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In recent years, there have been several advances in iterative optimization algorithms seen as closed-loop
control systems in discrete-time that solve unconstrained optimization problems. In this paper, we extend these
advances to the continuous setting and leverage circuit equivalence to present a possible implementation of

such controllers. Next, we address constrained Quadratic Programming (QP) challenges within a primal-dual
framework that appears in many controller definitions. By drawing parallels between second-order ODEs and
circuit dynamics, our study bridges theoretical optimization with practical electrical analogues that can be
designed and implemented for problems in systems engineering, robotics, and autonomous vehicles that could
benefit from the low power and latency of these optimization-based controllers.

1. Introduction

The Control community has devoted a significant research effort
into the field of autonomous systems from high-altitude drones to un-
derwater vehicles, for instance in [1,2] for drone technologies, [3] for
communications, along with [4,5] for underwater exploration or [6,7]
for search in unknown environments. These technologies have been
applied to environmental surveillance, disaster management, and un-
manned logistics, as highlighted in [8-12].

This paper focuses on the idea of leveraging the application of
gradient descent methods either for trajectory planning or controller
design. As a consequence, this paper first investigates continuous-time
gradient descent methods by introducing ODE models and establishing
expressions for parameter selection. Then, we introduce electrical cir-
cuits analogues to the differential equations that govern these gradient
descent methods in continuous-time domain.

In the literature, there has been substantial attention to gradient de-
scent methods in discrete time, such as the Heavy-Ball [13], Nesterov’s
accelerated gradient [14], and the Triple-Momentum method [15]. The
paper in [15] provides a comprehensive analysis of poles and zeros
in transition matrices that allows an optimal selection of parameters
to minimize worst-case convergence rate, while the authors in [16]
employ eigenvalue analysis to examine convergence rates and stability.
In the literature, there has also been some interest in continuous-
time methods such as [17], where continuous-time models of Nes-
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terov’s method are derived that result in time-varying parameters.
The work in [18] presented high-resolution ODEs with higher-order
correction terms for gradient methods, which differs from our methods
with constant parameters that enables presenting theoretical results for
parameter selection.

An interesting feature of continuous-time methods is the possibility
to be represented by an equivalent circuit. The advantage of using
circuits over digital processors is the faster response times and more
energy efficient computations. This shift from digital computation to
circuit analogs is analyzed in studies like [19], which highlights the
low power requirements and intrinsic parallelism of analog comput-
ers. Recent work shows that domain-specific analog accelerators can
outperform digital systems, offering improved optimization speed and
reduced energy consumption in [20,21], while hybrid analog/digital
frameworks further enhance computational efficiency and adaptabil-
ity [22,23]. Emphasizing the transition from digital calculation to
circuit analogs, research such as [24-27], and [28] demonstrates the
growing trend in this area. Further, [29,30] discuss equivalent circuits
in unconstrained optimization, presenting methodologies for designing
algorithms robust to hyperparameters and achieving fast convergence
rates. Our research diverges from these approaches by proposing equiv-
alent circuits directly derived from op-amp-based circuits. The main
contributions of this paper can be summarized as follows:
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+ Continuous-time versions of various gradient methods focusing on
their parameter optimization to obtain optimal convergence rates;

» Development of equivalent circuits such that the optimization can
be carried out using low power and fast speeds;

These contributions lead to two main advantages:

» We can provide optimal parameters for continuous models much
like the ones already presented for discrete-time in the literature;
» QP-based CBF-CLF controllers can be implemented using circuits
and thus have the controllers working directly in continuous time.

We would like to remark that the last point is of particular interest,
considering that the QPs are based on continuous conditions for the
CLFs and CBFs, but due to normally being implemented in a digital
embedded system, they must be run with a sufficiently small sampling
time. The safety guarantee through forward set invariance is given by
performing a Lyapunov analysis on the continuous closed-loop system.
Therefore, it makes sense that the controller can be implemented
directly in continuous time.

2. Gradient methods in continuous time

Having in mind the design of continuous controllers based on
CLF-CBF QPs, let us start by addressing the problem of minimizing
a quadratic function without considering constraints. Let us consider
x € R" as our optimization variable and a matrix Q and vector e that
translate how each entry is weighed, leading to the following problem
formulation:

Problem 1. Consider a set of agent states collectively represented by
the state vector x. The objective is to optimize a quadratic cost function
of the states by minimizing the objective function:

minimize g(x) = leQx +elx (€))
x€R" 2

where O € R"™" is a symmetric positive definite matrix to ensure the
existence and uniqueness of the solution to the optimization problem,
and e € R” accounts for a linear term in the cost.

2.1. Review of discrete-time gradient descent methods

Before tackling Problem 1 in a continuous time setting, let us
review discrete time methods that will help build the intuition to the
continuous counterparts. The gradient descent method is given by the
iteration:

X1 = X — BVg(xp). (2)

The gradient descent method might suffer from slow convergence,
which can be improved by alternatives like the Heavy-Ball method,
which is inspired by the concept of physical ball moving along g with
momentum, taking the form:

Xpp1 = (1 + a0)xp — axp_y — BVELxp). 3

Further building on the idea of momentum, Nesterov’s Accelerated
Gradient introduces a predictive step, which leads to:

Xpr1 = Vi — BVEL)
Ve = +a)x, —ax,_y

4
while a generalization name Triple-Momentum method was presented
in [15]:

Xy = A +)x, —ax,_y — fVgy,)

Vi = (L+ 9% = vy : ®

o, =l +o0)x;, —ox;_4
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We recover the main result of the literature regarding their optimal
parameters to ensure optimal convergence rates for L-smooth and m-
strong convex g functions. Worst-case convergence rate A corresponds
to |lx(k) — x*|l, < A*]|x(0) — x*||,, regardless of the initial conditions
x(0).

Theorem 2 ([15,16]). In addressing Problem 1, gradient descent, heavy-
ball, Nesterov’s accelerated gradient, and triple momentum, achieve optimal
convergence rates when their parameters are chosen as follows:

Method Parameters (a,f,y,0)
Gradient descent (, L%m 0,0)

(VL=y/m)? 4 0)

Heavy-ball , ————.0,
’Kd VL+ym2” (VL+ym?
Nesterov’s method (%, % 0,0)
Triple momentum (e N - i)
p L2 (tpp) 15

where p = 1 — 1/\/; and k = L/m. In this context, L > 0 and
m > 0 represent constants indicating that the function f is L-smooth and
m-strongly convex, respectively.

2.2. Continuous-time counterparts of gradient methods

In this section, we start by noting that Nesterov’s method can be
rewritten to exhibit an implicit temporal increment

Xpp1 — X = a(x — x4_1) — BVE(y) 6)

where the discrete differences x;,; — x; and x; — x;_; represent finite
approximations in differential calculus.
Let us introduce a scaling factor, \/E, to adapt the discrete parame-

ters « and f into their continuous-time equivalents a, = 1%“ and g, = é
N

Consequently, (6) is reformulated as follows:

Xpar = X + (1= @ V/5) e = x421) = BosVe () @

where y, = x; + (1 —«a, \/E)(xk — x;_1)- The discrete-time update rule is

then transformed into

X - X Xpe — Xp—

S TR (1 — e/ L g v sVa() 8)
Vs Vs

assuming the discrete sampling time k, scaled to the continuous-time

variable ¢ via the factor \/E ask = L\[ Approximating finite differences

by first and second-order derivatives, we obtain

% =50+ 25OV5 +o(V5) (9a)
S

% = 50 = 3¥OV5 +o(V5) (9b)
S

VsVei) = VsVex) +o(v/5) 90

which means that (8) is approximately

() + %x(t)\/h o(v/5) = (1 = aeV/5) (%) - %x(z)\/E +o(V/5))
= B \sVE(x(0) + o(1/5).

By grouping terms according to the order of their derivatives, we can
further simplify into

a\/sx(0) + (Vs + %s))’é(t)
+ BA/sVex(D) + (1 + a./s + B.4/5)0(\/5) = 0

and neglect higher-order infinitesimal terms o(\/E) to obtain

(10)

1)

@ Vsx(t) + (Vs + %s))‘é(l) +4./sVex(1) =0 12)
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Further simplification is achieved by dividing the entire equation by

Vs
a
a,x(t) + (1) + ?‘ V/sk(t) + B.Ve(x(t)) = 0 13)

As \/E approaches zero, we can disregard the term %\/356(1) and get
the final expression:

(1) = —a x(0) = . Vex(®) 14

Building upon the previous differential equation and its connection
with discrete-time gradient methods, we can propose a general lin-
ear system to represent the whole family of optimization methods as
follows:

X =—ax—pVg(y)
y=x+yx (15)
o=Xx+0X%x

where parameters a, f, y, and o are to be chosen as to get the
fastest convergence rate in worst-case. We have named the methods as:
Nesterov method (2-parameter), the Triple-Momentum method without
output equation (3-parameter), and the continuous Triple-Momentum
method (4-parameter). This nomenclature is deliberately chosen to
highlight their structural similarities from discrete methods, facilitating
a coherent understanding of their application.
To shorten the notation, we write the methods

+ Continuous Heavy-Ball: ¥ = —ax — fVg(x).
. X =—ax - pVg(y)
» Continuous Nesterov:
y=x+ax
X =—ax—pvVey)
+ Continuous Triple-Momentum: y = x + yx

o=Xx+0X%x

as a linear system in state-space using matrices

where u = Vg(y) and the Continuous Triple-Momentum method has a
tuned output o = x + oX.

2.2.1. Optimized parameter selection for continuous gradient methods
In this section, we present a result regarding the optimal selection
of parameters to obtain the fastest worst-case convergence rate.

Theorem 3. Continuous gradient methods achieve optimal convergence
rates when their parameters are chosen as follows:

Method Parameters (a, p,y,0)
Heavy-ball (V/4pm, »,0,0)
Nesterov (zll/llz 0,0, 0)

@v/pLm fi:f oo, 2 YoV

Triple momentum

Proof. Let us start by computing the gradient of g

Vg(x)=0x+e (16)
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In equilibrium conditions, we have x* = 0 and v* = 0, which makes
x*=0 & Ax*+Bu*=0 = Ax* =0 a7
and additionally
=0 < Vg(p(1)) =0 < QOCx* +e=0. (18)
The error ¥ = x — x* has dynamics
X=x—x*

= Ax + Bu

= Ax + B(QCx + ¢) 19

= Ax — Ax* + BQCx — BQCx*

= (A + BQC)(x — x*) = (A+ BQO)x
where we used (17) to allow adding —Ax* and (18) to replace the value
for e.

From (19), convergence to zero error corresponds to checking the

eigenvalues of T := A 4+ BOC. Utilizing the eigenvalue decomposition

Q = UAUT, where U is orthogonal and A is diagonal, allows to
diagnolize the matrix and study

T,=A +BA4C, i=1...n (20)

where each T, corresponds to each mode of the overall error dynamics
corresponding to each eigenvalue 4; of Q0 A, B; and C, are the matrices
for the scalar case.

Continuous Heavy-Ball: For this method, the matrix 7} results in

—a  —BA
T, = A, + B A4,C, = [ 1“ f) ] (21)

with the characteristic polynomial being
Vi4av+ 4, =0. (22)

The roots of this polynomial are:

M (23)
2

where 4 = o — 4§4;. To avoid oscillations, we need 4 = 0, leading to
a= \/4ﬂ_m However, notice that we can make the real part arbitrarily
negative by making f — .
Continuous Nesterov:
—a—fak; —pi;
0

T, =A + B AC = 1

(24

The characteristic polynomial of the matrix T; is thus expressed as:

V24 (a4 fad)v + A, =0 (25)
with roots:
_—a—fai V4 (26)
- 2

where 4 = (« + fai,)? — 444;. Therefore, to avoid oscillations it must
satisfy

2+/BL
1+pL
with the real part of the eigenvalues being arbitrarily negative is we
make f — oco.

Continuous Triple-Momentum Doing the same steps, we arrive at T;
being

(@+ par)’ —4p1, =0 < a= 27)

—a—frd =P

T,= A, + B A,C, = 1 0

(28)

with a characteristic polynomial

Vi @+ Brav+ P =0 (29)
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having roots

V= - — ﬂ}’; \/_ (30)

where A = (a + fiyA;)> — 4p4;.
In order to get real solutions, 4 = 0, which results in

L—+/m L—+/m
“ZNﬂLWg’ y = %g
—m ﬂ —m
which also indicates optimizing for the fastest convergence involves
selecting f — oo.
In order to find the best value for o, let us write the output error
dynamics

(31)

d — s_d. i

E(O 0)—dt(o x™)
= (6(A + BQC) + I)(x — x*)
= (6T + I)(x — x*)
=T(x—x*)

(32)

Therefore, we want to place the pole of the inverse of the transfer
function to the output with the slowest pole p given by

A+
,,:max( atby \/_>,fori=1,...,n, (33)

2
which after replacing with the relationship between « and y, simplifies
to

p=-ttimm 34)

Applying the Laplace transform to the output function, o = x + ox, this
yields:

O(s) = X(s) + 65X (s) (35)

which leads us to the transfer function:

=1
X6) +o0s (36)
and subsequently, its inverse:
X(s) _ 1 37)
O(s) 1+os

2
with a critical pole at s = —%. Setting the pole equal to [ p = —”7 gets
us

L2 L (_akpmY (38)
o 2 2 2
resulting in :
8
=—" 39
(a + pym)? ¢

With these parameters established, the next section aims to provide
a bridge to a direct continuous implementation by providing an equiv-
alent electrical circuit that could be used to solve the unconstrained
optimization problems with low power consumption.

3. Equivalent circuits for continuous gradient descent methods

In this section, we design circuits that translate the differential
equations found for the continuous-time gradient descent methods.
Although, increasing § always speeds up the convergence, in practice,
we must choose a finite § to balance accuracy and convergence speed.
Leveraging the correspondence between second-order ordinary differ-
ential equations (ODEs) and op-amp-based circuits, we introduce circuit
implementations that embody these continuous approaches.
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Fig. 1. Block diagram of the continuous Heavy-Ball method applied to the scalar case.
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Fig. 2. Illustration of circuit components to implement basic blocks.

Fig. 3. Circuit implementation of the continuous Heavy-Ball for the scalar case.

3.1. Continuous heavy-ball

Let us start by considering the continuous Heavy-Ball method ap-
plied to a scalar function
X =—ax— pVgx)

= —ax — figx — fe.

To construct the circuit using operational amplifiers, we break down
the equation into components suitable for electronic representation,
focusing on integration, multiplication, and summation. Op-amp-based
integrators model the integration of x and %, while analog multipliers
handle the products of ax and f(gx + e¢). Summing amplifiers then
aggregate these signals to reconstruct the equation —ax—pf(gx+e), which
is diagrammatically summarized in Fig. 1 using logic blocks.

Integrators use op-amps with capacitors in their feedback loops to
achieve integration, while multiplication is implemented using multi-
plier circuit blocks based on Gilbert cells or alternative CMOS designs.
A comprehensive description of each circuit function can be found
in [31]. The practical implementations of these circuits are shown in
Fig. 2.

Combining the building blocks from Fig. 2 to construct the full
Heavy-Ball method results in the circuit depicted in Fig. 3. The mul-
tidimensional case involves designing a circuit for each scalar case that
uses variables from adjacent scalar sub-circuits and combining them
with multiplications with constants and additions to implement each
ith block

(40)

n
Xi:—axi—ﬁqu-jxj—ﬂei for i=1,2,...,n 41)
j=1
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[ >

Fig. 4. Block diagram for the continuous Heavy-Ball method for a function g with 2
variables.

where x; and e; represent the ith elements of vectors x and e respec-
tively, and g;; is the (i, j)th element of the matrix Q. This setup requires
n sub-circuits, each mirroring the basic configuration shown in Fig. 1,
with additional interconnections to accommodate the matrix structure
of the system. The logic block for the case of 2 dimensions is shown in
Fig. 4.

3.2. Continuous methods with additional momentum

Adding additional momentum terms requires a more complex cir-
cuit representation. Unlike the continuous Heavy-Ball approach, these
methods model the gradient as a first-order proportional relationship,
specifically Vg(y) = Vg(x + yx), and include a tuned output o = x + o%.

We will focus on the general case of the continuous methods, which
encompasses the foundational principles of related models like the
continuous Nesterov method. In contrast to strictly replicating the ODEs
detailed in (15), which would require constructing additional sub-
loops to capture the first-order gradient dynamics, we adopt a more
practical approach. We directly modify the value of x, which allows us
to integrate additional momentum effects without extensive changes to
the existing circuit configuration:

¥ =—ax—pVg(y)
= —ax — fgx — pqyx — Pe (42)
= —(a + fay)x — fax — fe
This formula represents how the additional component fgyx is merged
into the existing parameters of the circuit. We accomplish this by
adjusting the voltage at the integrator’s input using the existing mul-
tiplier and summing op-amp. The tuned output 0 = x + ox is not

directly involved in the feedback loop of the circuit and can be added
independently.

3.3. Practical implementation and parameter tuning

As we translate these theoretical models into practical circuit im-
plementations, some component selection is required to maintain ac-
curacy:

- Resistors: Set to 10° Q to minimize electrical noise, thus enhanc-
ing the circuit signal accuracy.

+ Capacitors: Adjusted to 1073 F to ensure a product of resistance
and capacitance equal to 1, stabilizing voltage levels.

+ Feedback Loop Resistors: Calibrated to ¢; ; X 10% to accurately
simulate the matrix operations and dynamics essential to the
system.

Voltage scaling. Adjusting the parameter g significantly affects the
circuit voltage levels, requiring careful scaling to prevent component
saturation and ensure the circuit functions properly.

+ Op-Amp Voltage Limits: According to [32], operational ampli-
fiers should operate with input voltages below 100 V to prevent
saturation.

Systems & Control Letters 203 (2025) 106146

- Implementation Strategy: Initial settings, including multiplier
gains, are scaled down by 1/# to maintain voltages within safe
limits.

» Post-Adjustment Corrections: After obtaining the output results,
the voltages are adjusted by multiplying by p to achieve accurate
values that correspond closely with theoretical expectations.

Optimizing circuit accuracy. Accurate low-voltage operation is critical,
especially when dealing with sensitive components. Since voltage levels
can be scaled down to 1/f in previous adjustments to ensure proper
circuit functionality, it is important to carefully select the value of f.

+ Op-Amp Sensitivity: Standard op-amps typically process signals
as low as 1 pV, with performance degradation below 100 nV
unless specifically designed to handle such low voltages.

Beta Selection: Capping § at 10* is necessary because higher
values would further reduce the voltage, potentially below the
operational amplifier capabilities, thus affecting the precision
of the system. Originally capable of precision around 1077, the
scaling by 1/p proportionally reduces this to 1073, considering
the voltage reduction.

System Settling Time (T,): A carefully selected § ensures faster
convergence while maintaining the accuracy of the system within
a 1072 tolerance.

4. Constrained optimization problem using equivalent circuits

Quadratic Programming (QP) problems are fundamental in control
systems and often include inherent constraints critical to their formu-
lation. Building on the continuous-time gradient descent methods and
their circuit implementations developed thus far, we now address the
challenge of incorporating constraints into the optimization framework.
We revisit Problem 1 to integrate these limitations, thereby enhancing
its relevance and applicability to practical scenarios:

Problem 4 ( Problem 1 with Constraints). Consider a set of agents, each
characterized by a state vector x. The goal is to optimize the operational
states of these agents by minimizing the objective function:

. 1
min, ExTQx +elx

43
s.t. Sx=b (43)

where Q € R™" is a symmetric positive definite matrix, e € R" is a
vector and S € R™" is the matrix defining equality constraints with
corresponding vectors b € R".

4.1. Circuit design for primal-dual gradient descent method

Given that the circuits discussed in the previous section are tailored
for unconstrained problems, an effective strategy to address our current
problem involves reformulating it as an unconstrained problem. This
can be achieved through the augmented Lagrangian method which
integrates Lagrange multipliers directly into the objective function,
effectively transforming the constraints into part of the optimization
objective. The augmented Lagrangian for our problem is formulated as:

L(x,A) = %xTQx +xTe + AT(Sx — b) (44)

where 4 € R™ is a vector of Lagrange multipliers, corresponding to m
constraints. Leveraging strong duality, the Karush-Kuhn-Tucker (KKT)
conditions for optimality are expressed as:

oL =00=0x+STi+e,
ox (45)

oL
o —0e0=Sx—bh
oA < X
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]

nVCCS
(shared variable)
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nVCCs

¢ 1 [T

Fig. 5. Partial circuit model for primal-dual optimization problem.

Solving these linear equations yields the unique global optimizer
(x*, A%):
X" =-071(STA* +e),

(46)
= =SSN l(b+ 507 e).

While the augmented Lagrangian method provides an exact solution
for the constrained optimization problem, its practical implementation
requires centralized knowledge of the matrices .S, Q, and vectors e, b.
Any changes or temporal variations in these parameters would neces-
sitate recalculations of the optimizer. In the context of the primal-dual
framework, this scenario is characterized by the following differential
equations:

0 .0
Ti=--LxA). Tid=—L0xd) 47

where T, and T are positive definite diagonal matrices representing
time constants. The dynamics of the optimization are then expressed
by:

. JL
T x = —Txa =-0x—-STl-e,

(48)
TM:TA(;—E =Sx-b,

For a scalar instance, the primal problem is represented as 7, x =
—gx—si—e. To adapt this to a multi-dimensional context, we extend the
formulation to encompass each ith dimension in the primal problem.
In this expanded view, the equation for each dimension is expressed as
g X; = = Loy Qiy%; = Zijmy Sjadj = e

In parallel, the dual problem for each dimension i is defined as
t ,1,_):,- = Z;.;l S;jx; — b;. Combining both equations, it is required to
implement
o 0% 5 Siidy e

Primal:x‘,-=—z : —Z ;

Jj=1 i j=1 "%
n
. S, ix; b,
Dual: 4; = Z AL
1 t,

i

(49

j=1

The sub-circuit model for this setup can be simplified to the repre-
sentation x = ¢;x + ¢,. Given the higher costs of op-amps compared to
passive components, we have adapted the methods from [29] to opti-
mize cost-effectiveness in our approach. This model is realized using
several key components: 1. A capacitor is utilized to represent the first-
order derivative term; 2. Voltage-Controlled Current Sources (VCCSs)
are employed to create variables proportional to the coefficients in
the equation; 3. A constant term is integrated into the circuit using a
current source.

To accurately set the initial condition of the system, we incorporate
a voltage source coupled with a switch. This setup is activated at 1 =0
to establish the initial voltage across the capacitor, corresponding to
the initial value of the variable in question. The circuit configuration
that encapsulates this design is illustrated in Fig. 5.

Applying Kirchhoff’s Current Law (KCL) to the node at the top of
our proposed circuit configuration, we derive the following equation:

dv
o =Y Ko+ ) Ky + 1. (50)

Systems & Control Letters 203 (2025) 106146

Fig. 6. Circuit representation for 2-D primal-dual gradient descent optimization.

This equation effectively captures the structure of each equation in
(49). By dividing by the capacitance C on both sides, we obtain:

dv K 1 K2 1 s

E—ZFU+ZFU+E. (51)
The terms involving K; and K, in conjunction with the capacitor
C create a dynamic that mirrors the primal and dual equations of
the optimization problem. In Fig. 6, we illustrate a two-dimensional
representation of this circuit arrangement, designed specifically for
applications based on the primal-dual gradient descent method. This
figure provides a visual guide to understanding how the theoretical
aspects of the optimization problem are translated into practical circuit
configurations.

5. Simulation results

In our simulation, we focus on three key aspects: Firstly, we an-
alyze the convergence speeds of both discrete and continuous gra-
dient descent methods, particularly emphasizing trajectory analysis
in a two-dimensional space and comparing achieved versus desired
steady states. Secondly, we delve into the effects of the parameter g
on the convergence rate in different continuous-time gradient descent
methods. Finally, we assess error estimations in equivalent circuits,
juxtaposing these with outcomes from ordinary differential equations
(ODE) functions, to underscore the intricate interplay between circuit
parameters and system behavior.

5.1. Convergence speed for gradient descent methods

In this subsection, we start by exploring the convergence rates of
different gradient descent methodologies. In discrete methods using
the code in [33], factors such as the initial guess and the methods
way of functioning influence the convergence speed. To illustrate this,
we consider a dynamic system characterized by a high bias rate in a
random direction and a 6-dimensional configuration. Fig. 7 depicts the
error evaluation, represented by ¢ = |x — x*|, across various methods
in a complex, randomly selected dynamic system.

The Triple-Momentum without considering the tuned output o is
named as Triple Variables. Our simulations reveal that the triple mo-
mentum method exhibits enhanced convergence rates, aligning with
the findings of [15]. Nonetheless, this method still requires a significant
number of steps for convergence. In contrast, given the same Q € R®¢
and e € RO, continuous-time gradient methods demonstrate a rapid
and stable convergence. As shown in Fig. 8, the continuous Heavy-
Ball method and the continuous Triple-Momentum method can attain
an accuracy level of 10~® within 1 s for § = 1000. This performance
corresponds to a value of around 10~2 for the capacitors and inductors
in both the continuous Heavy-Ball method and the continuous Triple-
Momentum method—a level of accuracy that the fastest discrete-time
method fails to reach within 100 steps.

Many continuous-time approaches, such as the %-damped flow
X + %X(t) + Vf(X(@) = 0 introduced in [17], provide useful
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Fig. 9. Comparison of the 2-damped ODE and our continuous-time gradient descent
methods at § = 1, demonstrating differences in convergence behavior across problems
of varying dimension.

analogies to discrete-time acceleration and offer Nesterov-like asymp-
totic rates. However, in practice, their performance can be limited
by forcing a specific time-dependent damping ratio. In contrast, our
proposed continuous-time frameworks employ adjustable parameters
to achieve both stable and fast convergence. This flexibility also en-
hances practical implementation (e.g., with constant parameters in
circuits). As shown in Fig. 9, at § = 1 our parameterized methods,
including a continuous Heavy-Ball method inspired by Nesterov’s ac-
celeration, outperform time-dependent continuous schemes, especially
as dimensionality increases.

One envisioned application in this paper is the possibility to use
gradient methods to generate trajectories for dynamical systems. In
Figs. 10 and 11 we provide the trajectories that could be used for
autonomous vehicles to be tracked by a low-level controller. As it can
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Fig. 11. Trajectory for in a continuous-time gradient descent methods.

be observed, the use of discrete-time versions of the gradient methods
does not return smooth trajectories, which would preclude its use.

5.2. Convergence analysis of continuous-time gradient descent methods

The choice of the g parameter for the continuous gradient methods
is of prime importance. The convergence speed in a 2-dimensional
randomly generated function, as shown in Fig. 12, varies with different
selections of . We observe that for g > 200, the system quickly reaches
a steady-state with an error below 10~°, indicating rapid convergence.
This observation suggests that the primary constraint on convergence
speed in practice is the physical limitation, specifically, the minimum
achievable values for capacitors and inductors. Moreover, as the values
of these components decrease, the resistance inherent in the capacitors
and even the circuit lines introduces significant noise to the outcomes.

5.3. Equivalent circuits of continuous-time gradient descent methods

This subsection presents the simulation results for equivalent cir-
cuit representations in continuous-time optimization methods. Fig. 13
shows the error, with the results being comparable to those obtained us-
ing the Python ode solver—akin to MATLAB’s ode45. This comparison
uses the same duration as depicted in Fig. 12, with identical parameters
and initial value x,.

Following this, Fig. 14 presents a comparative analysis that under-
scores the alignment between Python simulation results and circuit
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simulations for continuous-time methods. This figure clearly displays
two sets of results: dashed lines from the Python solver using ordinary
differential equations (ODEs), and solid lines representing practical
outcomes from equivalent circuit simulations as shown in Fig. 13.

Analyzing the outcomes presented in these figures, we observe a
primary distinction: When g > 40, after the error estimation falls below
1075, the convergence patterns show oscillations in the circuit results.
Similarly, for # > 1000, oscillations appear after the error falls below
1073

This behavior stems from scaling the circuit’s setup voltages to
1/p of their original values to maintain voltages within acceptable
limits, as discussed in Section 3.3. Opting for a larger g enhances the
convergence rate, but this setup carefully balances accuracy with the
required settling time for the system.

To further highlight the advantages of our circuit approach, we
compare it against conventional discrete gradient descent methods. In
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Fig. 15. Comparison of running times for discrete gradient methods and their equiv-
alent continuous-time circuit implementations (g = 4000).

Fig. 15, the “running time” for the circuit-based method represents
the theoretical performance of an actual analog circuit, as approxi-
mated by our MATLAB simulation. In contrast, the digital methods’
timing is derived from CPU/GPU-based computations. For instance, on
a computer with an AMD Ryzen 9 5900HS CPU and 16 GB RAM, each
iteration of a discrete gradient method takes approximately 0.0065 s
when D = 2 and increases to about 0.03 s at D = 6. In comparison,
our circuit-based approach converges within about 0.5 s, regardless
of dimensionality. In terms of power consumption, for the 2D case,
the discrete gradient method on the computer consumes approximately
9.1 J, while the continuous gradient method on the analog circuit
consumes only 0.1 J; similarly, for the 6D case, the computer method
consumes 490 J, compared to 0.3 J for the analog circuit. These results
point towards a direction of future research in conducting experiment
with real circuits implemented, for instance with Field-Programmable
Gate Arrays (FPGAs).

To analyze the constrained version of the problem, we examine
the primal-dual problem and its equivalent circuit representation. The
findings, depicted in Fig. 16, are contingent on the chosen time con-
stants. Specifically, the selection of positive definite diagonal matrices
for time constants, referred to as 7, significantly impacts the circuit’s
convergence rate. Under randomly generated system parameters and
constraints, certain choices of T yield suboptimal performance. For
instance, when T is on the order of 107!, the system’s behavior is
notably poor. Conversely, with 7' smaller than 10~3, the system rapidly
converges. This behavior underscores the potential advantages of using
equivalent circuits to address related optimization problems, despite
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the inherent challenges posed by simple 2-D dynamic systems. In Fig.
16, the value chosen for T affects the convergence behavior, illustrat-
ing the nuanced relationship between circuit parameters and system
dynamics.

6. Conclusion

In this paper, we have proposed continuous-time counterparts to
discrete-time gradient descent methods and presented optimal param-
eters to obtain the fastest worst-case convergence rate. Through nu-
merical simulations, we show that the proposed methods have better
accuracy and convergence properties than previously known continu-
ous gradient methods expressions with time-varying constants. We have
also provided circuit implementations for the theoretical differential
equations with the objective of solving the optimization problems
using analog computing. Lastly, we adapt these methods to primal
dual algorithms in order to be able to solve constrained optimization
programs.
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