positive feedback from the user is received is the basis for the variable \textit{TimeToConfirm}. If the potential solution did not solve the incident then the support analyst continues to search for another solution and the incident state should be set back to \textit{InProgress} and the normal flow to resolve the incident continues.

The Incident Management process is just one of the components of a larger reality faced by IT organizations, which is usually called IT Service Management (ITSM). To help framing the research presented in this dissertation in the overall context of ITSM, we briefly describe in the next section the most widely used terms and concepts. In these processes, ITIL takes an important part in the behavior of a software organization like the one that is now being studied. Therefore, we will have a brief overview.

\section*{1.2.1 ITIL (The Information Technology Infrastructure Library)}

The Information Technology Infrastructure Library (ITIL) was started in late 80’s by the UK Office of Government Commerce’s (OGC) and is a set of concepts and techniques (good practices) for managing information technology, infrastructure, development, and operations.
1. Introduction

ITIL was first published in a series of books in 1989, each of which cover an IT management topic [Office_of_Government_Commerce, 2007]. ITIL gives a detailed description of a number of important IT practices with comprehensive checklists, tasks and procedures that can be tailored to any IT organization.

Since then, ITIL has evolved and it is now on its third version. The ITIL Core (version 3) consists of five publications [Cannon, 2007; Case, 2007; Iqbal, 2007; Lacy, 2007; Loyd, 2007], whose structure is schematically represented in Figure 4.

![Figure 4. ITIL v3 – Service lifecycle approach (adapted from [Office_of_Government_Commerce, 2007])](image)

Each of those publications provides the required guidance for an integrated approach, as required by the ISO/IEC 20000-1 [ISO/IEC, 2005] standard specification and ISO/IEC 20000-2 [ISO/IEC, 2005] code of practice. ITIL has now a lifecycle approach to all of its processes. This means that each process can have inputs and outputs from and to another process. An organization can use the lessons learned (outputs) in Incident Management as best practices (inputs) for another process, as for instance Release and Deployment Management [Lacy, 2007]. The synergies of this workflow are immense as ITIL v3 highlights the concept of a “Service” and “Service Management” as a continuous mechanism to improve the processes.
and the performance of an IT organization. An overview on the ITIL publications and their processes can be found on appendix A.

Following this, it is important to briefly explain the concept of a Service, Service Management and the Incident Management process and put this in a context of what is the Services Science [Research, 2005].

1.2.2 Services science

Services Science is an interdisciplinary approach to the study, design, and implementation of services systems – complex systems in which specific arrangements of people and technologies take actions that provide value for others. In summary is the application of science, management, and engineering disciplines to tasks that one organization beneficially performs for and with another.

There is a clear demand [Research, 2005] for the academia, industry, and governments to focus on becoming more systematic about innovation in the service sector, which is the largest sector of the economy in most industrialized nations, and is quickly becoming the largest sector in developing nations as well.

The key to Services Science it is the multidisciplinary approach taken, focusing not merely on one aspect of a service but rather considering it as a system of interacting parts that include people, technology, and business. These are very similar aspects that ITIL addresses in its good practices.

As such, Services Science draws on ideas from a number of existing disciplines – including Computer Science, Cognitive Science, Economics, Human Resources Management, Marketing, Operations Research, and others – and aims to integrate them into a coherent whole.

1.2.3 Services

Services are a means of delivering value to customers by facilitating the outcomes that the customers want to achieve without the ownership of specific costs and risks. Outcomes are
possible from the performance of tasks and are limited by the presence of certain constraints. Broadly speaking, services facilitate outcomes by enhancing the performance and by reducing the grip of constraints. The result is an increase in the possibility of desired outcomes. While some services enhance the performance of tasks, others have a more direct impact. They perform the task itself.

![Figure 5. Service Logic (adapted from Office_of_Government_Commerce, 2007)](image)

From the customer’s perspective, value consists of two primary elements: utility or fitness for purpose and warranty or fitness for use.

Utility is perceived by the customer from the attributes of the service that have a positive effect on the performance of tasks associated with desired outcomes.

Warranty is derived from the positive effect being available when needed, in sufficient capacity or magnitude, and dependably in terms of continuity and security.

Utility is what the customer gets, and warranty is how it is delivered. In the context of this work, Utility is the technical support service provided by the software vendor. Warranty is the capacity to resolve incidents as needed by the customers. How the technical support department is structured in terms of technology used, staff allocation and processes with the aim of providing the service is driven by those two aspects.

1.2.4 Service management
1. Introduction

Service management [Office_of_Government_Commerce, 2007] is a set of specialized organizational capabilities for providing value to customers in the form of services. The capabilities take the form of functions and processes for managing services over a lifecycle, with specializations in strategy, design, transition, operation, and continual improvement. The capabilities represent a service organization’s capacity, competency, and confidence for action. The act of transforming resources into valuable services is at the core of service management. Without these capabilities, a service organization is merely a bundle of resources that by itself has relatively low intrinsic value for customers.

1.2.5 Incident management

In ITIL terminology, an ‘incident’ is defined as:

“An unplanned interruption to an IT service or a reduction in the quality of an IT service...”[Cannon, 2007].

Incident Management is the process for dealing with all incidents. This can include failures, queries reported by the users (usually via a telephone call or email to the Service Desk), by technical staff, or automatically detected and reported by event monitoring tools. The primary goal of the Incident Management process is: “...to restore normal service operation as quickly as possible and minimize the adverse impact on business operations, thus ensuring that the best possible levels of service quality and availability are maintained.” [Cannon, 2007].

In this context, the software vendor technical support staff wants to minimize the adverse impact in their customers businesses resulting from software bugs/errors/defects.

The benefits of Incident Management include the ability to:

- detect and resolve incidents, which results in lower downtime to the business, which in turn means higher availability of the service.

- align IT activity to real-time business priorities. In fact, Incident Management includes the capability to identify business priorities and dynamically allocate resources required.
1. Introduction

- identify potential improvements to services. This is attained by understanding what constitutes an incident and also from being in contact with the activities of business operational staff.

- identify additional service or training requirements found in IT or the business.

Incident Management is highly visible to the business, and it is therefore easier to demonstrate its value than most areas in Service Operation. For this reason, Incident Management is often one of the first processes to be implemented in Service Management projects [Office_of_Government_Commerce, 2007]. The added benefit of doing this is that Incident Management can be used to highlight other areas that need attention – thereby providing a justification for expenditure on implementing other processes. As a result, a software company can make use of a good incident management process to improve several areas of their business, particularly product development, the relation with its customers and their positioning in the marketplace.

1.3 Current research challenges

The study of an Incident Management process (which includes the study of the people and the technology involved in the process) or in our case, the study of an incident management database has always challenges. The initial (and the major) challenge is to get access to the incident management database. Companies tend to avoid sharing this sensitive information due to data protection policies. Reports on incident management are scarce in the literature. The reason for this resides in the difficulty to have access to an incident management database, due to security policies, technical limitations or just because companies do not want to expose sensitive data about their software, their processes and their customers.

In this work, one of the biggest decisions was the choice of which countries to include in the study. There were incidents reported in more than eighty countries and due to the collection effort, which involved performing several data capture and transformation procedures, we could only afford gathering a subset of this population. We decided to select a sample
corresponding to incidents originated in six countries. We consider that with this sample we can reflect not only the behavior of some European customers but also it represents different cultural and geographic (Latin America) zones of two of the spoken languages in two of the European countries chosen.

The data exportation was also a sensitive task due to the lack of normalization and coherence in some information stored in the incident management database.

The related work about incident management and/or experiments like this focusing on software defects/errors was scarce, and in fact, we did not find any similar experiment based on commercial software products. We tried to classify selected studies not only by its type or work, but also according with their level of ITIL adoption of good practices. Interpreting the findings without any background data about the software development process turned out to be a challenging task, and eventually, we could not be as rigorous as we would like.

1.4 Expected contributions

The contributions we want to achieve with this work are directly linked with the research questions, but in fact, the initial contribution is the study on itself. Together with the answers to those questions, we also attempt to draw here an experiment design to allow replication of our study.

We expect to bring some light regarding existing assumptions or myths in the software business area. Improving the software development process and mainly the software support process requires attention to at least to topics: understanding the cause-effect relationships on software incidents and careful investigation of any existing patterns in their lifecycle. To contribute to this, we first need to understand the incident management process and we must find answers to the following research objectives (RO):

RO1: Which factors influence incident’s lifecycle?

RO2: Are there patterns in incident’s occurrence?

RO3: Can prediction be a valid approach for managing incidents?
1. Introduction

Regarding the first objective, several factors can be explored such as: the impact¹, the priority², the originating country, its geographical zone and the language spoken amongst others, and they are studied in chapter III.

Regarding the second objective, presented in chapter IV, it is important to analyze the diachronic aspects of incidents occurrence. Seasonality and trends are quite often linked, and by investigating these aspects we expect that some relevant evidences can be found. On both questions, the categorization of the incident, the software product being affected and its originating technical platform are mandatory to investigate. Some assumptions exist in the software community that can be brought to evidence or refuted with careful observation of these attributes.

Related with the third objective, apart from identifying patterns and trends, this dissertation estimates, proposes and validates the usage of ARIMA models for predicting incidents resolution. It also presents evidence on the accuracy of time series as a mean to forecast on Incident Management and opens the discussion to apply the same prediction methods on other ITIL processes and Service Management in general.

1.5 Methodological approach

Like in any other scientific work, the methodology followed in this dissertation is the key to achieve quality results. Therefore, it is also important to give an overview of the methods, steps, and ideas followed in order to bring this work to the daylight. It is also important to distinguish this topic from the methodology followed in the experience itself. The latter is detailed in the appropriate chapters of this work.

The study type is important information since it communicates what is expected from a study and how the evidences should be evaluated. However, a search of literature for study types showed that there are no consistent definitions and/or the definitions are not communicated well. According to literature [Wohlin C, 2000; Frakes WB, 2001; Shadish WR, 2001; Mohagheghi and Conradi, 2007] this work falls under the categorization of a **Quasi-Experiment**.

¹ Typically the business impact the incident is causing on the customer.
² Defined criteria to order and resolve incidents based on their Impact and Urgency. Urgency is the required speed for resolving an incident. Some incident management tools perform automatic calculations for Urgency based on Impact, SLA and OLA.
1. Introduction

The main reasons for this categorization are due to lack of randomization in the subjects. The incidents were not collected randomly; we decided to choose incidents from specific countries and no treatments were applied to variables, other than the ones that already exist currently in the database. We have used the scientific method to formulate hypothesis and tested those against our incidents sample. Detailed study type categorizations can be found in Table 2 and notions about scientific methods are presented in appendix B.

<table>
<thead>
<tr>
<th>Study Type</th>
<th>Definition as given in [Zannier C, 2006]</th>
<th>Other definitions</th>
</tr>
</thead>
</table>
| Controlled experiment | Random assignment of treatment to subjects, large sample size (>10), well formulated hypotheses and independent variable selected. Random sampling. | Controlled study [Zelkowitz MV, 1998].
 Experimental study where particularly allocation of subjects to treatments are under the control of the investigator [Kitchenham, 2004].
 Experiment with control and treatment groups and random assignment of subjects to the groups, and single subject design with observations of a single subject. The randomization applies on the allocation of the objects, subjects and in which order the tests are performed [Wohlin C, 2000].
 Experiments explore the effects of things that can be manipulated. In randomized experiments, treatments are assigned to experimental units by chance [Shadish WR, 2001].
 Our note: Randomization is used to assure a valid sample that is a representative subset of the study population; either in an experiment or other types of study. However, defining the study population and a sampling approach that assure representativeness is not an easy task, as discussed by [Conradi R, 2005]. |
| Quasi-experiment | One or more points in Controlled Experiment are missing. | In a quasi-experiment, there is a lack of randomization of either subjects or objects [Wohlin C, 2000].
 Quasi-experiment where strict experimental control and randomization of treatment conditions are not possible. This is typical in industrial settings [Frakes WB, 2001].
 Quasi-experiments lack random assignment. The researcher has to enumerate alternative explanations one by one, decide which are plausible, and then use logic, design, and measurement to assess whether each one is operating in a way that might explain any observed effect [Shadish WR, 2001]. |
| Case study | All of the following exist: research questions, propositions (hypotheses), units of analysis, logic linking the data to the propositions and criteria for interpreting the findings [Yin, 2003]. | A case study is an empirical inquiry that investigates a contemporary phenomenon within its real-life context, especially when the boundaries between phenomenon and context are not clearly evident. A sister-project case study refers to comparing two almost similar projects in the same company, one with and the other without the treatment [Yin, 2003].
 Observational studies are either case studies or field studies. The difference is that multiple projects are monitored in a field study, may be with less depth, while case studies focus on a single project [Zelkowitz MV, 1998].
 Case studies fall under observational studies with uncontrolled exposure to treatments, and may involve a control group or not, or being done at one time or historical [Kitchenham, 2004] |
| Exploratory case study | One or more points in case study are missing. | The propositions are not stated but other components should be present [Yin, 2003]. |
| Experience report | Retrospective, no propositions (generally), does not necessarily answer why and how, often includes lessons learned. | Postmortem Analysis (PMA) for situations such as completion of large projects, learning from success, or recovering from failure [Birk A, 2002] |
| Meta-analysis | Study incorporates results from several previous similar studies in the analysis. | Historical studies examine completed projects or previously published studies [Zelkowitz MV, 1998] |
1. Introduction

<table>
<thead>
<tr>
<th>Study Type</th>
<th>Definition as given in [Zannier C, 2006]</th>
<th>Other definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example application</td>
<td>Authors describe an application and provide an example to assist the description. An example is not a type of validation or evaluation.</td>
<td>Our note: If an example is used to evaluate a technique already developed or apply a technique in a new setting, it is not classified under example application.</td>
</tr>
<tr>
<td>Survey</td>
<td>Structured or unstructured questions given to participants.</td>
<td>The primary means of gathering qualitative or quantitative data in surveys are interviews or questionnaires [Wohlin C, 2000]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Structured interviews (qualitative surveys) with an interview guide, to investigate rather open and qualitative research questions with some generalization potential. Quantitative surveys with a questionnaire, containing mostly closed questions. Typical ways to fill in a questionnaire are by paper copy via post or possibly fax, by phone or site interviews, and recently by email or web [Conradi R, 2005]</td>
</tr>
<tr>
<td>Discussion</td>
<td>Provided some qualitative, textual, opinion-oriented evaluation.</td>
<td>Expert opinion [Kitchenham, 2004].</td>
</tr>
</tbody>
</table>
1. Introduction

1.6 Dissertation outline and typographical conventions

This dissertation is organized in a set of chapters which are briefly summarized as follows:

Chapter 2. It presents an overview of the related work, the taxonomy used to categorize it, a brief comparison to our work and a summary of the gaps this dissertation can fill within the research area.

Chapter 3. This chapter describes and presents the first results attained with our experiment, namely the influence factors in the incident’s lifecycle.

Chapter 4. It details the seasonality and trend analysis performed based on a time series approach. Also discusses whether ARIMA models are a valid technique to perform forecasts on the incident management process.

Chapter 5. It concludes and summarizes the achievements of this dissertation. As an evolutionary step it also provides some guidance and opens the discussion for future work in this area.

To clearly distinguish semantically different elements and provide a visual hint to the reader, this dissertation uses the following typographical conventions:

- **Italic script** highlights important keywords, variables, scientific terms, formulas, methods and tools carrying special meaning in the technical or scientific literature;

- **Bold face** denotes topic headers, table headers, research questions, and items in enumerations.
Related Work

Contents

2.1 Research work ... 18
2.2 A taxonomy .. 18
2.3 Studied works .. 23
2.4 Comparative analysis ... 34

This chapter presents and discusses the related work. It also describes a taxonomy defined to categorize and compare this work and identify its limitations.
2. Related Work

“There are in fact two things, science and opinion; the former begets knowledge, the latter ignorance.”

Hippocrates (460 BC - 377 BC)

2.1 Research work

To support our research, we have tried to find related work in the area of empirical software engineering within the ITIL scope. Having searched several digital libraries such as the ones of ACM, IEEE, Springer or Elsevier, we were able to find only a few papers about incident management. Even scarcer were those referencing real live experiences about the statistical analysis of software incidents and how that can help improving the software engineering process. This section presents a categorized overview of the published works that we found to be closer related to certain aspects of our work presented hereafter.

2.2 A taxonomy

Taxonomy is the practice and science of classification. Taxonomies, or taxonomic schemes, are composed of taxonomic units, criterion or categories that are arranged frequently in a hierarchical structure. Each of those categories must be described in such a way that for a given subject it will be straightforward to identify if it belongs, or not, to the category.

A taxonomy for classifying related work will allow us to use a more objective set of comparison criteria, thus facilitating the outline of the current state of the art in this area. Our proposed taxonomy is composed of six classification criterion which will be described in the following sections.

2.2.1 ITIL process coverage

The ITIL process coverage criterion highlights the ITIL processes involved on each work. Those processes are the ones referenced in the ITIL publications (e.g.: Incident Management, Service Level Management, etc) [Office_of_Government_Commerce, 2007].
2. Related Work

<table>
<thead>
<tr>
<th>ITIL Publication</th>
<th>ITIL Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Strategy</td>
<td>Financial Management, Demand Management, Service Portfolio Management</td>
</tr>
<tr>
<td>Service Design</td>
<td>Service Catalog Management, Service Level Management, Capacity Management,</td>
</tr>
<tr>
<td></td>
<td>Availability Management, IT service Continuity Management, Information security</td>
</tr>
<tr>
<td></td>
<td>Management, Supplier Management</td>
</tr>
<tr>
<td>Service Transition</td>
<td>Change Management, Asset and Configuration Management, Release and Deployment</td>
</tr>
<tr>
<td></td>
<td>Management, Service validation and Testing, Evaluation, Knowledge Management</td>
</tr>
<tr>
<td>Service Operation</td>
<td>Incident Management, Problem Management, Request Fulfillment, Event Management</td>
</tr>
<tr>
<td></td>
<td>Access Management</td>
</tr>
<tr>
<td>Continual Service Improvement</td>
<td>Service Reporting, Service Measurement, Service Level Management</td>
</tr>
</tbody>
</table>

According to the above nominal scale we frame this dissertation in the Service Operation part of ITIL, specifically in the Incident Management (IM) and Problem Management (PM). This double categorization is due to the fact that incidents are resolved by the Service Desk using the Incident Management process, and also by second and third line support members which normally focus more in Problem Management. This study can easily apply to both processes.

2.2.2 Service concern coverage

The Service concern criterion assesses the three essential aspects of ITIL and services: technology, people and processes.

The technology aspect refers to all the technical components (typically hardware and software) involved when dealing with IT services. The people aspect addresses the way persons are organized and the way they should behave when involved in a certain process. Finally, the process aspect relates to how activities are linked together in order to deliver value to a specific business area.

The categories that have been identified for classifying this criterion are the following:
2. Related Work

Table 4. Service concern

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absent</td>
<td>The topic is not addressed or addressed in a fuzzy way</td>
</tr>
<tr>
<td>Partly</td>
<td>The topic is addressed insufficiently, not explicit or lacking context</td>
</tr>
<tr>
<td>Largely</td>
<td>The topic is addressed explicitly and context is provided, although not exhaustively</td>
</tr>
<tr>
<td>Fully</td>
<td>The topic is addressed exhaustively, sustained with evidence and adequate rationale</td>
</tr>
</tbody>
</table>

According to this ordinal scale, we classify this dissertation with the following grades: People – Partly, Process – Largely and Technology - Largely.

2.2.3 Data collection

The data collection criteria analyzes the adequacy that the data was treated (or not) in each article. It measures how detailed and accurate the process of data collection, manipulation, analysis, and interpretation of the results is performed in a specific work. A detailed documentation of this process is extremely important for someone trying to replicate an experiment or study. According to these requisites we propose the following categories:

Table 5. Data collection

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absent</td>
<td>No data collection was used or the documentation about the process is absent</td>
</tr>
<tr>
<td>Partly</td>
<td>Data collection was performed and the process was briefly described</td>
</tr>
<tr>
<td>Largely</td>
<td>The data collection process is largely documented but not exhaustively</td>
</tr>
<tr>
<td>Fully</td>
<td>The data collection process is detailed allowing complete experiment replication</td>
</tr>
</tbody>
</table>

According to this ordinal scale, we classify this dissertation with the following grade: Data Collection – Fully.

2.2.4 Methodological approach

The methodological approach categorizes how deep each work went according to study types mentioned in chapter I. The type of methodology used in each article is important to
2. Related Work

distinguish among the different approaches followed by the authors. This criterion includes the different study types identified in Table 2 (e.g.: experiment, quasi-experiment, case study, etc). [Mohagheghi and Conradi, 2007].

According to this nominal scale we classify this dissertation as a Quasi-experiment study type.

2.2.5 Evolution analysis

In order to really understand the software development and maintenance processes, we must analyze the incidents and the support process with a chronological perspective. There are several advantages of performing evolution analysis such as understanding of past, prediction of the future growth, perform comparisons or document trends, among other aspects. While performing an evolution analysis, we must consider that incidents have an associated lifecycle, with a set of phases that range from creation, to resolution and closure. We also know that software is a very dynamic entity, and software updates, new releases or product withdrawn are time driven.

<table>
<thead>
<tr>
<th>Absent</th>
<th>The topic is not addressed or addressed in a fuzzy way</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partly</td>
<td>A chronological approach is addressed but insufficiently, not explicit or lacking context</td>
</tr>
<tr>
<td>Largely</td>
<td>A chronological approach is addressed explicitly and context is provided, although not exhaustively</td>
</tr>
<tr>
<td>Fully</td>
<td>A chronological approach is addressed exhaustively, sustained with evidence and adequate rationale</td>
</tr>
</tbody>
</table>

According to these criteria, we classify this dissertation with the following grades: Evolution Analysis – Fully.

2.2.6 Contributions to software development lifecycle management

If we want to highlight the most representative works done in software engineering we must have a categorization for the contributions given by each of them. For classifying the different contribution levels we purpose the following criteria:
2. Related Work

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absent</td>
<td>No contributions to software development process are identified</td>
</tr>
<tr>
<td>Partly</td>
<td>Potential contributions are present but are addressed implicitly or in a fuzzy way</td>
</tr>
<tr>
<td>Largely</td>
<td>Potential contributions are addressed explicit, context is provided, although not exhaustively</td>
</tr>
<tr>
<td>Fully</td>
<td>Potential contributions are addressed exhaustively and sustained with evidence</td>
</tr>
</tbody>
</table>

According to this ordinal scale, we classify this dissertation with the following grade: Contributions to Software Development Lifecycle Management – **Fully**.

Figure 6. This dissertation evaluation analysis
2. Related Work

2.3 Studied works

To understand what is the current state of the art we collected several documents and selected seven of them, the ones that we found to be the most comprehensive. It is important to point out, that our objective in reviewing these published works was not to attempt to draw conclusions about the relative merits of the measured aspects but instead assessing the evaluation methodology using the previous defined taxonomy. Besides that categorization, we provide, for each work, its main goal (as we perceived it) and a commented abstract.

2.3.1 Evaluation 1 - [Barash, Bartolini et al., 2007]

Measuring and Improving the Performance of an IT Support Organization in Managing Service Incidents

Goal - Managing service incidents and improving an IT support organization

Comments - This work has a clear link with ITIL. The main topics addressed are Incident Management (IM) and Problem Management (PM) and the improvement that an organization can achieve in their support activities by analyzing incident metrics. With this in mind, the authors suggest ways on how to improve staff allocation, shift rotation, working hours and methods for the escalation of incidents. We could not find, in this work, a clear link between Incident Management or Problem Management processes with the software development process. We also could not find a direct relationship to any other ITIL processes beyond the two referred ones. Nevertheless, we should not forget that if we improve the performance of the IT support organization, we are indirectly improving the performance of all other areas.

Relation with our work – This work is related with our own since it also addresses the management of incidents (herein we only address software incidents), and it tries to improve an IT Support Organization. According to our taxonomy we classify this work as follow in Table 8.
2. Related Work

Table 8. Evaluation 1

<table>
<thead>
<tr>
<th>ITIL Process Coverage</th>
<th>Methodological Approach</th>
<th>Service Concern</th>
<th>Data Collection</th>
<th>Evolution Analysis</th>
<th>Contributions to Software Development Lifecycle Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>IM, PM</td>
<td>Experience Report</td>
<td>Technology</td>
<td>People</td>
<td>Processes</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram](image)

Figure 7. This dissertation comparing to Evaluation 1
2. Related Work

2.3.2 Evaluation 2 - [Sjøberg, Hannay et al., 2005]

A survey of controlled experiments in Software Engineering

Goal - A survey of controlled experiments in Software Engineering

Comments - In this work there is a detailed classification about the areas where those software experiments were conducted. It is interesting to realize that among the group of areas with fewer experiments, we find Strategy, Alignment, IT impact. These are within the most important issues addressed by ITIL and Service Management. One of the things that first came to our eyes is the fact that there is no category named “Service”. We can assume that within all experiments found by the authors, none was made having the “Service” in mind. This is even more important when we think that nowadays services are heavily dependent on software, and, on the other hand, the use of software can be seen as a service on its own. Overall, this work is a quantitative summary of controlled experiments made in the past. While the people and the processes aspects are briefly addressed, the technology aspect is almost not covered. Indeed, few environment descriptions are provided on the technical conditions on which the experiments took place.

Although this survey was performed around three years ago, we have not found evidence, since then, contradicting the obvious need of more experiments relating software, services and their management processes.

Relation with our work – We expected that other studies like the one performed in our work would be reported in this survey. While on the methodology side this is true, since many of the reported experiments use empirical data and statistical analysis, the same cannot be said regarding the context (incident management). According to our taxonomy we classify this work as follow in Table 9.

<table>
<thead>
<tr>
<th>ITIL Process Coverage</th>
<th>Methodological Approach</th>
<th>Service Concern</th>
<th>Data Collection</th>
<th>Evolution Analysis</th>
<th>Contributions to Software Development Lifecycle Management</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Survey</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 9. Evaluation 2
2. Related Work

2.3.3 Evaluation 3 - [Niessink and Vliet, 2000]

Software maintenance from a service perspective

Goal - Software maintenance and software development from a service perspective
Comments – The authors clearly identify differences between services and products and how these differences affect the way end-users or customers assess their quality. One of the more relevant aspects of this work is the focus put on the need for defining Service Level Agreements (SLA), Service Catalogs and the importance of good Incident and Problem Management processes in an organization. The three ITIL aspects and the positive impact they can have in organizations that implement them are highlighted and understood, but not exhaustively explained. This would be addressed by detailing and giving examples on the
2. Related Work

implementation of the above aspects. In brief, the important topics are there, but not enough detail is provided. This work has clearly a qualitative approach, and therefore no data collection or statistical analysis is in place.

Relation with our work – The relation lies on the ITIL focus. This is not an empirical study, but it covers several important aspects of Service Management like Incident Management (IM), Problem Management (PM) and Service Level Management (SLM). According to our taxonomy we classify this work as follow in Table 10.

<table>
<thead>
<tr>
<th>ITIL Process Coverage</th>
<th>Methodological Approach</th>
<th>Service Concern</th>
<th>Data Collection</th>
<th>Evolution Analysis</th>
<th>Contributions to Software Development Lifecycle Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>IM, PM, SLM</td>
<td>Discussion</td>
<td>Technology</td>
<td>People</td>
<td>Processes</td>
<td></td>
</tr>
</tbody>
</table>

![Figure 9](image-url). This dissertation comparing to Evaluation 3
2. Related Work

2.3.4 Evaluation 4 - [Jansen and Brinkkemper, 2006]

Evaluating the Release, Delivery, and Deployment Processes of Eight Large Product Software Vendors applying the Customer Configuration Update Model

Goal – Study of the release, delivery and deployment of software

Comments – This is a very interesting paper about the software update process and how it can help software vendors and end-users/customers in the software deployment process. The approach taken plays a vital role mainly in the realm of these ITIL processes: Asset and Configuration Management (ACM), Release and Deployment Management (RDM). This work is about one of the latest phases in the software development cycle – the deployment phase – precisely the one when most incidents are usually reported. This is due to the fact that IT systems and platforms are becoming increasingly more heterogeneous and complex and also because quality management systems (in general) and SLA verification (in particular) imply the recording of incidents originated by the operation.

Relation with our work – This work focuses on the technology used to improve the software deployment process, but does not cover any empirical study or data analysis. It is related to our work because it touches other key processes in ITIL. According to our taxonomy we classify this work as follow in Table 11.

<table>
<thead>
<tr>
<th>ITIL Process Coverage</th>
<th>Methodological Approach</th>
<th>Service Concern</th>
<th>Data Collection</th>
<th>Evolution Analysis</th>
<th>Contributions to Software Development Lifecycle Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACM, RDM</td>
<td>Meta Analysis</td>
<td>Technology</td>
<td>People</td>
<td>Processes</td>
<td></td>
</tr>
</tbody>
</table>
2.3.5 Evaluation 5 - [Mohagheghi and Conradi, 2007]

Quality, productivity and economic benefits of software reuse: a review of industrial studies

Goal – Quality, productivity and economic benefits of software reuse

Comments – This work is about software reuse and its benefits. Based on previous studies, the authors state that component reuse is related with software with fewer defects. The latter are identified by means of failures in operation and are the origin of reported incidents. The end-user perspective is not covered in this paper, and this is vital for a Service Management approach. Some references are made to software changes, software deployment and even infrastructure resources required for software execution. These are somehow disconnected implicit references to ITIL Change Management, Release and
2. Related Work

Deployment Management and Capacity Management processes. Although not explicitly, this work shows how ITIL good practices can cause a tangible and positive impact in the software development process. This impact, therefore, requires further analysis.

Relation with our work – Shares our objective, of achieving a tangible and positive impact on the software development process by adopting ITIL-like best practices. According to our taxonomy we classify this work as follow in Table 12.

Table 12. Evaluation 5

<table>
<thead>
<tr>
<th>ITIL Process Coverage</th>
<th>Methodological Approach</th>
<th>Service Concern</th>
<th>Data Collection</th>
<th>Evolution Analysis</th>
<th>Contributions to Software Development Lifecycle Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM, RDM, CAM</td>
<td>Case Study</td>
<td>Technology</td>
<td>People</td>
<td>Processes</td>
<td>Software Concern - Technology</td>
</tr>
</tbody>
</table>

Figure 11. This dissertation comparing to Evaluation 5
2. Related Work

2.3.6 Evaluation 6 - [Kenmei, Antoniol et al.]

Trend Analysis and Issue Prediction in Large-Scale Open Source Systems

Goal – Capability of time series to model change requests on open source software

Comments – This work is about using time series to analyze trends and forecast requests on three open source software applications; Mozilla, Eclipse and JBoss. A change request is a “wish” and not a fact occurring at the present in a particular customer environment, as the incidents are. Therefore, a request does not represent any factual information about software apart any individual and yet very subjective qualitative analysis taken from those requests. The authors have used the ARIMA models to predict change requests evolution. Unfortunately, the data collection process, the evolution analysis as well as the contributions to software development are not detailed enough to justify a higher grade in this criterion. We are well aware that their work was presented in a condensed format, thus explaining why the article lacks details in these areas.

Relation with our work – It shares similar goals with our work. It uses a sample of recorded change requests during a certain period of time and tries to get some evidences about user change requests, the software development process and software maturity. According to our taxonomy we classify this work as follow in Table 13.

<table>
<thead>
<tr>
<th>ITIL Process Coverage</th>
<th>Methodological Approach</th>
<th>Service Concern Technology</th>
<th>Service Concern Processes</th>
<th>Service Concern People</th>
<th>Data Collection</th>
<th>Evolution Analysis</th>
<th>Contributions to Software Development Lifecycle Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quasi Experiment</td>
<td>🌬️</td>
<td>🌬️</td>
<td>🌬️</td>
<td>🌬️</td>
<td>🌬️</td>
<td>🌬️</td>
<td>🌬️</td>
</tr>
</tbody>
</table>
2. Related Work

2.3.7 Evaluation 7 - [Yuen, 1988]

On analyzing maintenance process data at the global and detailed levels: A Case Study

Goal – Pattern analysis during the maintenance of a large operating system
Comments – The author has used time series modeling to do spectral analysis on a database of ‘notices’ (the way he called the incidents; no notion of ITIL or Service Management was present at that time). Several reports and data analysis are presented such as, plot inspection, non parametric tests and finally time series models in order to get information about frequencies, distribution behavior and trends. Although the main quantitative topics are present, they are insufficiently covered in the article, leaving no space for further comments.
2. Related Work

Relation with our work – It has some common methods with our work: like statistical analysis, time series modeling and analysis of trends and forecasting, but it lacks ITIL or Service context and also misses an important part of the scientific method: research questions and the correspondent hypothesis. According to our taxonomy we classify this work as follow in Table 14.

<table>
<thead>
<tr>
<th>Table 14. Evaluation 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITIL Process Coverage</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>Quasi Experiment</td>
</tr>
<tr>
<td>Data Collection</td>
</tr>
<tr>
<td>Evolution Analysis</td>
</tr>
<tr>
<td>Contributions</td>
</tr>
</tbody>
</table>

Figure 13. This dissertation comparing to Evaluation 7
2. Related Work

2.4 Comparative analysis

It is widely accepted that we lack experimentation in Software Engineering in general. This phenomenon is even more acute on what concerns experimentation related with incidents and services. Even if the related work is scarce, we should look at it collectively to try to draw some picture of the current state-of-the-art. For that purpose, a summary of the categorized related work is presented in Table 15.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Barash et al. (2007)</td>
<td>IM PM</td>
<td>ER</td>
<td>🌋</td>
<td>🌋</td>
<td>🌋</td>
<td>🌋</td>
<td>🌋</td>
<td></td>
<td>High</td>
</tr>
<tr>
<td>Sjoberg et al. (2005)</td>
<td>----</td>
<td>S</td>
<td>🌋</td>
<td>🌋</td>
<td>🌋</td>
<td>🌋</td>
<td>🌋</td>
<td></td>
<td>Medium</td>
</tr>
<tr>
<td>Niessink and Vliet (2000)</td>
<td>IM PM SLM</td>
<td>D</td>
<td>🌋</td>
<td>🌋</td>
<td>🌋</td>
<td>🌋</td>
<td>🌋</td>
<td></td>
<td>High</td>
</tr>
<tr>
<td>Jansen and Brinkkemper (2006)</td>
<td>ACM RDM</td>
<td>MA</td>
<td>🌋</td>
<td>🌋</td>
<td>🌋</td>
<td>🌋</td>
<td>🌋</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>Mohagheghi and Conradi (2007)</td>
<td>CM RDM CAM</td>
<td>CS</td>
<td>🌋</td>
<td>🌋</td>
<td>🌋</td>
<td>🌋</td>
<td>🌋</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>Kenmei et al. (2008)</td>
<td>----</td>
<td>QE</td>
<td>🌋</td>
<td>🌋</td>
<td>🌋</td>
<td>🌋</td>
<td>🌋</td>
<td></td>
<td>High</td>
</tr>
<tr>
<td>This dissertation</td>
<td>IM PM</td>
<td>QE</td>
<td>🌋</td>
<td>🌋</td>
<td>🌋</td>
<td>🌋</td>
<td>🌋</td>
<td></td>
<td>----</td>
</tr>
</tbody>
</table>

Legend: 🌋 Absent, 🌋 Partly, 🌋 Largely, 🌋 Fully

ITIL Process Coverage: IM – Incident Management, PM – Problem Management, SLM – Service Level Management

Methodological Approach: ER – Experience Report, S – Survey, D – Discussion, MA – Meta Analysis

People, Processes, Technology, Data Collection, Evolution Analysis, Contributions to Software Development Lifecycle Management, Relation with our work:

Legend for related work: IM – Incident Management, PM – Problem Management, SLM – Service Level Management, ACM – Asset and Configuration Management, RDM – Release and Deployment Management, CM – Change Management, CAM – Capacity Management

We tried to contribute to the clarification of comparisons about related work, by presenting all the studies side-by-side in Table 15.

It is understandably identified by this comparison that the majority of the articles lack detailed information regarding the people involvement and the process by how each work was accomplished. This is extremely important when a replication of a certain research is to be performed, due to the importance of relating the people participating in the activities and the description of the activities. The technology part is the most leveraged one, as this is related with the fact that the researchers are totally comfortable with this area. A Quasi-Experiment approach was presented in two studies, but both of them don’t have the level of detail needed for experiment replication. Incident and Problem Management processes are the main ITIL processes studied. Other processes are also mentioned, but those are the ones with less elaborated information and are sometimes presented in a fuzzy scenario regarding the application of ITIL good practices. Only three studies present relevant amount of contributions, but yet not much detailed to the software development lifecycle. The data collection process is not significant on the majority of the studies and this should be considered as a topic for further investment by authors researching in this area. The same conclusion applies to the study of software development process and its diachronic aspects. As mentioned earlier, software development and support activities are timely driven, therefore, this must be taken into account by software development organizations. The majority of the evaluations barely touch this aspect.

As a summary of this comparison, in those works where a quantitative analysis is the main goal, they lack the correspondent rationale behind the process. In those works where a more qualitative research was in place, the data collection process and/or a diachronic analysis is not present or are insufficient. As an overall summary, even considering that this dissertation is focused on a quantitative approach, we have tried not to neglect qualitative aspects needed for experiment replication.
2. Related Work
This chapter presents the experiment conducted in order to understand the influential factors on Incident Management, namely its scheduling variables.
3. Influential Factors on Incident Management

"If you want the present to be different from the past, study the past."
Baruch de Spinoza (1632-1677)

3.1 Introduction

This chapter presents a statistical-based analysis of software related incidents resulting from the operation of several hundred commercial software products, from 2005 to 2007. The incidents were reported by customers of a large independent software vendor. Although that vendor operates worldwide, only a limited sample of incidents were collected. This sample includes incidents from six countries in Europe and Latin America. Further details regarding the products and their users cannot be provided here due to a non-disclosure agreement. The main goal of this chapter is shedding some light on the influential factors that affect incidents lifecycle from creation to its closure, namely the schedule of its phases.

3.2 Research questions

The research questions are one of the first methodological steps an investigator has to take when undertaking a research, therefore, they must be accurately and clearly defined. Choosing the research questions is the central element of both quantitative and qualitative research and in some cases it may precede construction of the conceptual framework of study. In all cases, it makes the theoretical assumptions in the framework more explicit. Most of all, it indicates what the researcher wants to know most and first. To help software engineering improving their methods and processes, it is important to elaborate in the cause-effects relationships related to the software incidents being reported. In this chapter we want to have an understanding on the factors that influence the incidents.

To understand incident management we must first be able to find answers for these two research objectives:

- **RO1**: Which factors influence the lifecycle of incidents?
- **RO2**: Are there patterns in the occurrence of incidents?
Regarding **RO1**, the set of variables that best describe incidents lifecycle at a macroscopic level are *TimeToRespond, TimeToResolve* and *TimeToConfirm*. The answer to **RO1** is important both to clients and service providers. For clients, particularly for large organizations operating in several countries, it will allow taking decisions in the formulation and negotiation of Service Level Agreements (SLAs). For service providers it will also help in finding the adequate level of staffing and operating schedules.

Regarding the possible factors influencing the incidents lifecycle, we can consider the following variables: *Product, Company, Country, Zone, Language, Category, Type, Impact and Priority*. These variables will be fully described in the appropriate section of this chapter.

The following research questions were selected within the scope of this objective:

- **RQ1**: Has the impact of an incident an influence on its lifecycle?
- **RQ2**: Has the priority of an incident an influence on its lifecycle?
- **RQ3**: Has the originating country of an incident an influence on its lifecycle?
- **RQ4**: Has the originating geographical zone of an incident an influence on its lifecycle?
- **RQ5**: Has the incident category an influence on its lifecycle?

Regarding **RO2**, the occurrence of incidents can be measured by a simple counting or a weighted sum (e.g. taking the *Impact* or *Priority* as a weight) of incidents matching one of the possible values of the variable under consideration. For instance, if we were concerned with the identification of seasonal patterns, we can consider the day within the week (*WeekdayOfCreation*) or the week within the year (*WeekOfCreation*) when the incidents were reported. Again, the answer to **RO2** will bring benefits to client and service provider. Both will become aware of worst and best-case scenarios and thus take appropriate actions.

We have just considered a possible pattern, which is the distribution of critical incidents, the ones which give more headaches to all stakeholders. In this case, since the incidents were recorded using the same incident management system and supposedly using similar classification criteria, we would expect the proportion of critical incidents to be the same across countries. In other words, the corresponding research question is simply:

- **RQ6**: Is the distribution of critical incidents the same across countries?
3.3 Experiment process

Our empirical process consisted on the four steps represented in Figure 14. We collected the data on the first days of January 2008 and the data obtained is detailed in the next section. A detailed version of this process is shown in Figure 15.

![Figure 14. Experiment workflow – High level steps](image)

Each of these steps has specific responsibilities, as follows:

- **Data Collection (Step 1)** – This step consists in collecting (exporting) the data from the incidents database using an incident management system client interface (Service Desk tool). This tool allowed us to export incidents data into a CSV (Comma Separated Values). Later, this data was loaded into a spreadsheet (MS Excel).

- **Data Filtering (Step 2)** – In this step we filtered out a very small percentage of cases that had erroneous data (e.g. invalid dates, missing values).

- **Data Computation (Step 3)** - We computed several variables from existing data, namely by calculating differences between pairs of dates. These variables are described in the next section of this chapter in Table 22.

- **Statistical Analysis (Step 4)** - The resulting dataset was then loaded into the SPSS statistical analysis tool where the testing of a series of hypothesis derived from our research questions was made.
3.4 Sample demographics

The subjects of our experiment are around 23 thousand incidents, reported by end-users/customers, occurred during the operation of around 700 software products\(^3\). The incidents were recorded with a proprietary incident management system during a time span of three years (2005 to 2007) in around 1500 companies in 6 countries. We also considered three geographical zones, with two countries in each one. The zones are Latin America (LA), Southwestern Europe (SE) and Central Europe (CE). Notice that there are 4 languages spoken in the considered countries: English (EN), French (FR), Portuguese (PT) and Spanish (ES). Details on this are provided in Table 16.

\(^3\) - When a given product is available on different platforms, this number considers those instances as distinct products. Some distinction is also due to different licensing schemes.
As part of each incident there are several attributes: the software product, the person who is reporting the incident, which customer and its type of business, the incident criticality, its category amongst others. These entities and properties are represented in Figure 16, and it shows all the information we were able to extract from the incidents. Although this information could be deeply exploited, we have decided not to do it, due to time constraints, and also to maintain anonymously end-users, products and organizations.
3. Influential Factors on Incident Management

3.4.1 Incident reporting methods

Incidents were reported in three different ways: Email, Phone calls and using the support Web site. Surprisingly or not, the preferred method for reporting incidents was the email. Detailed figures about this are presented in Table 17 and in Figure 17.

Table 17. Incident source

<table>
<thead>
<tr>
<th>Report method</th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Email</td>
<td>13560</td>
<td>59.2</td>
<td>59.2</td>
</tr>
<tr>
<td>Phone Call</td>
<td>8662</td>
<td>37.8</td>
<td>97.0</td>
</tr>
<tr>
<td>Web</td>
<td>690</td>
<td>3.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>22912</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>
3. Influential Factors on Incident Management

The email has become a tool with a very broad coverage and is not only a mere method of creating, transmitting, or storing primarily text-based human communications with digital communications systems. In addition, it is nowadays used for people to interact directly with other technical platforms, in this case, the incident management platform.

3.4.2 Incident origin platform

There is a clear segregation on systems/platforms where the software was deployed and used by the customers: the Mainframe⁴ and the Distributed Systems⁵. These two platforms have different users and they have a very distinct usage. The frequencies of incidents, represented in Table 18 and Figure 18, vary with the platform and with the quantity of customers using the software on each of them.

Table 18. Incidents by platform

<table>
<thead>
<tr>
<th>Platform</th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainframe⁴ (MF)</td>
<td>4237</td>
<td>18.5</td>
<td>18.5</td>
</tr>
<tr>
<td>Product Platform</td>
<td>Distributed Systems⁵ (DS)</td>
<td>16865</td>
<td>73.6</td>
</tr>
</tbody>
</table>

⁴ The term usually refers to computers compatible with the IBM System/360 line, first introduced in 1965. (IBM System z10 is the latest incarnation.)
⁵ All other computer systems (hardware and software) that do not fall under the definition of the term Mainframe.
3. Influential Factors on Incident Management

<table>
<thead>
<tr>
<th>Area</th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education</td>
<td>48</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Financial</td>
<td>5554</td>
<td>24.2</td>
<td>24.5</td>
</tr>
<tr>
<td>Government</td>
<td>764</td>
<td>3.3</td>
<td>27.8</td>
</tr>
<tr>
<td>Health</td>
<td>322</td>
<td>1.4</td>
<td>29.2</td>
</tr>
<tr>
<td>Insurance</td>
<td>584</td>
<td>2.5</td>
<td>31.7</td>
</tr>
<tr>
<td>Other</td>
<td>1789</td>
<td>7.8</td>
<td>39.5</td>
</tr>
<tr>
<td>Retail</td>
<td>311</td>
<td>1.4</td>
<td>40.9</td>
</tr>
</tbody>
</table>

Table 19. Incident frequencies by Business Type

In the incident management database there are incidents from hundreds of customers. Each one has its own business area. Those areas and the correspondent incident frequencies reported by each one are detailed in Table 19 and in Figure 19.

Figure 18. Incident histogram by platform

3.4.3 Incidents by customers businesses area
3. Influential Factors on Incident Management

<table>
<thead>
<tr>
<th>Area</th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Services</td>
<td>6118</td>
<td>26.7</td>
<td>67.6</td>
</tr>
<tr>
<td>Technology</td>
<td>3340</td>
<td>14.6</td>
<td>82.2</td>
</tr>
<tr>
<td>Telecommunications</td>
<td>2041</td>
<td>8.9</td>
<td>91.1</td>
</tr>
<tr>
<td>Transportation</td>
<td>800</td>
<td>3.5</td>
<td>94.6</td>
</tr>
<tr>
<td>Utility</td>
<td>1241</td>
<td>5.4</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>22912</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

The top five business areas from where incidents were reported are identified (grey background) in Table 19. The interesting part in this information is that the area of business that reported more incidents was the area of Services, exceeding by a few points the Financial business segment. From these figures, there is evidence that companies in the area of Services, either IT Services or others, are heavily dependent on software, probably more than what we could expect when compared with other areas of business.

![Figure 19. Incidents histogram by Business Type](image-url)
3. Influential Factors on Incident Management

3.4.4 Incident metrics summary

<table>
<thead>
<tr>
<th>Country</th>
<th># Incidents</th>
<th># Incidents DS</th>
<th># Incidents MF</th>
<th># Incidents Non-Products</th>
<th># Customers</th>
<th># of different Products</th>
<th># DS Products</th>
<th># MF Products</th>
<th># Non-Products</th>
<th># Incidents DS / # DS Products Ratio</th>
<th># Incidents MF / # MF Products Ratio</th>
<th># Incidents NP / # Non-Products Ratio</th>
<th># Incidents / # Product Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portugal</td>
<td>546</td>
<td>238</td>
<td>282</td>
<td>26</td>
<td>36</td>
<td>104</td>
<td>57</td>
<td>44</td>
<td>3</td>
<td>4.175</td>
<td>6.409</td>
<td>8.666</td>
<td>5.405</td>
</tr>
<tr>
<td>Spain</td>
<td>3934</td>
<td>2460</td>
<td>1250</td>
<td>224</td>
<td>214</td>
<td>345</td>
<td>241</td>
<td>101</td>
<td>3</td>
<td>10.207</td>
<td>12.376</td>
<td>74.666</td>
<td>11.502</td>
</tr>
<tr>
<td>Brazil</td>
<td>2194</td>
<td>1553</td>
<td>571</td>
<td>70</td>
<td>126</td>
<td>245</td>
<td>175</td>
<td>68</td>
<td>2</td>
<td>8.874</td>
<td>8.397</td>
<td>35</td>
<td>9.028</td>
</tr>
<tr>
<td>Argentina</td>
<td>534</td>
<td>328</td>
<td>119</td>
<td>87</td>
<td>66</td>
<td>88</td>
<td>52</td>
<td>33</td>
<td>3</td>
<td>6.307</td>
<td>3.606</td>
<td>29</td>
<td>6.282</td>
</tr>
<tr>
<td>England</td>
<td>7138</td>
<td>5719</td>
<td>687</td>
<td>732</td>
<td>511</td>
<td>433</td>
<td>327</td>
<td>102</td>
<td>4</td>
<td>17.489</td>
<td>6.735</td>
<td>183</td>
<td>16.638</td>
</tr>
<tr>
<td>France</td>
<td>8007</td>
<td>6140</td>
<td>1230</td>
<td>637</td>
<td>541</td>
<td>434</td>
<td>352</td>
<td>78</td>
<td>4</td>
<td>17.443</td>
<td>15.769</td>
<td>159.25</td>
<td>18.620</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geographic Zone</th>
<th># Incidents</th>
<th># Incidents DS</th>
<th># Incidents MF</th>
<th># Incidents Non-Products</th>
<th># Customers</th>
<th># of different Products</th>
<th># DS Products</th>
<th># MF Products</th>
<th># Non-Products</th>
<th># Incidents DS / # DS Products Ratio</th>
<th># Incidents MF / # MF Products Ratio</th>
<th># Incidents NP / # Non-Products Ratio</th>
<th># Incidents / # Product Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latin America</td>
<td>2728</td>
<td>1881</td>
<td>690</td>
<td>157</td>
<td>187</td>
<td>266</td>
<td>186</td>
<td>77</td>
<td>3</td>
<td>10.112</td>
<td>8.961</td>
<td>52.333</td>
<td>10.372</td>
</tr>
<tr>
<td>South Europe</td>
<td>4480</td>
<td>2698</td>
<td>1532</td>
<td>250</td>
<td>240</td>
<td>359</td>
<td>251</td>
<td>105</td>
<td>3</td>
<td>10.749</td>
<td>14.590</td>
<td>83.333</td>
<td>12.584</td>
</tr>
<tr>
<td>Central Europe</td>
<td>15145</td>
<td>11859</td>
<td>1917</td>
<td>1369</td>
<td>1014</td>
<td>580</td>
<td>451</td>
<td>125</td>
<td>4</td>
<td>26.294</td>
<td>15.336</td>
<td>342.25</td>
<td>26.293</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th># Incidents</th>
<th># Incidents DS</th>
<th># Incidents MF</th>
<th># Incidents Non-Products</th>
<th># Customers</th>
<th># of different Products</th>
<th># DS Products</th>
<th># MF Products</th>
<th># Non-Products</th>
<th># Incidents DS / # DS Products Ratio</th>
<th># Incidents MF / # MF Products Ratio</th>
<th># Incidents NP / # Non-Products Ratio</th>
<th># Incidents / # Product Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>7138</td>
<td>5719</td>
<td>687</td>
<td>732</td>
<td>511</td>
<td>433</td>
<td>327</td>
<td>102</td>
<td>4</td>
<td>17.489</td>
<td>6.735</td>
<td>183</td>
<td>16.638</td>
</tr>
<tr>
<td>French</td>
<td>8007</td>
<td>6140</td>
<td>1230</td>
<td>637</td>
<td>541</td>
<td>434</td>
<td>352</td>
<td>78</td>
<td>4</td>
<td>17.443</td>
<td>15.769</td>
<td>159.25</td>
<td>18.620</td>
</tr>
</tbody>
</table>

Table 20 represents the summarization of metrics computed to assess incident ratios across countries, geographic zones and languages. Non-product incidents refer to incidents reported by users with no specific software product associated, such as: general questions about the software organization, about request for information or proposals, and also sales, contract or technical marketing related issues. The metrics representing ratios show a standardized method for measuring the interactivity between customers and the software vendor. Even limited by the reduced sample of incidents, we can observe that these figures...
3. Influential Factors on Incident Management

vary substantially across countries, geographic zones and languages. With Non-product ratios we can measure the sales activities before products are acquired. Product related incident ratios mean the usage of software products in operation, thus giving us a method for assessing the technical relation between the customer and the vendor. Whilst Portugal and England have a very different scenario when comparing incidents on the Distributed Systems(DS) platform, they have very similar figures in the Mainframe(MF) area. France, Brazil, and Spain have stabilized coefficients, both for DS and MF. If we use the same rationale for the geographic zone and the language, the main observation is the existence of different ratios among DS and MF in England/English. A possible reason is that the Mainframe technical staff in English organizations is skilled enough to resolve incidents without the software vendor involvement, and the same do not apply for staff in the Distributed Systems area. Argentina and Portugal have opposite behaviors, both in DS and MF. Argentina is more active in products of Distributed Systems platform, and Portugal more active in the Mainframe solutions. This can express the market penetration in each country of products in both areas.

As a mean for comparing the average time (and their standard deviation statistics) to resolve incidents among countries, we present those values in Table 21.

<table>
<thead>
<tr>
<th></th>
<th>DaysToResolve</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>0.00</td>
<td>182.00</td>
<td>7.9732</td>
<td>17.55165</td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>0.00</td>
<td>747.00</td>
<td>15.4862</td>
<td>32.75591</td>
<td></td>
</tr>
<tr>
<td>England</td>
<td>0.00</td>
<td>750.00</td>
<td>20.9356</td>
<td>46.43596</td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td>0.00</td>
<td>669.00</td>
<td>21.8126</td>
<td>53.93901</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>0.00</td>
<td>506.00</td>
<td>21.4738</td>
<td>40.39622</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>0.00</td>
<td>664.00</td>
<td>24.0518</td>
<td>46.34707</td>
<td></td>
</tr>
</tbody>
</table>

3.4.5 Variables and scale types

The variables used in this experiment are self-described in Table 22. The choice on the characterization of the incidents (Category, Impact and Priority) is performed by the person
who registers the incident (the end-user/customer or a support staff member). Incidents have a defined lifecycle as shown in Figure 2 in chapter I. In this chapter we will only consider closed incidents, since those are the only ones for which we know the values of all timing variables. Figure 3, presented in chapter I describes how the three timing variables are calculated, regarding specific milestones on incidents lifecycle.

Table 22. Variables used in this experiment, their scale types and description

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Scale</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>Nominal</td>
<td>Name of the product causing the incident</td>
</tr>
<tr>
<td>Company</td>
<td>Nominal</td>
<td>Name of the company where the product is installed</td>
</tr>
<tr>
<td>Country</td>
<td>Nominal</td>
<td>Name of the country where the incident was originated</td>
</tr>
<tr>
<td>Zone</td>
<td>Nominal</td>
<td>Zone of the globe where the country lies</td>
</tr>
<tr>
<td>Language</td>
<td>Nominal</td>
<td>Language spoken in the country</td>
</tr>
<tr>
<td>Category</td>
<td>Nominal</td>
<td>Categorizes incident’s root cause according to a predefined list</td>
</tr>
<tr>
<td>Impact</td>
<td>Ordinal</td>
<td>Measures incident’s business criticality</td>
</tr>
<tr>
<td>Priority</td>
<td>Ordinal</td>
<td>Measures incident’s correction prioritization to be considered by the support</td>
</tr>
<tr>
<td>Status</td>
<td>Nominal</td>
<td>Current status of the incident in its life cycle</td>
</tr>
<tr>
<td>WeekOfCreation</td>
<td>Interval</td>
<td>Order of the week (in the year) when the incident occurred. Valid values belong to (1-53)</td>
</tr>
<tr>
<td>WeekdayOfCreation</td>
<td>Interval</td>
<td>Order of the day (in the week) when the incident occurred. Valid values belong to (1-7)</td>
</tr>
<tr>
<td>TimeToRespond</td>
<td>Absolute</td>
<td>Elapsed time from incident creation until a support person has started to work on it</td>
</tr>
<tr>
<td>TimeToResolve</td>
<td>Absolute</td>
<td>Elapsed time from incident creation until a resolution is given to the end-user</td>
</tr>
<tr>
<td>TimeToConfirm</td>
<td>Absolute</td>
<td>Elapsed time since the resolution was given to the end-user until a confirmation is obtained that the incident is closed</td>
</tr>
</tbody>
</table>

Table 23 and Table 24 provide details about the variables Impact and Priority respectively.

Table 23. Impact variable details

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Valid values</th>
<th>Scale Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact</td>
<td>1 – Critical</td>
<td>Ordinal</td>
<td>Classifies how critical is the incident for the customer businesses</td>
</tr>
<tr>
<td></td>
<td>2 – High</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 – Medium</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Influential Factors on Incident Management

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Valid Values</th>
<th>Scale Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 – Low</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 24. Priority variable details

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Valid Values</th>
<th>Scale Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority</td>
<td>1 – Critical</td>
<td>Ordinal</td>
<td>Classifies incident’s correction prioritization to be considered by the support</td>
</tr>
<tr>
<td></td>
<td>2 – High</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 – Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 – Low</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 25 presents the admissible values for the variable Category.

Table 25. Category variable details

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Scale Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Nominal</td>
<td>Categorizes incident’s root cause according to a predefined list</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valid Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>3rd Party Product</td>
</tr>
<tr>
<td>Customer Service</td>
</tr>
<tr>
<td>Customization</td>
</tr>
<tr>
<td>Documentation</td>
</tr>
<tr>
<td>Function</td>
</tr>
<tr>
<td>Installation</td>
</tr>
<tr>
<td>Internationalization</td>
</tr>
<tr>
<td>Compatibility</td>
</tr>
<tr>
<td>License</td>
</tr>
<tr>
<td>Localization</td>
</tr>
<tr>
<td>Performance</td>
</tr>
<tr>
<td>Request for Information</td>
</tr>
<tr>
<td>Security</td>
</tr>
<tr>
<td>Stability</td>
</tr>
</tbody>
</table>
3.5 Hypotheses identification and testing

This section identifies which are the statistical hypotheses that must be tested in order to answer the previously stated research questions. We then apply the adequate statistical tests and interpret their results. Research questions are prefixed by “RQ”.

To assess if we can apply parametric tests in the evaluation of our hypotheses, we need to test if the outcome variables in our sample match a Normal distribution. In Figure 20 we reproduce the corresponding QQ plots. The latter plot the quantiles of each variable's distribution against the quantiles of the Normal distributions. To be Normal, a given variable should have its points clustered around the straight line, representing the expected Normal value. As we see, while the two interval variables (WeekdayOfCreation, WeekOfCreation) seem to be close to the Normal distribution, the same is not true for the three absolute time variables (TimeToRespond, TimeToResolve, TimeToConfirm).

![Figure 20. QQ Plots for the schedule variables](image-url)
3. Influential Factors on Incident Management

To test the hypothesis of normality we have applied the Kolmogorov-Smirnov one-sample test, which is based on the maximum difference between the sample cumulative distribution and the hypothesized cumulative distribution. The underlying hypotheses for this test are the following:

\[H_0: X \sim N(\mu; \sigma) \quad \text{vs.} \quad H_1: X \sim N(\mu; \sigma) \]

Table 26. Testing Normal distribution adherence with the Kolmogorov-Smirnov test

<table>
<thead>
<tr>
<th>WeekOfCreation</th>
<th>WeekdayOfCreation</th>
<th>TimeToRespond</th>
<th>TimeToResolve</th>
<th>TimeToConfirm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolmogorov-Smirnov Z</td>
<td>15.434</td>
<td>23.006</td>
<td>53.538</td>
<td>47.581</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
</tbody>
</table>

Even considering a confidence interval of 99% (which is the same to say that \(\alpha = 0.01 \) and the probability of Type I error of 1%) we can conclude, from Table 26, that we must reject the null hypothesis for all variables, since we get a significance \(p < \alpha \), which means that we have significant Z statistics for all variables being analyzed. In other words, we cannot sustain that the considered variables of our sample come from a Normal population. As such, we can only use non-parametric tests in this experiment.

RQ1: Has the impact of an incident an influence on its lifecycle?

In other words, we want to know if incidents with different assigned impacts differ in the corresponding lifecycle schedules (TimeToRespond, TimeToResolve, TimeToConfirm). Notice that the Impact is assigned by the person that records the incident in the incident management system at the time of its creation.

Due to the fact that those schedules are not normally distributed, we can only perform a nonparametric analysis of variance. We will use the Kruskal-Wallis one-way analysis of variance, an extension of the Mann-Whitney U test, which is the nonparametric analog of one-way ANOVA test. The Kruskal-Wallis H test allows assessing whether several independent samples are drawn from the same population (i.e. if they have similar statistical distributions). In our case those independent samples are the groups of incidents for each of the four Impact valid values.
Let T be a schedule and i and j two different impact categories. Then, the underlying hypotheses for this test are the following:

$$H_0: \forall_{i,j}: T_i \sim T_j \quad \text{vs.} \quad H_1: \neg \forall_{i,j}: T_i \sim T_j$$

| Table 27. Testing the influence of the impact on incident schedules with the Kruskal-Wallis one-way analysis of variance test |
|------------------|------------------|------------------|
| | TimeToRespond | TimeToResolve | TimeToConfirm |
| Chi-Square | 352.381 | 77.532 | 18.487 |
| Df | 3 | 3 | 3 |
| Asymp. Sig. (2-tailed) | .000 | .000 | .000 |

The Kruskal-Wallis H test statistic is distributed approximately as chi-square. Consulting a chi-square table with $df = 3$ (these 3 degrees of freedom is due to the existence of 4 admissible values for this variable as represented in Table 23) and for a significance of $\alpha = 0.01$ (probability of Type I error of 1%) we obtain a critical value of chi-square of 11.3. Since this value is less than the computed H values (the first line in Table 27), we reject the null hypothesis that the samples do not differ on the criterion variable (the Impact). In other words, given any of the schedule variables, we cannot sustain that the statistical distributions of the groups of incidents corresponding to each of the Impact categories are the same. This means that we accept the alternative hypothesis that the impact of an incident has influence on the three schedule variables. Notice that the smallest H value is obtained in the TimeToConfirm variable. This means that this is the schedule that differs less due to the impact. There is not much surprise in this, as this schedule represents the end-user confirmation that the incident was in fact resolved, and that it can be closed. End-users tend to ignore this step in the incident management process and they have the same behavior for all the incidents, independently of their impact.

RQ2: Has the priority of an incident an influence on its lifecycle?

Here we want to know if incidents with different assigned priorities differ in the corresponding lifecycle schedules ($TimeToRespond$, $TimeToResolve$, $TimeToConfirm$). We will
follow the same rationale as for the previous research question, regarding the applicable statistic and its interpretation.

Table 28. Testing the influence of the priority on incident schedules with the Kruskal-Wallis one-way analysis of variance test

<table>
<thead>
<tr>
<th></th>
<th>TimeToRespond</th>
<th>TimeToResolve</th>
<th>TimeToConfirm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Square</td>
<td>298.918</td>
<td>80.868</td>
<td>13.210</td>
</tr>
<tr>
<td>df</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.000</td>
<td>.000</td>
<td>.004</td>
</tr>
</tbody>
</table>

Again, the critical value of chi-square for \((df = 3, \alpha = 0.01)\) is 11.3 (these 3 degrees of freedom is due to the existence of 4 admissible values for this variable as represented in Table 24). Since this value is less than the computed \(H\) values for each of the schedule variables (the first line in Table 28), we reject the null hypothesis that the samples do not differ on the criterion variable (the *Priority*). In other words, given any of the schedule variables, we cannot sustain that the statistical distributions of the groups of incidents corresponding to each of the *Priority* categories are the same. This means that we accept the alternative hypothesis that the priority of an incident has influence on the three schedule variables.

RQ3: Has the originating country of an incident an influence on its lifecycle?

The rational for answering this research question is the same as for the previous one. To enable the application of the Kruskal-Wallis test, we have automatically recoded the *Country* variable from string categories into numerical categories, from 1 to 6. The order is not important in this scenario.
Given that the critical value of chi-square for \((df = 5, \alpha = 0.01) = 15.1\) (these 5 degrees of freedom is due to the existence of 6 countries) and that this value is less than the computed \(H\) values for each of the schedule variables (the first line in Table 29), we reject the null hypothesis that the samples do not differ on the criterion variable \((Country)\). In other words, given any of the schedule variables, we cannot sustain that the statistical distributions of the groups of incidents corresponding to each of the countries are the same. This means that we accept the alternative hypothesis that the country of an incident has influence on the three schedule variables.

RQ4: Has the originating geographical zone of an incident an influence on its lifecycle?

The rational for answering this research question is again the same as for the previous one. To enable the application of the Kruskal-Wallis test, we have automatically recoded the \(Zone\) variable from string categories into numerical categories.

Given that the critical value of chi-square for \((df = 2, \alpha = 0.01) = 9.21\) (these 2 degrees of freedom is due to the existence of 3 geographic zones), we reject the null hypothesis that the samples do not differ on the criterion variable \((Geographic Zone)\). In other words, given
any of the schedule variables, we cannot sustain that the statistical distributions of the groups of incidents corresponding to each of the geographical zones are the same. This means that we accept the alternative hypothesis that the geographical zone where the incident was reported has influence on the three schedule variables.

RQ5: Has the incident category an influence on its lifecycle?

Again, after performing an automatic recode (for the *Category* variable), we obtained the following summary table:

<table>
<thead>
<tr>
<th></th>
<th>TimeToRespond</th>
<th>TimeToResolve</th>
<th>TimeToConfirm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Square</td>
<td>837.595</td>
<td>1258.178</td>
<td>612.215</td>
</tr>
<tr>
<td>df</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
</tbody>
</table>

Given that the critical value of chi-square for \((df = 15, \alpha = 0.01) = 30.6\) (these degrees of freedom is due to the existence of 15 admissible values in this variable as shown in Table 25), we reject the null hypothesis that the samples do not differ on the criterion variable (the incident *Category*). In other words, given any of the schedule variables, we cannot sustain that the statistical distributions of the groups of incidents corresponding to each category are the same. This means that we accept the alternative hypothesis that the incident category has influence on the three schedule variables.

RQ6: Is the distribution of critical priority incidents the same across countries?

Since we know the proportion of the total incident reports originated in each country (see Figure 21) we can expect that the incidents with critical priority per country follow the same proportion of values. For this purpose we will use the Chi-Square Test procedure that tabulates a variable into categories and computes a chi-square statistic. This nonparametric
goodness-of-fit test compares the observed and expected frequencies in each country to test if each one contains the same proportion of values.

To apply this test we have now selected only the critical priority incidents. The result of applying this test is represented in Table 32. Since the critical value of chi-square for \((df = 5, \alpha = 0.01) = 15.1\), we reject the null hypothesis that the proportion of critical priority incidents is the same across countries. This means that we accept the alternative hypothesis that the proportion of critical priority incidents is different across countries.

Table 32. Results of applying the Chi-Square Test procedure to assess if the distribution of critical priority incidents is the same across countries

<table>
<thead>
<tr>
<th>Country</th>
<th>Chi-Square</th>
<th>df</th>
<th>Asymp. Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>64.203</td>
<td>5</td>
<td>.000</td>
</tr>
</tbody>
</table>

Table 3. Critical priority incidents observed and expected across countries

<table>
<thead>
<tr>
<th></th>
<th>Observed N</th>
<th>Expected N</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina (AR)</td>
<td>12.0</td>
<td>17.8</td>
<td>-5.8</td>
</tr>
<tr>
<td>Brazil (BR)</td>
<td>39.0</td>
<td>71.2</td>
<td>-32.2</td>
</tr>
<tr>
<td>Spain (ES)</td>
<td>154.0</td>
<td>129.3</td>
<td>24.7</td>
</tr>
<tr>
<td>France (FR)</td>
<td>198.0</td>
<td>261.5</td>
<td>-63.5</td>
</tr>
<tr>
<td>Portugal (PT)</td>
<td>15.0</td>
<td>18.0</td>
<td>-3.0</td>
</tr>
<tr>
<td>England (UK)</td>
<td>314.0</td>
<td>234.3</td>
<td>79.7</td>
</tr>
<tr>
<td>Total</td>
<td>732.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.6 Results discussion

Based on our experiment we cannot sustain that the statistical distributions of the groups of incidents corresponding to each of the Impact and Priority variables are the same. This means that the impact and the priority of an incident have influence on the three schedule variables. This shows evidence on the need to consider the business impact and the priority in Incident Management process in order to optimize the incident resolution.

Regarding country and geographic zone statistics, given any of the schedule variables, we observe that the country and the geographic zone of an incident have influence on the three schedule variables. This behavior was not expected, and, having such a large incident sample we would expect that incidents should have the same support level regardless they were being reported from country X or Y, or zone A or B.

A possible reason for this is the fact that customers from different countries and zones are served by different technical support offices. Although the support staff in these offices has access to the same incidents database, they have different knowledge about the supported products. Another admissible explanation is the existence of barriers on the communication due to language constraints.

Regarding the categories of the incidents we have evidence that the incident category have influence on the three schedule variables. The performance on responding and resolving the incidents has an evident dependency from their categorization, meaning that the
performance on software support activities is very dependent on the software component that is potentially causing the incident.

We observe in Table 33 that the proportion of critical incidents is different across countries, with England and Spain being on the top. This may reflect the importance that the software has on the organizations on each of those countries. This importance can be somehow related with the company dimension and/or the country economic strengths. Or, on the other hand is just a cultural behavior influencing the incident management process; English and Spanish users think their incidents have higher criticality than they really have. Nevertheless, according to common policies regarding support contracts, reporting critical incidents should mean that a customer productive system is not functioning, or on other words, that the “production is down”. It seems that this happens quite often in England and Spain.

Regardless of any speculative scenarios or any other assumptions, we would expect that companies with operations worldwide and mature IT processes should have higher goals of compliance for their Service Level Agreements than those organizations with just local operations and with low maturity levels in IT Service Management. These levels of compliance should have a strong influence on the support given by the software vendor. This is yet to confirm, as we could not investigate further in this matters due to lack of information regarding support contracts for particular organizations.
This chapter includes a seasonality and trend analysis on the reported and resolved incidents. In addition, the ARIMA technique is used to model the Incident Management process and produce forecasts.
4.1 Introduction

Economy changes, technology trends and financial constraints have led most companies to face tremendous challenges over time. This is also true for the software industry. In this business area there is an increasing need to react in a short period of time to all the occurring changes. Software development and software maintenance are two areas of increasing need for accurate management and near real time reactions. This implies in understanding the past, manage the present, and predict the future. The main goal is to change the paradigm and move from a reactive management approach to a proactive /preventive one.

In such an approach, human, technical, and financial resources should be allocated and de-allocated in advance according to forecasts. For a technical support department it is mandatory to know causal-relationships about incidents and what to expect from the incident management process.

If the support management staff is aware of any seasonality patterns or any trends in the incidents, individuals or technical resources can be allocated when required and de-allocated when there is no need from them. We cannot underestimate the strong influence of time in this requirement. Therefore, a time series approach can be relevant for this to be done accurately.

While the previous chapter studied cause-effect phenomenon in Incident Management [Caldeira and Abreu, 2008], the current one intends to study its diachronic aspects by using time series techniques.

A time series is a collection of consecutive observations generally made at equally spaced time intervals. From another point of view, these observations are particular realizations of a stochastic process [Papoulis, 1984], that is, a collection of random variables ordered in time and defined at a set of time points which may be continuous or discrete.

There are two main goals in time series analysis: (a) identifying the nature of the phenomenon represented by the sequence of observations, and (b) forecasting (predicting
future values of the time series variable). Both of these goals require that the pattern of observed time series data is identified and more or less formally described. Once the pattern is established, we can interpret and integrate it with other data (i.e., use it in our theory of the investigated incidents phenomenon, e.g., seasonal incident creation). Regardless of the depth of our understanding and the validity of our interpretation (theory) of the phenomenon, we can extrapolate the identified pattern to predict future events.

Most time series patterns can be described in terms of two basic classes of components: trend and seasonality. The former represents a general systematic linear or (most often) nonlinear component that changes over time and does not repeat or at least does not repeat within the time range captured by our data. The latter may have a formally similar nature (e.g., exponential growth in incident creation), however, it repeats itself in systematic intervals over time. Those two general components may coexist in real-life data. For example, incidents reported by customers can rapidly grow over the years but they still follow consistent seasonal patterns (e.g., low incident reports in the last weeks of the year).

This chapter it about seasonality and trend analysis related with the reported incidents and is based on a set of computed variables extracted from the incident management database.

4.2 Research questions

To help software companies improve their support methods and processes, it is important to elaborate in the incidents, analyze their patterns of occurrence, and if possible, be able to predict future scenarios.

The goal of this section is to find evidences to answer the previous stated research objectives, namely **RO2** and **RO3**, by applying the following research questions:

RQ7: Does the incidents density for the analyzed time series exhibit particular seasonality?

This research question aims at investigating whether the different time series exhibit, for some particular reasons any periodic patterns (e.g: weekly, monthly, yearly).

RQ8: Does the incidents density for the analyzed time series exhibit particular trends?
This research question aims at investigating whether the different time series exhibit, for some particular reasons, different trends (e.g., increasing or decreasing).

RQ9: Is forecasting based on ARIMA models a valid approach to predict incident evolution?
This research question aims at investigating whether ARIMA time series forecasting is better than a random walk model.

RQ10: What is the accuracy of the ARIMA time series forecasting of incident resolution based on incident creation?
This research question aims at analyzing the error occurred when performing predictions on the ARIMA time series.

RQ11: Can we use ARIMA models for What-If analysis (hypothetic scenarios)?
This research question aims at analyzing forecast values by making some assumptions on the independent variable.

4.3 Experiment process

The data used on the experiment reported on the previous chapter spawned from 2005 to 2007. However, while looking in detail to each year separately, we notice that data from 2005 was considerably sparse. From the beginning of 2006 onwards, the incident report process happens to have entered in “cruise operation”. This is coincidently confirmed with the informal knowledge we had regarding the worldwide adoption of the underlying incident management tool.

Several variables were computed based on the existing data, namely by computing the frequencies of incidents. The resulting dataset was then loaded into the SPSS statistical analysis tool, where the statistical analysis took place.

Figure 22 presents a schema of the process:
Each of these steps is performed by a component of the methodology and each has specific responsibilities as follows:

- **Data Aggregation (Step 1)** – In this step we aggregated the data by day and then by week, creating distinct daily and weekly time series.

- **Data Analysis (Step 2.a)** – The goal of this step was to identify any seasonality and/or any trend in the incidents basically by performing a spectral analysis of the variables and analyzing their autocorrelation.

- **Data Modeling (Step 2.b)** – This step consisted in elaborating the ARIMA model, that is, find its parameters that allow to maximize its fitness to the observed time series.

- **Data Evaluation (Step 2.c)** - This step consisted in evaluating the ARIMA models with the identified parameters. Some evaluations were also made with ad-hoc parameters.

- **Forecast (Step 3)** – Forecasting was done based on the best identified models and using different estimation periods. The obtained results were compared with the real data obtained from year 2008 and the forecast values were validated using the 4-Plot approach.
4. Diachronic Aspects on Incident Management

- **Discussion and Threats to Validity (Step 4)** – This step includes a general discussion on the seasonality, trend patterns and on the accuracy of the ARIMA models to predict on Incident Management process.

4.4 Sample demographics

The subjects of our experiment are days. We have summarized seven variables per day of the year. Those variables are represented and described in Table 37 in section 4.4.2. The incident categorization process is critical to understand the types of incidents being reported and very important to help allocating the right resources in solving the incidents. The categorization process and the corresponding categories can also present us valuable information to be used in the software development process. The observed frequencies of incident categories are represented in Figure 23. Table 25 in the previous chapter details the admissible categories and explains their purpose.

![Incident frequencies by category](image-url)

Figure 23. Incident frequencies by category
By analyzing incident categories frequencies, we can identify the most frequent types of incidents being reported. This information can be related with the software development process in order to improve areas of poor performance. As shown in Figure 23 and Table 34, the top 5 categories are clearly identified and they represent nearly 82.9% of all the incidents.

<table>
<thead>
<tr>
<th>Valid Categories</th>
<th>Frequency</th>
<th>Percent</th>
<th>Software development phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>3rd Party Product</td>
<td>301</td>
<td>1.3</td>
<td>82.9%</td>
</tr>
<tr>
<td>Customer Care</td>
<td>980</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>Customization</td>
<td>1432</td>
<td>6.2</td>
<td>Software Requirements</td>
</tr>
<tr>
<td>Documentation</td>
<td>400</td>
<td>1.7</td>
<td>Software Construction</td>
</tr>
<tr>
<td>Function</td>
<td>9989</td>
<td>43.6</td>
<td>Software Construction</td>
</tr>
<tr>
<td>Installation</td>
<td>4207</td>
<td>18.4</td>
<td>Software Construction</td>
</tr>
<tr>
<td>Internationalization</td>
<td>22</td>
<td>.1</td>
<td>Software Requirements</td>
</tr>
<tr>
<td>Compatibility</td>
<td>1691</td>
<td>7.4</td>
<td>Software Design</td>
</tr>
<tr>
<td>License</td>
<td>1678</td>
<td>7.3</td>
<td>Software Requirements</td>
</tr>
<tr>
<td>Localization</td>
<td>44</td>
<td>.2</td>
<td>Software Design</td>
</tr>
<tr>
<td>Performance/Scalability</td>
<td>359</td>
<td>1.6</td>
<td>Software Testing</td>
</tr>
<tr>
<td>Request for Information</td>
<td>542</td>
<td>2.4</td>
<td>-</td>
</tr>
<tr>
<td>Security Vulnerability</td>
<td>33</td>
<td>.1</td>
<td>Software Testing</td>
</tr>
<tr>
<td>Stability</td>
<td>485</td>
<td>2.1</td>
<td>Software Testing</td>
</tr>
<tr>
<td>Training</td>
<td>345</td>
<td>1.5</td>
<td>Software Maintenance</td>
</tr>
<tr>
<td>Uncategorized</td>
<td>404</td>
<td>1.8</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>22912</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

As shown in Table 34, we can easily understand that 39.3% (82.9 – 43.6(Function)) of the incidents are not related with the software functionalities but with a few steps before the users make really use of the software. Those steps are: Installation, Licensing mechanisms, Customization and systems Compatibility. If only 43.6% of the incidents are related with software functionalities, this means that more than 50% of the incidents are related with what we might think as “secondary” items in the software development process. In reality, these “secondary” items are very critical when it comes to the software support activities because they are the cause for the majority of incidents being reported, thus causing service degradation to happen more often.

4. Diachronic Aspects on Incident Management

4.4.1 Seasonal patterns

A pattern we were trying to find has to do with the time and season that the incidents are being reported. The following picture shows the frequencies of incidents summarized per week of both years (2006 and 2007). Detailed data about incident frequencies is provided in Table 35.

![Figure 24. Incident frequencies per week of the year](image)

Table 35. Incident frequencies (Year 2006 and 2007)

<table>
<thead>
<tr>
<th>Weeks 2006+2007</th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>353</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
<td>542</td>
<td>2.4</td>
<td>3.9</td>
</tr>
<tr>
<td>3</td>
<td>413</td>
<td>1.8</td>
<td>5.7</td>
</tr>
<tr>
<td>4</td>
<td>440</td>
<td>1.9</td>
<td>7.6</td>
</tr>
<tr>
<td>5</td>
<td>446</td>
<td>1.9</td>
<td>9.6</td>
</tr>
<tr>
<td>6</td>
<td>436</td>
<td>1.9</td>
<td>11.5</td>
</tr>
<tr>
<td>7</td>
<td>400</td>
<td>1.7</td>
<td>13.2</td>
</tr>
<tr>
<td>8</td>
<td>393</td>
<td>1.7</td>
<td>14.9</td>
</tr>
<tr>
<td>9</td>
<td>433</td>
<td>1.9</td>
<td>16.8</td>
</tr>
<tr>
<td>10</td>
<td>429</td>
<td>1.9</td>
<td>18.7</td>
</tr>
<tr>
<td>11</td>
<td>487</td>
<td>2.1</td>
<td>20.8</td>
</tr>
<tr>
<td>12</td>
<td>448</td>
<td>2.0</td>
<td>22.8</td>
</tr>
<tr>
<td>13</td>
<td>410</td>
<td>1.8</td>
<td>24.6</td>
</tr>
<tr>
<td>14</td>
<td>392</td>
<td>1.7</td>
<td>26.3</td>
</tr>
<tr>
<td>15</td>
<td>321</td>
<td>1.4</td>
<td>27.7</td>
</tr>
<tr>
<td>16</td>
<td>411</td>
<td>1.8</td>
<td>29.5</td>
</tr>
<tr>
<td>17</td>
<td>418</td>
<td>1.8</td>
<td>31.3</td>
</tr>
<tr>
<td>18</td>
<td>324</td>
<td>1.4</td>
<td>32.7</td>
</tr>
</tbody>
</table>
Frequency, Percent, Cumulative Percent

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>341</td>
<td>1.5</td>
<td>34.2</td>
</tr>
<tr>
<td>20</td>
<td>340</td>
<td>1.5</td>
<td>35.7</td>
</tr>
<tr>
<td>21</td>
<td>357</td>
<td>1.6</td>
<td>37.2</td>
</tr>
<tr>
<td>22</td>
<td>380</td>
<td>1.7</td>
<td>38.9</td>
</tr>
<tr>
<td>23</td>
<td>307</td>
<td>1.3</td>
<td>40.2</td>
</tr>
<tr>
<td>24</td>
<td>386</td>
<td>1.7</td>
<td>41.9</td>
</tr>
<tr>
<td>25</td>
<td>418</td>
<td>1.8</td>
<td>43.8</td>
</tr>
<tr>
<td>26</td>
<td>394</td>
<td>1.7</td>
<td>45.5</td>
</tr>
<tr>
<td>27</td>
<td>410</td>
<td>1.8</td>
<td>47.3</td>
</tr>
<tr>
<td>28</td>
<td>379</td>
<td>1.7</td>
<td>48.9</td>
</tr>
<tr>
<td>29</td>
<td>380</td>
<td>1.7</td>
<td>50.6</td>
</tr>
<tr>
<td>30</td>
<td>354</td>
<td>1.5</td>
<td>52.1</td>
</tr>
<tr>
<td>31</td>
<td>339</td>
<td>1.5</td>
<td>53.6</td>
</tr>
<tr>
<td>32</td>
<td>289</td>
<td>1.3</td>
<td>54.9</td>
</tr>
<tr>
<td>33</td>
<td>287</td>
<td>1.3</td>
<td>56.1</td>
</tr>
<tr>
<td>34</td>
<td>323</td>
<td>1.4</td>
<td>57.5</td>
</tr>
<tr>
<td>35</td>
<td>326</td>
<td>1.4</td>
<td>58.9</td>
</tr>
<tr>
<td>36</td>
<td>378</td>
<td>1.6</td>
<td>60.6</td>
</tr>
<tr>
<td>37</td>
<td>424</td>
<td>1.9</td>
<td>62.4</td>
</tr>
<tr>
<td>38</td>
<td>418</td>
<td>1.8</td>
<td>64.3</td>
</tr>
<tr>
<td>39</td>
<td>460</td>
<td>2.0</td>
<td>66.3</td>
</tr>
<tr>
<td>40</td>
<td>538</td>
<td>2.3</td>
<td>68.6</td>
</tr>
<tr>
<td>41</td>
<td>428</td>
<td>1.9</td>
<td>70.5</td>
</tr>
<tr>
<td>42</td>
<td>626</td>
<td>2.7</td>
<td>73.2</td>
</tr>
<tr>
<td>43</td>
<td>622</td>
<td>2.7</td>
<td>75.9</td>
</tr>
<tr>
<td>44</td>
<td>537</td>
<td>2.3</td>
<td>78.3</td>
</tr>
<tr>
<td>45</td>
<td>521</td>
<td>2.3</td>
<td>80.6</td>
</tr>
<tr>
<td>46</td>
<td>567</td>
<td>2.5</td>
<td>83.0</td>
</tr>
<tr>
<td>47</td>
<td>801</td>
<td>3.5</td>
<td>86.5</td>
</tr>
<tr>
<td>48</td>
<td>790</td>
<td>3.4</td>
<td>90.0</td>
</tr>
<tr>
<td>49</td>
<td>678</td>
<td>3.0</td>
<td>92.9</td>
</tr>
<tr>
<td>50</td>
<td>670</td>
<td>2.9</td>
<td>95.9</td>
</tr>
<tr>
<td>51</td>
<td>590</td>
<td>2.6</td>
<td>98.4</td>
</tr>
<tr>
<td>52</td>
<td>292</td>
<td>1.3</td>
<td>99.7</td>
</tr>
<tr>
<td>53</td>
<td>66</td>
<td>0.3</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>22912</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

By simple observation, the only pattern we may find is that the amount of incidents being reported increases from the 32th to the 47th week (roughly from the end of September to the end of November), and there is a substantial reduction during the last five-six weeks of the year. The increasing number of incidents after the 32th week is probably the result of software changes, upgrades and/or tests that companies were doing in order to be prepared for the last months of the year. Particularly the last month of the year is very intensive for every business (due to Christmas and New Year) and any testing or any action that can disturb the normal functioning of their systems is avoided. As such, the number of incidents reported decreases. This rationale lacks empirical evidence which could be gathered by a qualitative survey endorsed to interested parties (e.g., set of major incident reporters).

Nevertheless, our aim is not to investigate further why the incidents were reported with such a pattern, instead, we were focused on identifying that a pattern exists, and this is valuable information for the next sections.
4. Diachronic Aspects on Incident Management

Unsurprisingly, the majority of incidents are reported during working days. These frequencies increase from Monday(2), until it reaches its maximum on Wednesday(4), and then it has a decreasing behavior until Friday(6). Saturday(7) and Sunday(1) are very quiet days in terms of incident creation. Figure 25 shows graphically the sum of total incidents per day within the week for the years in the sample. Notice, based on Table 36 data, that only 1% of the incidents are reported on weekends.

Table 36 shows the detailed information about incident frequencies. Further rationale about this weekly behavior will be presented in the following section.

<table>
<thead>
<tr>
<th>Days of the week</th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunday(1)</td>
<td>107</td>
<td>.5</td>
<td>.5</td>
</tr>
<tr>
<td>Monday(2)</td>
<td>4216</td>
<td>18.4</td>
<td>18.9</td>
</tr>
<tr>
<td>Tuesday(3)</td>
<td>4684</td>
<td>20.4</td>
<td>39.3</td>
</tr>
<tr>
<td>Wednesday(4)</td>
<td>4928</td>
<td>21.5</td>
<td>60.8</td>
</tr>
<tr>
<td>Thursday(5)</td>
<td>4689</td>
<td>20.5</td>
<td>81.3</td>
</tr>
<tr>
<td>Friday(6)</td>
<td>4169</td>
<td>18.2</td>
<td>99.5</td>
</tr>
<tr>
<td>Saturday(7)</td>
<td>119</td>
<td>.5</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>22912</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Figure 25. Incident frequencies per week day
4. Diachronic Aspects on Incident Management

4.4.2 Variables and scale types

The variables used in this experiment are self-described in Table 37.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Scale</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>All_Created</td>
<td>Numeric Scale</td>
<td>Total of incidents created per day</td>
</tr>
<tr>
<td>All_Resolved</td>
<td>Numeric Scale</td>
<td>Total of incidents resolved per day</td>
</tr>
<tr>
<td>All_Created_Week</td>
<td>Numeric Scale</td>
<td>Total of incidents created per week</td>
</tr>
<tr>
<td>All_Resolved_Week</td>
<td>Numeric Scale</td>
<td>Total of incidents resolved per week</td>
</tr>
<tr>
<td>WeekOfCreation</td>
<td>Interval</td>
<td>Order of the week (in the year) when the incident occurred. Valid values belong to (1-53)</td>
</tr>
<tr>
<td>WeekdayOfCreation</td>
<td>Interval</td>
<td>Order of the day (in the week) when the incident occurred. Valid values belong to (1-7)</td>
</tr>
<tr>
<td>DaysToResolve</td>
<td>Numeric Scale - Constant</td>
<td>Average number of days to resolve an incident</td>
</tr>
</tbody>
</table>

The above variables represent the observations for the studied time series. Their meaning is relevant for forecast new incidents, pace to close incidents and of the presence and absence of trends. These variables represent aggregated incidents reported and resolved per day and week, resulting in 4 time series.

In the modeling sections described later in this chapter we used two variables for the daily series; one dependent variable (All_Resolved) and one independent variable (All_Created). Similar to these, we have the weekly series represented by variables All_Created_Week and All_Resolved_Week. Variables WeekOfCreation and WeekdayOfCreation were used to identify patterns and variable DaysToResolve is mentioned to present the average days to resolve incidents.

4.5 Hypothesis identification and testing

The analysis of seasonality and trend components are extremely important when we want to model time series. The ARIMA parameters \((p,d,q) \) representing the non-seasonal parameters and \((ps,ds,qs) \) representing the seasonal part of the model, are obtained by carefully
observation of those time series patterns. Complete definitions about ARIMA models and its parameters can be found in the time series section of appendix B.

4.5.1 Seasonality analysis

Seasonal patterns of time series can be verified via correlograms. Either the autocorrelation function (ACF) or the partial autocorrelation function (PACF) can attest the presence of any pattern. As seen in [Box and Jenkins, 1970], the PACF is a more accurate mean of analyzing the seasonality. More information about these functions can be found in appendix B.

![Autocorrelation Function (ACF)](image)

Figure 26. Autocorrelation Function (ACF)

As show in Figure 26, there is a moderate correlation between k and $k-1$ lags (time spans) of the occurrences of incidents resolved per day. This model represents a sinusoidal behavior and the stronger correlation factor occurs at every 7 lags. We know that each observation in our time series represents a day, therefore we can suspect that that there is a weekly seasonal pattern. To confirm this we should analyze also the PACF. Although with moderate correlation, but well above the confidence intervals, the PACF show exactly the same pattern at every 7 lags leaving no doubts about the weekly pattern.
As a conclusion and answering RQ7, we can say that our time series has a seasonality period that repeats every 7 days (weekly). This assumption is the base for the model parameter identification phase.

4.5.2 Trend analysis

There are no exact way to identify trend components in the time series data; however, as long as the trend is monotonous (consistently increasing or decreasing) that part of data analysis is typically not very difficult. This can be graphically viewed by plotting our time series observations. For analyzing the trend on the performance of the support staff, we use the daily series, representing resolved incidents per day. This is represented in Figure 28.
The above figure suggests the existence of a trend, with a very smooth increasing pattern. To confirm this behavior we have done a seasonal decomposition. The seasonal decomposition procedure decomposes a series into a seasonal component, a combined trend and cycle component, and an "error" component. The seasonal decomposition procedure creates four new series:

1. The seasonal adjustment factors (SAF) which indicate the effect of each period on the level of the series.
2. The seasonally adjusted series (SAS) which is a new series with the values obtained after removing the seasonal variation of the original series.
3. The smoothed trend-cycle components (STC) show the trend and cyclical behavior present in the series.
4. The residual or "error" values (ERR) representing the values that remain after the seasonal, trend and cycle components have been removed from the series.
4. Diachronic Aspects on Incident Management

Figure 29, plotting the decomposed trend and cycle component, shows that there is a weak increasing trend. We can also identify a set of peaks, which may identify another pattern of seasonality. Analysis of the time series show that those peaks reflect the end of year (November and December) and therefore we can assume there is another seasonality pattern here, and this is an important observation to \textbf{RQ7}. Regarding trending and answering \textbf{RQ8}, we may say that the period of data collected is not enough to take conclusions but it is acceptable to say that it seems there is an increasing trend, although with some aberrant observations, as mentioned in [Franses, 1998]. To make a clear statement about trending in this time series requires careful validation and more data to examine. To validate the de-trended series we should inspect its residuals or error values (ERR series). Residuals are differences between the predicted de-trended series output from the model and the measured output from the basic series observations. Thus, residuals represent the portion of the validation data not explained by the model. Residuals should not be correlated for the series to be considered valid. Non-correlated residuals mean that also no correlation exists in the original series and the de-trended one. Observing Figure 30, we have evidence that the series is valid based on the histogram and residuals QQ-plots. The histogram shown in Figure 30 and the normal probability plot in Figure 31 sustain that the distribution of the residuals is normal confirming the basic assumption to validate the de-trended series.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{chart.png}
\caption{ERR series for the SAS}
\end{figure}
4.6 Modeling daily time series with ARIMA

4.6.1 Introduction

The modeling and forecasting procedures requires knowledge about the mathematical model of the process. However, in real-life research and practice, patterns of the data are unclear, individual observations involve considerable error, and we still need not only to uncover the hidden patterns in the data but also generate forecasts. The ARIMA methodology [Box and Jenkins, 1970] allow us to do just that. However, because of its power and flexibility, ARIMA is a complex technique; it is not easy to use and it requires a great deal of experience.

The general model includes autoregressive (AR) as well as moving average parameters (MA), and explicitly includes differencing in the formulation of the model. Specifically, the three types of parameters in the model are: the autoregressive parameters (p), the number of differencing passes (d), and moving average parameters (q). In this notation models are
summarized as ARIMA \((p, d, q)\); so, for example, a model described as \((0, 1, 2)\) means that it contains 0 (zero) autoregressive \((p)\) parameters and 2 moving average \((q)\) parameters which were computed for the series after it was differenced once \((d=1)\).

4.6.2 Model identification

The ARIMA models require 3 non-seasonal parameters, so called \(p, d, \text{ and } q\) and 3 seasonal parameters, named \(ps, ds, qs\). This model can be decomposed in the non seasonal \(AR(p)\), differencing \((d)\) and \(MA(q)\). Similarly, it has a seasonal part decomposed in seasonal autoregressive \(AR(ps)\), seasonal differencing \((ds)\) and seasonal moving average \(MA(qs)\). Stationarity does not have to exist originally in a series. However, a series has to be stationary for the application of ARIMA\((p,d,q)(ps,ds,qs)\) models to be accurate. From an intuitive point of view, a time series is said to be stationary if there is no systematic change in mean (no trend), if there is no systematic change in variance and if strictly periodic variations have been removed.

4.6.3 Differencing

When a time series is not stationary it is quite common to submit the series to a transformation, normally Differencing. The number of times a series needs to be differenced until it is stationary is the value that \(d\) assumes in the ARIMA model.

As observed earlier in Figure 28, we conclude that our time series is not stationary, therefore, to make it stationary we have applied a differencing transformation with lag 1 which is reflected by Figure 32.
It is also common to have pre-differencing transformations to stabilize the variance of the time series, usually a log or square root transformation. In our case there was no need to apply any transformation before. After differencing the series once, it has become stationary, without any trend and with the seasonality peaks removed. This pattern is also known as the Gaussian effect or White-noise [Wikipedia, 2009].

The PACF in Figure 33 sustains this, as we can observe that the correlations peak in early lags, but, cut off suddenly. This is a normal behavior of a stationary time series.
Because we had to difference the series once to make it stationary, we have identified our \(d=1 \) parameter.

4.6.4 Non-seasonal parameters

The AR\((p)\) and The MA\((q)\) parameters can be obtained by analyzing the ACF and PACF.

Because the ACF has a sine-wave shape pattern (Figure 34) and the PACF has a set of exponential decays (Figure 35) we estimate our regular autoregressive parameter AR\((p=2)\) and our regular moving average parameter MA\((q=2)\). The notions behind the rationale for identifying the \(p \) and \(q \) parameters are amply described in appendix B.

4.6.5 Seasonal parameters

As mentioned earlier, our time series has a seasonality period of 7 days (1 week). After applying a seasonal differencing once \((ds=1)\), and due to the ACF abrupt decay (Figure 37) and PACF exponential decay (Figure 36), we estimate our seasonal autoregressive parameter AR\((ps=1)\) and our seasonal moving average parameter MA\((qs=1)\).
Now that we have the ARIMA($p=2,d=1,q=2$)($ps=1,ds=1,qs=1$) parameters we can estimate the model and its accuracy.

4.6.6 Model estimation

The application of the identified model ARIMA($2,1,2$)/($1,1,1$), was performed using our sample data with 730 observations (2 years) each of them representing 1 day.

We used two variables; one dependent variable ($All_{Resolved}$) and one independent variable ($All_{Created}$). Our goal was to try to forecast on the resolved incidents based on the created ones. We could identify from our sample that the average time to resolve an incident was around 21 days as it is represented by Table 38. This allowed us to make another assumption; during at least 21 days, on average, remaining open incidents affect the way other incidents are resolved. We will take this in consideration for our model.

<table>
<thead>
<tr>
<th>Table 38. Average number of days to resolve an incident</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
</tr>
<tr>
<td>DaysToResolve</td>
</tr>
</tbody>
</table>
4. Diachronic Aspects on Incident Management

We have applied the model presented in Table 39, with a non-seasonal denominator of 21 in the independent variable (All_Created) and a seasonal denominator of 1. These parameters specifies how deviations from the series mean, for previous values of the selected independent (predictor) series, are used to predict current values of the dependent series. This mechanism allowed us to add to our model the perception (mean time to resolve incidents) that incident resolution on time \(t \), has a strong influence by incidents created in the \(t-1 \) to \(t-21 \) days.

Modeling ARIMA(2,1,2)(1,1,1)

<table>
<thead>
<tr>
<th>Model ID</th>
<th>Incidents resolved per day</th>
<th>Estimation Period</th>
<th>Forecast Period</th>
<th>Model Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model_1</td>
<td></td>
<td>From week 1 to 102</td>
<td>From week 103 to 121</td>
<td>ARIMA(2,1,2)(1,1,1)</td>
</tr>
</tbody>
</table>

Other Parameters

- Independent variable - All_Created;
- Dependent variable transformation – No;
- Independent variable transfer function orders (Non-Seasonal) Numerator – 0; Denominator – 21; Difference – 1; Delay – 0;
- Independent variable transfer function orders (Seasonal) Numerator – 0; Denominator – 1; Difference – 1; Delay – 0;
- Detect outliers automatically – Yes; Include Constant in the Model – No;

As a result, we obtained the model represented in Figure 38. When comparing the fit model (light blue) and the real data observations (red line), it seems that the model is suitable to perform forecasting about future periods. When analyzing the forecasted values (dark blue line) and compared those values with the real data observations for the same period, we realize that the model in fact does not fit. The plots also suggest that the model is making the values growing exponentially.

![Figure 38. Plot of ARIMA(2,1,2)(1,1,1) model](image-url)
To check the accuracy of obtained models we have to inspect its statistics. Table 40 shows that the model has one predictor/independent variable (*All_Created*), that 5 outliers have been removed and that its accuracy is reasonably high by inspecting its stationary R-squared and ordinary R-squared statistics. The stationary R-squared statistics is a measure that compares the stationary part of the model to a simple mean model. This measure is preferable to ordinary R-squared when there is a trend or seasonal pattern. R-squared statistics estimates the proportion of the total variation in the series that is explained by the model. This measure is most useful when the series is stationary.

However, this model has also a very high percentage of errors, represented by the model average percent error (MAPE) and the model maximum average percent error (MaxAPE). Due to these statistics, and the observation of the model plots, we have decided to search for another suitable model other than the ARIMA (2,1,2)(1,1,1).

Table 40. Model ARIMA(2,1,2)(1,1,1) statistics

<table>
<thead>
<tr>
<th>Model</th>
<th>Number of Predictors</th>
<th>Stationary R-squared</th>
<th>Ordinary R-squared</th>
<th>MAPE</th>
<th>MaxAPE</th>
<th>Number of Outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidents resolved per day Model_1</td>
<td>1</td>
<td>.723</td>
<td>.843</td>
<td>64.329</td>
<td>1273.850</td>
<td>5</td>
</tr>
</tbody>
</table>

Modeling ARIMA(2,1,2)(1,0,1)

Carefully observation of the previous model and based on our experience, we notice that the model was over-differenced, that seasonal differencing on top of the non-seasonal differencing was exaggerated. This means that the *ds* parameter was not adjusted correctly, thus causing the exponential grow in the forecasted values. We decided to make the *ds*=0, the seasonal denominator was removed from the model and we evaluated it again, this time with ARIMA (2,1,2)(1,0,1).
4. Diachronic Aspects on Incident Management

Table 41. Model description for ARIMA(2,1,2)(1,0,1)

<table>
<thead>
<tr>
<th>Model ID</th>
<th>Incidents resolved per day</th>
<th>Model_2</th>
<th>Estimation Period</th>
<th>Forecast Period</th>
<th>Model Type</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Other Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent variable - All_Created; Dependent variable transformation – No;</td>
</tr>
<tr>
<td>Independent variable transfer function orders (Non-Seasonal) Numerator – 0; Denominator – 21; Difference – 1; Delay – 0;</td>
</tr>
<tr>
<td>Independent variable transfer function orders (Seasonal) Numerator – 0; Denominator – 0; Difference – 0; Delay – 0;</td>
</tr>
<tr>
<td>Detect outliers automatically – Yes; Include Constant in the Model – No;</td>
</tr>
</tbody>
</table>

This evaluation showed a better accuracy as represented by the stationary R-squared statistics (0.908 = 90.8%). The MAPE have reduced but the MaxAPE have increased. Although still with a huge error margins, this model is far better than the previous one. This can be confirmed not only by the Stationary R-squared statistics in Table 42, but also graphically by the plot of the observations; real observed, fit, and forecasted values in Figure 39.

Table 42. Model ARIMA(2,1,2)(1,0,1) statistics

<table>
<thead>
<tr>
<th>Model</th>
<th>Number of Predictors</th>
<th>Stationary R-squared</th>
<th>Model Fit statistics</th>
<th>Number of Outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidents resolved per day</td>
<td>1</td>
<td>.908</td>
<td>.884</td>
<td>50.851</td>
</tr>
<tr>
<td>Model_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 39. Plot of ARIMA(2,1,2)(1,0,1) model
We have applied again the same model, this time by reducing the estimation period (week 1 to 95) and forecasting from week 96 to week 121. The obtained results are very similar to the preceding one, but less accurate, as it has a higher error percentage as represented by the MAPE and MaxAPE in Table 43.

<table>
<thead>
<tr>
<th>Model</th>
<th>Number of Predictors</th>
<th>Stationary R-squared</th>
<th>Stationary R-squared</th>
<th>MAPE</th>
<th>MaxAPE</th>
<th>Number of Outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidents resolved per day</td>
<td>1</td>
<td>.904</td>
<td>.881</td>
<td>56.421</td>
<td>2157.371</td>
<td>4</td>
</tr>
</tbody>
</table>

Figure 40. Plot of ARIMA(2,1,2)(1,0,1) model (estimation period from week 1 to 95)

4.6.7 Model validity

Finally we decided to compare our model with a random walk model. This is a model where autoregressive (AR) or moving average (MA) parameters are not included. It has the form of ARIMA(0,d,0)(0,d,0). Since we were differencing our regular series one time, we have used ARIMA(0,1,0)(0,0,0).
4. Diachronic Aspects on Incident Management

Modeling a Random-Walk model ARIMA(0,1,0)(0,0,0)

Table 44. Model description for ARIMA(0,1,0)(0,0,0)

<table>
<thead>
<tr>
<th>Model ID</th>
<th>Incidents resolved per day</th>
<th>Estimation Period</th>
<th>Forecast Period</th>
<th>Model Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model_3</td>
<td></td>
<td>From week 1 to 95</td>
<td>From week 96 to 121</td>
<td>ARIMA(0,1,0)(0,0,0)</td>
</tr>
</tbody>
</table>

Other Parameters

Independent variable - All_Created; Dependent variable transformation – No;
Independent variable transfer function orders (Non-Seasonal) Numerator – 0; Denominator – 21; Difference – 1; Delay – 0;
Independent variable transfer function orders (Seasonal) Numerator – 0; Denominator – 0; Difference – 0; Delay – 0;
Detect outliers automatically – Yes; Include Constant in the Model – No;

We can conclude from the below statistics that this model is worse than the other models except for the first one ARIMA(2,1,2)(1,1,1). Although its stationary R-squared value is high, it has also a high MAPE and MaxAPE. Comparing the dark blue plot with the red plot in Figure 41, it shows a clear discrepancy between the model estimation values and real observations.

Table 45. Model ARIMA(0,1,0)(0,0,0) statistics

<table>
<thead>
<tr>
<th>Model</th>
<th>Number of Predictors</th>
<th>Stationary R-squared</th>
<th>Stationary R-squared</th>
<th>MAPE</th>
<th>MaxAPE</th>
<th>Number of Outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidents resolved per day</td>
<td>1</td>
<td>.846</td>
<td>.809</td>
<td>85.370</td>
<td>2875.744</td>
<td>8</td>
</tr>
<tr>
<td>Model_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 41. Plot of ARIMA(0,1,0)(0,0,0) model – A Random Walk Model
4. Diachronic Aspects on Incident Management

From all the model evaluations, whose results are presented in Table 46, we can conclude that model Model_2 evaluating the ARIMA(2,1,2)(1,0,1) parameters was the one that showed the most accurate values. It has the highest stationary R-squared value and the smallest percentage of error in MAPE and MaxAPE statistics. Therefore, if another study of incidents was to be made, this model would be definitely considered. Nevertheless, it has yet a very high (unacceptable for us) degree of uncertainty as we can observe from the MAPE and MaxAPE error statistics. To overcome this, we have decided to aggregate our data by week.

<table>
<thead>
<tr>
<th>Model</th>
<th>Number of Predictors</th>
<th>Stationary R-squared</th>
<th>R-squared</th>
<th>MAPE</th>
<th>MaxAPE</th>
<th>Number of Outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidents resolved per day</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model_1 – ARIMA(2,1,2)(1,1,1)</td>
<td>1</td>
<td>.723</td>
<td>.843</td>
<td>64.329</td>
<td>1273.850</td>
<td>5</td>
</tr>
<tr>
<td>Model_2 – ARIMA(2,1,2)(1,0,1)</td>
<td>1</td>
<td>.908</td>
<td>.884</td>
<td>50.851</td>
<td>1979.931</td>
<td>4</td>
</tr>
<tr>
<td>Model_2A – ARIMA(2,1,2)(1,0,1)</td>
<td>1</td>
<td>.904</td>
<td>.881</td>
<td>56.421</td>
<td>2157.371</td>
<td>4</td>
</tr>
<tr>
<td>Model_3 – ARIMA(0,1,0)(0,0,0)</td>
<td>1</td>
<td>.846</td>
<td>.809</td>
<td>85.370</td>
<td>2875.744</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 46. Daily model comparison

A different estimation period was used in this model when compared with Model_2
4. Diachronic Aspects on Incident Management

4.7 Modeling weekly time series with ARIMA

4.7.1 Differencing

Our goal is to check if we can obtain more accurate models simply by using time series representing the incidents per week and not per day. Using the same techniques mentioned earlier we have observed that our series was not stationary. The following figures show the correlograms of our series after differencing with lag 1. Analyzing the ACF and PACF shows that the series are stationary and therefore suitable for ARIMA models.

On the previous section, our values represented observations per day and therefore we had a periodicity of 7 days per week. That model had non-seasonal parameters as well as seasonal parameters, representing the days and the weeks.
4. Diachronic Aspects on Incident Management

In this time series we have only non-seasonal parameters. This is related with the fact that weeks are not periodic (some years have 365 days and others 366). Due to this constraint, we have a model in this form; ARIMA(p,d,q). After differencing the series once, we have identified our $d=1$ parameter.

4.7.2 Non-seasonal parameters

The same techniques used in the previous section apply in this case to identify the AR and MA parameters. Due to the ACF and PACF quick decay starting at lag 1, and because no other correlation exists for the remaining lags, we choose to have one autoregressive (AR) parameter and one moving average (MA) parameter. The weekly time series model is defined as ARIMA(1,1,1).

4.7.3 Model estimation

Modeling ARIMA(1,1,1)

<table>
<thead>
<tr>
<th>Estimation Period</th>
<th>Forecast Period</th>
<th>Model Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model ID</td>
<td>Incidents resolved per week</td>
<td>Model_4</td>
</tr>
</tbody>
</table>

Other Parameters

- Independent variable - *All_Created*; Dependent variable transformation – *No*;
- Independent variable transfer function orders: Numerator – 0; Denominator – 3; Difference – 1; Delay – 0;
- Detect outliers automatically – *Yes*; Include Constant in the Model – *No*;

At a first glance, by looking into Table 48, we can notice that this model has a lower Stationary R-squared statistics when compared with the previous models (daily models). The major gain with this model is the reduced error rate observed in the MAPE and MaxAPE statistics. If we take into account that this model is the result of having only one independent variable, we have to admit that it performs very well.
4. Diachronic Aspects on Incident Management

Table 48. Model ARIMA(1,1,1) statistics

<table>
<thead>
<tr>
<th>Model</th>
<th>Number of Predictors</th>
<th>Stationary R-squared</th>
<th>Stationary R-squared</th>
<th>MAPE</th>
<th>MaxAPE</th>
<th>Statistics</th>
<th>Number of Outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidents resolved per week</td>
<td>1</td>
<td>.829</td>
<td>.933</td>
<td>6.408</td>
<td>34.760</td>
<td>15.776</td>
<td>2</td>
</tr>
</tbody>
</table>

Figure 44. Plot of ARIMA(1,1,1) forecast to week 157 with observed values

In the end of the experiment we were able to collect more data from year 2008 (week 106 to 157). Even if we have not included this data, neither in the descriptive statistics or used it in our model estimation period, we used the year 2008 data to validate the evaluated models and their forecast values. The above plot shows the forecast values (dark blue) when compared with the real observations period (week 95 to 157) for which we were making the predictions. We cannot underestimate the strong overlap between the forecast values and the real values (in red) for the prediction period.

4.7.4 Model substantiation

To validate our model(s) it is imperative that some conditions are verified in the series residuals. The estimation procedure assumes that the residuals are not auto-correlated and that they are normally distributed. We have adapted the 4-Plot graph (plus one additional plot) to help us analyzing the residuals (error series) from our weekly forecast series.
The assumption that the residuals are not correlated is sustained by the two top graphs, the ACF and PACF. The two graphs in the middle corroborate the premise that the residuals follow a normal distribution. The scatter plot confirms that the residuals are random observations, therefore, not auto-correlated. Having all the conditions satisfied, we can confirm that our model is valid and that the forecast series is trustable in its accuracy.
4. Diachronic Aspects on Incident Management

4.7.5 Model validity

To at least compare our previous model with another model we have decided to evaluate our series against a Random-Walk approach, meaning, to compare it with a model in the form of ARIMA(0,d,0). Because we have to difference our series once, we used \(d=1 \).

<table>
<thead>
<tr>
<th>Model ID</th>
<th>Incidents resolved per week</th>
<th>Estimation Period</th>
<th>Forecast Period</th>
<th>Model Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model_5</td>
<td></td>
<td>From week 1 to 95</td>
<td>From week 96 to 157</td>
<td>ARIMA(0,1,0)</td>
</tr>
</tbody>
</table>

Other Parameters

- Independent variable - *All_Created*; Dependent variable transformation – No;
- Independent variable transfer function orders : Numerator – 0; Denominator – 3; Difference – 1; Delay – 0;
- Detect outliers automatically – Yes; Include Constant in the Model – No;

Table 50. Model ARIMA(0,1,0) statistics

<table>
<thead>
<tr>
<th>Model</th>
<th>Number of Predictors</th>
<th>Stationary</th>
<th>MAPE</th>
<th>MaxAPE</th>
<th>Number of Outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidents resolved per week</td>
<td>1</td>
<td>.657</td>
<td>.862</td>
<td>8.544</td>
<td>33.915</td>
</tr>
<tr>
<td>Model_5</td>
<td>1</td>
<td>.657</td>
<td>.862</td>
<td>8.544</td>
<td>33.915</td>
</tr>
</tbody>
</table>

Figure 46. Forecast values for the weekly Random-Walk model - ARIMA(0,1,0)
The statistics observed for this model show a worse performance when compared with the previous one. According with this evidence, we found no interest in validating the residuals for the current model. Table 51 presents the weekly evaluated models and their comparison.

<table>
<thead>
<tr>
<th>Model</th>
<th>Number of Predictors</th>
<th>R-squared</th>
<th>R-squared</th>
<th>MAPE</th>
<th>MaxAPE</th>
<th>Number of Outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidents resolved per week</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model_4 – ARIMA (1,1,1)</td>
<td>1</td>
<td>.829</td>
<td>.933</td>
<td>6.408</td>
<td>34.760</td>
<td>2</td>
</tr>
<tr>
<td>Incidents resolved per week</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model_5 – ARIMA (0,1,0)</td>
<td>1</td>
<td>.657</td>
<td>.862</td>
<td>8.544</td>
<td>33.915</td>
<td>3</td>
</tr>
</tbody>
</table>

4.7.6 What-If scenario

The main reason why models and forecasting are so important in academics and corporate studies across all business areas are because they can help us to make plans for the future. The future has a tremendous gap of uncertainty and predicting the future requires always some basic assumptions. Modeling based on certain assumptions is called what-if scenarios or quite often scenario planning. This is extremely important especially if it includes systems which recognize that many factors may combine in complex ways to create sometime surprising futures (due to non-linear feedback loops).

We have taken the previous weekly validated model and have built a case scenario to forecast on technical resources needed to deal with incident management. Knowing in advance the incidents to resolve and the technical resources needed should help software organizations to adapt and adjust quickly to the demand from customers. This, not only contributes to better service quality, but also to increase effectiveness in allocating financial resources.

We will use two basic assumptions in this scenario. The first is that (based on our experience) today, on average, each person in the support department in an organization
similar to the one we are studying resolves 30 incidents per week. The second assumption or trial we are doing is that the incidents creation will grow by 30% on the forecast period (2008) when compared with the last year. This scenario can be explained by an acquisition or merger between organizations, or, simply because there were more software products in operation, which will cause the customers to report more incidents.

We have created another time series called SupportMembers, representing the number of people needed in each week by dividing the All_Resolved_Week observations from (week 1 to 104, representing year 2006 and 2007) by 30. This is represented in blue in Figure 47.

<table>
<thead>
<tr>
<th>Model ID</th>
<th>SupportMembers</th>
<th>Estimation Period</th>
<th>Forecast Period</th>
<th>Model Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model_5</td>
<td></td>
<td>From week 1 to 104</td>
<td>From week 105 to 157</td>
<td>ARIMA(1,1,1)</td>
</tr>
</tbody>
</table>

Other Parameters

- Independent variable - All_Created;
- Dependent variable transformation – No;
- Independent variable transfer function orders : Numerator – 0; Denominator – 3; Difference – 1; Delay – 0;
- Detect outliers automatically – Yes; Include Constant in the Model – No;

After evaluating the model, the predicted All_Resolved_Week series was created, and the correspondent support members was also computed. The value of this resulting series (predicted SupportMembers) had the number of resources needed for the estimation period and also for the forecast period (week 105 to 157). This is shown in green in Figure 47.

<table>
<thead>
<tr>
<th>Model</th>
<th>Number of Predictors</th>
<th>Stationary R-squared</th>
<th>R-squared</th>
<th>MAPE</th>
<th>MaxAPE</th>
<th>Number of Outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SupportMembers Model_5</td>
<td>1</td>
<td>.834</td>
<td>.926</td>
<td>6.987</td>
<td>52.973</td>
<td>2</td>
</tr>
</tbody>
</table>
Figure 47. Predicted support members for the third year (2008)

Figure 48 show strong evidence that we cannot rely on simple linear approaches to work on forecast scenarios. If we had tried an approach where the average number of resources in the previous year was used to calculate the number of resources needed to support the growth of 30% in incidents, we would fall into a trap. The average number of resources in the past two years is represented in green until week 104. If we had increased this average by 30% (like the 30% increase in incidents) to obtain the average number of resources needed for the next year, we would have the value represented by the yellow line. This would cause an estimation of the support staff under the real needs. The required resources in each week are represented by the blue line, and the average of the predicted resources for the forecast year is represented by the green line after week 104. The series average is much above the linear estimation of increasing the staff by 30%.

In fact when increasing the number of incidents 30%, the support members have to increase on average around 55%, and not the linear 30% that we would expect to be enough. On the estimation period we had an average of 6.4 staff members (green line to week 104). Increasing this average of resources by 30% would give 8.32 (6.4*1.3) members on average in the support (yellow line). In fact the needed number of resources in each week represented by the blue line has an average of 9.93, meaning a growth in the staff members of 55% ((9.93/6.4)-1=0.55=55%) for the next year.
4.8 Results discussion

Based on the introductory descriptive statistics, that highlights the fact that software deployment caused a considerable number of the overall incidents, we affirm that marginal activities to software usage, like, the installation process, initial configuration and license mechanisms are causing these incidents. To improve the software development, companies must improve these marginal activities. Making some of these tasks more easy and agile to the end-user can bring great benefits in the maintenance and in the support processes.

Regarding this chapter research objectives, we realized that the majority of the incidents are reported during working days and very few are reported over the weekends. We have identified that our sample has two seasonality patterns: a very strong weekly period and a weak and yet to confirm yearly decreasing pattern in the last month of the year. When looking for a trend pattern, we found no strong reasons to ensure that it exists in our sample.

Answering RQ9, we have strong evidence that ARIMA models can be an accurate method for predicting the amount of resolved incidents in a specific period, the same is to say, we are able to predict the expected workload of a support department in order to maintain the same level of service. With just a single independent variable, representing the incidents created in previous weeks, we were able to model and predict the behavior of the dependent variable, the incidents resolved.
Although the models used to forecast daily incidents have considerably high goodness of fit, they have also very large error statistics for MAPE and MaxAPE. These values were large enough to suggest the daily model rejection. Nevertheless, they performed very well when the variation in incident creation was not very strong. When incident creation increases or decreases very rapidly (this happens in November and December) the model did not perform very well and it was not able to adapt quickly enough to the observed patterns.

On the other hand, the model evaluated with the aggregated weekly data turned to be a more suitable model. It has a comfortable goodness of fit, but much less error statistics for the MAPE and MaxAPE. The average number of resolved incidents per week in the time series is 187.56. The average percentage error in the forecast time series was 6.40 %, representing a possible calculation error of around 12 incidents per week, which, even in a conservative scenario is an acceptable error. This result answers to RQ10, and yes, in fact due to the reduced error percentage in the model, we can be confident on using ARIMA models to predict on incident resolution based on incident creation.

We have not evaluated any model of the form ARIMA(p,0,0) (i.e., linear model) or ARIMA(0,0,q) (i.e., Gaussian model) because they would violate the basic assumption that our series has to be differenced at least once, and this implies having the parameter d in the model with a value other than 0(zero).

Regarding RQ11, we have seen that resource prediction has to be carefully planned as well, as we may fall into some erroneous behavior. Nevertheless, ARIMA models can also help in this task with reliable results. Applying models like the ones we have proposed will certainly be a powerful method for any organization which aims to achieve more accurate planning, efficient allocation and proper management of the financial resources related with their technical support departments.

We are well aware that these models were computed based on only one independent variable. Even with this constraint, we were able to produce valid results. With no constraints regarding the access to other data (e.g.: number of people in the support in general and per product, number of people in the first and second line support, number of developers for each product, etc..) we are confident that models with much more accuracy can be constructed.
This chapter presents this dissertation’s conclusions and resumes its main contributions.
5. Conclusion and Future Work

"The important thing is not to stop questioning."
Albert Einstein (1879 - 1955)

5.1 Contributions review

In this work we obtained statistically significant evidence that several independent variables (Impact, Priority, Country, Zone and Category) have an influence on incidents lifecycle, as characterized by three dependent variables (TimeToRespond, TimeToResolve and TimeToConfirm).

There is no surprise on the influence of incident’s business criticality (the Impact) and incident’s correction prioritization recorded by the support (the Priority) on incidents lifecycle. After all, those incident descriptors were proposed with that same aim.

Not so obvious is the observed fact that either the country or the geographical zone of an organization reporting an incident has influence on all descriptive variables that characterize incidents lifecycle. This means that organizations from different countries (or geographical zones) do not receive the same kind of support, although they are using the same products and, in principle, paying approximately the same for it.

Several reasons, which we are not able to explore further in this context, may explain this phenomenon:

- exigency on SLAs formalization and compliance verification by clients may somehow differ from country to country;

- cultural differences that cause a distinction on the tolerance to failure by final users (e.g. not complaining because an incident was not yet solved) or different skills;

- language differences that somehow influence the relationship between final users and the international support that is provided by the software vendor worldwide;

The incident category also has a direct influence on the three schedule variables. However, we have many kinds of recorded incidents, ranging from those occurring at software
installation, to those related to software functionalities. The incidents can also go from enhancement requests to “true” bugs. This diversity requires a careful study before any interpretation of value can be performed. Another apparent surprise was the fact that the proportion of critical incidents is not the same across countries. In all countries, except the UK and Spain, the actual number of critical incidents was below the expectation. This may indicate that end-users in those countries are causing an over-grading in incidents critically assessment by the support. Sometimes, end-users/customers tend to think that their incidents have always higher impact, simply because it affects the way they do their work and not based on the impact the incident has on the business. Again, this issue deserves further study before sensible conclusions can be drawn.

In a globalized, non-stopping operations and very challenging epoch for all the IT departments worldwide, the results about the incidents patterns come as a surprise. We could observe that customers have almost no contact with the technical support during weekends. During this timeframe, few incidents are being reported and even less are the incidents being resolved. This can lead us to a question: Is the 24x7 support service a myth?

In fact, most of the companies pay for continuous support and what they make use of, or what they get, is not really a 24x7 service. Should the support services in a near future be contracted on a demand basis? If so, with this approach customers can pay for what they really use. On the other hand, should a mixed approach be in place, using a 24x5 support service plus an on-demand payment for the extra support during weekends? This is a topic that can be further investigated in order to identify an efficient method for customers and software companies. Nevertheless, in a world oriented towards services, a feasible concept for customers and service providers is to move from an approach where services and resources are allocated, used and paid in advanced to a method where resources and services are allocated, used, supported and paid on-demand.

With this idea in mind, we were able to produce suitable ARIMA models to forecast on values for incidents resolution based on incident creation from previous days and weeks. Those models prove that with the right level of information we can make very accurate estimates on services support. With the right information and models, and based on this dissertation outcomes and lessons learnt, we admit that leveraging the prediction on services is achievable.
5. Conclusion and Future Work

Besides predicting on incidents lifecycle variables we believe that is also possible to predict on problems, change requests, service requests, service availability or service level agreements compliance among other things.

On revising and summarizing the evidences provided by this dissertation, we have to encourage others to pursue this investigation. We have fundaments to think that predictions related with other ITIL processes is also possible and overall service prediction (including financial aspects and human resources involved) is a long term and challenging journey, but yet an achievable goal.

5.1.1 Benefits for researchers

As lessons learnt and testimonials, we can easily point out that we have just started, but we learnt that there is an immense space to investigate in this area. The potential of topics like the ITIL processes, Services in general, forecasting and what-if scenarios makes us to suggest that they are going to be hot topics in the next decades, thus justifying further dedication and time spent around this matters. Researchers can start their works making some initial assumptions based our findings: almost half of the incidents are not related with software functionalities, not all countries have the same level of support, ARIMA models are valid for prediction and seasonal patterns exist in Incident Management.

Estimate and evaluate models without basic information like, resources and financial figures related with the processes, limits the quality of the findings and the consequent benefits obtained.

5.1.2 Benefits for the industry

As a potential benefit for the industry, we see opportunities for product development dedicated to the analysis, forecasting and reporting on Incident Management and other ITIL processes.
Outsourcers, service providers and consultancy firms can also use our study as a support reference for engaging in short or long-term consultancy projects. Any organizations looking for improvements in resource allocation and financial expenditures in their Service Support departments are natural targets for these services. For a quicker reference we provide the main findings in Table 54.

Table 54. Summary of findings

<table>
<thead>
<tr>
<th>Research Questions</th>
<th>Findings / Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>RQ1 and RQ2</td>
<td>The impact has influence in the incident lifecycle. Using this mechanism to classify incidents has advantages both for the customer and for the support staff and we confirm that by using it, a better service is obtained.</td>
</tr>
<tr>
<td>RQ 3 and RQ 4</td>
<td>We have proven with our statistics tests that distinct countries and geographic zones don’t have similar times to respond, resolve and close of the incidents, therefore, we can conclude that the country and zone from where the incident is open has influence on the management of the incidents.</td>
</tr>
<tr>
<td>RQ5</td>
<td>The category has influence in the incidents scheduling variables, meaning that there is evidence that the incident lifecycle is influenced by the piece of software (eg: installation, third-party software, license, etc) that is causing the incident</td>
</tr>
<tr>
<td>RQ6</td>
<td>The distribution of critical incidents is not the same across countries, meaning that, in general, incidents in some countries are more critical than others.</td>
</tr>
<tr>
<td>RQ7</td>
<td>There is seasonality in the incident management process. We have identified two patterns; a weekly period and a yearly period.</td>
</tr>
<tr>
<td>RQ8</td>
<td>There is no strong evidence on the existence of trend in the incident management process, or at least we could not find it within our sampling data. If in fact it really exists, it was not visible on our radar in this experiment.</td>
</tr>
<tr>
<td>RQ9</td>
<td>We observed that ARIMA models can be a sufficiently accurate method for incident prediction, having an acceptable low error rate.</td>
</tr>
<tr>
<td>RQ10</td>
<td>We tested several models and we identified possible and valid ARIMA parameters to use in forecasting for incident management. We compared our results with the real live data and they had a match in certain confidence intervals of around 90%, confirming that these models are trustable. We also conclude that our ARIMA models have better results than a simple random-walk model, thus justifying further their usage.</td>
</tr>
<tr>
<td>RQ11</td>
<td>We have simulated a scenario and have made predictions to obtain the number of support staff needed if the incidents would grow 30%. This simulation was based on our best-fit weekly model and the values obtained were compared with a basic and linear approach which is the one usually followed by the service Desk and Incident Management managers. The simulation showed us how different the results can be and how easy it is to enter into wrong calculations when simple linear methods are used to calculate the staff for a support department.</td>
</tr>
</tbody>
</table>
5. Conclusion and Future Work

5.2 Threats to the validity

5.2.1 Internal threats

The main threats to this empirical study are related with data quality and the incident management process itself.

The main data quality related threats are:

- Missing and/or wrong data (product name, version, etc) provided from the end-users/customers;
- Wrong data entered by the support staff (priority, impact, categorization, resolution codes, etc).

The main Incident Management process threats are:

- Lack of skills about the support tool can make some information non reliable (time to respond to incidents, time to resolve, etc);
- Customer non-response to a provided solution can cause incidents to be open when in fact they could be closed much earlier.

5.2.2 External threats

As an external threat to this empirical study, we can point that there is data missing from the software development process (resources allocated, activities, development tools, development methodologies, financial resources, etc.) which could help us not only to better evaluate and understand some of the results, but also to improve the quality of the ARIMA models and the results obtained.
5. Conclusion and Future Work

5.3 Evolution and next steps

This empirical study was built upon a large sample of real-life data on incidents across a large period of time, on a long list of commercial products and customers in different countries. We are conscious that we have only scratched the surface. We plan to continue this work by replicating this experiment using another incident management database and investigating more on the inter-dependencies amongst other ITIL processes.

To continue this work, an interesting point to have a deeper look is to validate if the methods by which the incidents are reported vary within countries. In addition, investigating if the method by which the incidents are reported affect or not its closure time, or, if the lifecycle of incidents originated in mainframe systems are the same as the ones originated in other systems. Testing hypothesis around the influence of the business area on the incidents lifecycle can also result in interesting findings.

Besides understanding the incident management process, our final aim is proposing some guidelines to cost-effectively improve software quality, based on incident management optimization. These guidelines can be focused on the products that appear to have more reported incidents or simply based on the most frequent incident categories.

To achieve quality results in the ARIMA models there is a clear need to collect more data, such as information about software development resources and activities performed during the overall development process.

Finally, to improve the study of the Incident Management process (people, technology and processes used) practiced at this software vendor, we would like to conduct a study like this together with a study of the support processes used internally by the software vendor.
Bibliography

Research, I., 2005. Services Science: A New Academic Discipline?, IBM.

Bibliography

[Yin, R., 2003]. Case study research, design and methods, Sage.

Appendix A

ITIL and Service Management

This appendix presents the Incident lifecycle used by the Technical Support teams
The Service Strategy volume provides guidance on how to design, develop, and implement service management not only as an organizational capability but also as a strategic asset. An overview is provided on the principles underpinning the practice of service management that are useful for developing service management policies, guidelines and processes across the ITIL Service Lifecycle. The topics covered in Service Strategy include the development of markets, internal and external, service assets, Service Catalogue, and implementation of strategy through the Service Lifecycle. Financial Management, Service Portfolio Management, Organizational Development, and Strategic Risks are among other major topics. Organizations can use these concepts and processes to set objectives and expectations of performance towards serving customers and market spaces, and to identify, select, and prioritize opportunities. Service Strategy is about ensuring that organizations are in a position to handle the costs and risks associated with their Service Portfolios, and are set up not just for operational effectiveness but also for distinctive performance. Decisions made with respect to Service Strategy have far-reaching consequences including those with delayed effect. Organizations already adopting ITIL may use this publication to guide a strategic review of their ITIL-based service management capabilities and to improve the alignment between those capabilities and their business strategies.

Figure 49. Service Strategy
The Service Design volume provides guidance for the design and development of services and service management processes. It covers design principles and methods for converting strategic objectives into portfolios of services and service assets. The scope of Service Design is not limited to new services. It includes the changes and improvements necessary to increase or maintain value to customers over the lifecycle of services, the continuity of services, achievement of service levels, and conformance to standards and regulations. It guides organizations on how to develop design capabilities for service management.

Figure 50. Service Design
Service Transition

This volume provides guidance for the development and improvement of capabilities for transitioning new and changed services into operations and also guidance on how the requirements of Service Strategy encoded in Service Design are effectively realized in Service Operation while controlling the risks of failure and disruption. The publication combines practices in Release Management, Program Management, and Risk Management and places them in the practical context of service management. It provides guidance on managing the complexity related to changes to services and service management processes, preventing undesired consequences while allowing for innovation.

Figure 51. Service Transition
Service Operation

It embodies practices in the management of service operations. It includes guidelines for achieving effectiveness and efficiency in the delivery and support of services so as to ensure value for the customer and the service provider. Strategic objectives are ultimately realized through service operations, therefore making it a critical capability. It provides ways to maintain stability in service operations, allowing for changes in design, scale, scope and service levels. Organizations are provided with detailed process guidelines, methods and tools for use in two major control perspectives: reactive and proactive. Managers and practitioners are provided with knowledge allowing them to make better decisions in areas such as managing the availability of services, controlling demand, optimizing capacity utilization, scheduling of operations and fixing problems.

![Figure 52. Service Operation](image-url)
Continual Service Improvement

This volume provides instrumental guidance in creating and maintaining value for customers through better design, introduction, and operation of services. It combines principles, practices, and methods from quality management, Change Management and capability improvement. Organizations learn to realize incremental and large-scale improvements in service quality, operational efficiency and business continuity. Guidance is provided for linking improvement efforts and outcomes with service strategy, design, and transition. A closed-loop feedback system, based on the Plan, Do, Check, Act (PDCA) model specified in ISO/IEC 20000, is established and capable of receiving inputs for change from any planning perspective. Figure 54 shows all the ITIL areas and their basic interactions.

Figure 53. Continual Service Improvement
Figure 54. ITIL process flow
This appendix outlines the main concepts about Quantitative and Qualitative research. It presents also an overview about the main topics within this dissertation; experimental designs, scientific methods and statistical analysis.
B. Experimental Approaches

Quantitative research

Quantitative research is the systematic scientific investigation of quantitative properties and phenomena and their relationships. The objective of quantitative research is to develop and employ mathematical models, theories and/or hypotheses pertaining to natural phenomena. The process of measurement is central to quantitative research because it provides the fundamental connection between empirical observation and mathematical expression of quantitative relationships.

Quantitative research is widely used in both the Natural and Social Sciences, from Physics and Biology to Sociology and Journalism [Maroco, 2007]. It is also used as a way to research different aspects of education [Pestana and Gageiro, 2005]. The term quantitative research is most often used in the Social Sciences in contrast to qualitative research.

Quantitative research is often an iterative process whereby evidence is evaluated, theories and hypotheses are refined, technical advances are made, and so on. Virtually all research in Physics is quantitative whereas research in other scientific disciplines, such as Psychology and Anthropology, may involve a combination of quantitative and other analytic approaches and methods.

Qualitative research is often used to gain a general sense of phenomena and to form theories that can be tested using further quantitative research.

Quantitative methods

Quantitative methods are research techniques that are used to gather quantitative data-information dealing with numbers and anything that is measurable. Statistics, tables and graphs, are often used to present the results of these methods. They are therefore to be distinguished from qualitative methods.

Quantitative methods might be used with a global qualitative frame or to understand the meaning of the numbers produced by quantitative methods. Using quantitative methods, it is possible to give precise and testable expression to qualitative ideas. This combination of quantitative and qualitative data gathering is often referred to as mixed-methods research.
B. Experimental Approaches

Qualitative research

Qualitative researchers aim to acquire an in-depth understanding of human behavior and the reasons that govern human behavior. Qualitative research relies on reasons behind various aspects of behavior. Simply put, it investigates the why and how of decision making, not just what, where, and when. Qualitative researchers typically rely on four methods for gathering information: (1) participation in the setting, (2) direct observation, (3) in depth interviews, and (4) analysis of documents and materials.

One way of differentiating qualitative research from quantitative research is that largely qualitative research is exploratory, while quantitative research hopes to be conclusive.

Scientific method

Quantitative research using statistical methods typically begins with the collection of data based on a theory or hypothesis, followed by the application of descriptive or inferential statistical methods. Causal relationships are studied by manipulating factors thought to influence the phenomena of interest while controlling other variables relevant to the experimental outcomes. The scientific method is a fundamental technique used by scientists to raise hypothesis and produce theories. A theory is a conceptual framework that explains existing facts or predicts new facts. It has the assumption that the world is a cosmos not a chaos. It assumes that the Scientific Knowledge is predictive and that cause and effect relationships exist. Knowledge in an area is expressed as a set of theories and theories are raised upon non refuted hypothesis. The scientific method progresses through a series of steps:

- Observe facts
- Formulate hypotheses
- Design an experiment
- Test the hypotheses
 - Execute de experiment
 - Collect data
 - Analyze data
- Interpret the results
B. Experimental Approaches

- Raise a theory
- Express a law

Formulation can be performed through: induction (generalization of observed facts), abduction (suggestion that something could be). The hypotheses are used to make predictions and predictions are compared with newly observed facts. Experiments can only prove that a hypothesis is false and experiments replication is required for wide acceptance of theories like in pharmaceutical industry, surgery techniques and of course in the software world.

Experimental designs

The experimental design is the design of all information-gathering exercises defining the setup of an experiment where variation is present, whether under the full control of the experimenter or not. Often the experimenter is interested in the effect of some process or intervention (the "treatment") on some objects (the subjects or experimental units), which may be people, but in our case are incidents.

Experimental research designs are used for the controlled testing of causal processes. Usually, one or more independent variables are manipulated to determine their effect on a dependent variable. The first mathematical methodology for designing experiments was described in [Fisher, 1935].

To begin the scientific “researching” process we will study a design which deals with what is involved in performing a “real” experiment. This process involves developing an experimental design. To begin, it is important to know what basic concepts are included and a definition/description of each concept [Goulão and Abreu, 2007].

The basic concepts involved are:

1) Hypothesis
2) Independent Variable
3) Dependent Variable (s)
B. Experimental Approaches

4) Constant(s)

5) Control (if any)

6) Repeated Trials

7) Experimental Design Diagram

1. Hypothesis: A hypothesis is an educated guess about the relationship between the variables that can be tested. (e.g. Incidents reported from Latin America countries have less time to resolve when compared with other geography zones.)

2. Independent Variable (IV): An IV is the variable that is purposefully changed by the experimenter. (e.g. incident’s priority, incident creation date/time, incident’s impact, incident reporting country, incident’s close date/time.) Variables characterize themselves by its name, type of scale and statistic distribution.

3. Dependent Variable (DV): A DV is the variable that responds to the change in the IV. (e.g. time to respond to incidents, time to resolve incidents, time to close the incident.)

4. Constants (C): Constants are all factors that remain the same during the experiment and have a fixed value. (e.g. incidents created on the same day, incidents closed on the same day.)

5. Control: The control is the standard for comparing experimental effects.

6. Repeated Trials: Repeated trials are the number of experimental repetitions, objects, or organisms tested at each level of the independent variable. (e.g. around 23000 incidents were studied.)

7. Experimental Design Diagram (EDD): An EDD is a diagram that summarizes the independent variable, dependent variables, constants, control, number of repeated trials, experimental title, and hypothesis.

8. Levels of the Independent Variable: Some experiments require the identification of levels (e.g.: levels of the Impact and Priority variables) of the independent variable.
B. Experimental Approaches

Hypotheses formulation and testing

A hypothesis is a formulation of a hypothetical cause-effect relationship between independent (cause) and dependent (effect) variables. That formulation is stated by splitting the hypothesis under test into two parts, known as H0 and H1.

In statistics, a null hypothesis (H0) is a concept which arises in the context of statistical hypothesis testing. The null hypothesis describes in a formal way some aspect of the statistical behavior of a set of data and this description is treated as valid unless the actual behavior of the data contradicts this assumption. Statistical hypothesis testing is used to make a decision about whether the data does contradict the null hypothesis: this is also called significance testing. A null hypothesis is never proven by such methods, as the absence of evidence against the null hypothesis does not establish the truth of the null hypothesis.

In other words, we may either reject, or not reject the null hypothesis but we cannot accept the null hypothesis. Failing to reject H0 says that there is no strong reason to change any decisions or procedures predicated on its truth, but it also allows for the possibility of obtaining further data and then re-examining the same hypothesis.

The alternative hypothesis (H1) and the null hypothesis (H0) are the two rival hypotheses whose likelihoods are compared by a statistical hypothesis test. Usually the alternative hypothesis is the possibility that an observed effect is genuine and the null hypothesis is the rival possibility that it has resulted from chance.

The frequent approach is to calculate the probability that the observed effect will occur if the null hypothesis is true. If this value (called the "p-value") is small then the result is called statistically significant and the null hypothesis is rejected in favor of the alternative hypothesis. If not, then the null hypothesis is not rejected. Incorrectly rejecting the null hypothesis is a Type I error; incorrectly failing to reject it is a Type II error.

Statistical errors

The terms Type I error (also, α error, or false positive) and type II error (β error, or a false negative) are used to describe possible errors made in a statistical decision process, namely:
B. Experimental Approaches

- Type I (α): reject the null-hypothesis when the null-hypothesis is true, and
- Type II (β): fail to reject the null-hypothesis when the null-hypothesis is false

Type I error rate (α) represents the maximum accepted error in rejecting the null hypothesis. This value must be kept low.

Type II error rate (β) represents the error in accepting the null hypothesis. This must be kept low as well (the conventions are much more rigid with respect to α than with respect to β) since it is more critical to state that an effect exists (H0 rejected) when in fact this can’t be sustained, than not being able to recognize that a causal effect exists (H0 accepted).

<table>
<thead>
<tr>
<th>State of the World</th>
<th>H0</th>
<th>H1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H0</td>
<td>Correct H0 Acceptance (1 - α)</td>
<td>Type II Error (β)</td>
</tr>
<tr>
<td>H1</td>
<td>Type I Error (α)</td>
<td>Correct H0 Rejection (1 - β)</td>
</tr>
</tbody>
</table>

In statistical hypothesis testing, the *p-value* is the probability of obtaining a result at least as extreme as the one that was actually observed, assuming that the null hypothesis is true. The fact that p-values are based on this assumption is crucial to their correct interpretation.

The significance level of a test is a traditional statistical hypothesis testing concept. In simple cases, it is defined as the probabilities of making a decision to reject the null hypothesis when the null hypothesis is actually true (a decision known as a Type I error, or "false positive determination"). The decision is often made using the *p-value*: if the *p-value* is less than the significance level, then the null hypothesis is rejected. The smaller the *p-value*, the more significant the result is said to be.
B. Experimental Approaches

Descriptive statistics

Descriptive Statistics are used to describe the basic features of the data gathered from an experimental study in various ways. A descriptive Statistics is distinguished from inductive statistics. They provide simple summaries about the sample and the measures. Together with simple graphics analysis, they form the basis of virtually every quantitative analysis of data. It is necessary to be familiar with primary methods of describing data in order to understand phenomena and make intelligent decisions. Various techniques that are commonly used are classified as:

- The development of instruments and methods for measurement
- Graphical displays of the data in which graphs summarize the data or facilitate comparisons.
- Tabular description in which tables of numbers summarize the data.
- Summary statistics (single numbers) which summarize the data.

In general, statistical data can be briefly described as a list of subjects or units and the data associated with each of them. Although most research uses many data types for each unit, this introduction treats only the simplest case.

Statistical inference

Inferential statistics or statistical induction comprises the use of statistics to make inferences concerning some unknown aspect of a population. It is distinguished from descriptive statistics.

Statistical inference is inference about a population from a random sample drawn from it or, more generally, about a random process from its observed behavior during a finite period of time. It includes:

- point estimation
- interval estimation
- hypothesis testing (or statistical significance testing)
- prediction
B. Experimental Approaches

Time series

In statistics, signal processing, and many other fields, a time series is a sequence of data points, measured typically at successive times, spaced at (often uniform) time intervals. Time series analysis comprises methods that attempt to understand such time series, often either to understand the underlying context of the data points (where did they come from? what generated them?), or to make forecasts (predictions). Time series forecasting is the use of a model to forecast future events based on known past events: to forecast future data points before they are measured. Most time series patterns can be described in terms of two basic classes of components: trend and seasonality.

Analysis of trends

There are no proven "automatic" techniques to identify trend components in the time series data; however, as long as the trend is monotonous (consistently increasing or decreasing) that part of data analysis is typically not very difficult. If the time series data contain considerable error, then the first step in the process of trend identification is called smoothing.

Smoothing always involves some form of local averaging of data such that the nonsystematic components of individual observations cancel each other out. The most common technique is moving average smoothing which replaces each element of the series by either the simple or weighted average of n surrounding elements, where n is the width of the smoothing "window" [Box and Jenkins, 1970].

Many monotonous time series data can be adequately approximated by a linear function; if there is a clear monotonous nonlinear component, the data first need to be transformed to remove the nonlinearity. Usually a logarithmic, exponential, or (less often) polynomial function can be used.

Analysis of seasonality

Seasonality is another general component of the time series pattern. It is formally defined as correlational dependency of order k between each i’th element of the series and the (i-k)’th element [Kendal and Gibbons, 1990] and measured by autocorrelation (i.e., a correlation
B. Experimental Approaches

between the two terms); \(k \) is usually called the lag. If the measurement error is not too large, seasonality can be visually identified in the series as a pattern that repeats every \(k \) elements.

Seasonal patterns of time series can be examined via correlograms. The correlogram (autocorrelogram) displays graphically and numerically the autocorrelation function (ACF), that is, serial correlation coefficients (and their standard errors) for consecutive lags in a specified range of lags (e.g., 1 through 30). The autocorrelation plot can help answer to this questions amongst others:

- Are the data random?
- Is an observation related to an adjacent observation?
- Is the observed time series white noise?
- Is the observed time series sinusoidal?
- What is an appropriate model for the observed time series?

While examining correlograms one should keep in mind that autocorrelations for consecutive lags are formally dependent. If the first element is closely related to the second, and the second to the third, then the first element must also be somewhat related to the third one, and so on. This implies that the pattern of serial dependencies can change considerably after removing the first order auto correlation (i.e., after differencing the series with a lag of 1).

Autocorrelations

Autocorrelation plots [Box and Jenkins, 1970] are a commonly-used tool for checking randomness in a data set. In addition, autocorrelation plots are used in the model identification stage for autoregressive, moving average time series models [Box and Jenkins, 1970] and in such a case that we do not check for randomness, then the validity of many of our statistical conclusions becomes suspect. The autocorrelation plot is an excellent way of checking for such randomness. Examples of the autocorrelation plot for can vary as the following examples:

- Random (= White Noise)
- Weak autocorrelation
B. Experimental Approaches

- Strong autocorrelation and autoregressive model
- Sinusoidal model

Random walk (White noise)

![Autocorrelation Correlogram](image)

Figure 55. Random walk autocorrelation correlogram

Observing the above figure we can make the following conclusions from this plot; there are no significant autocorrelations and the data are random.

With the exception of lag 0, that is always 1 by definition, almost all of the autocorrelations fall within the 95% confidence limits (horizontal lines in the above figure). In addition, there is no apparent pattern (such as the first five being positive and the second five being negative). This is the absence of a pattern and this implies that there is no associative ability to infer from a current value Y_i as to what the next value Y_{i+1} will be. Such non-association is the essence of randomness, which means that adjacent observations do not "co-relate", so we call this the "no autocorrelation" case.
Weak autocorrelation

We can make the following conclusions from this plot: the data come from an underlying autoregressive model with moderate positive autocorrelation. The plot starts with a moderately high autocorrelation at lag 1 (approximately 0.75) that gradually decreases. The decreasing autocorrelation is generally linear, but with significant noise. Such a pattern is the autocorrelation plot signature of "moderate autocorrelation", which in turn provides moderate predictability if modeled properly.
B. Experimental Approaches

Strong autocorrelation and autoregressive model

We can make the following conclusions from the above plot: the data come from an underlying autoregressive model with strong positive autocorrelation.

The plot starts with a high autocorrelation at lag 1 that slowly declines. It continues decreasing until it becomes negative and starts showing an increasing negative autocorrelation. The decreasing autocorrelation is generally linear with little noise. Such a pattern is the autocorrelation plot signature of "strong autocorrelation", which in turn provides high predictability if modeled properly.
Sinusoidal model

Figure 58. Sinusoidal model correlogram

If such a correlogram is produced from our data, we can conclude that the data come from an underlying sinusoidal model. The reason for this is that the plot exhibits an alternating sequence of positive and negative spikes. These spikes are not decaying to zero. Such a pattern is the autocorrelation plot signature of a sinusoidal model.
Partial autocorrelations

Another useful method to examine serial dependencies is to examine the partial autocorrelation function (PACF) - an extension of autocorrelation, where the dependence on the intermediate elements (those within the lag) is removed. If a lag of 1 is specified (i.e., there are no intermediate elements within the lag), then the partial autocorrelation is equivalent to auto correlation. In a sense, the partial autocorrelation provides a "cleaner" picture of serial dependencies for individual lags.

![Partial autocorrelation correlogram](image)

Figure 59. Partial autocorrelation correlogram

The partial autocorrelation at lag k is the autocorrelation between X_t and X_{t-k} that is not accounted for by lags 1 through $k-1$.

Partial autocorrelations are useful in identifying the order of an autoregressive model. The partial autocorrelation of an AR(p) process is zero at lag $p+1$ and greater. If the sample autocorrelation plot indicates that an AR model may be appropriate, then the sample partial autocorrelation plot is examined to help identify the order. We look for the point on the plot where the partial autocorrelations essentially become zero. Placing a 95% confidence interval for statistical significance is helpful for this purpose.

This partial autocorrelation plot shows clear statistical significance for lags 1 and 2 (lag 0 is always 1). The next few lags are at the borderline of statistical significance. If the
B. Experimental Approaches

The partial autocorrelation plot can help provide answers to the following questions:

- Is an AR model appropriate for the data?
- If an AR model is appropriate, what order should we use?

Removing serial dependency

Serial dependency for a particular lag of k can be removed by differencing the series, that is converting each i'th element of the series into its difference from the $(i-k)$'th element. There are two major reasons for such transformations.

First, one can identify the hidden nature of seasonal dependencies in the series. Autocorrelations for consecutive lags are interdependent, therefore, removing some of the autocorrelations will change other auto correlations, that is, it may eliminate them or it may make some other seasonality’s more apparent.

The other reason for removing seasonal dependencies is to make the series stationary which is necessary for ARIMA and other techniques. In a time series analysis, a stationary series has a constant mean, variance, and autocorrelation through time meaning that seasonal dependencies have been removed via Differencing. In this transformation the series will be transformed as: $X=X-X(lag)$ and the resulting series will be of length $N-lag$ where N is the length of the original series.

ARIMA (Auto Regressive Integrated Moving Average)

The modeling and forecasting procedures requires knowledge about the mathematical model of the process. However, in real-life research and practice, patterns of the data are unclear, individual observations involve considerable error, and we still need not only to uncover the hidden patterns in the data but also generate forecasts. The ARIMA
methodology [Box and Jenkins, 1970] allows us to do just that. However, because of its power and flexibility, ARIMA is a complex technique; it is not easy to use and it requires a great deal of experience.

The general model includes autoregressive as well as moving average parameters, and explicitly includes differencing in the formulation of the model. Specifically, the three types of parameters in the model are: the autoregressive parameters \(p \), the number of differencing passes \(d \), and moving average parameters \(q \). In the notation introduced by Box and Jenkins, models are summarized as ARIMA \((p, d, q) \); so, for example, a model described as \((0, 1, 2) \) means that it contains 0 (zero) autoregressive \((p) \) parameters and 2 moving average \((q) \) parameters which were computed for the series after it was differenced once \((d=1) \).

Parameter identification

As mentioned earlier, the input series for ARIMA needs to be stationary, that is, it should have a constant mean, variance, and autocorrelation through time. Therefore, usually the series first needs to be differenced until it is stationary (this also often requires log transforming the data to stabilize the variance). The number of times the series needs to be differenced to achieve stationarity is reflected in the \(d \) parameter. In order to determine the necessary level of differencing, we should examine the plot of the data and the autocorrelogram. Significant changes in level (strong upward or downward changes) usually require first order non seasonal \((\text{lag}=1) \) differencing; strong changes of slope usually require second order non seasonal differencing. Seasonal patterns require respective seasonal differencing. If the estimated autocorrelation coefficients decline slowly at longer lags, first order differencing is usually needed. However, one should keep in mind that some time series may require little or no differencing, and that over differenced series produce less stable coefficient estimates, meaning less accuracy in the time series obtained.

In addition we also need to decide how many autoregressive \((AR)(p) \) and moving average \((MA)(q) \) parameters are necessary to yield an effective but still parsimonious model of the process (parsimonious means that it has the fewest parameters and greatest number of
degrees of freedom among all models that fit the data). In practice, the numbers of the \(p \) or \(q \) parameters very rarely need to be greater than 2.

The major tools used in the identification phase are plots of the series, correlograms of autocorrelation (ACF), and partial autocorrelation (PACF). The decision is not straightforward and in less typical cases requires not only experience but also a good deal of experimentation with alternative models (as well as the technical parameters of ARIMA) [Pankratz, 1983]. However, a majority of empirical time series patterns can be sufficiently approximated using one of the 5 basic models that can be identified based on the shape of the autocorrelogram (ACF) and partial auto correlogram (PACF).

The following brief summary is based on practical recommendations of [Vandaele, 1983] and additional practical advices from [McDowall, McCleary et al., 1980]. Since the number of parameters (to be estimated) of each kind is almost never greater than 2, it is often practical to try alternative models on the same data.

- One autoregressive (p) parameter: ACF - exponential decay; PACF - spike at lag 1, no correlation for other lags.
- Two autoregressive (p) parameters: ACF - a sine-wave shape pattern or a set of exponential decays; PACF - spikes at lags 1 and 2, no correlation for other lags.
- One moving average (q) parameter: ACF - spike at lag 1, no correlation for other lags; PACF - damps out exponentially.
- Two moving average (q) parameters: ACF - spikes at lags 1 and 2, no correlation for other lags; PACF - a sine-wave shape pattern or a set of exponential decays.
- One autoregressive (p) and one moving average (q) parameter: ACF - exponential decay starting at lag 1; PACF - exponential decay starting at lag 1.

Parameter estimation and forecasting

The estimates of the parameters are used in the last stage (Forecasting) to calculate new values of the series (beyond those included in the input data set) and confidence intervals for those predicted values. The estimation process is performed on transformed
B. Experimental Approaches

(differenced) data; before the forecasts are generated, the series needs to be integrated (integration is the inverse of differencing) so that the forecasts are expressed in values compatible with the input data. This automatic integration feature is represented by the letter I in the name of the methodology (ARIMA = Auto-Regressive Integrated Moving Average).

Seasonal models

Multiplicative seasonal ARIMA is a generalization and extension of the method introduced in the previous paragraphs to series in which a pattern repeats seasonally over time. In addition to the non-seasonal parameters, seasonal parameters for a specified lag (established in the identification phase) need to be estimated. Analogous to the simple ARIMA parameters, these are: seasonal autoregressive (ps), seasonal differencing (ds), and seasonal moving average parameters (qs). For example, the model (0,1,2)(0,1,1) describes a model that includes no autoregressive parameters, 2 regular moving average parameters and 1 seasonal moving average parameter, and these parameters were computed for the series after it was differenced once with lag 1, and once seasonally differenced. The seasonal lag used for the seasonal parameters is usually determined during the identification phase and must be explicitly specified.

The general recommendations concerning the selection of parameters to be estimated (based on ACF and PACF) also apply to seasonal models. The main difference is that in seasonal series, ACF and PACF will show sizable coefficients at multiples of the seasonal lag (in addition to their overall patterns reflecting the non-seasonal components of the series).

Model Evaluation

A good model should not only provide sufficiently accurate forecasts, it should also be parsimonious and produce statistically independent residuals that contain only noise and no systematic components (e.g., the correlogram of residuals should not reveal any serial dependencies). A good test of the model is (a) to plot the residuals and inspect them for any
systematic trends, and (b) to examine the autocorrelogram of residuals (there should be no serial dependency between residuals). For the ARIMA model to be considered the residuals should be systematically distributed across the series (e.g., they could be negative in the first part of the series and approach zero in the second part). If they contain some serial dependency, probably the ARIMA model is inadequate. The residuals estimation procedure assumes that any resulting residual are not autocorrelated and that they are normally distributed.

![Figure 60. 4-Plot for residuals validation – Invalid ARIMA model](image)

A good way to validate the residuals is to use the 4-Plot as it consists of the following:

1. Run sequence plot to test fixed location and variation.
 - Vertically: Y_i
 - Horizontally: i

2. Lag Plot to test randomness.
 - Vertically: Y_i
 - Horizontally: Y_{i-1}

3. Histogram to test (normal) distribution.
 - Vertically: *Counts*
B. Experimental Approaches

- Horizontally: Y

4. Normal probability plot to test normal distribution.
 - Vertically: Ordered Yi
 - Horizontally: Theoretical values from a normal N(0,1) distribution for ordered Yi

We evaluate and validate our models based on these techniques and assumptions. Figure 60 reveals the following:

1. the fixed location assumption is justified as shown by the run sequence plot in the upper left corner.
2. the fixed variation assumption is justified as shown by the run sequence plot in the upper left corner.
3. the randomness assumption is violated as shown by the non-random (oscillatory) lag plot in the upper right corner.
4. the assumption of a common, normal distribution is violated as shown by the histogram in the lower left corner and the normal probability plot in the lower right corner. The distribution is non-normal and is a U-shaped distribution.
5. there are several outliers apparent in the lag plot in the upper right corner.
[This page has been intentionally left blank]