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Abstract
Motivation: The emergence of multidrug class resistance (MDR) in Human Immunodeficiency Virus (HIV) is a rare but significant challenge in 
antiretroviral therapy (ART). MDR, which may arise from prolonged drug exposure, treatment failures, or transmission of resistant strains, accel
erates disease progression and poses particular challenges in resource-limited settings with restricted access to resistance testing and ad
vanced therapies. Early prediction of future MDR development is important to inform therapeutic decisions and mitigate its occurrence.
Results:  In this study, we employ various machine learning classifiers to predict future resistance to all four major antiretroviral drug classes us
ing features extracted from clinical HIV sequence data. We systematically explore several variations of the problem that differ in the pre-existing 
resistance level and the temporal gap between sample collection and observed MDR occurrence. Our models show the ability to predict multi
drug class resistance even in the most challenging variations, albeit at a reduced accuracy. Feature importance analysis reveals that our models 
primarily utilize known drug resistance mutations for easier classification tasks, but rely on new mutations for the difficult task of distinguishing 
four class drug resistance from three class drug resistance.
Availability and implementation: All analysis was performed using the Euresist Integrated DataBase (EIDB). Researchers wishing to repro
duce, validate or extend these findings can request access to the latest EIDB release via the Euresist Network.

1 Introduction
Human immunodeficiency virus (HIV) remains a major 
global health concern despite receiving less public attention 
than other emerging viruses in recent years (Bekker et al. 
2023). According to the World Health Organization (WHO), 
an estimated 39 million people worldwide live with the virus 
across different regions and populations (World Health 
Organization et al. 2021). In 2022, approximately 630 000 
deaths were attributed to HIV-related illnesses, highlighting 
the ongoing and significant impact of the virus on global 
health (Owachi et al. 2024).

Advancements in medical treatments, especially antiretroviral 
therapy (ART), have been essential in managing the disease, 

reducing morbidity and mortality rates among HIV patients 
(Cohen et al. 2016, Peng et al. 2021). ART enables individuals 
to live longer and healthier and decreases the likelihood of HIV 
transmission to others (McNairy and El-Sadr 2014, Zazzi et al. 
2018). Hence, HIV has been transformed from a fatal disease 
into a manageable chronic condition for many people. Despite 
advancements in treatment, there is no cure for HIV infection, 
requiring lifelong treatment.

ART targets HIV at different stages of its life cycle using 
medications classified into several distinct drug classes: nucleo
side reverse transcriptase inhibitors (NRTIs), non-nucleoside re
verse transcriptase inhibitors (NNRTIs), protease inhibitors 
(PIs), integrase inhibitors (INIs), fusion inhibitors, CCR5 
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antagonists, attachment inhibitors, and capsid inhibitors (Peng 
et al. 2021, Pirkl et al. 2023). Each class targets a specific stage 
of the virus’s replication process. ART uses mainly a three-drug 
therapy (Waters et al. 2021), which has been the standard since 
1996, or two-drug combinations, which have been introduced 
more recently. A common feature of ART is to combine differ
ent drug classes to block virus replication at multiple stages and 
prevent the selection of drug resistance (Li et al. 2022). The pri
mary objective of ART is to suppress HIV replication to unde
tectable levels by the commonly used lab assays, thus 
preventing disease progression (Hammer et al. 1997).

However, ART still faces several limitations, which con
tribute to treatment failure in HIV patients (Gupta-Wright 
et al. 2020). These challenges include adherence issues, drug 
toxicity (Bertrand et al. 2021), drug–drug and food–drug 
interactions in individuals taking other medications due to 
comorbidities (Khalilieh et al. 2020), resulting in incomplete 
virological suppression (Foka and Mufhandu 2023), and the 
emergence of drug resistance. In addition, infection may di
rectly occur with drug-resistant HIV strains. Extensive resis
tance to multiple drugs and drug classes, referred to as 
multidrug class resistance (MDR), poses a critical problem, 
limiting treatment options and favoring disease progression 
(Datay et al. 2010, Cadosch et al. 2012). Although ART has 
slowed the development of resistance, MDR may occasion
ally occur, and a minority of people harbor an MDR virus 
due to prolonged drug exposure and multiple treatment fail
ures (Feder et al. 2021, Peng et al. 2021, Pirkl et al. 2023).

While MDR loosely refers to resistance against more than 
one drug class, there is no commonly accepted definition of 
which and how many drug classes it pertains to. In this study, 
we define four drug class resistance (4CR) as resistance to the 
four most widely utilized drug classes, including NRTIs, 
NNRTIs, PIs, and INIs. The emergence of this form of MDR 
is rare in modern HIV treatment. However, when it occurs, it 
can be life-threatening, particularly in regions with limited 
access to advanced resistance testing and new antiretroviral 
drugs (Pirkl et al. 2023). Finding a new effective drug regi
men for 4CR patients is challenging, prone to further failures 
with increasing resistance, and often requires the most re
cently developed high-cost drug classes, if available. Thus, 
preventing 4CR by choosing appropriate ART is the best ap
proach to preserve treatment options. However, multiple 
patients and virus-related variables impact the risk of pro
gression to the 4CR status, and reliable 4CR predictive mod
els are essential.

Traditional rules-based approaches fall short in addressing 
this challenge, particularly due to the virus’s rapid mutation 
rate and the complexity of its evolutionary dynamics, patient- 
specific factors like treatment adherence, pre-existing resis
tant strains, and variability in treatment regimens (Pironti 
et al. 2017). These factors create class imbalances and incon
sistencies in the sampling frequency and sample timing of vi
rus sequence data, further complicating prediction. To 
overcome these challenges, machine learning (ML) might of
fer a more effective solution.

In this study, we apply various ML classifiers to predict the 
future occurrence of 4CR using features extracted from the 
clinical HIV sequence. Hereby, we vary the difficulty of the 
classification problem along two axes. First, we compile neg
ative data sets exhibiting a varying degree of MDR prior to 
the first 4CR observation: from an easy case with zero drug 
class resistance in the negative to the most difficult one with 

existing resistance to up to NG classes. Second, we also vary 
the average time point at which the viral sample for predict
ing future 4CR has been extracted; the further in the past in 
relation to the actual 4CR occurrence, the more challenging 
the task becomes. We find that predicting 4CR is possible 
even in the most challenging case, albeit at a lower accuracy 
than in the easier settings. Finally, we also analyze feature im
portance to pinpoint the specific sequence features that most 
significantly influence the models’ predictions.

2 Methods
After first describing our data source and providing a concise 
summary of the extracted dataset, we then define drug resis
tance and drug class resistance as well as the classification 
setting. Finally, we present the full data preprocessing work
flow, consisting of down-sampling nonresistant cases, recon
structing virus sequences, and sequence encoding.

2.1 Original data and initial filtering
The EuResist Integrated Data Base (EIDB) is one of the larg
est repositories of HIV genotypes and their corresponding 
clinical responses to ARTs. The EIDB is instrumental in ad
vancing our understanding of HIV drug resistance, particu
larly in investigating the prevalence and clinical outcomes of 
4CR viruses in patients. Additionally, it provides valuable 
insights into the factors that drive the development of 4CR. 
We use the June 2023 version of the EIDB for this study. All 
original databases that provide data to the EIDB received eth
ical approval within their respective countries. The EIDB 
stores data of 71 503 patients from 22 different database pro
viders. We only use data from the patients who have meas
urements from raw sequences from three genes, reverse 
transcriptase (RT), protease (PR), and integrase (IN), drug re
sistance scores for each drug within the corresponding four 
drug classes, viral load measurements, and time points from 
each given measurement.

We filter the original data as follows. Patients with a single 
record are excluded, so only patients with at least two 
records are retained. Any sequence with missing gene infor
mation from the RT, PR, and IN regions is removed. Records 
with inconsistencies in sampling dates, such as discrepancies 
in the day, month, or year, are also filtered out. Additionally, 
sequences containing stop codons and degenerated codons 
translated into more than four amino acids are excluded 
from our analysis.

We construct a comprehensive patient profile by merging 
the relevant data from the EIDB for each patient. Each profile 
contains at least two hospital visits and includes the virus se
quence sampling (raw sequence), the sampling date, sequence 
length, the specific gene regions, identified mutations, as well 
as drug resistance scores and corresponding resistance levels 
for each drug within the NRTI, NNRTI, PI, and INI drug 
classes, age, gender, and viral load (VL). These resistance 
details are obtained using the Stanford HIV Drug Resistance 
Interpretation System (see next section). The four drug classes 
contain a total of 17 drugs, with a comprehensive list avail
able in Supplement S1.1. We exclude drug classes like core
ceptor fusion inhibitors, gp120 blockers, capsid inhibitors, 
and CD4 binding monoclonal antibodies due to insufficient 
data in EIDB for these categories.
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2.2 Multidrug class resistance
HIV drug resistance occurs when genetic mutations in the vi
rus reduce the effectiveness of ART in inhibiting its replica
tion. Within the context of ARTs, drug resistance is assessed 
based on specific mutations in the HIV genome. In EIDB, the 
stored resistance information is calculated using the Stanford 
HIV Drug Resistance Interpretation System, specifically ver
sion 8.9–1 of the algorithm that identifies mutation types and 
their associated resistance levels. This system quantifies drug 
resistance by assigning a score that reflects the degree of viral 
resistance to the specific antiretroviral drugs, ranging from 
susceptible (no resistance) to high-level resistance. Further 
details on the calculation of these resistance scores are pro
vided in Supplement S1.

The standard sequence-based definition for INIs resistance 
is often insufficient, necessitating an additional approach for 
INIs. Unlike NRTIs, NNRTIs, and PIs, INIs are a relatively 
recent class of drugs and have demonstrated high efficacy. 
However, sequencing the IN gene of the virus is typically con
ducted only when resistance is suspected, resulting in limited 
sequence data available in our database. To compensate for 
this lack of INI data, we used an alternative definition for INI 
resistance in cases where IN sequencing data was unavailable. 
This definition suggests that therapies with INI can lead to re
sistance under specific conditions, as determined by VL meas
urements and the duration of INI drug treatment. Further 
details on this definition are provided in Supplement S1.

A virus is considered drug-resistant if it shows intermediate 
or high-level resistance to any specific drug. This method is 
called sequence-based drug resistance definition (Pirkl et al. 
2023). If the virus displays intermediate or high-level resis
tance to at least one drug within a specific class, it is classified 
as drug-class resistant (CR) (Tang et al. 2012, Pirkl et al. 
2023). As resistance extends to two or three drug classes, it is 
categorized as 2CR or 3CR, respectively. Furthermore, when 
resistance is detected across all the four key drug classes, 
NRTIs, NNRTIs, PIs, and INIs, the virus exhibits four-drug- 
class resistance (4CR). We provide an illustration that 
explains the different CR levels in Supplement S1.4.

2.3 Identification of positive and negative patients
We then categorize patients according to their infections with 
CR viruses, which can show resistance in none (0CR), 
one (1CR), two (2CR), three (3CR), or all four (4CR) drug 
classes. We reveal the following distribution: 54 475 patients 
harbored 0CR viruses, 11 346 had 1CR viruses, 10 616 had 
2CR viruses, 3095 had 3CR viruses, and 108 had 
4CR viruses.

Furthermore, we employ the VL-based resistance definition 
to determine if additional patients are infected with INI- 
resistant viruses in cases where the INI sequence data was 
unavailable. We identify 2600 patients with viruses resistant 
to the INI drug class, illustrated in Supplement S1.3.

This inclusion leads to 352 patients being infected with 
4CR viruses. These patients represent the positive samples in 
our training dataset. The remaining 71 151 patients, who 
harbor non-4CR viruses spanning four CR levels from sus
ceptible (0CR) to 3CR, represent the negative samples in the 
dataset. These results are illustrated in Supplement S1.5.

2.4 Time to MDR occurrence
We aim to identify the time it took for 4CR to develop. To 
this end, we use the first 4CR detection date as a reference 

point for each patient and calculate the time of all other 
records for the patient relative to the 4CR observation. We 
observe that patients with 4CR viruses often have irregular 
and infrequent virus sequencing during the first 10 years of 
treatment, indicating potential non-adherence. However, in 
the 2 to 3 years preceding the initial detection of 4CR, there 
is a significant increase in virus sequencing, with shorter 
intervals between samples.

2.5 MDR classification task
In our classification task, we use patient virus sequences as 
input data to predict whether the corresponding viruses will 
develop 4CR, with the outcome being either yes or no. We as
sess how far in advance 4CR prediction can be made reliably 
by solving this classification task using features from different 
time points using the sliding time anchor approach described 
in Section 2.6. To further adjust the complexity of the task, 
we select negative data sequences from patients who are 
infected with viruses that exhibit a particular level of CR, 
starting from the simplest (0CR) to the most complex (3CR); 
see Section 2.7 for details.

2.6 Sliding time anchor approach
For constructing a training dataset, we need exactly one viral 
sequence per patient, even though many patients have sam
ples from multiple time points recorded in the database. An 
obvious choice, which we use for the baseline model, is to se
lect the last available time point prior to developing 4CR. To 
study the effect of time on the capability of 4CR prediction, 
we additionally wish to create data sets that utilize earlier 
time points. However, both the frequency of time points per 
patient as well as their intervals are highly irregular in the 
data, which makes a consistent selection of earlier samples 
less obvious, as illustrated in Supplement S1.7.

To permit a smooth increase in the average time duration 
to MDR and thus the expected difficulty of the classification 
task, while simultaneously retaining all patients, we use a 
sliding time anchor approach, which is illustrated in Fig. 1. 
We define a time anchor T 2 ð0;7000Þ and pick, for each pa
tient, the measurement whose time point is closest to the 
given sliding time anchor T. Hence, the extreme values 
0/7000 pick the first/last available measurement for each 
patient, whereas other sliding time anchor values of T can be 
used to interpolate; in practice, we use increments 
of 1000days.

2.7 Negative data representing particular CR levels
There is a significant difference in the number of patients har
boring 4CR viruses compared to the patients harboring non- 
4CR viruses. To address this issue, we create a balanced 
training dataset by selecting an equal number of negative 
samples (patients infected with non-4CR viruses) and positive 
samples (patients infected with 4CR viruses).

In order to avoid bias, we select patients for the negative 
data who have treatment durations similar to those of the 
positive group. We first categorize negative patients into CR 
levels (0CR to 3CR). We second generate histograms of the 
treatment durations for each sliding anchor of positive sam
ples. Using these histograms, we calculate the cumulative dis
tribution function (CDF), which provides the cumulative 
probabilities of the treatment durations for the positive 
group. We randomly select histogram bins from the negative 
group with probabilities proportional to the positive group’s 
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CDF. Finally, individual negative samples are then randomly 
drawn from the selected bins. With this approach, we ensure 
that the treatment duration distributions of the negative sam
ples from the sliding time anchors are similar to those of the 
positive samples.

2.8 Mutation types
Patient virus sequences include various types of mutations 
that either contribute to main drug resistance or to minor 
drug resistance. We use not only drug-resistance mutations 
(DRMs) but also mutations from other categories, as they 
can also contribute to drug resistance. We considered the fol
lowing mutation types: Major DRMs, which significantly im
pact drug resistance; minor DRMs, which have a weaker 
effect individually but can enhance the impact of major 
DRMs; treatment-selected mutations (TSMs), which arise 
under drug pressure and drive resistance; and surveillance 
drug-resistance mutations (SDRMs), which are useful for 
monitoring the transmission of drug resistance.

2.9 Feature extraction
The raw virus sequences from the patients have varying 
lengths, requiring standardization for the training dataset. 
Instead of using the raw sequences, we use the standard refer
ence sequence. Due to the lack of integrase sequence data, we 
focus on the reverse transcriptase (RT) and protease (PR) seg
ments. We use the 560-amino-acid length RT sequence and 
the 99-amino-acid length PR sequence from HXB2.

To match each patient’s virus sequence with the HXB2 ref
erence, we substitute all recorded mutations for the RT and 
PR sequences at their corresponding positions. For example, 
if a sequence had a K65M mutation, we replaced lysine (K) 
with methionine (M) at position 65 in the HXB2 sequence. 
This process was applied to all sequences.

We use one-hot encoding to represent virus amino acid 
sequences, where each amino acid is encoded as a binary vec
tor of length equal to the number of unique amino acids plus 
symbols (“_” and “-”) with a “1” at the position correspond
ing to the amino acid or symbol, with all other entries set to 
“0.” For ambiguous mutations, we use fractional entries that 
are equal to one over m where m is the number of ambiguous 
mutations. This method generates a vector of length 12 320 
for the RT sequence, a vector of length 2178 for PR, and a fi
nal encoded vector containing a total length of 14 498 
through concatenation.

As an alternative to one-hot encoding, we use the ProtT5-XL- 
UniRef50 Protein Language Model (Raffel et al. 2020, Elnaggar 
et al. 2021) to generate feature embeddings for amino acid 
sequences, focusing on the encoder part of the model. This 
model treats each amino acid as a token. Tokenizing each amino 
acid poses a significant computational challenge when dealing 
with sequences containing numerous ambiguous mutations 
found in patient records. To manage the computational chal
lenge of analyzing numerous ambiguous mutations, we ran
domly sample and average subsets of these combinations. This 
approach allows us to handle up to 50 sequences with an 
Nvidia RTX A4000 GPU. Feature embeddings result in a vector 
of length 573 440 for a RT sequence, a vector of length 101 376 
for a PR sequence, and by concatenating both, the combined se
quence is represented by a vector of length 674 816.

3 Results
We developed several classification models to predict the fu
ture emergence of 4CR viruses by analyzing viral sequences 
extracted from both xCR levels from 0CR to 3CR, and 4CR 
patients. Specifically, negative samples were derived from 
xCR patients, while positive samples originated from 4CR 
patients, but all were evaluated using a sliding time anchor 
T ¼ t, where t 2 f0;1000; . . . ;7000g. Importantly, even posi
tive samples from 4CR patients were taken at times t when 
4CR resistance has not yet emerged, ensuring the model fo
cuses on pre-resistance signals. Therefore, we first evaluated 
the predictive performance by varying the classification prob
lem using different model types, time anchors, and CR levels 
for negative data. Next, we also studied the feature importan
ces from our best-performing models and related them to 
known drug class resistance positions and mutations listed in 
the Stanford HIV DB. This approach allowed us to identify 
predictive patterns associated with the eventual emergence of 
resistance to 4CR.

3.1 Predictive performance
We began with the baseline classification setting that distin
guishes 4CR from 3CR based on the last virus sequence ob
served prior to 4CR with a sliding time approach T ¼ 0. 
Focusing on the 3CR stage was crucial because it was the 
most challenging type of drug class resistance to manage in a 
clinical setting before 4CR emergence. Patients at this stage 
are at high risk of progressing to 4CR. While predicting the 

Figure 1. Timeline of 4CR virus development for each patient. Each anchor line represents the duration of 4CR development for individual patients. The 
red dot marks the initial 4CR observation, while petrol dots indicate virus sequencing events. The vertical purple line represents a sliding time anchor with 
T ¼ 2000 days prior to the first 4CR observation, and the vertical orange line represents another sliding time anchor with T ¼ 2000 days. Orange and 
purple boxes highlight the virus sequences closest to these respective time anchors.
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future emergence of 4CR from 3CR was particularly difficult, 
using T ¼ 0 was the easiest choice.

In this setting, we built various classifiers, namely Support 
Vector Machines (SVMs) with RBF and polynomial kernels 
(Hearst et al. 1998), Logistic Regression (LR) with elastic net 
regularization (Zou and Hastie 2005), Random Forest (RF) 
(Breiman 2001), and XGBoost (Chen and Guestrin 2016). 
Since we have a balanced classification problem (284 positive 
and 284 negative samples), we used accuracy as the perfor
mance metric. To evaluate our models, we performed ten runs 
of five-fold cross-validation (CV) using the default parameters 
of each model from the Python Scikit-learn library.

First, we used one-hot encoding as a feature extraction 
strategy and observed that accuracy values were in the range 
of 0.665 to 0.693 (Fig. 2a, red bars). While being far from a 
perfect classification, these results showed that the prediction 
of 4CR from patients who already showed 3CR was doable 
to a certain degree. It was remarkable that the models dif
fered only a little in the predictive performance; the random 
forest and the polynomial SVM performed both only slightly 
better than the other three alternatives.

Next, we investigated the effect of using feature embed
dings instead of one-hot encoding (Fig. 2a, green bars). Here, 
we observed a drop in performance for both SVMs and the 
Random Forest, whereas there was a minimal improvement 
for the elastic net. The biggest improvement was seen for 
XGBoost, which did not outperform the best one, the hot 
encoding models, though. Overall, we concluded that feature 
embeddings did not substantially improve over one-hot 
encoding despite their potential to offer more detailed repre
sentations of virus amino acid sequences. Therefore, we used 
the latter for the remainder of this article.

While the previous two studies were carried out with default 
hyperparameters for all models, we now examined whether 
hyperparameter tuning can improve model performance. To 
this end, we applied nested cross-validation with five folds for 
both inner and outer loops. The tested hyperparameters within 
the nested CV are shown in Supplement S1.8.

We observed that all models yield a similar accuracy, rang
ing from 0.6549 to 0.7042 (Fig. 2a, blue bars). The SVM 
with an RBF kernel benefited most from the tuning; it was 
now on par with the Random Forest, which did slightly im
prove. The polynomial SVM results remained virtually 
unchanged, as the chosen hyperparameters were the same as 
the default values. Surprisingly XGboost did not benefit from 

the tuning at all. Overall, the effect of hyperparameter tuning 
was small for this classification problem on this data set.

Considering the high computational effort of a nested 
cross-validation for little predictive gain, we continued the 
study with default hyperparameters. In particular, we focused 
on the random forest as it was among the two best models 
when default hyperparameters were employed and offered, in 
comparison to the polynomial SVM, better interpretability 
due to built-in feature importance.

In all previous evaluations, we used T ¼ 0, meaning we al
ways picked the last observation prior to 4CR for feature ex
traction. Then, we explored whether moving the time anchor, 
that is, predicting from even earlier measurements, had an ef
fect on predictive performance. Intuitively constructing data 
sets with T>0 should make the classification problem 
harder, as virus sequences datasets from older time points 
might not reflect recent mutations, which can affect resis
tance patterns.

We tested this hypothesis for the 4CR versus 3CR classifi
cation problem using different values for T. The results are 
shown in Fig. 2b. They confirmed that the problem gets grad
ually harder when the time anchor is increased. The perfor
mance never degraded to complete randomness, which might 
seem counter-intuitive at first glance. It can be explained by 
the fact that even for T ¼ 7000, there were still some patients 
in the data set with observations relatively close to the 4CR, 
for instance, those that had only one additional measurement 
prior to 4CR in the first place.

Since each value of T corresponds to a selection of time 
points closest to that value T, their average time difference to 
the 4CR observation may be very different to T. Taking the 
extreme cases as examples, we find that T ¼ 0 corresponds to 
an average time gap of 1633days, whereas T ¼ 7000 corre
sponds to an average time gap of 2521days. Hence, we addi
tionally show the mean accuracy as the function of the actual 
time gap in Supplement S1.9.

All evaluations described up to this point attempted to clas
sify 4CR versus 3CR, meaning they attempted to predict the 
emergence of four class drug resistance in patients already 
exhibiting three class drug resistance. While this is arguably 
the clinically most relevant task, it is also the most challeng
ing. To put the results into perspective we now also investi
gated the seemingly easier tasks of predicting the emergence 
of 4CR for the patients with the lower CR levels (0–2) versus 
4CR patients at the same time anchor T.

Figure 2. Models’ comparison for 3CR. (a) The performance evaluation across various models using CV at T ¼ 0. The red bar represents the results of CV 
from one-hot encoding, the green bar shows CV from feature embeddings, and the blue bar shows nested CV from one-hot encoding. (b) Random Forest 
performance across sliding time anchors. Error bars show the standard error of the mean.
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For this purpose, we applied the same methodology as be
fore: a default random forest learned on datasets with differ
ent time anchors T. The results are shown in Fig. 3. For the 
0CR, we observed a nearly perfect classification for all values 
of T. This can be explained by the fact that this model essen
tially learned to detect any drug class resistance for those pre
dicted with 4CR emergence in the future since the negative 
data did not contain any resistant viruses at all. As plenty of 
resistance mutations are known in the literature, it was no 
surprise that the ML models were also able to pick them up. 
The same held for the 1CR case, which distinguished MDR 
from single drug class resistance.

When using viral sequences of 2CR patients for the nega
tive data, the models’ performance noticeably decreased com
pared to 0CR and 1CR; in terms of CR levels, it was the first 
problem that did not appear to be a trivial task. Yet it was, 
with mean accuracy scores ranging from 0.8438 and 0.8556 
across all sliding sampling timelines, still a substantially eas
ier problem than predicting 4CR emergence from the virus 
sequences of 3CR patients versus virus sequences of 4CR 
patients. This suggested that higher CR levels, reflecting 
greater complexity and diversity of mutations within viral 
sequences, negatively impacted predictive performance. 
Overall, these findings emphasized the importance of under
standing viral sequence evolution in the context of drug class 
resistance, as higher CR levels presented more challenges for 
accurate prediction.

3.2 Feature importance
Next, we studied whether the trained models can accurately 
and reasonably learn key features related to drug resistance, 
identify any new or previously unrecognized features contrib
uting to the model’s predictive accuracy, and offer new 
insights into drug resistance. To this end, we evaluated fea
ture importance in terms of mean decrease in Gini impurity 
(MDI) from models trained on the sliding time anchor T ¼ 0 
for both the 0CR and 3CR stages. We expected that the 0CR 
model would find the most important features associated 
with drug resistance by looking at its predictive performance. 
In contrast, the 3CR model might focus on fewer features di
rectly related to drug resistance as it was expected that all 
3CR samples contain drug resistance mutations. Due to the 
one-hot encoding, the models return MDI values for each 
pair of position and amino acid. To display these results 
more concisely, we aggregated all MDI values for a single po
sition by summing over the different amino acids.

To check whether the top-ranked positions identified by 
other models were plausible, we first inspected the 0CR 
model, where we expected to find many known drug- 
resistance mutations. We plotted the top 20 most important 
sequence positions in decreasing order of their MDI value, 
ranging from 0.01 to 0.07, in the lower left side of Fig. 4. We 
observed that the positions RT 215 and RT 184 were the two 
most important positions. There was a sharp decline in fea
ture importance following these top two positions, with the 
importance of the remaining positions decreasing more grad
ually. According to the Stanford HIV Drug Resistance DB, all 
of the 20 positions are known as drug resistance mutation 
positions in the RT or PR region. Unknown positions start to 
appear beyond the top 20 (see Supplement S1.10).

Next, we studied feature importance in the 3CR model to 
potentially identify any new, previously unidentified posi
tions that were particularly predictive for multi drug class re
sistance. The aggregated MDI values per position range from 
0 to 0.0175 (bottom right in Fig. 4), which is considerably 
lower compared to the CR case. Further, the MDI distribu
tion across positions was more uniform. Both observations 
were plausible, given the lower predictive performance of the 
3CR model. Half of the top 20 positions were not known as 
DRM positions according to the Stanford HIV Drug 
Resistance DB, including the two most important ones (RT 
297 and RT 123). However, due to the low absolute MDI 
values and even distribution, no single position strikes out as 
particularly predictive.

While aggregating MDI values per position provided infor
mation about the location of learned drug resistance muta
tions, it lost information about the mutation type. To allow 
such a more detailed view, we normalized each original 
amino acid–specific MDI value by the aggregated MDI value 
at this position. This results in a probability distribution that 
represents how likely a specific amino acid is to be important 
and can be visualized as a sequence logo stack.

Carrying out this procedure for each of the top-20 impor
tant positions using Seq2Logo-2.0 (Thomsen and Nielsen 
2012) yielded a visualization resembling a traditional se
quence logo (Fig. 4, top), with three important differences. 
First, the sequence positions shown were not adjacent in the 
protein, but rather shown in order of decreasing aggregated 
MDI. Second, the height of each symbol was proportional to 
its MDI for the random forest 0CR and 3CR models, respec
tively, as opposed to the occurrence frequency in the sample. 
Third, the non-wild type amino acids were colored according 
to their inclusion in Stanford HIV Drug Resistance DB.

Besides known DRMs, accessory mutations either intensify 
drug resistance when paired with a major mutation or in
crease the replication fitness of viruses containing major drug 
resistance mutations. Mutations classified as “other” by the 
Stanford HIV DB were more common in patients on ART 
than in ART-naive individuals. Any mutations not found in 
the Stanford HIV DB were labeled as “unknown” to indicate 
that they have not yet been found to be associated with 
drug resistance.

In the 0CR model, the variability in amino acids across the 
identified positions was generally low (upper left in Fig. 4). 
At the most important position, RT 215, the key amino acids 
were T, Y, and F. At positions RT 184, RT 41, RT 103, PR 
84, and RT 118, we observed a more distinct binary pattern, 
where two amino acids dominated, and in each case, one of 
these represented the wild type. In contrast, positions PR 54, 

Figure 3. Risk of 4CR emergence. Default random forest models across 
sliding time anchors T 2 ð0;7000Þ approach for 0CR, 1CR, and 2CR. Error 
bars show the standard error of the mean.
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PR 82, RT 219, and PR 33 exhibited greater amino acid di
versity, suggesting more variation at these positions. The 
model primarily identified known DRMs, with a few addi
tional accessory and other mutations. The two most critical 
positions, RT 215 and RT 184, contained only DRMs listed 
in the Stanford HIV DB. At position PR 10, different than the 
observed DRM pattern, the wild-type amino acid was L, with 
I and V classified as other mutations, and F listed as a known 
DRM. Similarly, for the position PR 71, A was the wild-type 
amino acid, while I, V, and T were accessory mutations.

In the 3CR model, the variability in amino acids at the 
most important sequence positions was considerably higher 
than in the 0CR model (upper left in Fig. 4). We observed 
only one position with a binary pattern, RT 292, the wild 
type V and precisely one mutation variant with I. It identifies 
previously known DRMs, accessory mutations, and other 
mutations. For instance, at position PR 20, T was a known 
accessory mutation, while K represented wild type, and I, R, 
V, and M represented other mutations. Furthermore, all posi
tions unknown to the database obviously also resulted in un
known amino acids. However, there was also one known 
position, PR89, with unknown amino acids I and M.

4 Discussion
We built various ML classifiers to predict the future emer
gence of MDR viruses in HIV-infected patients, focusing on 
different drug class resistance levels and time points. By vary
ing these factors, we assessed how early and from which drug 

class resistance level we can reliably predict future multi
drug resistance.

To the best of our knowledge, this was the first study that 
used machine learning methods to predict four class drug re
sistance from lower resistance levels, ranging from suscepti
ble to three-drug class resistance, in contrast to single drug 
class resistance or single drug resistance studies (Pironti et al. 
2017, Steiner et al. 2020, Blassel et al. 2021, Ditz et al. 
2023a, Paremskaia et al. 2023). In addition, we also varied 
the task’s complexity along a second dimension, namely the 
time span between the last clinical visit with virus sequencing 
and the time point at which class drug resistance occurred. 
Our feature importance results confirmed that many of the 
mutations and the positions identified were related to drug 
resistance. More importantly, our study uncovered unknown 
mutation positions and mutations such as RT E297A, 
E297K, E297R, D123E, D123N, and PR A71P that have not 
yet been labeled as related to drug resistance. This suggests 
that previously unlabeled or undetected mutation positions 
and mutations might play a role in the development of four 
class drug resistance.

Some of the detected mutation results discovered in our 
study, such as RT L228H, and PR L33F, and M41L over
lapped with a recent study findings on resistance-related 
mutations. This study analyzed the accumulation of resis
tance mutations over time using mutagenetic tree models 
(Pirkl et al. 2023) showing the accumulation of mutations 
follows a predetermined order. Additionally, Teodoro’s study 
analyzed data from various patients were cross-sectionally 
rather than longitudinally to infer the accumulation of 

Figure 4. Feature importance analysis illustrating the distribution of position-specific and amino-acid-specific importance on each position for the (a) 0CR 
model (left) and the (b) 3CR model (right). For both-hand sides, in the lower plots, feature importance values among the top 20 ranked are color-coded 
based on their drug resistance mutation (DRM) category from the Stanford HIV DB: dark gray for RT and PR. If a position is within the top 20 but not 
listed in the Stanford DB DRM list, it is colored light gray. In the upper plots on both-hand sides, wild-type amino acids are shown in black, while 
mutations listed in the Stanford HIV DB as DRMs are shown in red, accessory mutations listed in the Stanford HIV DB are shown in blue, and other 
mutations listed in the Stanford HIV DB are shown in green. Mutations not found in the Stanford HIV DB are labeled as unknown and colored in yellow.
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mutations in multidrug resistant patients (Di Teodoro et al. 
2024). Our findings from mutations RT L10I, PR L63P, RT 
E44D, RT H208Y, and RT L210W overlapped with 
Teodoro’s and Betancor’s studies (Betancor et al. 2014, Di 
Teodoro et al. 2024). Both studies (Pirkl et al. 2023, Di 
Teodoro et al. 2024) highlighted how understanding past 
mutations was essential for developing future therapies and 
addressing drug resistance. Our study added a dynamic ap
proach to these two previous studies by incorporating multi
ple class resistance levels and time points.

In the most critical clinical setting to manage (Puertas et al. 
2020, Rossetti et al. 2023), a major concern arises when 
patients are at risk of developing multidrug class resistant vi
ruses. These patients were already infected with three-drug 
class resistant viruses. Focusing on their most recent sequence 
data in the EIDB, we used data from the highest risk cases. 
The prediction results confirmed that it was the most chal
lenging prediction task as well as the highest risk clinical 
challenge. The high genetic similarity between three-drug 
class and four-drug class resistance virus sequences made pre
diction harder to distinguish between three-drug class and 
four-drug class resistance viruses.

In the most challenging prediction task, the top 20 features 
had comparably low feature importance scores, with no sin
gle feature standing out. Still, the model did identify both 
known and previously unknown drug resistance mutations. 
Shifting our focus to the least challenging clinical setting, 
patients infected with susceptible virus sequences, the top 20 
features had a higher importance score, with two features 
emerging as the most important. As anticipated, the top 20 
features were known drug resistance mutations. This con
firmed that the model can easily identify and assign higher 
importance scores to these key resistance mutations and mak
ing two observed mutations stand out more due to the lower 
complexity of susceptible virus sequences.

The further back in time, we analyzed for the most chal
lenging prediction task and we observed a decline in model 
performances, suggesting that the earlier recorded sequences, 
being further from developing four drug class resistance, have 
fewer evolutionary changes or mutations. This indicated that 
the earlier recorded sequences may not have yet accumulated 
critical mutations needed to predict four drug class resistance 
(Pirkl et al. 2023). Our results underscored that predicting 
MDR over longer time periods became relatively more 
challenging.

Nevertheless, further back in time, with a time anchor at 
7000 days, the model performance surprisingly did not de
crease to random prediction. The reason why this happens in 
our study arose from the nature of the dataset, as not all 
patients have multiple virus sequences covering entire time 
intervals (or spans). We used identical time points, especially 
for patients with fewer virus sequence samples close to multi
drug resistance time points, while selecting the closest sample 
to the given time anchor. When there were more virus 
sequences from various time points and covering a better 
time span in EIDB, we expected that the performance of the 
model for the time anchor at 7000 days might decrease to a 
random level.

The less critical clinical settings represented the less chal
lenging prediction tasks, susceptible to two drug class resis
tance; as anticipated, we observed minimal performance 
difference between 0CR and 1CR models. Moving further 
back in time for both models, we did not observe a 

performance decline. This suggested that lower drug resis
tance levels did not indicate any significant genetic complex
ity over time. However, the performance of the 2CR model 
substantially dropped, reaching its lowest point at the closest 
to three-drug class resistances. This suggested that genetic 
complexity got higher as the virus approached a higher class 
resistance level. Despite this performance decrease, all these 
tasks remained easier tasks compared to the most challenging 
3CR prediction task.

Contrary to previous studies (Ditz et al. 2023b, Malik and 
Ou 2023), the performance of the models with feature 
embeddings was almost the same as for the models using one- 
hot encoding. This suggested that while feature embeddings 
can be powerful in more complex datasets, in cases like 
ours, where the virus amino acid sequences had clear and 
recognizable patterns well-suited for one-hot encoding, the 
added complexity of feature embeddings did not improve 
performance.

Since there was a lack of sufficient sequence data for IN- 
class resistance in EIDB, we were unable to include IN resis
tance information in our models. This posed a challenge as 
we set our models’ predictions relying on NRTI, NNRTI, 
and PR resistance data. This gap potentially affected the per
formance of our models and limited a more comprehensive 
understanding of four drug class resistance patterns. When 
enough IN resistance data is available in EIDB, we expect 
that the models’ prediction performance will improve and 
have IN resistance insights into four drug class resistance 
development.

5 Conclusion
In this study, we show that predicting the future emergence 
of 4CR viruses is feasible using virus sequence data from dif
ferent drug class resistance levels and time spans. Drug class 
resistance is an ongoing challenge in HIV treatment, and se
vere forms of drug class resistance can lead to repeated treat
ment failure and disease progression. The feature importance 
analysis shows the most critical amino acid positions and 
mutations, as some are known positions and mutations, 
while some are new. Our findings can be supportive or shed 
light on the early detection of four drug class resistance vi
ruses, enable timely adjustments to treatment strategies that 
might delay or even prevent the progression to four drug class 
resistance, improve patient outcomes, and reduce the risk of 
advanced drug class resistance. Furthermore, our time anchor 
approach could be translated to other time series data sets 
with irregular time points.
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