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ABSTRACT: Energy dispersive X-ray fluorescence spectrometry has been widely used for the analysis of trace and minor 

elements in applications that extend from biomedical to environmental assessment, due to its non-destructive nature, rapid analysis 

and suitable detection limits. However, EDXRF quantification is frequently hampered by matrix effects, introducing significant 

inaccuracies in the obtained results. In this work, we present an automated methodology for sample matrix determination using 

EDXRF spectra, leveraging on the analysis of the Compton and Rayleigh peaks of the characteristic lines of the X-ray tube anode. 

First, a model was created to fit these scattering peaks, allowing the plotting of a calibration curve that correlated the Compton-to-

Rayleigh ratio with the average atomic number (Z) of the sample. Matrix composition was quantified using a developed algorithm 

combining support vector regression (SVR) and bootstrapping to optimize the determination of the best matrix composition. SVR 

with a Radial Basis Function kernel was applied to handle non-linear data, and Bootstrapping was utilized to train the algorithm, 

enhancing model generalization. The study demonstrates that the developed algorithm and matrix-based approach effectively 

quantified elemental compositions across various certified reference 

materials (CRMs). The chosen Matrix provided more accurate 

results, especially for heavier elements like Fe, Cu, and Zn, while 

deviations of around 20% were observed for lighter elements in 

biological matrices. In geological samples like phosphate rock and 

clay, heavier elements aligned well with reference values, but trace 

elements like Cu and Ni showed larger deviations due to low 

concentrations. Despite discrepancies for some elements like Pb in 

wood, the methodology proved effective, particularly for elements 

like Cr with minimal deviation, highlighting its versatility across 

diverse matrices. The methodology successfully integrated 

computational tools and open-source libraries to establish a reliable, 

efficient workflow for average atomic number determination and 

spectral analysis, achieving strong agreement with reference 

materials.  

INTRODUCTION 

Several contemporary fields are in constant pursuit for newer, 

faster, more accessible and reliable methodologies that allow for 

accurate elemental quantification of varied matrices. X-ray 

Fluorescence spectrometry technique has been often used in the 

determination of the chemical composition of many samples due 

to characteristics like analytical simplicity, rapidness of analysis, 
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non-invasive and non-destructive nature, and good detection limits 

for a large range of elements in many fields of application. These 

fields comprise environmental research1 and precision farming,2 

biomedical research and the identification of disease biomarkers,3 

geological research, such as the classification of samples4 or the 

identification of rare earth elements,5 or even industrial 

applications, like the classification of wood6 samples or other 

materials of manufacturing relevance.7 

While the qualitative analysis of XRF spectra is quite 

straightforward, the quantification procedures present many 

challenges.8,9 Absorption and fluorescence by the matrix often 

affects the measured fluorescence of the analyte, and for this 

reason, XRF is often subject to significant matrix effects. 

Strategies for accounting for matrix effects include sample dilution, 

standard addition or the use of matrix matched certified reference 

materials (CRM) for calibration.10 However, these methods 

require either sample destruction/alteration or the existence of a 

significant and suitable number of CRMs for the development of 

a calibration curve. This requisite often has a preponderant impact 

on the accuracy of the results obtained using calibration curves for 

quantification.10,11 Some mathematical procedures have been 

exploited as a way of encompassing the matrix effects, namely, 

matrix correction methods – the Fundamental Parameters 

method.11–13 This method based on the Sherman’s equation14 in 

which the mathematical model calculates the expected intensity 

for an element in a given matrix and compares it with the values 

obtained in the real sample, due to the non-linear nature of the 

equations, the elemental concentrations are calculated by iteration. 

An estimate of the starting set of elemental concentrations, usually 

from concentrations of similar samples, is required to make the 

iteration converge.13 However, the major shortcoming of the 

Fundamental Parameters approach is that prior knowledge of the 

sample areal density (g/cm2) is required.15,16 Many approaches to 

simultaneously determine the areal density of a sample and its 

elemental composition have been proposed, including adding an 

internal standard17 or combining XRF with other techniques.18 

Some softwares require the establishment of an approximate initial 

composition for the matrix.19,20 Rindby21 developed the XRFAES 

(X-ray Fluorescence Automatic Evaluation System) package, a 

FP-based software for the evaluation of XRF spectra. In this 

software, the intensity of the coherent (Rayleigh) and incoherent 

(Compton) scattering peaks is used for the estimation of the light-

element fraction of the sample. Other commercial systems have 

inbuilt calibrated curves for certain generic matrices, namely, 

soil,22 mining,23 or Environmental samples.24 However, these 

methods are often used as black-boxes and quantifications cannot 

be taken as accurate for matrices that deviate from the calibrated 

one or need correction with other techniques25 or with Machine 

Learning algorithms.26 

This work aims at developing an automated, rapid and effective 

methodology capable of determining the matrix of unknown 

samples by analyzing and exploring a specific region of the 

EDXRF spectrum. To do so, the developed methodology aims at 

automatically determine the matrix of unknown samples 

considering the scattering peaks of the characteristic lines of the 

X-ray tube anode, and the average atomic number (Z) to plot 

calibration curves correlating these values with the Compton-to-

Rayleigh ratio18. The method was applied to different matrices, of 

biological, geological and industrial interest. 

EXPERIMENTAL 

Samples. In order to establish a calibration curve for the atomic 

number as a function of the Compton-to-Rayleigh scattering peaks, 

a set of 21 model samples consisting on different proportions of 

reference materials of HAp [Ca10(PO4)6(OH)2] (Sigma-Aldrich, 

lot #BCBS8492V), and Boric Acid [H3BO3] (for conservation-

restoration purposes) was created. The different proportions 

ranged from 100% Boric Acid (Average Z=7.1) adding 5% HAp 

up to 100% HAp (Average Z= 14.2). Powders were ground with a 

mortar and pestle and 3 replicas of each model sample were 

obtained in order to reduce uncertainty due to inhomogeneity. The 

average atomic number, Z̅, of each material has been calculated 

according to the equation (1): 

𝑍 = ∑ 𝑤𝑖𝑍𝑖𝑖                          (1) 

Where wi the mass fraction and Zi the atomic number of the 

element, i. The list of model samples with corresponding Z̅ is 

presented in Pessanha et al.27 

Furthermore, a total of 13 biological (soft tissues), geological 

(soils, sediments and phosphate rocks), and industrial (wood) 

Certified Reference Materials (CRMs) were considered during 

this work (Table S1). 

All CRMs were prepared as pellets by compressing ~2g of 

powder with a 10-ton manual hydraulic press (Specac, UK), into 

pellets with a diameter of 20 mm and a thickness of ~3 mm. The 

obtained thickness was a compromise between the needed 

thickness to consider the pellets infinitely thick considering the 

system’s geometry, average energy of incoming radiation, the 

different matrices and the characteristic lines of the elements, and 

the use of enough material to have a stable pellet. Furthermore, for 

the geological CRMs 1 drop of mowiol agglutinate was added to 

the powder inside the press, similarly to the procedure of preparing 

unknown geological samples. 

Energy Dispersive X-Ray Fluorescence Instrumentation. A 

benchtop micro-XRF spectrometer, the M4 TORNADO by 

Bruker (Berlin, Germany) was used. The system makes use of a 

low-power X-ray tube with a Rh anode, operated at 50 kV and 300  
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Fig. 1 Comparison of all the baseline correction procedures applied to two samples. a) 10%hydroxyapatite - 90%boric acid and b) phosphate rock. 

 

µA and a poly-capillary lens focused the beam on a 40 µm spot for 

Mo-Ka emission lines. As a way of minimizing eventual 

contaminations due to the presence of atmospheric elements like 

argon (Ar) and improve the detection limits, the analysis chamber 

was kept at a vacuum pressure of 20 mbar. Additionally, a 12.5 µm 

Al filter was used between the X-ray tube and the samples to better 

improve the signal-to-noise ratio of the lower region of the 

spectrum.28 

The analyses were performed using an area of interest of 1.4 × 

1.4 mm2 and point-by-point measurements were performed on the 

samples with a step size of 20 µm and 30 ms acquisition time per 

pixel, and the cumulative spectrum was retrieved. Two areas were 

mapped by pellet and a total of four and six replicates were 

measured for model and CRMs samples. respectively. in an 

overall analysis time of 60 h. Considering the different matrices 

understudy, Table S2 presents the Limits of Detection calculated 

according to equation (2): 

𝐿𝑜𝐷 = 3 ∗ 𝐶𝑖 ∗
√𝑁𝑏

𝑁𝑝
                  (2) 

Where Ci id the concentration of element, i, in the CRM, Nb are 

the net counts of the background and Np are the net counts of the 

peak, fir the given element, i. 

Spectra pre-processing, fitting and determination of the 

average atomic number. All the developed code was 

implemented in the interface Spyder® using Python programing 

language and applying two major libraries; NumPy (useful to treat 

arrays and perform more complex mathematical calculations) and 

Matplotlib (to plot and visualize graphs). 

Baseline correction. Among the several option for baseline 

correction, one of the most used procedures was developed by 

Whittaker 29 adapted to the penalized least squares (PLS) method 

by Eilers.30 This approach allows to correct the baseline by 

penalizing or minimizing the spectrum roughness and as some 

important advantages that contribute to its suitability and 

simplicity, namely, the fact of being capable of smoothing the 

spectrum by considering a single variating parameters, its capacity 

of dealing with missing values by considering iterative weights 

and its computational rapidness. 

Besides the original smoothing procedure, several variations 

have been proposed, namely, the asymmetrically reweighted 

penalized least squares (arPLS), the adaptive iteratively 

reweighted penalized least squares (airPLS), and the improved 

asymmetrically reweighted penalized least squares (iarPLS).31 All 

these variations were compared to define the most suitable one for 

the developed algorithm. Additionally, the spline version of all the 

aforementioned methods were also considered and compared. The 

spline function of a graph is defined by connecting different points 

of the spectrum with a smooth curve. 

Several variations of the work proposed by Whittaker and 

improved by Eilers were compared as a way of assessing the most 

suitable variation for the developed methodology. To do so, an 

open-source library (pybaselines) capable of comparing all the 

versions was used.32 For the implementation of the procedure, a 

second order matrix was considered and the smoothing parameter 

of the equations developed by the authors was varied in 

accordance with the spectrum under processing.29, 30 

Figure 1 compares the results for the application of all the 

variations of baseline corrections to an EDXRF spectrum for two 

samples. In a) a model sample composed of 10% hydroxyapatite 

and 90% boric acid (low Z) was considered. and in b) a CRM of 

phosphate rock (high Z) was analyzed. By comparing both spectra. 

one can infer that the airPLS method and the spline-penalized air  
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Fig. 2 Peaks fitting and the respective scaled residue for a) 

10%hydroxyapatite - 90%boric acid and b) phosphate rock samples. 

 

 

 

 

Fig. 3 Calibration curved plotted for the model samples considering the 

Compton-to-Rayleigh ratios and their respective average atomic values. 

PLS provided the worst corrections for both samples. Despite the 

fact that the spline-penalized airPLS exhibits one of the best 

fittings for the sample with lower average Z that is not the case to 

the second sample, in which an overfitting of the Kβ Compton 

peaks is visible. From all the functions. the spline-penalized 

version of the arPLS (with λ=100)29, 30 corresponds to the option 

in which the peaks intensity is better preserved, hence, it was the 

selected for baseline correction purposes. 

Peak fitting. The characteristic peaks and the Rayleigh scattering 

peaks can often be fitted with a Gaussian function. nonetheless. 

the Compton scattering generates more complex and asymmetric 

peaks in the final spectrum whose fitting is often challenging.33 

The asymmetry of the Compton peak can be caused by two 

phenomena, the multiple dispersion of Compton. and an 

incomplete charge collection in the detector. In the first 

phenomenon, if the photons involved in the first dispersion have 

enough energy available, they can be involved in a second 

dispersion (second order scattering), resulting in photons in lower 

energy - more common in samples with lower average Z.34 

Regarding incomplete charge collection, a portion of the photons 

is not considered by the detector, resulting in lower number of 

counts in the lower energy side of the peak.35 

To mitigate these effects, Lorentzian functions were used. This 

type of function is known for its long tails, characteristic useful to 

properly fit the asymmetry of the Rh Kα dispersion peak caused 

by the second order dispersion and by the incomplete charge 

collection. In this way, a Lorentzian function was added to a 

Gaussian for purposes of fitting the Rh Kα Compton peak. The Rh 

Kβ peak, due to its less significative asymmetry, was properly 

fitted with just a Gaussian function36. The Gaussian and 

Lorentzian functions were defined as follows (A – maximum 

amplitude of the curve. µ – centroid. FWHM – full width at half 

maximum): 

𝐺(𝑥. 𝐴. 𝜇. 𝐹𝑊𝐻𝑀) = 𝐴𝑒𝑥𝑝 [−4 ln 2
(𝑥−𝜇)2

𝐹𝑊𝐻𝑀2
]  (3) 

𝐿(𝑥. 𝐴. 𝜇. 𝐹𝑊𝐻𝑀) =
𝐴

1+4
(𝑥−𝜇)2

𝐹𝑊𝐻𝑀2

   (4) 

For the calculation of the ratio itself, the intensity of both 

Compton and Rayleigh peaks were assessed with a specific library 

(trapz) of an open-source programing module (scipy.integrate). 

which uses the composite trapezoidal rule to obtain the peaks 

area.37 

Figure 2 exhibits the fitted curves for two model samples, 

namely, a 10%hydroxyapatite + 90%boric acid sample and b) 

phosphate rock sample and the respective scaled residuals. Table 

S3 summarizes the amplitude (counts), centroid (keV) and 

FWHM (keV) for both samples. In order to assess the quality of 

the fitting two other statistical tools were used to assess the quality 

of the fitting, the root mean square error (RMSE) and the reduced 

chi-squared 𝜒𝑟𝑒𝑑
2  also included in Table S4. The RMSE values 

for both Kα and Kβ peaks are considerably lower than the 

respective amplitudes. This fact allows to infer that the developed 

model apply a proper fitting to the EDXRF spectra considered 

during the study. Regarding the values of 𝜒𝑟𝑒𝑑
2 , since most of the 

values are around 1, the fitting of the peaks was achieved 

successfully. 

Assessment of matrix composition and quantification. In order 

to perform quantitative analysis and implement the Fundamental 

Parameter method, the methodology used by Ensina et al. 38 and 

by Braga 39 was followed: determination of the combination and 

composition of the elements in the matrix that would exhibit a 

given average Z. 

The average Z values were determined considering the 

calibration curve plotted using the Rh Kα Compton-to-Rayleigh 

ratios determined for all the model samples and their respective 

average Z values. 

Figure 3 represents the curve plotted with the software 
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developed in this work, in which each point corresponds to the 

average value determined from a total of four measurements and 

the error bars correspond to the average deviation to the mean. The 

fitted curve results are presented as inset in the figure. 

Preliminary quantification. From literature, preliminary 20-30 

matrix compositions were tested for each type of CRM. Once the 

matrix was defined, it was introduced ad-hoc in the MQuant 

software for purposes of quantifying the trace and minor elements 

by the Fundamental Parameters method. The data treatment aimed 

at finding the most suitable matrices which exhibited the best 

results when compared with the CRMs expected values. To assess 

that suitability of the different matrices, the weighted percentual 

deviations (|∆|weighted%) between the concentrations obtained for 

each matrix and the reference values of the CRMs were estimated 

as follows: 

|∆|%𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = ∑ (|∆| ∗ 𝑓𝑖) ∗ 100𝑁
𝑖=1 = ∑ (

|𝐶𝑖𝑜𝑏𝑠−𝐶𝑖𝑟𝑒𝑓|

𝐶𝑖𝑟𝑒𝑓

∗ 100)𝑁
𝑖=1   (5) 

Here, |∆| represents the relative deviation, N is the total number 

of trace and minor elements, 𝑓𝑖 corresponds to the mass fraction 

of the i element, 𝐶𝑖𝑜𝑏𝑠
  is the concentration of the element i 

obtained during the quantification and 𝐶𝑖𝑟𝑒𝑓
  is the reference 

concentration of the element i. The matrices with lower values of 

|∆|𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑%  and consequently, the best quantifications, were 

considered for the development of the optimization script. 

Algorithm. In order to determine the best combination of elements 

for the matrix, an algorithm was developed based on two specific 

tools: support vector regression (SVR) and bootstrapping and the 

scikit-learn open-source library was used during the development 

of the entire script.40 

The SVR tool allows to compensate for errors by employing a 

loss function which combines the errors of the training 

observations (ԑ), responsible for defining a range in which the 

errors are disregarded, and a regularization term (C) that controls 

the complexity of the model. As a result, the final model is 

considerably smoother and less sensible to small data variations, 

i.e., it is robust to treat both linear and even nonlinear data. 

To treat nonlinear data, as it is the EDXRF data, this machine 

learning tool uses kernel functions that transform the original 

dimensional space into a new one with larger dimension where a 

linear relationship between the data can be found. The nonlinear 

function can be translated as follows (𝛼𝑖
∗  and 𝛼𝑖  are Lagrange 

multipliers, 𝑘(𝑥𝑖 , 𝑥) is the kernel function, and b is a bias term 

which allows to adjust the model to the data): 

𝑓(𝑥) = ∑ (𝛼𝑖
∗ − 𝛼𝑖)𝑁

𝑖=1 𝑘(𝑥𝑖 , 𝑥) + 𝑏    (6) 

The loss function, 𝐿ԑ , in its turn, can be defined as (y 

corresponds to the real value): 

𝐿ԑ = 𝑓(𝑥) = {
0, 𝑖𝑓 |𝑓(𝑥) − 𝑦| < ԑ

|𝑓(𝑥) − 𝑦| − ԑ, 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠
 (7) 

The SVR was implemented by providing the parameters C and 

ԑ to the sklearn.svm module. A specific kernel function, the radial 

basis function (RBF), was used in the implementation of the 

software. This variation measures the similarity among two 

observations considering their Euclidian distance41. Higher values 

of the kernel allow to consider a wider variety of arrays and, on the 

other hand, lower kernel values imply that only close arrays can 

be considered as similar. The RBF can be represented as follows 

(x and x’ correspond to the characteristics arrays of the input data. 

and 𝜎 is the range of the function that defines the kernel): 

𝐾(𝑥, 𝑥′) = 𝑒𝑥𝑝 (−
‖𝑥−𝑥′‖2

2σ2
)   (8) 

Since the model under development exhibits multiple outputs 

(all the concentration levels for the several elements existent in the 

matrix) for a single average Z input, it was necessary to use the 

MultiOutputRegressor class of the sklearn.multioutput module, in 

order to process all the outputs. Then, to define the best values for 

the parameters C and ԑ, the RandomizedSearchCV class of the 

sklearn.multioutput module was used. This class generates 

random values and evaluates the suitability of each pair until the 

best parameters are obtained. In this work, C = 500 and ԑ = 1.3. 

Finally, bootstraps datasets of 1000 observations were considered 

to teach the algorithm. The bootstrapping generates multiple 

bootstrap samples from a single original sample by randomly 

selecting, with replacement, n data points, where n is the size of 

the original dataset.42 These bootstrap samples, were generated 

using the resample function of the module sklearn.utils and then 

used to train the SVR algorithm. Fig. 4 describes the implemented 

workflow. 

This approach effectively implements an ensemble learning 

technique where bootstrapping is used to enhance the 

generalization of the SVR. All the repeated matrices were 

disregarded. 

RESULTS AND DISCUSSION 

The obtained results will be discussed in different sections 

considering the type of matrix. 

Soft tissue and blood samples have a dark matrix composed of 

elements like hydrogen, carbon, nitrogen, and oxygen, which 

explains the low levels of average Z for these CRMs. To obtain the  
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Fig. 4 Schematic representation of the workflow. 

 

 

 

 

 

 

 

Fig. 5 Elemental concentrations (mg.kg-1) obtained with both 1 and 2 

matrices for the CRM lobster hepatopancreas (TORT-2), compared to the 

reference values. Error bars correspond to the Standard Deviation of the 

results for the 8 measured spectra.  There is also presented the weighted 

deviation between the best matrix and the certified value. 

reference concentrations of these elements in CRMs, a literature 

search was conducted for the marine life CRMs (IAEA MA-A-2, 

DORM-4, TORT-2, NIST-1566b).34–36 Since the CRMs animal 

blood (IAEA-A-13), bovine liver (NIST-1577a) and pig kidney 

(ERM-BB186) are of mammal origin, it was expected that they 

exhibited concentration levels similar to the ones found in the 

human organism, similar to the matrixes tested in Ensina et al. 38 

The considered concentration ranges were 1 – 10% (H), 15 – 50% 

(C), 1 – 20% (N), and 20 – 70% (O). These concentration levels 

may vary depending on the type of tissue, in this way, the values 

available in the literature may not reflect their exact concentration, 

nonetheless, the differences are not significative. 

Then, the algorithm developed for purposes of creating the 

different combinations of elements in regard to the matrix 

composition of each CRM was applied considering the 

concentration ranges and the average atomic numbers of reference. 

After applying the algorithm, 10 different combinations of 

elements were tested for each CRM. Additionally, normalized and 

non-normalized versions of the FP-method were compared, being 

that the non-normalized values exhibited better results, meaning 

that some of the elements of the matrix can be present in higher 

concentrations than expected or there could be a missing element. 

Considering all the CRMs, the matrices with better (matrix 1) 

and worst (matrix 2) quantifications are presented Table S3. The 

concentrations of the main elements are shown, for the CRM 

lobster hepatopancreas (TORT-2), in Fig. 5 (the remaining results 

are present in Table S5). 

By analyzing the results. one can conclude that matrix 1 allows 

more accurate quantifications when compared with matrix 2, 

nonetheless, for some elements, the obtained and certified values 

do not converge even considering the uncertainties. Considering 

all the CRMs, more accurate quantifications were achieved for the 

elements K, Ca, Fe, Cu, Zn, and Mn - if present at higher 

concentrations. Additionally, lighter elements like P, S and Cl and 

also As and Mn if present at lower concentrations, exhibit 

quantifications less accurate (i.e. with weighted deviations of  
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Fig. 6 Elemental concentrations (mg.kg-1) obtained with both 1 and 2 

matrices for the CRM phosphate rock (BCR-032) compared to the 

reference values. Error bars correspond to the Standard Deviation of the 

results for the 8 measured spectra. There is also presented the weighted 

deviation between the best matrix and the certified value. 

 

 

 

 

Fig. 7 Elemental concentrations (mg.kg-1) obtained with both 1 and 2 

matrices for the CRM clay (ISE-954) compared to the reference values. 

Error bars correspond to the Standard Deviation of the results for the 8 

measured spectra.  There is also presented the weighted deviation between 

the best matrix and the certified value. 

around 20%). Regarding Br and Sr, lower accuracy can also be 

due to the thickness of the pellets, not fully complying with the 

infinitely thick regime.43,8, 16 

Geological samples have elemental compositions that are 

considerably different from soft tissues since they are often 

composed of heavier elements and, consequently, have a higher 

average atomic number. Phosphate rock, for example, is mostly 

composed of S, O, P, and Ca, nonetheless, the contribution of 

sulfur was disregarded since it exhibited a very low quantity in the 

sample. As for the previous cases, the concentration ranges were 

defined based on the literature; they are 30 – 60% (O), 10 – 20% 

(P), and 30 – 50% (Ca).44 

Differently from the previous case studies, it was not possible to 

consider a matrix solely containing invisible elements like oxygen 

and performing an automatic quantification of P and Ca later in the 

processing. This way, it was necessary to add these two elements 

and find a matrix that complied with the already mentioned criteria. 

The matrices with better (matrix 1) and worst (matrix 2) 

quantifications are presented in Table S6, while the quantification 

results achieved are presented in the bar charts of Fig. 6 and 

compared with the reference values. 

Despite still existing discrepancies between the best matrix and 

the reference values for lighter elements, the selected matrix was 

the one that allow to minimize them. The remaining elements 

exhibit quantification values similar to the reference values 

proving the suitability of the methodology. The exception would 

be Cu, but this element is present in quantities very close to the 

limit of detection (LOD). 

Regarding composition, the studied samples are composed by a 

variety of elements among which one can highlight Al, Ca, K, and 

Fe. The high quantities of these elements in the samples as well as 

their dispersion between distinct samples impose several 

challenges in the definition of a proper matrix for purposes of 

quantification that complies with all the criteria. Nonetheless, three 

main elements were verified to be always present in this kind of 

samples: C, O and Si and by consulting the literature it was 

possible to define concentration ranges for these elements, from 1 

– 45% (C), 10 – 50% (O), and 10 – 35% (Si).45 

Similarly, to the case study involving phosphate rock, the 

removal of Si from the matrix worsened the results. This way, this 

element was considered during the selection of the most suitable 

matrix. Considering all the CRMs, the matrices with better (matrix 

1) and worst (matrix 2) quantifications are presented Table S7. The 

concentrations of the main elements are shown, for the CRM Clay 

(ISE-954), in Fig. 7 (the remaining results are present in Table S8). 

Ni in the clay (ISE-954) and the Cu in the soil (IAEA-SOIL-7) 

CRMs exhibit the worst results. This can be justified by their 

considerably lower concentrations when compared with the 

remaining elements. For the San Joaquin soil (SRM-2709a) CRM, 

the elements K, Ca, and Fe were overestimated, while the element 

K was underestimated for the river sediment (NIST-1645) CRM. 

Mostly composed of H, C, N, and O a reference material of 

wood was also included in this study to assess the robustness of 

the developed protocol. As for previous cases. the theoretical 

concentration ranges for the elements were gathered from the 

literature and varied from 1 – 10% (H), 40 – 55% (C), 30 – 45% 

(O) and 0 – 4% (N).46 

Similarly to the previous cases, several elemental compositions 

were obtained for the potential composition of these CRMs 

matrices, considering the Z of each element and the reference  
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Fig. 8 Elemental concentrations (mg.kg-1) obtained with both 1 and 2 

matrices for the CRM wood (BAMU130) compared to the reference values. 

Error bars correspond to the Standard Deviation of the results for the 8 

measured spectra. There is also presented the with the weighted deviation 

between the best matrix and the certified value, as well as, the respective 

reference values. 

average Z of the sample. The selected matrices were the ones that 

exhibited lower percentual deviations and whose average atomic 

number was closer to the reference value (Table S9). 

The quantification results achieved for the selected matrix 

during the statistical processing of the CRM of wood, as well as 

the reference values and the |∆|_weighted% were plotted in the 

graph of the Fig. 8. 

Interestingly, the quantification of Pb exhibited the worst results 

for the wood while Cr was the element with better results since it 

showed lower percentual deviation when compared to the other 

two elements, so it is suitable to say that the achieved results a 

accurate, proving the potential of the developed methodology to 

also quantify elements in wood-based samples. 

CONCLUSION 

This automated and non-destructive approach integrates open-

source computational tools and algorithms into a reliable 

workflow for elemental analysis. The combination of spectral 

analysis and matrix composition quantification has proven its 

potential to streamline workflows and enhance accuracy across 

diverse applications, including environmental, biomedical, and 

industrial contexts. The developed methodology for matrix 

determination using EDXRF spectra has proven to be an effective 

and versatile solution to address quantification, especially when 

suitable calibration curves cannot be developed. By leveraging the 

analysis of Compton and Rayleigh scattering peaks, combined 

with computational tools like support vector regression (SVR) and 

bootstrapping, the approach enabled the determination of the 

matrix composition with enhanced reliability and precision. The 

results demonstrated strong agreement with reference values, 

particularly for heavier elements such as Fe, Cu, and Zn, which 

showed minimal deviations across biological, geological, and 

wood-based samples. Similarly, in geological samples such as 

phosphate rock and clay, heavier elements aligned well with 

reference values, but trace elements like Cu and Ni showed larger 

deviations, likely due to their low concentrations relative to the 

sample matrix. In wood samples, discrepancies were observed for 

certain elements, such as Pb, but the methodology performed well 

for Cr, highlighting its adaptability to different matrix types. 

While the proposed methodology demonstrates strong potential, 

certain areas highlight room for improvement, offering 

opportunities to refine its accuracy and versatility. One notable 

challenge lies in the quantification of lighter elements, such as Mn, 

Sr, P, S, and Cl, particularly in biological matrices. These elements 

often exhibit deviations around 20%, likely due to their low atomic 

numbers and fluorescence yields. Addressing this requires 

enhanced spectral deconvolution techniques (the MQuant 

software was used and shows clear limitations) and the use of 

high-resolution detectors, namely microcalorimeter detectors, that 

could improve the sensitivity and separation of these elements, 

minimizing deviations. 

Expanding the training dataset to include a broader range of 

certified reference materials (CRMs) would enhance its robustness. 

Combining the current SVR model with other machine learning 

techniques, such as neural networks, may also improve 

adaptability. 

Despite some discrepancies for some trace elements, the 

developed methodology is a significant step forward in the field of 

EDXRF analysis, offering an efficient and robust solution for 

quantifying complex matrices. 

ASSOCIATED CONTENT 

The supporting information (Tables S1−S9) is available at 

www.at-spectrose.com/as/home. 
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