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Abstract

The rise of big data and rapid digitization in the digital media industry have made
recommendation systems essential for delivering relevant, personalized content to users. In
the music streaming sector, platforms like NetEase face the cold-start problem when
recommending content to new users with minimal interaction data. To address this, we
developed and compared various techniques, including a User Similarity-Based
Recommendation Algorithm, a User Preference Elicitation Recommendation Algorithm, a
DeCS-Inspired Recommendation Algorithm, and a Discriminative Frequent ltemsets model.
Our findings show that the DeCS-Inspired model performs best in data-rich scenarios, while
Demographic-Based methods excel in cold-start situations. To optimize performance, we
propose a hybrid approach that combines Demographic-Based techniques for cold-starts and

transitions to the DeCS-Inspired model as user data grows.
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1. Introduction

“We engage with automation and machine learning every day in ways we may not realize.
Consider the most common online habits: browsing social media, shopping on Amazon, or

bRl

binge-watching on Netflix. These platforms rely on “recommendation systems™ to analyze
tastes and preferences and try to serve up the products, content, or people they believe you
want to see.” (What Netflix's Recommendation Systems Can Teach Us About The

Computing Challenges Of The Near Future s.d.)

The swift transition to digital systems and services has transformed the way users interact
with information across the internet. Information systems now play a critical role in
managing vast catalogs of media content, catering to diverse user profiles with varying
preferences and behaviors. The diverse nature of both content and user needs makes
delivering relevant items in response to a user query a complex challenge. At the core of

these information systems lie recommendation systems, which aim to present users with the
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most personalized and relevant items. Figure 1 provides an abstract overview of the key

components that constitute a recommendation system.

Figure 1 - Recommendation System Key Components Overview

The growing reliance on recommendation systems in the music streaming industry highlights
the importance of personalization in attracting users. The global market for music streaming
is expected to generate $29.60 billion in 2024 and $33.97 billion in 2027, growing through
increased affordability, advancement in mobile technology, and greater access in emerging
markets (Chadha e Jain 2022; Music Streaming - Worldwide | Statista Market Forecast s.d.).
Such a phenomenon leads to a huge amount of data generation, which companies then use to
improve their algorithms for recommendations, thereby enhancing the satisfaction and

retention rates of users (Sun e Peng 2022).

This growth has also been reflected in the music streaming market in China, which is
projected to achieve a CAGR of 4.84% from 2024 to 2027, mainly due to the popularity of
local artists as well as the data-driven strategies employed (Music Streaming- China | Statista
Market Forecast s.d.). Innovations have been in place at leading platforms such as Tencent
Music and NetEase to maximize user engagements through Al-powered recommendations
to address competition-related pressure (Financial Times 2023). Globally, Al in music is
expected to grow from $2.8 billion in 2023 to $34.4 billion by 2033, with recommendation
systems playing a critical role (Al-based Recommendation System Market Report s.d.).
These systems help increase acquisition of customers, reduce churn, as well as improve users'

satisfaction, subsequently influencing the competitive advantage and long-term loyalty of



music streaming providers (Al in Music Streaming: Personalization at its Best s.d.; How

Retailers Can Keep Up with Consumers s.d.).

A major challenge recommender systems face is the Cold Start Problem (Chadha e Jain
2022), which can be divided into three categories: the new community problem, the new-
item problem, and the cold-user problem. The new community problem arises when a
given information system has just booted up and there has been no interaction between any
user and items. In the new-item problem, the goal is to recommend a recently added item in
the catalog to users, despite lacking information about how much they may like it.
Conversely, the cold-user problem arises when a new user joins the system, and the lack of
prior knowledge about their preferences makes it difficult to select relevant content from a
vast catalog of possibilities. Recommendation systems can also be challenged by returning
users whose behavior and preferences may vary between sessions, not just by first-time
visitors. A widely used recommendation method for addressing the new-item problem is
content-based filtering (CBF). This approach mitigates the issue by leveraging item
metadata, such as tags or attributes, to identify item similarities. It then recommends new
items to a target user based on their resemblance to those the user has liked in the past. To
address the cold-user problem, Preference Elicitation is a popular technique (Pu e Chen
2008). This method gathers user information during the registration process, either by
directly asking users to provide their preferences or by leveraging existing data, such as from
their social media accounts. This initial data helps generate an embedding for the user,
serving as a recommendation starting point. Another approach is categorizing users into
groups, such as by demographics, and using the available information from cold users to

assign them to a relevant group (Pandey e Rajpoot 2016). This allows for more tailored



recommendations based on the interaction history of other users within the same group.
When little to no information is available, a fallback solution is to recommend globally
popular items. However, Recommender systems biased toward globally popular items
exhibit the “Harry Potter effect”, where widely liked items, such as Harry Potter, are
frequently recommended. While users may enjoy such content, these recommendations often
lack novelty. Globally popular items can be filtered or weighted down in the recommendation
process to mitigate this effect. Knowledge bases are also leveraged to supplement missing
system information, enriching the context and the relevance of content provided to users (See
Figure 2 for an abstract overview of the cold-users problem). Users’ new interaction data is
typically collected continuously, enabling cold users to gradually become “warmer” as their
preferences and behaviors are better understood over time. Consequently, by leveraging
Active Learning methods, the cold-user problem can further be mitigated. Nevertheless, the
challenge of providing initial content to new users is crucial for the user to trust a given

platform

The "cold-start problem" remains a critical bottleneck in the effectiveness of
recommendation systems. This issue arises when insufficient data is available for new users
or content, leading to suboptimal recommendations. The consequences are significant: users
may exit platforms after unsatisfactory early experiences, and there is little visibility for new
talent in an increasingly competitive market. Similar problems occur in other industries,
going from e-commerce to online advertising. A new online store may find it difficult to
suggest items to a customer with no purchase history. An online advertiser may also find ita
challenge to reach users whose browsing  history is very limited.

Essentially, in this work project, we have investigated the challenge of providing accurate



and meaningful recommendations to new users on the NetEase Cloud Music platform, where
traditional collaborative filtering approaches struggle because of minimal interaction records.
We developed and compared various techniques, ranging from demographic similarity and
preference elicitation to embeddings and discriminating frequent item sets, to improve
recommendations for cold-start users. Our results revealed that the DeCS-Inspired model
performed the best under data-rich conditions with higher k values (e.g., k=10), effectively
capturing long-term user preferences and achieving superior ranking metrics. However, for
cold-start scenarios where interaction data is limited, the Demographic Similarity-Based
and User Preference Elicitation models demonstrated their effectiveness in delivering
initial, personalized recommendations. By integrating these techniques into a hybrid
approach, we identified robust recommendation models tailored to sparse first-user data
while establishing metrics to evaluate their performance. This comprehensive strategy
ensures accurate recommendations, regardless of the amount of user interaction data

available.
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Recommendation systems can be understood through three key operations: information
retrieval, scoring, and re-ranking. Information retrieval involves filtering and selecting a
subset of relevant items from the vast catalog based on initial user input or user implicit
signals (e.g. past history). Scoring assigns a relevance score to each retrieved item, often
using algorithms that factor in user preferences, item features, or historical data. Finally, re-
ranking adjusts the order of the scored items to optimize the presentation, ensuring the most

relevant or engaging content appears at the top.

The cold-start problem can be a challenge in recommendation systems, particularly when
limited user data is available, making it difficult to generate accurate and personalized
suggestions. This is a common issue when new users or items lack interaction and therefore
restricts recommendation accuracy. Researchers have proposed several innovative
approaches to address this problem, these methods aim to extract more meaningful insights
from limited data, allowing recommendation systems to provide relevant suggestions even
in the absence of extensive user history. In traditional collaborative filtering (CF) systems,
the absence of historical data constrains the system in detecting user preferences, while
content-based filtering (CBF) approaches have limitations when item features don’t represent
user preferences properly (Pandey e Rajpoot 2016), (Li, et al. 2017). This section discusses
key approaches that have been suggested by researchers, for instance, recommendations
based on demographic attributes, such as age and gender, to enhance initial recommendations
or combining several approaches to reduce the impact of data sparsity (Lam, et al. 2008),

(Lika, Kolomvatsos e Hadjiefthymiades 2014), (Tahmasebi, et al. 2021).
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2.1 Challenges in cold-start Information Systems

When information systems are first launched, they face uncertainty regarding the relevance
of items to users and users’ potential interests—a challenge known as the new community
problem. Additionally, as the product catalog evolves and new items are introduced, there is
uncertainty around how existing users will respond to these additions, commonly referred to
as the new items problem. Finally, as the user base grows over time and individual interests
shift, recommending relevant items to users with limited interaction data becomes a
significant challenge, known as the cold-users problem. Matrix Factorization (MF) is
commonly used to learn vector embeddings for users and items, helping to predict user
preferences. However, it faces challenges with the cold-start problem, where there is little to
no information about new users or items. To address this, some approaches extend MF by
incorporating metadata about users and items or by leveraging pre-trained embeddings for
these entities. While effective in some scenarios, these methods often struggle in dynamic
environments where new users or items are frequently introduced. To overcome this
limitation, recent approaches have reframed the cold-start problem as a meta-learning task.
Instead of training a separate model for each user or item, meta-learning focuses on teaching
the model how to “learn” user preferences efficiently with minimal data. This approach aims
to make recommendations quickly and effectively, even with sparse information, as
highlighted in “A Meta-Learning Perspective on Cold-Start Recommendations for Items.” In
the context of music streaming platforms and the cold-start problem for new users, (A Semi-
Personalized System for User Cold Start Recommendation on Music Streaming Apps)
proposes using user clustering and preference elicitation to address the lack of user-specific

information.
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2.2 Demographic Approaches

Demographic data allows systems to group users and items with similar characteristics,
improving recommendation accuracy when historical data is lacking (Zhu, et al. 2020).
Studies also highlight incorporating Deep Learning using auxiliary information, including -
but not limited - to text, user metadata, and other additional information that could generate
more accurate predictions (Roy e Dutta 2022), (Steck, et al. 2021). One example of a Deep
Learning based approach is DropoutNet which focuses on training neural networks for cold-
start situations, using dropout techniques to create the effect of missing data during the

training phase (Steck, et al. 2021).

2.3 Hybrid Systems for Enhanced Personalization

A further promising strategy is the implementation of hybrid systems which integrate
different recommender techniques. For instance, several approaches combined CF and CBF
using neural network architecture like self-organizing maps to capture the user’s preference
better during the initial interactions. These methods can be particularly effective in RS, where
additional features like song metadata and user activity context have been shown to improve

during cold-start scenarios (Nguyen, Denos e Berrut 2007).

Further, on prediction accuracy, recent developments in personalized RS go far beyond
improving prediction accuracy, which has been the primary focus, into factors that enhance
user experiences like novelty, diversity, relevance, serendipity, and user satisfaction (Lam,
et al. 2008). For example, while creating music playlists, MRS has started to incorporate
additional context-aware features, such as user’s activity or mood, which adds a layer of

personalization that traditional systems lacked. Additionally, it has been noted that hybrid
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models that dynamically adapt the weights of different recommender techniques based on
user feedback have been successful in running with changes in user preferences over time
(Bobadilla, et al. 2012), (Song, Dixon e Pearce 2012). Spotify’s “Discover Weekly” playlist
exemplifies the effectiveness of this approach, leveraging a hybrid of content analysis,
contextual data, and CF to suggest songs, tackling both cold-start issues and long-tail item

challenges (Kowald, Schedl e Lex 2020).

2.4 Novel Architectures for Cold-Start Solutions

Some researchers have explored novel model architectures to address cold-start limitations.
(Feng, et al. 2021) addressed the cold-start issue by developing a model-agnostic interest
learning framework. Their approach pulls user attributes and behaviors using a two-tower
system. The first tower generalizes user behavior across both new and existing users,
effectively mitigating the sparsity of data for cold-start users. The second tower then refines
this information to generate personalized recommendations. This method is particularly
effective because it balances generalization with personalization, ensuring that new users

receive relevant recommendations without needing extensive interaction history.

Another solution comes from (Lin, et al. 2021), who introduced a task-adaptive neural
process (TaNP). This approach is rooted in meta-learning, where each user is treated as a
separate task. It uses limited user interactions to quickly adapt and make personalized
recommendations by mapping observed behaviors to a predictive distribution. This allows
the system to leverage global knowledge and apply it to individual users, enabling accurate

predictions even with sparse data. The flexibility and adaptability of this method make it
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highly effective for cold-start users, as it customizes recommendations based on just a few

initial interactions.

In a more data-driven approach, (Han, et al. 2022) applied Empirical Bayes to model user
engagement in large-scale e-commerce systems. This method combines behavioral and non-
behavioral signals to generate more accurate recommendations for new items and users. In
the context of a music platform like NetEase Cloud Music, such a model could help overcome
the lack of initial user interactions by predicting user preferences based on general patterns
of engagement and content popularity. This approach not only improves recommendation
accuracy for cold-start items but also ensures a balanced user experience by integrating

business metrics.

A novel approach by (Wang, Dai e Li 2024) operates with Large Language Models (LLMs)
to address the cold-start problem by generating synthetic user behaviors. LLMs analyze
textual descriptions of items and users' previous interactions to simulate potential user
preferences, filling in the data gaps for cold-start items. This extended data provision is then
used to train the models more effectively, in which the ability to simulate user behavior
without needing actual interaction data improves the system's capacity to recommend new

items.

2.5 Meta-Learning and Reinforcement Learning in Cold-Start Scenarios

Meta-learning has become an essential tool in addressing cold start challenges by allowing
recommendation models to dynamically adapt to sparse data environments. (Wang, et al.
2022) showcase how reliable metadata and meta-learning approaches are in an overview that

includes the expansion of existing collaborative filtering recommender systems with an
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enhanced correlation measurement derived from the implementation of a demographic-based
correlation into the predicted rating, inspired by (Vozalis e Margaritis 2003). This integration
enhances correlation accuracy in predictions, essential for improving recommendations for
new users. Meanwhile, (Son 2016) conducted a comparative review addressing the
performance of various methods for the new user cold-start problem in recommender
systems. In this review, the model in question was found to perform less efficiently than its
peers—NHSM, FARAMS, and HU-FCF—based on metrics like Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE), and computational time, ultimately making it
the least effective among the compared methods. On the opposite end, NHSM (Liu, et al.
2014) emerged as a robust solution to the cold-start problem, emphasizing improved accuracy
in collaborative filtering. Instead of employing the Proximity-Impact-Popularity (PIP)
similarity measure, NHSM introduced the Proximity-Significance-Singularity (PSS)
measure. This new approach evaluated the distance between rating pairs, deviation from the
median, and uniqueness of rating pairs, thereby improving the accuracy by combining PSS
with the Jaccard similarity coefficient. Moreover, NHSM used the mean and variance of user
behavior globally—rather than locally—which contributed to its high accuracy and reduced

reliance on metadata, without the fuzziness found in other models.

Reinforcement learning (RL) is also increasingly applied in recommender systems, enabling
them to adapt dynamically to continuously evolving information and user preferences (Singh
e Singh 2024). However, in an environment where new items are added with high frequency,

RL provides low-quality results.
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2.6 Recommendation system techniques and related issues: a survey

The conceptualization of a recommendation system is crucial for effectively addressing the
challenges associated with cold-start users. There are numerous methods and models that,
while attempting to solve certain issues in item recommendation, inadvertently exacerbate
others. Therefore, it is essential to outline these challenges comprehensively and be prepared
to address them effectively. Common issues (Kumar e Thakur 2018) include data sparsity
and high dimensionality, which are pervasive across different recommendation problems.
Another issue is limited content analysis, where content-based filtering is restricted by
relying solely on explicit characteristics of the recommended item, which limits the system's

ability to make distinctions.

Privacy concerns also arise due to the way user data is utilized for improved
recommendations, highlighting the need for careful data management practices. Synonymy,
which can cause confusion in recommendations, can be mitigated through methods such as

constructing a thesaurus, using singular value decomposition, and latent semantic indexing.

Given these challenges, an optimal model would involve a genetic approach combined with
K-means clustering. This approach would decompose similarity values using vector cosine
and other types of metrics, apply a genetic algorithm for optimization, and provide improved

rating predictions for users.

2.7 Emerging Trends

The latest research performed around the topic of is comprised of two papers from this year

that aim at tackling this issue with two different approaches that seek to fight a common
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threat to the efficiency of any recommendation system and the sustainability of users within

the platform it acts upon: cold-start users.

(Karabila, et al. 2024) proposes an approach that takes on deep advanced learning and self-
supervised learning techniques. It promotes the implementation of a recommendation system
that is an ensemble of three models: BERT-enhanced deep neural networks, self-supervised
learning and collaborative filtering approaches, namely UserKNN and Item KNN. It provides
insightful contributions on each one of the models within the ensemble, as it relies on a hybrid
approach that integrates BERT with Collaborative filtering where BERT-based embeddings
captures relationships in textual context, enhancing the user-item relationship understanding,
while it leverages the collaborative filtering side of it as a baseline that BERT is
complementary to. The SSL (Self Supervised Learning) comes in as a management factor in
regards to unlabeled data, which comes in handy into addressing what is a commonality
across recommender systems ready data/embeddings - data sparsity - and can therefore play
a key role in the enhancement of the recommendation accuracy. Its role in addressing the
cold-start problem derives from the insightfulness it can retrieve from the embeddings
through textual item profiles, besides the ability it has through SSL to uncover data behavior
and patterns, reducing the historical data dependence. It is also important to note that the role
of combining item and user similarity metrics with other content-based methods is key into

providing accurate and well-founded recommendations.

On the other hand, (Hafnar e Demsar 2024) draws a rather different perspective at the
possibility of mitigating this issue, through the usage of LLM (Large Language Models) for
personalized content generation in a context where there is a need of creating tailored game

levels within minimal player interaction data. This answers the needs of a truly cold-start
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ready recommender system, as it leverages the GPT 4 LLM to generate game levels using
zero-shot reasoning, in an attempt to have a personalization as effective as possible based on
a residual amount of available data, and therefore without the need of a heavy training
process. This is enabled by the reliance on a framework that combines the little gameplay
data with predefined, structure prompts that guide the LLM to achieve consistent and tailored
results, with better player engagement and retention rate results when compared with other
level generation methods. The relevance this paper brings into this problem is of a complete
bypass on the extensive user-item data need through the zero shot capabilities of LLMs, that
allow for the production of personalized and relevant outputs with minimal inputs. It is, after
all, a demonstration of the strength that zero-shot learning can have as a cold-start mitigation

technique.

2.8 Addressing the Cold-Start Problem in Recommender Systems Based on Frequent

Patterns

(Panteli e Boutsinas 2023) proposed a methodology to solve the cold-start problem in
recommender systems by integrating user clustering with the extraction of frequent
discriminative patterns. Unlike conventional collaborative filtering approaches that struggle
to recommend items to new users or products due to a lack of historical interactions, their
method employs user features and previous purchase data from so-called "hot" users to
generate recommendations. Users are first grouped based on demographic or contextual
characteristics. Within each group, frequent item sets are extracted to identify combinations
of products that existing users consistently like. Discriminative frequent item sets, which are
patterns that are significantly more prevalent in one group of users than in others, are then

extracted. These discriminative item sets serve as 'mind-blowing' buying behaviors for new
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and cold users who share similar characteristics with the group. By assigning relevant
frequent items to these users, the method can effectively improve the user-product matrices,
reducing dispersion problems and allowing for precise recommendations, even without initial

rankings.

Empirical evaluations on the MovieLens dataset show that this hybrid approach can achieve
higher accuracy and handle both out-of-matrix (pure cold-start) and in-matrix (sparsity-
related) prediction scenarios. The main contributions of this work include improving the
diversity of recommendations, handling zero-rating scenarios without requiring extensive

user interaction.

2.9 Limitations of Current Approaches

Though current approaches have improved greatly concerning the cold-start problems, there
are still limitations. Approaches that are mostly based on demographic information and
auxiliary data-based approaches may face issues of data availability or insufficient
personalization if the additional data lacks relevance. Also, the incorporation of deep
learning, although appropriate, can increase the intricacy and resource implications rendering
them impractical for smaller resource-constrained (Steck, et al. 2021). Thus, in future work,
the emphasis may be on developing low-cost yet effective models that include strategies for
mitigating biases in recommendations without compromising their efficiency (Pandey e

Rajpoot 2016), (Silva, et al. 2019).
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2.10 Summary

To conclude this section, recent strategies in recommendation systems address cold-start
challenges by integrating methods from demographic clustering and deep learning to meta-
learning, hybrid approaches, and reinforcement learning. These approaches aim to improve
personalization on the problem of cold-start users, enhancing user satisfaction, and fostering

long-term engagement from the very first interaction.

The more recent strategies have shown us that the cold-start problem has several means to be
solved, with the arrival of deep learning, contextual embeddings and adequately leveraged
one-shot learning being key into creating what is, as of this day, the state-of-the-art panoply
of means to tackling this problem. It portrays something that can be summed up as the
contemporary existence of highly contextual, data broad approaches to reach a highly
reasoned recommendation and a zero shot, more aggressive approach that requires very
limited amounts of data, and accounts for the creation of recommendations by focusing on

the abilities to be consistent, while having a tailoring aspect to it.

3. Context and Data

3.1 NetEase Research Context

NetEase Cloud Music (NCM), launched in 2013 by NetEase, Inc., has grown into one of
China’s leading music streaming platforms, The platform stands out for its innovative
features, including the "Cloud Village" tab, which fosters a community-oriented ecosystem
through short-form music content and interactive functionalities such as liking, sharing, and

commenting on music cards. This unique approach not only enhances user engagement but
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also incentivizes creators to contribute, making NCM a central player in China's competitive

music streaming market. (Zhang, et al. 2022)

This dataset contains an impression-level interface of over 57 million interactions as recorded

by NCM, reflecting users' behavioral data such as clicks, likes, and shares in addition to

demographic and content metadata, all collected in November 2019. The dataset opens a

window into exploring some of the major problems faced by the platform:

Cold-Start Users: this dataset allows research into ways of alleviating the cold-start
user challenge through demographically similar recommendations for users who have
little or no interaction history.

User engagement optimization: understanding specific user behaviors can help
create an effective strategy to ensure meaningful interaction for prolonged loyalty to
the platform.

Creator incentivization: looping back and forth between users and creators will be
analyzed in the dataset and open up avenues for future considerations on how to
motivate and reward creating varied and high-quality content.

Personalization and diversity bring out the contradiction between hyper-
personalized recommendations and diversity for content, which is an important

equation for keeping the user happy and growing.

The digital services and products industry in Asia is characterized by rapid growth, diverse

user preferences, and intense competition, with the music sector being no exception. China

alone boasts over 800 million active internet users, with average daily usage surpassing the

global average of 5.9 hours. Despite this, only about 60% of China's population is online,
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indicating significant potential for further expansion in the digital economy. This substantial
online presence has positioned China at the forefront of global e-commerce markets

(Chakravorti 2018).

In this dynamic environment, effective personalized recommendations serve as a key
differentiator for success. Such strategies are crucial for entering and sustaining a presence
in industries where traditional media is steadily losing ground to the Internet due to its content
limitations. Urbanization has surged, with the urban population increasing from a quarter to
half of the total, leading many individuals to turn to the Internet to reconnect with their

cultural roots.

Furthermore, factors such as rising income inequality and the loneliness associated with the
long-standing one-child policy gave a huge push to Internet usage and involvement in digital

platforms.

3.2 Data Description

The interaction_data dataset from NetEase Cloud Music encompasses over 57 million
impressions within the “cloud village” tab of NetEase’s app, which contains two feeds of
short music content cards that correspond to the gathered data scenario, specifically on the
discovery subtab. With a sample made of over 2 million users over November 2019, each
impression consists of music content card appearance to any user. Furthermore, the data
fields for each impression are set to portray all possible actions within the Ul possibilities
NetEase provides data on various user interactions with content cards, including clicks, likes,
shares, comments, views, and follows. These data fields are designed to capture the precise

actions users take when engaging with each card in the dataset. They highlight key behaviors,
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such as whether a user opens a card, leaves a comment, likes or shares it, and, in the case of

a click, how long the user spends viewing it.

Additionally, other datasets capture impression-related data, offering insights into users,
content creators, and the impressions themselves. These datasets provide an added layer of
detail, enriching the understanding of interactions by incorporating information about the
identities and relationships of users, creators, and third parties within the platform's

ecosystem.

Therefore, besides the impression-level data, card-level, creator-level, and user-level datasets
capture different aspects of each interaction, providing us with a broader sense of engagement
dynamics on the platform. For example, while the card demographic table goes over the
attribution of a song, creator, artist, content, and talk 1Ds, the card stats table is comprised of
metrics on impressions, likes, shares, or comments for a given day within the period being
analyzed. While the creator tables outline demographic attributes, follow information, and
attribute a type and level to every user, the user tables similarly categorize users in light of
their demographic information, and activity intensity, besides followage and month
registration info. Lastly, there is also a creator stats table, which has a residual number of
features and serves the purpose of identifying the number of publications during the sample

period, for every identified creator.

3.3 Metadata

The dataset captures all aforementioned user interactions through a binary field for each
action in particular: whether a user has (or hasn’t) clicked, liked, shared, or commented

(isClick, isLike, isShare, and isComment) a card. Additionally, being the view time a field
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in which the number corresponds to the number of seconds a user has spent on a card after
clicking it ranging up to 41,186 seconds. The position (ImpressPosition) of a card in the
user’s feed and the timestamp of its display (ImpressTime) provide more context about when
and where interactions occur. On the card level, variables such as mlogld, songld, and
artistld uniquely identify each card. Other attributes, including publishTime, contentld,
and talkld, respectively describe the card’s publication timeline, content, and topics, which
are essential for understanding trends and patterns in user preferences. The cardType
categorizes the format of each card, differentiating between video content and images with
background music. The dataset also includes demographic and activity metrics at the user

and creator levels (age, gender, province, registeredMonthCnt, and userLevel).

This data is key when it comes to the development of a recommendation system, as it
provides important insights into user’s engagement preferences and behavioral
patterns. The previously mentioned features are the foundation of the recommendation
algorithm, as these are the primary source of essential knowledge/information on a user, card,
and creator. On that account, these features act as guides within the system by presenting
content that aligns with the user's past behavior and preferences. The integration of these data
nuances may be key to an adequate balancing of cold user satisfaction. With that in mind,
pleasing consumers is not only essential to fulfill the platform’s long-term objectives but
mainly to ensure that it is possible to get the best out of cold-start users by providing them

with the best content possible under a broad and deep set of information.
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The table below (Table 1) provides a comprehensive overview of these metadata variables,

summarizing the features that were used in our recommender systems:

Element Variable Description Data Type
Position Element ImpressPosition Position of the card in the user's feed, starting from 1. Integer
Engagement Element  isClick Binary value indicating if the user clicked on the card (1 for yes, 0 for no). Binary

isLike Binary value indicating if the user liked the card. Binary
isComment Binary value indicating if the user commented on the card. Binary
isViewComment Binary value indicating if the user viewed card comments. Binary
isShare Binary value indicating if the user shared the card on social platforms. Binary
isintoPersonalHomepage Binary value indicating if the user accessed the creator personal homepage.  Binary
ImpressTime Epoch timestamp representing when a card was displayed to a user in millisecc Numeric
mlogViewTime Duration (in seconds) the user spent viewing the card. Numeric
Card Element milogld Unique identifier for each card displayed to users. String
songld Unique identifier for each song in a card. String
artistld Unique identifier for each artist in a card. String
creatorld Unique identifier for the card creator. String
contentld A set of content identifiers attributed to a card. List
publishTime The number of days when the card is published till December 1st, 2019. Integer
talkid Unique level that represents the anonymized topic of the card. Integer
cardType Type of card (e.g., video or image with background music). Categorical
User Element likesCount Total number of likes received by the card until the timestamp. Integer
userld Unique identifier for each user. String
registeredMonthCnt Number of months between a user's registration time and December 1st, 2019. Integer
userLevel Activity intensity of a user, ranging from 0 to 10. Integer
Demographics Element province Province of residence of the user (in Pinyin format). String
age The age of a user. Integer
gender The gender of a user. String

Table 1 - NetEase Table Metadata: Variable Descriptions by Category

3.4 Cold-Start Problem: Definition and Challenges

The cold-start problem is a restriction to the effectiveness of recommender systems,
especially when new users or new items are involved. It is chiefly caused by the absence of
previous records, making it hard to make relevant recommendations. The NetEase Cloud
Music Platform’s dataset also experiences the cold-start issue, relative to the challenges
presented by the nature of the users, the nature of the items, and the evolution of user-content

interaction over time.

We can explain the issue of cold-start in three different problems as follows:
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e New User Problem: In the case of a new user coming to a platform, therefore there
is no past data that allows us to predict the user preferences and recommend suitable
content.

o New Item Problem: As the items in the catalog get updated, new items added to the
platform do not have enough data from the users to know how relevant they are to the
present users.

e New Community Problem: When the system is first implemented, the community
is new and there isn’t enough information about its members or the content provided,

so there is trouble with how to make good recommendations.

Furthermore, as users’ choices change over time and both the number of users and items
increase, achieving this level of personalization becomes increasingly challenging. For this
thesis, we focus on the New User Problem, where little to no data exists for a user’s

engagement history.

Hence, to define cold-start users in our context, we analyzed the available data and
established criteria to identify a cold-start user, to then implement our recommender systems.

The criteria were the following:

« Registration Date: Users who registered within the last six months (on or after June
2019).

« Interaction Count: Users with four or fewer recorded interactions (e.qg., clicks, likes,
comments).

o Activity Level: Users with an activity level of three or lower on the platform.
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Cold Start Users

New Users Low interactions
(<6 months) (=4)
~72k /~35k
~610k
~81k
~104k
~86k
~84k

Low Activity Level
(=3)

Figure 3 - Cold start users definition

This group accounts for only 3.88% (See Figure 3) of the total user base and includes users
who have few records available for making recommendations. The focus on users from the
past six months was necessary, as older users lacked sufficient interaction records dating
from November 2019, and thus their engagement history could not be measured effectively.

The interaction limit was established by analyzing user engagement (See Table 2):

e 259% of users had interactions less than or equal to four.
e 50% had below seven interactions.

e 75% had more than seventeen, with the average being 26.

Interactions
count 2085480
mean 26.08
std 112.52
min 1
25% 4
50% 7
75% 17
max 22637

Table 2 - User impressions statistics
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By limiting our focus to users with <4 interactions and a platform activity level <3, we
identified a distinct subset of low-engagement users for whom personalization is most
challenging. These individuals, with minimal engagement and platform familiarity, lack
sufficient interaction data to generate reliable recommendations, making this group a prime

target for addressing the cold-start problem effectively.

Despite the dataset’s considerable size, comprising nearly 60 million observations, the cold-
star problem remains significant due to several inherent limitations and complexities. We can

name a few limitations:

Implicit Feedback: The dataset provides implicit feedback with the use of features such as
“isClick”, “isComment”, “isLike”, and “isShare”. These features help estimate surface user
activity, and more importantly, they do not provide explicit preference information which

assists in the creation of explicit user interest profiles.

Exploration vs Engagement: For cold start users, who have very little interaction with the
platform, the little available data may be about exploration rather than engagement.
Therefore, understanding their initial suggestions may prove challenging. This results in the

suggestions being off the mark for the users, leading to dissatisfaction and withdrawal.

Demographic Constraints: Understanding user characteristics involves the use of some
basic demographic data such as province of residence, gender, and age. In any case, these are
not comprehensive or detailed enough to facilitate the development of advanced user profiles.
For example, we believe, an over-representation of age or province can skew the
recommendations to default content that is active among the active users of the platform and

thereby disregard other cold-start users with different content preferences.
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New Content: The cold start does not only concern users, but it also applies to new content
added to the system. As the new content does not have enough interaction history, its
relevance to the users cannot be determined thereby making it difficult to recommend the
content. Furthermore, because the platform is a dynamic catalog that is growing in both the
number of content and users, there are difficulties in forecasting how the current users will

react to new content.

New Community Problem: In the same way, at the initial stages of launching the system to
the market (the new community problem), the system faces item visibility and users’ interests
without historical data. This absence of data makes it difficult to come up with effective

solutions to different problems for different users.

4. Exploratory Data Analysis

In the direction of understanding user behavior and data quality within the NetEase Cloud
Music platform, we carefully analyzed key variables and interaction patterns present in the
dataset. The analysis also addressed data inconsistencies, outliers, and the distribution of user
engagement across the platform. Below is a detailed breakdown of the key findings and steps

taken during the EDA.

4.1 Feature Explanation

Some part of the analysis was about understanding temporal variables, like the impressTime
feature, which originally was recorded as a Unix timestamp, however, we converted it into a

more readable datetime format using pandas’ to_datetime() method. To facilitate further
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analysis, additional columns were created, namely day, hour_of day, and day_of week
from the converted datetime values. However, during this process, some discrepancies were
found between the dt column (representing day numbers) and the corresponding
impressTime values. These discrepancies might indicate some flaws during data gathering
or processing. Moreover, results along with certain extremes such as exceptionally large

mlogViewTime logs were dealt with properly.

An examination of the impressTime variable indicates that there are differences in the way
the users engage with the platform on a day of the week as well as an hour of the day.
Considering the pattern of engagement over the week (Appendix 1), it can be observed that
Friday and Saturday are the busiest days implying that users are more active around the
weekends. Other weeks have good records in terms of engagement but not as much as Friday
and Saturday. This suggests that the use of the platform could be affected by leisure time or
weekend patterns of activities for more people. Moreover, a closer analysis of how this
activity varies throughout the day reveals another interesting pattern. The uptake of user
activity goes up as the day progresses with sustained peak activity noted in the afternoon
hours, especially between 2 PM and 3 PM (Appendix 2) which could be a result of resuming
from lunch or coming back from work. Activities start slowing during the early morning
hours then pick up as the day wears on. There is a low engagement curve in the evenings, but

interactions begin to rise from 10 PM showing that users are very active at night.

These temporal dependencies highlight the significance of user action patterns in making
content delivery decisions. The weekly peaks and late-night activity spur curiosity on the
relationship between users’ activities in relation to content and content categories as well as

the varying activity levels among different users. This could extend to include the types of
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content and or the age brackets that are engaged during this night's activity. In this way,
consisting of these latent temporal dimensions, user content abstinence periods between peak
hours, and content release strategies can be enhanced for particular group audiences’

engagement at any time.

The impressPosition variable, during data validation, the number of records were found to
have been registered in error. We noted that 3.21% of observations (3,205,640 records) had
an impressionPosition of 0, which is invalid as positions should always start at 1. To keep
the dataset clean and maintain the dataset’s integrity, such observations were excluded from
the dataset. Additionally, the distribution of impressPosition was analyzed to compute

descriptive statistics and identify potential outliers.

In exploring user interaction features such as isClick and mlogViewTime, some logical
inconsistencies arised. Within the dataset, there were 135,677 observations in which there
was a click (isClick = 1), but the time spent viewing was either zero or not available
(mlogViewTime =0 or NaN). Such cases were at odds with the presumption that there would
be some time spent viewing any card that was clicked upon. To correct this, these cases were
discarded from the dataset. We also found 7,938 records that had positive mlogViewTime
without any clicks (isClick = 0), which also represented a logical inconsistency. These
records were flagged and excluded to maintain dataset accuracy. Notably, the
mlogViewTime column, representing the time users spent on viewing cards, showed that
95.2% of mlogViewTime were 0 or null, which suggests that, in most cases, the impression
generated did not result in any meaningful view time. This finding highlights the platform’s

overall low engagement levels and the challenges of capturing user attention. Furthermore,
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the analysis revealed a classic long-tail distribution in user and content engagement, where a

small subset of users and items accounted for the majority of interactions (See Fugure 4).

Other key user interaction features such as isViewComment, isComment, isLike, isShare,
and isIntoPersonalHomepage were analyzed in detail. Logical errors were identified where
interactions like likes, comments, or shares were recorded without an initial click (e.g.,
“isClick” = 0). Since such actions require opening the card, these discrepancies were

anticipated as data collection artifacts and were removed.

User behavior was further analyzed using the userld column, where we calculated the ratio
of clicks to impressions for each user. This metric allowed us to better understand the
engagement levels across the user base. These were combined into a new data frame and
subsequently analyzed on the distribution of user interactions and engagement rates. The
same type of analysis was performed on mlogld to identify cards with high impressions and

clicks, along with their corresponding engagement rates.

When examining the songld column, we found that the most used song and the most popular

artist were both identified by the same ID: "AFBHAHLH". Besides, we have analyzed the
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distribution of songld to identify popular songs, showing that the average popular song was
used around 5 times per month, with some notable outliers indicating highly popular tracks.
Similarly, we analyzed the distribution of artistld to identify popular artists. This revealed
that some artists have more songs used by users, indicating potential artist popularity or a

larger catalog of appealing music.

To understand the types of content shared, we analyzed the distribution of type column,
which revealed that image-based content is more prevalent (53.9%) than video content
(46.1%) in music logs. Additionally, the publishTime column revealed that the average

creation date for content is 2 months before the data collection period.

Demographic features, such as age and gender, provided more insights about the users. The
age feature was categorized into age groups, creating a new variable that enabled a deeper
exploration of user preferences and behavior across demographics. Regarding gender
distribution, we found out that male users were 35.31% of the platform’s audience, while a
significant portion (37%) of users had an unknown gender. Moreover, registration data was
also refined by transforming the registeredMonthCnt column into a registrationDate
feature. Rows with registration dates before April 2013 were excluded, assuming these were

erroneous as the application launched in that month.

4.2 Summary

The EDA revealed significant insights into user behavior and data quality on the NetEase
Cloud Music platform. This was aimed at understanding the key variables structure and their
relationship with one another to help explain user activity and identify some data quality

concerns. The data showed a very low rate of user engagement, with only 3.82% of
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impressions resulting in actions, which brings out the difficulties encountered in eliciting and
predicting actions when designing recommendation systems. There is a need to understand
the drivers of engagement as well as develop advanced techniques towards the enhancement
of engagement levels. When analyzing types of interactions, a huge disparity was observed,
with comments being very few as compared to clicks, likes, and shares. This result calls for
an examination as to how spouses engage in commenting, as it may entail changing the way
the system operates to elicit the desired behavior from the users. Additionally, we observed
some discrepancies in the data where users appeared to engage (like, share, comment) before
clicking on the card, which was flagged for deletion in order to preserve the data for future

research.

We further looked at the data in its temporal aspects by analyzing the interactions by
considering the day of the week and the hour of the day. The analysis on the other hand needs
to be more careful as these engagement variations span more than two time periods.
Interaction distribution concerning cards (mlogID) and users was characterized by a famous
“long-tail” distribution where a few cards and users made the majority of the interactions.
This particular aspect, which is usually found in social media sites, underlines the importance
of effective recommendation systems for both the appropriateness of content and the extent

to which it’s extreme and includes both highly demanded and less utilized resources.

The outcomes of this first probe provide a basis for the disentangling of user behavior and
data quality within the realm of the online platform. By spotting inconsistencies in the data,
dealing with sparse and imbalanced interaction patterns, and the long tail of user-item
mappings, we will be able to formulate better and more precise strategies for modeling and

making predictions.
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5. Methods

While developing our recommender systems, we applied a diverse range of approaches to
address the unique challenges of the NetEase Cloud Music platform. We designed some
methodologies integrating similarity-based techniques, user preference elicitation, content-
based recommendation systems, and deep neural network models inspired by the DeCS

framework.

1. Discriminant Frequent Item-sets Recommendation Algorithm: A K-means
clustering algorithm was applied to segment users based on their demographic

profiles. The most frequent music sets were then extracted from each resulting cluster.

5.1 Evaluating Recommender Systems

Our dataset includes information such as dense user demographic data, creator statistics,
impression data, and detailed activity logs. The entire computational effort is highly
demanding due to its large number of users and interactions, especially when doing one-hot
encodes, creating new variables, and other types of machine learning methods. Given the
high number of processing threads, the dataset poses significant challenges and joint
limitations in terms of computational load, particularly concerning RAM requirements for
processing and analyzing the data. We wanted to refer to the capacities used, which in this
case were a maximum of 51 GB of RAM, 225 GB of disc storage and an additional premium
of 100 compute units. To manage these computational limitations, we chose to work with a
reduced version of the data set - selecting a 5 % sample of all the data. This sampling
approach allowed us to carry out an initial exploratory analysis and test our models without

overloading our available system memory. While working with a larger subset or the full
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dataset could potentially produce more far-reaching perceptions, the computational resources
available limited our ability to do o) effectively.
By first analyzing this sample, we ensured that our methodology could be tested and repeated
before attempting to scale up to a more demanding computational workload. Not only did
this approach allow us to validate our pipeline in more manageable segments, but it also

provided a practical basis for potential scaling as the appropriate resources become available.

6. Discriminant Frequent Item-sets Recommendation Algorithm

The code implementation is based on a simple recommendation algorithm using
Discriminant Frequent Itemsets (See Figure 13), as illustrated in the provided flowchart and
pseudocode from the paper (Panteli e Boutsinas 2023).This algorithm aims to generate
personalized product recommendations for users by leveraging clustering techniques and

discriminant frequent item sets. All the steps are listed in the below structured points:

9.1 Feature Selection for Users

The code first performs one-hot encoding on the categorical variables "gender” and
"province." This transformation converts categorical data into binary columns, allowing
machine learning algorithms to process them effectively. This is essential as it ensures the
data can be interpreted numerically, since most machine learning models require numerical

input.

9.2 Handling Missing Age and Registration Data

First, the registration date, originally recorded in a Year-Month format, was converted into

the number of days since the user's registration. This was achieved by computing the
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difference between the current date and the registration date. This transformation provides a
numeric representation of the time elapsed since user registration. We also applied the same
process to the age_group column, which contained categorical values representing age ranges
(e.g., '18-24', '25-34"). Missing values were replaced with an appropriate proxy. Each age
group was assigned an average age (e.g., '18-24" was set to 21). The average age for the entire
dataset was then calculated, and the closest age group to this average was determined by
minimizing the absolute difference between the average age and the midpoints of the
predefined age ranges. This closest age group was used to fill in the missing entries in the

age_group column.

9.3 Variable Selection for the User Matrix

To ensure that the clustering process focuses on the most relevant and non-redundant
features, we implemented a systematic approach to variable selection. The objective was to
eliminate multicollinearity, reduce dimensionality, and retain only the most informative
features, thereby enhancing the quality of the clustering process and subsequent analyses.
The process began with calculating the Variance Inflation Factor (VIF) for all numeric
variables in the dataset. VIF measures how much the variance of a regression coefficient is
inflated due to multicollinearity among independent variables. Features with VIF values
exceeding 10 were considered highly collinear and unsuitable for clustering (See Table 9).
These variables were subsequently excluded to prevent redundancy and improve model
interpretability. In addition to VIF analysis, domain knowledge was applied to refine feature

selection further.
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Highly correlated variables, such as dt and day, were evaluated, and only one was retained
based on relevance. Similarly, redundant variables like mlogViewTime and
mlogViewTime_minutes, as well as registeredMonthCnt and days_since_registration, were
compared, and only the more meaningful feature from each pair was retained. Additionally,
isClick, being the target variable for recommendation, was excluded from clustering to avoid
data leakage. The final set of selected features comprised a mix of behavioral, demographic,
and temporal variables. The following information represents the variables used for the user

matrix and their VIF values to justify their usage:

Variable VIF Value
impressPosition| 1.114139
isintoPersonalHomepage| 1.03266
isShare| 1.044347
isViewComment| 1.215754
isLike| 1.098962
hour_of_day| 1.052796
day_of_week| 1.055234
publishTime| 1.18548
type| 1.307284

talkid| 1.115851

province| 1.277776

age| 4.458588

gender| 1.141855
followCnt| 1.419745

level| 2.313002

Table 3 - VIF Values

For age-related variables, only one between age and age avg was retained to prevent
redundancy. To prepare the data for clustering, the selected features were standardized using
the StandardScaler. However, only continuous variables (publishTime and followCnt) were
scaled, as standardizing categorical or binary variables may distort their interpretability. This

preprocessing ensured that all features contributed equally to the clustering process,
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preventing dominance by variables with larger numerical ranges. By combining statistical
measures such as the Variance Inflation Factor (VIF), the cold user’s domain knowledge, and
appropriate data curation for clustering, we ensured that the user matrix was optimized for k-
means initialization. This process retained only the most relevant and interpretable features,
removing redundant and highly collinear variables. Following the VIF-based selection, we
further evaluated the retained features by analyzing their correlations. Since the correlation
matrix did not reveal any particularly strong relationships (i.e., correlations exceeding 40%),
we decided to include all the variables that passed the VIF selection threshold. This approach
ensured that we did not inadvertently exclude potentially useful features, given the relatively
low levels of multicollinearity and weak correlations observed among the variables. These
previously mentioned features were extracted from the filtered dataset, and duplicate entries
were removed to ensure that each user was represented uniquely. This matrix provides a
structured representation of users, capturing their distinct profiles and behaviors, which are

essential for clustering users into groups with similar characteristics.

9.4 User-Product Interaction Matrix

To analyze user engagement with the different music pieces, we created the User-Product
Interaction Matrix. This matrix captures interactions between users (userld) and music items
(mlogld), using weighted interaction scores to represent the intensity of engagement.
Interaction types: clicks, likes, and shares, were assigned different weights (isClick: 1, isLike:
2, isShare: 3) to reflect their relative significance in terms of user interest. Those weights
were given based on the priority of importance of each meaning, for instance a share is much
more important than a like, and the same we can say regarding one like and ine click. The

interaction score for each user-item pair was calculated as a weighted sum of these
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interaction types. To account for multiple interactions with the same item by a user, the
maximum interaction score was retained for each user-item pair. The resulting data was then
pivoted into a matrix format, with users as rows, content items as columns, and interaction
scores as cell values. Missing values were filled with zeros to indicate no interaction, and all

values were converted to integers for consistency.

9.5 User and Item Coverage and next steps

The metrics for user coverage (19.26%) and item coverage (12.86%) highlight the
significant sparsity of the user-product interaction matrix in this specific sample dataset.
Specifically, the low user coverage indicates that most users (over 80%) have no recorded
interactions, classifying them as cold users. Similarly, the low item coverage shows that most

items lack sufficient user interactions, further emphasizing the sparsity challenge.

This sparsity can be seen as a limitation of the model, as it inherently reflects the extent of
the cold-start problem. However, this limitation also serves to accentuate the cold-start
challenge, which is a fundamental issue in recommendation systems. To address this, we

adopted two types of strategies in this model:

1. Leveraging Similar User Characteristics: By clustering users based on similar
demographics or characteristics, combined with interaction scores, recommendations
can still be generated for users with minimal or no prior interaction history. This
approach helps to mitigate the lack of interaction data for many users.

2. Inclusion of External Features and Advanced Techniques: External features, such

as user demographics and item metadata, were previously incorporated into the model
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to provide additional context. Moreover, advanced techniques like discriminant

frequent itemsets were applied to improve recommendation quality.

9.6 Cluster Extraction and Selection of Optimal Number of Clusters

Initially, the user matrix was constructed using selected variables that passed the variance
inflation factor (VIF) and correlation filtering criteria. However, the variable impressPosition
was excluded from the analysis due to recurring computational issues. Including this variable
caused the clustering code to run out of memory, leading to crashes. Despite attempts to
optimize the code, errors persisted, such as the one arising when the cluster_users indexer
contained multiple dimensions instead of a simple one-dimensional index. These limitations
mandated its removal from the user matrix. The clustering process utilized the KMeans
algorithm with a predefined range of cluster numbers (2 to 5). The algorithm was applied to
the standardized user matrix, excluding userld and talkld, to ensure unbiased clustering
results. Three primary evaluation metrics were employed to identify the optimal number of

clusters:
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Figure 5 - Number of cluster analysis

e Silhouette Score: This metric measures the cohesion and separation of clusters.
Higher silhouette scores indicate well-defined clusters. As shown in the silhouette
score graph, the score declined steadily with an increasing number of clusters,
peaking at 2 clusters and showing a reasonable value at 3 clusters.

e Elbow Method: This method evaluates the within-cluster sum of squares (inertia)
across different cluster numbers. The elbow point, where the inertia curve begins to
flatten, suggested 3 clusters as a balanced choice.

e Davies-Bouldin Index and Calinski-Harabasz Index: These metrics provided
additional insights into cluster compactness and separability. The Davies-Bouldin
index favored 4 clusters, while the Calinski-Harabasz index indicated 2 or 3 clusters

as optimal options.

Based on the mentioned metrics (Table 10), the decision was made to proceed with 3 clusters.

While the silhouette score slightly favored fewer clusters, 3 clusters provided a balance
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between interpretability and granularity, aligning with the objectives of the study (Figure

12). We have the following Silhouette Score values:

# Clusters |Silhouette Score
2 0.400434255
3 0.284716956
4 0.234710158
5 0.250539831

Table 4 - Silhouette Score Values

9.7 Frequent Itemsets Extraction for Clusters

To gain deeper insights into the behaviors and preferences of users within each cluster, the
Apriori algorithm was applied to identify frequent itemsets for each cluster. This process was
executed by first grouping users based on their assigned clusters and forming a user-product
binary matrix for each cluster. This matrix was derived from the user-product interaction
matrix, ensuring that values were transformed into binary (1 or 0) to indicate interaction or
no interaction, respectively. The Apriori algorithm was used to extract frequent itemsets for
each cluster, using a minimum support threshold of 0.05. This threshold ensured that only
individual or groups of music with interactions from at least 5% of users in the cluster were
included in the analysis, despite the cold start problem affecting approximately 80% of the
initial users from the beginning. The results revealed distinct patterns of interaction within
clusters, capturing specific sets of items that were frequently interacted with by users in the
same group. All clusters produced frequent itemsets, with Cluster 1 having 11, Cluster 0

having 54, and Cluster 2 having 64 frequent itemsets. These itemsets represent groups of
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items frequently interacted with by users within each cluster. The presence of frequent
itemsets across all clusters confirms that the clustering process successfully grouped users
with similar interaction behaviors. The variation in the number of itemsets per cluster reflects
the diversity of user behaviors and cluster sizes. The inclusion of frequent itemsets as
discriminant factors within clusters enhances the recommendation system by enabling
tailored suggestions based on shared user behaviors. This approach aligns with the goal of
addressing cold-start and sparse data challenges by using patterns unique to each cluster.
Limitations in this process include potential performance bottlenecks due to large matrix
dimensions and sparse data. These issues were mitigated by adjusting the minimum support

threshold and ensuring computational efficiency throughout the analysis.

9.8 Extracting Discriminant Frequent Itemset Per Cluster

To better put on practice the interpretability and specificity of the frequent itemsets derived
from each cluster, we extracted discriminant frequent itemsets. Discriminant itemsets are that
music or set of music that are unique to a particular group of individuals, meaning they are
not present in any other cluster. This step ensures that the itemsets identified are distinct to
the behavioral patterns of users within a specific cluster, making them valuable

recommendations.

e Frequent Itemsets Extraction for Each Cluster: The frequent sets previously
generated for each cluster were gathered. These sets represent groups of different

musics commonly interacted with by users within that cluster.
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e Comparison Across Clusters: For each cluster, the frequent itemsets from all other
clusters were combined into a single set. This formed a reference point for identifying
uniqueness.

¢ Identifying Discriminant Itemsets: The frequent itemsets of the current cluster were
compared against the combined set of itemsets from all other clusters. Discriminant
itemsets were defined as those appearing exclusively in the current cluster, ensuring

their uniqueness, in other words, their likes.

This method ensures that the extracted itemsets truly represent the distinct interaction
patterns and preferences of users within each cluster. By doing this method, the
recommendation model avoids generic and popular suggestions and instead divides different
recommendations to the unique characteristics of each cluster. This specificity is important
to improve recommendation quality and addressing the cold-start problem, as these itemsets
are derived from user groups with shared behavioral traits, highlighting differences in user-

product interactions across different people.

9.9 Extracting Discriminant Frequent Itemsets Per Cluster

Now we try to recommend music by managing the discriminant frequent itemsets extracted
for each cluster to each user with no prior interactions (cold-start users). We begin by
evaluating each user in the user-product matrix to determine if they are a cold-start user. This
is done by checking whether the sum of interaction scores (e.g., clicks, likes, shares) across
all items is zero or not. Then, for each cold-start user, their corresponding cluster is identified
using the user matrix. This association ensures that the recommendations are tailored to the

user's group. Discriminant frequent itemsets specific to the user's cluster are retrieved, and
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thus, for each itemset in the user's cluster, the music is marked as interacted with (value of 1)

in the user-product matrix. This simulates recommendations adapted to the user's cluster.

9.10 Offline Evaluation of the Recommendation System

The aim of this evaluation is to analyze the methodology's performance in forecasting user
preferences and to confirm its efficacy in relation to conventional methods. The metrics for

evaluation used were determined through a K-fold cross-validation procedure.

To evaluate the model, we implemented a 45-fold cross-validation technique, as stated in
(Panteli e Boutsinas 2023). The user matrix was split into ten equal subsets, with 44 subsets
used for training and one for testing in each iteration. This process ensures that all users are
evaluated and prevents overfitting by testing on unseen data. The number of folds was
determined by ensuring a balance between variance and bias. When we increase k quantity
of folds, each fold is getting smaller in size for testing, and the training set becomes relatively
larger. That means that we have more of the data used for training in each fold, reducing bias
in the evaluation. Otherwise, it increases variance, because smaller subsets may not represent
the full distribution of the data as it is. So we found a balanced point where For the training
set, the user-product interaction matrix was constructed to capture the relationship between
users and items. The discriminant frequent itemsets, previously derived for each user cluster,
were used to generate recommendations for users in the test set. For the training set, the user-
product interaction matrix was constructed to capture the relationship between users and
items. The discriminant frequent itemsets, previously derived for each user cluster, were used

to generate recommendations for users in the test set.

The evaluation focused on three key metrics:
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e Precision: The proportion of recommended items that were relevant.

e Recall: The proportion of relevant items that were successfully recommended.

e F1-Score: The harmonic means of precision and recall, providing a balanced measure
of the system's performance.

e Hit Rate: The proportion of users for whom at least one true item is present in the
recommendations.

e MRR (Mean Reciprocal Rank): Measures the rank of the first relevant item in the
recommendation list. A higher score means relevant items are ranked higher on
average.

e NDCG (Normalized Discounted Cumulative Gain): Measures the ranking quality
of recommendations. Rewards place true items at higher ranks while normalizing for

the ideal ranking.

The results shown are extremely low in all the recommendation metrics, and this is true even
when they are converted into percentages. For example, when recommending just one song
(Top 1), the precision is around 0.66%, while the recovery is less than 0.4%. When we
increase the number of recommendations, from Top 1 to 3, 5 and 10, we see a slight
improvement in recall because suggesting more items naturally increases the chances of
including something that the user might consider relevant. However, adding more
recommendations also weakens precision, as additional, less relevant items are more likely
to be included. Since this model works on the basis of the most popular recommendation that
a consumer is most likely to like, depending on the particular preferences of each cluster,
increasing the number of k's increases the variance contained and is therefore a limitation.

Other metrics such as the MRR and NDCG, which consider both the correctness and quality
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of the classification, suggest that even when the model guesses correctly, these relevant
recommendations are not prominently displayed. This is an underlying recommendation
strategy. If the model is based only on the popularity of songs, similar to the use of the
Apriori algorithm, which identifies frequent item sets, it can recommend items that are
generally popular but not necessarily aligned with the user's individual preferences. Which
means that in this method, without the personalization factor, there is little chance of getting

it right

To initialize the model and conduct the experiments (See Figure 13), we initially used 5% of
the impression data as a sample, aligning with the approach adopted by the previous models.
This initial percentage allowed us to explore the model's behavior with a significant data
volume, ensuring a robust preliminary evaluation. However, during the process, we
encountered limitations related to computational costs and memory usage, particularly given
the maximum RAM capacity of 51 GB available for execution. Processing the initial sample
proved computationally expensive, regarding this type of analytical method, leading to
execution errors and excessive resource consumption. To address this, we opted to reduce
the sample size to 2.5% of the impression data, maintaining a sufficient volume to test the
model while reducing the computational load to manageable levels. This reduction was
crucial to ensure the stability of the execution environment and the feasibility of completing

the experiments.
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Figure 6 - Discriminant Frequent Item-sets Recommendation Algorithm structure

10. Conclusion and Discussion

10.1 Key Findings

This document explores how data manipulation, exploration, and machine learning can be
leveraged to develop recommendation systems for the NetEase Cloud Music Platform,
specifically targeting cold-start users. Cold-start users are those with low activity levels and
recent interactions, making it difficult to provide accurate and meaningful recommendations

due to the lack of sufficient user information.
To address this challenge, four distinct approaches were implemented:

1. Frequent Item Set Approach — leveraging item clustering to generate

recommendations.

Finally, in the Discriminant Frequent Item Set Model, the identification of frequent item
sets within clusters enabled the system to capture shared user behaviors unique to each group.
These discriminant frequent item sets allowed for personalized recommendations for cold-

start users, ensuring the suggestions closely aligned with the group's specific interaction
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patterns. This approach improved the relevance of recommendations for users with no prior
activity. The successful identification of item sets across all clusters further validated the
clustering process, demonstrating its effectiveness in grouping users with similar behaviors
and preferences. By leveraging the most popular songs as the foundation for
recommendations, the system remains simple to implement and easy to interpret, as it relies
primarily on counting frequencies and selecting the most played items. This popularity-
based approach is particularly effective for new users without listening histories, as it
exposes them to well-known and appealing tracks. However, this simplicity comes with
trade-offs. Key metrics such as precision, recall, MRR, and NDCG were notably low,
indicating that the model struggles to adapt its suggestions compared to more sophisticated
systems. While increasing the recommendation list size from Top 1 to Top 10 improves
recall slightly, it simultaneously reduces precision, resulting in a diluted and less meaningful

user experience.
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To evaluate and compare these systems, we conducted a comprehensive analysis using five
recommendation evaluation metrics per model, which are now consolidated into a single

representation for clarity and comparison (Table 11).

. Users Discriminant
Metric k User Similarity- Preference |DeCS-Inspired | Frequent Item-
Based .
Elicitation sets

1 2.27 0.49 2.15 0.66
Precision 3 3.03 0.52 2.49 0.79
5 2.27 0.47 5.23 0.68
10 2.27 0.49 23.44 0.43
1 2.27 0.02 1.97 0.38
Recall 3 9.09 0.08 2.87 1.36
5 11.36 0.12 55 1.96
10 22.73 0.12 28.75 2.45
1 2.27 0.49 2.15 0.17
. 3 9.09 1.36 3.23 0.55
HitRate 5 11.36 2.14 6.45 0.69
10 22.73 2.14 32.56 0.71
1 2.27 0.49 2.15 0.17
3 5.3 0.83 2.51 0.33
MRR 5 5.76 0.98 3.21 0.37
10 7.35 0.98 13.66 0.37
1 2.27 0.49 2.15 0.17
3 6.28 0.50 2.48 0.24
nobee 5 7.16 0.46 4.02 0.25
10 10.91 0.30 15.81 0.23

Table 5 - Comparison of Recommendation Models Across Evaluation Metrics

The Discriminative Frequent Itemsets model introduces a unique framework by clustering
users and items to recommend frequently occurring yet highly discriminative items. While
this approach marginally improves recall and hit rates at larger k values, it falls short in
comparison to the DeCS-Inspired model when evaluated using ranking metrics like MRR
and nDCG. This indicates that its optimization for ranking quality and personalization

remains less competitive.
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e Cluster-Based Recommendations: The Discriminative Frequent Itemsets model
is valuable for specific applications that benefit from group-level clustering and
frequent item identification. However, it is less effective for personalization and

ranking optimization.

To maximize performance across diverse user scenarios, a hybrid approach could combine
the strengths of these models. For instance, integrating demographic-based methods for cold-
start users with the DeCS-Inspired model for data-rich personalization could create a flexible

solution that adapts to varying levels of user engagement and data availability.

10.2 Limitations

Understanding the inherent limitations of our recommendation models is critical for their
ongoing development. By identifying weaknesses, we can prioritize improvements and fine-
tune parameters to deliver more individualized, effective, and equitable experiences for both

new and returning users.

The Discriminant Frequent Item-Set Recommendation Algorithm also encounters
limitations tied to its dependence on clustering and frequent pattern mining. To avoid
memory and stability issues, the dataset must be significantly reduced (to 2.5% of its original
size), which restricts the depth and generalizability of the analysis. The exclusion of certain
variables to maintain execution viability further limits the range of signals the model can
leverage, impacting both accuracy and recommendation diversity. While the use of k-fold
cross-validation provides a straightforward evaluation approach, the reliance on group-level
item sets, rather than personalized classification strategies, underrepresents the potential of
more robust and individualized methods. Additionally, the evaluation process does not

exclusively focus on cold-start users—those with no prior interactions or minimal data—
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which means the metrics may not fully reflect the system's performance in handling
completely new audiences. While this is not a critical flaw, it does indicate that the current
approach may overlook challenges faced when encountering data-poor users or scaling to

larger, more complex algorithms.

In summary, each model faces distinct limitations, including a lack of dynamic adaptation,
limited feature granularity, computational bottlenecks, and exclusionary strategies that fail
to account for specific user segments. A shared challenge across all models is the reliance on
offline evaluation, which cannot fully capture the platform’s dynamic nature or evolving
user preferences. This reduces the long-term relevance and adaptability of the

recommendations.

By acknowledging these shortcomings, future research can build upon these findings to
develop more integrative, scalable, and context-aware solutions, ultimately improving the

handling of the cold-start problem and enhancing user experiences across diverse contexts.

10.3 Research Contributions

Despite the limitations discussed earlier, this study makes significant contributions to the
field of personalized recommendation systems, specifically in tackling the cold-start user
problem on the NetEase Cloud Music platform. By leveraging user interaction data, card
metadata, and user metadata, the research successfully addresses the challenge of providing
accurate and relevant recommendations for new users with limited interaction histories.
A major contribution of this study is the demonstration that integrating diverse data sources
offers a holistic approach to understanding user preferences. The tested models showcased

how combining multiple data layers—such as user behavior, metadata, and side
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information—can produce nuanced user profiles. These profiles serve as the foundation for

generating personalized recommendations, particularly in cold-start environments.

Furthermore, the study provided four distinct approaches to mitigate the cold-start problem:

e Two metadata-based methods to infer similarities and recommend items.

e A clustering-based approach that extracts discriminant item patterns to enhance

recommendations for specific user segments.

o A state-of-the-art-inspired method combining user and item embeddings for

advanced personalization.

This variety of approaches challenges the prevailing trend in recent research, which often
prioritizes machine learning techniques while neglecting other effective strategies. The
success of these alternative methods represents an innovative and out-of-the-box
contribution, demonstrating their viability as solutions to the cold-start problem.
Another key contribution lies in the rating computation framework, where interaction
weights are attributed based on the rarity or frequency of each interaction type. This approach
provides a simple, interpretable, and intuitive way to evaluate interactions while aligning

with each model’s specific data requirements.

Complementing this, the study highlights the effective use of metadata fields—such as
registration dates, interaction counts, and activity levels—to tailor recommendations and
evaluate initial recommendation sets. The combination of metadata with side information
serves as a powerful method to improve personalization, as demonstrated in one of the
models.

This research also introduces a rigorous set of evaluation metrics to systematically assess
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model performance. These carefully selected metrics not only highlight each algorithm’s
strengths and weaknesses but also provide deeper insights into their real-world applicability.
By establishing an evaluation framework, this study paves the way for scalable solutions,
offering a standardized methodology that remains insightful regardless of the computational
complexity or sophistication of the model.
Beyond academic contributions, this work delivers a practical framework for digital
platforms like NetEase Cloud Music to improve user retention and engagement. By
specifically addressing the needs of cold-start users, the methods developed in this study aim
to foster long-term user satisfaction, which is critical in maintaining a competitive

advantage in the fast-paced digital music industry.

Ultimately, this research highlights the potential for economic and reputational gains by
leveraging technology to enhance user experience—from initial onboarding to long-term
engagement. By utilizing recommendation systems as a differentiating factor, platforms
can ensure sustainable growth and greater user loyalty in an increasingly competitive

landscape.

10.4 Implications for Practice

A new user joins NetEase Cloud Music, hungry to know more yet not knowing how to begin.
They open the app, and, instantaneously, the platform must ask itself: How do we make this
moment matter? Without a listening history, the system relies on what it knows—
demographic data, registration context, and perhaps a hint of regional trends. Referred to as
the cold start problem, it is a problem faced by every music streaming service. But it is also
an opportunity to build trust, encourage user participation, and create the foundation for

a long-term relationship. Considering this particular situation as an increasingly common
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scenario in any digital, online platform, this research seeks to contribute to both academic
knowledge and practical industry solutions by advancing the understanding of recommender
systems. With a particular focus on addressing the cold-start problem, the conducted study
approaches a critical challenge that hinders effective personalization in both regional and
global markets. From a practical perspective, the findings of this study aim to provide
actionable insights for enhancing user experiences on NetEase's digital music platform,
fostering greater user engagement, and boosting retention in the competitive and volatile

digital media landscape.

It is not a merely technical problem, but it is very crucial when it comes to starting the user's
journey on a platform like NetEase Cloud Music. With some demographics involved, such
as age and geographic and cultural context, the platform can perhaps make recommendations
that seem to reside within easy reach in a very intuitive way. Possibly, an 18-year-old who
lives in a teeming city might be pulled into the trendiest pop hits, while someone who is older
and comes from a quieter environment might appreciate instrumental or folk tracks. These
would give someone that personal welcome—a very impersonal content library becomes a
more curated invitation into exploration. The implications of solving the cold-start problem
extend far beyond that first impression. It should incite exploratory activity and discovery. A
listener on pop should be interested into a more nearby genre, such as indie or electronica,
which would broaden horizons and create a deeper experience. Meanwhile, based on
demographic trends, new content—emerging artists or new releases without much interaction
data—could find the audience compellingly through publicity in an already congested crowd.

This serves both users and creators, thereby strengthening the platform's ecosystem.
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Cold-start solutions are also important for returning users because their preferences might
have changed or evolved. The same strategy can be employed on returning users as on new
users, to spark that interest at the beginning and ensure that submissions on the platform
remain relevant and consistently in touch with time. For the music streaming industry, the
cold-start solution is a step toward making the whole system understood by users and

embracing all creators with equal opportunities to be discovered.

This cold-start problem is not solely about filling the normatively structured void in the data;
it is also about shaping the user's experience from that initial interaction. For NetEase
Cloud Music and similar platforms, solving this challenge transforms the act of streaming
into a journey of connection and discovery, one that builds loyalty and fosters a deeper

love for music.

10.5 Future Research Directions

To address the need for an interactive and personalized user journey—especially for newer
users—no amount of research alone will suffice due to ongoing technological advancements
and recommendation methodologies. It is essential to explore further possibilities within this
research context to understand what can still be improved or innovated. This exploration
focuses on three key fronts: enhancing data strategies, improving model development, and

addressing concerns related to data privacy and security.

It has become evident that the existing data lacks critical informational and analytical
components necessary for both interpretability and efficiency in model development. For
example, there is no clear understanding of activity levels, creator types, context, or talk IDs,

which could have been leveraged for Exploratory Data Analysis (EDA) or clustering.
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Additionally, the meaning of a "card" remains unclear, hindering deeper analysis. While
privacy concerns are acknowledged, incorporating more identity-related and meaningful data

about users, creators, and cards would allow for better insights and more robust models.

This is also true for song-related data. On a platform centered around music streaming
services, specific attributes such as genre, beats per minute, key and mode, danceability,
energy, or liveness would be crucial. The inclusion of such metrics would enable advanced
techniques like data clustering, embedding creation, and other manipulations, offering

higher-quality solutions to the cold-start user problem.

Furthermore, data spanning only one month introduces inefficiencies. A broader temporal
dataset would allow for analyzing temporal patterns in user preferences, creator behaviors,
and card characteristics. Such insights could significantly improve model performance by
understanding and even leveraging the impact of time on recommendations. However,
working with larger datasets brings the need of higher computational capacity to process
increased data complexity effectively.
The existing models, while functional, are not perfect and can benefit from structural
enhancements. One major improvement is transitioning to an online recommendation system.
This approach would enable real-time evaluations and updates, ensuring recommendations
reflect the most recent and accurate information, thereby improving user retention and

satisfaction.

Computational complexity has also posed significant limitations. For instance:

e The User Preference Elicitation Recommendation method depends solely on

existing data and lacks a learning process. Incorporating machine learning into this
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method, such as a dynamic weighting system for metadata, could lead to more

personalized and effective recommendations.

Across all these models, additional computational resources and larger datasets are critical

for improving results, especially for cold-start users.

Data privacy is a cornerstone of recommendation systems (RS), balancing the need for
effective models with legal and ethical requirements for user privacy. Future work must
address threats like adversarial attacks and recommendation poisoning to develop robust,
secure, and fair systems. Protecting system integrity ensures both user trust and platform

authenticity.

Recommendation systems hold significant cultural power by influencing what users discover
and how creators are perceived. Future systems must prioritize diversity, exposing users to
new genres, artists, and perspectives. Beyond fulfilling technical goals, these systems should

encourage exploration and cultural growth, enriching the user experience.

This research lays the groundwork for solving the cold-start problem and advancing beyond
it. Future directions will involve smarter algorithms, secure and ethical data management,
and a vision for inclusive, user-centric platforms. For NetEase Cloud Music and the broader
music streaming industry, this represents not just a technical challenge but an opportunity to
redefine how music connects users in the digital age. In an industry where the sheer
abundance of content can overwhelm users, recommendation systems serve as a critical

and indispensable differentiator.
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12. Appendix

Count of Interactions

Count of Interactions

1e7 Interactions by Day of the Week

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
Day of the Week

Appendix 1 - Interactions by day of week

1e6 Interactions by hour of the day

0 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Hour of the Day

Appendix 2 - Interactions by hour of the day
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all_int = len(sample_interactions)

rates = {}
columns_to_calculate = [

sClick', 'isComment', 'isIntoPersonalHomepage', 'isShar

, 'isViewComment', ‘'islike']

for colum in columns_to_calculate:
event_count = sample_interactions[column].sum()
rate = (event_count / all int) * 188 # Calculate rate as a percentage

rates[column + '_rate’]

# Display the results

= rate

for column, rate in rates.items():
print(f"{column}: {rate:.2f}%")

isClick_rate: 99.99%
isComment_rate: 9.12%

isIntoPersonalHomepage_rate: 1.55%

isShare_rate: 9.43%
isVisuConment_rate: 17.80%
islixe_rate: 4.19%

total_impressions = len(all_impression)

rates = {}

columns_to_calculate = [

sClick’, 'isComment’, 'isIntoPersonalHomepage’, 'isShare’,

*isViewComment’, 'islike']

for colum in columns_to_calculate:
event_count = all_impression[column].sum()
rate = (event_count / total_impressions) * 108 # Calculate rote as o percentoge

rates[column + '_rate']

# Display the results

for column, rate in rates.items(
print(f"{column}: {rate:

isClick_rate: 4.97%
isComment_rate: 9.81%

isIntoPersonalHomepage_rate:

isShare_rate: 9.83%
isViewComment_rate: 8.74%
islike rate: 8.24%

Appendix 3 — Interaction Rarity across interactions and impressions (DeCS inpired

L21%")

= rate

8.96%

approach)

sample_rating = semple_rating.copy()

adjustment_factors_imp = {
' k'i 9.9503,
*isComment: €.9999,

isC

‘isIntoPersonalHomepage’ :

‘isShare’: 8.9997,
*isViewComment®: 8.9926,
‘islike': 9.9976

adjustment_factors_int = {
'isC:

‘isComment®: ©.9988,

‘isIntoPersonalHomepage’ :

‘isShare': ©.9957,
*isViewComment®: @.522,
'islike’: 9.9581

weignts =
'isClick': 1,
‘isComment”: 1,

‘isIntoPersonalHomepage’ :

‘isShare': 1,
‘isViewComment': 1,
‘islike's 1

sample_rating[impression_rating’]

for column in adjustment_factors_imp.keys{

2.9994,

.9845,

&

factor = adjustment_factors_imp[column]
factor2 = adjustment_factors_int[column]

weight = weights[column]

sample_rating[column] = sample_rating[column] = factor * weight * factor2

sample_rating[ ' impression

sample_rating[ weighted_time |

min_rating = sample_rating[ ‘weignt:
max_rating = sample_rating[ ‘weight:
sample_rating[ ‘weighted_time_rating']

ating'] += sample_ratinglcolum

sting’] = sample_rating[’

pression_rating'] * (1 + sample rating[’scaled mlogviewtime:

time_rating’].min()
‘time_rating'].max()
(sample_rating[ 'weighted time_rating'] - min_rating) / (max_rating - min_rating)
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Appendix 4 — Rating Making Code: DeCS Inspired approach

Frequency Distribution of Impressions (Up to 50)
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Appendix 5 — Frequency Distribution of all Impression Position Values
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