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ABSTRACT The Session Initiation Protocol (SIP) is crucial in establishing, maintaining, and terminating
multimedia sessions. It is particularly vital for the operation of 4G/5G networks, where the network’s
low latency and high reliability enable advanced services such as real-time video streaming and Internet
of Things applications. The widespread use of SIP in various network generations emphasizes the need
for robust security mechanisms to protect against potential vulnerabilities. SIP is susceptible to various
attacks, including registration hijacking, call tampering, and denial of service. A specific threat arises from
exploiting unknown or abnormal SIP dialogs to uncover weaknesses in the different SIP implementations
running on servers. In this paper, we propose an innovative methodology for anomalous SIP dialog detection
based on prior knowledge of observed correct and anomalous SIP dialogs. The proposed approach leverages
cross-correlation techniques to score the similarity of the SIP dialogs and the use of statistical metrics to
classify the anomalous ones. Our method achieves an accuracy of approximately 98.91%. We compare its
performance with the optimal Bayesian solution, a deep learning-based approach, and a hybrid method
using both deep-learning and statistical methods. While our solution is close to the optimal accuracy, it
does not achieve the lowest false alarm rate. However, it offers a significant advantage in computational
efficiency, being over 1000 times faster than both the optimal Bayesian and deep learning methods. These
findings underscore the potential of the proposed technique for real-time detection of abnormal SIP dialogs
in high-performance network environments. Cross-correlation was also employed to predict the SIP ID
of ongoing SIP dialogs before their full arrival. Although this method was faster than the other studied
methods, its predictive performance was suboptimal, achieving high accuracy only when over 90% of the
data was available. Based on these findings, we conclude that the proposed method has high performance
in classification tasks with faster computational times than alternative methods, while it is less effective for
prediction tasks were other methods achieve higher performance.

INDEX TERMS Session Initiation Protocol, Security, Anomalous SIP Dialogs, Performance Analysis.

I. INTRODUCTION

The Session Initiation Protocol (SIP) [1] is a fundamen-
tal protocol used to initiate, maintain, and terminate real-
time communication sessions in multimedia services, such
as voice, video, and messaging. SIP’s versatility has made

it a key component of modern communication networks,
particularly in 4G, where it enables a range of applications,
including Voice over IP (VoIP) [2], video conferencing, and
push-to-talk services. As networks evolve to 5G, SIP remains
critical [3], facilitating the ultra-reliable low-latency commu-
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nications (URLLC) and massive machine-type communica-
tions (mMTC) necessary for advanced services such as real-
time video streaming, Internet of Things (IoT) integration,
and augmented reality. Looking ahead, SIP is expected to
play an even more prominent role in future generation net-
works [4], supporting novel applications such as immersive
communications, tactile internet, and seamless integration of
human-centric services.

The security of the SIP protocol is crucial because SIP
serves as the backbone of many real-time communication
services, including voice calls, video conferencing, and in-
stant messaging, which are essential for both personal and
business use [5]. The protocol’s widespread adoption in
critical infrastructures, such as telecommunication networks
and emergency services, makes it a prime target for malicious
activities. Any compromise in SIP security can lead to severe
consequences, such as service disruption, unauthorized ac-
cess to sensitive communications, financial losses due to toll
fraud, and breaches of privacy. Moreover, the growing use of
SIP in modern networks, including 4G and 5G, expands its
attack surface, making it a critical component to secure in
increasingly complex and interconnected environments [6].
Ensuring robust SIP security protects the integrity, confiden-
tiality, and availability of communication services, thereby
maintaining user trust and safeguarding the underlying net-
work infrastructure from potential threats.
Despite its widespread adoption, SIP is susceptible to various
security threats. The openness and extensibility of SIP make
it vulnerable to several types of attacks. Attacks encompass
a variety of strategies that aim to disrupt communication
services or exploit system vulnerabilities [7]. Common types
of SIP attacks include registration hijacking, where attackers
manipulate registration requests to redirect calls to unautho-
rized devices; call tampering, involving the interception or
modification of SIP messages to alter session parameters;
message spoofing, in which attackers forge SIP messages to
impersonate legitimate users, and denial of service (DoS)
attacks, which overwhelm the server with excessive SIP
requests to degrade or disable services.

SIP dialog attacks pose a significant threat due to the
protocol’s complex and stateful nature, which can be ex-
ploited to perform sophisticated attacks that evade traditional
security mechanisms. A particularly challenging issue is the
identification of abnormal or unexpected SIP dialogs, which
may exploit vulnerabilities in different SIP implementations
running on servers to cause disruptions or compromise the
system’s integrity [8]. Attackers often exploit SIP dialog
attacks because they target the sequence of messages ex-
changed during a session, allowing them to uncover potential
implementation flaws in the server’s handling of SIP dialogs.
By injecting, modifying, or reordering SIP messages, attack-
ers can exploit those weaknesses to bypass security controls,
manipulate call routing, or disrupt the establishment and
maintenance of communication sessions. Abnormal dialogs
can be used to discover and exploit weaknesses, highlighting
the need for robust mechanisms to detect potentially harmful

SIP activity in real time.
In this paper, we propose an innovative approach for

detecting abnormal SIP dialogs based on prior knowledge
of past observed SIP messages in the server. The technique
leverages cross-correlation between SIP dialog patterns and
its statistics to classify ongoing SIP communications, al-
lowing for the identification of dialogs that deviate from
expected behavior and may pose a potential threat. The
proposed methodology achieves an accuracy of 98.91% with
a false alarm rate of approximately 8.6% on a realistic
benchmark dataset, demonstrating its capability to accu-
rately distinguish between normal and abnormal SIP dialogs.
Although prior works have already focused on detecting
abnormal SIP dialogs, existing approaches have primarily
relied on optimal Bayesian techniques [9] or deep learning
methodologies [10]–[12] to identify anomalies in SIP com-
munications. These methods, while effective, often involve
substantial computational complexity or require extensive
training datasets to achieve high detection accuracy. In con-
trast, this paper introduces a novel method based on the
cross-correlation of SIP dialogs and the statistics derived
from these correlations. By analyzing the relationships and
patterns in the sequences of SIP messages, our approach
aims to detect deviations from a prior knowledge base of
SIP dialogs, with a high level of accuracy and computational
efficiency. This technique differs from traditional methods
by offering a simpler yet effective alternative for real-time
detection, leveraging the statistical properties of SIP dialogs
to identify potential security threats without needing complex
modeling or intensive computation.

The main contributions of this paper are as follows:

• We introduce a new approach to classify SIP dialogs as
abnormal, representing cases where the dialog may be
indicative of a potential security threat.

• We conduct a performance evaluation of the proposed
classification scheme using a realistic SIP dataset,
demonstrating their effectiveness in practical scenarios.

• We benchmark the proposed methods against the opti-
mal Bayesian solution in [9], the deep learning-based
approach in [11] and the hybrid approach which com-
bines deep learning with statistical methods in [12],
identifying the advantages and limitations of the pro-
posed methodology, particularly in terms of computa-
tional efficiency and detection accuracy.

• The proposed approach achieves a similar classification
performance as state-of-the-art methods [9], [11] while
introducing a major improvement: a 1000-fold reduc-
tion in computation time. This significant efficiency gain
makes our method highly scalable and practical for real-
time applications.

The remainder of this paper is organized as follows: Sec-
tion II provides an overview of related work in the field
of SIP security and anomaly detection. Section III details
the proposed methodology for predicting and classifying SIP
dialogs. Section IV presents the experimental dataset and the
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performance achieved by the proposed methodology. Finally,
Section V concludes the paper and outlines future work
directions.

Notation: The notation adopted in this paper is as follows.
Vectors are represented in lowercase, upright boldface

type. A vector of k elements is represented by v =
{v1, v2, . . . , vk}. An ordered sequence is represented by the
vector of k elements represented by v = ⟨v1, v2, . . . , vk⟩.
Matrices are represented in upper case bold-face type M ,
and the element in the i row and j column is represented by
mij . Finally, sets are represented in calligraphic font, e.g., S.

II. RELATED WORK
The security aspects of the SIP protocol [1] have been widely
studied across various research works [13]–[15] to avoid
misuse of SIP resources allocated for legitimate purposes,
service disruption, and multimedia resource exhaustion. SIP
attacks can be divided into different types, including but not
limited to flooding, malformed SIP messages, authentication
breaches, spoofing, and SIP signaling [5]. Authentication
is being addressed in several works by proposing more
robust authentication schemes, often multi-factor authenti-
cation methods aimed at improving security [16]. Another
prevalent attack vector involves flooding attacks, which can
lead to service interruptions due to denial of service by over-
whelming the SIP infrastructure. Several mitigation strate-
gies, such as threshold-based mechanisms [17], have been
proposed to detect these attacks by analyzing deviations in
SIP traffic patterns compared to normal operational base-
lines, which can be described as a single dimension [18], or
in multiple dimensions [19]; or by stopping the transmission
of SIP messages over the SIP path [20]. Malformed SIP
messages can also interrupt SIP servers and originate DoS
attacks, which can be avoided by a myriad of different
methods, such as, firewalls enforcing specific rules [21]–
[23], specific machine learning [24] and deep learning[25]
methods, or statistical approaches that compare message
patterns to detect malformation [26], [27]. Other solutions
also adopt the classification of the incoming SIP messages
before they are processed by the server to filter out potentially
harmful content [28], [29]. The ability to spoof SIP’s caller-
ID identification can be easily performed due to the numerous
SIP servers over the internet and the lack of regulation in
specific regions [30]. The detection of this type of attack
is a challenging task due to the complexity of telephony
networks, and a possible solution relies on the verification of
the caller-ID at different stages of the call using, for example,
blockchain technology [31].

In addition to these attack types, vulnerabilities can also
be exploited in the signaling processes, particularly through
faulty protocol implementations. SIP signaling attacks ma-
nipulate the protocol’s logic to bypass security measures,
allowing improper authentication or call termination. Ex-
amples include BYE-attacks, CANCEL-attacks, or REFER-
attacks, as outlined in [13]. The detection of these attacks of-
ten relies on identifying unique patterns within SIP traffic that

correlate with specific attack behaviors. Techniques such as
rule-based monitoring, as presented in [32], use event graphs
constructed from protocol activities to detect known vul-
nerabilities. However, these signature-based solutions have
limitations when encountering novel attack patterns, necessi-
tating more adaptable methods. Research on SIP signaling
vulnerabilities, such as in [33], has introduced debugging
tools that analyze incoming SIP message flows to categorize
them into compliant and non-compliant dialogs. In [32], a
mitigation approach was proposed based on the contextual
characteristics of SIP traffic, similar to the technique in [34],
which compares peer interactions and timing to historical
data to identify significant deviations.

Contrary to the approaches presented in [33], [34], the
works in [9]–[12] develop an automated detection and pre-
diction system capable of identifying both known and novel
SIP dialogs. In these works, the detection of known dialogs
benefits from prior labeling and assessment of its vulnerabil-
ity. In [9], the authors propose a sequential analysis of the
SIP dialog, and a solution for its detection and prediction
is proposed through the adoption of an improved imple-
mentation of the optimal Viterbi algorithm over a Bayesian
network. Although the proposed solution achieves the opti-
mal detection and prediction rates, its computational com-
plexity is a non-linear function of the number of different
SIP dialogs, thus not scalable for a high number of dialogs.
In an attempt to decrease the computational complexity of
the methodology in [9], the deep learning-based solutions
in [10]–[12] achieved improved computation performance
although not achieving the optimal detection rates. In this
paper, we propose a cross-correlation-based methodology for
SIP dialogs’ prediction and detection, which increases the
detection rates when compared to the schemes in [10]–[12]
and decreases the computation time in a magnitude of 3
times.

III. SIP DIALOGS’ PREDICTION AND CLASSIFICATION
This section presents a model for SIP dialog inference based
on a cross-correlation statistical analysis applied to a dataset
of SIP dialogs. We then present an algorithm that performs
SIP dialog classification in the presence of the full dialog and
dialog prediction for partial observable dialogs.

A. SYSTEM MODEL

Table 1 provides a summary of the symbols adopted through-
out this paper, along with their corresponding descriptions,
and serves as a reference for the used notation.

The SIP protocol signals multimedia sessions between
multiple participants through the exchange of SIP messages.

Definition 1. A SIP message, denoted by mt, with t ∈ M,
refers to a particular type of SIP request or response. M is
the set of all possible types of SIP requests and responses.
The cardinality |M| of the set M is the number of different
methods and responses that exist.
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An interaction begins with a peer sending a SIP request
message that indicates its type via the SIP method field in
the message header. The receiving peer then responds with a
SIP response message, which includes a reply code. A SIP
request and its associated response form a SIP transaction.
A series of such transactions constitutes a SIP dialog that is
uniquely identified by the Call-ID field in the SIP message
header.

Definition 2. A sequence of consecutive SIP messages forms
a SIP dialog denoted by dk = ⟨m1

t1 , . . . ,m
h
th
, . . . ,m

Lk
d

tk
⟩,

where mh
t represents the h-th message of the SIP dialog with

a given type th ∈ M. Lk
d is used to represent the length of SIP

dialog k. All messages belonging to the same dialog share the
same SIP Call ID denoted by γdk

, as well as identical sender
and receiver addresses

In this work, we assume that the SIP peers and interme-
diary servers along the communication path can access the
exchanged SIP messages and read their headers to identify
the Call-ID and associate the requests and responses that
belong to a given dialog. This can be used to obtain an

TABLE 1. Table of Symbols

Symbols Definitions

D Dataset (collection of padded SIP dialogs).

|D| Dataset size.

DA D subset containing anomalous dialogs.

DN D subset containing normal dialogs.

dk SIP dialog k.

γdk
SIP Call ID of a SIP dialog dk .

Γ Decision threshold for classification.

Hx Hypothesis x.

Lk
d Length of a SIP dialog dk .

Lk
o Length of an observation ok .

LS Length of padded sequences sk and padded dialogs pk .

l Cross-correlation lag.

mt SIP message with type t.

mh
th

h-th message of a SIP dialog dk with type th.

M Set with all the possible SIP messages.

|M| Number of possible SIP methods and responses.

µn Central statistical moment of order n.

C Matrix of cross-correlation values.

nk Number of zeros added for padding purposes to the
dialog dk or observation ok .

ok Observation k (sequence of SIP messages observed in a
dialog).

pk Padded SIP dialog dk .

r Vector used to store cross-correlation values.

Rskpk
Cross-correlation between a padded sequence sk and a
padded SIP dialog pk .

sk Padded sequence obtained from adding zeroes to an
observation ok .

ypk
Label of an observation ok , or padded SIP dialog pk .

observation of SIP traffic representing a specific sequence
from the beginning of an SIP dialog.

Definition 3. An observation k can be captured by a SIP user
agent or server and is composed of a series of SIP messages
represented as ok = ⟨m1

t1 , . . . ,m
h
th
, . . . ,m

Lk
o

tk
⟩, with t ∈ M

and h ∈ {1, 2, . . . , Lk
o}. The symbol Lk

o denotes the length
of the observation. Within the same observation, all the SIP
messages have the same SIP Call ID denoted by γok

.

The reason we refer to it as an "observation" is that it
allows us to gather critical data from the SIP communication
in a particular server context and over time, as the dialog
evolves. We use these observations to analyze and predict the
type of SIP dialogs that are taking place. To allow the com-
parison of observations with variable lengths, we introduce
a padding method to convert the observations into sequences
of equal length, which we call padded sequences.

Definition 4. An observation ok is transformed into a
padded sequence sk by adding zeros at the end of the obser-
vation. The total length of the padded sequence is represented
by a constant LS , with LS = Lk

o + nk, being nk the
number of zeros added, resulting in the padded sequence
sk = ⟨ok, 0, 0, . . . , 0︸ ︷︷ ︸

(nk)

⟩.

The proposed algorithm compares the padded observation
of a SIP dialog sk with a labeled knowledge base of complete
dialogs that forms a dataset that contains known examples of
SIP dialog patterns along with their corresponding classifica-
tions (i.e., normal or malicious).

Definition 5. A dataset D is a collection of labeled SIP
dialogs dk that were padded with zeroes, where the total
length of every padded dialog is LS = Lk

d + nk. Therefore,
a dataset D with |D| elements, contains the padded SIP
dialogs represented by pk = ⟨dk, 0, 0, . . . , 0︸ ︷︷ ︸

(nk)

⟩ and their

respective class labels ypk
that mark it as normal ypk

= N
or anomalous ypk

= A.

The length of Lk
o in Definition 4 and Lk

d in Definition 5
depend on the SIP dialog k, while the length of the padded
sequences in the dataset D is always LS for all padded
dialogs.

The knowledge dataset D can be partitioned into two
subsets. One that contains all normal padded SIP dialogs.

Definition 6. DN is the subset of D that contains the padded
dialogs with the normal label DN = pk ∈ D | ypk

= N .

Another is the set of anomalous padded dialogs.

Definition 7. DA is the subset of D that contains the padded
dialogs with the anomalous label DA = pk ∈ D | ypk

= A.

The knowledge datasets allow us to analyze an observation
ok in order to classify it as anomalous or normal. The classi-
fication is based on the cross-correlation similarity metric.

4 VOLUME X, 20XX

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3593367

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Classification of anomalous dialogs occurs when the ob-
servation obtained by a server corresponds to the full SIP
dialog (i.e., ok contains all the SIP messages of a Call ID
γok

). Prediction, on the other hand, tests the similarity of the
current observation ok with the knowledge base datasets ev-
ery time a new SIP message mh

th
arrives until the observation

corresponds to the full dialog dk for a given call ID γok
.

B. CLASSIFICATION OF SIP DIALOGS
The first goal is to distinguish anomalous dialogs from nor-
mal dialogs.

To detect anomalous dialogs, we need to understand the
similarities (or dissimilarities) between the padded sequence
sk of an observation ok and the padded dialogs pk in the
database. Cross-correlation, denoted by Rskpk

, is calculated
as

Rskpk
[l] =

∑
h

sk[m
h
th
]pk[m

h−l
th−l

], (1)

where l represents the lag, sk represents a padded sequence
k, pk represents a padded SIP dialog k from a dataset D and
mh

t is the h-th message. Eq. (1) computes the correlation
between sk and pk by summing the products of all their h
messages. The correlation values utilized in this work are
calculated with zero time lag (l = 0) unless otherwise stated
since we are focused on the relationship between sk and pk

at the same message h.
Two different approaches were used to analyze the cor-

relation values. In the first approach, the correlation values
were used without any modifications, i.e., Rskpk

[0] values
are adopted. In the second approach, the correlation values
were normalized using L2-normalization. Full sequence L2-
normalization is computed as follows

||Rskpk
[0]||

2
=

Rskpk
[0]|√∑

l |Rskpk
[l]|2

, (2)

where Rskpk
[0] is the value to be normalized (i.e., the cross-

correlation value for null lag) and l denotes all lags between
the SIP messages of sk and pk.

Considering the scenario where one SIP dialog is fully
received by a server observing the dialog, the observation
ok that contains that dialog is padded with zeroes, following
Definition 4, leading to the padded sequence sk. The cross-
correlation between sk and each padded dialog pk of the
knowledge base D is then computed according to (1) for all
pk padded dialogs in D. The values are stored in a vector r
with a total of |D| entries, represented by

r = {Rskp1
[0], Rskp2

[0], . . . , Rskp|D| [0]},

or

r = {||Rskp1
[0]||

2
, ||Rskp2

[0]||
2
, . . . , ||Rskp|D| [0]||2},

depending on whether non-normalized or normalized corre-
lation is assumed, respectively. For the sake of clarity, we
name the classification as non-normalized or normalized if

the non-normalized or normalized correlation is assumed,
respectively.

After computing the vector r, the central moments, µn, are
calculated as follows

µn =
1

|D|

|D|∑
i=1

(ri − µ(r))n, (3)

where ri is i-th cross-correlation value Rskpi
[l], stored in

vector r, n is the order of the moment, and µ(r) is the mean
of the vector r (i.e., the mean of all cross-correlation values).

We evaluated various statistical moments, specifically,
mean, variance, skewness, kurtosis, and higher-order mo-
ments. Among these statistical moments, the 4th-order central
moment, kurtosis, provided the best results in distinguishing
between normal and anomalous dialogs due to its properties.
Kurtosis allows the study of the “tailedness” of a distribution
[35], which makes it particularly effective in identifying
outliers in data. Kurtosis has been proven to exhibit a high
sensitivity to outliers. It has been used in several other
domains, including forensic analysis [36], geophysics [37],
and meteorology [38]. These multiple applications further
support the relevance of kurtosis as a discriminative measure,
supporting its adoption in the context of dialogue classifica-
tion.

The decision for classifying an observation ok, padded in
the sequence sk, based on the knowledge base D, involves
testing the following hypotheses

H0 : M4 ≤ Γ, (4)

H1 : M4 > Γ, (5)

where Γ represents the decision threshold used to determine
the similarity or fit between the observation ok and the
labels in the knowledge base D. The classifier assigns to the
observation ok the label ypk = N or ypk = A. Considering
D = DN , the label’s assignment is based on the following
decision rule:

1) If H0 is true, ok is labeled as ypk = N .
2) In contrast, if H1 holds, ok is labeled as ypk = A.

We highlight that the threshold Γ is defined by characterizing
the kurtosis of the knowledge base under consideration, i.e.,
D = DN , and being greater than the highest kurtosis value
achieved from all dialogs in DN .

C. PREDICTION OF SIP DIALOGS
For predicting SIP dialogs the goal is to use the observation
ok that is collected over time in a SIP server, in order to
predict the complete SIP dialog dk corresponding to the
partial dialog of SIP messages in ok already received by the
server.

Every message mh
t that arrives is added to the observation

ok that is then padded to the size LS of the dialogs in the
database D. This produces a new padded sequence sk

h,
for each message h received. The result is a set of padded
sequences with the size of the number of messages in the
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Algorithm 1 Classification Algorithm
Input: sk, pk

Output: ypk

1: ▷ Calculate cross-correlation:
2: for each padded dialog pk, k = 1, 2, . . . , |D| do
3: Rskpk

[l]=calc_cross_correlation(sk, pk)
4: if normalization==True then
5: Rskpk

[0]=normalize_cross_corr(Rskpk
[l])

6: end if
7: r=r.append(Rskpk

[0])
8: end for
9: ▷ Calculate Moment:

10: µn=calc_moment(r,n)
11: ▷ Decision Making:
12: if M4 ≤ Γ then
13: ypk = N ▷ Normal dialog
14: else if M4 > Γ then
15: ypk = A ▷ Anomalous dialog
16: end if

dialog, Lk
d , one for each new message. Each padded sequence

is written as

sk
h = ⟨ok,m

h
t , . . . , 0⟩, h ∈ {1, 2, . . . , Lk

d},

where Lk
d is the length of the dialog k being received, and the

number of zeroes is in the interval [LS − 1,LS − Lk
d].

Each of the sk
h sequences is correlated using (1) with all

padded SIP Dialog pk in D, to achieve Rskpk[0]
, resulting

in a matrix C of Rskpk[0]
values with dimension |D| × LS .

Each element ck,h of C contains the cross-correlation value
between the k − th pk padded dialog in D and the partial
padded sequence sk

h that corresponds to an observation k
up to message h.

A column h of the matrix C corresponds to all cross-
correlation values between the partial sequence sk

h and
every other padded SIP Dialog pk in D. The prediction
procedure is computed when a new message h is received
at the SIP server, and the outcome of the prediction is the SIP
dialog dk, k ∈ {1, . . . , |D|}, with k given by

argmax
k

ck,h. (6)

Regarding the validation of the prediction, whenever the
predicted dialog for skh matches the correct one it is counted
as a success, otherwise, it is deemed a prediction failure.

IV. PERFORMANCE EVALUATION
In this section, we present the results obtained from both
classification and prediction of SIP dialogs. These results are
analyzed and discussed to provide insights into the perfor-
mance of the developed classifiers in comparison to other
methods. Performance evaluation is conducted using a va-
riety of metrics, complemented by graphical representations
to facilitate visual interpretation.

Table 2 summarizes the symbols employed in this section,
along with their respective definitions.

Algorithm 2 Prediction Algorithm
Input: ok, pk

Output: predh

1: ▷ Calculate cross-correlation:
2: for each message mh

l in ok, h = 1, 2, . . . , Lk
d do

3: sk
h=add_message(mh

l )
4: for each padded dialog pk, k = 1, 2, . . . , |D| do
5: Rsk

hpk
[l]=calc_cross_correlation(skh, pk)

6: if normalization==True then
7: Rsk

hpk
[0]=normalize_cross_corr(Rsk

hpk
[l])

8: end if
9: C[h, k]=(Rsk

hpk
[0])

10: end for
11: ▷ Calculate column h argmax
12: max_id=get_id(argmaxk ck,h)
13: if max_id == get_id(skh) then ▷ Check IDs
14: predh = Success
15: else
16: predh = Failure
17: end if
18: end for

TABLE 2. Table of Symbols

Symbols Definitions

CNA Matrix of correlation values between normal and
anomalous dialogs.

CNN Matrix of correlation values between normal and nor-
mal dialogs.

Du
A D subset containing unique anomalous dialogs.

Du
N D subset containing unique normal dialogs.

tn True negative - An anomalous dialog that was correctly
classified as anomalous.

tp True positive - A normal dialog that was correctly
classified as normal.

fn False negative - A normal dialog that was incorrectly
classified as anomalous.

fp False positive - An anomalous dialog that was incor-
rectly classified as normal.

A. METRICS
To evaluate our model’s performance and compare it with
other classifiers, we selected a total of 10 evaluation metrics.
In this paper, we define normal dialogs as the "positive" class
and anomalous dialogs as the "negative" class.

True Negative (tn) refers to the rate of anomalous dialogs
that the classifier correctly identified as anomalous. This
metric is also referred to as the correct rejection rate.

True Positive (tp) is the rate of normal dialogs that the
classifier was able to correctly identify as normal. Other
names include hit, and correct detection rate.

False Positive (fp) also referred to as incorrect detection,
is the rate of anomalous dialogs that were incorrectly classi-
fied as normal dialogs.

False Negative (fn) represents the rate of normal dialogs
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that were incorrectly labeled as anomalous dialogs by the
classifier. Other names include miss or underestimation.

Specificity is also called true negative rate, and selectivity.
This metric provides insight about how well the classifier can
identify true negatives (anomalous dialogs correctly identi-
fied). In other words, it reflects the model’s capacity to avoid
false positives (anomalous dialogs incorrectly classified as
normal). Specificity is mathematically represented by

Specificity =
tn

tn+ fp
. (7)

Sensitivity is similar to Specificity but focuses on the classi-
fier’s ability to correctly identify normal dialogs (true posi-
tives), i.e., how well it avoids false negatives (normal dialogs
incorrectly classified as anomalous). It is also referenced by
true positive rate and recall, and is calculated as follows

Sensitivity =
tp

tp+ fn
. (8)

Precision measures the accuracy of positive predictions (nor-
mal dialogs correctly identified), i.e., how much we can trust
the classifier when a dialog is labeled as normal. It is also
known as positive predictive value, and is calculated as

Precision =
tp

tp+ fp
. (9)

Accuracy provides an overall assessment of the classifier’s
performance, as it incorporates all four elements of the con-
fusion matrix. Accuracy measures the proportion of correct
predictions (both true positives and true negatives). It is
calculated as follows

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
. (10)

F1-Score is a commonly used metric that combines precision
and recall into a single value. F1-Score is the harmonic mean
between these two metrics, representing them symmetrically.
The F1-Score is particularly useful in situations where the
dataset is imbalanced, as accuracy alone may provide skewed
results. It is mathematically represented by

F1-Score =
2tp

2tp+ fp+ fn
(11)

Mathews Correlation coefficient (MCC), also known as phi
coefficient, is another important metric, especially when
dealing with imbalanced datasets. One common critique of
the F1-Score is that it does not account for true negatives
(anomalous dialogs correctly identified), which may lead to
biased results in certain contexts. In contrast, MCC considers
all four components of the confusion matrix and is generally
regarded as a more reliable measure than F1-Score. MCC is
calculated as

MCC =
tp× tn− fp× fn√

(tp+ fp)× (tp+ fn)× (tn+ fp)× (tn+ fn)
.

(12)

B. DATA HANDLING
The performance evaluation is based on the SIP dataset
denoted by D made available by Nassar et al. [39], which
employs two open-source SIP servers: Asterisk [40] and
Opensips [41]. The dataset includes details such as the URI
of sender and receiver user agents, SIP messages exchanged,
packet counts, timestamps for each SIP dialog, and the final
session state (successful, rejected, or canceled). Each SIP
dialog is identified using the URI user agent, SIP messages,
and timestamps, with SIP message types encoded as integer
values.

Two different datasets are taken from D, DN containing
14801 normal SIP dialogs of various lengths, with a total
of 1043 unique dialogs; and DA containing 8141 anomalous
dialogs, from which 152 are unique.

Each dialog can have a maximum of 56 SIP messages,
although not all dialogs contain as many messages. Dialogs
whose length is shorter than 56 messages were padded with
zeros as described in Definition 5 to ease data manipulation
and analysis processes.

To implement the clarification methodology, each dataset
was first striped of any repeated dialogs. This is done by
eliminating dialogs with equal sequences of SIP messages.
The datasets of unique dialogs are denoted by Du

N and Du
A.

Normalized and non-normalized values of the cross-
correlation are then calculated with these new datasets Du

N

and Du
A. Each entry of Du

N is considered as a padded se-
quence (sk) and is correlated with each entry of Du

A, which is
considered as a padded SIP dialog pk in (1). The correlation
values computed with (1) are stored in a matrix CNA. Since
there is a total of 1043 unique normal dialogs and 152 unique
anomalous dialogs, CNA has the dimension 1043×152. This
process is then repeated but using Du

N only, correlating each
of its entries with the remaining ones, i.e., each SIP dialog
is considered as a padded sequence (sk), and is correlated
with the other SIP dialogs of Du

N that are considered as
padded SIP dialogs pk in (1). After computing (1) for all SIP
dialogs of Du

N , we obtain the correlation matrix CNN of size
1043×1043. In what follows, we refer to the non-normalized
classifier or normalized classifier, when the correlation values
in CNN and CNA are not normalized, or normalized using
(2), respectively.

C. ABNORMAL SIP DIALOGS DETECTION
Using the non-normalized version of the matrices CNA and
CNN , the moments of order 2 (M2, variance) and order 4
(M4, kurtosis) are calculated and plotted in Figure 1.

The classifier, implemented by the conditions in (4) and
(5), was parametrized with Γ slightly higher than the max-
imum kurtosis value obtaining for the normal SIP dialogs,
i.e., the maximum kurtosis value computed for CNN , which
in this case was parameterized to Γ = 1× 1012.

As observed in the results in Figure 1, the condition in
(4) allows the detection of all normal SIP dialogs, which we
denote as a true positive (tp) rate of 100% and false negative
(fn) rate of 0%. Regarding the anomalous SIP dialogs clas-
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sified with the condition (5), the proposed methodology is
capable of detecting 139 of the 152 abnormal SIP dialogs,
missing the detection of 13, which we denote as a true
negative (tn) rate of 91.45% and a false positive (fp) rate
of 8.55%. These results are summarized in the form of a
confusion matrix in Figure 2.

Although the number of false positives is relatively low, in
a real-world application, even a small number of misclassifi-
cations could lead to significant issues. Some service degra-
dation is to be expected as the false positive rate increases,
since anomalous dialogs will erroneously be classified as
normal, and therefore, avoid immediate detection. This delay
in detection means that appropriate measures will not be
taken immediately, increasing the likelihood of successful
attacks. Additionally, since automatic measures will not be
triggered, there will also be an increase in administrative
overhead since it will require manual intervention and poten-
tially additional audits and security scans to assess the impact
of these undetected anomalies. Finally, as false positives
accumulate, user trust may be eroded, especially in sensitive
sectors such as healthcare and finance, where users will begin
to notice service degradation and recognize that attacks are
being overlooked.

Figure 3 presents the results obtained with the normalized
classifier. The normalization of correlation values at null
lag (l = 0) does not significantly improve classification
performance, as the kurtosis and variance values computed
for the normalized correlation in CNA overlap with those in
CNN .

To enhance performance, instead of setting the threshold Γ
based on the maximum kurtosis value from DN (as described
in Subsection IV-C), we parameterized Γ using the minimum
kurtosis value from CNA. This approach successfully detects
all anomalous SIP dialogs. However, it also misclassifies
approximately 46.4% of normal SIP dialogs as abnormal
dialogs, highlighting the limited effectiveness of the nor-
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FIGURE 1. Non-normalized classification adopting the threshold
Γ = 1 × 1012.
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FIGURE 2. No normalization Classifier Confusion Matrix.

malized classifier. The confusion matrix of the normalized
classifier can be visualized in Figure 4 and compared to
the classifier without normalization. As described, and ev-
ident by the confusion matrices, L2 normalization presents
a drawback in dialog classification. While the first classifier
exhibits a false negative rate of 0%, the L2 normalization
classifier, though presenting a false positive rate of 0% shows
a significantly higher false negative rate of 53.60%.

A high false negative rate can also significantly degrade
system performance, given that normal dialogs will be incor-
rectly classified as anomalous, triggering unnecessary secu-
rity measures. This will create major system delays, causing
user frustration and diminishing trust in the service, as users
perceive it to be slow and unreliable. Additionally, the high
rate of false alarms also increases administrative overhead,
since additional manual interventions will be needed to truly
assess whether a flagged dialog is truly anomalous or simply
a false positive.
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FIGURE 3. Normalized classification adopting the threshold
Γ = 1.35 × 10−4.
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TABLE 3. Performance metrics comparison of multiple SIP dialog classifiers.

Model HMM [9] LSTM RNN LSTM RNN CNN model Cross-correlation Cross-correlation
model 1 [11] model 2 [11] [12] (no normalization) (L2 normalization)

True negative (tn) 1.000 0.9430 0.9451 0.9583 0.9145 1.000
True positive (tp) 1.000 0.9365 0.9189 0.7912 1.000 0.4640
False positive (fp) 0.000 0.0635 0.0811 0.0417 0.0855 0.000
False negative (fn) 0.000 0.0570 0.0549 0.2088 0.000 0.5360
Specificity 1.000 0.9430 0.9451 - 0.9145 1.000
Sensitivity 1.000 0.9365 0.9189 - 1.000 0.4640
Precision 1.000 0.9718 0.9723 0.9981 0.9877 1.000
Accuracy 1.000 0.9386 0.9274 0.7969 0.9891 0.5322
F1-Score 1.000 0.9538 0.9449 0.8827 0.9938 0.6339
MCC - - - - 0.9503 0.3149
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FIGURE 4. L2 normalization Classifier Confusion Matrix.

We can further compare the performance of these two
classifiers through the analysis of their Receiver operating
characteristic (ROC) curves, as presented in Figure 5. In this
graph, it once again becomes evident that the classifier with
no normalization presents better results, since it is closer to
the perfect classifier. In contrast, the ROC curve for the L2
normalized classifier is closer to that of a random classifier,
indicating a less favorable performance.

Table 3 presents a comparison of various performance
metrics for the normalized and non-normalized classifiers,
alongside the classifiers proposed in [9], [11], and [12].

The HMM model from [9] achieves optimal classification
performance but is impractical due to its high computational
cost and lack of scalability as the number of dialogs in the
knowledge base increases. Models 1 and 2 from [11], while
not reaching optimal classification (F1-scores of 0.9538 and
0.9449, respectively), offer a significant computational ad-
vantage over the optimal model in [9]. The CNN model
[12] combines deep learning with statistical methods, and
although its performance is inferior to the aforementioned
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FIGURE 5. ROC Curve of both classifiers

methods, it offers a significant reduction in computational
time, even lower than LSTM models presented in [11].

Comparing the F1-score of the proposed non-normalized
cross-correlation model, we find that it closely approaches
the performance of the HMM model, slightly surpasses
Models 1 and 2 presented in [9], and offers a clear ad-
vantage over the CNN model. These results show that the
non-normalized classifier proposed in this paper achieves
the closest performance to the optimal solution among the
evaluated approaches.

Table 3 includes the Matthews Correlation Coefficient
(MCC) for both classifiers to account for dataset imbalance.
Specifically, there are 1,043 unique normal dialogs but only
152 unique anomalous dialogs. This imbalance can distort
certain metrics, such as the F1-score, leading to overly op-
timistic or pessimistic results. Since MCC provides a more
balanced assessment of performance in imbalanced datasets,
it is a more reliable metric in this scenario. MCC shows
the advantage of adopting the non-normalized version of the
proposed classifier when compared to the normalized one.

Figure 6 shows the cumulative distribution function
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(CDF) of the computation times for the detection classi-
fiers compared in Table 3. The results show that the cross-
correlation classifiers achieve a significantly lower compu-
tation time. To better visualize, the graph adopting a log-
arithmic scale Figure 6 (b) reveals that the non-normalized
cross-correlation classifier classifies an SIP dialog in approx-
imately 1.87×10−5 s, and the normalized one in 2.21×10−5

s. In contrast, the HMM-based optimal solution presented in
[9] exhibits a prohibitively high computation time, making
it unsuitable for real-time applications and non-scalable as
the number of dialogs increases. The LSTM-based models
significantly reduce the computation time compared to the
HMM model (by at least a factor of 3), with LSTM Model
1 performing slightly better than LSTM Model 2 due to
its lower complexity. Additionally, the CNN model further
reduces computational time, although it remains significantly
higher than both the non-normalized and normalized cross-
correlation classifiers.

In Figure 6, the results plotted in logarithmic scale high-
light the efficiency of the proposed approach: the non-
normalized classifier achieves the lowest computation time,
while the normalized version incurs a slight overhead due
to the normalization step. Nonetheless, both versions of
the proposed correlation-based classifier exhibit a significant
improvement compared to the best-performing models in the
literature (CNN model [12]), which takes approximately 0.02
s to classify each SIP dialog.

To facilitate the visualization of trade-offs between the
performance of each classifier and their computation times,
Figure 7 is presented next. The x-axis illustrates the average
computation time of each model, measured in seconds. For
the y-axis Accuracy was the selected metric, as it is available
across all the models examined. Additionally, unlike the F1-
score, accuracy incorporates all elements of the confusion
matrix, thereby reducing susceptibility to biases that may
arise from imbalanced datasets, as encountered in this study.
As previously mentioned, the HMM model exhibits perfect
accuracy (1.0), at the expense of one of the longest compu-
tation times (around 0.2 s). In contrast, the cross-correlation
classifier (without normalization) achieves the second highest
accuracy (98.91%), closely following the HMM model, while
also demonstrating the fastest computation of approximately
1.87×10−5 s. Conversely, the cross-correlation model with
L2-normalization, while highly efficient in terms of compu-
tation time, yields the lowest accuracy among the models
explored, rendering it unsuitable for accurate classification
of normal and anomalous SIP dialogs.

Besides computation time, algorithmic complexity is an-
other factor that can be used to compare these multiple
methods. However, this comparison is challenging for the
models under consideration. The HMM model, for example,
exhibits non-linear complexity that depends on the number of
different dialogs [9], which makes it difficult to scale as the
number of dialogs increases. Both the LSTM RNN models
and the CNN model rely on machine learning techniques,
where a significant overhead is needed to train the model,
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FIGURE 6. CDFs of the classification computation times: (a) presents the
results in a linear scale, and (b) illustrates the same results on a logarithmic
scale.
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and their complexities are also non-linear and troublesome to
accurately calculate. In contrast, our model features a lower
complexity of O(n) for SIP dialog classification, and O(n2)
for SIP dialog prediction, making it fast and easily scalable.

D. SIP DIALOGS PREDICTION
In this subsection, we evaluate the SIP dialog prediction rate
based on the amount of available information for predicting
each dialog. Specifically, we use the ratio between the ob-
served input sequence length and the total SIP dialog length,
denoted as the ratio Lk

o/L
k
d . The prediction of the SIP dialogs

is performed for the normal dialogs in the dataset Du
N . The

prediction algorithm is applied progressively: starting with a
single observation (the first SIP message in the dialog), then
two observations (the first two messages), and continuing this
process until the full SIP dialog (Lk

d messages) is considered.
Figure 8 presents the prediction results of the proposed al-

gorithm, obtained through the computation of (6) considering
that the matrix C is filled with non-normalized correlation
values and normalized ones. The results also include the
performance of the SIP prediction dialogs proposed in [9],
[11], and [12]. The x-axis represents the ratio of observed
input sequence length to total dialog length, expressed as a
percentage.

The results in Figure 8 show that the proposed prediction
method achieves a lower performance when compared to
the ones proposed in [9], [11], and [12]. The LSTM-based
predictor in [11] achieved a high prediction probability even
with minimal available information, gradually improving as
more data became accessible. The HMM-based prediction
in [9] requires more input information than LSTM-based to
reach similar accuracy. The CNN model performs worse than
both HMM and LSTM model since it requires an even higher
amount of information to correctly predict SIP dialogs. How-
ever, the CNN model still outperforms the predictor based
on cross-correlation which demonstrated poor predictive per-
formance as it only achieves a high probability of correctly
predicting SIP dialogs when more than 90% of information
(Lk

o/L
k
d) is available.

While the correlation-based classifiers show both im-
proved classification accuracy and significantly reduced com-
putation time, the results in Figure 8 show that this technique
is not well-suited for SIP dialog prediction tasks. We have
intentionally included this comparison to emphasize the poor
predictive performance of the proposed prediction method,
which stands in stark contrast to its strong performance in
classification. This distinction highlights the limitations of
the correlation-based approach when applied beyond classifi-
cation, reinforcing the need for alternative techniques such as
the ones proposed in [9] and [11] for SIP dialog prediction.

V. CONCLUSIONS
In this paper, we presented a novel approach for detecting
abnormal SIP dialogs, which leverages the cross-correlation
of SIP dialog patterns and associated statistical metrics to
classify ongoing communications. Our method demonstrated
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FIGURE 8. SIP dialogs prediction probability over the amount of available
information, i.e., in terms of the number of SIP messages that integrate the
SIP dialog.

a 100% true positive rate and a false positive rate of ap-
proximately 8.6%, leading to an overall accuracy of 98.91%
and showcasing its robustness in accurately distinguishing
between normal and abnormal SIP dialogs. These results
suggest that our approach is highly effective in identifying
potential threats in SIP communications.

Unlike prior methods, which often rely on computationally
intensive Bayesian or deep learning models, the proposed
methodology offers a simpler yet efficient alternative. By
focusing on the statistical properties and patterns within
SIP dialogs, the proposed classification based on correlation
eliminates the need for complex models or large training
datasets. This provides a significant advantage in terms of
computational efficiency, with our technique being over 1000
times faster than existing Bayesian and deep learning-based
methods proposed in [9], [11], and [12].

In comparison to the optimal Bayesian and deep learning-
based approaches, our method achieves a slightly improved
classification performance but with the added benefit of
lower computational cost, making it well-suited for real-time
threat detection in high-performance network environments.
Although the false positive rate achieved by our method is
slightly higher than the optimal Bayesian method, the trade-
off between the classification accuracy and the computational
efficiency makes our approach a promising solution for prac-
tical deployment.

A. DISCUSSION AND FUTURE WORK
Our paper presents one step forward towards automatic de-
tection of anomalous SIP dialogs by presenting a classifier
that is both fast and accurate. The detection of anomalous
SIP dialogs is of great importance since it can help prevent
malicious activity and provide resistance to common attacks
such as flood attacks and DoS. We demonstrate that the use
of statistical methods is highly relevant in certain applications
since it can achieve accuracy levels comparable to machine
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learning methods, but at a fraction of the computation time
and computational resources. Although our work is focused
on SIP, future work could include the application of similar
statistical methods to other protocols.

When applying the developed classifier in real-world
settings, several challenges arise and must be considered,
namely latency and overhead, memory and storage require-
ments, and handling of corrupted or incomplete messages.
The integration with existing SIP systems must be simple
and seamless without causing major latency and overhead.
Since our classifier is based on statistical analysis, it has
significantly lower computational requirements (memory and
storage) and is much faster than other classifiers based on
machine learning. This makes it easier to integrate with
existing SIP systems even when resources are scarce, and
since it is also faster than other methods, it causes very low
overhead.

Once integrated in a SIP server, our classifier can quickly
classify dialogs as normal or anomalous and immediately
take appropriate action (e.g., terminating a session once an
anomalous SIP dialog is detected) to prevent any damage.
The classifier could be used as a standalone anomaly de-
tection system by identifying anomalous SIP dialogs and
immediately taking action without human intervention. Al-
ternatively, it could be used in conjunction with different
classifiers so that they complement each other and lead to
better attack prevention. As we observed, our classifier excels
at the classification of full SIP dialogs but is lacking in the
prediction of incomplete SIP dialogs, and thus could be used
to complement machine learning models to enhance overall
detection accuracy.

Regarding the handling of corrupted or incomplete SIP
messages, our classifier can still perform its function, al-
though some accuracy degradation is to be expected as
mainly false positives, but also false negatives, may increase
due to the limited information. Although presenting these
limitations, our classifier remains a cost-effective and fast
solution with high accuracy.

Future work may focus on further optimizing the method
to reduce the false positive rate while maintaining its effi-
ciency, as well as exploring its scalability in larger network
infrastructures. Additionally, integrating other statistical and
machine learning techniques could enhance the robustness
of the detection system, enabling more nuanced anomaly
detection in dynamic environments.
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