Systems & Control Letters 203 (2025) 106146

journal homepage: www.elsevier.com/locate/sysconle

Contents lists available at ScienceDirect

Systems & Control Letters

Check for

Analysis of gradient descent algorithms: Discrete to continuous domains and |

circuit equivalents

He Hao?, Daniel Silvestre »#%4%-* Carlos Silvestre »"

2 Institute for Systems and Robotics, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
b Department of Electrical and Computer Department, Faculty of Science and Technology, University of Macau, Macao Special Administrative Region of China
¢ School of Science and Technology, NOVA University of Lisbon (FCT/UNL), 2829-516 Caparica, Caparica, Portugal

d UNINOVA - CTS and LASI, Campus de Caparica, 2829-516, Caparica, Portugal

ARTICLE INFO ABSTRACT

Keywords:
Optimization-based controllers
Iterative solvers

In recent years, there have been several advances in iterative optimization algorithms seen as closed-loop
control systems in discrete-time that solve unconstrained optimization problems. In this paper, we extend these
advances to the continuous setting and leverage circuit equivalence to present a possible implementation of

such controllers. Next, we address constrained Quadratic Programming (QP) challenges within a primal-dual
framework that appears in many controller definitions. By drawing parallels between second-order ODEs and
circuit dynamics, our study bridges theoretical optimization with practical electrical analogues that can be
designed and implemented for problems in systems engineering, robotics, and autonomous vehicles that could
benefit from the low power and latency of these optimization-based controllers.

1. Introduction

The Control community has devoted a significant research effort
into the field of autonomous systems from high-altitude drones to un-
derwater vehicles, for instance in [1,2] for drone technologies, [3] for
communications, along with [4,5] for underwater exploration or [6,7]
for search in unknown environments. These technologies have been
applied to environmental surveillance, disaster management, and un-
manned logistics, as highlighted in [8-12].

This paper focuses on the idea of leveraging the application of
gradient descent methods either for trajectory planning or controller
design. As a consequence, this paper first investigates continuous-time
gradient descent methods by introducing ODE models and establishing
expressions for parameter selection. Then, we introduce electrical cir-
cuits analogues to the differential equations that govern these gradient
descent methods in continuous-time domain.

In the literature, there has been substantial attention to gradient de-
scent methods in discrete time, such as the Heavy-Ball [13], Nesterov’s
accelerated gradient [14], and the Triple-Momentum method [15]. The
paper in [15] provides a comprehensive analysis of poles and zeros
in transition matrices that allows an optimal selection of parameters
to minimize worst-case convergence rate, while the authors in [16]
employ eigenvalue analysis to examine convergence rates and stability.
In the literature, there has also been some interest in continuous-
time methods such as [17], where continuous-time models of Nes-

* Corresponding author.

terov’s method are derived that result in time-varying parameters.
The work in [18] presented high-resolution ODEs with higher-order
correction terms for gradient methods, which differs from our methods
with constant parameters that enables presenting theoretical results for
parameter selection.

An interesting feature of continuous-time methods is the possibility
to be represented by an equivalent circuit. The advantage of using
circuits over digital processors is the faster response times and more
energy efficient computations. This shift from digital computation to
circuit analogs is analyzed in studies like [19], which highlights the
low power requirements and intrinsic parallelism of analog comput-
ers. Recent work shows that domain-specific analog accelerators can
outperform digital systems, offering improved optimization speed and
reduced energy consumption in [20,21], while hybrid analog/digital
frameworks further enhance computational efficiency and adaptabil-
ity [22,23]. Emphasizing the transition from digital calculation to
circuit analogs, research such as [24-27], and [28] demonstrates the
growing trend in this area. Further, [29,30] discuss equivalent circuits
in unconstrained optimization, presenting methodologies for designing
algorithms robust to hyperparameters and achieving fast convergence
rates. Our research diverges from these approaches by proposing equiv-
alent circuits directly derived from op-amp-based circuits. The main
contributions of this paper can be summarized as follows:

E-mail addresses: he.hao@tecnico.ulisboa.pt (H. Hao), dsilvestre@isr.tecnico.ulisboa.pt (D. Silvestre), csilvestre@umac.mo (C. Silvestre).

https://doi.org/10.1016/j.sysconle.2025.106146

Received 16 September 2024; Received in revised form 4 April 2025; Accepted 12 May 2025

Available online 4 June 2025

0167-6911/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/sysconle
https://www.elsevier.com/locate/sysconle
https://orcid.org/0000-0002-8097-0626
mailto:he.hao@tecnico.ulisboa.pt
mailto:dsilvestre@isr.tecnico.ulisboa.pt
mailto:csilvestre@umac.mo
https://doi.org/10.1016/j.sysconle.2025.106146
https://doi.org/10.1016/j.sysconle.2025.106146
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysconle.2025.106146&domain=pdf
http://creativecommons.org/licenses/by/4.0/

H. Hao et al.

+ Continuous-time versions of various gradient methods focusing on
their parameter optimization to obtain optimal convergence rates;

» Development of equivalent circuits such that the optimization can
be carried out using low power and fast speeds;

These contributions lead to two main advantages:

» We can provide optimal parameters for continuous models much
like the ones already presented for discrete-time in the literature;
» QP-based CBF-CLF controllers can be implemented using circuits
and thus have the controllers working directly in continuous time.

We would like to remark that the last point is of particular interest,
considering that the QPs are based on continuous conditions for the
CLFs and CBFs, but due to normally being implemented in a digital
embedded system, they must be run with a sufficiently small sampling
time. The safety guarantee through forward set invariance is given by
performing a Lyapunov analysis on the continuous closed-loop system.
Therefore, it makes sense that the controller can be implemented
directly in continuous time.

2. Gradient methods in continuous time

Having in mind the design of continuous controllers based on
CLF-CBF QPs, let us start by addressing the problem of minimizing
a quadratic function without considering constraints. Let us consider
x € R" as our optimization variable and a matrix Q and vector e that
translate how each entry is weighed, leading to the following problem
formulation:

Problem 1. Consider a set of agent states collectively represented by
the state vector x. The objective is to optimize a quadratic cost function
of the states by minimizing the objective function:

minimize g(x) = leQx +elx (€))
x€R" 2

where O € R"™" is a symmetric positive definite matrix to ensure the
existence and uniqueness of the solution to the optimization problem,
and e € R” accounts for a linear term in the cost.

2.1. Review of discrete-time gradient descent methods

Before tackling Problem 1 in a continuous time setting, let us
review discrete time methods that will help build the intuition to the
continuous counterparts. The gradient descent method is given by the
iteration:

X1 = X — BVg(xp). (2)

The gradient descent method might suffer from slow convergence,
which can be improved by alternatives like the Heavy-Ball method,
which is inspired by the concept of physical ball moving along g with
momentum, taking the form:

Xpp1 = (1 + a0)xp — axp_y — BVELxp). 3

Further building on the idea of momentum, Nesterov’s Accelerated
Gradient introduces a predictive step, which leads to:

Xpr1 = Vi — BVEL)
Ve = +a)x, —ax,_y

4
while a generalization name Triple-Momentum method was presented
in [15]:

Xy = A +)x, —ax,_y — fVgy,)

Vi = (L+ 9% = vy : ®

o, =l +o0)x;, —ox;_4

Systems & Control Letters 203 (2025) 106146

We recover the main result of the literature regarding their optimal
parameters to ensure optimal convergence rates for L-smooth and m-
strong convex g functions. Worst-case convergence rate A corresponds
to |lx(k) — x*|l, < A*]|x(0) — x*||,, regardless of the initial conditions
x(0).

Theorem 2 ([15,16]). In addressing Problem 1, gradient descent, heavy-
ball, Nesterov’s accelerated gradient, and triple momentum, achieve optimal
convergence rates when their parameters are chosen as follows:

Method Parameters (a,f,y,0)
Gradient descent (, L%m 0,0)

(VL=y/m)? 4 0)

Heavy-ball , ————.0,
’Kd VL+ym2” (VL+ym?
Nesterov’s method (%, % 0,0)
Triple momentum (e N - i)
p L2 (tpp) 15

where p = 1 — 1/\/; and k = L/m. In this context, L > 0 and
m > 0 represent constants indicating that the function f is L-smooth and
m-strongly convex, respectively.

2.2. Continuous-time counterparts of gradient methods

In this section, we start by noting that Nesterov’s method can be
rewritten to exhibit an implicit temporal increment

Xpp1 — X = a(x — x4_1) — BVE(y) 6)

where the discrete differences x;,; — x; and x; — x;_; represent finite
approximations in differential calculus.
Let us introduce a scaling factor, \/E, to adapt the discrete parame-

ters « and f into their continuous-time equivalents a, = 1%“ and g, = é
N

Consequently, (6) is reformulated as follows:

Xpar = X + (1= @ V/5) e = x421) = BosVe () @

where y, = x; + (1 —«a, \/E)(xk — x;_1)- The discrete-time update rule is

then transformed into

X - X Xpe — Xp—

S TR (1 — e/ L g v sVa() 8)
Vs Vs

assuming the discrete sampling time k, scaled to the continuous-time

variable ¢ via the factor \/E ask = L\[Approximating finite differences

by first and second-order derivatives, we obtain

% =50+ 25OV5 +o(V5) (9a)
S

% = 50 = 3¥OV5 +o(V5) (9b)
S

VsVei) = VsVex) +o(v/5) 90

which means that (8) is approximately

() + %x(t)\/h o(v/5) = (1 = aeV/5) (%) - %x(z)\/E +o(V/5))
= B \sVE(x(0) + o(1/5).

By grouping terms according to the order of their derivatives, we can
further simplify into

a\/sx(0) + (Vs + %s))’é(t)
+ BA/sVex(D) + (1 + a./s + B.4/5)0(\/5) = 0

and neglect higher-order infinitesimal terms o(\/E) to obtain

(10)

1)

@ Vsx(t) + (Vs + %s))‘é(l) +4./sVex(1) =0 12)

H. Hao et al.

Further simplification is achieved by dividing the entire equation by

Vs
a
a,x(t) + (1) + ?‘ V/sk(t) + B.Ve(x(t)) = 0 13)

As \/E approaches zero, we can disregard the term %\/356(1) and get
the final expression:

(1) = —a x(0) = . Vex(®) 14

Building upon the previous differential equation and its connection
with discrete-time gradient methods, we can propose a general lin-
ear system to represent the whole family of optimization methods as
follows:

X =—ax—pVg(y)
y=x+yx (15)
o=Xx+0X%x

where parameters a, f, y, and o are to be chosen as to get the
fastest convergence rate in worst-case. We have named the methods as:
Nesterov method (2-parameter), the Triple-Momentum method without
output equation (3-parameter), and the continuous Triple-Momentum
method (4-parameter). This nomenclature is deliberately chosen to
highlight their structural similarities from discrete methods, facilitating
a coherent understanding of their application.
To shorten the notation, we write the methods

+ Continuous Heavy-Ball: ¥ = —ax — fVg(x).
. X =—ax - pVg(y)
» Continuous Nesterov:
y=x+ax
X =—ax—pvVey)
+ Continuous Triple-Momentum: y = x + yx

o=Xx+0X%x

as a linear system in state-space using matrices

where u = Vg(y) and the Continuous Triple-Momentum method has a
tuned output o = x + oX.

2.2.1. Optimized parameter selection for continuous gradient methods
In this section, we present a result regarding the optimal selection
of parameters to obtain the fastest worst-case convergence rate.

Theorem 3. Continuous gradient methods achieve optimal convergence
rates when their parameters are chosen as follows:

Method Parameters (a, p,y,0)
Heavy-ball (V/4pm, »,0,0)
Nesterov (zll/llz 0,0, 0)

@v/pLm fi:f oo, 2 YoV

Triple momentum

Proof. Let us start by computing the gradient of g

Vg(x)=0x+e (16)

Systems & Control Letters 203 (2025) 106146

In equilibrium conditions, we have x* = 0 and v* = 0, which makes
x*=0 & Ax*+Bu*=0 = Ax* =0 a7
and additionally
=0 < Vg(p(1)) =0 < QOCx* +e=0. (18)
The error ¥ = x — x* has dynamics
X=x—x*

= Ax + Bu

= Ax + B(QCx + ¢) 19

= Ax — Ax* + BQCx — BQCx*

= (A + BQC)(x — x*) = (A+ BQO)x
where we used (17) to allow adding —Ax* and (18) to replace the value
for e.

From (19), convergence to zero error corresponds to checking the

eigenvalues of T := A 4+ BOC. Utilizing the eigenvalue decomposition

Q = UAUT, where U is orthogonal and A is diagonal, allows to
diagnolize the matrix and study

T,=A +BA4C, i=1...n (20)

where each T, corresponds to each mode of the overall error dynamics
corresponding to each eigenvalue 4; of Q0 A, B; and C, are the matrices
for the scalar case.

Continuous Heavy-Ball: For this method, the matrix 7} results in

—a —BA
T, = A, + B A4,C, = [1“ f)] (21)

with the characteristic polynomial being
Vi4av+ 4, =0. (22)

The roots of this polynomial are:

M (23)
2

where 4 = o — 4§4;. To avoid oscillations, we need 4 = 0, leading to
a= \/4ﬂ_m However, notice that we can make the real part arbitrarily
negative by making f — .
Continuous Nesterov:
—a—fak; —pi;
0

T, =A + B AC = 1

(24

The characteristic polynomial of the matrix T; is thus expressed as:

V24 (a4 fad)v + A, =0 (25)
with roots:
_—a—fai V4 (26)
- 2

where 4 = (« + fai,)? — 444;. Therefore, to avoid oscillations it must
satisfy

2+/BL
1+pL
with the real part of the eigenvalues being arbitrarily negative is we
make f — oco.

Continuous Triple-Momentum Doing the same steps, we arrive at T;
being

(@+ par)’ —4p1, =0 < a= 27)

—a—frd =P

T,= A, + B A,C, = 1 0

(28)

with a characteristic polynomial

Vi @+ Brav+ P =0 (29)

H. Hao et al.

having roots

V= - — ﬂ}’; \/_ (30)

where A = (a + fiyA;)> — 4p4;.
In order to get real solutions, 4 = 0, which results in

L—+/m L—+/m
“ZNﬂLWg’ y = %g
—m ﬂ —m
which also indicates optimizing for the fastest convergence involves
selecting f — oo.
In order to find the best value for o, let us write the output error
dynamics

(31)

d — s_d. i

E(O 0)—dt(o x™)
= (6(A + BQC) + I)(x — x*)
= (6T + I)(x — x*)
=T(x—x*)

(32)

Therefore, we want to place the pole of the inverse of the transfer
function to the output with the slowest pole p given by

A+
,,:max(atby \/_>,fori=1,...,n, (33)

2
which after replacing with the relationship between « and y, simplifies
to

p=-ttimm 34)

Applying the Laplace transform to the output function, o = x + ox, this
yields:

O(s) = X(s) + 65X (s) (35)

which leads us to the transfer function:

=1
X6) +o0s (36)
and subsequently, its inverse:
X(s) _ 1 37)
O(s) 1+os

2
with a critical pole at s = —%. Setting the pole equal to [p = —”7 gets
us

L2 L (_akpmY (38)
o 2 2 2
resulting in :
8
=—" 39
(a + pym)? ¢

With these parameters established, the next section aims to provide
a bridge to a direct continuous implementation by providing an equiv-
alent electrical circuit that could be used to solve the unconstrained
optimization problems with low power consumption.

3. Equivalent circuits for continuous gradient descent methods

In this section, we design circuits that translate the differential
equations found for the continuous-time gradient descent methods.
Although, increasing § always speeds up the convergence, in practice,
we must choose a finite § to balance accuracy and convergence speed.
Leveraging the correspondence between second-order ordinary differ-
ential equations (ODEs) and op-amp-based circuits, we introduce circuit
implementations that embody these continuous approaches.

Systems & Control Letters 203 (2025) 106146

oonaly
- o
EDSS e
B ot > »
. N NG
—~ M
) " T -
© >

Fig. 1. Block diagram of the continuous Heavy-Ball method applied to the scalar case.

v @) X1
. i

el
vaz §) . } }
T =D

=

b

<
N

V)

(a) Integrator amplifier (b) Multiplier circuit block

Rt R
v @) M-

- < L a.
vz §) M- . z o

(c) Summing amplifier

Fig. 2. Illustration of circuit components to implement basic blocks.

Fig. 3. Circuit implementation of the continuous Heavy-Ball for the scalar case.

3.1. Continuous heavy-ball

Let us start by considering the continuous Heavy-Ball method ap-
plied to a scalar function
X =—ax— pVgx)

= —ax — figx — fe.

To construct the circuit using operational amplifiers, we break down
the equation into components suitable for electronic representation,
focusing on integration, multiplication, and summation. Op-amp-based
integrators model the integration of x and %, while analog multipliers
handle the products of ax and f(gx + e¢). Summing amplifiers then
aggregate these signals to reconstruct the equation —ax—pf(gx+e), which
is diagrammatically summarized in Fig. 1 using logic blocks.

Integrators use op-amps with capacitors in their feedback loops to
achieve integration, while multiplication is implemented using multi-
plier circuit blocks based on Gilbert cells or alternative CMOS designs.
A comprehensive description of each circuit function can be found
in [31]. The practical implementations of these circuits are shown in
Fig. 2.

Combining the building blocks from Fig. 2 to construct the full
Heavy-Ball method results in the circuit depicted in Fig. 3. The mul-
tidimensional case involves designing a circuit for each scalar case that
uses variables from adjacent scalar sub-circuits and combining them
with multiplications with constants and additions to implement each
ith block

(40)

n
Xi:—axi—ﬁqu-jxj—ﬂei for i=1,2,...,n 41)
j=1

H. Hao et al.

[>

Fig. 4. Block diagram for the continuous Heavy-Ball method for a function g with 2
variables.

where x; and e; represent the ith elements of vectors x and e respec-
tively, and g;; is the (i, j)th element of the matrix Q. This setup requires
n sub-circuits, each mirroring the basic configuration shown in Fig. 1,
with additional interconnections to accommodate the matrix structure
of the system. The logic block for the case of 2 dimensions is shown in
Fig. 4.

3.2. Continuous methods with additional momentum

Adding additional momentum terms requires a more complex cir-
cuit representation. Unlike the continuous Heavy-Ball approach, these
methods model the gradient as a first-order proportional relationship,
specifically Vg(y) = Vg(x + yx), and include a tuned output o = x + o%.

We will focus on the general case of the continuous methods, which
encompasses the foundational principles of related models like the
continuous Nesterov method. In contrast to strictly replicating the ODEs
detailed in (15), which would require constructing additional sub-
loops to capture the first-order gradient dynamics, we adopt a more
practical approach. We directly modify the value of x, which allows us
to integrate additional momentum effects without extensive changes to
the existing circuit configuration:

¥ =—ax—pVg(y)
= —ax — fgx — pqyx — Pe (42)
= —(a + fay)x — fax — fe
This formula represents how the additional component fgyx is merged
into the existing parameters of the circuit. We accomplish this by
adjusting the voltage at the integrator’s input using the existing mul-
tiplier and summing op-amp. The tuned output 0 = x + ox is not

directly involved in the feedback loop of the circuit and can be added
independently.

3.3. Practical implementation and parameter tuning

As we translate these theoretical models into practical circuit im-
plementations, some component selection is required to maintain ac-
curacy:

- Resistors: Set to 10° Q to minimize electrical noise, thus enhanc-
ing the circuit signal accuracy.

+ Capacitors: Adjusted to 1073 F to ensure a product of resistance
and capacitance equal to 1, stabilizing voltage levels.

+ Feedback Loop Resistors: Calibrated to ¢; ; X 10% to accurately
simulate the matrix operations and dynamics essential to the
system.

Voltage scaling. Adjusting the parameter g significantly affects the
circuit voltage levels, requiring careful scaling to prevent component
saturation and ensure the circuit functions properly.

+ Op-Amp Voltage Limits: According to [32], operational ampli-
fiers should operate with input voltages below 100 V to prevent
saturation.

Systems & Control Letters 203 (2025) 106146

- Implementation Strategy: Initial settings, including multiplier
gains, are scaled down by 1/# to maintain voltages within safe
limits.

» Post-Adjustment Corrections: After obtaining the output results,
the voltages are adjusted by multiplying by p to achieve accurate
values that correspond closely with theoretical expectations.

Optimizing circuit accuracy. Accurate low-voltage operation is critical,
especially when dealing with sensitive components. Since voltage levels
can be scaled down to 1/f in previous adjustments to ensure proper
circuit functionality, it is important to carefully select the value of f.

+ Op-Amp Sensitivity: Standard op-amps typically process signals
as low as 1 pV, with performance degradation below 100 nV
unless specifically designed to handle such low voltages.

Beta Selection: Capping § at 10* is necessary because higher
values would further reduce the voltage, potentially below the
operational amplifier capabilities, thus affecting the precision
of the system. Originally capable of precision around 1077, the
scaling by 1/p proportionally reduces this to 1073, considering
the voltage reduction.

System Settling Time (T,): A carefully selected § ensures faster
convergence while maintaining the accuracy of the system within
a 1072 tolerance.

4. Constrained optimization problem using equivalent circuits

Quadratic Programming (QP) problems are fundamental in control
systems and often include inherent constraints critical to their formu-
lation. Building on the continuous-time gradient descent methods and
their circuit implementations developed thus far, we now address the
challenge of incorporating constraints into the optimization framework.
We revisit Problem 1 to integrate these limitations, thereby enhancing
its relevance and applicability to practical scenarios:

Problem 4 (Problem 1 with Constraints). Consider a set of agents, each
characterized by a state vector x. The goal is to optimize the operational
states of these agents by minimizing the objective function:

. 1
min, ExTQx +elx

43
s.t. Sx=b (43)

where Q € R™" is a symmetric positive definite matrix, e € R" is a
vector and S € R™" is the matrix defining equality constraints with
corresponding vectors b € R".

4.1. Circuit design for primal-dual gradient descent method

Given that the circuits discussed in the previous section are tailored
for unconstrained problems, an effective strategy to address our current
problem involves reformulating it as an unconstrained problem. This
can be achieved through the augmented Lagrangian method which
integrates Lagrange multipliers directly into the objective function,
effectively transforming the constraints into part of the optimization
objective. The augmented Lagrangian for our problem is formulated as:

L(x,A) = %xTQx +xTe + AT(Sx — b) (44)

where 4 € R™ is a vector of Lagrange multipliers, corresponding to m
constraints. Leveraging strong duality, the Karush-Kuhn-Tucker (KKT)
conditions for optimality are expressed as:

oL =00=0x+STi+e,
ox (45)

oL
o —0e0=Sx—bh
oA < X

H. Hao et al.

]

nVCCS
(shared variable)

(TR0E ©

nVCCs

¢ 1 [T

Fig. 5. Partial circuit model for primal-dual optimization problem.

Solving these linear equations yields the unique global optimizer
(x*, A%):
X" =-071(STA* +e),

(46)
= =SSN l(b+ 507 e).

While the augmented Lagrangian method provides an exact solution
for the constrained optimization problem, its practical implementation
requires centralized knowledge of the matrices .S, Q, and vectors e, b.
Any changes or temporal variations in these parameters would neces-
sitate recalculations of the optimizer. In the context of the primal-dual
framework, this scenario is characterized by the following differential
equations:

0 .0
Ti=--LxA). Tid=—L0xd) 47

where T, and T are positive definite diagonal matrices representing
time constants. The dynamics of the optimization are then expressed
by:

. JL
T x = —Txa =-0x—-STl-e,

(48)
TM:TA(;—E =Sx-b,

For a scalar instance, the primal problem is represented as 7, x =
—gx—si—e. To adapt this to a multi-dimensional context, we extend the
formulation to encompass each ith dimension in the primal problem.
In this expanded view, the equation for each dimension is expressed as
g X; = = Loy Qiy%; = Zijmy Sjadj = e

In parallel, the dual problem for each dimension i is defined as
t ,1,_):,- = Z;.;l S;jx; — b;. Combining both equations, it is required to
implement
o 0% 5 Siidy e

Primal:x‘,-=—z : —Z ;

Jj=1 i j=1 "%
n
. S, ix; b,
Dual: 4; = Z AL
1 t,

i

(49

j=1

The sub-circuit model for this setup can be simplified to the repre-
sentation x = ¢;x + ¢,. Given the higher costs of op-amps compared to
passive components, we have adapted the methods from [29] to opti-
mize cost-effectiveness in our approach. This model is realized using
several key components: 1. A capacitor is utilized to represent the first-
order derivative term; 2. Voltage-Controlled Current Sources (VCCSs)
are employed to create variables proportional to the coefficients in
the equation; 3. A constant term is integrated into the circuit using a
current source.

To accurately set the initial condition of the system, we incorporate
a voltage source coupled with a switch. This setup is activated at 1 =0
to establish the initial voltage across the capacitor, corresponding to
the initial value of the variable in question. The circuit configuration
that encapsulates this design is illustrated in Fig. 5.

Applying Kirchhoff’s Current Law (KCL) to the node at the top of
our proposed circuit configuration, we derive the following equation:

dv
o =Y Ko+) Ky + 1. (50)

Systems & Control Letters 203 (2025) 106146

Fig. 6. Circuit representation for 2-D primal-dual gradient descent optimization.

This equation effectively captures the structure of each equation in
(49). By dividing by the capacitance C on both sides, we obtain:

dv K 1 K2 1 s

E—ZFU+ZFU+E. (51)
The terms involving K; and K, in conjunction with the capacitor
C create a dynamic that mirrors the primal and dual equations of
the optimization problem. In Fig. 6, we illustrate a two-dimensional
representation of this circuit arrangement, designed specifically for
applications based on the primal-dual gradient descent method. This
figure provides a visual guide to understanding how the theoretical
aspects of the optimization problem are translated into practical circuit
configurations.

5. Simulation results

In our simulation, we focus on three key aspects: Firstly, we an-
alyze the convergence speeds of both discrete and continuous gra-
dient descent methods, particularly emphasizing trajectory analysis
in a two-dimensional space and comparing achieved versus desired
steady states. Secondly, we delve into the effects of the parameter g
on the convergence rate in different continuous-time gradient descent
methods. Finally, we assess error estimations in equivalent circuits,
juxtaposing these with outcomes from ordinary differential equations
(ODE) functions, to underscore the intricate interplay between circuit
parameters and system behavior.

5.1. Convergence speed for gradient descent methods

In this subsection, we start by exploring the convergence rates of
different gradient descent methodologies. In discrete methods using
the code in [33], factors such as the initial guess and the methods
way of functioning influence the convergence speed. To illustrate this,
we consider a dynamic system characterized by a high bias rate in a
random direction and a 6-dimensional configuration. Fig. 7 depicts the
error evaluation, represented by ¢ = |x — x*|, across various methods
in a complex, randomly selected dynamic system.

The Triple-Momentum without considering the tuned output o is
named as Triple Variables. Our simulations reveal that the triple mo-
mentum method exhibits enhanced convergence rates, aligning with
the findings of [15]. Nonetheless, this method still requires a significant
number of steps for convergence. In contrast, given the same Q € R®¢
and e € RO, continuous-time gradient methods demonstrate a rapid
and stable convergence. As shown in Fig. 8, the continuous Heavy-
Ball method and the continuous Triple-Momentum method can attain
an accuracy level of 10~® within 1 s for § = 1000. This performance
corresponds to a value of around 10~2 for the capacitors and inductors
in both the continuous Heavy-Ball method and the continuous Triple-
Momentum method—a level of accuracy that the fastest discrete-time
method fails to reach within 100 steps.

Many continuous-time approaches, such as the %-damped flow
X + %X(t) + Vf(X(@) = 0 introduced in [17], provide useful

H. Hao et al.

Error Estimation Discrete

105 B
—— Discrete Gradient Descent
Discrete Heavy-Ball
103 4 —— Discrete Nestrov
—— Discrete Triple Momentum(without o)
—— Discrete Triple Momentum
101 4
w
c \
<]
© 10-! 4
£
=
]
0
5 1072
w0
1075 4
1077 4

0 25 50 75 100 125 150 175 200 225
k-steps

Fig. 7. Comparison of error estimations in different discrete-time gradient descent
methodologies under a complex random dynamic system.

Continuous-Time Error Estimation

1]
10 —— Continuous Heavy-Ball
Continuous Nesterov
—— Continuous Triple-Momentum(without o)

107" A —— Continuous Triple Momentum
w
c 10734
2
®
£
& 1075 4
s
I

1077 4

107° 4

000 025 050 075 1.00 125 150 175 2.00
Time(s)

Fig. 8. Comparison of error estimations in different continuous-time gradient descent
methodologies under a complex random dynamic system.

Continuous-Time Error Estimation Continuous-Time Error Estimation

102 — Continuous Heavy-Ball
Continuous Triple Momentum
—— Time-adaptive Damping Coefficient

— Continuous Heavy-Ball
Continuous Triple Momentum
—— Time-adaptive Damping Coefficient

Error Estimation £
Error Estimation £

"

et

30 20
Time(s) Time(s)

(a) Error evolution for a function in 2 di-
mensions.

(b) Error evolution for a function in 6 di-
mensions.

Fig. 9. Comparison of the 2-damped ODE and our continuous-time gradient descent
methods at § = 1, demonstrating differences in convergence behavior across problems
of varying dimension.

analogies to discrete-time acceleration and offer Nesterov-like asymp-
totic rates. However, in practice, their performance can be limited
by forcing a specific time-dependent damping ratio. In contrast, our
proposed continuous-time frameworks employ adjustable parameters
to achieve both stable and fast convergence. This flexibility also en-
hances practical implementation (e.g., with constant parameters in
circuits). As shown in Fig. 9, at § = 1 our parameterized methods,
including a continuous Heavy-Ball method inspired by Nesterov’s ac-
celeration, outperform time-dependent continuous schemes, especially
as dimensionality increases.

One envisioned application in this paper is the possibility to use
gradient methods to generate trajectories for dynamical systems. In
Figs. 10 and 11 we provide the trajectories that could be used for
autonomous vehicles to be tracked by a low-level controller. As it can

Systems & Control Letters 203 (2025) 106146

Discrete Heavy-Ball Discrete Nesterov

~20 -15 -10 05 00 05 10 15 20

0 -15 -10 05 00 05 1o 15 20

Fig. 10. Trajectory for discrete-time gradient descent methods.

Continuous Heavy-Ball

Continuous Nesterov

2 20
7o N\ %% 7o\ b7
\ N
15 N 1s .
% AR
10 Loy 10 to 74
2 K3 “ %
3 0s 3 os
IS % IS %
00 00
o o
“o0s -05
‘s ‘s
-1 -10
-1o -05 00 05 10 15 20 -10 -05 00 05 10 15 20
x-axis xaxis
Continuous Triple- o) Continuous Triple
2 20
PAN o
\
15 15
% 7
10 te 10 Yo A
2 % 2 2,
3 05 5 05
S % L %
00 00
% %
—0s -05
‘e ‘s
-1 -10
-1o -05 00 05 10 15 20 0o -05 00 05 10 15 20

Fig. 11. Trajectory for in a continuous-time gradient descent methods.

be observed, the use of discrete-time versions of the gradient methods
does not return smooth trajectories, which would preclude its use.

5.2. Convergence analysis of continuous-time gradient descent methods

The choice of the g parameter for the continuous gradient methods
is of prime importance. The convergence speed in a 2-dimensional
randomly generated function, as shown in Fig. 12, varies with different
selections of . We observe that for g > 200, the system quickly reaches
a steady-state with an error below 10~°, indicating rapid convergence.
This observation suggests that the primary constraint on convergence
speed in practice is the physical limitation, specifically, the minimum
achievable values for capacitors and inductors. Moreover, as the values
of these components decrease, the resistance inherent in the capacitors
and even the circuit lines introduces significant noise to the outcomes.

5.3. Equivalent circuits of continuous-time gradient descent methods

This subsection presents the simulation results for equivalent cir-
cuit representations in continuous-time optimization methods. Fig. 13
shows the error, with the results being comparable to those obtained us-
ing the Python ode solver—akin to MATLAB’s ode45. This comparison
uses the same duration as depicted in Fig. 12, with identical parameters
and initial value x,.

Following this, Fig. 14 presents a comparative analysis that under-
scores the alignment between Python simulation results and circuit

H. Hao et al.
Continuous-Time Error Estimation Continuous-Time Error Estimation
108 - Continuous Heavy Ball ! " Continuous Heavy Ball
Continuous Nesterov 10 Continuous Nesterov
~—— Continuous Triple-Momentum(without o) ~— Continuous Triple-Momentum(without o)
10 —— Continuous Triple Momentum 100 —— Continuous Triple Momentum

~

Error Estimation &

00 25 50 75 125 150 175 200 1 2

100 3
Time(s) Time(s)

@p=4 (b) § =40

Continuous-Time Error Estimation Continuous-Time Error Estimation

—— Continuous Heavy-Ball
Continuous Nesterov

—— Continuous Triple-Momentum(without o)

—— Continuous Triple Momentum

—— Continuous Heavy-Ball
Continuous Nesterov

—— Continuous Triple-Momentum(without o)

—— Continuous Triple Momentum 100

N\

N

Error Estimation &

1072
1073
107
107*
107
107
P E— T s 20 25 30 00 02 04 o5 o8 1o 12 14
Time(s) Time(s)
(c)B =200 (d) B = 1000
Fig. 12. Error € = |x — x*| with different chosen of g.
2 Error Estimation via Equivalent Circuit 2 Error Estimation via Equivalent Circuit
10 10
Contunus ey Sal Contuoss Heary 5al
uous Nostoor s Nostoror
uous Tl Momertum(uitout o) Caniisous Trle-Mometumiitiot)
10° -Contiuous Triple-Momentum 10° Contiuous Triple-Momentum
§ 102 § 102
£ £
g g
5 104 5 104
& &
106 10
10 10
o 2 4 & 8 10 12 1w 1 18 2 o 1 2 s 4 s s
Time(s) Time(s)
(@p=4 ©p =40
> Error Estimation via Equivalent Circuit > Error Estimation via Equivalent Circuit
10 10
Contuns ey 5ol Contuns Faary 5ol
o Neatwror | Contiuous Neterov
tiuous Triple-Momentum(without o) 10 ‘Contiuous Triple-Momentum(without o)

Contivous Triple-Momentum

tivous Trple-Momentum

Error Estimation ¢

0 05 1 15 2 25 3
Time(s) Time(s)

(b) B =200 (d) 8 = 1000

Fig. 13. Error evolution ¢ = |x — x*| for the circuit equivalent with different choices
of .

simulations for continuous-time methods. This figure clearly displays
two sets of results: dashed lines from the Python solver using ordinary
differential equations (ODEs), and solid lines representing practical
outcomes from equivalent circuit simulations as shown in Fig. 13.

Analyzing the outcomes presented in these figures, we observe a
primary distinction: When g > 40, after the error estimation falls below
1075, the convergence patterns show oscillations in the circuit results.
Similarly, for # > 1000, oscillations appear after the error falls below
1073

This behavior stems from scaling the circuit’s setup voltages to
1/p of their original values to maintain voltages within acceptable
limits, as discussed in Section 3.3. Opting for a larger g enhances the
convergence rate, but this setup carefully balances accuracy with the
required settling time for the system.

To further highlight the advantages of our circuit approach, we
compare it against conventional discrete gradient descent methods. In

Systems & Control Letters 203 (2025) 106146

Error Estimation i imati
102

107

100

[—— Circuit Heavy Ball
Circut Nesterov

Ciruit TM (0 0)

—— Circut M

[—— Gircuit Heavy Ball
Circut Nesterov

Error Estimation ¢
Error Estimation ¢

- ~ = Python odads Heawy-Ball - — = Python odeds Heawy-Ball
~ ~ = Python odieds Nesterov ~ = Python odeds Nesterov
= = = Python oded5 TMI (a0 0) = Python oded5 TM (10 0)
~ — - Python odeds TM = =~ Python odeds TM
10° 10°
o 2 4 6 8 10 12 0 05 1 15
Time (s) Time (s)
(@B =10 (b) B = 1000

Fig. 14. Error comparison between circuit equivalent and python ode45 with various
selections of f.

Discrete-Time Error Estimation Over Time. Continuous-Time Error Estimation

— Continuous Heavy-Ball
Continuous Nesterov

100 — Continuous Triple-Momentumwithout o)

— Continuous Triple Momentum

— Discrete Heavy-Ball

Discrete Nesterov
—— Discrete Triple Momentum(without o)
—— Discrete Triple Momentum

000 002 o004 006 008 010 012 0o 0
Running Time () Time(s)

(a) Discrete Methods at D = 2 (b) Circuit-Based Method at D = 2

Discrete Time Error Estimation Over Time Continuous-Time Error Estimation

— Continuous Heavy-Ball
Continuous Nesterov

— Continuous Triple-Momentum(without o)

— Continuous Tiple Momentum

— Discrete Heavy-Ball

Discrete Nesterov
— Discrete Triple Momentum(without o) 100
— Discrete Triple Momentum

1 2 H a 5 0a 06
Running Time (s) Time(s)

(c) Discrete Methods at D = 6 (d) Circuit-Based Method at D = 6

Fig. 15. Comparison of running times for discrete gradient methods and their equiv-
alent continuous-time circuit implementations (g = 4000).

Fig. 15, the “running time” for the circuit-based method represents
the theoretical performance of an actual analog circuit, as approxi-
mated by our MATLAB simulation. In contrast, the digital methods’
timing is derived from CPU/GPU-based computations. For instance, on
a computer with an AMD Ryzen 9 5900HS CPU and 16 GB RAM, each
iteration of a discrete gradient method takes approximately 0.0065 s
when D = 2 and increases to about 0.03 s at D = 6. In comparison,
our circuit-based approach converges within about 0.5 s, regardless
of dimensionality. In terms of power consumption, for the 2D case,
the discrete gradient method on the computer consumes approximately
9.1 J, while the continuous gradient method on the analog circuit
consumes only 0.1 J; similarly, for the 6D case, the computer method
consumes 490 J, compared to 0.3 J for the analog circuit. These results
point towards a direction of future research in conducting experiment
with real circuits implemented, for instance with Field-Programmable
Gate Arrays (FPGAs).

To analyze the constrained version of the problem, we examine
the primal-dual problem and its equivalent circuit representation. The
findings, depicted in Fig. 16, are contingent on the chosen time con-
stants. Specifically, the selection of positive definite diagonal matrices
for time constants, referred to as 7, significantly impacts the circuit’s
convergence rate. Under randomly generated system parameters and
constraints, certain choices of T yield suboptimal performance. For
instance, when T is on the order of 107!, the system’s behavior is
notably poor. Conversely, with 7' smaller than 10~3, the system rapidly
converges. This behavior underscores the potential advantages of using
equivalent circuits to address related optimization problems, despite

H. Hao et al.

Error Estimation via Equivalent Circuit

o
° VY VY Y Y Y Y
10° "M

1010

Related Value of Lagrange Multiplier ||

AAAA A

¥ Y F\;'/\V V

1Al

Error Estimation ¢
(

102

1025

109 1075
2 25 3 35 4 45 5 55 6 2 25 3 35 4 45 5 55 6

Time (s) Time (s)

(a) Error Estimation (b) Magnitude of A

Fig. 16. Error estimation via equivalent circuit between the current state and the
desired state ¢ = |x — x*| with different chosen of 7.

the inherent challenges posed by simple 2-D dynamic systems. In Fig.
16, the value chosen for T affects the convergence behavior, illustrat-
ing the nuanced relationship between circuit parameters and system
dynamics.

6. Conclusion

In this paper, we have proposed continuous-time counterparts to
discrete-time gradient descent methods and presented optimal param-
eters to obtain the fastest worst-case convergence rate. Through nu-
merical simulations, we show that the proposed methods have better
accuracy and convergence properties than previously known continu-
ous gradient methods expressions with time-varying constants. We have
also provided circuit implementations for the theoretical differential
equations with the objective of solving the optimization problems
using analog computing. Lastly, we adapt these methods to primal
dual algorithms in order to be able to solve constrained optimization
programs.

CRediT authorship contribution statement

He Hao: Writing — original draft, Software, Methodology, Investi-
gation, Formal analysis. Daniel Silvestre: Writing — review & editing,
Supervision, Methodology, Investigation, Funding acquisition, Concep-
tualization. Carlos Silvestre: Writing — review & editing, Supervision.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Daniel Silvestre reports financial support was provided by Foundation
for Science and Technology. If there are other authors, they declare
that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported
in this paper.

Acknowledgments

The work from Daniel Silvestre is supported in part by the Por-
tuguese Foundation for Science and Technology through the project
CTS/00066. The work from Carlos Silvestre is supported in part by
the Macao Science and Technology Development Fund under Grant
FDCT/0192/2023/RIA3, and in part by the University of Macau, Macao,
China, Project MYRG2022-00205-FST.

Data availability

No data was used for the research described in the article.

Systems & Control Letters 203 (2025) 106146

References

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

T. Baca, D. Hert, G. Loianno, M. Saska, V. Kumar, Model predictive trajectory
tracking and collision avoidance for reliable outdoor deployment of unmanned
aerial vehicles, in: 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems, IROS, 2018, pp. 6753-6760, http://dx.doi.org/10.1109/IR0S.2018.
8594266.

Q. Yuan, X. Li, Distributed model predictive formation control for a group of
UAVs with spatial kinematics and unidirectional data transmissions, IEEE Trans.
Netw. Sci. Eng. 10 (6) (2023) 3209-3222, http://dx.doi.org/10.1109/TNSE.2023.
3252724,

D. Silvestre, J. Hespanha, C. Silvestre, Fast desynchronization algorithms for
decentralized medium access control based on iterative linear equation solvers,
IEEE Trans. Autom. Control 67 (11) (2022) 6219-6226, http://dx.doi.org/10.
1109/TAC.2021.3130888.

R.M. Saback, A.G.S. Conceicao, T.L.M. Santos, J. Albiez, M. Reis, Nonlinear
model predictive control applied to an autonomous underwater vehicle, IEEE
J. Ocean. Eng. 45 (3) (2020) 799-812, http://dx.doi.org/10.1109/JOE.2019.
2919860.

M.J. Er, H. Gong, Y. Liu, T. Liu, Intelligent trajectory tracking and formation
control of underactuated autonomous underwater vehicles: A critical review,
IEEE Trans. Syst. Man, Cybern.: Syst. (2023) 1-13, http://dx.doi.org/10.1109/
TSMC.2023.3312268.

R. Ribeiro, D. Silvestre, C. Silvestre, Decentralized control for multi-agent
missions based on flocking rules, in: J.A. Gon calves, M. Braz-César, J.a.P. Coelho
(Eds.), CONTROLO 2020, Springer International Publishing, Cham, 2021, pp.
445-454.

R. Ribeiro, D. Silvestre, C. Silvestre, A rendezvous algorithm for multi-agent
systems in disconnected network topologies, in: 2020 28th Mediterranean Con-
ference on Control and Automation, MED, 2020, pp. 592-597, http://dx.doi.org/
10.1109/MED48518.2020.9183093.

R. Thomazella, J.E. Castanho, F. Dotto, O.R. Junior, G. Rosa, A. Marana, J.
Papa, Environmental monitoring using drone images and convolutional neural
networks, in: IGARSS 2018 - 2018 IEEE International Geoscience and Remote
Sensing Symposium, 2018, pp. 8941-8944, http://dx.doi.org/10.1109/IGARSS.
2018.8518581.

Y. Wu, S. Wu, X. Hu, Cooperative path planning of & and UGVs for a persistent
surveillance task in urban environments, IEEE Internet Things J. 8 (6) (2021)
4906-4919, http://dx.doi.org/10.1109/J10T.2020.3030240.

G. Rohi, O. Ejofodomi, G. Ofualagba, Autonomous monitoring, analysis, and
countering of air pollution using environmental drones, Heliyon 6 (1) (2020)
e03252, http://dx.doi.org/10.1016/j.heliyon.2020.e03252.

C.J. Shin, S.E. Seo, Y. Nam, K.H. Kim, L. Kim, J. Kim, E. Ryu, J.Y. Hwang, G.-J.
Kim, M.-W. Jung, S.H. Lee, O.S. Kwon, Real-time monitoring of cyanobacterial
harmful algal blooms by graphene field-effect transistor, Chem. Eng. J. 459
(2023) 141419, http://dx.doi.org/10.1016/j.cej.2023.141419.

H.-C. Chang, Y.-L. Hsu, C.-Y. Hsiao, Y.-F. Chen, Design and implementation of
an intelligent autonomous surveillance system for indoor environments, IEEE
Sensors J. 21 (15) (2021) 17335-17349, http://dx.doi.org/10.1109/JSEN.2021.
3081831.

B. Polyak, Some methods of speeding up the convergence of iteration methods,
USSR Comput. Math. Math. Phys. 4 (5) (1964) 1-17, http://dx.doi.org/10.1016/
0041-5553(64)90137-5.

Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, first
ed., Springer Publishing Company, Incorporated, 2014.

B. Van Scoy, R.A. Freeman, K.M. Lynch, The fastest known globally convergent
first-order method for minimizing strongly convex functions, IEEE Control. Syst.
Lett. 2 (1) (2018) 49-54, http://dx.doi.org/10.1109/LCSYS.2017.2722406.

D. Silvestre, J. Hespanha, C. Silvestre, Desynchronization for decentralized
medium access control based on Gauss-seidel iterations, in: 2019 American
Control Conference, ACC, 2019, pp. 4049-4054, http://dx.doi.org/10.23919/
ACC.2019.8814471.

W.J. Su, S.P. Boyd, E.J. Candés, A differential equation for modeling nesterov’s
accelerated gradient method: Theory and insights, J. Mach. Learn. Res. 17 (2014)
153:1-153:43.

B. Shi, S.S. Du, M.I. Jordan, W.J. Su, Understanding the acceleration phe-
nomenon via high-resolution differential equations, Math. Program. 195 (1)
(2022) 79-148, http://dx.doi.org/10.1007/s10107-021-01681-8.

S. Koppel, B. Ulmann, L. Heimann, D. Killat, Using analog computers in today’s
largest computational challenges, Adv. Radio Sci. (2021).

B. Ulmann, Analog and Hybrid Computer Programming, De Gruyter Oldenbourg,
Berlin, Boston, 2023, http://dx.doi.org/10.1515/9783110787733.

S. Mandal, J. Liang, H. Malavipathirana, N. Udayanga, H. Silva, S.I. Hariharan,
A. Madanayake, Integrated analog computers as domain-specific accelerators:
A tutorial review, in: 2024 IEEE 67th International Midwest Symposium on
Circuits and Systems, MWSCAS, 2024, pp. 875-881, http://dx.doi.org/10.1109/
MWSCAS60917.2024.10658915.

N. Guo, Y. Huang, T. Mai, S. Patil, C. Cao, M. Seok, S. Sethumadhavan,
Y. Tsividis, Energy-efficient hybrid analog/digital approximate computation in
continuous time, IEEE J. Solid-State Circuits 51 (7) (2016) 1514-1524, http:
//dx.doi.org/10.1109/JSSC.2016.2543729.

http://dx.doi.org/10.1109/IROS.2018.8594266
http://dx.doi.org/10.1109/IROS.2018.8594266
http://dx.doi.org/10.1109/IROS.2018.8594266
http://dx.doi.org/10.1109/TNSE.2023.3252724
http://dx.doi.org/10.1109/TNSE.2023.3252724
http://dx.doi.org/10.1109/TNSE.2023.3252724
http://dx.doi.org/10.1109/TAC.2021.3130888
http://dx.doi.org/10.1109/TAC.2021.3130888
http://dx.doi.org/10.1109/TAC.2021.3130888
http://dx.doi.org/10.1109/JOE.2019.2919860
http://dx.doi.org/10.1109/JOE.2019.2919860
http://dx.doi.org/10.1109/JOE.2019.2919860
http://dx.doi.org/10.1109/TSMC.2023.3312268
http://dx.doi.org/10.1109/TSMC.2023.3312268
http://dx.doi.org/10.1109/TSMC.2023.3312268
http://refhub.elsevier.com/S0167-6911(25)00128-8/sb6
http://refhub.elsevier.com/S0167-6911(25)00128-8/sb6
http://refhub.elsevier.com/S0167-6911(25)00128-8/sb6
http://refhub.elsevier.com/S0167-6911(25)00128-8/sb6
http://refhub.elsevier.com/S0167-6911(25)00128-8/sb6
http://refhub.elsevier.com/S0167-6911(25)00128-8/sb6
http://refhub.elsevier.com/S0167-6911(25)00128-8/sb6
http://dx.doi.org/10.1109/MED48518.2020.9183093
http://dx.doi.org/10.1109/MED48518.2020.9183093
http://dx.doi.org/10.1109/MED48518.2020.9183093
http://dx.doi.org/10.1109/IGARSS.2018.8518581
http://dx.doi.org/10.1109/IGARSS.2018.8518581
http://dx.doi.org/10.1109/IGARSS.2018.8518581
http://dx.doi.org/10.1109/JIOT.2020.3030240
http://dx.doi.org/10.1016/j.heliyon.2020.e03252
http://dx.doi.org/10.1016/j.cej.2023.141419
http://dx.doi.org/10.1109/JSEN.2021.3081831
http://dx.doi.org/10.1109/JSEN.2021.3081831
http://dx.doi.org/10.1109/JSEN.2021.3081831
http://dx.doi.org/10.1016/0041-5553(64)90137-5
http://dx.doi.org/10.1016/0041-5553(64)90137-5
http://dx.doi.org/10.1016/0041-5553(64)90137-5
http://refhub.elsevier.com/S0167-6911(25)00128-8/sb14
http://refhub.elsevier.com/S0167-6911(25)00128-8/sb14
http://refhub.elsevier.com/S0167-6911(25)00128-8/sb14
http://dx.doi.org/10.1109/LCSYS.2017.2722406
http://dx.doi.org/10.23919/ACC.2019.8814471
http://dx.doi.org/10.23919/ACC.2019.8814471
http://dx.doi.org/10.23919/ACC.2019.8814471
http://refhub.elsevier.com/S0167-6911(25)00128-8/sb17
http://refhub.elsevier.com/S0167-6911(25)00128-8/sb17
http://refhub.elsevier.com/S0167-6911(25)00128-8/sb17
http://refhub.elsevier.com/S0167-6911(25)00128-8/sb17
http://refhub.elsevier.com/S0167-6911(25)00128-8/sb17
http://dx.doi.org/10.1007/s10107-021-01681-8
http://refhub.elsevier.com/S0167-6911(25)00128-8/sb19
http://refhub.elsevier.com/S0167-6911(25)00128-8/sb19
http://refhub.elsevier.com/S0167-6911(25)00128-8/sb19
http://dx.doi.org/10.1515/9783110787733
http://dx.doi.org/10.1109/MWSCAS60917.2024.10658915
http://dx.doi.org/10.1109/MWSCAS60917.2024.10658915
http://dx.doi.org/10.1109/MWSCAS60917.2024.10658915
http://dx.doi.org/10.1109/JSSC.2016.2543729
http://dx.doi.org/10.1109/JSSC.2016.2543729
http://dx.doi.org/10.1109/JSSC.2016.2543729

H. Hao et al.

[23]

[24]

[25]

[26]

[27]

G. Cowan, R. Melville, Y. Tsividis, A VLSI analog computer/digital computer
accelerator, IEEE J. Solid-State Circuits 41 (1) (2006) 42-53, http://dx.doi.org/
10.1109/JSSC.2005.858618.

J.-H. Li, Genetic algorithm PID control of second-order analog circuit system, in:
2022 International Conference on System Science and Engineering, ICSSE, 2022,
pp. 022-025, http://dx.doi.org/10.1109/ICSSE55923.2022.9948240.

R.M. Levenson, A.A. Adegbege, Analog circuit for real-time optimization of
constrained control, in: 2016 American Control Conference, ACC, 2016, pp.
6947-6952, http://dx.doi.org/10.1109/ACC.2016.7526767.

B.E. Varghese, A. Swarup, Novel op-amp based hardware design of analog PID
circuit to control the altitude of quadcopter, in: 2022 2nd Asian Conference
on Innovation in Technology, ASIANCON, 2022, pp. 1-8, http://dx.doi.org/10.
1109/ASIANCON55314.2022.9908807.

X. Jin, W. Che, Z. Wu, H. Wang, Analog control circuit designs for a class of
continuous-time adaptive fault-tolerant control systems, IEEE Trans. Cybern. 52
(2020) 4209-4220.

10

[28]

[29]

[30]

[31]

[32]

[33]

Systems & Control Letters 203 (2025) 106146

G. Pappas, V. Alimisis, C. Dimas, P.P. Sotiriadis, Analogue realization of a
fully tunable fractional-order PID controller for a DC motor, in: 2020 32nd
International Conference on Microelectronics, ICM, 2020, pp. 1-4, http://dx.doi.
org/10.1109/1CM50269.2020.9331798.

A. Agarwal, C. Fiscko, S. Kar, L. Pileggi, B. Sinopoli, An equivalent circuit
workflow for unconstrained optimization, 2023, arXiv:2305.14061.

A. Agarwal, L. Pileggi, An equivalent circuit approach to distributed optimization,
2023, arXiv:2305.14607.

J. Aratjo, L. Oliveira, B. Guerreiro, F. Silva, CMOS analog simulators of
dynamical systems, IEEE Access PP (2024) http://dx.doi.org/10.1109/ACCESS.
2024.3391511, 1-1.

P. Horowitz, W. Hill, The Art of Electronics, third ed., Cambridge University
Press, USA, 2015.

D. Silvestre, OPTool—An optimization toolbox for iterative algorithms, SoftwareX
11 (2020) 100371, http://dx.doi.org/10.1016/].s0ftx.2019.100371.

http://dx.doi.org/10.1109/JSSC.2005.858618
http://dx.doi.org/10.1109/JSSC.2005.858618
http://dx.doi.org/10.1109/JSSC.2005.858618
http://dx.doi.org/10.1109/ICSSE55923.2022.9948240
http://dx.doi.org/10.1109/ACC.2016.7526767
http://dx.doi.org/10.1109/ASIANCON55314.2022.9908807
http://dx.doi.org/10.1109/ASIANCON55314.2022.9908807
http://dx.doi.org/10.1109/ASIANCON55314.2022.9908807
http://refhub.elsevier.com/S0167-6911(25)00128-8/sb27
http://refhub.elsevier.com/S0167-6911(25)00128-8/sb27
http://refhub.elsevier.com/S0167-6911(25)00128-8/sb27
http://refhub.elsevier.com/S0167-6911(25)00128-8/sb27
http://refhub.elsevier.com/S0167-6911(25)00128-8/sb27
http://dx.doi.org/10.1109/ICM50269.2020.9331798
http://dx.doi.org/10.1109/ICM50269.2020.9331798
http://dx.doi.org/10.1109/ICM50269.2020.9331798
http://arxiv.org/abs/2305.14061
http://arxiv.org/abs/2305.14607
http://dx.doi.org/10.1109/ACCESS.2024.3391511
http://dx.doi.org/10.1109/ACCESS.2024.3391511
http://dx.doi.org/10.1109/ACCESS.2024.3391511
http://refhub.elsevier.com/S0167-6911(25)00128-8/sb32
http://refhub.elsevier.com/S0167-6911(25)00128-8/sb32
http://refhub.elsevier.com/S0167-6911(25)00128-8/sb32
http://dx.doi.org/10.1016/j.softx.2019.100371

	Analysis of gradient descent algorithms: Discrete to continuous domains and circuit equivalents
	Introduction
	Gradient Methods in Continuous Time
	Review of Discrete-Time Gradient Descent Methods
	Continuous-time Counterparts of Gradient Methods
	Optimized Parameter Selection for Continuous Gradient Methods

	Equivalent Circuits for Continuous Gradient Descent Methods
	Continuous Heavy-Ball
	Continuous Methods with Additional Momentum
	Practical Implementation and Parameter Tuning

	Constrained Optimization Problem using Equivalent Circuits
	Circuit Design for Primal–Dual Gradient Descent Method

	Simulation Results
	Convergence Speed for Gradient Descent Methods
	Convergence Analysis of Continuous-Time Gradient Descent Methods
	Equivalent Circuits of Continuous-Time Gradient Descent Methods

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

