N VA DEPARTMENT OF ELECTRICAL AND COM-

PUTER ENGINEERING

NOVA SCHOOL OF
SCIENCE & TECHNOLOGY

N o V A DEPARTMENT OF
Electrical and Computer Engineering

NOVA SCHOOL OF
SCIENCE & TECHNOLOGY

Optimizing Service Provider Selection and Managing Data
Translation Processes

AFONSO TIAGO MARTINS NUNES

BSc in Electrical and Computer Engineering

Adviser: Joao Almeida das Rosas
Assistant Professor, NOVA University Lisbon

Co-adviser: Filipe de Carvalho Moutinho
Assistant Professor, NOVA University Lisbon

Examination Committee:
Chair: Paulo José Carrilho de Sousa Gil
Professor, NOVA University Lisbon

Rapporteur: Jodo Pedro Leal Abalada de Matos Carvalho
Professor, Universidade Lus6fona

Adviser: Jodo Almeida das Rosas
Professor, NOVA University Lisbon

MASTER IN ELECTRICAL AND COMPUTER ENGINEERING

NOVA University Lisbon
September, 2024

Optimizing Service Provider Selection and Managing Data Translation Processes

Copyright © Afonso Tiago Martins Nunes, NOVA School of Science and Technology, NOVA
University Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon have the right,
perpetual and without geographical boundaries, to file and publish this dissertation through
printed copies reproduced on paper or on digital form, or by any other means known or that
may be invented, and to disseminate through scientific repositories and admit its copying and
distribution for non-commercial, educational or research purposes, as long as credit is given

to the author and editor

ACKNOWLEDGEMENTS

| would like to express my deepest gratitude to my adviser, Jodo Rosas, and my co-adviser,
Filipe Moutinho, for their invaluable guidance and strong support throughout this journey.
There is nothing | would change about the way | was mentored. Both helped me in different
ways that complimented each other. Besides the availability to help for hours at the time if
needed, in the moments where | felt like | lost my way, a new path to move forward was shown
to me. Never have | felt pressured or that what | had worked on so far "wasn’'t good enough"”
even if that was the case, | would be guided to a better path, not be reminded of it. If | was
ever losing interest in my work and its potential, every new meeting my spark would be reig-
nited through their thoughtful advice and insight. The knowledge they shared with me, both
technical and in writing, was far beyond what | could have hoped for, and for that, | am pro-
foundly thankful.

| would also like to extend my appreciation to Nova School of Science and Technology
for providing me with the necessary tools and resources to complete this journey.

To the friends I've made along the way, who have stayed by my side, | owe a debt of
gratitude. These friendships are among the most important things in life, the ones forged dur-
ing these challenging journeys. Especial thanks to Luis, for being my partner in almost every
project | have ever done, and to Mafalda, who has been my strong companion throughout the
demanding process of completing this dissertation.

Finally, | want to thank my parents, who have given me everything | needed to succeed
and allowed me to grow into the person | am today, or rather, the person | am capable of
becoming. | am also grateful to my sister, who set the standard for how a degree should be

pursued and completed.

vii

“Today | escaped anxiety. Or no, | discarded it, because it was within me,

in my own perceptions — not outside.” (Marcus Aurelius).

ABSTRACT

This thesis addresses the critical challenge of achieving seamless interoperability among het-
erogeneous systems, a fundamental requirement to meet the dynamic demands of Industry
4.0. As the industrial landscape evolves with the increasing integration of loT devices, automa-
tion, and data-driven decision-making, ensuring effective communication across diverse sys-
tems is imperative. This research focuses on bridging the gap between the Arrowhead Frame-
work (AF), a service-oriented architecture designed to facilitate loT and automation interoper-
ability, and the Translator Automatic Generator (TAG), a data translation tool. Together, these
technologies are leveraged to overcome limitations in service selection and data compatibility.

The primary objective is to develop the Data Translation Manager (DTM), a novel tool
capable of automating the selection of the most appropriate service providers for consumers
within an Arrowhead cloud environment. Simultaneously, the DTM facilitates dynamic data
translation through the TAG Tool, enabling communication between previously incompatible
systems at both syntactic and semantic levels.

The DTM empowers systems to dynamically select optimal service providers, adapt to
real-time changes, and execute automated data transformations by establishing a cohesive
integration between AF and TAG. This enhances the interoperability, communication, and in-

tegration of 10T systems within Industry 4.0 ecosystems.

RESUMO

Esta dissertacdo aborda o desafio de aumentar as capacidades de interoperabilidade entre
sistemas heterogéneos, um requisito fundamental para atender as exigéncias dinamicas da
IndUstria 4.0. A medida que o panorama industrial evolui com a crescente integracdo de
dispositivos loT, automacdo e a tomada de decisdes baseadas em dados, torna-se
imprescindivel garantir uma comunicagao eficaz entre sistemas diversos. Este trabalho centra-
se em colmatar a lacuna entre o Arrowhead Framework (AF), uma arquitetura orientada a
servicos concebida para facilitar a interoperabilidade no contexto do IoT e da automacao, e o
Translator Automatic Generator (TAG), uma ferramenta de traducdo de dados. Estas
tecnologias sdo integradas para superar as limitagdes relacionadas a selecdo de servigos e a
compatibilidade de dados.

O objetivo principal é desenvolver o Data Translation Manager (DTM), uma ferramenta
nova capaz de automatizar a sele¢do dos fornecedores de servicos mais adequados para os
consumidores num ambiente cloud Arrowhead. Simultaneamente, o DTM facilita a tradugao
dinamica de dados através da ferramenta TAG, permitindo a comunicacdo entre sistemas
previamente incompativeis, tanto em niveis sintaticos como semanticos.

Ao integrar de forma eficiente o AF e o TAG, o DTM permite que sistemas selecionem
os fornecedores de servicos mais adequados de maneira dinamica, que se ajustem a alteragdes
em tempo real e que realizem transformacdes de dados automatizadas. Esta abordagem nao
apenas responde a alguns desafios atuais da interoperabilidade, mas também promove uma
comunicacdo mais fluida e integracdo robusta entre sistemas loT, posicionando-se como um

contributo para a evolucao dos ecossistemas da Industria 4.0.

Xi

1

CONTENTS

INTRODUCTION.....cueuirimeeersnsereseesesesesesesesessssssasssssssssessesessssssssssssssssssssssssssessasasssssssssesesesssssssasasssssssasesssssssesess 1
1.1 IMIOTIVATION ..ottt bbb bt 1
1.2 Problems and ODJECHIVES ...t ss st sasssaes 2
1.3 DOCUMENT STIUCTUIE ...ttt 3

STATE OF THE ART....ovetrieieseceeussesesessssssssassssesssnssssssssssssssasssssnssssssatassssssssssasssasasassssssssssssasesssssssesssssasse 5
2.1 Automation, 10T and cyber-physical systems (CPS) ..o, 5
2.2 INEEIOPEIADIIITY ..ottt 6
2.3 The Arrowhead FrameEWOTK.........cciiiiereeseiecie st 8
2.4 SPIING BOOT SEIVICES. ...ttt 12
2.5 Extensible Markup Language (XIML) ... sssssssssssssssssnses 14
2.6 JavaScript Object NOtation (JSON) ... ssss s s sssssnses 16
2.7 Translation Of MESSAGES ...ttt ss sttt nees 17
2.8 Ontology fundamental CONCEPLS. ...t es e 19
2.9 ANNOTATIONS ..ottt bbb 24
210 THE TAG-TOO! ottt bbb 27
217 Java Version Of TAG-TOO ...ttt ss s 28

PROPOSED SYSTEM ..ocuruinnusessssissssissssisssssissssesssssessssessssesssasessssesssssissasssssssesssssssssassssssssssssssssssss 31
3.1 INEFOTUCTION ..ottt bbb bbb 31
3.2 ATCRITECTUNE .ttt 33
33 USE CASE SCENATIOScuvvmeerrireeieinetireeie et bbb 37
34 DEVEIOPMENT......ooriiiririii ittt s 40

TESTS AND VALIDATIONcoueverreeeereresenessssssasasasessssssssssssssssssssssssssssassssstsssssesesssssssssassssssnsassssssesssssess 66
4.1 ATTOWNEAA SETUP .ottt 67
4.2 Provider REGISTIATION. ..ottt ees 68

Xii

4.3 Consumer's Request (CONSUMEr-arroWhEad)...........oc.veueeeeueeeneieneiseeeeiseeeseesesissssesssessseses 71

44 Consumer-DTM Interaction and reSUILS..........coccereneccenececseeiecesesieceesesseesisessessiens 74
4.5 DTM TransIation NOGE ...ttt ss e 76
4.6 Cycle REPELILION TESHING ..ottt st ss st ssssssssssssnssssssssaes 78
5 CONGCLUSIONSecvveereereessnssssssesssessssssesessssssssssssssssssssssssssssssssssssssstsssssssssssssesssssssssssasssssssssssssesessssssssssess 83

Xiii

LIST OF FIGURES

Figure 2.1 - Interoperability in the Health Domain, taken from [4].......ccccoerronrinriverssrnnrnniesieesinees 7
Figure 2.2 - Interactions between providers and consumers using the AF. ... 9
Figure 2.3 - Spring Boot controller developed for @ provider ... 13
Figure 2.4 - SPring BOOt @rChit@CTUIE........c.ovueieeeeeeresee e 13
Figure 2.5 - Translator integrated to aid the Arrowhead Framework, taken from [11] 18

Figure 2.6 - Ontology model for sensor network constructed in an ontology building software,

O 18] ettt ettt et ettt et et e s e e s st ses e e st e s e s e sesasessasaseaeessaeessaees 20
Figure 2.7 - Semantic Web, representative layers...........nenensinseneeeseese s ssessssssssssesens 21
FIGUIE 2.8 = RDF trIPIE ..ottt et 22
Figure 2.9 - Extended Architecture of the TAG Tool, taken from [5] ..o 28
Figure 3.1 - DTM interactions with other components of the system ..., 34
Figure 3.2 - System sequence diagram for the typical SCeNArio........cccvveuneeeeerernecenerrecinecreeinens 35
Figure 3.3 - System sequence diagram when there is data compatibilitycccocovererenecneinennn. 36
Figure 3.4 - Provider's information in the Arrowhead System.........ccccooveenrineeineinecenneinenesesis 43
Figure 3.5 - TAG generated html rEPOIT ... 56
Figure 3.6 - Image of the database CONENTS.........coccinecree e 61
Figure 4.1 - Service Registry registration 10gS ... sssesssesens 67
Figure 4.2 - Orchestrator registration 10gsS ...t sssssens 68
Figure 4.3 - Authorization registration l0gS ... 68
Figure 4.4 - Provider 2 iNitialiZation........ocrceneereieceirecieesisesieesisesssessisessss oo sssessssesssessssesssesssnens 69
Figure 4.5 - Arrowhead Cloud's SYStem liSt ... sssessssesssessenens 70
Figure 4.6 - Provider 1 "creat@Sensor” URI ... sssessssesssessssesssessssssssesssssssees 70
Figure 4.7 - Provider 2 "creat@Sensor” URI ... sssessssesssesssssssesssessssesssssssees 71
Figure 4.8 - Provider 3 "createSensor” URI ... ceieeeenesiessesessesseesssesssesssesssesssessenens 71
Figure 4.9 - Established intracloud FUIES..........c..oienecse e 72
Figure 4.10 - TAG directory contents, before and after.........onnecneecseecseseeinens 74
Figure 4.11 - Database CONTENTS ..ot ssses e ssse s sssessssesssesssnens 76
Figure 4.12 - Original Provider message in XML fOrmatcooccoverrenneeenecenecineceinseessecsssssennnee 77
Figure 4.13 - Translated messages for XML and JSON, respectivelycooorrrrrrcnrrenrerererneennnnn. 77
Figure 4.14 - GET request to the Selected Provider's SErviCe........ecenerneceneeneceneeinecinens 77

Xiv

Figure 4.15 - Updated database contents

Figure 4.16 - Database contents for one provider is shut down SCENArio.......cc.coevvrvrrrrrrrererrrennnnn.

Figure 4.17 - GET request to Provider 1 SErViCe reSPONSEcovvevvmrernrersseressessssessssssssssssssssssssssssens

XV

LISTINGS INDEX

Listing 2.1 - XML document containing information about SENSOrScocoeeumeinreeneienecineiseris 14
Listing 2.2 - XML schema fOr LIStING 2.7 ... ssse e ssssssssesssesssens 15
Listing 2.3 - JSON document containing information about a SENSOr ... 16
Listing 2.4 - JSON schema containing information about @ SEeNSOr ... 17
Listing 2.5 - RDF document representing @ T-Shilt.....c...cocooronrinrinseneseseieeseesesesssssessesseessssesseens 22
LiStiNg 2.6 = SPARQL QUETY ..ottt ssessse e ssse st ssse et ssse s s ssesssessnesene 23
Listing 2.7 - RDF ontology defining dOCUMENT ...t 24
Listing 2.8 - Annotated XML dOCUMENT.......ccviiieerciseeireiee e sssse e sssse e s 25
Listing 2.9 - Semantically annotated JSSON Schema using annotation paths.........ccccoeconenecin 26
Listing 3.1 - Code for registering a provider's "createSensor" service metadata..........ccccoecovevuuncee 44
Listing 3.2 - Method for listing and saving data from a selected Servicecovenereoneenerenne 45
Listing 3.3 - Application properties file for the CONSUMET ... 47
Listing 3.4 - Method for writing the consumer's service data into a file ... 48
Listing 3.5 - Class for generating XSDs out of the provider data file ... 50
Listing 3.6 - TAG Tool batch file - upgraded from the original TAG version.........cccoeeveerrrnnenn. 53
Listing 3.7 - Method for executing the TAG TOON ... 55
Listing 3.8 - Script responsible for selecting providers based on the report dataccccccoeeeeene. 59

Listing 3.9 - Method for registering a sensor reading in the "createSensor" service URI for
PTOVIAET 3 ..ttt bbb bbbt 62

Listing 3.10 - Method for converting messages and executing the Translation node of the DTM

... 64
Listing 4.1- Provider information file CONTENTS........c..ooververieree s 73
Listing 4.2 - CONSUMET EXECULION CY Tl sttt ss s s sssnsens 73
Listing 4.3 - Console Logs for DTM's first execution in this chapter.........cvoneineconeinerins 76
Listing 4.4 - Console log responses for executing the translator..........ceeneicnrinreseseessennnnn. 77
Listing 4.5 - Logs fOr N0 NEW ProViders SCENATIO.........coierereerrrenrsinsississsesssssesssssssssssssssssssssssssssssssssens 78

XVi

Listing 4.6 - Logs for one new provider scenario...............

Listing 4.7 - Logs for one provider is shut down scenario

XVii

ACRONYMS

AF - Arrowhead Framework

API - Application Programming Interface

CPS - Cyber-Physical Systems

DTM - Data Translation Manager

HTTP - HyperText Transfer Protocol

loT - Internet of Things

JSON - JavaScript Object Notation

RDF - Resource Description Framework

REST - Representational State Transfer

SAWSDL - Semantic Annotations for WSDL and XML Schema
SD - Service Discovery

SOA - Service-Oriented Architectures

SoS - System of systems

SPARQL - SPARQL Protocol and RDF Query Language
SR - Service Registry

TAG - Translator Automatic Generation

WSDL - Web Services Description Language

XML - eXtensible Markup Language

XiX

INTRODUCTION

1.1 Motivation

Each day brings continuous evolution in the technological frameworks that support our
modern world. As Industry 4.0 reshapes the landscape of various sectors [1], [2], from smart
city infrastructure [3] and factory automation to healthcare information systems [4], the de-
mand for adaptive and efficient communication systems becomes a necessity. This transfor-
mation is driven by the integration of sensors and smart devices within these sectors, creating
complex networks that require seamless data exchange. However, achieving this requires more
than just technological advancements—it requires the ability for diverse systems to communi-
cate effortlessly across different platforms and architectures.

Interoperability is a key factor in this dynamic, enabling systems that were never designed
to interact to exchange information in real-time. This concept is central to Industry 4.0s vision
[2], where systems must dynamically adapt to changes in the environment, resource availability,
and user needs. Despite advancements, many existing frameworks still struggle to achieve the
high levels of interoperability needed for complex systems. They often require the support of
additional layers or tools to better interactions, particularly in environments where heteroge-
neous systems coexist.

This work is driven by the need to enhance existing interoperability frameworks, with a
focus on improving communication between heterogeneous systems, services, and platforms.
The research investigates how current systems can be optimized to enable seamless interac-
tion, addressing both data and semantic interoperability challenges. A critical aspect of this
work is the development of tools and methods that integrate into established frameworks,

facilitating interoperability not only at the structural level but also at the semantic level.

Furthermore, the goal is to ensure these systems can dynamically identify the most efficient
communication pathways, enabling previously incompatible consumer and provider systems
to exchange information effectively.

Through this work, we aim to create tools that contribute to an environment where com-

munication between previously incompatible systems becomes possible.

1.2 Problems and Objectives

While technologies like the Arrowhead Framework [5] are designed to facilitate system
interoperability, they come with certain limitations. For instance, Arrowhead focuses primarily
on service-level communication, but it does not address data and semantic interoperability.
This becomes an issue when systems need to exchange information but have different seman-
tics and data formats. The TAG Tool [6], [7], was developed to address this gap by enabling
data transformation, thus enhancing data and semantic interoperability. However, despite their
complementary purposes, the Arrowhead Framework and the TAG Tool are not currently inte-
grated.

This work aims to bridge the gap between these two technologies by directly linking
them to work with each other through an intermediary. By integrating the TAG Tool and the
Arrowhead, we can facilitate seamless communication between systems that not only need to
connect but also need to translate and interpret each other's data. This integration will also put
into practice what is proposed in [6], [7] demonstrating how these tools can complement each
other. A major objective is to explore both technologies and develop a working solution that
connects them effectively.

In addition to bridging these technologies, another core objective of this work is to de-
velop a selection process when multiple provider systems are available. This research aims to
enhance that selection process, as well as manage and execute the generated translators, en-
suring that the most suitable provider, based on semantics and data quantity, is chosen for any
given task. By integrating the TAG Tool with Arrowhead, we hope to achieve a more intelligent

and efficient system for selecting providers, ultimately improving overall system interoperabil-

ity.

1.3 Document Structure

This thesis is organized into several chapters, each building upon the foundational con-
cepts and presenting both the theoretical and practical advancements made throughout this

work.

Chapter 2 - State of the art: This chapter explores the relevant context and background for the
thesis, including key concepts and technologies central to the work. A thorough review of the
existing literature and related works in the field is provided to frame the research problem and
justify the need for the proposed solution. Topics such as Industry 4.0, interoperability frame-

works, microservices, and the Arrowhead framework are discussed in detail.

Chapter 3 - Proposed system: In this chapter, the system design, methodology, and implemen-
tation are introduced and discussed in detail. The architectural components of the proposed
system, such as the Data Translation Manager (DTM), consumer systems, and provider systems,
are explained. It also details the development process, describing key implementation steps,
integration with Arrowhead, and the challenges encountered during development, along with

the solutions applied.

Chapter 4 - Tests and Validation: This chapter focuses on testing the system under real-world
conditions. It presents a variety of test cases to assess how the system connects the different
elements, reacts to different provider availability scenarios, metadata requirements, and the

translation of data.

Chapter 5 - Conclusions: The thesis concludes by summarizing the work, its contributions to
system interoperability, and the technological advances made. It also identifies potential areas
for further research, suggesting ways in which the system could be improved or extended to

other frameworks and applications.

STATE OF THE ART

The goal of this chapter is to provide a comprehensive review of the concepts and state of the
art technologies relevant to the development of the Data Translation Manager (DTM), which
integrates the TAG Tool with the Arrowhead Framework. By examining existing literature and
current advancements in the fields of service orchestration, data interoperability, and system

integration, we establish a solid foundation for the ideas proposed in this thesis.

2.1 Automation, loT and cyber-physical systems

In modern scientific and technological landscapes, Automation, Internet of Things (loT), and
Cyber-Physical Systems (CPS) collectively represent a transformative pathway, it is, therefore
important to have a basic understanding of these concepts.

Automation is the concept of technology performing tasks seamlessly, reducing the
need for direct human intervention. The purpose is to enhance efficiency and facilitate pro-
cesses by allowing systems to operate independently.

The Internet of Things takes the centre of the stage by connecting everyday devices to
the Internet, enabling them to exchange data. [oT is seen as a global network of interconnected
things, both physical and virtual, that can share information over standard and interoperable
communication protocols, leading to enhanced functionality and real-time insights [8].

Cyber-Physical Systems merge computational and physical processes into integrated
units. These systems combine virtual and physical components to enable real-time monitoring,
control, and decision-making across various domains. In many ways, CPS can be seen as a

subset of loT, focused on the seamless interaction between the digital and physical worlds.

All these domains are used to create intelligent, connected systems capable of real-
time data acquisition and analysis. Scientific exploration in this field often delves into develop-
ing efficient algorithms, communication protocols, and security mechanisms to reach the full
potential of said systems. There is endless motivation to do so as the number of installed loT
devices has grown exponentially in recent years and will continue to do so in the future [8] [4].
This work focuses on improving communication within these vast networks of interconnected

systems.

2.2 Interoperability

Interoperability can be simply defined as "the ability of two or more systems or com-
ponents to exchange data and use information” [9]. It is a crucial pillar in technological inte-
gration, particularly within IoT and cyber-physical systems. As one author noted, "The loT is
and will continue to be a heterogeneous, multi-vendor, multi-service and largely distributed
environment; these are good ingredients for interoperability problems” [10]. This concept re-
fers to the seamless communication and information exchange between diverse systems and
their components, regardless of their differences.

In loT, achieving fundamental objectives depends on establishing interoperability,
whether it's transmitting data from a sensor to trigger an actuator or displaying remote read-
ings on a user interface. This work focuses on reducing the number of devices unable to com-
municate or understand one another’s messages, using specific tools to address these interop-
erability challenges.

There are four primary sub-types of interoperability: technical, syntactic, semantic, and
organizational interoperability. While many modern systems are designed with these in mind,
compatibility issues can arise, particularly when integrating older systems or modules. In this
work, the focus is on syntactic and semantic interoperability, two key aspects of "data interop-
erability” [10]. These ensure that systems can not only read and interpret structured data but
also understand the meaning of the associated metadata, which is essential in the context of
this thesis.

The most comprehensive form of interoperability is dynamic interoperability, which en-
sures the sustainability of seamless communication in highly diverse, dynamic, and large-scale
environments [10], [11]. Given the inherent heterogeneity of lIoT systems [8], dynamic interop-

erability becomes critical. In practical scenarios, devices from different vendors may need to

communicate, even if they use different message formats or protocols. The ability to adapt to
these differences and maintain communication makes them dynamically interoperable. A
framework like the Arrowhead Framework can often address these challenges, but in cases of
significant heterogeneity, additional steps, such as message translation, may be required.

A real-world example illustrating the importance of interoperability is in the healthcare
domain. Healthcare professionals need up-to-date information about patients and medical
equipment, while healthcare associations and laboratories must track patients who require fi-
nancial assistance or specific disease research. The ability for all these systems to communicate

effectively is essential for providing quality care.

HEALTHCARE
ASSOCIATION

INTEROPERABILITY LABORATORIES

APPLICATION
PROVIDER

Figure 2.1 - Interoperability in the Health Domain, adapted from [4]

2.3 The Arrowhead Framework

New systems, even if from different technologies, can be custom-built in compliance with
framework specifications, allowing them to interact directly with several different systems. One
such framework is the Arrowhead Framework (AF), an innovative solution in the domain of
service-oriented architectures and interoperability. AF addresses the challenges of seamlessly
integrating heterogeneous systems rooted in diverse technologies [12]. Based on service-ori-
ented architecture (SOA) principles, AF facilitates the dynamic interaction between systems by
providing a robust set of core services. These services include:

Service Registry (SR): A key component that acts as a centralized repository for regis-

tering and storing information about services within the Arrowhead ecosystem. It maintains a
directory of services, including their descriptions, interfaces, and locations. When a new service
is deployed, it registers with the SR, allowing other systems to dynamically discover and access
these services.

Service Discovery (SD): A process that enables systems within the Arrowhead Frame-

work to dynamically find and locate available services in real time. Closely linked to the SR, SD
involves querying the registry for service information, this service might be included in the
orchestrator and SR. Systems use this service to connect to services based on their specific

requirements, promoting flexibility and adaptability in system architecture.

Orchestration (ORQ): Involves coordinating and managing multiple services to achieve
a specific goal. It enables the composition and execution of workflows involving different ser-
vices' interaction. This core service manages the workflow, ensuring that each service is pro-
vided to the most appropriate consumer.

Authorization (AUT): A critical service for ensuring security and controlled access within

the Arrowhead ecosystem. It verifies the permissions and privileges of systems or users at-
tempting to access specific services. Authorization mechanisms enforce access control policies,
protecting the system from unauthorized use.

In a system using the core Arrowhead Frameworks services, the typical interaction be-
tween a consumer and a provider could be described in the following way: As illustrated in
Figure 2.2, first the providing device must register its services in the SR, so when a consumer
needs a service, it can access the SD and search for available services, ORC service will then get
information about the providing services that better satisfy the requirements of the consumer.
After a choice is made, the Authorization service will allow communication between the con-

sumer and the provider to start [6], [7].

Arrowhead Framework
SR | SD AUT ORC

1 - Registration 2 - Discovery

5 . Authfarization 3 - Orchestration

4 - subscribe

e = or request e =
provide 5 -push or _ 0 B
response i

Figure 2.2 - Interactions between providers and consumers using the AF, adapted from [11]

The Arrowhead Framework effectively addresses significant syntactical, semantic, and
technical interoperability challenges that arise when devices with different metadata, seman-
tics, and protocols try to communicate [9]. Through the workflow depicted in Figure 2.2, AF

makes it easier for systems to interact across these interoperability dimensions [6].

2.3.1 Service-Oriented Architecture

Service-oriented architectures (SOA) were a relevant notion while explaining the Arrowhead
Framework. SOA represents a paradigm that organizes a collection of capabilities distributed
across networks governed by distinct owners, essentially serving as an alternative for central-
ized architectures. In SOA, a service, defined as a core building block, represents a software
application executing specific tasks [12]. Each service possesses a formal interface articulated
using a standard description framework. The Framework's design shields users from many
complexities, enabling a dynamic and collaborative environment where services from different

domains operate cohesively.

2.3.2 Modern systems adaptation

In the era of advanced technological integration, the heterogeneity factor between systems
keeps increasing. Modern systems are built with more thought put into adaptability and in-
teroperability because it is known they will be inserted in heterogeneous domains. Systems are
designed with a forward-looking approach towards frameworks like Arrowhead and seamlessly
communicate and collaborate with diverse entities. These modern architectures often integrate
the core services the frameworks offer, such as robust Service Registries, dynamic Service Dis-
covery, intelligent Orchestration, and secure Authorization mechanisms [13]. This dynamic

alignment with the frameworks grants modern systems enhanced flexibility and adaptability.

2.3.3 Legacy systems adaptation

Unlike modern systems, integrating legacy systems into contemporary frameworks represents
a distinct challenge but is still essential for interoperability evolution. Legacy systems, rooted
in older technologies, often lack compatibility with modern interoperability frameworks like
the AF. An older sensor might have more difficulty communicating with a newer consumer
system, but it is still necessary for their communication to occur. These contrasts between
modern systems embracing frameworks and legacy systems undergoing adaptation are a good
example of the challenges and opportunities within the domain of interconnected technolo-
gies.

Consider a practical example: A smart city's modern consumer system requires the
readings of various sensors for various applications, many of which were placed many years
ago, have outdated message types, and lack compatibility with modern frameworks. It is easy
to perceive how this could be problematic: interaction will not be possible due to the differ-
ences in their protocols. In such cases, legacy systems need to adapt by changing their speci-
fications or using an adapter [6]. More and more adapters would be required between more
and more systems, raising the question of how this could be implemented dynamically and

with a good scalability factor.

10

2.3.4 Arrowhead Technology

Arrowhead technology, although still under development, offers a promising framework
for the integration and orchestration of systems in the Internet of Things (IoT). These technol-
ogies, while not yet fully documented or ready for industrial use, have been explored in this
project due to their potential to provide advanced functionality.

Two versions of Arrowhead were utilized in this context: a basic HTTP version and a
cloud-based version. The HTTP version allowed communication through the Swagger API, a
widely adopted tool for describing and interacting with RESTful APIs. This provided a straight-
forward method of testing and communication between systems. On the other hand, the cloud
version of Arrowhead enabled the integration of Systems-of-Systems (SoS) with minimal fric-
tion, a key requirement for loT environments. The primary references for this work were the
Arrowhead Framework GitHub repository [14] and instructional videos provided by "AITIA In-
ternational Zrt", available on YouTube.

The cloud environment offered a suitable platform for developing Arrowhead-compati-
ble systems and services. It facilitated access to core Arrowhead Framework services through
built-in interfaces, simplifying the management and integration of different systems. These
systems could either be sourced from existing GitHub examples or newly developed by the
user, providing flexibility in design and implementation. The next section delves into the spe-
cific technologies and frameworks employed to build these services from the ground up. Im-
portant to note that all the services explored and developed were made so using Spring Boot,

which will be explored in the next section.

11

2.4 Spring Boot Services

Spring Boot has emerged as a leading framework for building microservices and stand-alone,
production-ready applications with minimal configuration overhead [15]. Due to its flexibility
and wide adoption, it has become an ideal choice for the rapid development of service-ori-
ented architectures, such as those required by Arrowhead systems.

One of the key features of Spring Boot is its auto-configuration capability, which sig-
nificantly reduces the complexity associated with setting up applications. This feature is par-
ticularly beneficial in distributed systems like the AF, where multiple services must communi-
cate and interact seamlessly. Spring Boot's auto-configuration dynamically adjusts applica-
tion components based on the dependencies included in the project, streamlining the pro-
cess of creating microservices that can operate efficiently within a complex ecosystem like
the AF.

In addition, Spring Boot's embedded server support (such as Tomcat, Jetty, and Un-
dertow) enables the deployment of self-contained applications. This eliminates the need for
external servers, simplifying deployment. This embedded architecture also aligns with the in-
dependence required in Arrowhead’s System-of-Systems approach.

A thorough exploration of Spring Boot was conducted, focusing on the creation of
various standard microservices, an example of a controller for one such service can be seen in
Figure 2.3. These initial examples provided the foundational understanding necessary for
working within a microservices architecture. Key concepts such as RESTful web services, de-
pendency injection, and service discovery were explored, all of which are integral to building
distributed systems like the AF. A Spring Boot beginner certificate was obtained during this

process.

12

@RestController

@RequestMapping(“sensor™)

public class ProviderController {
@Autowired
private InMemorySensorDB sensorService;
L e
@GetMapping(path = CommonConstants.ECHO URT)
public String echoService() {--

@GetMapping("")
public List<SensorResponseDTO> getAllSensors(@RequestParam(name = SensorProviderConstants.REQUEST PARAM_BRAND, required = false)

@GetMapping("/{sensorId}")
public ResponseEntity<Sensor> getSensorById(@Pathvariable Integer sensorId) {--

@PostMapping("™)
public ResponseEntity<Sensor> addSensor(@RequestBody SensorRequestDTO sensorRequest) {---

@DeleteMapping("/{sensorId}")
public ResponseEntity<Void> deleteSensor(@PathVariable Integer sensorId) {--

-

Figure 2.3 - Spring Boot controller developed for a provider system

Following this learning phase, the focus shifted to practical use cases, particularly the
development of sensor-related services capable of receiving sensor messages in specific for-
mats. These services involved integrating real-world databases, such as PostgreSQL and
MySQL, as well as in-memory databases for rapid prototyping and testing. This was a good
step in understanding how to make Arrowhead-compatible services, which we'll delve further
into in the development chapter. The following Figure 2.4 schematizes the typical Spring

Boot application architecture.

API Layer Business Logic Business Logic

DOA
(Repository)

Postman

. Controller Service
Client

JSON

Figure 2.4 - Spring Boot architecture

13

2.5 Extensible Markup Language

XML [16], or eXtensible Markup Language, is a versatile and widely adopted standard for rep-
resenting structured data in a human-readable and machine-understandable format. Its core
components include tags, elements, attributes, and optional Document Type Definitions
(DTDs) or XML Schemas, which can express XML metadata, such as languages like DTDs and
XSD (XML Schema Definitions), collectively forming a flexible framework for data organization.

Tags contain elements, creating a hierarchy that gives semantic meaning to the data.
Attributes provide additional details, enhancing the richness of information. XML's adaptability
makes it invaluable for various applications, from configuration files to web services. In this
work, the interest in XML is particularly for its data representation capabilities, such as readings
from sensors, like the one exemplified in listing 2.1.

In the example, XML organizes information about two sensors with different locations
and reading values. The structure and readability of XML make it a good choice for data inter-

change in various contexts.

1. <sensorData xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:noNamespaceSchemaloca-
tion="u.xsd">

<location>Room B</location>
<value>1013.2</value>
</pressure>
10. </sensorData>

2. <temperature>

3. <location>Room A</location>
4. <value>22.5</value>

5. </temperature>

6. <pressure>

7.

8.

9.

Listing 2.1 - XML document containing information about sensors

Metadata: A simple way to explain the meaning of metadata would be to say it is data
about data [17]. It offers context and details about the characteristics, content, quality, and
structure of a particular set of data. In the next sub-section, how metadata can be expressed

will be clarified.

14

2.5.1 XML Schemas

Also known as XSD (XML Schema Document) it's main purpose is to define the structure and
constraints of XML documents, ensuring data consistency and facilitating validation. By provid-
ing a blueprint for expected document elements, their data types, and relationships, XML Sche-
mas can be used to validate the format of an XML document and contribute to a better under-
standing between systems exchanging information.

In Listing 2.2, the XML Schema defines complex types for temperature and pressure sen-
sors, specifying the expected structure of the data. The subsequent XML document adheres to

this schema, ensuring the data conforms to the predefined rules.

1. <xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
2.

3. <xs:complexType name="TemperatureSensorType">

4. <XS:sequence>

5. <xs:element name="location" type="xs:string"/>

6. <xs:element name="value" type="xs:float"/>

7. </Xs:sequence>

8. </xs:complexType>

9.

10. <xs:complexType name="PressureSensorType">

11. <XS:sequence>

12. <xs:element name="location" type="xs:string"/>
13. <xs:element name="value" type="xs:float"/>

14. </xs:sequence>

15. </xs:complexType>

16.

17. <xs:element name="sensorData">

18. <xs:complexType>

19. <XS:sequence>

20. <xs:element name="temperature" type="TemperatureSensorType"/>
21. <xs:element name="pressure" type="PressureSensorType"/>
22. </Xs:sequence>

23. </xs:complexType>

24. </xs:element>

25. </xs:schema>

Listing 2.2 - XML schema for Listing 2.1

15

2.6 JavaScript Object Notation

JavaScript Object Notation (JSON) is another popular data format for lightweight and human-
readable data interchange. Its simplicity and flexibility make it a good choice for various appli-
cations, including web services and loT. Amongst other differences, relative to the XML, it is
easy for machines to parse and generate [18]. JSON represents data as key-value pairs, provid-
ing an easily interpretable structure. Providers and consumers often use it as their default mes-
sage format output and input, respectively.

In Listing 2.3, the JSON structure encapsulates data from a temperature sensor. Key-
value pairs define attributes such as sensor type, location, recorded value, and timestamp. The
simplicity of JSON facilitates efficient data exchange between systems, making it particularly

well-suited for scenarios where lightweight communication is crucial.

1. {

2. "sensorType": "Temperature",

3. "location": "Room A",

4. "value": 22.5,

5. "timestamp": "2023-04-10T10:30:00"
6. }

Listing 2.3 - JSON document containing information about a sensor

2.6.1 JSON Schemas

JSON Schemas provide a formalized way to define the structure, data types, and constraints of
JSON documents make sure the data has integrity.

In Listing 2.4, the JSON Schema defines the expected structure for data from a tempera-
ture sensor. It specifies the data types of attributes, sets constraints (such as an enumerated
sensor type), and requires specific fields to be present. The subsequent JSON document ad-

heres to this schema, ensuring that the data conforms to the predefined rules.

1. {

2. "$schema": "http://json-schema.org/draft-07/schema#",

3. "type": "object",

4. "properties": {

5. "sensorType": { "type": "string", "enum": ["Temperature"] },
6. "location": { "type": "string" },

7. "value": { "type": "number" },

8. "timestamp": { "type": "string", "format": "date-time" }

9.

¥

16

10. "required": ["sensorType", "location", "value", "timestamp"]}

Listing 2.4 - JSON schema containing information about a sensor

2.7 Translation of messages

Consider a scenario where two systems, A and B, need to communicate. If system B cannot
understand what system A sends due to differences in syntax or structure, a translation process
is required. Translation, in this case, refers to the necessary adjustments made to the message
from A so that B can interpret it correctly.

As in this example, translation is often needed to enable dynamic interoperability be-
tween heterogeneous systems. In the context of this thesis, translation refers to the modifica-
tions necessary to a message sent by a provider in one system, regardless of the message
format, to ensure that the receiver can properly interpret it.

In this document, translation is considered an additional step or augmentation that
may be required when communication between systems is still not successful after utilizing the
core services of a common framework like the Arrowhead Framework. As illustrated in Figure
2.5, translation is typically required when systems exchange messages with differing structures
or semantics, whether in XML, JSON, or other message formats. The translation process can
involve converting messages from one format to another to ensure that systems employing
different data representations can communicate effectively. It is especially important when leg-
acy systems are involved, as it enhances collaboration and integration across diverse techno-
logical ecosystems.

The TAG Tool [6], [7], mentioned in the introduction, is an augmentation tool designed

to address these translation challenges. It can be added as an additional layer on top of the

17

Arrowhead Framework to enable message translation between systems that remain non-in-
teroperable even after using AF services.

O O S - . -,

g \

Authorization Oschestration

_—— O

R R 1ir”

Application Application
Service —O r— —0 r— Service
Provider Consumer
System System

Figure 2.5 - Translator integrated to aid the Arrowhead Framework, taken from [7]

2.7.1 Popular Translation methods and tools

Translation is a crucial step in achieving interoperability. There are various modern methods
used alongside specific tools with the sole purpose of facilitating the translation of information
between systems. In this sub-section, some examples of common methods for achieving this

purpose will be provided:

Adaptive Middleware: This method uses adaptive middleware modules that can dy-
namically interpret and convert messages between different formats. These middleware solu-

tions often employ configurable rules and mappings to facilitate the translation process. [19]

Data Transformation Languages: Translation methods may use data transformation lan-
guages such as XSLT (eXtensible Stylesheet Language Transformations) or JSONPath for XML
and JSON formats, respectively. These languages provide declarative ways to define transfor-

mations between disparate data structures.

18

Semantic Mapping: Another approach involves semantic mapping, where the meaning
and intent of data elements are defined independently of their syntax with the support of on-
tologies. This method helps overcome differences in message formats by focusing on the in-

formation's semantics. This topic will be further explained in the following sections.

2.7.2 Translation platforms

While the platforms discussed in this section are not directly employed in this work, they serve
as valuable knowledge regarding state-of-the-art platforms utilized for data translation. These
platforms offer insight into the advancements and functionalities available in the field of trans-

lation.

Apache Camel: Provides a comprehensive framework for integrating different systems
by supporting a wide array of data formats and protocols. It supports 20 different languages
including XML and JSON and includes components for data transformation, enabling seamless

translation between diverse message structures [20].

IBM Transformation Extender: This platform offers a graphical mapping tool that allows
users to define translation rules and transformations visually. It supports various message for-

mats and is designed for complex integration scenarios [21].

MuleSoft Anypoint Platform: Its main tools are for designing, building, and managing
APIs and integrations. But like the other two platforms, it also includes data mapping and
transformation capabilities to ensure smooth communication between systems with different
message formats. It is a good example of how important it is for platforms to have translating

capabilities, even if it isn't their primary goal [22].

2.8 Ontology fundamental concepts

An Ontology is a general logical theory constituted by a vocabulary [23]. In the context of
information science, it refers to a formal representation of knowledge that defines the concepts
within a domain and the relationships between them. It serves as a structured framework for

organizing information in a way that various machines can understand. The importance of

19

ontology in the system communication domain lies in its ability to give semantic meaning to
data, looking for more meaningful and context-aware interactions between systems.
In Figure 2.6, we can see the appearance of an ontology built-in Protégé, an ontology

building software. The exemplified ontology gives meaning to sensor data.

EEG

_Bioimpedance

Biosensor |

Blood_pressure

Sensor Data B — % Respiration_rate

Collection
EMG

Temperature

weather

humidity
2 Season
Envitonmental_sensor '_
GPS I} e < Location
light_sensor s} Time

Figure 2.6 - Ontology model for sensor network constructed in an ontology building software, from [24]

At its core, ontology provides a shared vocabulary and a set of rules that enable ma-
chines to infer relationships, reason about concepts, and make informed decisions. By defining
classes, properties, and instances, ontology establishes a common understanding of a domain,
allowing machines to communicate not just based on syntax, but on the semantics of the in-
formation exchanged too.

In practice, ontologies are used as structured semantic models that refer to a specific
vocabulary because good developmental practices recommend the reuse of existing vocabu-
laries for interoperability purposes [25]. Labelling data with a reference ontology is an example
of a way to let systems know what that data is referring to, even when their data syntax is
completely different. This method is of extreme importance as it is how we approach the use
of ontologies in this work, which we will delve into semantic annotations and their use in the

TAG Tool is explained.

20

Semantic Web: Inseparable from ontologies, the Semantic Web (Figure 2.7) plays a
main role in enhancing the meaning of information. It aims to allow computers to extract
meaning from exchanged information by interpreting how data's connections are linked to
other definitions. These links provide data with an ontological significance, leading to a clearer
interpretation and comprehension. As Tim Berners-Lee, the inventor of the World Wide Web,
aptly put it: "The Semantic Web is not a separate Web but an extension of the current one,
enabling information to be given well-defined meaning. This extension better equips both
computers and people to work in cooperation” [23], steering towards a new era of more intel-

ligent and context-aware interactions on the web.

Digital
Signature

RDF + schema

XML + NS + xmlschema

Figure 2.7 - Semantic Web, representative layers adapted from[23]

2.8.1 Resource Description Framework

Usually referred to as RDF, it is a foundation in the realm of ontologies. It serves as a standard-
ized format for representing language for the Semantic Web, allowing the creation of struc-
tured, machine-readable data. RDF's role is vital in establishing connections within ontologies,

enabling systems to precisely model relationships between entities and attributes.

A fundamental unit of knowledge in the Resource Description Framework realm is the
RDF Triples concept. These serve as the elemental building blocks for representing knowledge
in a semantic web environment. An RDF Triple is composed of three interconnected nodes,

each assuming fixed distinct roles: Subject, Predicate, and Object [23].
Subject: The Subject represents the resource or entity about which information is being

asserted. It is the starting point of the triple, the primary focus of the statement. To be identified

properly, the use of a Uniform Resource Identifier (URI) is common.

21

Predicate: The Predicate signifies the property or attribute associated with the Subject.
It denotes the nature of the relationship between the Subject and the Object. It is also identified
by an URI.

Object: The Object designates the actual value or target of the property specified by
the Predicate. It embodies the actual data, representing either a literal value or another re-
source identified by a URI. The Object encapsulates the information, or the object of descrip-
tion associated with the Subject.

Represented in Figure 2.8 we can see a data graph model representing an RDF triple.

T-Shirt
(Subject)

Color (Predicate)

White

(Object)

Figure 2.8 - RDF triple

Let's look at the next Listing 2.5, as a simple RDF/XML statement, the standard syntax for seri-
alizing RDF graphs for storage or transmission [26]. In line 5 the definition of the subject about
which a description will be provided is made, following that, in line 6 both the predicate (feature

size) is declared, and its literal value (12) is expressed.

. <?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:feature="http://www.linkeddatatools.com/clothing-features#">
<rdf:Description rdf:about="http://www.linkeddatatools.com/clothes#t-shirt">

<feature:size>12</feature:size>

</rdf:Description>

. </rdf:RDF>

CONO UV A WNR

Listing 2.5 - RDF document representing a T-shirt

22

Graph data model: The model used for storing data in the semantic web consists of
relations between entities, with no regard for their order or hierarchy. Figure 2.8 is an example
of a simple graph data model.

SPARQL: For RDF data to be queried the use of a SQL-like query language arises,
SPARQL, which stands for, SPARQL Protocol and RDF Query Language [27], is exactly what was
created to fix this issue. Listing 2.6 provides a short example to illustrate how SPARQL queries
are used. If executed on the Portuguese government's Open Semantic Database, this example
will return the names of all the colleges in the Portuguese district of Setubal and order the

results in alphabetical order.

1. PREFIX pt-ont: <http:// education.data.gov.pt/def/college>

2. SELECT ?collegeName

3. WHERE {

4. ?college a pt-ont:College.

5 ?college pt-ont:collegeName ?collegeName.

6 ?college pt-ont:districtAdministrative <http://statistics.data.gov.pt/district/Setubal>.
7. %}

8. ORDER BY ?collegeName

Listing 2.6 - SPARQL query

2.8.2 Web Ontology Language

RDF is the foundation of defining data structures for the semantic web, but by itself it does not
describe the meaning behind the data, choosing other words, it doesn't describe the semantics.
Web Ontology Language [28], known as OWL, is a formal language designed to represent
knowledge about entities, their properties, and relationships within a specific domain and it is
utilized to provide RDF data models with semantics. Semantic metadata can be applied to RDF
through the application of OWL. This language is made for applications that need to process
the content of information instead of presenting information to humans, which is the case for
many web applications.

While RDF structures the data, OWL adds a layer of semantic meaning. The inclusion of
OWL in RDF documents allows machines to understand the significance of concepts and rea-
son about relationships, leading to more intelligent and context-aware interpretations.

Looking at the example in Listing 2.7, the RDF document represents a sensor ontology,
where a non-mandatory header was added for clarification purposes about what the ontology

is for (in this case it defines sensors), followed by a class definition for a specific sensor type.

23

1. <rdf:RDF>

2 xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"

3. xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"

4. xmlns:owl=http://www.w3.0rg/2002/07/owl#

5 xmlns:dc="http://purl.org/dc/elements/1.1/">

6 <l-- OWL Header Example -->

7 <owl:Ontology rdf:about="http://www.linkeddatatools.com/sensors">

8 <dc:title>The LinkedDataTools.com Example Sensor Ontology</dc:title>

9. <dc:description>An example ontology for LinkedDataTools.com, focusing on sen-
sors.</dc:description>

10. </owl:Ontology>

11. <!-- OWL Class Definition Example -->

12. <owl:Class rdf:about="http://www.linkeddatatools.com/sensors#SensorType">

13. <rdfs:label>The sensor type</rdfs:label>

14. <rdfs:comment>The class of sensor type.</rdfs:comment>

15. </owl:Class>

16. </rdf:RDF>

17.

Listing 2.7 - RDF ontology defining document

2.9 Annotations

Annotating, in a broader sense, simply means to attach extra data to another piece of data
[29]. In the context of data representation, annotations serve as data that adds context and
descriptive information to elements within a document.

They provide the means to convey additional details about the data, such as its pur-
pose, origin, or intended usage, offering a richer understanding of the data's meaning. This
enhances the data's interpretability by machines within the semantic web. The additional data

that was annotated could be done so in various ways, manually and semi or fully automatically.

2.9.1 Semantic Annotations for WSDL

The essence of semantic annotations lies in their ability to ensure semantic interoperability,
making sure that the information exchanged between systems holds the same meaning for
both senders and receivers. This is, once again, particularly significant in heterogeneous envi-
ronments where diverse systems with varying perspectives need to communicate.

A key characteristic of semantic annotations is their dual readability — both human-
readable and machine-readable. Additionally, they respect a set of formal and shared terms,
often drawn from ontologies, which are widely accepted and understood within a specific do-
main [11], [29]. This ensures the clarity and consistency of the annotated information in differ-

ent contexts.

24

There are multiple mechanisms to semantically annotate data or metadata in docu-
ments. In the context of this work, the SAWSDL model reference that allows the annotation of
each element of an XSD with concepts of a semantic model is highly relevant [11]. It may be
used to generate translators between devices that wouldn't be able to communicate otherwise,
alongside other methods that will be later explained.

In Listing 2.8, SAWSDL [30]model references are added as attributes to XML elements.
These references link specific elements to corresponding semantic models or ontologies. The
model references, such as #BookTitle, #BookAuthor, #PublicationYear, and #BookDescription,

indicate the semantic annotations associated with each element.

<library>
<book>
<title>Introduction to Semantics</title>
<author>John Doe</author>
<year>2022</year>
</book>
<book>
<title>Data Modeling with XML</title>
<author>Jane Smith</author>
10. <year>2021</year>
11. </book>
12. </library>
13. <library xmlns:sawsdl="http://www.w3.org/ns/sawsdl">

VWoOoONOUVTDSwWNER

14. <book sawsdl:modelReference="#BookDescription">

15. <title sawsdl:modelReference="#BookTitle">Introduction to Semantics</title>
16. <author sawsdl:modelReference="#BookAuthor">John Doe</author>

17. <year sawsdl:modelReference="#PublicationYear">2022</year>

18. </book>

19. <book sawsdl:modelReference="#BookDescription">

20. <title sawsdl:modelReference="#BookTitle">Data Modeling with XML</title>
21. <author sawsdl:modelReference="#BookAuthor">Jane Smith</author>

22. <year sawsdl:modelReference="#PublicationYear">2021</year>

23. </book>
24. </library>

Listing 2.8 - Annotated XML document

2.9.2 Annotation Paths

Path-based annotations, or Annotation paths [29], allow a targeted method for associating
data with specific paths or elements within a document. This approach provides the means for
further enriching data with contextual information. Annotation paths can be directly applied to
elements or along paths in the document structure, offering a high degree of precision.
Standard SAWSDL model references are limited by their ability to point only to named
concepts of an ontology. The direct annotation of documents or schemas with general refer-
ence ontologies faces challenges in being precise. To address this limitation, the annotation

paths method was introduced, specifically for schemas, which is what this work aims to

25

annotate, further insights into why will be provided in the explanation of how the TAG Tool
operates. Annotation paths serve as explicit paths through a reference ontology, consisting of
concepts and properties. The string representation of these paths can be used as SAWSDL
model references, as illustrated in Listing 2.9, paired with "modelReference" (lines 10, 14, and
18). The message schemas used in the development part, often use SAWSDL-referenced an-

notation paths.

1. {

2. "$schema": "http://json-schema.org/draft-07/schema"”,
3. "type": "object",

4. "properties": {

5. "dataValues": {

6. "type": "object",

7. "properties": {

8. "units": {

9. "type": "string",
10. "modelReference": "/LumenSensor/hasLumenUnits/LumenUnits"
11. },
12. "sensorllumen"”: {
13. "type": "number",
14. "modelReference": "/LumenSensor/hasDecValue"
15. },
16. "sensor2lumen"”: {
17. "type": "number",
18. "modelReference"”: "/LumenSensor/hasDecValue"
19. }
20. }
21. }
22. }
23. }

Listing 2.9 - Semantically annotated JSON Schema using annotation paths

26

2.10 The TAG Tool

The TAG Tool [6], [7] was developed with the aim to augment the interoperability capabilities
between heterogeneous systems. As has been mentioned, legacy systems have a hard time
adapting to the current frameworks since they were not built according to their specifications.
To adapt legacy systems to modern frameworks such as the AF, it is necessary to either change
their specifications or create extra tools such as adapters to fix their incompatibilities [6]. TAG
Tool aims to allow the interoperability between poorly adapted systems that are using the AF's
core services yet fail to establish communication due to different message requisites. This is
where the tool comes in and provides a translator between the two systems' messaging path
(the so-called adapter).

This prototype was specifically designed to adapt messages sent between consumers
and providers in either XML or JSON format. The consumer and provider must provide the Tool
with their message schemas (XSD or JSON Schema files). An OWL file must also be available
for the Tool to serve as the domain ontology. After executions when both annotated XSDs are
provided, the Tool will check if the appropriate mandatory provider's XSD elements the con-
sumer expects exist. If no errors arise in this comparison step, the Tool will generate an XSLT
file that will transform the provider XML to an XML compatible with the consumer's expected
format.

The Tool's ability to translate other message formats like JSON, is due to the extensions
that were added after the translation core for XML was already functional. Said extensions were
proposed in [7] and based on the work done in [6], by providing a way to annotate JSON
Schemas, and later translating them to XML Schemas. It is important to note that the transla-
tion of provider messages is always made with the XSD files (from the consumer and provider),
so any other data format, like JSON Schemas, needs to be translated to XSD before the mes-
sage translation core service can take place.

In the scenario illustrated in Figure 2.9. The provider sends a JSON message, and the
consumer is expecting a message in JSON format. After being provided with the JSON message
schemas from both systems, the Tool translates them to XML Schemas, makes the translation
of the message to XML, transforms it according to the needs of the annotated consumer
schema (if possible), translates it back to JSON, and finally the message is in a JSON format the
consumer can understand. This is a great example of the tool's ability to adapt to different
message formats, as long as the systems aiming to communicate provide their respective mes-

sage schemas.

27

Shared Reference

Ontalogy
Provider 4’ Consumer
JSON Schema with | | '] JsON Schema with
Semantic Annotations Translator 2 Tag Tool Translator 2 Semantic Annotations
& Complement Data | | | |4SON to XSD B JSONto XSD| [* [| & Complement Data
Values Values
|
¥
Frovider JSON M Translator 1 XSL Translator Consumer JSON
Message gl JSON to XML XML to XML Message

Figure 2.9 - Extended Architecture of the TAG Tool, taken from [7]

2.11 Java version of TAG Tool

The Java version of TAG Tool is an evolved version of the earlier TAG Tool and serves as the
foundation for the development work in this thesis. It builds upon the principles of its prede-
cessor for handling interoperability between provider and consumer systems in service-ori-
ented architectures.
The new version of TAG tool operates in two distinct stages:
1. Compatibility Report and Translator Generation: In the first stage, the tool is provided
with the provider and consumer schemas, along with a common ontology (typically an
OWL file) shared between the two systems. Based on this input, it generates a compat-
ibility report that evaluates whether the provider-consumer pair can potentially com-
municate. If the report deems the pair compatible, the tool proceeds to generate a Java
translator.
2. Message Translation: In the second stage, the translator generated in the first step is
used to perform the actual translation of messages. This translator enables message
conversion between the provider and consumer systems, ensuring that messages con-

form to the correct format (such as XML or JSON) required by the consuming system.
Unlike the previous version, which relied on XSLT for transforming messages, the new

tool generates a Java translator to handle the translation process. This shift to Java allows for

more flexibility in the translation logic and enables more complex transformations. Once the

28

translator class is generated, it can be executed to produce a translated message that is com-
patible with the consuming system.

The Tool will be used in development, to make systems with different message formats
previously unable to communicate, interoperable, making it one of the crucial steps in the DTM
platform. From this point on, in this document, every time the TAG Tool is referred, it will be

referred to this Java version. It can also be referred to as just TAG.

29

3
PROPOSED SYSTEM

In this chapter, a general overview of the proposed system will be presented, along with in-
sights into the development steps taken throughout its implementation. The focus will be on
the core elements of the environment and the methods used to integrate the Data Translation
Manager with the Arrowhead Framework and TAG Tool, demonstrating the progression from

conceptualization to functionality.

3.1 Introduction

The TAG serves as a crucial tool in enabling interoperability between previously incompatible
systems by translating messages between them. As discussed earlier, when a consumer re-
quires a specific message format that a provider cannot deliver, the TAG functions as an inter-
mediary translation tool, increasing the likelihood of successful communication. However, the
TAG Tool currently operates as an isolated node that requires external inputs, such as message
schemas and ontologies, to function. For real-world applications, an intermediary system is
necessary to supply these inputs and execute the TAG Tool. Ideally, this intermediary would
gather information from systems and services within the Arrowhead framework and pass it
along to the TAG for execution. The Data Translation Manager (DTM) fulfils this intermediary
role.

When the TAG is integrated with the DTM within the Arrowhead platform, another
question arises: when multiple provider systems offer the same service, how does the Arrow-
head framework determine the most appropriate provider? The framework does not inherently
choose the most suitable provider; instead, it selects one without considering some important
characteristics. In scenarios with only two providers for a selected service, there is a 50% chance
of selecting the best one. As the number of providers increases, the likelihood of choosing the

optimal one diminishes.

31

This limitation underscores the need for a systematic approach to selecting the most
appropriate provider based on specific criteria. Implementing a method to evaluate and choose
the best provider according to their metadata could significantly enhance system interopera-
bility. The TAG Tool generates reports detailing the translation requirements between a con-
sumer and provider, which are essential for analysing how well a given provider meets the
consumer's needs.

The main objectives of this project are to manage the TAG and address the challenge
of identifying the best provider. The core goal is to develop an Arrowhead-compatible system
that includes a consumer capable of retrieving relevant data from all available providers offer-
ing a particular service and then selecting the most suitable provider. By analysing the data
gathered from providers, the system can assess the ontology they use, determine if it aligns
with the consumer’s ontology, and evaluate their metadata. If both the provider and consumer
are already integrated into the Arrowhead ecosystem and can communicate without transla-
tion, then the TAG Tool is not required. However, as previously mentioned, if the consumer
cannot communicate with the provider due to differing message formats, the TAG must inter-
vene.

In situations where multiple providers offer a service that the consumer requires, it is
crucial to have a mechanism for determining which provider is best suited to fulfil the con-
sumer’s service needs. This necessity led to the development of the Data Translation Manager,
which plays a vital role in this process.

To begin the project, foundational knowledge of Spring Boot services was acquired, as
expertise in microservices was deemed crucial for developing Arrowhead-related services and
systems. This was followed by an exploration of existing Arrowhead tools and examples, which,
despite limited documentation, provided valuable "hands-on" experience. A complex con-
sumer system was then developed, serving as the foundation upon which the Data Translation
Manager will work with.

Ultimately, besides bridging the gap between the TAG and the AF, the goal of this pro-
ject is to create an Arrowhead compatible system that can retrieve relevant data from all pro-
viders and select the most suitable one based on various criteria, enhancing the overall in-

teroperability and efficiency of the SoS in the AF, wanting to exchange data.

32

3.2 Architecture

In this architecture, Figure 3.1, the providers register themselves automatically upon execution,
registering all their relevant metadata fields to the Arrowhead Cloud. The metadata includes
essential fields such as the provider's URI, the services offered, and any required details about
its capabilities. The Arrowhead system saves this metadata, making it available for consumers
who request provider service metadata. The orchestration service facilitates this by granting
the consumer access to the list of available providers, which includes all the relevant metadata
fields for evaluation.

Once the consumer has the necessary provider information, it proceeds to generate two
essential information pieces: one containing the consumer's own metadata, and another con-
taining the provider's metadata. These data pieces are then placed into the DTM node for
further processing.

This information files will be then placed on the DTM, where they will be filtered into XSD
schema files and inputted to the TAG tool, which will be executed to return reports and trans-
lators for each provider present.

The TAG reports are fed back into the DTM and saved in a database, along with any
required Translator classes. If no translation is necessary for a particular provider, the corre-
sponding entry in the report will remain empty. The DTM then evaluates all providers based
on the reports, using the Provider Analyser script (Listing 3.8), selecting the one that best
matches the consumer’s requirements, not only considering the minimum elements but also
additional optional capabilities that could enhance the system’s overall performance. The se-
lected provider's Translator class is then sent to the Translation node (the part of the DTM
responsible for executing the Translator class), at the same time as the selected provider service

URI is sent back to the consumer.

33

With the provider’'s URI in hand, the consumer makes GET requests to the selected pro-
vider service, initiating communication. If the provider's message format differs from what the
consumer can handle, as expected in this scenario, the consumer will send the received mes-
sage to the Translation Node, which is a sub part of the DTM. At the Translation Node, the
message will be translated, if necessary, from JSON to XML, and then using the Translator Class
previously generated by the TAG Tool, this part is handled by the Provider Translation script.
Once the message has been translated, it is sent back to the consumer, allowing the consumer
to process it.

The DTM also continually monitors the availability of providers. During each execution
cycle, after a determined amount of GET requests made by the consumer, the DTM checks for
the provider's availability and re-evaluates if necessary to ensure optimal service selection. This

monitoring ensures that the system dynamically adapts to any changes in provider availability.

e
Pio"‘de‘\ :
‘FmvderZ info
consumer ARROWHEAD
Orchestration
Response 'Dm""der)(,‘nfo

Provider Translated Message

PX

GET request to best Provider

Provider Original Message

Provider Original Message

Figure 3.1 - DTM interactions with other components of the system

34

A sequence diagram, shown in Figure 3.2, demonstrates the workflow of the Data Trans-
lation Manager (DTM) system, starting with the providers on the far right and ending with the

translated message being returned to the consumer.

Data Translation Manager

TAG DT™M Consumer Arrowhead ProviderN

ProviderN Service and Metadata registration

|
x

Arrowhead Response

4

I
r
Available Service Providers Request |

Providers Info

| Providers Info + Consumer Info

Provider1XSD + ConsumerXSD + Ontology I

-y Y |_]

1
1
J I
J | |
€ 1 | |
Report1_json + Translator1 java ’I | |
> Provider2XSD I | |
N Repori2 Translator2 I I I
eport2 json + Translator2 java ’I I I
> ProviderNXSD I I I
[[I I
ReportN json + TranslatorN_java H I |
| Provider URI + TranslationFLAG L| |
» .
: ! GET request to the selected Provider service via URI
I T
I |< GET response with Message
:< Original Message l l
I
| Translated Message = |
| I
| I
|

I I
Figure 3.2 - System sequence diagram for the typical scenario

35

In some cases, a provider with identical metadata to the consumer might be detected. If
the metadata fully matches, all the Consumer requirements are satisfied and there is no need
for further translation. The consumer can directly communicate with the provider, and the DTM
bypasses the TAG Tool and its Translation process entirely. The provider's URI is simply sent to
the consumer, establishing a communication channel for direct interaction. This scenario, rep-
resented in Figure 3.3, is beneficial because it eliminates a number of steps, simplifying the
workflow and improving efficiency.

Just as in the previous typical scenario where there is a need for translation. The DTM will

continue to look for the providers' availability.

Data Translation Manager

DTM Consumer Arrowhead ProviderN

ProviderN Service and Metadata registration

Arrowhead Response

Providers Info

Providers Info + Consumer Infa

Selected Provider URI

I
|
|
|
Available Service Providers Request >I
|
]
1
|
|
|
I

GET request to the selected Provider service via URI

GET response with Message

___1_.__7___1_______
—_——y N1

Figure 3.3 - System sequence diagram when there is data compatibility

36

3.3 Use case Scenarios

The Data Translation Manager (DTM) is the central component of this work. It is responsible
for managing the TAG executions and provider storage, as well as for evaluating and selecting
the most appropriate provider services based on pre-defined criteria and metadata gathered
from the Arrowhead, after which it will enable a connection between the Consumer and the
selected Provider. By processing and filtering the available Providers using the TAG, the DTM
ensures that the consumer application interacts with the best-suited provider services in a dy-
namic, scalable microservices environment. This chapter will explore several key use case sce-

narios that illustrate how the DTM can be leveraged in different contexts.

3.3.1 Use Case 1: Energy-Efficient Smart City Lighting System

A smart city project is looking for an energy-efficient solution to manage its street lighting
system. The consumer system, responsible for dynamically adjusting streetlight brightness

based on traffic and ambient light conditions, requires sensor data to make informed decisions.

Consumer Metadata Requirements:
e Minimum Needed Elements: Traffic sensor data and ambient light sensor data (mini-
mum 1 of each)
o Optional Elements: Weather sensor data (to adjust lighting during fog or rain) and pe-
destrian movement sensors (to adjust lighting for pedestrians).
Provider Capabilities:
1. Provider A: Offers a traffic sensor and an ambient light sensor.
2. Provider B: Offers one traffic sensor, an ambient light sensor, a pedestrian movement
sensor and a weather sensor.

3. Provider C: Offers a traffic sensor, an ambient light sensor, and a weather sensor.

37

Process:
1. Metadata Extraction: The DTM analyses each provider services' metadata to evaluate
sensor offerings.
2. Evaluation:
o Provider A meets the bare minimum but lacks any optional elements (providing
two elements).
o Provider B not only meets the minimum, but also offers an additional traffic
sensor (potentially more accurate data) and a pedestrian movement sensor
(providing four elements).
o Provider C meets the minimum and offers weather data, which could be useful
during foggy or rainy conditions (providing three elements).
Selection: The DTM evaluates the extra sensors provided. While Provider A fulfills the basic
requirements, Provider B offers pedestrian data, while Provider C offers weather data. In this
case, Provider B is chosen because it provides the most comprehensive data set, providing four
elements (two optional and two mandatory) versus the three elements provided by Provider

service C.

3.3.2 Use Case 2: Smart Farming System for Crop Monitoring

A smart farming system needs to integrate with a provider that can supply detailed environ-
mental data input for a precision agriculture controller. The controlling system is used to mon-

itor soil conditions, weather, and plant growth to optimize irrigation and fertilization schedules.

Consumer Metadata Requirements:
e Minimum Needed Elements: Soil moisture sensor data, temperature sensor data, Soil
pH sensor data (at least one sensor for each).
o Optional Elements: Air humidity data (one sensor), and crop health monitoring (via two
multispectral sensors).
Provider Capabilities:
1. Provider X: Offers a soil moisture sensor, a temperature sensor, and a soil pH sensor.
2. Provider Y: Offers a soil moisture sensor, a temperature sensor, a soil pH sensor, and
real-time crop health monitoring.
3. Provider Z: Offers two soil moisture sensors, two temperature sensors, and an air hu-

midity sensor but no single crop health monitoring sensor.

38

Process:
1. Metadata Extraction: The DTM retrieves the environmental sensor data provided by
each potential provider service.
2. Evaluation:

o Provider X meets only the basic requirements (providing three elements).

o Provider Y offers advanced crop health monitoring along with all the necessary
data, making it highly suitable for this precision agriculture controller (providing
four elements).

o Provider Z provides comprehensive environmental data but does not meet the
minimum requirements for a possible translation by the DTM. It is providing the
most optional elements, but it is missing the mandatory single temperature
sensor (providing five elements).

Selection: The DTM determines that both Provider Y and Provider X respect the minimum re-
quirements, but Provider Y has the extra ability to monitor crop health counting as an extra
optional requirement. While Provider Z offers detailed environmental data It fails to meet the
minimum requirements needs for the consuming system. Provider Y is, therefore, the optimal

choice.

3.3.3 Use Case 3: Healthcare 10T System for Remote Patient Monitoring

A healthcare provider is looking for a service to monitor patients remotely, focusing on vital
signs such as heart rate, blood oxygen levels, and temperature. These measurements are es-

sential for managing patients with chronic conditions.

Consumer Metadata Requirements:
e Minimum Needed Elements: One heart rate and two blood oxygen level sensors.
o Optional Elements: Two body temperature sensors, two blood pressure sensors, one
extra heart rate and one extra blood oxygen level sensor.
Provider Capabilities:
1. Provider A: Provides three heart rate and two blood oxygen level sensors.
2. Provider B: Provides one heart rate, one blood oxygen level, and one temperature sen-
sor.
3. Provider C: Provides two heart rates, two blood oxygen levels, and two blood pressure

sensors.

39

Process:
1. Metadata Extraction: The DTM extracts data on the vital signs that each provider can
monitor.
2. Evaluation:
o Provider A meets the minimum requirements and provides an extra blood level
sensor (providing five elements as the third temperature sensor is not counted).
o Provider B provides extra temperature monitoring but fails the minimum re-
quirements. Not allowing translation.
o Provider C meets the minimum requirements, with two heart rate sensors, two

blood oxygen and one blood pressure sensor (providing five elements).

Selection: In this case both Providers A and C could be selected due to respecting the system's
minimal needs while providing one extra optional one. The choice will come down to the Pro-
vider that is first on the Providers list. In this case let's assume A comes first, there for it will be

the one selected to communicate with the Consuming system from this healthcare provider.

3.4 Development

The relevant development steps will be detailed in the following sub-sections, providing the

reader with an insight into how the DTM was made possible from the get-go.

3.4.1 Arrowhead Compatible Systems

The development of Arrowhead services began with an exploration of the Arrowhead system
of systems (SoS) examples, which were obtained from the official repository on GitHub [14].
The Demo Car project that is available in the mentioned repository served as the initial refer-
ence point for this investigation. The project included three main components: a car consumer,
a car provider, and a shared common folder. The first step in the learning process was to modify
the demo so that the car consumer and provider could operate independently, without relying
on the common folder. This modification allowed these services to be deployed on separate
machines while maintaining the ability to communicate with each other.

Both the car consumer and provider were developed using Spring Boot, with each ser-
vice providing RESTful APIs that supported standard CRUD operations. Through this separa-
tion, the car demo systems were designed to communicate via HTTP POST and GET requests,

which were only successful once appropriate authorization rules were established within the

40

Arrowhead Management Cloud Tool. These rules, known as intracloud rules, were necessary to
secure the secure exchange of data between the consumer and provider within the same cloud.
A critical point in this configuration was that the provider system automatically registered itself
with the Arrowhead cloud upon execution.

The car demo SoS was a starting point from where a sensor demo could be based, just
by adapting the old car demo, for both the consumer and the provider. The fundamental idea
remained the same: to separate the consumer and provider systems, register them with the
Service Registry, and create Authorization rules for the services provided between them. For
this demo, two core services were developed: "createSensor()" (a POST request to simulate
sensor data creation) and "getSensor()" (a GET request to retrieve sensor data). These services
were mirrored from the car demo, with the consumer calling the provider's services at runtime,
assuming the provider had been previously launched and its services were active.

Despite the successful adaptation of the car demo into a sensor demo, it became evi-
dent that this approach—reusing a demo as a foundation for a new system—was not the most
efficient or clean method of development. Many cars demo's specific parts would be unneces-
sary for the new systems to create. Efforts to create a functional, minimal Arrowhead Spring
Boot skeleton from scratch were made, but challenges persisted as removing one problem
often led to the emergence of another. Fortunately, an Arrowhead Spring Skeleton was avail-
able online, and with the foundational understanding gained from the earlier demo projects,
this skeleton was identified as a more appropriate starting point. Leveraging the existing skel-
eton, new testing consumers and providers were created, including the main components used
in the final project.

Having established that a single consumer could interact with a single provider (as
demonstrated by both the car, sensor demos and the previously developed skeleton consumer
and providers), the next logical step was to test whether a consumer could interact with mul-
tiple providers offering the same service. The objective was to determine if the Arrowhead
Framework could support a scenario where a consumer could dynamically select between mul-
tiple providers based on the services offered.

Although multiple providers were successfully registered and their corresponding intra-
cloud rules were created, a limitation was observed. The Arrowhead Orchestrator handled the
consumer's service request by allowing only one service to be consumed from each provider.
For instance, when two providers offered both getSensor() and createSensor() services, the
consumer could only consume getSensor() from one provider and createSensor() from the

other. This behaviour meant the consumer could not consume both services from the same

41

provider or both providers, as initially expected. The orchestrator enforced a rule where service
consumption was limited to one service per provider.

This behaviour highlighted the need for an additional mechanism to select specific pro-
viders based on the consumer’s requirements. The inability to consume all available services
from multiple providers led to the necessity of a Data Translation Manager to identify and
prioritize which provider's services would best meet the consumer's needs in a multi-provider

environment.

3.4.2 Extended Arrowhead Consumer

As highlighted before, there is a necessity to know which provider's services to consume, it is
proposed in this project, that this choice is to be made according to the provider's own infor-
mation that can be gathered via arrowhead orchestration responses by the consumer.

When a provider system is registered in the Arrowhead cloud, an orchestration process
enables the consumer to discover the services offered by the provider. This process is facilitated
by the Orchestrator service, which collects information from both the consumer and the pro-
vider to establish a connection. Each provider system can include metadata fields, configured
during its registration process. In this process, details about each service the provider contains
can be described in its application properties. Details such as its message schemas, ontologies,
URIs, etc...

The Arrowhead Cloud Management Tool too allows for the manual configuration of sys-
tem and service details, including metadata fields, which consist of key-value pairs. In Figure
3.4, details for a specific "getSensor” service for a "provider1”, upon clicking on the "show"
button, next to "metadata” an information tab as seen in the same figure will pop up. Besides
containing the "ontology-id", which is very relevant in case the provider messages need trans-
lation, there is a changeable "xsd-schema" field key that, supposedly contains in its value, the

message schema for this specific service.

42

get-sensor provider1 127.0.0.1 NOT_SECURE

Service Instance Details

ID: 665
URI: /sensor
Metadata:

Service Definition Details

ID: 23
Interface(s): HTTP-INSECURE-JSON (ID: 2)

Key

http-
method

ontology-

tology-1
id ontology-

request
param-
unit

request-
param-
name

chema attributeFormDefault="unqualified" elementFormDefault="qualified" xmins:s="http:/www.w3.0rg/2001/XMLSchema" xmins:a3st ="ht
="http:/ "> =datay complexTyp:
="/TemperatureSensor{1}/ P di:modelReference:

ocation/Latitude{1
sLocation/Longitude{

Figure 3.4 - Provider's information in the Arrowhead system

With the ability to add ontologies and XSD message schemas for new providers and their
services, selecting the most suitable provider is possible by comparing the provider's service
metadata with the consumer's requirements for consuming the same service. Given that a pro-
vider may offer multiple services, manually adding metadata for each service would be a time-
consuming task. A more practical approach is the automatic registration of metadata upon
provider system registration.

To address this need, a method was developed to automate the inclusion of metadata
during the service registration process in the Arrowhead Cloud. This method automatically
adds essential fields, such as "ontology-id" and "xsd-schema", for each service. Listing 3.1
shows a portion of the code responsible for this automation, significantly improving efficiency.
It is important to note that, in real-world scenarios, a user can manually insert metadata fields
when registering a provider. However, the outcome of this work remains consistent regardless

of the approach chosen by the user.

43

1. // Register services into ServiceRegistry

2. final ServiceRegistryRequestDTO createSensorServiceRequest = createServiceRegis-
tryRequest(SensorProviderConstants.CREATE_SENSOR_SERVICE_DEFINITION, SensorProviderCon-
stants.SENSOR_URI, HttpMethod.POST);

3. createSensorServiceRequest.getMetadata().put("ontology-id", "ontology-1");

4. createSensorServiceRequest.getMetadata().put("xsd-schemal”,

5. "<?xm1 version=\"1.0\"?>\n" +

6. "<xs:schema attributeFormDefault=\"unqualified\" elementFormDefault=\"qualified\"

xmlns:xs=\"http://www.w3.0rg/2001/XMLSchema\" xmlns:a3st=\"http://gres.uninova.pt/a3st\"
xmlns:sawsdl=\"http://www.w3.org/ns/sawsdl\">\n" +

7. " <xs:element name=\"datavalues\">\n" +

8. " <xs:complexType>\n" +

9. " <xs:sequence>\n" +

10. " <xs:element type=\"xs:string\" name=\"units\" sawsdl:modelReference=\"/Tem-
peratureSensor{l 2}/hasTempUnits/TemperatureUnits{1}\" a3st:mdi-ref=\"1;2\"/>\n" +

11. <xs:element type=\"xs:float\" name=\"sensorltemp\" sawsdl:modelRefer-
ence=\" /TemperatureSensor{l}/hasDecValue\ minOccurs=\"1\"/>\n" +

12. <xs:element type=\"xs:float\" name=\"sensor2temp\" sawsdl:modelRefer-
ence=\" /TemperatureSensor{Z}/hasDecValue\ minOccurs=\"1\"/>\n" +

13. <xs:element type=\"xs:float\" name=\"sensor3temp\" sawsdl:modelRefer-
ence=\" /TemperatureSensor{B}/hasDecValue\ minOccurs=\"1\"/>\n" +

14. </xs:sequence>\n" +

15. " </xs:complexType>\n" +

16. " </xs:element>\n" +

17. " «<xs:annotation>\n" +

18. " </xs:annotation>\n" +

19. "</xs:schema>");

20.

21. arrowheadService.forceRegisterServiceToServiceRegistry(createSensorServiceRequest);
22.

Listing 3.1 - Code for registering a provider's "createSensor" service metadata

By automating metadata registration, providers with multiple services can be seamlessly
integrated into the system. This approach has been tested with several providers and services,
confirming that the "ontology-id" and "xsd-schema" fields are correctly included. These fields
are crucial for ensuring that systems can interpret the data exchanged during service consump-
tion, especially when translation of messages is necessary due to differences in ontologies or
message formats.

A consumer service has been developed with the capability to gather provider metadata
fields from the Orchestration service's response. This consumer retrieves metadata for relevant
providers and writes it to an external file named "provider_info.txt" for further analysis.

The metadata gathered from the orchestration response includes only the ontology iden-
tification and XSD schema fields, which are critical for identifying whether message translation
is possible and ensuring that the exchanged data adheres to the appropriate format. The code
shown in Listing 3.2 below is responsible for iterating over the orchestration response and
writing the relevant information to a file (line 32). It also checks if providers are online by calling

the method "isProviderRunning" in line 22.

44

public Boolean listProviders(String title, OrchestrationResponseDTO response) {

System.out.println("Doing listProviders");

if (response == null || response.getResponse().isEmpty()) {
// If no proper providers found during the orchestration process, then the re-

System.out.println("Orchestration response is empty");

return false;

try (FileWriter writer = new FileWriter("providers_info.txt")) {

1
2
3
4.
sponse list will be empty. Handle the case as you wish!
5
6
7
8
9

writer.write("--------------------oe

-------------- \n");

10. writer.write(title + "\n");

11. writer.write(String.format("%-20s %-40s %-10s%n", "Provider Name", "URL",
"Port"));

12. writer.write("------------- e -
-------------- \n");

13.

14. List<OrchestrationResultDTO> results = response.getResponse();

15. for (OrchestrationResultDTO result : results) {

16. String providerName = result.getProvider().getSystemName();

17. String address = result.getProvider().getAddress();

18. int port = result.getProvider().getPort();

19. String serviceUri = result.getServiceUri();

20. String url = address + ":" + port + "/" + serviceUri;

21.

22. if (isProviderRunning(address, port, serviceUri, result)) {

23. writer.write(String.format("%-20s %-40s %-10d%n", providerName, url,
port));

24. System.out.printf("%-20s %-40s %-10d%n", providerName, url, port);
25.

26.

27. Map<String, String> meta = result.getMetadata();

28. if (meta != null && !meta.isEmpty()) {

29. writer.write(" Metadata:\n");

30. System.out.println(" Metadata:");

31. for (Map.Entry<String, String> entry : meta.entrySet()) {

32. writer.write(String.format(" %-20s: %s%n", entry.getKey(),
entry.getValue()));

33. System.out.printf(" %-20s: %s%kn", entry.getKey(), entry.get-
Value());

34. }

35, }

36. } else {

37. System.out.println("Skipping provider: " + providerName + " (not run-
ning)");

38. }

39, }

40. } catch (IOException e) {

41. e.printStackTrace();

42. return false;

43. }

44. return true;

45. }

Listing 3.2 - Method for listing and saving data from a selected service

45

From the iteration through "Orchestration Result DTO" (Data Transfer Object) objects,
which contain the relevant metadata of the provider systems. The "ontology-id" and "xsd-
schema" values are extracted from the provider metadata and written to the file. These fields
are necessary for compatibility analysis and translator generation between providers and con-
sumers that rely on different data structures or ontologies.

Additionally, it is crucial that the consumer also provides its own metadata, which is saved
in a file named "consumer_info.txt". This mirrors the provider information gathered earlier. The
consumer can register its metadata manually in the Arrowhead environment, but in this project,
the metadata is specified within the "application.properties” file, that is native to spring boot
projects (Listing 3.3), immediately following the "metadata fields" comment on line 42. The rest
of the configurations for the Consumer system are all present in Listing 3.3 too: Its name on

line 6, address and part on lines 11 and 12, arrowhead security variables below line 24 etc.

S
HiH CUSTOM PARAMETERS SHHE
S

Name of the client system
application_system_name=consumerDTMV1

coONO UV A WNER

Set the web application type to 'servlet' if your consumer client should act as a web-
server

9. # and fill the address and port propetries with valid values [Defaults, when not adjusted:
localhost:8080]

10. spring.main.web-application-type=none

11. server.address=127.0.0.1

12. server.port=8010

13.

14. # Service Registry Core System web-server parameters

15. sr_address=127.0.0.1

16. sr_port=8443

17.

18, R R e
19. ### SECURE MODE S
20, SRR R e
21.

22. # configure secure mode

23.

24. # Set this to false to disable https mode

25. server.ssl.enabled=false

26.

27. server.ssl.key-store-type=PKCS12

28. server.ssl.key-store=classpath:certificates/consumerskeleton.pl2
29. server.ssl.key-store-password=123456

30. server.ssl.key-alias=consumerskeleton

31. server.ssl.key-password=123456

32. server.ssl.client-auth=need

33. server.ssl.trust-store-type=PKCS12

34. server.ssl.trust-store=classpath:certificates/truststore.pl2
35. server.ssl.trust-store-password=123456

36.

37. #path configuration

46

38. runall_bat_path= D:/TranslatorTool/consumerMetadaTAG2/runAll.bat

39. translate_bat_path=D:/TranslatorTool/consumerMetadaTAG2/translate.bat

40. selecter_provider_url_file=D:\\TranslatorTool\\consumerMetadaTAG2\\src\\main\\TAG-transla-
tor\\selected_provider.txt

41.

42. # metadata fields

43. arrowhead.system.metadata.keyl=ontologyl

44. arrowhead.system.metadata.key2=<?xml version="1.0"?><xs:schema attributeFormDefault="unqual-
ified" elementFormDefault="qualified" xmlns:xs="http://www.w3.0rg/2001/XMLSchema" xmlns:a3st
="http://gres.uninova.pt/a3st" xmlns:sawsdl="http://www.w3.0org/ns/sawsdl"><xs:element
name="datavalues" ><xs:complexType><xs:sequence><xs:element type="xs:string" name="units"
sawsdl:modelReference="/TemperatureSensor{1l;2;3;4}/hasTempUnits/TemperatureUnits{1}" a3st:mdi-
ref="1;2"/><xs:element type="xs:float" name="sensorltemp" sawsdl:modelReference ="/Temperature-
Sensor{1l}/hasDecValue" /><xs:element type="xs:float" name="sensor2temp" minOccurs="0" max-
Occurs="1" sawsdl:modelReference ="/TemperatureSensor{2}/hasDecValue"/><xs:element
type="xs:float" name="sensor3temp" minOccurs="0" maxOccurs="1" sawsdl:modelReference ="/Tempera-
tureSensor{3}/hasDecValue"/><xs:element type="xs:float" name="sensordtemp" minOccurs="0" max-
Occurs="1" sawsdl:modelReference ="/TemperatureSensor{4}/hasDecValue"/></xs:sequence></xs:com-
plexType></xs:element><xs:annotation><xs:appinfo><a3st:map-data-ind a3st:mdi-id="1" a3st:indi-
vidual="Fahrenheit">Fah</a3st:map-data-ind><a3st:map-data-ind a3st:mdi-id="2" a3st:individ-
ual="Celsius">Cel</a3st:map-data-ind></xs:appinfo></xs:annotation></xs:schema>

45.

Listing 3.3 - Application properties file for the Consumer

To extract the metadata fields into a file, a method named "listConsumerMetadata()" is
called. Said method is represented in Listing 3.4, and it is set to get the consumer data from its
programmed configuration interface (line 3) and write its metadata entries into the desired file.

As shown in Listing 3.3, above, the metadata keys are its ontology, and message schema.

47

1 public void listConsumerMetadata() {

2 SystemRequestDTO consumerSystem = consumerSystemConfig.getConsumerSystem();

3. Map<String, String> metadata = consumerSystem.getMetadata();

4. // Write metadata to a file

5 try (FileWriter writer = new FileWriter("consumer_info.txt")) {

6 writer write(M ------ o oo

-------------- \n");
7. writer.write("Consumer Metadata\n");
8. writer.write("--------------mr -
-------------- \n");
9. if (metadata == null || metadata.isEmpty()) {
10. System.out.println("No metadata found for this consumer.");
11. writer.write("No metadata found for this consumer.\n");
12. } else {
13. System.out.println("Consumer Metadata:");
14. writer.write(String.format("%-20s %-40s%n", "Key", "Value"));
15. writer.write("------------m e -
------------------ \n");
16.
17. for (Map.Entry<String, String> entry : metadata.entrySet()) {
18. String key = entry.getKey();
19. String value = entry.getValue();
20. System.out.printf(" %-20s: %s%n", key, value);
21. writer.write(String.format(" %-20s: %s%n", key, value));
22. }
23. }
24. writer.write("----------- oo
-------------- \n");
25. System.out.println("Consumer metadata saved to consumer_info.txt");
26. } catch (IOException e) {
27. System.err.println("Error writing consumer metadata to file.");
28. e.printStackTrace();
29. }
30. }

Listing 3.4 - Method for writing the consumer's service data into a file

The next phase of this work focuses on extracting the actual XSD files for each provider.
With the metadata gathered and written to an external file, the consumer service can identify
the schema files required to interact with specific providers. This will be explained in the fol-
lowing section, where the process for extracting and utilizing the XSD files from the providers

is detailed.

3.4.3 Extract Providers and Consumer Schemas

The process of generating both provider and consumer XSD schema files relies on filtering
relevant metadata from unprocessed information gathered from the Arrowhead system. The
initial data collected in the "provider_info.txt" and "consumer_info.txt" files contains various
details, some of which are unnecessary for the current use case. Therefore, it's crucial to isolate
the essential message schema data while disregarding unrelated provider information such as

names and URIs.

48

As previously mentioned, the retrieval of the provider's service metadata from the "pro-
vider_Info.txt" file is crucial. By obtaining the providers and the single consumer XSD files, the
TAG Tool can be executed to generate a report in JSON format. This report is key, as it will be
further analysed to assess the suitability of the provider, a process that will be elaborated upon
in subsequent sections.

The consumer.xsd is the first to be filtered out of the information file, as it is a much
simpler process. The "consumer_info.txt" contains data about a single consumer. Following this
first step, by filtering the provider message schemas out of the provider information text files
into provider XSD schema files, it is then possible to execute the TAG with a given ontology
and generate the data to learn more about each provider.

To enable the generation of provider schema files, a script named "ProviderXSDGenera-
tor" was initially developed in Java. This script is responsible for extracting the various provider
schemas from the "provider_Info.txt" file and placing them into an input directory, as specified
in a configuration JSON file.

The configuration JSON file, "config.json", is also an essential component of the project,
as it dictates how and where the system stores and processes the provider schemas as well as
where certain files are to be saved in the next parts of the project. The "ProviderXSDGenerator"
class is presented in Listing 3.5.

This automated approach not only simplifies the process of gathering provider schemas
but also ensures that the necessary information is readily available for the TAG -Tool to perform
its analysis, ultimately assisting in the validation and selection of the most appropriate provider
within the Arrowhead ecosystem.

The script takes an input file, typically "providers_info.txt", and an input directory where
the resulting provider XSD files will be stored. It searches the input file for lines starting with
"xsd-schema", which indicate the start of a provider's service XML message schema. From the
line containing "<?xml version=", the script collects all relevant XML content until the closing
"< /xs:schema>" tag, storing it in a StringBuilder. Once the XML block is complete, it writes the
schema to a file named "providerX.xsd" (where X represents the provider index). For example,
if four schemas are found in "provider_info.txt", four schema files will be generated: "pro-

vider1.xsd", "provider2.xsd", and so on.

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

WOoONOUTEA WNR

public class ProviderXSDGenerator {

49

10. public static void main(String[] args) {

11. if (args.length < 1) {

12. System.err.println("Usage: java ProviderXSDGenerator <in-put_file> [output_directory]");
13. System.exit(1);

14. }

15.

16. String inputFileName = args[0];

17. String outputDirectory = args.length > 1 ? args[1] "

18. generateXSDFiles(inputFileName, outputDirectory);

19.

20.

21.

22. public static void generateXSDFiles(String inputFileName, String outputDirectory) {
23. try (BufferedReader reader = new BufferedReader(new FileReader(inputFileName))) {
24. String line;

25. int count = 9;

26. int providerCount = 0;

27. boolean inXsdElementBlock = false;

28. StringBuilder metadataBuilder = new StringBuilder();

29.

30. // Ensure the output directory exists

31. Path outputPath = Paths.get(outputDirectory);

32. if (!Files.exists(outputPath)) {

33. Files.createDirectories(outputPath);

34.

35. while ((line = reader.readLine()) != null) {

36. if (line.startsWith("providerID")) {

37. if (metadataBuilder.length() > @) {

38. String xsdFileName = outputDirectory + "/provider" + providerCount + ".xsd";
39. writeXSDFile(xsdFileName, metadataBuild-er.toString().trim());
40. metadataBuilder.setlLength(0); // Clear StringBuild-er for new provider
41. }

42. providerCount++;

43. System.out.println("Processing " + line.trim());

44. }

45.

46. if (line.trim().startsWith("xsd-schema") && line.contains("<?xml version=")) {
47. inXsdElementBlock = true;

48. System.out.println("Found <?xml version= start");

49. int startIndex = line.indexOf("<?xml version=");

50. if (startIndex != -1) {

51. metadataBuilder.append(line.substring(startIndex).trim()).append("\n");
52. }

53. } else if (inXsdElementBlock) {

54. metadataBuilder.append(line.trim()).append("\n");

55.

56. if (inXsdElementBlock && line.trim().endsWith("</xs:schema>")) {

57. inXsdElementBlock = false;

58. System.out.println("Found </xs:schema> end");

59. }

60. }

61. if (metadataBuilder.length() > 0) {

62. String xsdFileName = outputDirectory + "/provider" + pro-viderCount + ".xsd";
63. writeXSDFile(xsdFileName, metadataBuild-er.toString().trim());

64. count ++;

65.

66. if (providerCount == count)

67. {

68. System.out.println("Could Use the reports now ig");

69.

70. } catch (IOException e) {

71. e.printStackTrace();

72. }

73. }

74. }

Listing 3.5 - Class for generating XSDs out of the provider data file

Although referring to the output directory as the "input directory" might seem counter-
intuitive, it serves as the input for the TAG Tool, which uses the schema files to generate reports
for evaluating providers. This will be detailed further in the next subsection, where the TAG

Tool's role in provider evaluation is discussed.

50

Java was chosen for its compatibility with the Arrowhead framework. This makes the
script robust and adaptable, and it could potentially be integrated directly into the Arrowhead
consumer system in the future.

However, as the project progressed, it became apparent that a more efficient solution
could be achieved by integrating the provider and consumer XSD generation process into the
same script that executes subsequent steps. This new approach, implemented in Python, was
adopted towards the end of the project. The reason for this shift was the realization that filter-
ing the provider schemas into the input directory, would be more effectively done during the
same process that stores the provider information in the database which will be explained in
its own section.

The provider information, can be filtered directly and linked with specific metadata in the
database, making it easier to extract and associate relevant related provider details. This allows
the TAG Tool to retrieve the necessary provider information while it is being stored in the
database alongside other useful data.

This change simplifies the workflow and improves efficiency. Nonetheless, the Java-
based "ProviderXSDGenerator" remains included in this subchapter because it could still be
directly integrated into the Arrowhead consumer system if desired. By allowing the DTM to
handle provider filtering, the consumer does not need to filter XSD files directly. Instead, it can
simply output its own metadata and provider metadata, setting up the DTM to feed TAG with
the necessary inputs. Therefore, making it a more adaptable tool for numerous consumer sys-

tems. Instead of requiring a very specific consumer to work with.

51

3.4.4 Managing the TAG Tool for File Generation

The integration of the TAG Tool within the project is crucial for generating the necessary re-
ports and translator files that facilitate communication between consumers and providers in
the Arrowhead system. This subsection will cover the setup and execution of the TAG Tool and
its eventual integration into the main DTM Python script, "ProviderConsumerManager.py",
which was enhanced to automate these steps more efficiently.

After extracting provider XSD schema files in the first step of the main DTM script, the
TAG Tool is used to analyse these files. As the tool processes one provider-consumer pair at a
time, a batch script is designed to sequentially handle multiple provider files, producing indi-
vidual report files and translator Java classes for each provider. The steps performed by the
batch script include detecting provider files, executing the TAG Tool in a loop, and renaming
the output files accordingly.

The referenced batch file is present in Listing 3.6 was created, and it was based on the
already available original batch script for the TAG tool. This script enables the tool to process
an unlimited number of provider files sequentially, generating individual report files and trans-
lator classes for each provider-consumer pair. The modified batch file automates this process
by detecting the number of provider.xsd files in the input directory and using a for loop to
execute the TAG Tool for each file.

The batch script operates as follows:

1. Detection of Provider Files: The script first counts the number of provider.xsd files in
the input directory.

2. Execution Loop: It then enters a loop that runs for each detected provider file. For each
iteration, the TAG Tool's JAR file is executed with the relevant provider schema (pro-
vider.xsd), consumer schema (consumer.xsd), and ontology data (ontology.owl).

3. File Renaming: After each execution, the script checks if the output files (translator.java,
report.ntml, and report.json) exist. If they do, the files are renamed to correspond to

the specific provider being processed (e.g., translator1.java, report1.json, etc.).

52

the

In a practical scenario where there are three provider schema files in the input directory,
TAG Tool will run three times, generating separate output files for each provider:
e For provider1.xsd, it will generate translator1.java, report1.json, and report1.html.
e For provider2.xsd, it will generate translator2.java, report2.json, and report2.html.
e For provider3.xsd, it will generate translator3.java, report3.json, and report3.html.

It's important to note that while the report.html files are produced by the TAG Tool too,

they are not directly relevant to the provider selection process. However, their generation does

not pose any issues for the execution of the script, and the html interface provides a visually

appealing format of the report.

VWoOoONOUVTDSwWNER

35.
36.
37.

. @echo off

setlocal enabledelayedexpansion

if "%~1t=="" (
echo No provider IDs specified.
pause
exit /b

)

:: Change to the output directory

. cd /d D:\TranslatorTool\consumerMetadaTAG2\src\main\TAG-tool
. echo Processing specified provider files...

. for %%i in (%*) do (

echo Processing provider%%i.xsd
java -jar TAG-tool.jar *
--providerData="provider%%i.xsd" *
--providerType=file "
--consumerData="consumer.xsd" *
--consumerType=file *
--ontologyData="ontology.owl" *
--ontologyType=file "
--outType=file *

--outDirectory=.

if exist translator.java (
ren translator.java translator%%i.java
)
if exist report.html (
ren report.html report’%%i.html
)

if exist report.json (
ren report.json report%%i.json
)
)

echo Done processing specified provider files.

Listing 3.6 - One of the DTM batch files, used for processing each provider - upgraded from the original TAG ver-

sion

To streamline the workflow and reduce the number of batch files required, the execution

of the TAG Tool was integrated directly into the "ProviderConsumerManager" python script,

eliminating the need for an external batch file. This integration was achieved by using Python’s

53

subprocess module, which makes the process more flexible and easier to manage within a
single script.

The function responsible for this process, "run_translator_tool", accepts three key param-
eters: providers, "input_directory”, and "jar_path". The provider’'s parameter is a dictionary that
contains the necessary information for each provider, including their associated XSD file paths.
This function is visible in Listing 3.7. It calls the TAG Tool using "subprocess.run()". The com-
mand executed via "subprocess.run()" mirrors the same functionality previously handled by a
batch file but with added benefits. The process allows for dynamic error handling and logging
within the Python script itself. With "capture_output=True", the tool's output (including errors)
is captured, making it easier to debug and diagnose any issues that arise during execution.

After the TAG Tool processes each provider, the generated files ("translator.java", "re-
port.json”, and "report.html") are renamed to include a sanitized version of the provider’'s URL,
sanitized simply meaning the names have no invalid characters, which would be common for
files named after URIs. This ensures that the output files for each provider are clearly identified
and associated with the correct provider in a structured manner.

Using Python’s subprocess module offers several advantages over the original batch file
approach. First, it introduces cross-platform compatibility, as Python can run on various oper-
ating systems, unlike a batch script which is limited to Windows environments. And it was also
a way to explore Python possibilities, therefore acquiring useful knowledge for the next devel-

opment steps.

54

1. def run_translator_tool(providers, input_directory, jar_path):
2 consumer_data = os.path.join(input_directory, "consumer.xsd")
3. ontology data = os.path.join(input_directory, "ontology.owl")
4.
5. for provider_url, provider_data in providers.items():
6. provider_file path = os.path.join(input_directory, provider_data['pro
vider_file_name'])
7. with open(provider_file path, 'wb') as file:
8. file.write(provider_data['provider_content'])
9. print(f"Running TAG-tool for provider with URL {provider_url}")
10. result = subprocess.run([
11. 'java', '-jar', jar_path,
12. '--providerData="' + provider_file_path,
13. '--providerType=file',
14. '--consumerData=" + consumer_data,
15. '--consumerType=file',
16. '--ontologyData=" + ontology data,
17. '--ontologyType=file',
18. '--outType=file’,
19. '--outDirectory="' + input_directory
20.], capture_output=True, text=True)
21.
22. if result.returncode != 0:
23. print(f"Error running TAG-tool for provider {provider_url}: {result.stderr}")
24. else:
25. print(f"TAG-tool output: {result.stdout}")
26.
27. sanitized_url = sanitize_filename(provider_url)
28. translator_java_path = os.path.join(input_directory, "translator.java")
29. if os.path.exists(translator_java_path):
30. os.rename(translator_java_path, os.path.join(input_directory, f"translator_{san-
itized_url}.java"))
31. report_html_path = os.path.join(input_directory, "report.html")
32. if os.path.exists(report_html_path):
33. os.rename(report_html_path, os.path.join(input_directory, f"report_{sani-
tized_url}.html"))
34. report_json_path = os.path.join(input_directory, "report.json")
35. if os.path.exists(report_json_path):
36. os.rename(report_json_path, os.path.join(input_directory, f"report_{sani-

tized_url}.json"))

Listing 3.7 - Method for executing the TAG Tool

The TAG Tool itself can be somewhat slow when processing new providers, meaning that
as the number of available providers increases, the execution time will also increase. In scenar-
ios where a large number of providers are included in the most recent orchestration message,
this can lead to higher-than-ideal execution times, from testing responses execution times
went as up as 5 seconds for each provider. Therefore, it would be beneficial to implement a
system that avoids reprocessing providers that have already been analysed by the TAG Tool,
unless there has been a change in one of the provider's metadata. This metadata changes
detection feature for each and every previously registered provider is also implemented.

To address this, a dynamic approach is suggested. By storing the relevant information
from previous TAG Tool runs in a database, the system could avoid unnecessary re-executions,

thereby significantly speeding up the provider selection process. This is of special relevance as

55

the TAG Tool's execution is currently the most time-consuming part of the entire process. In-
corporating a database to track and manage processed providers would optimize the system's

performance and ensure that only new or updated providers are re-evaluated.

3.4.5 Dynamic selection of the most appropriate provider

Selecting the most appropriate provider is crucial for ensuring that the consumer's needs are
optimally met, as different consumers may have varying requirements. While multiple provid-
ers may be suitable for a particular consumer, the challenge is selecting the "best" provider
from the available options. The provider information file, generated by the Consumer Arrow-
head system, offers a list of potential providers. For each provider, schema files are generated,
followed by a detailed report for each one.

Understanding the content of these JSON report files is essential in determining what
makes a provider "good" or appropriate for a specific consumer. Figure 3.5, (a snippet of the
report in HTML format) illustrates a section of such a report. This section first indicates whether
a translation for the provider message, based on its metadata, is possible. While this is an
important factor, it is not enough to make an informed decision; a more detailed analysis of

the report is required.

5. Semantic Translator
5.1 Pairing Summary TRANSLATION POSSIBLE

Provider Minimum Maximum
Consumer Element(s) Needed Needed Provided
Element Name Consumer Element Annotation Name Provider Element(s) Annotations Elements Elements Elements Status

1

<]

Temperature

[TemperatureSs

<]

a a

sensordtemp TemperatureSensor{d)/hasDecValue N/A N/A

Figure 3.5 - TAG generated html report

In the report, the key fields to focus on are the "Minimum Needed Elements" and "Pro-
vided Elements.” The "Minimum Needed Elements" field indicates the essential elements re-
quired for translation. If the required elements (those marked as "1" in the "Minimum Needed
Elements" column) are met (i.e,, there is a corresponding "1" in the "Provided Elements" col-
umn), it is reasonable to assume that the translation is feasible. However, the goal is not only
to meet the minimum requirements but also to assess how many additional, non-essential
elements the provider can satisfy.

For example, if a provider grants one extra provided element, beyond the minimum re-

quirements, this could indicate an additional capability that enhances the system's

56

performance. In a practical case, imagine an air conditioning (AC) system that requires at least
two sensor readings to function but can utilize up to five for maximum efficiency. While the
system will work with the two required sensors, using additional sensors could improve its
overall performance. Hence, a provider that offers more than the required two sensor readings
would be more advantageous than one offering only the minimum, making it the preferred
choice.

To implement this selection process, a method was developed to choose the provider
based on the number of "1"s in the "Provided Elements” column. The script responsible for this
selection is called the Provider Analyser, developed in Python and illustrated in Listing 3.8. This
script operates on the JSON version of the report, as JSON is straightforward to analyse using

Python libraries.

Workflow of the Provider Analyser Script:
1. Configuration Loading:

o The script begins by reading the "config.json" file (line 43), which contains the
database configuration (e.g., the path for SQLite) and the output directory. The
output directory is the folder where the system will place the selected provider's
translator class. Typically, this would be the TAG Translator folder.

2. Database Interaction:

o The script connects to the database and retrieves the relevant report JSON files
for all providers. These reports contain detailed information on how well each
provider meets the consumer's needs as explained above.

3. Analysis and Selection:

o Each provider's report is analysed to count how many elements in the "Provided
Elements" field have a value of 1 (lines 51 to 58). This count reflects how many
of the essential and additional elements the provider can fulfil. The provider
with the highest count of 1s is selected as the most appropriate provider for the
consumer.

4. Retrieving and Saving Files:

o Before saving the new translator file and provider schema, the script deletes any
outdated files (function at line 24) from the output directory that start with the
file prefix, ensuring that old data doesn't interfere with the new execution. Once

the most suitable provider is determined, the corresponding translator file and

57

provider schema are retrieved from the database and saved to the output di-

rectory. The files are renamed appropriately for further use in the system.

1. import os
2. import json
3. import sqlite3
4. import re
5.
6. def load_config(config file):
7. with open(config_file, 'r') as file:
8. return json.load(file)
9.
10. def analyze_report(report_content):
11. data = json.loads(report_content)
12. translator = data.get("translator", [])
13. count_provided_1 = sum(1 for entry in translator if entry.get("provided") == "1")
14. return count_provided_1
15.
16. def get_provider_data_from_db(conn):
17. cursor = conn.cursor()
18. cursor.execute("SELECT provider_url, report_content, translator_content, provider_file_name,
provider_content FROM ProviderInfo WHERE report_content IS NOT NULL")
19. return cursor.fetchall()
20.
21. def sanitize_filename(url):
22. return re.sub(r'[\\/:"*?<>[]+"', '_', url)
23.
24. def delete_old_files(output_directory, file_prefix):
25. for filename in os.listdir(output_directory):
26. if filename.startswith(file_prefix):
27. file_path = os.path.join(output_directory, filename)
28. os.remove(file_path)
29. print(f"Deleted old file: {filename}")
30.
31. def remove_package_generated(file_path):
32. with open(file_path, 'r') as file:
33. lines = file.readlines()
34.
35. cleaned_lines = [line for line in lines if "package generated;" not in line]
36.
37. with open(file_path, 'w') as file:
38. file.writelines(cleaned_lines)
39.
40. print(f"Removed 'package generated;' lines from {file_path}")
41.
42. if __name__ == "__main__":
43. config = load_config('config.json")
44. output_directory = config.get("output_directory")
45. db_path = config.get("database_path")
46. conn = sqlite3.connect(db_path)
a47. provider_data = get_provider_data_from_db(conn)
48. max_count = -1
49. selected_provider_url = None
50.
51. for provider_url, report_content, translator_content, provider_file_name, provider_content in
provider_data:
52. if report_content:
53. count_1s = analyze_report(report_content)
54. print(f"Report for provider '{provider_file_name}' has {count_1s} elements with 'pro-
vided' value '1'.")
55. if count_1s > max_count:
56. max_count = count_1s
57. selected_provider_url = provider_url
58. selected_provider_file_name = provider_file_name
59. if selected_provider_url:
60. print(f"\nProvider '{selected_provider_file_name}' with URL '{selected_provider_url}' has
the maximum number of elements with 'provided' value '1': {max_count}")
61. selected_data = next(item for item in provider_data if item[@] == selected_provider_url)

58

62. translator_content = selected_data[2]

63. provider_file_name = selected_data[3]

64. provider_content = selected_data[4]

65. clean_url = sanitize_filename(selected_provider_url)

66. delete_old_files(output_directory, "Translator")

67. selected_provider_path = os.path.join(output_directory, "selected_provider.txt")
68. with open(selected_provider_path, 'w') as file:

69. file.write(selected_provider_url)

70. print(f"Selected provider URL written to {selected_provider_path}")

71.

72. if translator_content:

73. translator_content_str = translator_content.decode('utf-8")

74. destination_translator_path = os.path.join(output_directory, "Translator.java")
75. with open(destination_translator_path, 'w') as file:

76. file.write(translator_content_str)

77. print(f"Translator content written to {destination_translator_path}")

78. remove_package_generated(destination_translator_path)

79. else:

80. print(f"Translator content for provider '{selected_provider_file_name}' not found in
the database.")

81. else:

82. print("No valid report files found in the database.™)

83. conn.close()

Listing 3.8 - Script responsible for selecting providers based on the report data

3.4.6 Storing Relevant Provider Information in a Database

Storing the relevant provider files in a database is an effective way to optimize the workflow of
the Data Translation Manager by eliminating the need to repeatedly generate new files. This
method allows the system to avoid running external OS commands unnecessarily every time
the tool is executed from start to finish.
The first step in this process was determining which information was essential enough

to store in the database. The database stores three key files:

1. The provider schema (XSD),

2. The JSON report (report.json)

3. The translator Java class (Translator.java)

The HTML report is excluded from storage, as it serves a primarily visual purpose and is not
needed for any subsequent steps in provider selection.

The provider metadata is saved so that each provider can be precisely identified and
tracked. The Provider Analyzer uses this metadata during analysis, making it crucial to store
the JSON report in the database rather than relying on local files. Similarly, the translator class
is stored in the database so that the Provider Analyzer can access and copy its contents to the
specified "output directory," as the system is designed to expect these elements to be retrieved

from the database. This decision to save critical data helps prevent unnecessary clutter and

59

reduces the risk of overloading the consumer's local system with redundant files generated

upon each DTM execution.

As illustrated in Figure 3.6, which is an image taken from the app developed for data-
base visualization purposes, the database structure is straightforward: a single table is sufficient
to manage the necessary data. The table’s primary column is the provider URL, which uniquely
identifies each provider's metadata. This URL acts as a key that links to all related information
for that provider. This URL is often referred to as URI.

If any changes occur in a provider's metadata, the system automatically detects the mod-
ification during the next execution of the Data Translation Manager. The process works as fol-
lows:

o If a provider's metadata is changed or deleted, the system reruns the TAG Tool for that
provider, generating a new report and translator class. This updated information is then
saved back into the database.

e If a provider's metadata remains unchanged, the system assumes the existing database
entry is correct and skips the process of rerunning the TAG Tool, saving both time and

system resources.

In a system where there Is necessity for quick updates of provider input, this step Is con-
sidered to be of great importance, it makes the workflow much less cramped, more dynamic,
and establishes logical relations to every bit of data about each detected provider, both gath-
ered or generated. The database always contains the latest, relevant data. Furthermore, testing
of this approach in the final product revealed no errors—each time a provider was added,

removed, or changed, the system functioned correctly.

60

Provider Data Table

Provider URL Provider File Name Provider Content (Snippet) Report Content (Snipper) Translator Content (Snippet)

127.0.0.1:3021//sensor provider].xsd <7xml version="1.0"7=> <xs:schema attributeForm. {"provider™: {"TemperatureSensor {4} ":[{ "annotati package pt.uninova.ditag translator: import com.fa

127.0.0.1:8022//sensor provider2.xsd <2xml version="1.0"? <xs:schema attributeForm. .. {"provider: {"TemperatureSensor {4} ": {"annotati... | package ptuninova.ditag.translator: import com.fa...

127.0.0.1:8023 /sensor providerd.xsd 7xml version="1.0"2> <xs:schema attributeForm. .. {"provider”: | TemperatureSensor {4} ":[{"annotati... | package ptuninova.ditag.translator: import com.fa...

127.0.0.1:8024//sensor providerd.xsd 2xml version="1.0"? <xs:schema attributeForm. .. {"provider”: {"TemperatureSensor {4} ":[{"annotati... | package pt.uninova.ditag.translator; import com fa...

Figure 3.6 - Image of the database contents

3.4.7 Translation of selected provider's xml message

A POST request must be made to the provider URI in a typical use case, such as a sensor from
an air conditioning system posting its temperature readings to the provider’s URI, enabling a
consumer to later access this data. In this scenario, the consumer could be the air conditioner’s
controller system. Any type of system can post its collected data to the provider's URIs, if it
respects its message format. This is how sensor readings are registered and subsequently ac-
cessed by consumers within the Arrowhead Cloud environment. For a consumer to access the
sensor readings available at the provider's URI, a simple GET request is required.

In this project, POST requests simulating sensor readings were made using Postman, an
API development platform, and through specifically developed provider services. These ser-
vices initiate a POST request to the available provider's services that require sensor values upon
execution. Listing 3.9 shows the code responsible for adding sensor readings to providers as
an alternative to Postman. This method was employed for both testing purposes and in the
final implementation. It is crucial that the messages sent via POST requests conform to the
provider service's metadata format, nothing in the arrowhead or spring boot, as far as was
explored, verifies this is respected. This was implemented carefully, but if the message format
within the URI does not adhere to the provider’'s XSD schema, errors may occur, as the pre-
generated translator class from the TAG Tool may not be compatible with the provider's mes-

sage format.

61

1. // Auto-register sensor after application is fully started
2. @EventListener(ApplicationReadyEvent.class)
3. public void autoRegisterSensor(ApplicationReadyEvent event) {
4.
5. RestTemplate restTemplate = event.getApplicationContext().getBean(RestTemplate.class);
6. String sensorUri = "http://127.0.0.1:8023/sensor";
7. SensorRequestDTO sensorRequest = new SensorRequestDTO();
8. sensorRequest.setUnit("Cel");
9. sensorRequest.setsensorltemp(25.5F);
10. sensorRequest.setsensor2temp(22.3f);
11. sensorRequest.setsensor3temp(23.3f);
12. HttpHeaders headers = new HttpHeaders();
13. headers.set("Content-Type", "application/json");
14. HttpEntity<SensorRequestDTO> requestEntity = new HttpEntity<>(sensorRequest, headers);
15. try {
16. ResponseEntity<String> response = restTemplate.exchange(sensorUri, Http-
Method.POST, requestEntity,String.class);
17.
18. if (response.getStatusCode() == HttDTMatus.CREATED) {
19. System.out.println("Sensor registered successfully.");
20. } else {
21. System.out.println("Sensor registration failed with status code: " + re-
sponse.getStatusCode());
22.
23. } catch (Exception e) {
24. System.err.println("Error during sensor registration: " + e.getMessage());
25. }
26. }

Listing 3.9 - Method for registering a sensor reading in the "createSensor" service URI for Provider 3

After selecting the appropriate translator class generated by the TAG Tool and placing
it in the output directory, the translation node uses the desired provider message for transla-
tion according to the consumer's needs. As previously mentioned, provider messages can be
retrieved by executing GET requests to the appropriate provider service URI. With the Provider
Analyser, we can also retrieve the URL of the provider service that has the most suitable
metadata for the consumer's request. This allows the consumer to receive the URL of the pro-

vider service to which it can send GET requests.

62

In summary, the DTM receives both the translator class and the provider service message.
These are sent to the translation node, where the provider's message is translated, provided
that the message adheres to its corresponding metadata. As noted earlier, translation will al-
ways be successful if the provider's message format conforms to its own metadata.

The translation node in this project handles provider messages by executing the TAG
translator.jar, using the files located in the output directory as its required parameters for exe-
cution. This is the final step in the workflow, which begins with obtaining the orchestration
response and ends with the translation of the provider's XML message. However, merely plac-
ing the provider service XML message and the translator class into the translation node’s di-
rectory is insufficient.

Firstly, the message that comes from the consumer’s GET request to the provider is in
JSON format, as Arrowhead Spring Boot based services are expected to work with JSON format.
Therefore, a reformatting from JSON to XML of the messages from the GET request is required,
this part is also a feature of the translation node.

Second, an additional step is required to execute the correct OS commands to run TAG
translator.jar for the XML version. This step is analogous to when the TAG Tool is used to gen-
erate various JSON reports and translator classes. The script named ProviderTranslator.py,
shown in Listing 3.10, is responsible for both the JSON-to-XML reformatting and executing the
batch file to run TAG translator.jar. This script is executed after all previous scripts have com-

pleted running.

63

51.
52.

VWoONOUVAWNER

import os

import json

import xml.etree.ElementTree as ET
import subprocess

def

def

. def

. def

. def

if __name__ == "__main__":

load_config(config file):
with open(config file, 'r') as file:
return json.load(file)

json_to_xml(json_content):
root = ET.Element("datavalues")

for item in json_content:
for key, value in item.items():
if key != "id":
if key == "unit":
key = "units"
ET.SubElement(root, key).text = str(value)

return ET.tostring(root, encoding='utf-8', xml_declaration=True).decode('utf-8")

write_xml_file(xml_content, output_directory):
output_file = os.path.join(output_directory, "provider.xml")
with open(output_file, 'w') as file:
file.write(xml_content)
print(f"XML saved to {output_file}")

run_batch_file(output_directory):
batch_file = os.path.join(output_directory, "TAG-translator-xml.bat")

result = subprocess.run(batch_file, cwd=output_directory, shell=True)

if result.returncode == 0:
print(f"Executed batch file: {batch_file}")
else:
print(f"Error executing batch file: {batch_file}, return code: {result.returncode}")

main():

config = load_config('config.json")
output_directory = config.get("output_directory")
input_directory = config.get("package_directory")

provider_file = os.path.join(input_directory, "provider.txt")
with open(provider_file, 'r') as file:
provider_data = json.load(file)

xml_content = json_to_xml(provider_data)
write_xml_file(xml_content, output_directory)
run_batch_file(output_directory)

main()

Listing 3.10 - Method for converting messages and executing the Translation node of the DTM

This script represents the final step in the process of translating messages into the de-

sired XML format.

64

3.4.8 Execution cycles

All the development phases detailed so far, allowed the DTM to, with just a consumer request
for the providers' service data within the AF environment, choose the best provider for the
service according to the Consumer's metadata requirements, always relying on the TAG Tool
generated data to make this decision.

Now, having selected the most appropriate provider for the service and having its mes-
sage translated, there is a necessity to make a cycle, that will allow the DTM to first, choose the
provider it wants to communicate with, and secondly automatically translate its messages. Said
cycle can be seen as an infinite loop, that keeps on re-executing in a defined number of sec-
onds and is represented on Listing 4.2.

To start the consumer, the correct path would be to know the providers currently avail-
able and choose from that list, so upon starting the consumer, a method named "sim-
pleMetadataRequest()" is called before anything else. This is the method that will create pro-
viders_info.txt. After the method returns the information file, the "runAll" batch is executed
returning the translator class, and the URI for the best provider selected with ProviderAna-
liser.py, if this is the first time running the consumer execution cycle, an interval of X seconds
is made before reaching the next step in the loop. This is so the TAG Tool has enough time to
run for the various providers available.

Now that communication with the selected provider can be started, a new method called
"getFromProvider()" is executed every Y seconds to get the message from the provider, and
the translation node is executed right after. The loop keeps executing and every (Y times 3)
seconds the Data Translation Manager will be executed again to check if there are better pro-
viders available for the desired service, or simply to verify that the best provider that was pre-
viously selected is still available and doesn't need to be removed from the database.

This concludes the development process; we can now have a complex consumer system
with an attached Data Translation Manager package that is able to search for and communicate

with providers for as long as necessary.

65

4

TESTS AND VALIDATION

Chapter 4 focuses on the testing and validation process for the newly developed DTM
system, particularly its integration with the Arrowhead Framework and the TAG Tool. The pri-
mary goal of this chapter is to demonstrate how the DTM system facilitates seamless commu-
nication between consumers and providers while ensuring data interoperability through the
translation capabilities of the TAG Tool. Each section of the chapter addresses specific aspects
of the system'’s functionality, from setting up the environment, validating provider selection
processes, to ensuring successful metadata exchange between different systems.

For this chapter, the features implemented in the previous chapter will be validated by
conducting a series of sequential tests. Each implemented step will be individually tested and
validated by analysing the response logs from the system’s execution and reviewing figures
that showcase the results across different system interfaces.

The testing process begins with registering several providers in the Arrowhead cloud
system, ensuring they are accurately detected and processed by the DTM system. This regis-
tration is followed by tests that evaluate the system'’s ability to dynamically select the most
appropriate provider for the consumer based on the metadata and requirements. The final step
of the testing cycle focuses on validating the message translation process, ensuring that the
selected provider's data can be successfully translated.

Through detailed testing scenarios, the chapter will highlight the system's capacity to
adapt in real-time to changes in provider availability, while also validating its ability to manage
complex data transformation requirements. This ensures that the DTM system not only selects

the best provider but also ensures interoperability between systems with differing metadata.

66

4.1 Arrowhead Setup

An Arrowhead cloud, in the Arrowhead Management Tool app, named "Nunes2.Afonso" was
created for the purpose of deploying the Consumer and Providers. This Arrowhead cloud was
created with the core services the AF demands, with Service Discovery being the exception as
it is a part of the Orchestrator core service in this case.

After creating the cloud, it must be prepared to handle systems and services by ensuring
that its core services are up and running. The three core services were therefore executed in
sequence: first, the Service Registry (Figure 4.1), followed by the Orchestrator (Figure 4.2) and
finally, the Authorization (Figure 4.3).

- serviceregistry

main] e
main]
main]

main] .

main] e

main] S stry : a ! stryMain in 3 7 second

Figure 4.1 - Service Registry registration logs

67

B orchestrator

main] e

main] 0
main] e Check fig = S C io justed with

ATOR

.a.c.Applicat
pplicat

Figure 4.2 - Orchestrator registration logs

main]

\nu|
main] e

main
main

publ

main] e.a.c.a.Auth ionMain : Star hor ionMain in 28.482 secon

Figure 4.3 - Authorization registration logs

It is important to note that this cloud setup was completed in the early stages of the
work and has been consistently used throughout the tests and development steps described
earlier. However, this section specifically focuses on validating the cloud’s availability and con-

firming that its core mandatory services are properly functioning.

4.2 Provider Registration

To initiate the testing process, four Providers were created and executed to be registered in
the Arrowhead cloud GUI (Graphical user interface), as shown in Figure 4.5. For the example in

this testing section, the providers offer sensor services. As previously mentioned, each provider

68

automatically registers its own system and available sensor services in the Arrowhead environ-
ment, as shown in Figure 3.4.

The console responses and the command used to run "Provider2" can be seen in Figure
4.4. All used providers have a similar registration or initialization process. The following Figure
represents the initialization of "Provider2", not its registration, it had already been registered

in the Arrowhead cloud in a previous development testing process.

Figure 4.4 - Provider 2 initialization

69

Selected Cloud

Nunes2.Afonso
ARROWHEAD

Common name: Nunes2.Afonso

Tool version: V200 Systems
For Arrowhead: v4.4.0+
Filter: Name Address

(@ Dashboard

B serviceRegistry A Address Actions

« Service Definitions orchestrator 192.168.92.1 * O

authorization 192.168.92.1 * O
* Services

+ Interfaces consumerpstv1 127.0.0.1

. Log
provider2

\| Authorization

* Intracloud Rules provider1

« Log
provider3 127.0.0.1

{. Orchestrator

providerd 127.001

serviceregistry 192.168.92.1

Figure 4.5 - Arrowhead Cloud's system dashboard

Once registered, these specific providers make an automatic POST request to their re-
spective sensor service URIs, emulating a sensor reading. This process can be looped to mimic
multiple sensor readings as if real-time data is being collected by a sensor. For simplicity in this
demonstration, the same sensor reading is used repeatedly—in this case, temperature sensor
readings. The results of these POST requests made to the providers’ sensor service URIs are

equal to those presented in the following Figures.

C N © 127001

"id . 1,

"sensorltemp”:

"sensor2temp”:

"unit":

Figure 4.6 - Provider 1 "createSensor" URI

70

C QO © 127001

"id": 1,

"sensorltemp”: 25.5,

“"sensor2temp”: 22.3,

"unit":

"id": 1,

"sensorltemp" :
"sensor2temp" :
"sensor3temp" :

"unit":

Figure 4.8 - Provider 3 "createSensor" URI

4.3 Consumer's Request (consumer-arrowhead)

The consumer system was manually registered, and intracloud rules were established to
enable communication with the Arrowhead Orchestrator. These rules allowed the consumer to
interact with the provider sensor services called "createSensor()" for each of the four providers,

as illustrated in Figure 4.9.

71

Intracloud Authorization Rules

Filter: ‘ Consumer System ‘ ‘ Provider System ‘ ‘ Service Definition

Consumer System Provider System Service Definition Actions

consumerpstv1 provider2 create-sensor n]

consumerpstv1 provider1 create-sensor a

consumerpstv1 provider3 create-sensor

consumerpstv1 provider4 create-sensor

Figure 4.9 - Established intracloud rules

Next, the consumer calls the method "listConsumerMetadata()" to collect metadata from
the providers' sensor services, generating a "provider_info.txt" file containing information on
each provider. A snippet of this file’s contents is shown in Listing 4.1, which was cut at line 37,
where diverse Provider service information fields can be seen, such as its Provider system SR
name (lines 5 and 35), the services URIs (also lines 5 and 35), its ontologies id (line 8) and finally
its metadata schemas starting at line 10.

For simplicity and for the purposes of this test, the example providers' metadata is largely
similar, with minor differences such as their message formats. The key difference between the

providers' "createSensor()" services is the number of sensor readings they offer.

R e L)
2. providers for simpleRequest:

3. Provider Name URL Port

T e e
5. provider2 127.0.0.1:8022//sensor 8022

6. Metadata:

7 http-method : POST

8. ontology-id : ontology-1

10. xsd-schemal ¢ <?xml version="1.0"?>

11. <xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"” xmlns:a3st="http://gres.uninova.pt/a3st"
xmlns:sawsdl="http://www.w3.0org/ns/sawsdl">

12. <xs:element name="datavalues">

13. <xs:complexType>

14. <xs:sequence>

15. <xs:element type="xs:string" name="units" sawsdl:modelReference="/TemperatureSen-
sor{1;2}/hasTempUnits/TemperatureUnits{1}" a3st:mdi-ref="1;2"/>

16. <xs:element type="xs:float" name="sensorltemp" sawsdl:modelReference="/TemperatureSen-
sor{1}/hasDecValue" minOccurs="1"/>

17. <xs:element type="xs:float" name="sensor2temp" sawsdl:modelReference="/TemperatureSen-
sor{2}/hasDecValue" minOccurs="1"/>

18. <xs:element type="xs:byte" name="relaylstate"/>

19. <xs:element type="xs:byte" name="relay2state"/>

20. </xs:sequence>

21. </xs:complexType>

22. </xs:element>

23. <xs:annotation>

24. <xs:appinfo>

72

25. <a3st:map-data-ind a3st:mdi-id="1" a3st:individual="Fahrenheit">F</a3st:map-data-ind>
26. <a3st:map-data-ind a3st:mdi-id="2" a3st:individual="Celsius">C</a3st:map-data-ind>

27. <a3st:comp-property-value type="xs:float" a3st:property="/TemperatureSensor{1l}/haslLoca-
tion/Latitude{1}[hasLocUnits/LocationUnits{1}/hasIndividual/DD]/hasDecValue"
a3st:value="38.659963"/>

28. <a3st:comp-property-value type="xs:float" a3st:property="/TemperatureSensor{l}/haslLoca-
tion/Longitude{1}[hasLocUnits/LocationUnits{1}/hasIndividual/DD]/hasDecValue" a3st:value="-
9.203966" />

29. <a3st:comp-property-value type="xs:float" a3st:property="/TemperatureSensor{2}/haslLoca-
tion/Latitude{2}[hasLocUnits/LocationUnits{1}/hasIndividual/DD]/hasDecValue"
a3st:value="38.659571"/>

30. <a3st:comp-property-value type="xs:float" a3st:property="/TemperatureSensor{2}/haslLoca-
tion/Longitude{2}[hasLocUnits/LocationUnits{1}/hasIndividual/DD]/hasDecValue" a3st:value="-
9.203929"/>

31. </xs:appinfo>

32. </xs:annotation>

33. </xs:schema>

34.

35. provider3 127.0.0.1:8023//sensor 8024

36. Metadata: (..)

Listing 4.1- Provider information file contents

In Listing 4.2, a snippet of the main cycle from the consumer's main class is provided for

visual reference.

1. @Override

2. public void run(final ApplicationArguments args) throws Exception {

3. while(true){

4. if (k == 0)

5. {

6. listConsumerMetadata();

7. }

8. if (k % 3 == 0)

9. {
10. simpleMetadataRequest();
11. try {
12. Runtime.getRuntime().exec("cmd /c start \"\" " + runAllBatPath);
13. } catch (IOException e) {}
14. //0nly in the first time since the info was not stored in the database yet
15. if (firstTime == 1){
16. Thread.sleep(10000);
17. firstTime = 0;
18. }
19. }
20. getFromUri(selectedProviderUrlFile);
21. //RUN TRANSLATION NODE HERE
22. try {
23. Runtime.getRuntime().exec("cmd /c start \"\" " + translateBatPath);
24. } catch (IOException e) {}
25.
26. k =k + 1;
27. Thread.sleep(3000);
28. }

Listing 4.2 - Consumer execution cycle

73

44 Consumer-DTM Interaction and results

It is important to note that none of the provider services in this test could communicate
directly with the consumer using just the Arrowhead services. This is because the message
schemas of the providers do not exactly match the consumer's schema. The DTM selection
process and the use of the TAG tool enable communication by bridging this gap.

After retrieving the provider and consumer metadata and storing them in their respective
files, the "runAll" batch file is executed. The TAG tool transitions from not having it's necessary
inputs to containing the provider and consumer schema files, as shown in Figure 4.10. The

following CMD logs in Listing 4.3 show the program's results.

main
v ditag-tool
ditag-tool.jar

ontology.owl
“ src'y main
v ditag-tool
consumer.xsd

ditag-tool jar

ontology.owl

provider1.xsd
provider2.xsd

provider3.xsd

Figure 4.10 - TAG directory contents, before and after

Since only three sensor services are online at this stage of testing, it is expected that only
three will be detected and processed by TAG. The tool generates reports and translators for
these services, which are then stored in the DTM database. For easier visualization, large files

are cut into snippets. The results stored in the database are displayed in Figure 4.11.

Filtered and formatted consumer XSD saved to D:/TranslatorTool/consumerMetadaTAG2/src/main/TAG-
tool\consumer.xsd

Processing provider: providers with URL: for

Processing provider: provider2 with URL: 127.0.0.1:8022//sensor

Generated provider2.xsd

Processing provider: providerl with URL: 127.0.0.1:8021//sensor

Generated providerl.xsd

Processing provider: provider3 with URL: 127.0.0.1:8023//sensor

Generated provider3.xsd

74

Processed Providers: []

Unprocessed Providers: ['127.0.0.1:8022//sensor', '127.0.0.1:8021//sensor’,
'127.0.0.1:8023//sensor "]

Providers with changed metadata: []

Running TAG-tool for provider with URL 127.0.0.1:8022//sensor

TAG-tool output: {annotation=/TemperatureSensor/hasTempUnits/TemperatureUnits/hasIndividual/Cel-
sius, path=/datavalues[1,1], name=units}=[{annotation=/TemperatureSensor/hasTempUnits/Tempera-
tureUnits/hasIndividual/Celsius, path=/datavalues[1,1], name=sensorltemp}]
{annotation=/TemperatureSensor{1l}/hasDecValue, path=/datavalues[1,1], name=sensorltemp}=[{anno-
tation=/TemperatureSensor{l}/hasDecValue, path=/datavalues[1,1], name=sensorltemp}]
{annotation=/TemperatureSensor{2}/hasDecValue, path=/datavalues[1,1], name=sensor2temp}=[{anno-
tation=/TemperatureSensor{2}/hasDecValue, path=/datavalues[1,1], name=sensor2temp}]
{annotation=/TemperatureSensor{3}/hasDecValue, path=/datavalues[1,1], name=sensor3temp}=]]
{annotation=/TemperatureSensor{4}/hasDecValue, path=/datavalues[1,1], name=sensordtemp}=|]

Running TAG-tool for provider with URL 127.0.0.1:8021//sensor

TAG-tool output: {annotation=/TemperatureSensor/hasTempUnits/TemperatureUnits/hasIndividual/Cel-
sius, path=/datavalues[1,1], name=units}=[{annotation=/TemperatureSensor/hasTempUnits/Tempera-
tureUnits/hasIndividual/Celsius, path=/datavalues[1,1], name=sensorltemp}]
{annotation=/TemperatureSensor/hasTempUnits/TemperatureUnits/hasIndividual/Fahrenheit,
path=/datavalues[1,1], name=units}=[{annotation=/TemperatureSensor/hasTempUnits/Temperature-
Units/hasIndividual/Fahrenheit, path=/datavalues[1,1], name=units}]
{annotation=/TemperatureSensor{1l}/hasDecValue, path=/datavalues[1,1], name=sensorltemp}=[{anno-
tation=/TemperatureSensor{1}/hasDecValue, path=/datavalues[1,1], name=sensorltemp}]
{annotation=/TemperatureSensor{2}/hasDecValue, path=/datavalues[1,1], name=sensor2temp}=[{anno-
tation=/TemperatureSensor{2}/hasDecValue, path=/datavalues[1,1], name=sensor2temp}]
{annotation=/TemperatureSensor{3}/hasDecValue, path=/datavalues[1,1], name=sensor3temp}=]]
{annotation=/TemperatureSensor{4}/hasDecValue, path=/datavalues[1,1], name=sensordtemp}=[]

Running TAG-tool for provider with URL 127.0.0.1:8023//sensor

TAG-tool output: {annotation=/TemperatureSensor/hasTempUnits/TemperatureUnits/hasIndividual/Cel-
sius, path=/datavalues[1,1], name=units}=[{annotation=/TemperatureSensor/hasTempUnits/Tempera-
tureUnits/hasIndividual/Celsius, path=/datavalues[1,1], name=sensorltemp}]
{annotation=/TemperatureSensor/hasTempUnits/TemperatureUnits/hasIndividual/Fahrenheit,
path=/datavalues[1,1], name=units}=[{annotation=/TemperatureSensor/hasTempUnits/Temperature-
Units/hasIndividual/Fahrenheit, path=/datavalues[1,1], name=units}]
{annotation=/TemperatureSensor{1l}/hasDecValue, path=/datavalues[1,1], name=sensorltemp}=[{anno-
tation=/TemperatureSensor{l}/hasDecValue, path=/datavalues[1,1], name=sensorltemp}]
{annotation=/TemperatureSensor{2}/hasDecValue, path=/datavalues[1,1], name=sensor2temp}=[{anno-
tation=/TemperatureSensor{2}/hasDecValue, path=/datavalues[1,1], name=sensor2temp}]
{annotation=/TemperatureSensor{3}/hasDecValue, path=/datavalues[1,1], name=sensor3temp}=[{anno-
tation=/TemperatureSensor{3}/hasDecValue, path=/datavalues[1,1], name=sensor3temp}]
{annotation=/TemperatureSensor{4}/hasDecValue, path=/datavalues[1,1], name=sensordtemp}=|]

Processing provider: provider2.xsd with URL: 127.0.0.1:8022//sensor

Looking for report file at: D:/TranslatorTool/consumerMetadaTAG2/src/main/TAG-tool\re-
port_127.0.0.1_8022_sensor.json

Looking for translator file at: D:/TranslatorTool/consumerMetadaTAG2/src/main/TAG-tool\Transla-
tor_127.0.0.1_8022_sensor.java

Loaded report content for 127.0.0.1_8022_sensor

Loaded translator content for 127.0.0.1_8022_sensor

Deleted report file for 127.0.0.1_8022_sensor

Deleted translator file for 127.0.0.1_8022_sensor

Deleted HTML report file for 127.0.0.1_8022_sensor

Processing provider: providerl.xsd with URL: 127.0.0.1:8021//sensor

Looking for report file at: D:/TranslatorTool/consumerMetadaTAG2/src/main/TAG-tool\re-
port_127.0.0.1 8021 _sensor.json

Looking for translator file at: D:/TranslatorTool/consumerMetadaTAG2/src/main/TAG-tool\Transla-
tor_127.0.0.1_8021_sensor.java

Loaded report content for 127.0.0.1_8021_sensor

Loaded translator content for 127.0.0.1_8021_sensor

Deleted report file for 127.0.0.1_8021 sensor

Deleted translator file for 127.0.0.1_8021_sensor

Deleted HTML report file for 127.0.0.1_8021 sensor

Processing provider: provider3.xsd with URL: 127.0.0.1:8023//sensor

Looking for report file at: D:/TranslatorTool/consumerMetadaTAG2/src/main/TAG-tool\re-
port_127.0.0.1_8023_sensor.json

75

Looking for translator file at: D:/TranslatorTool/consumerMetadaTAG2/src/main/TAG-tool\Transla-
tor_127.0.0.1_8023_sensor.java

Loaded report content for 127.0.0.1_8023 sensor

Loaded translator content for 127.0.0.1_8023_sensor

Deleted report file for 127.0.0.1_8023 sensor

Deleted translator file for 127.0.0.1_8023_sensor

Deleted HTML report file for 127.0.0.1_8023 sensor

Database updated. Missing providers deleted.

Running ProviderAnalyzer.py...

Report for provider 'provider2.xsd' has 3 elements with 'provided' value '1'.
Report for provider ‘'providerl.xsd' has 4 elements with 'provided' value '1'.
Report for provider 'provider3.xsd' has 5 elements with 'provided' value '1'.

Provider 'provider3.xsd' with URL '127.0.0.1:8023//sensor' has the maximum number of elements
with ‘provided' value '1': 5

Deleted old file: Translator.java

Selected provider URL written to D:/TranslatorTool/consumerMetadaTAG2/src/main/TAG-transla-
tor\selected_provider.txt

Translator content written to D:/TranslatorTool/consumerMetadaTAG2/src/main/TAG-transla-
tor\Translator.java

Removed 'package generated;' lines from D:/TranslatorTool/consumerMetadaTAG2/src/main/TAG-trans-
lator\Translator.java

Listing 4.3 - Console Logs for DTM's first execution in this testing section

Provider Data Table

Provider URL Provider File Name Provider Content (Snippet) Report Content (Snippet) Translator Content (Snipper)

127.0.0.1:8023//sensor provider3.xsd 2l version="1.0"7 <xsischema attributeForm... | {"provider”: ["TemperatureSensor |4} ".[{"annotati... | package pt.uninova.ditag.translator: import com.fa.

127.0.0.1:8022//sensor provider2.xsd 2xml version="1.0"7> <xs:schema attributeForm {"provider”: |"TemperatureSensor |4} ":[{ "annotati. package ptuninova.ditag.rranslator: import com.fa

127.0.0.1:8021//sensor providerl.xsd 7xml version="1.0"?> <xs:schema attributeForm. .. {"provider™: {"TemperatureSensor {4} ":[| "anuotati.... package pt.uninova.ditag.translator; import com.fa...

Figure 4.11 - Database Contents

As expected, only the three active providers were detected and stored in the database,
despite the fact that authorization rules had been set up for four providers. This occurred be-
cause a method was developed for the consumer to check whether a provider is actually run-
ning. If relying solely on Arrowhead, once the intracloud rules are established as seen in Figure
4.9, the metadata for all four providers would have been registered in the information file,

regardless of their online status.

4.5 DTM Translation Node

As seen Listing 4.3 above, Provider 3 was selected in this test since it fulfilled five of the con-
sumer’s requirements, more than Providers 1 and 2. The Consumer can now access Provider
3's URI using the "getFromURI()" method, which retrieves sensor readings every 3 seconds.
After each message is gathered, the Translation Node executes using the "Translate" batch file

which executes de automatically generated Java Translator.

76

Listing 4.4 shows the response from running the Translation Node, which results in
translated messages in both XML and JSON formats. In Figure 4.12, the original XML message
made from the GET request to a provider, in Figure 4.13 the translated results are displayed.

Logs from the Arrowhead Consumer are also included in Figure 4.14.

Running ProviderTranslator.py...

XML saved to D:/TranslatorTool/consumerMetadaTAG2/src/main/TAG-translator\provider.xml
Executed batch file: D:/TranslatorTool/consumerMetadaTAG2/src/main/TAG-translator\TAG-transla-
tor-xml.bat

Listing 4.4 - Console log responses for executing the translator

version='1.8" encoding="utf-8'

version="1.0" encoding="UTF-8" standalone="
"units”: "Cel",
s>Cel 1 “sensorl": 25.5,
25.5 ' "sensor2": 22.3,

22.3 " ", .
23.3 sensor3 : 23.3

Figure 4.13 - Translated messages for XML and JSON, respectively

Performing GET request to URI: 127.0.0.1:80823//sensor

GET request to 127.0.0.1:8023//sensor

Response: [{"id":1,"sensorltemp”:25.5,"sensor2temp”:22.3, " "sensor3temp”:23.3, " "unit":"cel"}]

Unfiltered JSON saved successfully to provider.txt

Figure 4.14 - GET request to the Selected Provider's Service

77

4.6 Cycle Repetition Testing

This section describes the Cycle Repetition Testing for the DTM system, focusing on its
operation during different scenarios that impact provider availability and selection. The execu-
tion loop for the entire DTM system can be seen in Listing 4.2. Every nine seconds (3000 milli-
seconds times three), the DTM system is triggered to check for new providers or changes in
the status of existing ones. This ensures that the Consumer is always establishing updated
connections with the best provider that is currently online, maintaining real-time responsive-
ness. The tests verify that the DTM system continually reacts to provider status changes, keep-

ing the connections between consumers and providers optimized and updated.

4.6.1 No new Providers available

In this scenario, all the previously online providers stay online, and no new ones come online.
This means the database already has all the necessary information about the currently online
Providers. The DTM system already has up-to-date information; therefore, it does not trigger
another TAG execution.

Listing 4.5 showcases the logs for this scenario.

Running ProviderConsumerManager.py...

Filtered and formatted consumer XSD saved to D:/TranslatorTool/consumerMetadaTAG2/src/main/TAG-
tool\consumer.xsd

Processing provider: providers with URL: for

Processing provider: provider2 with URL: 127.0.0.1:8022//sensor

Generated provider2.xsd

Processing provider: providerl with URL: 127.0.0.1:8021//sensor

Generated providerl.xsd

Processing provider: provider3 with URL: 127.0.0.1:8023//sensor

Generated provider3.xsd

Processed Providers: ['127.0.0.1:8022//sensor', '127.0.0.1:8021//sensor', '127.0.0.1:8023//sen-
sor']

Unprocessed Providers: []

Providers with changed metadata: []

Database updated. Missing providers deleted.

Running ProviderAnalyzer.py...

Report for provider ‘'provider2.xsd' has 3 elements with 'provided' value '1'.

Report for provider 'providerl.xsd' has 4 elements with 'provided' value '1'.

Report for provider ‘'provider3.xsd' has 5 elements with 'provided' value '1'.

Provider 'provider3.xsd' with URL '127.0.0.1:8023//sensor' has the maximum number of elements
with ‘provided' value '1': 5

Deleted old file: Translator.java

Selected provider URL written to D:/TranslatorTool/consumerMetadaTAG2/src/main/TAG-transla-
tor\selected_provider.txt

Translator content written to D:/TranslatorTool/consumerMetadaTAG2/src/main/TAG-transla-
tor\Translator.java

Removed 'package generated;' lines from D:/TranslatorTool/consumerMetadaTAG2/src/main/TAG-trans-
lator\Translator.java

Listing 4.5 - Logs for no new providers scenario

78

As expected, the providers' service data, both from DTM and Arrowhead, was already
stored in the database. This confirms that the providers were registered as "Processed Provid-
ers" with unchanged metadata, and thus, the TAG execution was skipped. Provider 3 remained

the selected provider, saving significant execution time.

4.6.2 New Provider Available

If a new Provider 4 were to go online, it would be detected as a new unprocessed provider and
the TAG would execute a single time, resulting in a new provider being added to the database
and the Processed Providers list. The logs would be those in

Listing 4.6 below:

Running ProviderConsumerManager.py. ..
Filtered and formatted consumer XSD saved to D:/TranslatorTool/consumerMetadaTAG2/src/main/TAG-
tool\consumer.xsd
Processing provider: providers with URL: for
Processing provider: provider2 with URL: 127.0.0.1:8022//sensor
Generated provider2.xsd
Processing provider: providerl with URL: 127.0.0.1:8021//sensor
Generated providerl.xsd
Processing provider: provider3 with URL: 127.0.0.1:8023//sensor
Generated provider3.xsd
Processing provider: provider4 with URL: 127.0.0.1:8024//sensor
Generated provider4.xsd
Processed Providers: ['127.0.0.1:8022//sensor', '127.0.0.1:8021//sensor', '127.0.0.1:8023//sen-
sor']
Unprocessed Providers: ['127.0.0.1:8024//sensor']
Providers with changed metadata: []
Running TAG-tool for provider with URL 127.0.0.1:8024//sensor
Error running TAG-tool for provider 127.0.0.1:8024//sensor: log4j:WARN No appenders could be
found for logger (com.hp.hpl.jena.util.FileManager).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
Exception in thread "main" java.lang.NullPointerException: Cannot invoke "pt.un-
inova.TAG.tool.schema.SchemaNode.getValue(String)" because the return value of "pt.un-
inova.TAG.tool.schema.SchemaNode.getMatch()" is null
at pt.uninova.TAG.tool.translator.TranslatorCreator.generateIndividialPairings(Transla-
torCreator.java:99)
at pt.uninova.TAG.tool.translator.TranslatorCreator.<init>(TranslatorCreator.java:78)
at pt.uninova.TAG.tool.SemanticEngine.runEngine(SemanticEngine.java:103)
at pt.uninova.TAG.tool.Executor.run(Executor.java:121)
at pt.uninova.TAG.tool.Executor.main(Executor.java:84)

Processing provider: provider4.xsd with URL: 127.0.0.1:8024//sensor

Looking for report file at: D:/TranslatorTool/consumerMetadaTAG2/src/main/TAG-tool\re-
port_127.0.0.1_8024_sensor.json

Looking for translator file at: D:/TranslatorTool/consumerMetadaTAG2/src/main/TAG-tool\Transla-
tor_127.0.0.1_8024_sensor.java

Report file not found for 127.0.0.1_8024_ sensor

Translator file not found for 127.0.0.1_8024_sensor

Database updated. Missing providers deleted.

Running ProviderAnalyzer.py...

Report for provider 'provider2.xsd' has 3 elements with 'provided' value '1'.

Report for provider ‘'providerl.xsd' has 4 elements with 'provided' value '1'.

Report for provider 'provider3.xsd' has 5 elements with 'provided' value '1'.

79

Provider ‘'provider3.xsd' with URL '127.0.0.1:8023//sensor’' has the maximum number of elements
with 'provided' value '1': 5

Deleted old file: Translator.java

Selected provider URL written to D:/TranslatorTool/consumerMetadaTAG2/src/main/TAG-transla-
tor\selected_provider.txt

Translator content written to D:/TranslatorTool/consumerMetadaTAG2/src/main/TAG-transla-
tor\Translator.java

Removed 'package generated;' lines from D:/TranslatorTool/consumerMetadaTAG2/src/main/TAG-trans-
lator\Translator. java

Listing 4.6 - Logs for one new provider scenario

As confirmed, only one new provider was detected, listed under "Unprocessed Provid-
ers,” meaning only a single execution of the TAG was required. However, this provider's
metadata could not be processed by the TAG because it did not meet the minimum consumer
requirements. As a result, the outcome remained unchanged, with Provider 3 still being the
best option. In Figure 4.15, the updated database is displayed, showing empty fields for the

report and translator associated with Provider 4, as the TAG was unable to generate them.

Provider Data Table
Provider URL Provider File Name Provider Content (Snippet) Report Content (Snippet) Translator Content (Snippet)
127.0.0.1:8022//sensor provider2.xsd ?xml version="1.0"7> <xs:schema attributeForm. .. {"provider”: |" TemperatureSensor {4} [{ "annotati.... package ptuninova.ditag.translator; import com.fa...
127.0.0.1:8021 //sensor providerl xsd 2xml version="1.0"7> <xs:schema attributeForm {"provider”: |" TemperatureSensor {4} [{ "annotati... package pt.uninova.ditag.translator; import com.fa...
127.0.0.1:8023//sensor provider3 xsd *xml version="1.0"?> <xs:schema artributeForm. .. {"provider”: |"TemperatureSensor {4} [{ "annotati. package ptuninova.ditag.translator: import com.fa.
127.0.0.1:3024//sensor pm\udeu«lx;d ?xml version="1.0"?> <xs:schema attributeForm. ..

Figure 4.15 - Updated database contents

As expected, GET requests to the Provider 3 service endpoint are still made multiple times

between each DTM cycle.

80

4.6.3 Provider goes offline

Now for a final testing scenario, Provider 3 is turned off, and the results should establish a
connection to the newly selected best provider for the sensor service, either Provider 1 or Pro-
vider 2, as Provider 4 fails to meet the requirements.

Listing 4.7 shows the logs, and Figure 4.16 is an image of the updated database storage.

1. Running ProviderConsumerManager.py...
2. Filtered and formatted consumer XSD saved to D:/TranslatorTool/consumerMetada-
TAG2/src/main/TAG-tool\consumer.xsd
Processing provider: providers with URL: for
Processing provider: provider2 with URL: 127.0.0.1:8022//sensor
Generated provider2.xsd
Processing provider: providerl with URL: 127.0.0.1:8021//sensor
Generated providerl.xsd
Processing provider: provider4 with URL: 127.0.0.1:8024//sensor
Generated provider4.xsd
10. Processed Providers: ['127.0.0.1:8022//sensor', '127.0.0.1:8021//sensor’,
'127.0.0.1:8023//sensor', '127.0.0.1:8024//sensor']
11. Unprocessed Providers: []
12. Providers with changed metadata: []
13. Deleting provider with URL 127.0.0.1:8023//sensor from the database
14. Database updated. Missing providers deleted.
15. Running ProviderAnalyzer.py...
16. Report for provider 'provider2.xsd' has 3 elements with ‘provided' value '1".
17. Report for provider 'providerl.xsd' has 4 elements with 'provided' value '1'.
18. Provider 'providerl.xsd' with URL '127.0.0.1:8021//sensor' has the maximum number of ele-
ments with 'provided' value '1': 4
19. Deleted old file: Translator.java
20. Selected provider URL written to D:/TranslatorTool/consumerMetadaTAG2/src/main/TAG-transla-
tor\selected_provider.txt
21. Translator content written to D:/TranslatorTool/consumerMetadaTAG2/src/main/TAG-transla-
tor\Translator.java
22. Removed 'package generated;' lines from D:/TranslatorTool/consumerMetadaTAG2/src/main/TAG-
translator\Translator.java

OV ooNOUV b w

Listing 4.7 - Logs for one provider is shut down scenario

Provider Data Table

Provider URL Provider File Name Provider Content (Snippet) Report Content (Snippet) Translator Content (Snippet)

127.0.0.1:8022//sensor provider2.xsd 2xml version="1.0"?> <xs:schema attributeForm. .. {"provider": {"TemperatureSensor {4} ":[| "annotati.... package ptuninova.ditag.translator; import com.fa. .

127.0.0.1:8021//sensor providerl.xsd 2xml version="10"% <xs:schema attributeForm. {"provides” |"TemperatureSensor |4} ™["anuotati... | package ptuninova.ditag.translator; import com.fa...

127.0.0.1:8024//sensor provider4.xsd 2xml version="1.0"?=> <xs:schema attributeForm

Figure 4.16 - Database contents for one provider is shut down scenario

The expected results are backed up by the logs and the new provider storage present in the
database. Provider 3 is no longer being considered or stored, and Provider 1 is now the selected
one. GET requests are now being made to the Provider 1 sensor service URI, as shown in Figure

4.17, alongside the Arrowhead Consumer response.

81

Performing GET request to URI: 127.6.0.1:8021//sensor

GET request to 127.0.9.1:8021//sensor

Response: [{"id":1,"sensorltemp”:25.5,"sensor2temp”:22.3,"unit":"celsius™}]

Unfiltered JSON saved successfully to provider.txt

Figure 4.17 - GET request to Provider 1 service response

It is important to clarify that the use case scenarios described in Chapter 3 represent
potential real-world applications that could be explored in larger-scale projects, provided the
necessary technological and human resources are available. However, these were not the focus
of the testing conducted in this chapter.

Instead, the goal here was to demonstrate how the TAG Tool and Arrowhead Framework
can interact through the Data Translation Manager (DTM) and how the DTM effectively selects
the most suitable service provider for a given consumer. The step-by-step testing of these
functionalities confirms that the initial objectives have been successfully met. Ultimately, this
work has contributed to bridging different technologies aimed at improving interoperability as
well as executing translations, thus enhancing system integration and communication across

heterogeneous environments.

82

CONCLUSIONS

This thesis set out to address key challenges in system interoperability, particularly in the
context of Industry 4.0. The introduction highlighted the growing need for seamless commu-
nication between heterogeneous systems across different platforms, focusing on both data
and semantic interoperability. Through the integration of the TAG Tool and the Arrowhead
Framework, this work aimed to create a system that not only ensures compatibility at the ser-
vice level but also translates data to facilitate data exchange between previously data incom-
patible consumer and provider systems.

One of the primary objectives was the integration of the TAG Tool and the Arrowhead
Framework, which was successfully achieved through the development of the DTM (Data Trans-
lation Manager). This integration uplifted the possibility for communication between the sys-
tems registered within the Arrowhead cloud. The DTM was responsible for bridging service and
data interoperability by managing the connection between Arrowhead's core services and the
TAG Tool's data translation capabilities.

The testing process confirmed that the DTM could gather Consumer and Providers
metadata from the arrowhead orchestrator responses and execute the TAG Tool to handle the
data operations verifying compatibility and generating translators. This allowed systems with
differing data structures to exchange information effectively, meeting the objective of enabling
data and semantic interoperability. The successful implementation of this integration lays the
foundation for more advanced interoperability tools, improving the flexibility and adaptability
of systems operating in heterogeneous environments.

The second key goal was to ensure that the DTM could identify and select the most

suitable provider for a given consumer in the Arrowhead system. This feature was crucial for

83

optimizing the communication pathways between systems, particularly when multiple provid-
ers were available with varying capabilities. By analysing both the required and optional ele-
ments available from each provider, the DTM was able to establish the most appropriate pair-
ing according to the TAG-Tool reports, ensuring that the consumer system received the most
data possible. The cyclic nature of the DTM also allowed the system to continuously monitor
changes in provider availability, ensuring that the consumer always remained connected to the
best possible option. This dynamic adaptation successfully met the objectives of enhancing
provider selection in real time.

Looking ahead, there is still room for further improvement and development of the new
features for the DTM. In real life 0T scenario where there could be hundreds of consumers and
providers all trying to access the DTM for executing the translation part of the TAG, a bottle-
neck situation could emerge. Therefore, in the future it would be an improvement if the trans-
lator class for each provider could granted to the consumer system itself. This way there would
be no necessity to use the DTM and TAG every time a GET request from the consumer to said
selected provider would be made, the consumer system would just be able to execute the
translator class within this process, reliving the number of requests being made to the DTM for
translation.

Additionally, an ontology management system backed by a database could be intro-
duced, similar to the existing setup for the providers' information. This implementation would
register the ontology name from the "ontology-ld" metadata field for each provider and have
a database containing two columns: one for the matching ontology ID and another for the
corresponding OWL file. If a matching ontology name registered in the providers' information
file is found in the database, the corresponding OWL file would be sent to the TAG Tool node

for execution for that same provider.

84

[1]

(2]

3]

[4]

(5]

[6]

[7]

[8]

[9]

REFERENCES

Z. Suleiman, S. Shaikholla, D. Dikhanbayeva, E. Shehab, and A. Turkyilmaz, “Industry 4.0:
Clustering of concepts and characteristics,” Cogent Eng, vol. 9, no. 1, Dec. 2022, doi:
10.1080/23311916.2022.2034264.

T. Burns, J. Cosgrove, and F. Doyle, “A Review of Interoperability Standards for Industry
4.0.," Procedia Manuf, vol. 38, pp. 646653, 2019, doi: 10.1016/j.promfg.2020.01.083.

J. Jokinen, T. Latvala, and J. L. Martinez Lastra, “Integrating smart city services using Ar-
rowhead framework,” in /ECON 2016 - 42nd Annual Conference of the IEEE Industrial
Electronics Society, |EEE, Oct. 2016, pp. 5568-5573. doi: 10.1109/IECON.2016.7793708.
Peiru Teo, "Healthcare Interoperability: The Benefits, Challenges and Solutions.” Ac-
cessed: Jan. 03, 2024. [Online]. Available: https://www.keyreply.com/blog/healthcare-in-
teroperability

“Eclipse Arrowhead™ A framework and implementation platform for SoS, loT and OT
integration.” Accessed: Dec. 10, 2023. [Online]. Available: https://arrowhead.eu/eclipse-
arrowhead-2/

F. Moutinho, L. Paiva, J. Kopke, and P. Malo, "Extended Semantic Annotations for Gen-
erating Translators in the Arrowhead Framework,” /EEE Trans Industr Inform, vol. 14, no.
6, pp. 2760-2769, Jun. 2018, doi: 10.1109/T11.2017.2780887.

G. Amaro, F. Moutinho, R. Campos-Rebelo, J. Képke, and P. Mal6, "JSON Schemas with
Semantic Annotations Supporting Data Translation,” Applied Sciences, vol. 11, no. 24, p.
11978, Dec. 2021, doi: 10.3390/app112411978.

F. Chauvel, G. Hu, and L. Mei, “Dynamic interoperability between heterogeneous ser-
vices,” in Proceedings of the 20117 international workshop on Networking and object
memories for the internet of things, New York, NY, USA: ACM, Sep. 2011, pp. 7-8. doi:
10.1145/2029932.2029935.

Martin Serrano, Philippe Cousin, Francois Carrez, Payam Barnaghi, Ovidiu Vermesan, and
Peter Friess, "Internet of Things loT Semantic Interoperability: Research Challenges, Best
Practices, Recommendations and Next Steps EUROPEAN RESEARCH CLUSTER ON THE
INTERNET OF THINGS,” Apr. 2015. [Online]. Available: https://www.egm.io/wp-

85

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

content/uploads/2020/08/2015-03-loT-Semantic-Interoperability-Research-Chal-
lenges-Best-Practices-Recommendations-and-Next-Steps.pdf

P. Miguel Negrdao Malé “Hub-and-Spoke Interoperability: An out of the skies approach
for large-scale data interoperability Dissertacdo para obten¢do do Grau de Doutor em
Engenharia Electrotécnica e de Computadores,” 2013. Accessed: Jan. 15, 2024. [Online].
Available: https://run.unl.pt/handle/10362/11397

F. Moutinho, L. Paiva, P. Malo, and L. Gomes, “Semantic annotation of data in schemas
to support data translations,” in /ECON 2016 - 42nd Annual Conference of the IEEE In-
dustrial Electronics Society, |EEE, Oct. 2016, pp. 5283-5288. doi: 10.1109/IE-
CON.2016.7793691.

F. Blomstedt et a/, "The arrowhead approach for SOA application development and doc-
umentation,” in /ECON 2074 - 40th Annual Conference of the IEEE Industrial Electronics
Society, |IEEE, Oct. 2014, pp. 2631-2637. doi: 10.1109/IECON.2014.7048877.

Oyekunle Claudius Oyeniran, Adebunmi Okechukwu Adewusi, Adams Gbolahan Ad-
eleke, Lucy Anthony Akwawa, and Chidimma Francisca Azubuko, “Microservices archi-
tecture in cloud-native applications: Design patterns and scalability,” Computer Science
& IT Research Journal, vol. 5 no. 9, pp. 2107-2124, Sep. 2024, doi:
10.51594/csitrj.v5i9.1554.

borditamas, “GitHub - arrowhead-f/sos-examples-spring.” accessed at
https://github.com/arrowhead-f/sos-examples-spring

K. S. Prasad Reddy, Beginning Spring Boot 2. Berkeley, CA: Apress, 2017. doi:
10.1007/978-1-4842-2931-6.

S. Campbell, “What Type of Data Is XML?" Accessed: Jan. 24, 2024. [Online]. Available:
https://serverlogic3.com/what-type-of-data-is-xml

“Introducing Linked Data And The Semantic Web.” Accessed: Jan. 20, 2024. [Online].
Available: https://linkeddatatools.com/semantic-web-basics/

G. Wang, “Improving Data Transmission in Web Applications via the Translation between
XML and JSON," in 2071 Third International Conference on Communications and Mobile
Computing, IEEE, Apr. 2011, pp. 182-185. doi: 10.1109/CMC.2011.25.

C. Paniagua, “Service Interface Translation. An Interoperability Approach,” Applied Sci-
ences, vol. 11, no. 24, p. 11643, Dec. 2021, doi: 10.3390/app112411643.

Apache Camel, “camel apache.” Accessed: Jan. 27, 2024. [Online]. Available:

https://camel.apache.org/

86

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

J. A. Vayghan, S. M. Garfinkle, C. Walenta, D. C. Healy, and Z. Valentin, “The internal
information transformation of IBM,” /BM Systems Journal, vol. 46, no. 4, pp. 669-683,
2007, doi: 10.1147/5).464.0669.

M. Seth, "Mulesoft — Salesforce Integration Using Batch Processing,” in 2078 5th Inter-
national Conference on Computational Science/ Intelligence and Applied Informatics
(CS1/), IEEE, Jul. 2018, pp. 7-14. doi: 10.1109/CSI1.2018.000009.

Hong-Gee Kim, “Semantic Web,” 2003, Accessed: Jan. 15, 2024. [Online]. Available:
http://krnet.gagabox.com/board/data/dprogram/792/T2-1.pdf

Y. Jung and Y. Yoon, “Ontology Model for Wellness Contents Recommendation Based
on Risk Ratio EM,” Procedia Comput Sci vol. 52, pp. 1179-1185, 2015, doi:
10.1016/j.procs.2015.05.155.

N. Villanueva-Rosales, L. Garnica-Chavira, V. M. Larios, L. Gomez, and E. Aceves, “Seman-
tic-enhanced living labs for better interoperability of smart cities solutions,” in 2076 IEEE
International Smart Cities Conference (ISC2), IEEE, Sep. 2016, pp. 1-2. doi:
10.1109/1SC2.2016.7580775.

N. Gibbins and N. Shadbolt, “"Resource Description Framework (RDF),” Encyclopedia of
Library and Information Sciences. Accessed: Jan. 21, 2024. [Online]. Available:
https://eprints.soton.ac.uk/268264/

E. P. Andy Seaborne, "SPARQL Query Language for RDF.” Accessed: Sep. 27, 2024.
[Online]. Available: https://www.w3.org/TR/rdf-sparql-query

Deborah L. McGuinness and Frank van Harmelen, "OWL Web Ontology Language Over-
view W3C Recommendation, Feb. 10, 2004. [Online]. Available:
https://www.w3.org/TR/owl-features/

J. Kopke, "Annotation paths for matching XML-Schemas,” Data Knowl! Eng, vol. 122, pp.
25-54, Jul. 2019, doi: 10.1016/j.datak.2017.12.002.

J. Kopecky, T. Vitvar, C. Bournez, and J. Farrell, "SAWSDL: Semantic Annotations for WSDL
and XML Schema,” /EEE Internet Comput, vol. 11, no. 6, pp. 60-67, Nov. 2007, doi:
10.1109/MIC.2007.134.

87

S3INNN OSNO4V

