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ABSTRACT: Energy dispersive X-ray fluorescence spectrometry has been widely used for the analysis of trace and minor
elements in applications that extend from biomedical to environmental assessment, due to its non-destructive nature, rapid analysis
and suitable detection limits. However, EDXRF quantification is frequently hampered by matrix effects, introducing significant
inaccuracies in the obtained results. In this work, we present an automated methodology for sample matrix determination using
EDXREF spectra, leveraging on the analysis of the Compton and Rayleigh peaks of the characteristic lines of the X-ray tube anode.
First, a model was created to fit these scattering peaks, allowing the plotting of a calibration curve that correlated the Compton-to-
Rayleigh ratio with the average atomic number (Z) of the sample. Matrix composition was quantified using a developed algorithm
combining support vector regression (SVR) and bootstrapping to optimize the determination of the best matrix composition. SVR
with a Radial Basis Function kernel was applied to handle non-linear data, and Bootstrapping was utilized to train the algorithm,
enhancing model generalization. The study demonstrates that the developed algorithm and matrix-based approach effectively
quantified elemental compositions across various certified reference

materials (CRMs). The chosen Matrix provided more accurate 2
results, especially for heavier elements like Fe, Cu, and Zn, while - f Average Z and
deviations of around 20% were observed for lighter elements in - /
biological matrices. In geological samples like phosphate rock and
clay, heavier elements aligned well with reference values, but trace

elements like Cu and Ni showed larger deviations due to low OB TER HEPATOPANCREAS . TORTA ‘_
concentrations. Despite discrepancies for some elements like Pb in

Matrix prediction
using algorithm

wood, the methodology proved effective, particularly for elements
like Cr with minimal deviation, highlighting its versatility across

Concentration / mgkg'"

diverse matrices. The methodology successfully integrated
computational tools and open-source libraries to establish a reliable,
efficient workflow for average atomic number determination and

spectral analysis, achieving strong agreement with reference

materials.
INTRODUCTION
Several contemporary fields are in constant pursuit for newer, Fluorescence spectrometry technique has been often used in the
faster, more accessible and reliable methodologies that allow for determination of the chemical composition of many samples due
accurate elemental quantification of varied matrices. X-ray to characteristics like analytical simplicity, rapidness of analysis,
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non-invasive and non-destructive nature, and good detection limits
for a large range of elements in many fields of application. These
fields comprise environmental research! and precision farming,?
biomedical research and the identification of disease biomarkers,?
geological research, such as the classification of samples* or the
identification of rare earth elements’> or even industrial
applications, like the classification of wood® samples or other
materials of manufacturing relevance.’

While the qualitative analysis of XRF spectra is quite
straightforward, the quantification procedures present many
challenges.®® Absorption and fluorescence by the matrix often
affects the measured fluorescence of the analyte, and for this
reason, XRF is often subject to significant matrix effects.
Strategies for accounting for matrix effects include sample dilution,
standard addition or the use of matrix matched certified reference
materials (CRM) for calibration.”® However, these methods
require either sample destruction/alteration or the existence of a
significant and suitable number of CRMs for the development of
a calibration curve. This requisite often has a preponderant impact
on the accuracy of the results obtained using calibration curves for
quantification.'®'! Some mathematical procedures have been
exploited as a way of encompassing the matrix effects, namely,
matrix correction methods — the Fundamental Parameters
method.!"!3 This method based on the Sherman’s equation'* in
which the mathematical model calculates the expected intensity
for an element in a given matrix and compares it with the values
obtained in the real sample, due to the non-linear nature of the
equations, the elemental concentrations are calculated by iteration.
An estimate of the starting set of elemental concentrations, usually
from concentrations of similar samples, is required to make the
iteration converge.”> However, the major shortcoming of the
Fundamental Parameters approach is that prior knowledge of the
sample areal density (g/cm?2) is required.'>'® Many approaches to
simultaneously determine the areal density of a sample and its
elemental composition have been proposed, including adding an
internal standard'” or combining XRF with other techniques.'®
Some softwares require the establishment of an approximate initial
composition for the matrix.'? Rindby?! developed the XRFAES
(X-ray Fluorescence Automatic Evaluation System) package, a
FP-based software for the evaluation of XRF spectra. In this
software, the intensity of the coherent (Rayleigh) and incoherent
(Compton) scattering peaks is used for the estimation of the light-
element fraction of the sample. Other commercial systems have
inbuilt calibrated curves for certain generic matrices, namely,
s0il,”> mining,”® or Environmental samples.”* However, these
methods are often used as black-boxes and quantifications cannot
be taken as accurate for matrices that deviate from the calibrated
one or need correction with other techniques® or with Machine
Learning algorithms.?

This work aims at developing an automated, rapid and effective
methodology capable of determining the matrix of unknown
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samples by analyzing and exploring a specific region of the
EDXRF spectrum. To do so, the developed methodology aims at
automatically determine the matrix of unknown samples
considering the scattering peaks of the characteristic lines of the
X-ray tube anode, and the average atomic number (Z) to plot
calibration curves correlating these values with the Compton-to-
Rayleigh ratio'®. The method was applied to different matrices, of
biological, geological and industrial interest.

EXPERIMENTAL

Samples. In order to establish a calibration curve for the atomic
number as a function of the Compton-to-Rayleigh scattering peaks,
a set of 21 model samples consisting on different proportions of
reference materials of HAp [Caio(PO4)s(OH)2] (Sigma-Aldrich,
lot #BCBS8492V), and Boric Acid [H3BOs] (for conservation-
restoration purposes) was created. The different proportions
ranged from 100% Boric Acid (Average Z=7.1) adding 5% HAp
up to 100% HAp (Average Z= 14.2). Powders were ground with a
mortar and pestle and 3 replicas of each model sample were
obtained in order to reduce uncertainty due to inhomogeneity. The
average atomic number, Z, of each material has been calculated
according to the equation (1):

Z=%wZ; (D

Where wi the mass fraction and Zi the atomic number of the
element, i. The list of model samples with corresponding Z is
presented in Pessanha et al.?’

Furthermore, a total of 13 biological (soft tissues), geological
(soils, sediments and phosphate rocks), and industrial (wood)
Certified Reference Materials (CRMs) were considered during
this work (Table S1).

All CRMs were prepared as pellets by compressing ~2g of
powder with a 10-ton manual hydraulic press (Specac, UK), into
pellets with a diameter of 20 mm and a thickness of ~3 mm. The
obtained thickness was a compromise between the needed
thickness to consider the pellets infinitely thick considering the
system’s geometry, average energy of incoming radiation, the
different matrices and the characteristic lines of the elements, and
the use of enough material to have a stable pellet. Furthermore, for
the geological CRMs 1 drop of mowiol agglutinate was added to
the powder inside the press, similarly to the procedure of preparing
unknown geological samples.

Energy Dispersive X-Ray Fluorescence Instrumentation. A
benchtop micro-XRF spectrometer, the M4 TORNADO by
Bruker (Berlin, Germany) was used. The system makes use of a
low-power X-ray tube with a Rh anode, operated at 50 kV and 300
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Fig. 1 Comparison of all the baseline correction procedures applied to two samples. a) 10%hydroxyapatite - 90%boric acid and b) phosphate rock.

pA and a poly-capillary lens focused the beam on a 40 um spot for
Mo-Ka emission lines. As a way of minimizing eventual
contaminations due to the presence of atmospheric elements like
argon (Ar) and improve the detection limits, the analysis chamber
was kept at a vacuum pressure of 20 mbar. Additionally, a 12.5 pm
Al filter was used between the X-ray tube and the samples to better
improve the signal-to-noise ratio of the lower region of the
spectrum.?®

The analyses were performed using an area of interest of 1.4 x
1.4 mm? and point-by-point measurements were performed on the
samples with a step size of 20 pm and 30 ms acquisition time per
pixel, and the cumulative spectrum was retrieved. Two areas were
mapped by pellet and a total of four and six replicates were
measured for model and CRMs samples. respectively. in an
overall analysis time of 60 h. Considering the different matrices
understudy, Table S2 presents the Limits of Detection calculated
according to equation (2):

LOD=3*Ci*@ (%)
N

P

Where Ci id the concentration of element, i, in the CRM, Ny are
the net counts of the background and Nj, are the net counts of the
peak, fir the given element, i.

Spectra pre-processing, fitting and determination of the
average atomic number. All the developed code was
implemented in the interface Spyder® using Python programing
language and applying two major libraries; NumPy (useful to treat
arrays and perform more complex mathematical calculations) and

Matplotlib (to plot and visualize graphs).

Baseline correction. Among the several option for baseline
correction, one of the most used procedures was developed by
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Whittaker 2° adapted to the penalized least squares (PLS) method
by Eilers.®® This approach allows to correct the baseline by
penalizing or minimizing the spectrum roughness and as some
important advantages that contribute to its suitability and
simplicity, namely, the fact of being capable of smoothing the
spectrum by considering a single variating parameters, its capacity
of dealing with missing values by considering iterative weights
and its computational rapidness.

Besides the original smoothing procedure, several variations
have been proposed, namely, the asymmetrically reweighted
penalized least squares (arPLS), the adaptive
reweighted penalized least squares (airPLS), and the improved
asymmetrically reweighted penalized least squares (iarPLS).3! All

iteratively

these variations were compared to define the most suitable one for
the developed algorithm. Additionally, the spline version of all the
aforementioned methods were also considered and compared. The
spline function of a graph is defined by connecting different points
of the spectrum with a smooth curve.

Several variations of the work proposed by Whittaker and
improved by Eilers were compared as a way of assessing the most
suitable variation for the developed methodology. To do so, an
open-source library (pybaselines) capable of comparing all the
versions was used.’? For the implementation of the procedure, a
second order matrix was considered and the smoothing parameter
of the equations developed by the authors was varied in

accordance with the spectrum under processing.®3

Figure 1 compares the results for the application of all the
variations of baseline corrections to an EDXRF spectrum for two
samples. In a) a model sample composed of 10% hydroxyapatite
and 90% boric acid (low Z) was considered. and in b) a CRM of

phosphate rock (high Z) was analyzed. By comparing both spectra.
one can infer that the airPLS method and the spline-penalized air
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Fig. 2 Peaks fitting and the respective scaled residue for
10%hydroxyapatite - 90%boric acid and b) phosphate rock samples.
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Fig. 3 Calibration curved plotted for the model samples considering the
Compton-to-Rayleigh ratios and their respective average atomic values.

PLS provided the worst corrections for both samples. Despite the
fact that the spline-penalized airPLS exhibits one of the best
fittings for the sample with lower average Z that is not the case to
the second sample, in which an overfitting of the KB Compton
peaks is visible. From all the functions. the spline-penalized
version of the arPLS (with A=100)?% 3 corresponds to the option
in which the peaks intensity is better preserved, hence, it was the
selected for baseline correction purposes.

Peak fitting. The characteristic peaks and the Rayleigh scattering
peaks can often be fitted with a Gaussian function. nonetheless.
the Compton scattering generates more complex and asymmetric
peaks in the final spectrum whose fitting is often challenging.’
The asymmetry of the Compton peak can be caused by two
phenomena, the multiple dispersion of Compton. and an
incomplete charge collection in the detector. In the first
phenomenon, if the photons involved in the first dispersion have
enough energy available, they can be involved in a second
dispersion (second order scattering), resulting in photons in lower
energy - more common in samples with lower average Z.3*
Regarding incomplete charge collection, a portion of the photons
is not considered by the detector, resulting in lower number of
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counts in the lower energy side of the peak.?

To mitigate these effects, Lorentzian functions were used. This
type of function is known for its long tails, characteristic useful to
properly fit the asymmetry of the Rh Ka dispersion peak caused
by the second order dispersion and by the incomplete charge
collection. In this way, a Lorentzian function was added to a
Gaussian for purposes of fitting the Rh Ko. Compton peak. The Rh
Kp peak, due to its less significative asymmetry, was properly
fitted with just a Gaussian function®. The Gaussian and
Lorentzian functions were defined as follows (A — maximum
amplitude of the curve. p — centroid. FWHM — full width at half
maximum):

_ (x—p)?
G(x. A.p. FWHM) = Aexp [-4In2 -t ©)
L(x.A.p. FWHM) = —-— ©)
I e

For the calculation of the ratio itself, the intensity of both
Compton and Rayleigh peaks were assessed with a specific library
(trapz) of an open-source programing module (scipy.integrate).
which uses the composite trapezoidal rule to obtain the peaks
area.”’

Figure 2 exhibits the fitted curves for two model samples,
namely, a 10%hydroxyapatite + 90%boric acid sample and b)
phosphate rock sample and the respective scaled residuals. Table
S3 summarizes the amplitude (counts), centroid (keV) and
FWHM (keV) for both samples. In order to assess the quality of
the fitting two other statistical tools were used to assess the quality
of the fitting, the root mean square error (RMSE) and the reduced
chi-squared x2,, also included in Table S4. The RMSE values
for both Ka and Kf peaks are considerably lower than the
respective amplitudes. This fact allows to infer that the developed
model apply a proper fitting to the EDXRF spectra considered
during the study. Regarding the values of y2,,, since most of the
values are around 1, the fitting of the peaks was achieved
successfully.

Assessment of matrix composition and quantification. In order
to perform quantitative analysis and implement the Fundamental
Parameter method, the methodology used by Ensina ef al. *® and
by Braga 3° was followed: determination of the combination and
composition of the elements in the matrix that would exhibit a
given average Z.

The average Z values were determined considering the
calibration curve plotted using the Rh Ko Compton-to-Rayleigh
ratios determined for all the model samples and their respective
average Z values.

Figure 3 represents the curve plotted with the software

Atom. Spectrosc. 2025, 46(2), 131-140



developed in this work, in which each point corresponds to the
average value determined from a total of four measurements and
the error bars correspond to the average deviation to the mean. The
fitted curve results are presented as inset in the figure.

Preliminary quantification. From literature, preliminary 20-30
matrix compositions were tested for each type of CRM. Once the
matrix was defined, it was introduced ad-hoc in the MQuant
software for purposes of quantifying the trace and minor elements
by the Fundamental Parameters method. The data treatment aimed
at finding the most suitable matrices which exhibited the best
results when compared with the CRMs expected values. To assess
that suitability of the different matrices, the weighted percentual
deviations (|Alweighted%) between the concentrations obtained for
each matrix and the reference values of the CRMs were estimated
as follows:

Ciops—Cire
A% yeigneea = Z1 (1Al * £,) x 100 = XX, <|'27f|* 100) (5)

iref

Here, |A| represents the relative deviation, N is the total number
of trace and minor elements, f; corresponds to the mass fraction
of the i element, C; ,  is the concentration of the element i
obtained during the quantification and Cj,, .

concentration of the element i. The matrices with lower values of

is the reference

[Alweightea% and consequently, the best quantifications, were
considered for the development of the optimization script.

Algorithm. In order to determine the best combination of elements
for the matrix, an algorithm was developed based on two specific
tools: support vector regression (SVR) and bootstrapping and the
scikit-learn open-source library was used during the development
of the entire script.*’

The SVR tool allows to compensate for errors by employing a
loss function which combines the errors of the training
observations (g), responsible for defining a range in which the
errors are disregarded, and a regularization term (C) that controls
the complexity of the model. As a result, the final model is
considerably smoother and less sensible to small data variations,
i.e., it is robust to treat both linear and even nonlinear data.

To treat nonlinear data, as it is the EDXRF data, this machine
learning tool uses kernel functions that transform the original
dimensional space into a new one with larger dimension where a
linear relationship between the data can be found. The nonlinear
function can be translated as follows (a; and «; are Lagrange
multipliers, k(x;, x) is the kernel function, and b is a bias term
which allows to adjust the model to the data):

) =N (af —a) k(x;,x) + b 6)
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The loss function, L, in its turn, can be defined as (y
corresponds to the real value):

0, if If(x) —yl<e

|f(x) —y| — €, other cases

L= () = ™

The SVR was implemented by providing the parameters C and
¢ to the sklearn.svm module. A specific kernel function, the radial
basis function (RBF), was used in the implementation of the
software. This variation measures the similarity among two
observations considering their Euclidian distance*'. Higher values
of'the kernel allow to consider a wider variety of arrays and, on the
other hand, lower kernel values imply that only close arrays can
be considered as similar. The RBF can be represented as follows
(x and x’ correspond to the characteristics arrays of the input data.
and o is the range of the function that defines the kernel):

K(x,x") = exp (— _llx—xrllz)

202 (8)

Since the model under development exhibits multiple outputs
(all the concentration levels for the several elements existent in the
matrix) for a single average Z input, it was necessary to use the
MultiOutputRegressor class of the sklearn. multioutput module, in
order to process all the outputs. Then, to define the best values for
the parameters C and ¢, the RandomizedSearchCV class of the
sklearn.multioutput module was used. This class generates
random values and evaluates the suitability of each pair until the
best parameters are obtained. In this work, C = 500 and € = 1.3.
Finally, bootstraps datasets of 1000 observations were considered
to teach the algorithm. The bootstrapping generates multiple
bootstrap samples from a single original sample by randomly
selecting, with replacement, n data points, where n is the size of
the original dataset.* These bootstrap samples, were generated
using the resample function of the module sklearn.utils and then
used to train the SVR algorithm. Fig. 4 describes the implemented
workflow.

This approach effectively implements an ensemble learning
technique where bootstrapping
generalization of the SVR. All the repeated matrices were

is used to enhance the

disregarded.

RESULTS AND DISCUSSION

The obtained results will be discussed in different sections
considering the type of matrix.

Soft tissue and blood samples have a dark matrix composed of
elements like hydrogen, carbon, nitrogen, and oxygen, which

explains the low levels of average Z for these CRMs. To obtain the
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Fig. 5 Elemental concentrations (mg.kg"') obtained with both 1 and 2
matrices for the CRM lobster hepatopancreas (TORT-2), compared to the
reference values. Error bars correspond to the Standard Deviation of the
results for the 8 measured spectra. There is also presented the weighted
deviation between the best matrix and the certified value.

reference concentrations of these elements in CRMs, a literature
search was conducted for the marine life CRMs (IAEA MA-A-2,
DORM-4, TORT-2, NIST-1566b).343¢ Since the CRMs animal
blood (IAEA-A-13), bovine liver (NIST-1577a) and pig kidney
(ERM-BB186) are of mammal origin, it was expected that they
exhibited concentration levels similar to the ones found in the
human organism, similar to the matrixes tested in Ensina ef al. 3
The considered concentration ranges were 1 — 10% (H), 15— 50%
(©), 1 —20% (N), and 20 — 70% (O). These concentration levels
may vary depending on the type of tissue, in this way, the values
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available in the literature may not reflect their exact concentration,
nonetheless, the differences are not significative.

Then, the algorithm developed for purposes of creating the
different combinations of elements in regard to the matrix
composition of each CRM was applied considering the
concentration ranges and the average atomic numbers of reference.

After applying the algorithm, 10 different combinations of
elements were tested for each CRM. Additionally, normalized and
non-normalized versions of the FP-method were compared, being
that the non-normalized values exhibited better results, meaning
that some of the elements of the matrix can be present in higher
concentrations than expected or there could be a missing element.

Considering all the CRMs, the matrices with better (matrix 1)
and worst (matrix 2) quantifications are presented Table S3. The
concentrations of the main elements are shown, for the CRM
lobster hepatopancreas (TORT-2), in Fig. 5 (the remaining results
are present in Table S5).

By analyzing the results. one can conclude that matrix 1 allows
more accurate quantifications when compared with matrix 2,
nonetheless, for some elements, the obtained and certified values
do not converge even considering the uncertainties. Considering
all the CRMs, more accurate quantifications were achieved for the
elements K, Ca, Fe, Cu, Zn, and Mn - if present at higher
concentrations. Additionally, lighter elements like P, S and Cl and
also As and Mn if present at lower concentrations, exhibit
quantifications less accurate (i.e. with weighted deviations of
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Fig. 6 Elemental concentrations (mg.kg"') obtained with both 1 and 2
matrices for the CRM phosphate rock (BCR-032) compared to the
reference values. Error bars correspond to the Standard Deviation of the
results for the 8 measured spectra. There is also presented the weighted
deviation between the best matrix and the certified value.
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Fig. 7 Elemental concentrations (mg.kg"') obtained with both 1 and 2
matrices for the CRM clay (ISE-954) compared to the reference values.
Error bars correspond to the Standard Deviation of the results for the 8
measured spectra.  There is also presented the weighted deviation between
the best matrix and the certified value.

around 20%). Regarding Br and Sr, lower accuracy can also be
due to the thickness of the pellets, not fully complying with the
infinitely thick regime.*8- 16

Geological samples have elemental compositions that are
considerably different from soft tissues since they are often
composed of heavier elements and, consequently, have a higher
average atomic number. Phosphate rock, for example, is mostly
composed of S, O, P, and Ca, nonetheless, the contribution of
sulfur was disregarded since it exhibited a very low quantity in the
sample. As for the previous cases, the concentration ranges were
defined based on the literature; they are 30 — 60% (O), 10 —20%
(P), and 30 — 50% (Ca).**

Differently from the previous case studies, it was not possible to
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consider a matrix solely containing invisible elements like oxygen
and performing an automatic quantification of P and Ca later in the
processing. This way, it was necessary to add these two elements
and find a matrix that complied with the already mentioned criteria.

The matrices with better (matrix 1) and worst (matrix 2)
quantifications are presented in Table S6, while the quantification
results achieved are presented in the bar charts of Fig. 6 and
compared with the reference values.

Despite still existing discrepancies between the best matrix and
the reference values for lighter elements, the selected matrix was
the one that allow to minimize them. The remaining elements
exhibit quantification values similar to the reference values
proving the suitability of the methodology. The exception would
be Cu, but this element is present in quantities very close to the
limit of detection (LOD).

Regarding composition, the studied samples are composed by a
variety of elements among which one can highlight Al, Ca, K, and
Fe. The high quantities of these elements in the samples as well as
their dispersion between distinct samples impose several
challenges in the definition of a proper matrix for purposes of
quantification that complies with all the criteria. Nonetheless, three
main elements were verified to be always present in this kind of
samples: C, O and Si and by consulting the literature it was
possible to define concentration ranges for these elements, from 1
—45% (C), 10— 50% (O), and 10 —35% (Si).*

Similarly, to the case study involving phosphate rock, the
removal of Si from the matrix worsened the results. This way, this
element was considered during the selection of the most suitable
matrix. Considering all the CRMs, the matrices with better (matrix
1) and worst (matrix 2) quantifications are presented Table S7. The
concentrations of the main elements are shown, for the CRM Clay
(ISE-954), in Fig. 7 (the remaining results are present in Table S8).
Ni in the clay (ISE-954) and the Cu in the soil (IAEA-SOIL-7)
CRMs exhibit the worst results. This can be justified by their
considerably lower concentrations when compared with the
remaining elements. For the San Joaquin soil (SRM-2709a) CRM,
the elements K, Ca, and Fe were overestimated, while the element
K was underestimated for the river sediment (NIST-1645) CRM.

Mostly composed of H, C, N, and O a reference material of
wood was also included in this study to assess the robustness of
the developed protocol. As for previous cases. the theoretical
concentration ranges for the elements were gathered from the
literature and varied from 1 — 10% (H), 40 — 55% (C), 30 — 45%
(O) and 0 — 4% (N).%

Similarly to the previous cases, several elemental compositions

were obtained for the potential composition of these CRMs
matrices, considering the Z of each element and the reference
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Fig. 8 Elemental concentrations (mg.kg"') obtained with both 1 and 2

matrices for the CRM wood (BAMU130) compared to the reference values.

Error bars correspond to the Standard Deviation of the results for the 8
measured spectra. There is also presented the with the weighted deviation
between the best matrix and the certified value, as well as, the respective
reference values.

average Z of the sample. The selected matrices were the ones that
exhibited lower percentual deviations and whose average atomic
number was closer to the reference value (Table S9).

The quantification results achieved for the selected matrix
during the statistical processing of the CRM of wood, as well as
the reference values and the |A| weighted% were plotted in the
graph of the Fig. 8.

Interestingly, the quantification of Pb exhibited the worst results
for the wood while Cr was the element with better results since it
showed lower percentual deviation when compared to the other
two elements, so it is suitable to say that the achieved results a
accurate, proving the potential of the developed methodology to
also quantify elements in wood-based samples.

CONCLUSION

This automated and non-destructive approach integrates open-
source computational tools and algorithms into a reliable
workflow for elemental analysis. The combination of spectral
analysis and matrix composition quantification has proven its
potential to streamline workflows and enhance accuracy across
diverse applications, including environmental, biomedical, and
industrial contexts. The developed methodology for matrix
determination using EDXRF spectra has proven to be an effective
and versatile solution to address quantification, especially when
suitable calibration curves cannot be developed. By leveraging the
analysis of Compton and Rayleigh scattering peaks, combined
with computational tools like support vector regression (SVR) and
bootstrapping, the approach enabled the determination of the

www.at-spectrosc.com/as/article/pdf/2025008

matrix composition with enhanced reliability and precision. The
results demonstrated strong agreement with reference values,
particularly for heavier elements such as Fe, Cu, and Zn, which
showed minimal deviations across biological, geological, and
wood-based samples. Similarly, in geological samples such as
phosphate rock and clay, heavier elements aligned well with
reference values, but trace elements like Cu and Ni showed larger
deviations, likely due to their low concentrations relative to the
sample matrix. In wood samples, discrepancies were observed for
certain elements, such as Pb, but the methodology performed well
for Cr, highlighting its adaptability to different matrix types.

While the proposed methodology demonstrates strong potential,
certain areas highlight room for improvement, offering
opportunities to refine its accuracy and versatility. One notable
challenge lies in the quantification of lighter elements, such as Mn,
Sr, P, S, and Cl, particularly in biological matrices. These elements
often exhibit deviations around 20%, likely due to their low atomic
numbers and fluorescence yields. Addressing this requires
enhanced spectral deconvolution techniques (the MQuant
software was used and shows clear limitations) and the use of
high-resolution detectors, namely microcalorimeter detectors, that
could improve the sensitivity and separation of these elements,
minimizing deviations.

Expanding the training dataset to include a broader range of
certified reference materials (CRMs) would enhance its robustness.
Combining the current SVR model with other machine learning
techniques, such as neural networks, may also improve
adaptability.

Despite some discrepancies for some trace elements, the
developed methodology is a significant step forward in the field of
EDXRF analysis, offering an efficient and robust solution for
quantifying complex matrices.

ASSOCIATED CONTENT

The supporting information (Tables S1-S9) is available at
www.at-spectrose.com/as/home.
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