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A B S T R A C T

This work proposes a methodology to assess the impact of electric vehicle (EV) charging on Lisbon’s electricity 
distribution network, utilizing real load diagrams by postal code and a genetic algorithm to model the baseline 
and added EV load at substations. The method enables geographic mapping of EV charging to specific sub
stations. Results show that increased EV charging significantly increases power flow, line overloads, and system 
losses. A fivefold increase caused some lines to exceed 100 % capacity, while a thirtyfold increase led to peak 
loads at 223 % and losses rising by up to 274 %. Bus voltage levels remained stable across scenarios.

Nomenclature

PC Postal Code
CO2 Carbon Dioxide
GHG Greenhouse Gases
INE National Statistics Institute
NO2 Nitrogen Dioxide
RMSE Root Mean Square Error
TSO Transmission System Operator
EV Electric vehicle
d Distance between the postal code location and the substation (km)
r Radius of the Earth (km)
ϕA Latitude of the postal code (rad or ◦)
ϕB Latitude of the substation (rad or ◦)
λA Longitude of the postal code (rad or ◦)
λB Longitude of the substation (rad or ◦)
Pp(c, t) Weighted active power consumption for postal code c at time t (kW)
P(c, t) Active power consumption in postal code c at time t (kW)
w(c) Weight associated with postal code c
T Period of analysis (h)
Ps(t) Total hourly active power at substation s (kW)
ŷi Estimated values of the load diagrams (kW)
yi Real power values (kW)
n Total number of data points
CPij Percentage of postal code j at substation i (%)
εij Excess or deficit of the sum of the percentages of postal code j across 

substation i (%)
m Index of the mutated substation
V Set of substations with CPij > 0.1

(continued on next column)

(continued )

γij Proportion of the CPij value in substation i relative to the total sum of 
valid values

CP´ij New value of postal code j in substation i after redistribution (%)

Er Random value for energy (kWh)
Tr Random value for duration (h)
MPCin use(h) Average number of charging stations in use during hour h
Pc(h) Charging power consumed in each hour (kW)
pCP Percentage of charging points in each postal code (%)
PCP(h) Average power consumption of the charging sessions in a given postal 

code during hour h (kW)
α Temperature coefficient of the material (1/◦C or 1/K)
θ0 Reference temperature (◦C or K)
R(θ0) Electrical resistance at the reference temperature (Ω)
θ1 Operating temperature (◦C or K)
R(θ1) Electrical resistance at the operating temperature (Ω)

1. Introduction

In recent years, the burning of fossil fuels has contributed to alarming 
levels of emissions, exacerbating the challenges associated with climate 
change. Various greenhouse gases (GHGs), such as nitrogen dioxide 
(NO2) and carbon dioxide (CO2), primarily resulting from the combus
tion of fossil fuels, accounted for 70.9 % of Portugal’s total emissions in 
2022. In addition, according to data from the National Statistics Institute 
(INE), fuel consumption in road transport increased by 6.1 %, reaching 
5.6 million tons of oil equivalent. Diesel contributed to 78.0 % of total 
fuel consumption in Portugal in 2022 (Instituto Nacional de and 
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Estatística, 2023). In this context, there is an increasing need for ini
tiatives that promote the transition to more sustainable energy sources 
and reduce polluting emissions associated with human activities.

Along with other countries, Portugal has also committed to a green 
energy transition, recognizing the vital importance of climate issues and 
the need for a more sustainable approach to achieve an environmentally 
stable future. Several targets have been proposed, such as those outlined 
in the National Energy and Climate Plan for the 2021–2030 period, 
which aims to "promote the decarbonization of the economy and the energy 
transition towards carbon neutrality by 2050" (Portuguesa, 2019). One 
target is to reduce GHG emissions by at least 40 % by 2030, compared to 
1990 levels, as mentioned in the Clean Energy Package for all Europeans 
(European Commission and Directorate-General for Energy, 2019).

The transition to electric vehicles (EVs) represents a promising 
approach to achieving these goals and enhancing long-term sustain
ability by offering an alternative to conventional vehicles. Several 
studies have observed that the adoption of electric vehicles brings sub
stantial environmental benefits, demonstrating that promoting these 
vehicles is an effective strategy to reduce emissions from road traffic and 
improve air quality in urban areas, as they do not emit pollutants (Hu 
et al., 2021). For instance, according to Teixeira and Sodré (2018), 
emissions could be 10 to 26 times lower than those of internal com
bustion vehicles, representing a potential decrease of up to 5600 tons of 
CO2 per year in Sete Lagoas, Brazil. These results, based on more limited 
samples, already highlight the effectiveness of electric vehicles in miti
gating GHG emissions, suggesting a potentially greater impact if 
extrapolated to larger scales. According to (Dall-Orsoletta et al., 2022), 
projections indicate that EVs could reach around 2 billion units by 2050, 
thereby contributing to the decarbonization of road transport. The Eu
ropean Union has several financial initiatives aimed at encouraging the 
adoption of electric vehicles. The 2020 report "The European Environ
ment - State and Outlook" identified a series of measures in place to 
boost the transition to electric vehicles, which are already being 
implemented in multiple countries, including free charging at public 
stations, toll exemptions, incentives for manufacturers’ sales targets, or 
the installation of home chargers (European Environment Agency, 
2019).

Table 1 
Literature review summary on related works.

Ref. Main focus Method Data

Y. Li et al., 2024 (
Li and Jenn, 
2024)

Seasonal effects 
on transformer 
aging.

Simulation in 
MATLAB/ 
Simulink.

Simulated load 
profiles and 
ambient 
temperature for 
different seasons.

G. A. Abiassaf et 
at., 2024 (
Abiassaf and 
Arkadan, 
2024)

Technical impacts 
and 
environmental 
benefits.

Simulation of 
island power 
systems.

Power system and 
consumption 
profiles based on 
realistic system 
data and 
simulated EV 
penetration 
scenarios.

I. Nutkani et al., 
2024 (Nutkani 
et al., 2024)

Impacts of EVs 
and distributed 
storage.

Distribution grid 
simulation using 
GridLAB-D 
software.

Realistic 
distribution 
network models 
and load profiles 
with simulated 
charging profiles.

B. Williams et al., 
2024 (Williams 
et al., 2024)

Effects of EVs on a 
small distribution 
grid.

Power flow 
simulation.

Realistic 
university campus 
network data with 
load profiles and 
simulated EV 
charging profiles.

B. V. Kumar et al., 
2023 (Kumar 
and M A, 2023)

Technical impacts 
of charging 
stations on the 
distribution grid.

Review and 
synthesis of 
scientific 
literature.

Secondary data 
from other 
scientific articles.

F. Daneshzand et 
al., 2023 (
Daneshzand 
et al., 2023)

Impact of tariff 
selection in smart 
charging, grid 
stress, and carbon 
reduction.

Simulation of an 
EV population’s 
charging behavior 
in response to 
various tariffs on a 
low-voltage 
distribution 
network.

Real-world 
driving patterns 
(from UK 
National Travel 
Survey), 
electricity tariffs, 
and a 
representative LV 
network model, 
combined with 
charging 
decisions 
(simulated).

A. Dall-Orsoletta 
et al., 2022 (
Dall-Orsoletta 
et al., 2022)

Prospects for EVs 
and energy 
transition.

Literature and 
public policy 
review.

Secondary data 
from scientific 
articles.

X. Hu et al., 2021 
(Hu et al., 
2021)

Impact of EVs on 
air quality.

Emission inventory 
modeling (CO, 
NOx, etc.) using 
COPERT IV 
software.

Actual data from 
vehicle fleet 
(2014–2018); 
forecasted 
scenarios for 
different EV 
penetration 
levels.

A.C.R. Teixeira et 
al., 2018 (
Teixeira and 
Sodré, 2018)

Energy 
consumption and 
CO2 emissions.

Life Cycle Analysis 
(LCA) and 
emissions 
calculation.

Statistical data on 
fuel and 
electricity 
consumption and 
fleet replacement 
scenarios 
(forecasts).

R. Godina, et al., 
2016 (Godina 
et al., 2016)

Impact of 
charging on 
transformers.

Transformer aging 
simulation.

Actual EV 
charging profiles 
measured from 30 
users.

A. Ul-Haq et al., 
2015 (Ul-Haq 
et al., 2015)

Voltage 
unbalance.

Simulation of an 
urban low-voltage 
distribution 
network.

Realistic low 
voltage network 
with actual load 
profiles and 
simulated EV 
charging profiles.

E. Akhavan-Rezai 
et al., 2021 (

Impact of 
uncoordinated 
charging.

Power flow 
simulation on an 

Standard network 
data and  

Table 1 (continued )

Ref. Main focus Method Data

Akhavan-Rezai 
et al., 2012)

IEEE 33-bus 
network.

simulated 
charging profiles.

K. Qian et al., 
2011 (Qian 
et al., 2011)

Modeling EV 
charging demand.

Stochastic model 
with Monte Carlo 
simulation.

National Travel 
Survey was used 
to create 
simulated 
charging profiles.

L. Fernandez et 
al., 2011 (
Pieltain 
Fernández 
et al., 2011)

Impact of EVs on 
distribution 
networks.

Power flow 
simulation on 
realistic network 
models.

Realistic 
distribution 
network data with 
simulated 
charging profiles 
from mobility 
data.

J. A. P. Lopes et 
al., 2011 (
Lopes et al., 
2011)

Integration of EVs 
in the power 
system.

Comprehensive 
review of 
technologies and 
impacts.

Secondary data 
from other 
scientific articles.

K. Clement-Nyns 
et at., 2010 (
Clement-Nyns 
et al., 2010)

Impact of 
charging on 
residential grids.

Unbalanced power 
flow simulation.

Realistic 
distribution 
network data, 
actual household 
load profiles, and 
simulated 
charging profiles.

A. S. Masoum et 
al., 2010 (
Masoum et al., 
2010)

Impact of 
charging rates.

Simulation in 
MATLAB/Simulink 
on an IEEE 34-bus 
network.

Network test with 
actual residential 
load profiles and 
simulated 
charging profiles.
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However, the expansion of renewable energy sources and the inte
gration of EVs into the electric grid bring several challenges compared to 
conventional energy distribution and management methods, thereby 
increasing the complexity of their implementation. Furthermore, the 
high population concentration in large cities, such as Lisbon, Portugal, 
might lead to an accumulation of electric vehicle charging in relatively 
small areas. This situation introduces new uncertainties that can 
significantly increase pressure on the grid due to simultaneous charging 
times coinciding with peak consumption hours, increased demand 
resulting from load growth, voltage drops, and increased losses, among 
other factors (Kumar and M A, 2023). Challenges can arise not only from 
the technical aspects mentioned earlier but also from fluctuations in 
energy prices or the application of inappropriate tariffs for EV charging 
(Daneshzand et al., 2023).

Several works have addressed the impact of electric vehicle charging 
on electricity distribution networks. From the analysis of charging loads 
to assess overloading issues (Akhavan-Rezai et al., 2012), (Qian et al., 
2011), (Godina et al., 2016), (Li and Jenn, 2024), or the examination of 
electric vehicles’ effects on distribution losses (Pieltain Fernández et al., 
2011), (Clement-Nyns et al., 2010), (Lopes et al., 2011), (Abiassaf and 
Arkadan, 2024) and voltage stability (Nutkani et al., 2024), (Masoum 
et al., 2010), (Williams et al., 2024), (Ul-Haq et al., 2015), different 
examples can be found in the literature. Table 1 provides a summary of 
the literature review, highlighting the main scientific/technological 
focus of the research considered.

Whilst most works found in the literature provide sound results on 
the study of the impact of charging in distribution systems, they mostly 
do so using open-source grid models or are based on incomplete datasets 
(e.g., considering synthetic or average load profiles). This work con
siders the 60 kV portion of the distribution network in the city of Lisbon. 
The model is constructed using realistic data obtained from the DSO (e. 
g., line parameters and length). Simulated operational scenarios are also 
based on realistic assumptions, i.e., considering realistic load profiles for 
an entire year, with 15-min intervals. This study then focuses on the 
impact of electric vehicle charging on the electricity distribution 
network, leveraging real energy consumption data by postal code to 
design load profiles for each substation. It associates real data on EV 
consumption with the respective postal codes and corresponding sub
stations. This work proposes a solution for the Lisbon region and others 
with the availability of similar data that (i) establishes an association 
between Postal Code (PC) areas and substations, (ii) uses energy con
sumption data from the Open Data portal of E-REDES (E- REDES), the 
Portuguese electricity distribution system operator, to develop load 
profiles for each substation, (iii) generates electric vehicle consumption 
profiles based on data from the MOBI.E network (MOBI.E), the Electric 
Mobility Network Managing Entity, associating EV charging power de
mand with the respective postal codes and substations, and (iv) imple
ments a model to simulate the electrical grid of Lisbon, analyzing the 
corresponding impacts on the distribution network. Moreover, this 
methodology can be applied to other distribution networks, provided 
that equivalent data sources are available.

The remainder of this article is structured as follows: Section 2 details 
the methodology employed in this study, including the proposed solu
tion, while Section 3 presents the results and corresponding analysis. 
Finally, Section 4 provides the conclusions and outlines potential di
rections for future research.

2. Methodology

This section describes the proposed solution for assessing the impact 
of electric vehicle charging on the electricity distribution network in 
Lisbon and other areas with available data.

The main methodological steps are depicted in Fig. 1. Load diagrams 
are obtained from the Open Data Portal from E-REDES. This portal 
provides 15-min timestep load values separated by postal codes 
(geographic zones in the city). As these are not linked to electrical 
substations, a dedicated methodology was created to allocate the load 
diagrams to each substation of the network. This step is described in 
section 2.1.

The allocation of loads to each substation involves various aspects 
related to the distribution network structure rather than proximity (as in 
a geographic criterion, such as postal codes). Thus, this initial process of 
load allocation was improved through a pro-rata distribution for mul
tiple substations based on their proximity to each postal code, followed 
by the application of an optimization algorithm to determine the 
optimal weights for this allocation. The obtained results were compared 
with reference data obtained from the DSO E-REDES (load profiles from 
substations). This reference data was not used as the main dataset for 
load profiles, as it is private data from the DSO. These two steps are 
described in sections 2.2 and 2.3, respectively.

Section 2.4 focuses on the model developed for EV consumption 
profiles. Finally, Section 2.5 describes the creation of the simulation 
model for the Lisbon power grid.

This approach then involves determining the contribution of each 
postal code (i.e., the electricity consumption associated with each postal 
code) to the load diagram of its corresponding substation within the 
Lisbon municipality, using data from the Open Data portal of E-REDES 
and the geographic distances between postal codes and substations, 
given that no direct link between the postal codes and the substations 
has been carried out before. To validate the generated load diagrams, 
the Root Mean Square Error (RMSE) was calculated by comparing them 
with the real consumption profiles of the substations. To further improve 
accuracy, a genetic algorithm-based method was applied (see Subsection 
2.3).

2.1. Geographic distance algorithm

The main objective of this stage is to determine the proximity be
tween the postal codes available in the Open Data portal of E-REDES, 
specifically from the dataset "Hourly Consumption by 4-Digit Postal 
Code", which provides the hourly active energy consumption for the first 
four digits of each postal code - and the 22 substations of 60 kV located 
in the municipality of Lisbon. We note that no explicit link is provided 
between these postal codes, which represent geographic areas defined 
by the postal service, and the substations supplying the considered area. 
While this method does not capture the full complexity of the urban 
distribution network’s structure, a proximity-based approach was 
adopted as an approximation due to the lack of publicly available data 
linking specific delivery points to substations. Therefore, this geographic 
distance algorithm aims to associate each postal code belonging to Lis
bon with the nearest electrical substation. The process began by 
accessing an API (JBay Solutions, 2022), which provides the geographic 
coordinates (latitude and longitude) of the postal codes in Portugal, 
allowing the retrieval of the full postal code locations associated with 

Fig. 1. Main phases of the proposed methodology.
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the first four digits available on the portal. Once this information was 
obtained, the distance between each postal code and the nearest sub
station was calculated using the Haversine formula in Eq. (1), where d 
represents the distance between the postal code location and the sub
station, r is the radius of the Earth, while ϕA, ϕB, λA, and λB denote the 
latitudes and longitudes of both the postal code and the substation, 
respectively, all expressed in radians. The goal is to determine the closest 
substation to each postal code, thus considering that this substation is 
responsible for supplying electrical energy to that specific area. 

d=2.r.arcsin

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

sin2
(

ϕB − ϕA

2

)

+ cos(ϕA).cos(ϕB).sin
2
(

λB − λA

2

)√ )

(1) 

However, some uncertainties must be considered, as they may lead to 
variations in the load diagram results. For instance, data for specific 
postal codes, such as those related to large private consumers (e.g., 
airports and shopping centers), are excluded from the portal due to 
privacy concerns, which may result in an underestimation of the total 
load in some substations. This underestimation of current load levels can 
potentially impact the capacity for connecting additional EVs in these 
substations. Nonetheless, using the methodology presented in this 
paper, particularly the load adaptation optimization process detailed in 
Sections 2.2 and 2.3, this effect is less impactful on the obtained results. 
Furthermore, substations located near the borders of the municipality 
may exhibit larger errors due to the proximity of external consumption 
sources that are not considered. The approach used in the geographic 
distance algorithm also assumes that a postal code is closer to a specific 
substation, implying it is fed by that substation, which is not necessarily 
true. This assumption can lead to variations in load distribution, with 
certain substations potentially appearing to have higher or lower loads 
than they do. Additionally, there are differences in temporal granularity 
between the consumption data from the portal and the real load dia
grams, which required additional data treatment during validation. Due 
to the limitations presented here, load diagrams obtained from this 
method are further enhanced through the application of the optimiza
tion process explained in sections 2.2 and 2.3.

2.2. Acquisition and validation of substation load diagrams

The weighted active power for each postal code was calculated using 
Eq. (2), where Pp(c, t) represents the weighted active power consump
tion for postal code c at time t, P(c, t) corresponds to the active power 
consumption in postal code c at time t, obtained from the hourly active 
energy data for each postal code extracted from the Open Data portal of 
E-REDES. In this context, the active energy consumption (in kWh) for 
each postal code associated with the substation is numerically equal to 
the active power in kW. Additionally, w(c) is the weight associated with 
postal code c as determined by the geographic distance algorithm, and T 
represents the period of analysis. 

Pp(c, t)=P(c, t) × w(c),∀t ∈ T (2) 

Subsequently, for each substation s in the set of substations S, and for 
each postal code c in the set of postal codes associated with substation s, 
Cs, the weighted consumptions of all postal codes were summed to 
obtain the total hourly active power Ps(t) at substation s for any time 
instance t using Eq (3). 

Ps(t)=
∑

c∈Cs

Pp(c, t),∀t ∈ T (3) 

The real load diagrams for the substations have a temporal resolution 
of 15 min. To compare these with the hourly data obtained from the 
portal, it was necessary to convert the hourly load profiles to 15-min 
intervals. Given that the numeric value of the active energy measured 
in kWh over an hour is numerically equal to the average power in kW 
during that hour, the average power during each 15-min interval was 

considered equal to the hourly average power. Thus, each hourly value 
was replicated four times during a specific hour. To validate the 
implemented methodology, RMSE was used to compare the accuracy of 
the load diagrams obtained through the implemented methodology 
(data from the Open Data portal of E-REDES) with the actual load dia
grams of each substation, allowing for the identification of discrepancies 
resulting from the uncertainties and approximations in the developed 
model. In Eq. (4), ̂yi represents the estimated values of the load diagrams 
generated by the model, yi denotes the real power values, and n is the 
total number of data points. 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(ŷi − yi)
2

n

√

(4) 

2.3. Method for improving the substation load diagrams

Due to the multi-objective nature of the proposed model, the study 
employs a genetic algorithm to optimize the allocation of postal code 
percentages by substation, considering geographical constraints. The 
primary objective of the algorithm is to determine the best allocation of 
postal code percentages by substation, ensuring that the sum of per
centages for each postal code is always unitary and that the fitness value 
does not decrease without compromising the established geographical 
constraints.

2.3.1. Description of the genetic algorithm components
The solutions are represented by individuals in a population that 

evolves over generations. Each individual is composed of a series of 
weights that associate postal codes and substations (e.g., a postal code 
closer to a substation is weighted more heavily). The algorithm was 
slightly modified so that each individual is represented by a single 
chromosome, where each gene corresponds to a pair (postal code, per
centage), representing the percentage of a specific postal code associ
ated with a substation. The fitness function is used to evaluate the 
quality of each solution by assessing the distribution of postal code 
weights. It is calculated based on the RMSE for each substation, 
comparing the modeled power data with the actual data. The proposed 
algorithm was adapted to include only mutations, thereby avoiding 
other evolutionary operations, such as crossover between individuals, 
due to geographical constraints. These genetic operations could result in 
the allocation of postal code percentages to substations that are not 
geographically related, which would compromise the approach. Muta
tions are applied to genes representing postal code percentages greater 
than 0.1, with variations between − 0.1 and 0.1. This value was chosen 
because percentages below 10 % were considered negligible, as they do 
not significantly impact the total load. It was observed that, for a given 
solution, a postal code often holds a more significant weight, while 
others are distributed in a more dispersed manner.

After each mutation, the total sum of the weights assigned to the 
specific postal code must remain unitary, preventing deviations that 
could affect the proper distribution of postal code weights. To achieve 
this, after mutating the gene, any excess or deficit is corrected using Eq. 
(5), where εij corresponds to the excess or deficit of the sum of the 
percentages of postal code j across substation i after the mutation, CPij 

represents the percentage of postal code j at substation i, and n is the 
total number of substations. 

εij =

(
∑n

i=1
CPij

)

− 1 (5) 

Subsequently, the values of the postal code in each substation greater 
than 0.1 are identified, excluding the substation that underwent the 
mutation, and the proportion of each associated with the same postal 
code for each substation relative to the total sum is calculated using Eq. 
(6). In this equation, m represents the index of the mutated substation, V 
the set of substations with CPij > 0.1 and γij refers to the proportion of 
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Fig. 2. Genetic algorithm flowchart.
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the CPij value in substation i relative to the total sum of valid values. 

γij =
CPij
∑

i∈V
CPij

, i ∕= m (6) 

The values of the postal codes in the substations are adjusted as 
necessary, removing excess or adding deficit, to ensure that the final sum 
is unitary, according to Eq. (7), with CP´ij representing the new value of 
postal code j in substation i after redistribution. 

CP´ij =CPij − εij × γij (7) 

In situations where only one substation has a significant value for a 
postal code (>0.1), that gene does not undergo mutation, as the solution 
is considered already satisfactory.

2.3.2. Genetic algorithm initialization parameters
The initial population was randomly generated from the individuals 

obtained through the geographic distance algorithm, ensuring that each 
individual appears at least once. A sample of 100 individuals was 
maintained to ensure adequate diversity. The number of generations 
was set to 30 after observing that significant improvements occurred up 
to the 20th generation. Since mutation is the only source of genetic 
variation applied, different mutation values were tested, and it was 
found that the best performance was achieved with a unitary mutation 
rate. The number of generations determined the stopping criterion.

2.3.3. Structure and functioning of the genetic algorithm
The genetic algorithm implemented follows an iterative process, as 

illustrated in Fig. 2, aimed at evolving towards a satisfactory solution. 
The algorithm employs elitism, retaining the best individuals from each 
generation, which helps ensure that the search space does not become 
excessive and that performance gains are maintained throughout the 
iterations. The steps that make it up are as follows. 

1. Initialization: The initial population is randomly generated from 
the substations, and postal code weights are obtained using the 
geographic distance algorithm.

2. Selection of an Individual: An individual is randomly selected 
from the population.

3. Gene selection: The genes of the selected individual are 
identified.

4. Gene verification: 
a. If all the genes have already been verified, the algorithm 

moves on to Step 9.
b. Otherwise, the process continues to Step 5.

5. Gene evaluation: 
a. If the gene has a postal code percentage greater than 0.1, the 

algorithm proceeds to Step 7.
b. Otherwise, the algorithm advances to Step 6.

6. Select New Gene: A new gene is selected. The algorithm returns to 
Step 4.

7. Mutation: The gene of the selected individual is mutated.
8. Load Redistribution: The weights of the mutated postal codes are 

adjusted to ensure that the sum remains unity. The algorithm 
returns to Step 6.

9. Fitness Value Calculation: The individual’s fitness value is 
recalculated to reflect the changes that have occurred.

10. Fitness Value Comparison: 
a. If the new fitness value is better (i.e., lower), the algorithm 

proceeds to Step 11.

b. Otherwise, a new individual is selected, and the process 
returns to Step 2.

11. Calculation of the Remaining Fitness Values: The fitness values of 
the remaining individuals are recalculated to reflect the changes 
caused by the mutation.

12. Comparison of the Remaining Fitness Values: 
a. If the recalculated values are better than the previous ones, the 

algorithm proceeds to the next step.
b. Otherwise, it returns to Step 2.

13. Initial Population Update: The population is updated with the 
new individuals and their recalculated fitness values.

14. Stop Criterion Check: 
a. If the maximum number of generations has been reached, the 

algorithm advances to Step 15.
b. Otherwise, it returns to Step 2.

15. Return of the Best Individuals: After reaching the maximum 
number of generations, the algorithm returns the best individuals 
from the last generation as the improved solution.

2.4. Modeling of electric vehicle load diagrams

In this study, data from the MOBI.E portal were used to model the 
load diagrams of electric vehicles in the Lisbon municipality. MOBI.E 
provides the location and size (power) of each charging station. The 
modeling of the charging process was based on a probabilistic model, 
utilizing average consumption and charging duration values (Em = 19 
kWh and Tm = 2.13 h), with standard deviations of 10 % for both. 
Random values for energy (Er) and duration (Tr) of the charging ses
sions, defined for each hour of the day, were generated using normal 
distributions. The charging power consumed in each hour was calcu
lated as presented in Eq. (8), where MPCin use(h) represents the average 
number of charging stations in use during hour h, based on data 
extracted from the MOBI.E portal. 

Pc(h)=
Er × MPCin use(h)

Tr
(8) 

Each charging point was associated with its respective postal code, 
based on its location, which was also provided by the MOBI.E portal. 
Considering the percentage of charging points per postal code, which 
represents the relative contribution of each postal code to the total 
number of charging points in the Lisbon municipality, the average 
power consumption of the charging sessions in a given postal code 
during hour h, PCP(h), was calculated according to Eq. (9), with pCP 

representing the percentage of charging points in each postal code. 

PCP(h)=Pc(h) × pCP (9) 

Charging points associated with postal codes that are not included in 
the E-REDES Open Data portal, as well as those that were out of service 
or blocked, were removed. Finally, using the active power consumption 
data by postal code from the electric vehicles (EVs) and the optimized 
weights of these postal codes obtained through the genetic algorithm, 
load diagrams for each substation related to EV consumption were 
created according to the method described in Subsection 2.2. Moreover, 
this methodology enables the association of EV consumption with sub
stations through postal codes, offering information that is not commonly 
available.

2.5. Electrical grid model

In this study, the modeling of the Lisbon power grid and the power 
flow analysis are conducted using the PandaPower library in Python 
(Thurner et al., 2018). For the analysis of EV charging, the Lisbon 
electrical grid was modeled at the 60 kV level. This model includes five 
generators, 27 buses, and 56 lines, whose characteristics were obtained 
from the information provided by E-REDES (E− REDES, 2022). The five 
modeled generators listed in Table 2 represent the function of 

Table 2 
Power grid model generators.

Generators Alto São João Carriche Sacavém Sete Rios Zambujal
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transmission grid buses, which are responsible for supplying the 
necessary energy to the distribution network. Therefore, it is assumed 
that the transmission system acts as an infinite bus, providing the 
required power for all loads existing in the distribution system. This 
approach is realistic, as it is based on current real system operation 
procedures. All generators were configured as slack buses since each 

interconnection point to the transmission grid must receive the required 
energy directly from it. Additionally, 27 buses were included in the 
model (see Table 3), corresponding to substations located within the 
geographical boundaries of the Lisbon municipality. For modeling pur
poses, the switching stations were also represented as buses.

For the implementation of the grid, some modifications and 

Table 3 
RMSE (kW) comparison across different substations using different algorithms.

RMSE (kW)

Substation Geographic Distance Algorithm Genetic Algorithm 
Mutation Rate

RMSE Reduction (%)

50 % 75 % 100 %

Aeroporto 13306.13 5929.14 5653.88 5561.10 58.21
Alameda 2010.25 1360.29 1338.04 1330.00 33.84
Alto Lumiar 2406.81 493.57 563.51 539.88 77.57
Amoreiras 3297.38 3165.68 1581.99 1800.77 45.39
Arco Carvalhão 2869.96 2476.57 1227.67 1228.89 57.18
Boavista 5060.38 4833.78 1698.90 1709.10 66.23
Central Tejo 7400.09 6349.96 6328.45 6467.33 12.60
Colombo 3048.31 1693.09 1721.09 1775.92 41.74
Entrecampos 2688.30 1284.96 1579.64 1917.40 28.68
Expo SUL 8023.54 2179.83 2140.38 2258.96 71.85
Gago Coutinho 3373.64 2014.45 1892.17 1679.56 50.22
Luz 7333.50 5019.87 4444.93 3535.01 51.80
Marvila 10406.82 8356.58 8600.22 7708.91 25.92
Norte 14071.52 14071.52 13788.17 13305.16 5.45
Parque 2226.31 1627.07 1625.97 1682.97 24.41
Praça Figueira 2277.60 2245.71 2248.29 2248.36 1.28
Santa Marta 6114.69 3077.98 3677.46 4194.52 31.40
São Ciro 6315.74 4980.17 1431.85 1377.82 78.18
Senhor Roubado 8755.99 7781.99 7683.34 7704.92 12.00
Telheiras 3307.75 2040.73 1621.93 1271.40 61.56
Vale Escuro 1260.08 1122.12 1152.24 1154.18 8.40
Zambujal 10644.74 10644.74 10644.74 10284.72 3.38
Average RMSE 5736.34 4215.9 3756.59 3669.86 36.02

Fig. 3. São Ciro substation load diagram. Red line - data from the Open Data portal. Blue line - reference data. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.)

Fig. 4. Vale Escuro substation load diagram. Red line - data from the Open Data portal. Blue line - reference data. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.)
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considerations were necessary regarding the information provided by E- 
REDES about the lines. Regarding the physical characteristics, for lines 
with the same identifier code (i.e., different segments of the same line), 
only one segment was considered, with the total length determined by 
the sum of the individual lengths of each segment. In these cases, the 
cable type and the cross-sectional area corresponding to the longest 
segment were considered as the dominant features. Additionally, in 

situations where parallel lines had significantly different lengths, the 
length was approximated to the one that made the most sense.

The electrical characteristics of the lines in the model include resis
tance, inductance, capacitance, and maximum supported current. For 
the AA and AXKJ cables, whose complete specifications were not 
available, they were assumed to have electrical characteristics similar to 
those of the LXHIOLE cables of the corresponding cross-sectional area. 

Fig. 5. São Ciro substation load diagram after applying the genetic algorithm. The red lines represent data from the Open Data portal; the blue lines represent the 
reference data. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 6. Vale Escuro substation load diagram after applying the genetic algorithm. The red lines represent data from the Open Data portal; the blue lines represent the 
reference data. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 7. Example of electric vehicle power consumption in a specific month.
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Fig. 8. São Ciro substation load diagram with data from the Open Data portal, highlighting the associated EV consumption. The red lines represent scenarios without 
EV consumption; the green lines represent scenarios with EV consumption. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the Web version of this article.)

Fig. 9. Intraday variation of the São Ciro substation load from June 26 to 29, using data from the Open Data portal, highlighting the associated EV consumption. The 
red lines represent scenarios without EV consumption; the green lines represent scenarios with EV consumption. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.)

Fig. 10. Network model.
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For the XHIOLE cable, since specific resistance data for the 1000 mm2 

section were not found in the manufacturers’ catalogs, the copper re
sistivity for a specific section per kilometer of cable was determined and 
used as a reference for the 1000 mm2 section. The resistance of the ca
bles was calculated based on the data provided by the manufacturers, 
using the DC resistance values at 20 ◦C and converting them to AC at 
75 ◦C according to Eq. (10). In this equation, θ1 and θ0 represent the 
temperatures, R(θ1) and R(θ0) are the resistances at temperatures θ1 
and θ0, respectively, and α is the temperature coefficient of the material. 

R(θ1)=R(θ0). [1+α(θ1 − θ0)] (10) 

It was assumed that the skin effect was negligible, treating the AC 
and DC resistance at 75 ◦C as the same. The inductance and capacitance 
values were obtained from typical manufacturer data and converted to 
Ω/km and nF/km, respectively, using a frequency of 50 Hz. Concerning 
the maximum supported current, in cases where the values were not 
specified in the E-REDES document, the manufacturer’s data were used, 
assuming that all lines are buried.

3. Results and analysis

The described methodology has been deployed to evaluate the 
impact of electric vehicle charging on the electricity grid in Lisbon, as 
described in Subsection 3.1. The results are presented and analyzed in 
terms of load diagram validation (Subsection 3.2), improvements in 
substation load diagrams through the application of a genetic algorithm.

(Subsection 3.3), and the analysis of load patterns specific to electric 
vehicles (Subsection 3.4). Finally, the impact of electric vehicle charging 
on the electricity distribution network in Lisbon is presented in Sub
section 3.5.

3.1. Case study

This study investigates the impact of electric vehicle charging on 60 
kV substations within the Lisbon municipality. We utilized hourly en
ergy consumption data for the postal codes collected from the E-REDES 
Open Data portal, which covers 365 days from September 2022 to 
August 2023. Electric vehicle load profiles from 2023 were sourced from 
the MOBI.E network, and grid line characteristics were obtained from E- 
REDES documentation. Different scenarios (with EV load increase rates 
of 5, 10, 15, 20, and 30 times) at the respective substations were 
simulated to assess the impact on the distribution network, focusing on 
the overloading of grid lines, line losses, and voltage levels at the buses.

3.2. Results of substation load diagrams validation

In this subsection, two examples of load diagrams are presented in 
Figs. 3 and 4, derived from both the Open Data portal of E-REDES and 
the reference data from E-REDES, but displayed simultaneously.

On the one hand, a visual discrepancy can be observed between the 
reference data and the data obtained through the geographic distance 
algorithm for the São Ciro substation. This difference may be attributed 
to previously mentioned sources of uncertainty, such as the lack of 
active energy consumption data for particular postal codes or the need 
for adjustments due to the differing temporal resolutions of the data 
from both sources. The systematic decrease in power observed in the 
load diagrams from the Open Data portal coincides with the transition to 
daylight saving time. During this transition, clocks are advanced from 
01:00 a.m. to 02:00 a.m. local time, shifting from Western European 
Time (WET, UTC+0) to Western European Summer Time (WEST, 
UTC+1), resulting in significantly lower energy consumption values 
provided by the Open Data portal at this time compared to the rest. 
Additionally, it should be noted that the data provided by the portal are 
approximations of the values extracted from the system, which may 

Fig. 11. Power flow of the base network on September 30, 2023, at 11:00 p.m., highlighting the voltage levels and percentage line overloads.
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contribute to the observed variations.
On the other hand, when analyzing the Vale Escuro substation, the 

results obtained by the first approach used are more favorable and closer 
to the reference data compared to São Ciro, as there is a less pronounced 
variation in load profiles and consumption peaks. This similarity be
tween consumption profiles suggests that the geographic distance al
gorithm proved more suitable for allocating postal code weights to 
certain substations over others, as shown in Table 3.

3.3. Substation load diagram improvements using a genetic algorithm

The variation in load patterns and consumption peaks, along with the 
RMSE values presented in Table 3 for the geographic distance algorithm, 
indicated that further adjustments or refinements were required to 
improve the distribution of postal code weights across substations and, 
consequently, the load distribution. When the method for improving 
load diagrams was applied, the results showed significant progress, as 
illustrated in Fig. 5 and Table 3.

Comparing the load diagram of the São Ciro substation from the 
previous subsection with the one obtained after applying the genetic 
algorithm, it is clear that the load profile improved substantially, leading 
to greater accuracy in postal code weight distribution and enhanced 
reliability of the data. A notable reduction in variability and discrep
ancies relative to the reference data was observed, indicating more ac
curate modeling of the substation consumption profiles.

For the Vale Escuro substation, as shown in Fig. 6, the improvements 
in load profiles were less pronounced, indicating that the geographic 
distance algorithm had already performed adequately. Moreover, as 
discussed in Subsection 2.3.2, several mutation rates were tested to 

identify the most effective in reducing RMSE for each substation, as 
shown in Table 3. The average RMSE values for all substations were 
calculated, along with the percentage reduction in RMSE between the 
geographic distance algorithm and the genetic algorithm with a 100 % 
mutation rate.

The analysis of RMSE values across different substations reveals 
significant improvements after applying the genetic algorithm with 
various mutation rates. Based on individual and average RMSE re
ductions, the 100 % mutation rate proved to be the most effective, 
yielding the lowest RMSE values. Most substations, such as Alto Lumiar, 
Expo Sul, and São Ciro, experienced substantial reductions in RMSE, as 
indicated by the percentage improvements in the last column of the 
table, and none of the substations exhibited worse results after the 
application of the algorithm. However, substations such as Norte, 
Senhor Roubado, and Zambujal demonstrated moderate improvements, 
suggesting that the algorithm had a more limited impact on improving 
the load profiles of these substations, which are more affected by un
certainty sources. Due to the stochastic nature of the problem, meta
heuristics such as genetic algorithms can lead to suboptimal solutions. 
Therefore, multiple simulations with a 100 % mutation rate were per
formed, with Table 3 presenting the best result obtained for this rate. As 
a result, the effect of the uncertainty sources, discussed in Subsection 
2.1, was mitigated, allowing for the generation of realistic load diagrams 
for the substations considered based on postal code-level data from the 
Open Data portal.

3.4. Analysis of electric vehicle load diagrams

For modeling electric vehicle load diagrams, actual data from the 

Fig. 12. Overload of the Sete Rios - Palhavã 1 line as a result of increasing EV load. a) Load boxplot. b) Load diagram. The blue line represents 0x, the green line 
represents 10x, the red line represents 20x, and the orange line represents 30x. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.)
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MOBI.E network were used to determine the average number of 
charging points utilized per day within the Lisbon municipality during 
the study period. Fig. 7 illustrates an example of the power consumption 
results over 24 h in a specific month. This example was generated from a 
selection of 30 representative simulations, chosen from a total of 395 
simulations conducted for the Lisbon municipality. Each line represents 
a daily simulation, revealing significant variation in power consumption 
throughout the day, with pronounced peaks during periods of high ac
tivity, reflecting the daily variability in EV power demand.

An illustrative example of the load diagram for the São Ciro sub
station is shown in Fig. 8, specifically highlighting the consumption of 
electric vehicles. These data refer to the power consumption data by 
postal code for EVs after applying the postal code weights determined by 
the genetic algorithm, as described in Section 2.4.

As shown in Fig. 9, which depicts the intraday variation of substation 
load over three days during the summer, the load pattern is similar to 
that observed in Fig. 7, with more pronounced peaks during peak hours, 
particularly around noon, compared to nighttime periods, such as at 
03:00 a.m. This behavior suggests that EV charging predominantly oc
curs during the day, contributing to increased demand during high- 
consumption hours.

3.5. Analysis of the impact of electric vehicle charging on the Lisbon 
electricity distribution network

Using data from the Open Data portal, the results and analyses of the 

evaluation of the impact of electric vehicle charging on the Lisbon 
electricity distribution network are presented, considering the progres
sive increase in load across the different substations. The network model 
obtained is shown in Fig. 10, highlighting the substations operated by 
the Transmission System Operator (TSO).

In Fig. 11, an example of the power flow in the modeled network is 
presented, illustrating the topology of the nodes and lines that constitute 
it. It can be observed that both the lines and buses are within acceptable 
limits.

3.5.1. Line overloads and peak consumption
To compare the load on the lines resulting from increased electric 

vehicle charging, two examples of the most critical lines in the network 
are presented in Figs. 12 and 13. For visualization purposes, the load 
diagrams do not account for all load increase factors in the boxplots.

As EV load increases at substations, power flow in the lines pro
gressively rises, leading to higher overloads. The most critical lines, 
which experience significant overloading and require more attention, 
mainly include PS Moscavide - Gago Coutinho, Carriche - Alto Lumiar, PS 
Carriche - Parque, PS Carriche - Alameda, and Sete Rios - Palhavã. In some 
cases, even with relatively low load-raising factors (e.g., five or ten 
times), peak loads exceeding 100 % were observed. With a 20-fold in
crease, half of the load measurements exceeded 80 %, with 25 % of the 
measurements above 95 %, and some peaks surpassed 130 %. For a 30- 
fold increase, the situation becomes even more critical, with more than 
50 % of the load measurements on some lines exceeding 100 % and peak 

Fig. 13. Overload of the PS Moscavide - Gago Coutinho line as a result of increasing EV load. a) Load boxplot. b) Load diagram. The blue line represents 0x, the green 
line represents 10x, the red line represents 20x, and the orange line represents 30x. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.)
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loads reaching values between 161 % and 223 % of the rated capacity. 
The result is consumption peaks of approximately 50 MW and 40 MW, 
respectively. Additionally, other lines, although less critical, still require 
monitoring, such as PS Moscavide - Expo Sul, Carriche - Telheiras, and 
Palhavã - Praça Figueira, where a 20-fold increase in EV load results in 25 
% of the load measurements already exceeding 80 %.

We note that some lines exhibited relatively low load values, indi
cating operational constraints. Additionally, any outliers in the boxplots 
represent values outside the expected interquartile range and do not 
reflect typical network behavior. These arise from consumption peaks 
during high-demand periods, consumption drops during low-demand 
periods, or, in some cases, randomly due to occasional variability.

3.5.2. Line losses
The same method was applied to evaluate line losses, as shown in 

Figs. 14 and 15.
The results, presented as a percentage of the line’s capacity, indicate 

that the most overloaded lines do not always have the highest losses 
since overloading can be temporary, whereas losses are a cumulative 
process that occurs during the current flow. Additionally, factors such as 
line length and conductor material resistance play a crucial role in total 
losses. The analysis shows that as EV load increases at the substations, 
line losses progressively rise due to the increased current demand from 
EVs. The lines with the highest losses are primarily PS Moscavide - Gago 

Coutinho, PS Carriche - Parque, PS Carriche - Alameda, and Palhavã - Praça 
Figueira.

For a 20-fold increase in the PS Moscavide - Gago Coutinho line, 25 % 
of the losses exceed 0.85 %, with maximum values reaching 1.63 %, 
representing a 185.96 % increase compared to the base scenario. Simi
larly, for the PS Carriche-Parque line, a 10-fold increase results in 25 % of 
the losses exceeding 0.65 %, with a maximum of 1.17 %. At a 20-fold 
increase, 50 % of the losses exceed 0.68 %, peaking at 1.81 %. For the 
PS Carriche - Alameda line, a 10-fold increase causes 25 % of the losses to 
surpass 0.56 %, with a maximum of 1.01 %. At a 20-fold increase, 50 % 
of the losses exceed 0.58 %, and 25 % exceed 0.83 %, with peaks of 1.55 
%. With a 30-fold increase on both lines, 50 % of the losses exceed 0.94 
% on the first line and 0.81 % on the second, while 25 % surpass 1.34 % 
and 1.15 %, with maximum values of 2.64 % and 2.28 %, representing 
relative increases of 238.46 % and 235.29 %, respectively. For the 
Palhavã - Praça Figueira line, with a 20-fold increase, 25 % of the losses 
exceed 0.36 %, representing a relative increase of over 83.78 % 
compared to the base scenario. As with overloading and consumption 
peaks, outliers are also present in losses, arising for the same reasons 
previously discussed.

Finally, the overall system losses were analyzed, as shown in Table 4. 
Even with a 10-fold increase, 25 % of the losses exceeded 4.99 %, rep
resenting a 54.35 % relative increase in maximum values compared to 
the base scenario. For 20-fold and 30-fold increases, the relative increase 

Fig. 14. Losses on the PS Moscavide - Gago Coutinho line as a result of increasing EV load. a) Boxplot of losses relative to line capacity. b) Loss diagram relative to 
line capacity over time. The blue line represents 0x, the green line represents 10x, the red line represents 20x, and the orange line represents 30x. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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reached significant values of 155.42 % and 274.42 %, respectively.

3.5.3. Voltage magnitude at the buses
An analysis of voltage magnitude variation at the network buses was 

conducted, considering two scenarios: one without reactive power in the 
loads and another with reactive power equivalent to 15 % of active 
power, simulating AC power flow. Some results are presented in Figs. 16 
and 17, illustrating two representative examples of the conditions 
studied.

As the EV load increases, a slight voltage drop is observed at the 
buses due to the higher current flow, which in turn leads to a larger 
voltage drop. The introduction of reactive current also results in a minor 
voltage drop. However, these variations are minimal and can be 
considered negligible, as network stability is maintained due to suffi
cient power generation. This approach ensures that voltage remains 

stable even with significant load variations, providing greater robust
ness and flexibility to the electrical system.

4. Conclusion and future work

This study examines the impact of electric vehicle charging on the 
electricity distribution network in Lisbon, Portugal, allowing for the 
assessment of overloads, peak consumption, losses, and voltage varia
tions at the distribution buses. The analysis incorporates real energy 
consumption data based on postal codes to create specific load profiles 
for each substation, linking EV consumption to the corresponding postal 
code areas and substations. This approach enables the modeling of 
electric vehicle load diagrams. The study also addresses inherent un
certainty by incorporating a genetic algorithm designed to improve 
substation load diagrams based on both individual and average RMSE. 
Following the proposed methodology, the current study can also be 
applied to other distribution networks as long as similar data sources are 
available.

The results demonstrated that the application of the genetic algo
rithm led to significant improvements in substation load profiles, 
improving the average RMSE by up to 36.02 %. The main impacts 
included a progressive increase in power and current through the lines, 
resulting in higher overloads and losses. Some lines, even with a load 
increase factor of just five times, showed overload peaks exceeding 100 
%. In more critical scenarios, with a 30-fold increase, load peaks sur
passed 161 %, reaching up to 223 %, with 50 % of the loads exceeding 
100 % of the lines’ capacity. Global system losses also increased 

Fig. 15. Losses on the PS Carriche - Parque line as a result of increasing EV load. a) Boxplot of losses relative to line capacity. b) Loss diagram relative to line capacity over 
time. The blue line represents 0x, the green line represents 10x, the red line represents 20x, and the orange line represents 30x. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the Web version of this article.)

Table 4 
Descriptive statistics of global losses (%) in the electrical distribution network 
for different EV load increase factors, using data from the Open Data portal.

Factor Minimum Q1 Median Q3 Maximum

Global losses 
(%) in the 
electrical 
distribution 
network

0 0.03 1.28 2.21 3.17 5.63
5 0.08 1.49 2.81 3.93 6.72

10 0.16 1.80 3.60 4.99 8.69
15 0.27 2.14 4.47 6.20 11.35
20 0.40 2.50 5.40 7.56 14.38
30 0.76 3.30 7.56 10.70 21.08
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Fig. 16. Voltage variation (p.u.) over time at Gago Coutinho as a result of increasing EV load. The blue line represents 0x, the green line represents 10x, the red line 
represents 20x, and the orange line represents 30x. a) Without reactive power. b) With reactive power (15 % of active power). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 17. Voltage variation (p.u.) over time at Alameda as a result of increasing EV load. The blue lines are 0x; the green lines are 10x; the red lines are 20x; the orange 
lines are 30x. a) Without reactive power. b) With reactive power (15 % of active power). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.)
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significantly, with relative maximum value increases of 155.42 % and 
274.42 % for 20 and 30-fold load increases compared to the base sce
nario. Despite this, the voltage magnitude at the buses remained stable.

Nevertheless, we note that as electric vehicle penetration increases, 
consumption patterns may shift. However, the genetic algorithm used in 
this model is adaptable, performing mutations on postal code weights, 
which allows the model to redistribute loads across substations and 
maintain the accuracy of the load profiles. With periodic updates based 
on the most recent data, the model remains robust and well-aligned with 
evolving consumption trends. Furthermore, the implemented method
ology is flexible and can accommodate different levels of EV 
penetration.

Exploring charging management strategies to reduce grid impacts 
and consumption peaks represents a future work left open by this study. 
Additionally, optimizing the integration of renewable energy sources 
during periods of high production, in conjunction with EV charging, will 
be considered to minimize grid strain. Finally, assessing the impact of 
dynamic electricity tariffs on incentivizing off-peak EV charging remains 
an important avenue for future research.
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