- 1 RELATIONSHIP BETWEEN MATERNAL OBESITY, BIRTH
- 2 WEIGHT AND FETAL ADIPONECTIN/LEPTIN RATIO: A
- 3 POTENTIAL EARLY BIOMARKER OF CARDIOMETABOLIC RISK
- 4 Juliana Morais^{1,2,a}, Débora Veiga^{1,a}, Ana Filipa Ferreira¹, Inês Alves¹, Inês Castela^{3,4}, Carla
- 5 Ramalho^{5,6,7}, Joana O. Miranda^{1,8}, Adelino Leite-Moreira^{1,9} and Inês Falcão Pires^{1*}
- 6 ¹RISE-Health, Department of Surgery and Physiology, Faculty of Medicine of the University of
- 7 Porto, Porto, Portugal
- 8 ²Department of Functional Sciences, School of Health, Polytechnic Institute of Porto, Porto,
- 9 Portugal
- ³Nutrition and Metabolism Department, NOVA Medical School | Faculdade de Ciências Médicas,
- 11 Universidade NOVA de Lisboa, Lisboa, Portugal
- 12 ⁴Comprehensive Health Research Centre, NOVA Medical School | Faculdade de Ciências
- 13 Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
- ⁵Obstetric Department, Unidade local de Saúde de São João, Porto, Portugal
- ⁶Obstetrics, Gynaecology and Pediatrics Department, Faculty of Medicine of the University of
- 16 Porto, Porto, Portugal
- 17 ⁷RISE-Health
- 18 Pediatric Cardiology Department, Unidade Local de Saúde de São João, Porto, Portugal
- 19 ⁹Cardiothoracic Surgery Department, Unidade Local de Saúde de São João, Porto, Portugal
- ^a Both authors contributed equally to this work.
- 21 *Corresponding author: ipires@med.up.pt (I. Falcão-Pires); Alameda Prof Hernâni Monteiro,
- 22 4200-319 Porto, Portugal

ABSTRACT

24

25

27

44

47

26 fetal and neonatal growth. In adults, lower adiponectin/leptin ratio (AdipoQ/Lep) has been suggested as a potential biomarker for metabolic risk. This study aimed to investigate whether the AdipoQ/Lep ratio in fetal blood correlates with the maternal and neonatal phenotypes and 28 29 whether it holds predictive value for the cardiometabolic risk of the offspring in early life. Umbilical cord blood (UBC) samples were collected at birth, and the concentrations of 30 adiponectin and leptin levels were measured using ELISA kits. Infants were evaluated 31 echocardiographically at 5±2 months-old (range: 1-12 months) and these parameters were 32 correlated with the AdipoQ/Lep levels. Results show that fetal AdipoQ/Lep ratio was lower in 33 34 infants born to mothers with prepregnancy obesity. Both prepregnancy weight and maternal 35 weight at the end of the gestation correlated with the AdipoO/Lep ratio in UBC, whereas 36 gestational weight gain showed no such association. Additionally, birth weight, birth length and 37 BMI-for-age Z-score were negatively correlated with the AdipoQ/Lep ratio. Notably, lower levels of this adipokine-based biomarker were associated with reduced Z-score of left ventricular end-38 39 diastolic diameter. However, multiple linear regression analysis showed that maternal obesity and 40 somatometry at birth influence infants' cardiac function and structure, independent of UBC AdipoQ/Lep ratio, adiponectin or leptin alone. To our knowledge, this is the first investigation to 41 explore the relationship between fetal AdipoQ/Lep levels, maternal-neonatal weight, and early 42 cardiac alterations, highlighting the biomarker's potential predictive value for early-life 43 cardiometabolic risk. 45 NEW & NOTEWORTHY: This study is the first to explore the association between fetal adiponectin/leptin (AdipoQ/Lep) ratio and maternal anf neonatal anthropometrics, and early 46 alterations in cardiac structure. While maternal and neonatal weight metrics impact infant heart development, this occurs independently of the AdipoQ/Lep. However, lower levels of 48 AdipoQ/Lep ratio were associated with reduced Z-score of left ventricular end-diastolic diameter, 49 offering insights into fetal programming mechanisms linked to maternal metabolic status during 50

Adiponectin and leptin are key adipokines that play crucial roles in metabolic regulation and in

- 51 pregnancy.
- 52 KEYWORDS: adiponectin, leptin, umbilical cord blood, maternal obesity, birth weight,
- 53 echocardiography

INTRODUCTION

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

Developmental Origins of Health and Disease (DOHaD) is aligned in "Barker's hypothesis" which relates malnutrition during pregnancy with low birthweight and increased risk of type 2 diabetes, obesity, hypertension, and other cardiometabolic disorders later in life(1, 2). In the past two decades, several mechanisms have been described to underlie infant programming in maternal obesity, including epigenetic changes (e.g., DNA methylation, histone modifications)(3); reduced mTOR/STAT3 activity, promoting gluconeogenesis, lipid oxidation, and fatty acid synthase activity(4), and altered adipokine signaling, which act as key mediators in the so-called "Adipokine Hypothesis" (5). Adiponectin and leptin are two adipokines that play crucial roles in the development of metabolic disorders(6), as well as in fetal and neonatal growth(7). Although umbilical cord blood (UBC) adiponectin appears to be a key biomarker in early life, potentially linking maternal metabolic status and gestational age(8), more research should clarify its role in long-term growth patterns and metabolic health. Conversely, UBC leptin is strongly associated with postnatal growth trajectories: lower levels predict faster weight gain in infancy, whereas higher levels are linked to slower growth, independent of birth weight(7). Maternal obesity and UBC hyperleptinemia appear to affect infant growth and may contribute to the intergenerational transmission of obesity and metabolic risk(7). The ratio between adiponectin and leptin (AdipoQ/Lep) is a promising biomarker of metabolic risk in adulthood(9). Recently, it was established sex- and age-specific percentiles for the AdipoQ/Lep ratio in healthy Danish children and adolescents (8-17y), providing a more differentiated interpretation(10). Still, the potential of this biomarker in early life was not explored. In this research, our goal was to determine whether the AdipoQ/Lep ratio in UCB - also referred to as fetal AdipoQ/Lep - is associated with the maternal and neonatal phenotype and holds predictive value for the cardiometabolic risk of the offspring in early life.

METHODOLOGY

80 *Description of the study*

- The present study is a sub-study of the original PERIMYR birth cohort(11), which was approved by the Ethics Committee of Unidade Local de Saúde de São João, EPE (ULS São João), with the reference number ID201/18. Pregnant women in labor admitted to the delivery room were invited to participate in this study. After being informed about the project, the participants voluntarily signed the free and informed consent form, allowing the obstetric team to collect UBC at the time of birth. A transthoracic echocardiography (TTE) evaluation of the offspring was performed at
- 87 5±2 months (range: 1-12 months).

- 88 Clinical, anthropometric, and echocardiographic data collection
 - Demographic and clinical data of the mother [age, pregestational weight and body mass index (BMI), gestational weight gain, presence of pathologies before pregnancy, pathologies during pregnancy, use of medications, type of delivery] and the child (gestational age, weight and length at birth, complications after birth such as hypoglycemia, need for supplemental inhaled oxygen or positive pressure ventilation and phototherapy, age and weight, length at the time of TTE) were obtained through consultation of clinical files and the application of questionnaires. Weight-forlength Z-score and BMI-for-age Z-score were calculated using World Health Organization Anthro software available at https://www.who.int/tools/child-growth-standards/software.
 - The TTE was performed by the same operator according to the Guidelines and Standards for Performance of a Pediatric Echocardiogram of the American Society of Echocardiogram(12, 13) using the equipment VividTM iq (GE Medical Systems, Norway), with a pediatric sectoral transducer appropriate to the child's age (6S 2.4-8.0 MHz) and continuous and simultaneous electrocardiographic recording. The echocardiographic variables were normalized to the Z-score using the Cardio-Z application (Apple version 3.0), developed by Evelina Children's Hospital London, UK, in collaboration with the technology company UBQO, was employed to calculate Z-Score for various echocardiographic parameters and indices. These calculations accounted for age, sex, length and weight for each individual, enabling appropriate interpretation and statistical analysis within a pediatric sample. Z-score represents the number of standard deviations observed from the expected mean for a defined normal pediatric population (observed value predicted

- value / standard deviation). Z-score below -1.64 (equivalent to the 5th percentile) or above +1.64
- 109 (equivalent to the 95th percentile) were considered outside the normal range(14).
- 110 Sample collection
- 111 Umbilical cord blood samples were collected in a sterile bag with CPDA-1 anticoagulant solution
- 112 (Dermotek single blood bag Demophorius Healthcare) by the obstetric team, at the time of
- delivery, after clamping the cord, following the collection protocol of the Portuguese Blood and
- 114 Transplantation Institute. Samples were centrifuged for 15 minutes at 5,000 rpm at 4°C. The
- plasma was then transferred to cryovials and stored at -80°C until analysis.
- 116 Adiponectin and Leptin quantification
- 117 Levels of adipokine in UBC-derived plasma were quantified using Enzyme-linked
- 118 Immunosorbent Assay (ELISA). Concentrations of adiponectin (Abcam, Cambridge, United
- 119 Kingdom, Cat No: ab108786) and leptin (R&D Systems, Minneapolis, United States of America,
- 120 Cat No: DY398-05) were measured following the manufacture instructions, using dilution factors
- of 1:2000 and 1:10, respectively.
- 122 Statistical analysis
- 123 After assessing data normality using the Kolmogorov-Smirnov test, continuous variables are
- presented as mean \pm standard deviation. Categorical variables are expressed as absolute value and
- 125 relative frequencies. Correlations between AdipoO/Lep and maternal, infant, and
- echocardiographic outcomes were analyzed using either Pearson's or Spearman's correlation test,
- depending on data distribution. Since AdipoQ/Lep ratio levels are parametric, comparisons
- between different categories of echocardiographic Z-scores were performed using one-way
- 129 ANOVA, followed by pairwise t-tests using the pairwise.t.test() function in R. This function
- applies Bonferroni correction across all possible group comparisons, with p-value adjusted for
- 131 multiple testing. Multiple linear regression analysis was performed to assess whether the
- 132 AdipoQ/Lep ratio mediated the relationship between maternal and neonatal factors and
- echocardiographic parameters. Statistical analyses, including graphical representations, were

performed using RStudio version 4.3, with the ggplot2 package. Statistical tests were considered statistically significant when p < 0.05.

RESULTS

134

135

136

137 Description of participants

A total of 42 mother-neonate pairs were included according to the full availability of biological

samples, clinical data, and echocardiography analysis. Clinical data are provided in Table 1.

Table 1. Clinical and anthropometric data of study mother-neonate' pairs

Maternal data						
Maternal age (years), mean±SD		34 ± 6				
Pregestational BMI (kg.m ⁻²), mean±SD		27.8 ± 5.0				
Pregestational BMI category, n	2(%)					
	Underweight	1 (2.4)				
	Normal weight	11 (26.2)				
	Overweight	17 (40.5)				
	Obesity	13 (31.0)				
Gestational weight gain (kg), m	ean±SD	9.47 ± 6.70				
Gestational diabetes, n(%)		8 (19.0)				
Gestational hypertension, n(%)		6 (14.3)				
Peripartum/Neonate data						
Gestational age (weeks), mean±SD		39.0 ± 1.10				
Delivery mode, n(%)	Vaginal	33 (78.6)				
	C-section	9 (21.4)				
Sex, n(%)	Male	23 (53.8)				
	Female	19 (45.2)				
Somatometry at birth, mean±SD						
Weight at birth (g)		3161 ± 469				
Leng	gth at birth (cm)	49.0 ± 2.0				
Weight for length	Z-score at birth	-0.45 ± 1.19				
BMI for age	Z-score at birth	-0.51 ± 1.15				
Infant data at echocardiographic evaluation						

8- (),			
Somatometry, mean±SD	Weight (g)	6352 ± 1540	
	Length (cm)	62.7 ± 5.5	

 5 ± 2

SD – Standard deviation, BMI – Body Mass Index

Age (months), mean±SD

Umbilical cord blood AdipoQ/Lep ratio and its association with maternal and neonatal weight As outlined in Figure 1, there were several significant correlations between AdipoQ/Lep and maternal neonatal and body somatometry. AdipoQ/Lep ratio and leptin were negatively correlated with pregestational BMI, pregestational weight and weight at the end of the pregnancy (Figure 1A, B and C). Significant correlations were also observed between levels of AdipoQ/Lep ratio, adiponectin and leptin, and neonate's BMI-for-age at birth and weight at birth (Figure 1D and E). Length at birth was only significantly correlated with AdipoQ/Lep ratio, but not with Z-score weight-for-length at birth (r=-0.23, p=0.14). No significant correlations were observed between the fetal AdipoQ/Lep and Z-score BMI-for-age (r=-0.14, p=0.38) and Z-score weight-for-age (r=-0.13, p=0.41) at the time of the echocardiogram assessment. However, correlations were found between Z-score weight-for-age and adiponectin (r=0.380, p=0.013) and leptin (r=0.321, p=0.038).

Figure 1. Plasma AdipoQ/Lep ratio, adiponectin and leptin in UBC and its association with maternal pregestational BMI (A), maternal pregestational weight (B), maternal body weight at the end of the pregnancy (C), neonatal Z-score BMI-for-age (D), weight at birth (E), and length at birth (F). Pearson's correlation coefficient (r) indicates the strength and direction of the linear relationship between the variables. Shaded areas represent 95% confidence intervals for the fitted regression line. AdipoO/Lep, adiponectin/leptin ratio. BMI, body mass index.

159 Association between AdipoQ/Lep ratio and infant echocardiography

No correlations were found between AdipoQ/Lep ratio, adiponectin, and leptin levels and any echocardiographic parameter adjusted for Z-scores. After categorizing echocardiographic

parameters into three Z-score-based groups, among the 14 cardiac structural and functional parameters analyzed, only AdipoQ/Lep ratio was significant lower in left ventricular end-diastolic diameter Z-score (LVIDd Z-score) <-1.64 in comparation a LVIDd Z-score of -1.64 to +1.64 (p=0.037) (Figure 2).

166

167

169

170

171

172

173

174

175

162

163

164

165

Figure 2. Violin plots illustrate the distribution of AdipoQ/Lep ratio according to categorized Z-168 scores for 14 cardiac structural and functional parameters.

Maternal and neonatal weight as determinants of cardiac outcomes independently of AdipoO/Lep Multiple linear regression analyses were performed to investigate whether the AdipoQ/Lep ratio, adiponectin, and leptin individually mediated the association between maternal or neonatal anthropometric measures and selected echocardiographic parameters (Table 2). In all models, the AdipoQ/Lep ratio, adiponectin and leptin were not a significant predictor, suggesting that this adipokine-based biomarker does not mediate the observed relationship between the anthropometric variables and cardiac measurements.

Table 2. Multiple linear regression analysis considering left ventricular end-systolic diameter Z-score (LVIDs Z-score), mitral valve A-wave velocity Z-score (MV-A-wave Z-score) and isovolumetric relaxation time Z-score (IVRT Z-score) as the dependent variables.

Independent variables	В	Beta	P-value	Adjusted R ²	Model p-value
Model unadjusted	0.114	0.396	0.008*		
Model 1	0.131	0.456	0.006*	0.135	0.022*
Model 2	0.122	0.422	0.013*	0.132	0.039*
Model unadjusted	0.109	0.324	0.037*		
Model 1	0.128	0.379	0.025*	0.078	0.078
Model 2	0.144	0.428	0.013*	0.095	0.080
	Model unadjusted Model 1 Model 2 Model unadjusted Model 1	Model unadjusted 0.114 Model 1 0.131 Model 2 0.122 Model unadjusted 0.109 Model 1 0.128	Model unadjusted 0.114 0.396 Model 1 0.131 0.456 Model 2 0.122 0.422 Model unadjusted 0.109 0.324 Model 1 0.128 0.379	Model unadjusted 0.114 0.396 0.008* Model 1 0.131 0.456 0.006* Model 2 0.122 0.422 0.013* Model unadjusted 0.109 0.324 0.037* Model 1 0.128 0.379 0.025*	Model unadjusted 0.114 0.396 0.008* Model 1 0.131 0.456 0.006* 0.135 Model 2 0.122 0.422 0.013* 0.132 Model unadjusted 0.109 0.324 0.037* Model 1 0.128 0.379 0.025* 0.078

	Model unadjusted	-0.391	-0.433	0.004*		
Z-score BMI-for-Age vs. IVRT Z-score	Model 1	-0.373	-0.413	0.012*	0.148	0.016*
TVKI Z-score	Model 2	-0.332	-0.368	0.044*	0.134	0.038*

^{*} p < 0.05 indicates statistical significance. **Model 1**: adjusted for AdipoQ/Lep ratio. **Model 2**: adjusted for adiponectin and leptin levels. Adjusted R^2 values and associated p-values were obtained from a multiple linear regression. AdipoQ/Leptin: adiponectin/leptin ratio; B: unstandardized regression coefficient; Beta: standardized beta coefficient; BMI, body mass index.

176 DISCUSSION

To the best of our knowledge, this study is the first to assess fetal AdipoQ/Lep ratio associated 177 178 with maternal and infant anthropometry, and infant's echocardiographic parameters. The data 179 collected showed that fetal AdipoQ/Lep levels were correlated with maternal obesity and neonate 180 weight status, although no associations were found with cardiovascular parameters. 181 Several studies report strong associations between maternal obesity and infant overweight, as well 182 as metabolic and cardiovascular diseases in both childhood and adulthood(15). A meta-analysis including 12,475 cases of obesity among 88,872 children reported a 264% increase in the odds of 183 184 pediatric obesity when mothers have pregestational obesity (16). In addition, intrauterine exposure 185 to maternal obesity or gestational diabetes predisposes approximately 50% increased risk of type 186 2 diabetes in young individuals aged 10-22 years(17). Recently, a population-based study of 5107 187 children described that obesity at 11 to 12 years old was silently associated with the development 188 of cardiovascular dysfunction, assessed by pulse wave velocity(18). Identifying the metabolic 189 pathways underlying the DOHaD and discovering early biomarkers could promote early 190 preventive interventions. Adipokines are promising biomarkers and potential mediators of the 191 DOHaD(7, 19). Unveiling the complex interplay between maternal metabolic signals, placental 192 function, and fetal development is essential to better understand the intergenerational

transmission of obesity and metabolic risk.

Adipose tissue is an essential organ for human health, and it is characterized by its amount, distribution, and function(20). In obesity, adipocyte hypertrophy transforms adipose tissue into an unhealthy metabolically active organ that secretes proinflammatory cytokines and a dysregulated hormonal profile, including altered levels of adiponectin and leptin. The AdipoQ/Lep ratio has been proposed as a hallmark of adipose tissue dysfunction(21). Since this ratio is negatively correlated with insulin resistance and BMI(9, 22), it may also serve as an early biomarker of cardiometabolic diseases. To date, only one study assessed the AdipoQ/Lep ratio in umbilical cord plasma and maternalinfant outcomes(23), but it did not address cardiovascular outcomes. Therefore, this discussion relies on studies analyzing adiponectin and leptin separately. Thus, it is essential to note that a lower AdipoQ/Lep ratio reflects decreased adiponectin and increased leptin levels. At present, it is impossible to determine whether fetal adiponectin and leptin derive exclusively from maternal or fetal adipose tissue. The origin of adiponectin in the fetus remains unclear, although it is believed to be produced by fetal adipose tissue(24). Leptin is produced mainly in the adipose tissue but also in the skeletal muscle, gastric mucosa, heart, mammary, salivary gland, and even placenta(25). However, only 5% or less of placental leptin is released into the fetal circulation, while the remainder enters the maternal circulation (26). Although several studies have linked maternal adiponectin and leptin levels to child outcomes(27), some evidence suggested that maternal concentrations do not significantly influence fetal adipokines levels(26). While it is widely established that UBC leptin levels are strongly associated with pregestational BMI(28, 29), no such association has been described yet for adiponectin(24, 28). Samples of placentas from women with obesity showed downregulation of adiponectin and leptin systems (including both their synthesis and receptors)(30). The authors suggested that these epigenetic changes in placental adiponectin and leptin systems could program fetal growth and development later in life(30). Leptin upregulates placental GLUT1 expression and activity, enhancing glucose supply to the fetus, while adiponectin has been shown to modulate amino acid transporters (e.g.: SNAT2) and inhibit placental mTOR signaling via AMPK activation. This may

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

221 lead to fetal overgrowth and increased cardiometabolic susceptibility later in life(31). Although, maternal plasma adiponectin and leptin levels were not measured in this cohort, maternal obesity 222 223 - which is strongly associated with decreased circulating levels of maternal adiponectin and 224 increased leptin(7) – was negatively correlated with fetal AdipoQ/Lep ratio and positively with 225 fetal leptin. 226 We confirm previous data showing that adiponectin and leptin levels in UBC were related to 227 weight at birth(32). The correlations we observed between the AdipoQ/Lep ratio, adiponectin and 228 leptin and BMI-for-age Z-score and birth weight support the hypothesis that these adipokines are 229 linked to infant absolute fat mass rather than relative adiposity, as weight-for-length is primarily a measure of body proportionality rather than fat content. 230 231 Adiponectin and leptin correlate positively with weight-for-length Z-score at a mean age of 5 months. Additionally, Mantzoros et. al., observed that lower levels of UBC adiponectin and leptin 232 233 predict increased weight-to-length Z-score gain during the first 6 months of life(33). Similarly, in 234 a prospective cohort study of 185 mother-infant pairs, higher levels of UBC leptin were associated with lower BMI in the first year of life(29). Despite the contradictory results and 235 236 evidence showing that UBC adiponectin is not a predictor of adiposity at the age of 5 years (34), 237 future research is needed to explore how the balance between these two adipokines may predict 238 postnatal growth and body composition. 239 One of the main findings of this study was that the influence of maternal and neonatal weight on infant cardiac structure and function was not influenced by AdipoQ/Lep ratio, adiponectin or 240 241 leptin. We observed that maternal obesity emerged as a significant predictor of changes in infant 242 cardiac morphology, namely in the LVIDs and the MV-A-wave Z-score. Additionally, the neonatal 243 BMI-for-age Z-score at birth was negatively associated with IVRT Z-score. Although this 244 adipokine-based marker has been linked to maternal and neonatal weight status, it did not explain 245 the observed variation in cardiac morphology, highlighting the multifactorial nature of intrauterine cardiovascular programming. Categorical analysis revealed that infants with lower 246 247 ventricular diameter showed a significantly lower AdipoQ/Lep ratio, suggesting a possible link

between the intrauterine metabolic environment and the early cardiac remodeling. Leptin has pro-
hypertrophic effect on cardiomyocytes, contributing to ventricular remodeling and alteration in
diastolic function, contributing to early myocardial changes even in asymptomatic neonates(35).
In addition, a full cardiac system of adiponectin suggests a role in maintaining normal cardiac
function(35). These findings underscore the importance of longitudinal cardiovascular monitoring
in children exposed to maternal obesity, particularly those born with low birth weight, who are
associated with an increased risk of coronary heart disease in adulthood(36). The limited
associations observed between the AdipoQ/Lep ratio and most echocardiographic parameters
underscore the intricate nature of fetal cardiovascular programming. This suggests that a singular
hormonal ratio might not adequately reflect the complexity of multifactorial influences involved.
As corroborated by previous research, cardiometabolic outcomes in infancy and childhood are
shaped by the interplay of genetic, epigenetic, and environmental factors, including crucial
elements suctiago costah as placenta adaptation, oxidative stress, and inflammatory signaling(37,
39). This complexity is further emphasized by the concurrent development and share
developmental pathways of the placenta and fetal heart(38).
While our study provides valuable insights, it also presents limitations. The sample size limits our
conclusions (n=42) regarding the potential biomarker value of AdipoQ/Lep to predict cardiac
morphofunctional alterations. Studying fetal programming presents significant challenges, as
establishing a clear cause-and-effect relationship between events during pregnancy and the
development of diseases later in life, typically requiring 20 or more years of follow-up. Another
limitation of this study is the lack of measurement of maternal adiponectin and leptin levels at the
end of pregnancy. Although we recognize that our current results do not establish a direct
connection between maternal concentration of these adipokines, fetal AdipoQ/Lep ratio, and
infant anthropometry, we believe that this research represents an important first step toward
identifying novel predictive biomarkers for future metabolic or growth-related risks.
In conclusion, our study provides preliminary evidence that maternal obesity predicts the
AdipoQ/Lep ratio in UBC, and that a lower AdipoQ/Lep ratio is associated with neonatal

275 somatometry at birth. Although no consistent associations were found between AdipoQ/Lep ratio 276 and overall cardiac structure or function, infants with lower left ventricular end-diastolic diameter 277 Z-scores exhibited significantly lower AdipoQ/Lep ratio, suggesting a potential link that warrants 278 further investigation. More studies are needed to assess the predictive value of the AdipoQ/Lep 279 ratio as an early biomarker of cardiometabolic health and growth throughout childhood. Such research is crucial to provide evidence for the potential utility of early-life biomarkers in 280 281 identifying individuals at risk, to enable closer monitoring and intervention to prevent the onset of 282 cardiometabolic diseases and promote long-term health.

ACKNOWLEDGMENT

283

290

This work was supported by national funds through FCT - Portuguese Foundation for Science and
Technology, under the scope of the Cardiovascular R&D Center – UnIC (UIDB/00051/2020 and
UIDP/00051/2020). European Regional Development Fund (ERDF), through the North Regional
Operational Program in the framework of the project HEALTH-UNORTE: Setting-up biobanks
and regenerative medicine strategies to boost research in cardiovascular, musculoskeletal,
neurological, oncological, immunological and infectious diseases (reference NORTE-01-0145-

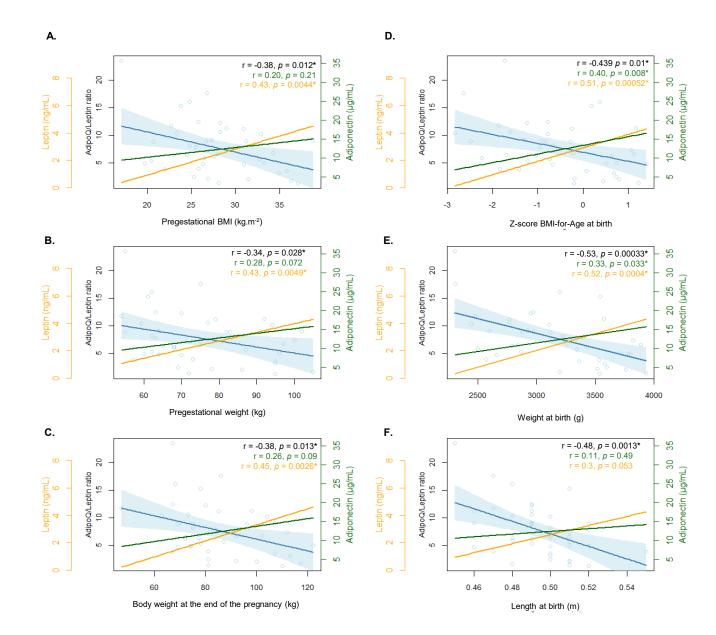
FEDER000039). J. Morais and D. Veiga were supported by FCT - Portuguese Foundation for

291 Science and Technology (UI/BD/152306/2021 and UI/BD/154955/2023, respectively).

292 REFERENCES

- 293 1. **Painter RC, Roseboom TJ, Bleker OP**. Prenatal exposure to the Dutch famine and disease in later life: An overview. *Reproductive Toxicology* 20: 345–352, 2005.
- Vaag AA, Grunnet LG, Arora GP, Brøns C. The thrifty phenotype hypothesis revisited.
 Diabetologia 55: 2085–2088, 2012. doi: 10.1007/s00125-012-2589-y.
- 297 3. **Sookoian S, Gianotti TF, Burgueño AL, Pirola CJ**. Fetal metabolic programming and epigenetic modifications: A systems biology approach. *Pediatr Res* 73: 531–542, 2013.
- 4. **Aguayo-Guerrero JA, León-Cabrera S, Escobedo G**. Molecular mechanisms involved in fetal programming and disease origin in adulthood. *Journal of Pediatric Endocrinology and Metabolism* 36 De Gruyter Open Ltd: 615–627, 2023.
- 5. **Virtue S, Vidal-Puig A**. It's not how fat you are, it's what you do with it that counts. *PLoS Biol* 6: 1819–1823, 2008.

- 304 6. Clemente-Suárez VJ, Redondo-Flórez L, Beltrán-Velasco AI, Martín-Rodríguez A,
 305 Martínez-Guardado I, Navarro-Jiménez E, Laborde-Cárdenas CC, Tornero-Aguilera JF.
 306 The Role of Adipokines in Health and Disease. *Biomedicines* 11 MDPI: 2023.
- Arroyo-Jousse V, Jaramillo A, Castaño-Moreno E, Lépez M, Carrasco-Negüe K, Casanello
 P. Adipokines underlie the early origins of obesity and associated metabolic comorbidities in the offspring of women with pregestational obesity. *Biochim Biophys* Acta Mol Basis Dis 1866 Elsevier B.V.: 2020.
- Kae Nien J, Mazaki-Tovi S, Romero R, Kusanovic JP, Gotsch F, Pineles BL, Gomez R,
 Edwin S, Mazor M, Espinoza J, Yoon BH, Hassan SS. PLASMA ADIPONECTIN
 CONCENTRATIONS IN NON PREGNANT, NORMAL PREGNANCY AND OVERWEIGHT
 PREGNANT WOMEN NIH Public Access. 2007.
- 9. **Frühbeck G, Catalán V, Rodríguez A, Gómez-Ambrosi J.** Adiponectin-leptin ratio: A promising index to estimate adipose tissue dysfunction. Relation with obesity-associated cardiometabolic risk. *Adipocyte* 7 Taylor and Francis Inc.: 57–62, 2018.
- 318 10. Hamann TV, Mørk FCB, Jensen AK, Jørgensen NR, Heidemann MS, Schou AJ, Mølgaard 319 C, Pociot F, Wedderkopp N, Johannesen J. Reference serum percentile values of 320 adiponectin, leptin, and adiponectin/leptin ratio in healthy Danish children and 82: 321 adolescents. Scand J Clin Lab Invest 267-276, 2022. doi: 322 10.1080/00365513.2022.2073911.
- 11. Ferreira AF, Azevedo MJ, Saraiva FA, Trindade F, Barros A, Leite S, Proença T, Sousa C,
 Machado AP, Leite-Moreira A, Sampaio-Maia B, Ramalho C, Falcão-Pires I. The
 PERInatal MYocardial Remodeling (PERIMYR) cohort study protocol: A prospective study
 of cardiac remodeling and "recovery" in pregnancy as a model to understand the impact
 of comorbidities in cardiac remodeling and reverse remodeling. Revista Portuguesa de
 Cardiologia 42: 585–596, 2023. doi: 10.1016/j.repc.2022.08.015.
- 12. Lai WW, Geva T, Shirali GS, Frommelt PC, Humes RA, Brook MM, Pignatelli RH, Rychik J.
 Guidelines and Standards for Performance of a Pediatric Echocardiogram: A Report from
 the Task Force of the Pediatric Council of the American Society of Echocardiography.


 Journal of the American Society of Echocardiography 19: 1413–1430, 2006. doi: 10.1016/j.echo.2006.09.001.
- Lopez L, Colan SD, Frommelt PC, Ensing GJ, Kendall K, Younoszai AK, Lai WW, Geva T.
 Recommendations for Quantification Methods During the Performance of a Pediatric
 Echocardiogram: A Report From the Pediatric Measurements Writing Group of the
 American Society of Echocardiography Pediatric and Congenital Heart Disease Council.
 Journal of the American Society of Echocardiography 23: 465–495, 2010.
- 339 14. Chubb H, Simpson JM. The use of Z-scores in paediatric cardiology. *Ann Pediatr Cardiol* 5:
 340 179–184, 2012. doi: 10.4103/0974-2069.99622.
- 341 15. **Gaillard R, Santos S, Duijts L, Felix JF**. Childhood Health Consequences of Maternal Obesity during Pregnancy: A Narrative Review. *Ann Nutr Metab* 69 S. Karger AG: 171–343 180, 2017.
- Heslehurst N, Vieira R, Akhter Z, Bailey H, Slack E, Ngongalah L, Pemu A, Rankin J. The
 association between maternal body mass index and child obesity: A systematic review
 and meta-analysis. *PLoS Med* 16, 2019. doi: 10.1371/journal.pmed.1002817.

- 347 17. Dabelea D, Mayer-Davis EJ, Lamichhane AP, D'Agostino RB, Liese AD, Vehik KS, Venkat
 348 Narayan KM, Zeitler P, Hamman RF. Association of intrauterine exposure to maternal
 349 diabetes and obesity with type 2 diabetes in youth: The SEARCH case-control study.
 350 Diabetes Care 31: 1422–1426, 2008. doi: 10.2337/dc07-2417.
- 351 18. Lycett K, Juonala M, Magnussen CG, Norrish D, Mensah FK, Liu R, Clifford SA, Carlin JB, 352 Olds T, Saffery R, Kerr JA, Ranganathan S, Baur LA, Sabin MA, Cheung M, Dwyer T, Liu 353 M, Burgner D, Wake M. Body Mass Index From Early to Late Childhood and 354 Cardiometabolic Measurements 11 to 12 Years [Online]. at 355 http://publications.aap.org/pediatrics/article-356 pdf/146/2/e20193666/1080180/peds_20193666.pdf.
- 357 19. **Deng Y, Scherer PE**. Adipokines as novel biomarkers and regulators of the metabolic syndrome. *Ann N Y Acad Sci* 1212: 2010.
- 359 20. **Frühbeck G, Busetto L, Dicker D, Yumuk V, Goossens GH, Hebebrand J, Halford JGC,**360 **Farpour-Lambert NJ, Blaak EE, Woodward E, Toplak H.** The ABCD of obesity: An EASO
 361 position statement on a diagnostic term with clinical and scientific implications. *Obes*362 *Facts* 12: 131–136, 2019. doi: 10.1159/000497124.
- Frühbeck G, Catalán V, Rodríguez A, Ramírez B, Becerril S, Salvador J, Colina I, Gómez-Ambrosi J. Adiponectin-leptin ratio is a functional biomarker of adipose tissue inflammation. *Nutrients* 11, 2019. doi: 10.3390/nu11020454.
- Lee JM, Kim SR, Yoo SJ, Hong OK, Chang SA. The Relationship between Adipokines,
 Metabolic Parameters and Insulin Resistance in Patients with Metabolic Syndrome and
 Type 2 Diabetes. 2009.
- 369 23. Kartikeya Makker, Mingyu Zhang, Guoying Wang, Xiumei Hong, Khyzer B. Aziz, Xioabin
 370 Wang. Maternal and fetal factors affecting cord plasma leptin and adiponectin levels and
 371 their ratio in preterm and term newborns: New insight on fetal origin of metabolic
 372 dysfunction. *Precision Nutrition*, 2022.
- Sivan E, Mazaki-Tovi S, Pariente C, Efraty Y, Schiff E, Hemi R, Kanety H. Adiponectin in
 Human Cord Blood: Relation to Fetal Birth Weight and Gender. *Journal of Clinical Endocrinology and Metabolism* 88: 5656–5660, 2003. doi: 10.1210/jc.2003-031174.
- 25. Cheryl J. Ashworth, Nigel Hoggard, Louise Thomas, Julian G. Mercer, Jacqueline M.
 Wallace, Richard G. Lea. Placental Leptin. Rev Reprod 5: 18–24, 2000.
- Valencia-Ortega J, Castillo-Santos A, Molerés-Orduña M, Solis-Paredes JM, Saucedo R,
 Estrada-Gutierrez G, Camacho-Arroyo I. Influence of Maternal Adipokines on
 Anthropometry, Adiposity, and Neurodevelopmental Outcomes of the Offspring. Int J
 Mol Sci 25 Multidisciplinary Digital Publishing Institute (MDPI): 2024.
- Zhang Z qing, Lu Q gui, Huang J, Jiao C ya, Huang S ming, Mao L mei. Maternal and cord blood adiponectin levels in relation to post-natal body size in infants in the first year of life: A prospective study. *BMC Pregnancy Childbirth* 16: 1, 2016. doi: 10.1186/s12884-016-0978-9.
- 386 28. **Mantzoros CS, Rifas-Shiman SL, Williams CJ, Fargnoli JL, Kelesidis T, Gillman MW**. Cord blood leptin and adiponectin as predictors of adiposity in children at 3 years of age: A prospective cohort study. *Pediatrics* 123: 682–689, 2009. doi: 10.1542/peds.2008-0343.

- 389 29. **Kaar JL, Brinton JT, Crume T, Hamman RF, Glueck DH, Dabelea D**. Leptin levels at birth and infant growth: The EPOCH study. *J Dev Orig Health Dis* 5: 214–218, 2014. doi: 10.1017/S204017441400021X.
- 392 30. **Nogues P, Dos Santos E, Jammes H, Berveiller P, Arnould L, Vialard F, Dieudonné MN**.
 393 Maternal obesity influences expression and DNA methylation of the adiponectin and
 394 leptin systems in human third-trimester placenta. *Clin Epigenetics* 11, 2019. doi:
 395 10.1186/s13148-019-0612-6.
- 39. Downs T, da Silva Costa F, de Freitas Paganoti C, Holland OJ, Hryciw DH. Adiponectin and Leptin during Pregnancy: A Systematic Review of Their Association with Pregnancy Disorders, Fetal Growth and Placental Function. *Endocrines* 5: 382–394, 2024. doi: 10.3390/endocrines5030028.
- 400 32. **Tsai PJ, Yu CH, Hsu SP, Lee YH, Chiou CH, Hsu YW, Ho SC, Chu CH.** Cord plasma 401 concentrations of adiponectin and leptin in healthy term neonates: Positive correlation 402 with birthweight and neonatal adiposity. *Clin Endocrinol (Oxf)* 61: 88–93, 2004. doi: 10.1111/j.1365-2265.2004.02057.x.
- 404 33. **Mantzoros CS, Rifas-Shiman SL, Williams CJ, Fargnoli JL, Kelesidis T, Gillman MW**. Cord blood leptin and adiponectin as predictors of adiposity in children at 3 years of age: A prospective cohort study. *Pediatrics* 123: 682–689, 2009. doi: 10.1542/peds.2008-0343.
- 407 34. **Meyer DM, Brei C, Stecher L, Much D, Brunner S, Hauner H**. Cord blood and child plasma 408 adiponectin levels in relation to childhood obesity risk and fat distribution up to 5 y. 409 *Pediatr Res* 81: 745–751, 2017. doi: 10.1038/pr.2016.275.
- 35. Zhao S, Kusminski CM, Scherer PE. Adiponectin, Leptin and Cardiovascular Disorders. *Circ* 411 *Res* 128 Lippincott Williams and Wilkins: 136–149, 2021.
- 412 36. Wang Y-X, Li Y, Rich-Edwards JW, Florio AA, Shan Z, Wang S, Manson JE, Mukamal KJ,
 413 Rimm EB, Chavarro JE. Associations of birth weight and later life lifestyle factors with risk
 414 of cardiovascular disease in the USA: A prospective cohort study. EClinicalMedicine 51:
 415 101570, 2022. doi: 10.1016/j.
- 416 37. **Nelissen ECM**, **van Montfoort APA**, **Dumoulin JCM**, **Evers JLH**. Epigenetics and the placenta. *Hum Reprod Update* 17: 397–417, 2011. doi: 10.1093/humupd/dmq052.
- 418 38. **Baldauf C, Desmond A, Leon RL, Rajagopalan V**. Placental Adaptations to Pregnancy
 419 Comorbidities in Fetal Congenital Heart Disease. *Curr Treat Options Cardiovasc Med* 27
 420 Springer: 2025.
- 421 39. **Costa TJ, De Oliveira JC, Giachini FR, Lima VV, Tostes RC, Bomfim GF.** Programming of Vascular Dysfunction by Maternal Stress: Immune System Implications. *Front Physiol* 13 Frontiers Media S.A.: 2022.

Relationship Between Maternal Obesity, Birth Weight And Fetal Adiponectin/Leptin Ratio: A Potential Early Biomarker Of Cardiometabolic

Figure 1.

Relationship Between Maternal Obesity, Birth Weight And Fetal Adiponectin/Leptin Ratio: A Potential Early Biomarker Of Cardiometabolic

Figure 2.

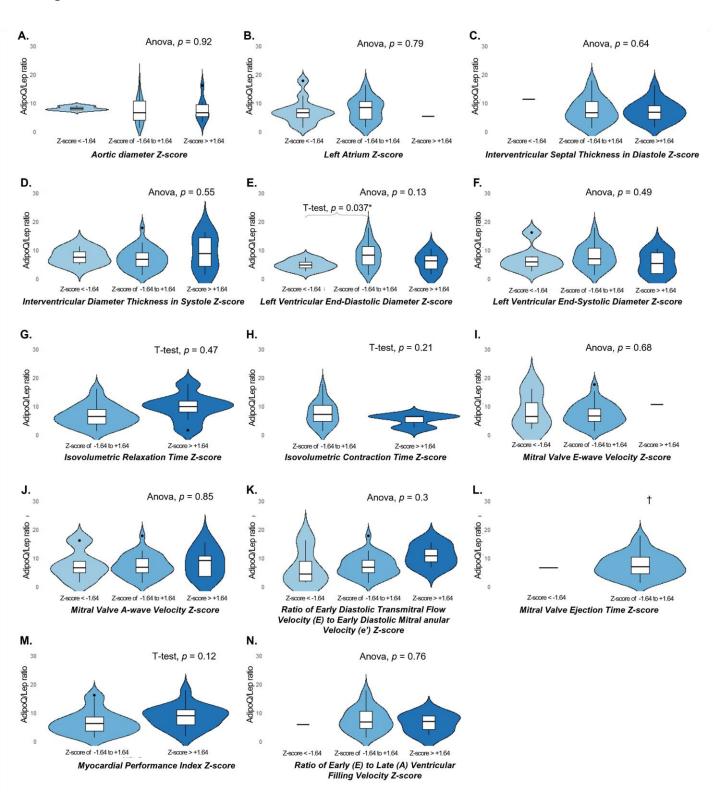


Table 1. Clinical and anthropometric data of study mother-neonate' pairs

	Maternal data				
Maternal age (years), me	ean±SD	34 ± 6			
Pregestational BMI (kg.	m^{-2}), mean±SD	27.8 ± 5.0			
Pregestational BMI cate	egory, n(%)				
	Underweight	1 (2.4)			
	Normal weight	11 (26.2)			
	Overweight	17 (40.5)			
	Obesity	13 (31.0)			
Gestational weight gain	(kg), mean±SD	9.47 ± 6.70			
Gestational diabetes, n(%	6)	8 (19.0)			
Gestational hypertensio	N, n(%)	6 (14.3)			
	Peripartum/Neonate da	ıta			
Gestational age (weeks), mean±SD		39.0 ± 1.10			
Delivery mode, n(%)	Vaginal	33 (78.6)			
	C-section	9 (21.4)			
<i>Sex</i> , <i>n</i> (%)	Male	23 (53.8)			
	Female	19 (45.2)			
Somatometry at birth, mea	$n\pm SD$				
	Weight at birth (g)	3161 ± 469			
	Length at birth (cm)	49.0 ± 2.0			
Weight for	length Z-score at birth	-0.45 ± 1.19			
BMI for age Z-score at birth		-0.51 ± 1.15			
Infant data at echocardiographic evaluation					
Age (months), mean±SD		5 ± 2			
Somatometry, mean±SD	Weight (g)	6352 ± 1540			
	Length (cm)	62.7 ± 5.5			

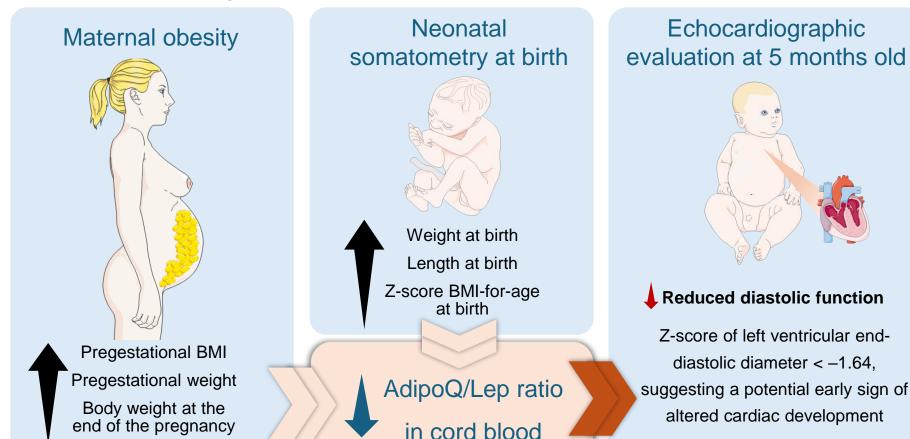

SD – Standard deviation, BMI – Body Mass Index

Table 2. Multiple linear regression analysis considering left ventricular end-systolic diameter Z-score (LVIDs Z-score), mitral valve A-wave velocity Z-score (MV-A-wave Z-score) and isovolumetric relaxation time Z-score (IVRT Z-score) as the dependent variables.

	Independent variables	В	Beta	P-value	Adjusted R ²	Model p-value
Pregestational BMI vs. LVIDs Z-score	Model unadjusted	0.114	0.396	0.008*		
	Model 1	0.131	0.456	0.006*	0.135	0.022*
	Model 2	0.122	0.422	0.013*	0.132	0.039*
	36.1.1					
	Model unadjusted	0.109	0.324	0.037*		
Pregestational BMI vs. MV-A-wave Z-score	Model 1	0.128	0.379	0.025*	0.078	0.078
	Model 2	0.144	0.428	0.013*	0.095	0.080
Z-score BMI-for-Age vs. IVRT Z-score	Model unadjusted	-0.391	-0.433	0.004*		
	Model 1	-0.373	-0.413	0.012*	0.148	0.016*
	Model 2	-0.332	-0.368	0.044*	0.134	0.038*

^{*} p < 0.05 indicates statistical significance. **Model 1**: adjusted for AdipoQ/Lep ratio. **Model 2**: adjusted for adiponectin and leptin levels. Adjusted R^2 values and associated p-values were obtained from a multiple linear regression. AdipoQ/Leptin: adiponectin/leptin ratio; B: unstandardized regression coefficient; B eta: standardized beta coefficient; B body mass index.

Fetal AdipoQ/Lep Ratio: a potential early biomarker of cardiometabolic risk

Conclusion

AdipoQ/Lep ratio in cord blood is linked to maternal obesity, greater birth size, and reduced left ventricular end-diastolic diameter, suggesting early cardiometabolic link.