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 A B S T R A C T

In recent years, there have been several advances in iterative optimization algorithms seen as closed-loop 
control systems in discrete-time that solve unconstrained optimization problems. In this paper, we extend these 
advances to the continuous setting and leverage circuit equivalence to present a possible implementation of 
such controllers. Next, we address constrained Quadratic Programming (QP) challenges within a primal–dual 
framework that appears in many controller definitions. By drawing parallels between second-order ODEs and 
circuit dynamics, our study bridges theoretical optimization with practical electrical analogues that can be 
designed and implemented for problems in systems engineering, robotics, and autonomous vehicles that could 
benefit from the low power and latency of these optimization-based controllers.
1. Introduction

The Control community has devoted a significant research effort 
into the field of autonomous systems from high-altitude drones to un-
derwater vehicles, for instance in [1,2] for drone technologies, [3] for 
communications, along with [4,5] for underwater exploration or [6,7] 
for search in unknown environments. These technologies have been 
applied to environmental surveillance, disaster management, and un-
manned logistics, as highlighted in [8–12].

This paper focuses on the idea of leveraging the application of 
gradient descent methods either for trajectory planning or controller 
design. As a consequence, this paper first investigates continuous-time 
gradient descent methods by introducing ODE models and establishing 
expressions for parameter selection. Then, we introduce electrical cir-
cuits analogues to the differential equations that govern these gradient 
descent methods in continuous-time domain.

In the literature, there has been substantial attention to gradient de-
scent methods in discrete time, such as the Heavy-Ball [13], Nesterov’s 
accelerated gradient [14], and the Triple-Momentum method [15]. The 
paper in [15] provides a comprehensive analysis of poles and zeros 
in transition matrices that allows an optimal selection of parameters 
to minimize worst-case convergence rate, while the authors in [16] 
employ eigenvalue analysis to examine convergence rates and stability. 
In the literature, there has also been some interest in continuous-
time methods such as [17],  where continuous-time models of Nes-
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terov’s method are derived that result in time-varying parameters. 
The work in [18] presented high-resolution ODEs with higher-order 
correction terms for gradient methods, which differs from our methods 
with constant parameters that enables presenting theoretical results for 
parameter selection.

An interesting feature of continuous-time methods is the possibility 
to be represented by an equivalent circuit. The advantage of using 
circuits over digital processors is the faster response times and more 
energy efficient computations. This shift from digital computation to 
circuit analogs is analyzed in studies like [19], which highlights the 
low power requirements and intrinsic parallelism of analog comput-
ers. Recent work shows that domain-specific analog accelerators can 
outperform digital systems, offering improved optimization speed and 
reduced energy consumption in [20,21], while hybrid analog/digital 
frameworks further enhance computational efficiency and adaptabil-
ity [22,23]. Emphasizing the transition from digital calculation to 
circuit analogs, research such as [24–27], and [28] demonstrates the 
growing trend in this area. Further, [29,30] discuss equivalent circuits 
in unconstrained optimization, presenting methodologies for designing 
algorithms robust to hyperparameters and achieving fast convergence 
rates. Our research diverges from these approaches by proposing equiv-
alent circuits directly derived from op-amp-based circuits. The main 
contributions of this paper can be summarized as follows:
https://doi.org/10.1016/j.sysconle.2025.106146
Received 16 September 2024; Received in revised form 4 April 2025; Accepted 12 
vailable online 4 June 2025 
167-6911/© 2025 The Authors. Published by Elsevier B.V. This is an open access a
May 2025

rticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/sysconle
https://www.elsevier.com/locate/sysconle
https://orcid.org/0000-0002-8097-0626
mailto:he.hao@tecnico.ulisboa.pt
mailto:dsilvestre@isr.tecnico.ulisboa.pt
mailto:csilvestre@umac.mo
https://doi.org/10.1016/j.sysconle.2025.106146
https://doi.org/10.1016/j.sysconle.2025.106146
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysconle.2025.106146&domain=pdf
http://creativecommons.org/licenses/by/4.0/


H. Hao et al. Systems & Control Letters 203 (2025) 106146 
• Continuous-time versions of various gradient methods focusing on 
their parameter optimization to obtain optimal convergence rates;

• Development of equivalent circuits such that the optimization can 
be carried out using low power and fast speeds;

These contributions lead to two main advantages:

• We can provide optimal parameters for continuous models much 
like the ones already presented for discrete-time in the literature;

• QP-based CBF-CLF controllers can be implemented using circuits 
and thus have the controllers working directly in continuous time.

We would like to remark that the last point is of particular interest, 
considering that the QPs are based on continuous conditions for the 
CLFs and CBFs, but due to normally being implemented in a digital 
embedded system, they must be run with a sufficiently small sampling 
time. The safety guarantee through forward set invariance is given by 
performing a Lyapunov analysis on the continuous closed-loop system. 
Therefore, it makes sense that the controller can be implemented 
directly in continuous time.

2. Gradient methods in continuous time

Having in mind the design of continuous controllers based on 
CLF-CBF QPs, let us start by addressing the problem of minimizing 
a quadratic function without considering constraints. Let us consider 
𝑥 ∈ R𝑛 as our optimization variable and a matrix 𝑄 and vector e that 
translate how each entry is weighed, leading to the following problem 
formulation:

Problem 1.  Consider a set of agent states collectively represented by 
the state vector 𝑥. The objective is to optimize a quadratic cost function 
of the states by minimizing the objective function: 

minimize
𝑥∈R𝑛

𝑔(𝑥) = 1
2
𝑥⊺𝑄𝑥 + e⊺𝑥 (1)

where 𝑄 ∈ R𝑛×𝑛 is a symmetric positive definite matrix to ensure the 
existence and uniqueness of the solution to the optimization problem, 
and e ∈ R𝑛 accounts for a linear term in the cost.

2.1. Review of discrete-time gradient descent methods

Before tackling Problem  1 in a continuous time setting, let us 
review discrete time methods that will help build the intuition to the 
continuous counterparts. The gradient descent method is given by the 
iteration: 
𝑥𝑘+1 = 𝑥𝑘 − 𝛽∇𝑔(𝑥𝑘). (2)

The gradient descent method might suffer from slow convergence, 
which can be improved by alternatives like the Heavy-Ball method, 
which is inspired by the concept of physical ball moving along 𝑔 with 
momentum, taking the form: 
𝑥𝑘+1 = (1 + 𝛼)𝑥𝑘 − 𝛼𝑥𝑘−1 − 𝛽∇𝑔(𝑥𝑘). (3)

Further building on the idea of momentum, Nesterov’s Accelerated 
Gradient introduces a predictive step, which leads to: 
𝑥𝑘+1 = 𝑦𝑘 − 𝛽∇𝑔(𝑦𝑘)

𝑦𝑘 = (1 + 𝛼)𝑥𝑘 − 𝛼𝑥𝑘−1
(4)

while a generalization name Triple-Momentum method was presented 
in [15]: 
𝑥𝑘+1 = (1 + 𝛼)𝑥𝑘 − 𝛼𝑥𝑘−1 − 𝛽∇𝑔(𝑦𝑘)

𝑦𝑘 = (1 + 𝛾)𝑥𝑘 − 𝛾𝑥𝑘−1
𝑜𝑘 = (1 + 𝜎)𝑥𝑘 − 𝜎𝑥𝑘−1

. (5)
2 
We recover the main result of the literature regarding their optimal 
parameters to ensure optimal convergence rates for 𝐿-smooth and 𝑚-
strong convex 𝑔 functions. Worst-case convergence rate 𝜆 corresponds 
to ‖𝑥(𝑘) − 𝑥⋆‖2 ≤ 𝜆𝑘‖𝑥(0) − 𝑥⋆‖2, regardless of the initial conditions 
𝑥(0).

Theorem 2 ([15,16]).  In addressing Problem  1, gradient descent, heavy-
ball, Nesterov’s accelerated gradient, and triple momentum, achieve optimal 
convergence rates when their parameters are chosen as follows:

 Method  Parameters (𝛼, 𝛽, 𝛾, 𝜎)  
 Gradient descent (0, 2

𝐿+𝑚 , 0, 0)  

 Heavy-ball ( (
√

𝐿−
√

𝑚)2

(
√

𝐿+
√

𝑚)2
, 4
(
√

𝐿+
√

𝑚)2
, 0, 0) 

 Nesterov’s method (
√

𝐿−
√

𝑚
√

𝐿+
√

𝑚
, 1
𝐿 , 0, 0)  

 Triple momentum ( 1+𝜌𝐿 , 𝜌2

2−𝜌 ,
𝜌2

(1+𝜌)(2−𝜌) ,
𝜌2

1−𝜌2 )  

where 𝜌 = 1 − 1∕
√

𝜅 and 𝜅 = 𝐿∕𝑚. In this context, 𝐿 > 0 and 
𝑚 > 0 represent constants indicating that the function 𝑓 is 𝐿-smooth and 
𝑚-strongly convex, respectively.

2.2. Continuous-time counterparts of gradient methods

In this section, we start by noting that Nesterov’s method can be 
rewritten to exhibit an implicit temporal increment 
𝑥𝑘+1 − 𝑥𝑘 = 𝛼(𝑥𝑘 − 𝑥𝑘−1) − 𝛽∇𝑔(𝑦𝑘) (6)

where the discrete differences 𝑥𝑘+1 − 𝑥𝑘 and 𝑥𝑘 − 𝑥𝑘−1 represent finite 
approximations in differential calculus.

Let us introduce a scaling factor, √𝑠, to adapt the discrete parame-
ters 𝛼 and 𝛽 into their continuous-time equivalents 𝛼𝑐 = 1−𝛼

√

𝑠
 and 𝛽𝑐 = 𝛽

𝑠 . 
Consequently, (6) is reformulated as follows: 

𝑥𝑘+1 = 𝑥𝑘 + (1 − 𝛼𝑐
√

𝑠)(𝑥𝑘 − 𝑥𝑘−1) − 𝛽𝑐𝑠∇𝑔(𝑦𝑘) (7)

where 𝑦𝑘 = 𝑥𝑘 + (1 − 𝛼𝑐
√

𝑠)(𝑥𝑘 − 𝑥𝑘−1). The discrete-time update rule is 
then transformed into 
𝑥𝑘+1 − 𝑥𝑘

√

𝑠
= (1 − 𝛼𝑐

√

𝑠)
𝑥𝑘 − 𝑥𝑘−1

√

𝑠
− 𝛽𝑐

√

𝑠∇𝑔(𝑦𝑘), (8)

assuming the discrete sampling time 𝑘, scaled to the continuous-time 
variable 𝑡 via the factor √𝑠 as 𝑘 = 𝑡

√

𝑠
. Approximating finite differences 

by first and second-order derivatives, we obtain 
𝑥𝑘+1 − 𝑥𝑘

√

𝑠
= 𝑥̇(𝑡) + 1

2
𝑥̈(𝑡)

√

𝑠 + 𝑜(
√

𝑠) (9a)

𝑥𝑘 − 𝑥𝑘−1
√

𝑠
= 𝑥̇(𝑡) − 1

2
𝑥̈(𝑡)

√

𝑠 + 𝑜(
√

𝑠) (9b)

√

𝑠∇𝑔(𝑦𝑘) =
√

𝑠∇𝑔(𝑥(𝑡)) + 𝑜(
√

𝑠) (9c)

which means that (8) is approximately 

𝑥̇(𝑡) + 1
2
𝑥̈(𝑡)

√

𝑠 + 𝑜(
√

𝑠) = (1 − 𝛼𝑐
√

𝑠)
(

𝑥̇(𝑡) − 1
2
𝑥̈(𝑡)

√

𝑠 + 𝑜(
√

𝑠)
)

− 𝛽𝑐
√

𝑠∇𝑔(𝑥(𝑡)) + 𝑜(
√

𝑠).
(10)

By grouping terms according to the order of their derivatives, we can 
further simplify into 

𝛼𝑐
√

𝑠𝑥̇(𝑡) + (
√

𝑠 +
𝛼𝑐
2
𝑠)𝑥̈(𝑡)

+ 𝛽𝑐
√

𝑠∇𝑔(𝑥(𝑡)) + (1 + 𝛼𝑐
√

𝑠 + 𝛽𝑐
√

𝑠)𝑜(
√

𝑠) = 0
(11)

and neglect higher-order infinitesimal terms 𝑜(√𝑠) to obtain 

𝛼
√

𝑠𝑥̇(𝑡) + (
√

𝑠 +
𝛼𝑐 𝑠)𝑥̈(𝑡) + 𝛽

√

𝑠∇𝑔(𝑥(𝑡)) = 0 (12)
𝑐 2 𝑐
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Further simplification is achieved by dividing the entire equation by 
√

𝑠: 

𝛼𝑐 𝑥̇(𝑡) + 𝑥̈(𝑡) +
𝛼𝑐
2
√

𝑠𝑥̈(𝑡) + 𝛽𝑐∇𝑔(𝑥(𝑡)) = 0 (13)

As √𝑠 approaches zero, we can disregard the term 𝛼𝑐2
√

𝑠𝑥̈(𝑡) and get 
the final expression: 

𝑥̈(𝑡) = −𝛼𝑐 𝑥̇(𝑡) − 𝛽𝑐∇𝑔(𝑥(𝑡)) (14)

Building upon the previous differential equation and its connection 
with discrete-time gradient methods, we can propose a general lin-
ear system to represent the whole family of optimization methods as 
follows: 
𝑥̈ = −𝛼𝑥̇ − 𝛽∇𝑔(𝑦)

𝑦 = 𝑥 + 𝛾𝑥̇

𝑜 = 𝑥 + 𝜎𝑥̇

(15)

where parameters 𝛼, 𝛽, 𝛾, and 𝜎 are to be chosen as to get the 
fastest convergence rate in worst-case. We have named the methods as: 
Nesterov method (2-parameter), the Triple-Momentum method without 
output equation (3-parameter), and the continuous Triple-Momentum 
method (4-parameter). This nomenclature is deliberately chosen to 
highlight their structural similarities from discrete methods, facilitating 
a coherent understanding of their application.

To shorten the notation, we write the methods

• Continuous Heavy-Ball: 𝑥̈ = −𝛼𝑥̇ − 𝛽∇𝑔(𝑥).

• Continuous Nesterov: 𝑥̈ = −𝛼𝑥̇ − 𝛽∇𝑔(𝑦)

𝑦 = 𝑥 + 𝛼𝑥̇

• Continuous Triple-Momentum: 
𝑥̈ = −𝛼𝑥̇ − 𝛽∇𝑔(𝑦)

𝑦 = 𝑥 + 𝛾𝑥̇

𝑜 = 𝑥 + 𝜎𝑥̇

as a linear system in state–space using matrices

• Continuous Heavy-Ball: 
⎡

⎢

⎢

⎣

−𝛼𝐼𝑛 0𝑛 −𝛽𝐼𝑛
𝐼𝑛 0𝑛 0𝑛
0𝑛 𝐼𝑛 0𝑛

⎤

⎥

⎥

⎦

• Continuous Nesterov: 
⎡

⎢

⎢

⎣

−𝛼𝐼𝑛 0𝑛 −𝛽𝐼𝑛
𝐼𝑛 0𝑛 0𝑛
𝛼𝐼𝑛 𝐼𝑛 0𝑛

⎤

⎥

⎥

⎦

• Continuous Triple-Momentum: 
⎡

⎢

⎢

⎣

−𝛼𝐼𝑛 0𝑛 −𝛽𝐼𝑛
𝐼𝑛 0𝑛 0𝑛
𝛾𝐼𝑛 𝐼𝑛 0𝑛

⎤

⎥

⎥

⎦

where 𝑢 = ∇𝑔(𝑦) and the Continuous Triple-Momentum method has a 
tuned output 𝑜 = 𝑥 + 𝜎𝑥̇.

2.2.1. Optimized parameter selection for continuous gradient methods
In this section, we present a result regarding the optimal selection 

of parameters to obtain the fastest worst-case convergence rate. 

Theorem 3.  Continuous gradient methods achieve optimal convergence 
rates when their parameters are chosen as follows:

 Method Parameters (𝛼, 𝛽, 𝛾, 𝜎)  
 Heavy-ball (

√

4𝛽𝑚,∞, 0, 0)  

 Nesterov ( 2
√

𝛽𝐿
1+𝛽𝐿 ,∞, 0, 0)  

 Triple momentum (2
√

𝛽𝐿𝑚
√

𝐿−
√

𝑚
𝐿−𝑚 ,∞, 2

√

𝛽

√

𝐿−
√

𝑚
𝐿−𝑚 , 8

(𝛼+𝛽𝛾𝑚)2 ) 

Proof.  Let us start by computing the gradient of 𝑔

∇𝑔(𝑥) = 𝑄𝑥 + 𝑒 (16)
3 
In equilibrium conditions, we have 𝒙̇⋆ = 0 and 𝑢⋆ = 0, which makes 

𝒙̇⋆ = 0 ⟺ 𝐴𝒙⋆ + 𝐵𝑢⋆ = 0 ⟹ 𝐴𝒙⋆ = 0 (17)

and additionally 

𝑢⋆ = 0 ⟺ ∇𝑔(𝑦(𝑡)) = 0 ⟺ 𝑄𝐶𝒙⋆ + 𝑒 = 0. (18)

The error 𝒙̃ = 𝒙 − 𝒙⋆ has dynamics 
̇̃𝒙 = 𝒙̇ − 𝒙̇⋆

= 𝐴𝒙 + 𝐵𝑢

= 𝐴𝒙 + 𝐵(𝑄𝐶𝒙 + 𝑒)

= 𝐴𝒙 − 𝐴𝒙⋆ + 𝐵𝑄𝐶𝒙 − 𝐵𝑄𝐶𝒙⋆

= (𝐴 + 𝐵𝑄𝐶)(𝒙 − 𝒙⋆) = (𝐴 + 𝐵𝑄𝐶)𝒙̃

(19)

where we used (17) to allow adding −𝐴𝒙⋆ and (18) to replace the value 
for 𝑒.

From (19), convergence to zero error corresponds to checking the 
eigenvalues of 𝑇 ∶= 𝐴 + 𝐵𝑄𝐶. Utilizing the eigenvalue decomposition 
𝑄 = 𝑈𝛬𝑈 ⊺, where 𝑈 is orthogonal and 𝛬 is diagonal, allows to 
diagnolize the matrix and study 

𝑇𝑖 = 𝐴1 + 𝐵1𝜆𝑖𝐶1, 𝑖 = 1,… , 𝑛 (20)

where each 𝑇𝑖 corresponds to each mode of the overall error dynamics 
corresponding to each eigenvalue 𝜆𝑖 of 𝑄 𝐴1, 𝐵1 and 𝐶1 are the matrices 
for the scalar case.

Continuous Heavy-Ball: For this method, the matrix 𝑇𝑖 results in 

𝑇𝑖 = 𝐴1 + 𝐵1𝜆𝑖𝐶1 =
[

−𝛼 −𝛽𝜆𝑖
1 0

]

(21)

with the characteristic polynomial being 

𝜈2 + 𝛼𝜈 + 𝛽𝜆𝑖 = 0. (22)

The roots of this polynomial are: 

𝜈 =
−𝛼 ±

√

𝛥
2

(23)

where 𝛥 = 𝛼2 − 4𝛽𝜆𝑖. To avoid oscillations, we need 𝛥 = 0, leading to 
𝛼 =

√

4𝛽𝑚. However, notice that we can make the real part arbitrarily 
negative by making 𝛽 → ∞.

Continuous Nesterov: 

𝑇𝑖 = 𝐴1 + 𝐵1𝜆1𝐶1 =
[

−𝛼 − 𝛽𝛼𝜆𝑖 −𝛽𝜆𝑖
1 0

]

(24)

The characteristic polynomial of the matrix 𝑇𝑖 is thus expressed as: 

𝜈2 + (𝛼 + 𝛽𝛼𝜆𝑖)𝜈 + 𝛽𝜆𝑖 = 0 (25)

with roots: 

𝜈 =
−𝛼 − 𝛽𝛼𝜆𝑖 ±

√

𝛥
2

(26)

where 𝛥 = (𝛼 + 𝛽𝛼𝜆𝑖)2 − 4𝛽𝜆𝑖. Therefore, to avoid oscillations it must 
satisfy 

(𝛼 + 𝛽𝛼𝜆𝑖)2 − 4𝛽𝜆𝑖 = 0 ⟺ 𝛼 =
2
√

𝛽𝐿
1 + 𝛽𝐿

(27)

with the real part of the eigenvalues being arbitrarily negative is we 
make 𝛽 → ∞.

Continuous Triple-Momentum Doing the same steps, we arrive at 𝑇𝑖
being 

𝑇𝑖 = 𝐴1 + 𝐵1𝜆1𝐶1 =
[

−𝛼 − 𝛽𝛾𝜆𝑖 −𝛽𝜆𝑖
1 0

]

(28)

with a characteristic polynomial 
2 (29)
𝜈 + (𝛼 + 𝛽𝛾𝜆𝑖)𝜈 + 𝛽𝜆𝑖 = 0
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having roots 

𝜈 =
−𝛼 − 𝛽𝛾𝜆𝑖 ±

√

𝛥
2

(30)

where 𝛥 = (𝛼 + 𝛽𝛾𝜆𝑖)2 − 4𝛽𝜆𝑖.
In order to get real solutions, 𝛥 = 0, which results in 

𝛼 = 2
√

𝛽𝐿𝑚 ⋅

√

𝐿 −
√

𝑚
𝐿 − 𝑚

, 𝛾 = 2
√

𝛽
⋅

√

𝐿 −
√

𝑚
𝐿 − 𝑚

(31)

which also indicates optimizing for the fastest convergence involves 
selecting 𝛽 → ∞.

In order to find the best value for 𝜎, let us write the output error 
dynamics 
𝑑
𝑑𝑡

(𝒐 − 𝒐⋆) = 𝑑
𝑑𝑡

(𝒐 − 𝒙⋆)

= (𝜎(𝐴 + 𝐵𝑄𝐶) + 𝐼)(𝒙 − 𝒙⋆)

= (𝜎𝑇 + 𝐼)(𝒙 − 𝒙⋆)

= 𝑇̃ (𝒙 − 𝒙⋆)

(32)

Therefore, we want to place the pole of the inverse of the transfer 
function to the output with the slowest pole 𝜌 given by 

𝜌 = max

(

−
𝛼 + 𝛽𝛾𝜆𝑖 ±

√

𝛥
2

)

, for 𝑖 = 1,… , 𝑛, (33)

which after replacing with the relationship between 𝛼 and 𝛾, simplifies 
to 

𝜌 = −
𝛼 + 𝛽𝛾𝑚

2
. (34)

Applying the Laplace transform to the output function, 𝑜 = 𝑥+ 𝜎𝑥̇, this 
yields: 

𝑂(𝑠) = 𝑋(𝑠) + 𝜎𝑠𝑋(𝑠) (35)

which leads us to the transfer function: 
𝑂(𝑠)
𝑋(𝑠)

= 1 + 𝜎𝑠 (36)

and subsequently, its inverse: 
𝑋(𝑠)
𝑂(𝑠)

= 1
1 + 𝜎𝑠

(37)

with a critical pole at 𝑠 = − 1
𝜎 . Setting the pole equal to ∫ 𝜌 = − 𝜌2

2  gets 
us 

− 1
𝜎

= −
𝜌2

2
= −1

2

(

−
𝛼 + 𝛽𝛾𝑚

2

)2
(38)

resulting in : 

𝜎 = 8
(𝛼 + 𝛽𝛾𝑚)2

. (39)

With these parameters established, the next section aims to provide 
a bridge to a direct continuous implementation by providing an equiv-
alent electrical circuit that could be used to solve the unconstrained 
optimization problems with low power consumption.

3. Equivalent circuits for continuous gradient descent methods

In this section, we design circuits that translate the differential 
equations found for the continuous-time gradient descent methods. 
Although, increasing 𝛽 always speeds up the convergence, in practice, 
we must choose a finite 𝛽 to balance accuracy and convergence speed. 
Leveraging the correspondence between second-order ordinary differ-
ential equations (ODEs) and op-amp-based circuits, we introduce circuit 
implementations that embody these continuous approaches.
4 
Fig. 1. Block diagram of the continuous Heavy-Ball method applied to the scalar case.

Fig. 2. Illustration of circuit components to implement basic blocks.

Fig. 3. Circuit implementation of the continuous Heavy-Ball for the scalar case.

3.1. Continuous heavy-ball

Let us start by considering the continuous Heavy-Ball method ap-
plied to a scalar function 
𝑥̈ = −𝛼𝑥̇ − 𝛽∇𝑔(𝑥)

= −𝛼𝑥̇ − 𝛽𝑞𝑥 − 𝛽𝑒.
(40)

To construct the circuit using operational amplifiers, we break down 
the equation into components suitable for electronic representation, 
focusing on integration, multiplication, and summation. Op-amp-based 
integrators model the integration of 𝑥̇ and ẍ, while analog multipliers 
handle the products of 𝛼𝑥̇ and 𝛽(𝑞𝑥 + 𝑒). Summing amplifiers then 
aggregate these signals to reconstruct the equation −𝛼𝑥̇−𝛽(𝑞𝑥+𝑒), which 
is diagrammatically summarized in Fig.  1 using logic blocks.

Integrators use op-amps with capacitors in their feedback loops to 
achieve integration, while multiplication is implemented using multi-
plier circuit blocks based on Gilbert cells or alternative CMOS designs. 
A comprehensive description of each circuit function can be found 
in [31]. The practical implementations of these circuits are shown in 
Fig.  2.

Combining the building blocks from Fig.  2 to construct the full 
Heavy-Ball method results in the circuit depicted in Fig.  3. The mul-
tidimensional case involves designing a circuit for each scalar case that 
uses variables from adjacent scalar sub-circuits and combining them 
with multiplications with constants and additions to implement each 
𝑖th block 

𝑥̈𝑖 = −𝛼𝑥̇𝑖 − 𝛽
𝑛
∑

𝑞𝑖𝑗𝑥𝑗 − 𝛽𝑒𝑖 for 𝑖 = 1, 2,… , 𝑛 (41)

𝑗=1
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Fig. 4. Block diagram for the continuous Heavy-Ball method for a function 𝑔 with 2 
variables.

where 𝑥𝑖 and 𝑒𝑖 represent the 𝑖th elements of vectors 𝑥 and 𝑒 respec-
tively, and 𝑞𝑖𝑗 is the (𝑖, 𝑗)th element of the matrix 𝑄. This setup requires 
𝑛 sub-circuits, each mirroring the basic configuration shown in Fig.  1, 
with additional interconnections to accommodate the matrix structure 
of the system. The logic block for the case of 2 dimensions is shown in 
Fig.  4.

3.2. Continuous methods with additional momentum

Adding additional momentum terms requires a more complex cir-
cuit representation. Unlike the continuous Heavy-Ball approach, these 
methods model the gradient as a first-order proportional relationship, 
specifically ∇𝑔(𝑦) = ∇𝑔(𝑥 + 𝛾𝑥̇), and include a tuned output 𝑜 = 𝑥 + 𝜎𝑥̇.

We will focus on the general case of the continuous methods, which 
encompasses the foundational principles of related models like the 
continuous Nesterov method. In contrast to strictly replicating the ODEs 
detailed in (15), which would require constructing additional sub-
loops to capture the first-order gradient dynamics, we adopt a more 
practical approach. We directly modify the value of 𝑥̇, which allows us 
to integrate additional momentum effects without extensive changes to 
the existing circuit configuration: 
𝑥̈ = −𝛼𝑥̇ − 𝛽∇𝑔(𝑦)

= −𝛼𝑥̇ − 𝛽𝑞𝑥 − 𝛽𝑞𝛾𝑥̇ − 𝛽𝑒

= −(𝛼 + 𝛽𝑞𝛾)𝑥̇ − 𝛽𝑞𝑥 − 𝛽𝑒

(42)

This formula represents how the additional component 𝛽𝑞𝛾𝑥̇ is merged 
into the existing parameters of the circuit. We accomplish this by 
adjusting the voltage at the integrator’s input using the existing mul-
tiplier and summing op-amp. The tuned output 𝑜 = 𝑥 + 𝜎𝑥̇ is not 
directly involved in the feedback loop of the circuit and can be added 
independently.

3.3. Practical implementation and parameter tuning

As we translate these theoretical models into practical circuit im-
plementations, some component selection is required to maintain ac-
curacy:

• Resistors: Set to 103 Ω to minimize electrical noise, thus enhanc-
ing the circuit signal accuracy.

• Capacitors: Adjusted to 10−3 F to ensure a product of resistance 
and capacitance equal to 1, stabilizing voltage levels.

• Feedback Loop Resistors: Calibrated to 𝑞𝑖,𝑗 × 103 to accurately 
simulate the matrix operations and dynamics essential to the 
system.

Voltage scaling. Adjusting the parameter 𝛽 significantly affects the 
circuit voltage levels, requiring careful scaling to prevent component 
saturation and ensure the circuit functions properly.

• Op-Amp Voltage Limits: According to [32], operational ampli-
fiers should operate with input voltages below 100 V to prevent 
saturation.
5 
• Implementation Strategy: Initial settings, including multiplier 
gains, are scaled down by 1∕𝛽 to maintain voltages within safe 
limits.

• Post-Adjustment Corrections: After obtaining the output results, 
the voltages are adjusted by multiplying by 𝛽 to achieve accurate 
values that correspond closely with theoretical expectations.

Optimizing circuit accuracy. Accurate low-voltage operation is critical, 
especially when dealing with sensitive components. Since voltage levels 
can be scaled down to 1∕𝛽 in previous adjustments to ensure proper 
circuit functionality, it is important to carefully select the value of 𝛽.

• Op-Amp Sensitivity: Standard op-amps typically process signals 
as low as 1 μV, with performance degradation below 100 nV 
unless specifically designed to handle such low voltages.

• Beta Selection: Capping 𝛽 at 104 is necessary because higher 
values would further reduce the voltage, potentially below the 
operational amplifier capabilities, thus affecting the precision 
of the system. Originally capable of precision around 10−7, the 
scaling by 1∕𝛽 proportionally reduces this to 10−3, considering 
the voltage reduction.

• System Settling Time (𝑇𝑠): A carefully selected 𝛽 ensures faster 
convergence while maintaining the accuracy of the system within 
a 10−3 tolerance.

4. Constrained optimization problem using equivalent circuits

Quadratic Programming (QP) problems are fundamental in control 
systems and often include inherent constraints critical to their formu-
lation. Building on the continuous-time gradient descent methods and 
their circuit implementations developed thus far, we now address the 
challenge of incorporating constraints into the optimization framework. 
We revisit Problem  1 to integrate these limitations, thereby enhancing 
its relevance and applicability to practical scenarios: 

Problem 4 ( Problem  1 with Constraints).  Consider a set of agents, each 
characterized by a state vector 𝑥. The goal is to optimize the operational 
states of these agents by minimizing the objective function: 
min𝑥

1
2𝑥

⊺𝑄𝑥 + e⊺𝑥
s.t. 𝑆𝑥 = 𝑏

(43)

where 𝑄 ∈ R𝑛×𝑛 is a symmetric positive definite matrix, e ∈ R𝑛 is a 
vector and 𝑆 ∈ R𝑛×𝑛 is the matrix defining equality constraints with 
corresponding vectors 𝑏 ∈ R𝑛.

4.1. Circuit design for primal–dual gradient descent method

Given that the circuits discussed in the previous section are tailored 
for unconstrained problems, an effective strategy to address our current 
problem involves reformulating it as an unconstrained problem. This 
can be achieved through the augmented Lagrangian method which 
integrates Lagrange multipliers directly into the objective function, 
effectively transforming the constraints into part of the optimization 
objective. The augmented Lagrangian for our problem is formulated as: 

𝐿(𝑥, 𝜆) = 1
2
𝑥⊺𝑄𝑥 + 𝑥⊺e + 𝜆⊺(𝑆𝑥 − 𝑏) (44)

where 𝜆 ∈ R𝑚 is a vector of Lagrange multipliers, corresponding to 𝑚
constraints. Leveraging strong duality, the Karush–Kuhn–Tucker (KKT) 
conditions for optimality are expressed as: 
𝜕𝐿
𝜕𝑥

= 0 ⇔ 0 = 𝑄𝑥 + 𝑆⊺𝜆 + e,

𝜕𝐿 = 0 ⇔ 0 = 𝑆𝑥 − 𝑏.
(45)
𝜕𝜆
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Fig. 5. Partial circuit model for primal–dual optimization problem.

Solving these linear equations yields the unique global optimizer
(𝑥∗, 𝜆∗): 
𝑥∗ = −𝑄−1(𝑆⊺𝜆∗ + e),

𝜆∗ = −(𝑆𝑄−1𝑆⊺)−1(𝑏 + 𝑆𝑄−1e).
(46)

While the augmented Lagrangian method provides an exact solution 
for the constrained optimization problem, its practical implementation 
requires centralized knowledge of the matrices 𝑆, 𝑄, and vectors e, 𝑏. 
Any changes or temporal variations in these parameters would neces-
sitate recalculations of the optimizer. In the context of the primal–dual 
framework, this scenario is characterized by the following differential 
equations: 

𝑇𝑥𝑥̇ = − 𝜕
𝜕𝑥

𝐿(𝑥, 𝜆), 𝑇𝜆𝜆̇ = 𝜕
𝜕𝜆

𝐿(𝑥, 𝜆) (47)

where 𝑇𝑥 and 𝑇𝜆 are positive definite diagonal matrices representing 
time constants. The dynamics of the optimization are then expressed 
by: 

𝑇𝑥𝑥̇ = −𝑇𝑥
𝜕𝐿
𝜕𝑥

= −𝑄𝑥 − 𝑆⊺𝜆 − e,

𝑇𝜆𝜆̇ = 𝑇𝜆
𝜕𝐿
𝜕𝜆

= 𝑆𝑥 − 𝑏,
(48)

For a scalar instance, the primal problem is represented as 𝑡𝑥𝑥̇ =
−𝑞𝑥−𝑠𝜆−𝑒. To adapt this to a multi-dimensional context, we extend the 
formulation to encompass each 𝑖th dimension in the primal problem. 
In this expanded view, the equation for each dimension is expressed as 
𝑡𝑥𝑖 𝑥̇𝑖 = −

∑𝑛
𝑗=1 𝑄𝑖,𝑗𝑥𝑗 −

∑𝑛
𝑗=1 𝑆𝑗,𝑖𝜆𝑗 − 𝑒𝑖.

In parallel, the dual problem for each dimension 𝑖 is defined as 
𝑡𝜆𝑖 𝜆̇𝑖 =

∑𝑛
𝑗=1 𝑆𝑖,𝑗𝑥𝑗 − 𝑏𝑖. Combining both equations, it is required to 

implement 

Primal: 𝑥̇𝑖 = −
𝑛
∑

𝑗=1

𝑄𝑖,𝑗𝑥𝑗
𝑡𝑥𝑖

−
𝑛
∑

𝑗=1

𝑆𝑗,𝑖𝜆𝑗
𝑡𝑥𝑖

−
𝑒𝑖
𝑡𝑥𝑖

,

Dual: 𝜆̇𝑖 =
𝑛
∑

𝑗=1

𝑆𝑖,𝑗𝑥𝑗
𝑡𝜆𝑖

−
𝑏𝑖
𝑡𝜆𝑖

.

(49)

The sub-circuit model for this setup can be simplified to the repre-
sentation 𝑥̇ = 𝑐1𝑥 + 𝑐2. Given the higher costs of op-amps compared to 
passive components, we have adapted the methods from [29] to opti-
mize cost-effectiveness in our approach. This model is realized using 
several key components: 1. A capacitor is utilized to represent the first-
order derivative term; 2. Voltage-Controlled Current Sources (VCCSs) 
are employed to create variables proportional to the coefficients in 
the equation; 3. A constant term is integrated into the circuit using a 
current source.

To accurately set the initial condition of the system, we incorporate 
a voltage source coupled with a switch. This setup is activated at 𝑡 = 0
to establish the initial voltage across the capacitor, corresponding to 
the initial value of the variable in question. The circuit configuration 
that encapsulates this design is illustrated in Fig.  5.

Applying Kirchhoff’s Current Law (KCL) to the node at the top of 
our proposed circuit configuration, we derive the following equation: 

𝐶 𝑑𝑣 =
∑

𝐾 𝑣 +
∑

𝐾 𝑣 + 𝐼 . (50)

𝑑𝑡 1 2 𝑠

6 
Fig. 6. Circuit representation for 2-D primal–dual gradient descent optimization.

This equation effectively captures the structure of each equation in 
(49). By dividing by the capacitance 𝐶 on both sides, we obtain: 
𝑑𝑣
𝑑𝑡

=
∑ 𝐾1

𝐶
𝑣 +

∑ 𝐾2
𝐶

𝑣 +
𝐼𝑠
𝐶
. (51)

The terms involving 𝐾1 and 𝐾2 in conjunction with the capacitor 
𝐶 create a dynamic that mirrors the primal and dual equations of 
the optimization problem. In Fig.  6, we illustrate a two-dimensional 
representation of this circuit arrangement, designed specifically for 
applications based on the primal–dual gradient descent method. This 
figure provides a visual guide to understanding how the theoretical 
aspects of the optimization problem are translated into practical circuit 
configurations.

5. Simulation results

In our simulation, we focus on three key aspects: Firstly, we an-
alyze the convergence speeds of both discrete and continuous gra-
dient descent methods, particularly emphasizing trajectory analysis 
in a two-dimensional space and comparing achieved versus desired 
steady states. Secondly, we delve into the effects of the parameter 𝛽
on the convergence rate in different continuous-time gradient descent 
methods. Finally, we assess error estimations in equivalent circuits, 
juxtaposing these with outcomes from ordinary differential equations 
(ODE) functions, to underscore the intricate interplay between circuit 
parameters and system behavior.

5.1. Convergence speed for gradient descent methods

In this subsection, we start by exploring the convergence rates of 
different gradient descent methodologies. In discrete methods using 
the code in [33], factors such as the initial guess and the methods 
way of functioning influence the convergence speed. To illustrate this, 
we consider a dynamic system characterized by a high bias rate in a 
random direction and a 6-dimensional configuration. Fig.  7 depicts the 
error evaluation, represented by 𝜖 = |𝑥 − 𝑥∗|, across various methods 
in a complex, randomly selected dynamic system.

The Triple-Momentum without considering the tuned output 𝑜 is 
named as Triple Variables. Our simulations reveal that the triple mo-
mentum method exhibits enhanced convergence rates, aligning with 
the findings of [15]. Nonetheless, this method still requires a significant 
number of steps for convergence. In contrast, given the same 𝑄 ∈ R6×6

and 𝑒 ∈ R6, continuous-time gradient methods demonstrate a rapid 
and stable convergence. As shown in Fig.  8, the continuous Heavy-
Ball method and the continuous Triple-Momentum method can attain 
an accuracy level of 10−6 within 1 s for 𝛽 = 1000. This performance 
corresponds to a value of around 10−2 for the capacitors and inductors 
in both the continuous Heavy-Ball method and the continuous Triple-
Momentum method—a level of accuracy that the fastest discrete-time 
method fails to reach within 100 steps.

Many continuous-time approaches, such as the 3
𝑡 -damped flow 

𝑋̈(𝑡) + 3 𝑋̇(𝑡) + ∇𝑓 (𝑋(𝑡)) = 0 introduced in [17], provide useful 
𝑡
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Fig. 7. Comparison of error estimations in different discrete-time gradient descent 
methodologies under a complex random dynamic system.

Fig. 8. Comparison of error estimations in different continuous-time gradient descent 
methodologies under a complex random dynamic system.

Fig. 9. Comparison of the 3
𝑡
-damped ODE and our continuous-time gradient descent 

methods at 𝛽 = 1, demonstrating differences in convergence behavior across problems 
of varying dimension.

analogies to discrete-time acceleration and offer Nesterov-like asymp-
totic rates. However, in practice, their performance can be limited 
by forcing a specific time-dependent damping ratio. In contrast, our 
proposed continuous-time frameworks employ adjustable parameters 
to achieve both stable and fast convergence. This flexibility also en-
hances practical implementation (e.g., with constant parameters in 
circuits). As shown in Fig.  9, at 𝛽 = 1 our parameterized methods, 
including a continuous Heavy-Ball method inspired by Nesterov’s ac-
celeration, outperform time-dependent continuous schemes, especially 
as dimensionality increases.

One envisioned application in this paper is the possibility to use 
gradient methods to generate trajectories for dynamical systems. In 
Figs.  10 and 11 we provide the trajectories that could be used for 
autonomous vehicles to be tracked by a low-level controller. As it can 
7 
Fig. 10. Trajectory for discrete-time gradient descent methods.

Fig. 11. Trajectory for in a continuous-time gradient descent methods.

be observed, the use of discrete-time versions of the gradient methods 
does not return smooth trajectories, which would preclude its use.

5.2. Convergence analysis of continuous-time gradient descent methods

The choice of the 𝛽 parameter for the continuous gradient methods 
is of prime importance. The convergence speed in a 2-dimensional 
randomly generated function, as shown in Fig.  12, varies with different 
selections of 𝛽. We observe that for 𝛽 ≥ 200, the system quickly reaches 
a steady-state with an error below 10−6, indicating rapid convergence. 
This observation suggests that the primary constraint on convergence 
speed in practice is the physical limitation, specifically, the minimum 
achievable values for capacitors and inductors. Moreover, as the values 
of these components decrease, the resistance inherent in the capacitors 
and even the circuit lines introduces significant noise to the outcomes.

5.3. Equivalent circuits of continuous-time gradient descent methods

This subsection presents the simulation results for equivalent cir-
cuit representations in continuous-time optimization methods. Fig.  13 
shows the error, with the results being comparable to those obtained us-
ing the Python ode solver—akin to MATLAB’s ode45. This comparison 
uses the same duration as depicted in Fig.  12, with identical parameters 
and initial value 𝑥0.

Following this, Fig.  14 presents a comparative analysis that under-
scores the alignment between Python simulation results and circuit 
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Fig. 12. Error 𝜖 = |𝑥 − 𝑥∗| with different chosen of 𝛽.

Fig. 13. Error evolution 𝜖 = |𝑥 − 𝑥∗| for the circuit equivalent with different choices 
of 𝛽.

simulations for continuous-time methods. This figure clearly displays 
two sets of results: dashed lines from the Python solver using ordinary 
differential equations (ODEs), and solid lines representing practical 
outcomes from equivalent circuit simulations as shown in Fig.  13.

Analyzing the outcomes presented in these figures, we observe a 
primary distinction: When 𝛽 ≥ 40, after the error estimation falls below 
10−5, the convergence patterns show oscillations in the circuit results. 
Similarly, for 𝛽 ≥ 1000, oscillations appear after the error falls below 
10−3.

This behavior stems from scaling the circuit’s setup voltages to 
1∕𝛽 of their original values to maintain voltages within acceptable 
limits, as discussed in Section 3.3. Opting for a larger 𝛽 enhances the 
convergence rate, but this setup carefully balances accuracy with the 
required settling time for the system.

To further highlight the advantages of our circuit approach, we 
compare it against conventional discrete gradient descent methods. In 
8 
Fig. 14. Error comparison between circuit equivalent and python ode45 with various 
selections of 𝛽.

Fig. 15. Comparison of running times for discrete gradient methods and their equiv-
alent continuous-time circuit implementations (𝛽 = 4000).

Fig.  15, the ‘‘running time’’ for the circuit-based method represents 
the theoretical performance of an actual analog circuit, as approxi-
mated by our MATLAB simulation. In contrast, the digital methods’ 
timing is derived from CPU/GPU-based computations. For instance, on 
a computer with an AMD Ryzen 9 5900HS CPU and 16 GB RAM, each 
iteration of a discrete gradient method takes approximately 0.0065 s 
when 𝐷 = 2 and increases to about 0.03 s at 𝐷 = 6. In comparison, 
our circuit-based approach converges within about 0.5 s, regardless 
of dimensionality. In terms of power consumption, for the 2D case, 
the discrete gradient method on the computer consumes approximately 
9.1 J, while the continuous gradient method on the analog circuit 
consumes only 0.1 J; similarly, for the 6D case, the computer method 
consumes 490 J, compared to 0.3 J for the analog circuit. These results 
point towards a direction of future research in conducting experiment 
with real circuits implemented, for instance with Field-Programmable 
Gate Arrays (FPGAs).

To analyze the constrained version of the problem, we examine 
the primal–dual problem and its equivalent circuit representation. The 
findings, depicted in Fig.  16, are contingent on the chosen time con-
stants. Specifically, the selection of positive definite diagonal matrices 
for time constants, referred to as 𝑇 , significantly impacts the circuit’s 
convergence rate. Under randomly generated system parameters and 
constraints, certain choices of 𝑇  yield suboptimal performance. For 
instance, when 𝑇  is on the order of 10−1, the system’s behavior is 
notably poor. Conversely, with 𝑇  smaller than 10−3, the system rapidly 
converges. This behavior underscores the potential advantages of using 
equivalent circuits to address related optimization problems, despite 
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Fig. 16. Error estimation via equivalent circuit between the current state and the 
desired state 𝜖 = |𝑥 − 𝑥∗| with different chosen of 𝜂.

the inherent challenges posed by simple 2-D dynamic systems. In Fig. 
16, the value chosen for 𝑇  affects the convergence behavior, illustrat-
ing the nuanced relationship between circuit parameters and system 
dynamics.

6. Conclusion

In this paper, we have proposed continuous-time counterparts to 
discrete-time gradient descent methods and presented optimal param-
eters to obtain the fastest worst-case convergence rate. Through nu-
merical simulations, we show that the proposed methods have better 
accuracy and convergence properties than previously known continu-
ous gradient methods expressions with time-varying constants. We have 
also provided circuit implementations for the theoretical differential 
equations with the objective of solving the optimization problems 
using analog computing. Lastly, we adapt these methods to primal 
dual algorithms in order to be able to solve constrained optimization 
programs.
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