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Explainable machine learning
emaining useful life

End of life
the cell’s prior cycling usage and is validated across nine different datasets each with its cathode chemistry.
A model able to classify cells on whether they have passed EOL given an HPPC test is also developed.

The underpinning data-centric modelling concept for feature generation is the notion of ‘path signature’
which is combined with an explainable tree-based machine learning model and an in-depth study of the models
is provided. Model validation across different SOC ranges shows that data collected from the HPPC test across
a 20% SOC window suffices for effective prediction. The EOL and RUL models achieve 85 and 91 cycles MAE
respectively while the classification model has an accuracy of 94% on the test data. Code for data processing
and modelling is publicly available.
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1. Introduction

Rechargeable batteries have been playing a pivotal role in transi-
ioning into a net zero. They are well-adopted in the production of
lectric cars and also in emerging markets such as heavy-duty vehi-
les [1] and aviation [2]. Thus, efficient and easy-to-deploy methods
re needed to study their degradation and characterization. Machine
earning has been successfully deployed in battery modelling by way

of training algorithms on battery health indicators to identify inherent
patterns that can be used for general prediction on unseen data. This
approach has been proven to have desirable features including good
generalization accuracy [3], transfer learning [4,5], and (statistical)
robustness [6,7]. It has also been critically reviewed in [8–10].

Machine learning models are data-driven and require clean and
accurate data for training and prediction. The most common data
used for data-driven battery modelling is high-throughput cell-cycling
data, Electrochemical Impedance Spectroscopy (EIS), or current pulses
such as the Hybrid Pulse Power Characterization (HPPC) test [11,12].
Cycling data contains records of temperature, voltage, and current
over time and cycle, and has been used extensively in predicting the
End of Life (EOL) [3,6,7,13], Remaining Useful Life (RUL) [9,14,15],
entire capacity and Internal Resistance (IR) degradation curves [6,
7,16,17], knee-points [18–20], and building classification models for
battery characterization [13,14]. EIS data has been used for capacity
prediction [21] and RUL prediction [22].

Pulse resistance tests such as the HPPC test are a type of technique
for accessing the performance and pre-defined features of batteries
nder short charge and discharge current pulses at different charge

levels. During this test, current and voltage are measured, and State
of Charge (SOC) and pulse resistances (also sometimes referred to
as IR) are calculated. Unlike cycling and EIS data that have been
utilized extensively for prediction, pulse tests are commonly used for
the estimation of State of Health (SOH) [23–26], physics-based model
parameter values [27], and cell-clustering by capacity [28]. This study
bridges this gap by proposing machine learning models for the predic-
tion of EOL, RUL, and failure status (classify cells on whether they have
passed EOL).

From a business perspective, lifetime predictive models built on
HPPC data are both economical and time-efficient. Data from long lon-
gitudinal data-collection approaches, such as monitoring usage, takes
weeks to generate and requires constant monitoring, additional data
storage systems and costs, and transmission. As a result, it adds to
the cost of data acquisition and increases the possibility of data loss,
especially for a manufacturer who relies on independent measurements
without access to battery management data. To tackle these challenges,
this work focuses on the use of less data (HPPC test) that can be
recorded in a timescale of hours (as opposed to weeks), without any
access to historical data, to develop machine learning models for bat-
tery health prognosis. The derived benefits are clear. For example,
the case of a battery life evaluation for a used electric vehicle (which
would ideally be done during a car listing for sale). In this scenario, a
desirable method is to get data as quickly as (within one visit) possible
by performing an HPPC test on the battery, making inferences with
our proposed models, and finally deciding on the battery’s state for
valuation.
2 
In terms of research contributions, there is scant literature on pre-
dictive lifetime models using pulse data such as the HPPC and this
research offers a proof of concept, validated across 9 datasets, for
explainable, interpretable, and low-latency models. Arguably, the mod-
elling pipeline framework used here is classic: data cleaning, feature
extraction, and model building and validation. Nonetheless, the key
technical point here is the use of the novel ‘truncated path signature’
method for feature generation in combination with an explainable tree-
ased machine learning model. This latter choice yields business-sought
nterpretability and explainability of the proposed models.

Path signatures were employed for the first time in battery modelling
in [7]. There, the ‘path signature’ method was used for the prediction
of the full capacity and IR degradation curves from sparse information
on the voltage profile. Path signatures originated from rough path
heory [29,30] and can be likened to Fourier transform but they are
uch more. Fourier transforms extract signals of different frequencies

rom the underlying data. The signature extracts the area, segmental,
nd geometrical effects of the corresponding path. Its properties include
ime-reparametrization and translation invariance, less sensitivity to

missing data, unique characterization of the path, and universal non-
inearity (full details in Section 3). In this study, the input features

of the models is the signature of the path generated by time-current–
voltage profiles across multiple SOCs in the HPPC test. Impurity-based
nd permutation importance are adopted to account for the impact
f each signature term on the built models. By design, each model
omponent can be transparently traced from output to its root features
or fixing in case of any fault or model performance decay. This is
n stark contrast to other no-history lifetime prediction models such
s the one-cycle models [9,14,31] based on feature-free deep-learning

algorithms. Lastly, for flexibility of implementation, each proposed
odel has been validated in situations where cells are at different

levels of SOC and across different chemistries. This allows for making
inferences even if the collected cells are not fully charged and reduces
further the amount of data needed from the HPPC test.

The rest of this work is organized as follows: Section 2 describes the
ata used in this study; Section 3 provides the various approaches for

feature engineering and model building; the details of the experimental
results and the corresponding discussion are presented in Section 4;
and conclusions were made in Section 5. The mathematical details of
various algorithms used in the methodology are left to the Methods
ection and Supplementary Material.

2. Data: source, analysis, and preprocessing

2.1. Data source and data description

The datasets of this research are the 9 datasets (totalling 300
lithium-ion cells) used in [3] and made available in [32]. These cells
were produced in the Argonne Cell Analysis, Modelling, and Prototyp-
ing (CAMP) facility and cover nine different cathode chemistries includ-
ing Li1.2Ni0.3Mn0.6O2, Li1.35Ni0.33Mn0.67O2.35, FCG (Full concentration
radient NMC), NMC811, NMC111, NMC622, NMC532, 5Vspinel, and
E5050; see Table 1 for the number of cells per cathode chemistry used

n this study.
As described in [3,32] (and further [17,31]), the datasets’ cells were

selected based on three criteria: the presence of graphite in the anodes
as the main constituent, limitation of charging rate to ≤ 1C to reduce
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Table 1
The breakdown of cathode groups by the number of cells. The ‘Original’ column refers
to the actual number (300 in total) of cells in the downloaded data. The ‘Processed’
column corresponds to the number of cells in each group after cells that do not undergo
pulse testing (9 cells), those that have reached the EOL before the first pulse test (23
cells), and those with irregular pulse voltage profiles (3 cells) have been removed
(details in Section 2.2).

Cathode group Number of cells

Original Processed

Li1.2Ni0.3Mn0.6O2 6 6
Li1.35Ni0.33Mn0.67O2.35 4 2
FCG (Full concentration gradient NMC) 8 8
NMC811 15 15
NMC622 20 20
NMC532 100 89
NMC111 16 16
HE5050 78 77
5Vspinel 53 32

Total 300 265

Fig. 1. Current and Voltage profiles over time for a sample cell under HPPC test. The
ower plot displays the HPPC test across its full duration. Removing the rest times
from the lower figure) yields the top figure which then displays the actual regimes of
nterest used in this study (discharge and charge over 1 min each). The negative and

positive currents indicate the discharging and charging regimes respectively.

the effect of lithium plating on battery capacity loss, and each cell lasts
at least 100 cycles. These datasets were designed to have desirable char-
acteristics including a wide range of cathode chemistries, in-chemistry
variability (such as differences in electrode porosity), different suppli-
ers (thus manufacturing variability), and various charging protocols. In
terms of data components, the datasets consist of in-cycle and per-cycle

easurements. In-cycle data contains measurements recorded per time
in seconds) for a given cycle number and comprises (among others)
est time, voltage, and current corresponding to the HPPC test (see

Fig. 1) and ordinary cycling process. The HPPC test is not carried out
t every cycle but at regular cycle intervals (approximately every 50
ycles) and is described in more detail in Section 2.2 below. The per-

cycle data contains measurements recorded at the end of every cycle
and consists of cycle number, charge capacity, and discharge capacity.
More information about these datasets can be found in [3,32] and [3,
Supplementary material].
3 
2.2. Data analysis: HPPC test and data for predicting targets

The HPPC test of this dataset. This research uses the extracted pulse
testing data for the development of features for modelling and this is
xactly the data that is dropped in [3] (as their focus was a prediction

from standard high-throughput cell cycling data). These pulse tests,
called HPPC tests, are carried out at regular intervals (roughly every
50 cycles) across the cell’s life [33]. The HPPC test starts with the cell
at 100% SOC and consists of a short discharge (10 s at current 2 A), a
rest (40 s), and a charge (10 s at current 2 A) – a total of 1 min; after, a
C/1 rate is applied to reduce the SOC by 10% and the cell is left to rest
for approximately 1 h. This process is repeated until the cell reaches 0%
OC (9 times in total in decreasing increments of 10% SOC). The SOC
at any cycle) is defined using the present capacity. Thus, the amount
f HPPC tests per check-up remains the same over the lifetime. From

these pulse data, current and voltage profiles were retained for feature
xtraction leaving out qualitative logs like the state of the tester and
he current state of the battery. Fig. 1 shows the current and voltage

profiles under a pulse test for a sample cell, and, for this research, the
rest times were dropped from the HPPC data leaving the current and
voltage profiles corresponding to cropped times. The voltage profile
varies between 2 V and 5 V.

Targets for the predictive models. To execute the three supervised
learning tasks proposed, we define the three relevant targets (or la-
bels) for the models to predict (from the pulse current–voltage re-
sponse data): EOL, RUL, and failure status (a binary response indicating

hether a cell has passed the EOL; see Table 3 below for a summary).
e define EOL as the cycle number corresponding to 80% of initial

apacity. Concerning the RUL, for each cell and each pulse test, the
ifference between the cycle at which such pulse test was carried out
nd EOL (i.e., EOL− pulse test cycle number) is calculated. The binary
esponse that depicts whether a cell has passed its EOL (coded as 0) or
ot (coded as 1) based on each pulse test is considered. As a note, 9 out
f the 300 cells did not undergo a pulse test during cycling and thus
ere excluded. In addition, all cells that reached EOL before the first
ulse test (23 cells) and those with irregular voltage profiles (3 cells)
ere dropped. With these additional refinements, 265 cells were kept.

Fig. 2(a) shows the breakdown (by cathode chemistries) of cycles
t which the first pulse test was carried out. The first pulse cycles

spread between the 5th and 70th cycles, making it feasible to consider
feature extraction based on the first cycles within the first 100 cycles.
Fig. 2(b) illustrates the cycle life of cells in each cathode group. It can
be seen that the data covers a wide range of EOL which is a desirable
property for building a machine learning model characterized by a low
generalization error.

2.3. Capacity curve data preprocessing

Critical to this research is the preprocessing or cleaning step ad-
dressing the variability of the discharge capacity curves of the cells.
Since rest periods, and measurements like Reference Performance Test
(RPT) or HPPC can induce immediate capacity [34,35], dips and peaks
in the capacity values are present in the data (see blue curves of
Fig. 3). Thus they need to be filtered appropriately before extracting
the prediction targets—EOL, RUL, and binary responses.

In this research, three filtering methods were combined namely
edian filter, Savitzky–Golay, and isotonic regression. The mathemat-

cal description of Savitzky–Golay is given in the Methods section and
hose of median filter and isotonic regression are left to the Supple-

mentary Material. The median filter of a window length of 5 was
first applied to the capacity values to remove all the extreme outliers
and noises. Following this, the Savitzky–Golay filter of a window
length of 50 and first-degree polynomial were used to smoothen the
resulting values. Here, it is emphasized that the Savitzky–Golay filter is
preferable to that of line-exponential because it does not depend on the

degradation pattern of the cells’ capacity. Finally, isotonic regression
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Fig. 2. (a) Cycle number of the first pulse test for each of the cathode chemistries. All the first pulse tests were carried out within the first 100 cycles. (b) The distribution of EOL
of cells across each cathode chemistry. The data covers a wide range of EOLs, making it possible to build a model characterized by a low generalization error. The discrepancy
in some cells’ number distribution (in comparison to that of [3, Figure 1a]) can be associated with the removal of cells that did not undergo an HPPC test (see Table 1) and
moothened capacity curves (see Fig. 3). The source code of this study (including data cleaning steps) is publicly available; see Code Availability section below.
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(monotone decreasing version) was fitted to the filtered values to
achieve a monotone-decreasing capacity curve with respect to the cycle
numbers. The initial capacity was obtained by calculating the median
of the first ten values of the cleaned data. This choice was considered
for two reasons: to mitigate the effect of the peaks and troughs, and to
allow for the notion that it takes some cycles before the formation of
the cell is finished and before an actual degradation; see Fig. 3 for the
results of this filtering process for one sample cell from each cathode
chemistry.

3. Modelling and methodology

3.1. An overview of path signatures

We now introduce the workhorse of our study: path signatures. We
first introduce it as a mathematical object and then offer a comparative
discussion on the distinguishing traits of path signatures in data rep-
resentation. Following the description of path signatures given in [7,
Section 3.2], the term ‘signature’ can be regarded as a transform and
an be likened to the Fourier transform because it maps a stream of data
such as time series) to a new space. Contrary to the Fourier transform
nd other similar transforms which extract frequency information from
ata, signatures extract both area and segmental effects of the underly-
ng function which generate the data under transformation. In addition,
4 
it is a universal nonlinearity in that every continuous function of a data
tream under transformation can be well approximated by a linear func-
ion of its signatures. This makes signature a good choice for various
achine learning problems including physical quantity encoding, data

ompression, and feature extraction [29,38]. It is necessary to clarify
exactly what is meant by a path and iterated integral before giving a
mathematical definition of a path signature.

Path. A R𝑑 -valued path 𝑋 (or denoted by 𝑋𝑡 to show its dependence
n 𝑡 ∈ [𝑎, 𝑏]) is a continuous mapping from a real interval [𝑎, 𝑏] into a
-dimensional Euclidean space;

[𝑎, 𝑏] ∋ 𝑡 ↦ 𝑋𝑡 = 𝑋(𝑡) = {𝑋1
𝑡 , 𝑋2

𝑡 , 𝑋3
𝑡 ,… , 𝑋𝑑

𝑡 }. (1)

The broad use of the term ‘path’ is sometimes equated with the trajec-
ory traversed by a process with well-defined start and end points. A

good example can be found in the trajectory of a projectile, the stock
price over a specified time, and the capacity fade curve of a battery
from the nominal value to EOL.

Iterated integral. Suppose 𝑋𝑡 is a real 𝑑-dimensional path where each
dimension depends on the parameter 𝑡 ∈ [𝑎, 𝑏] as given in Eq. (1). The
𝑘th level iterated integral of 𝑋𝑡 is given by

𝑆(𝑋𝑡)
𝑖𝑖 ,…,𝑖𝑘
𝑎,𝑡 ∶= ∫𝑎<𝑡𝑘<𝑡

⋯∫𝑎<𝑡1<𝑡2
𝑑 𝑋𝑖1

𝑡1
… 𝑑 𝑋𝑖𝑘

𝑡𝑘
, (2)

where 𝑖 ,… , 𝑖 ∈ {1,… , 𝑑}.
1 𝑘
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Fig. 3. The filtered capacity curves for a random cell in each cathode chemistry. A three-step filtering process was considered: the median filter with a window 5, Savitzky–Golay
ilter [36] of window 50 and polynomial of order 1, and isotonic regression (monotone decreasing) [37]. EOL marked as 80% nominal capacity.
e
v
(
v
I
i

t

m
l
f
t
a

Having defined a path and iterated integral, the following gives the
technical definition of the signature of a path according to [29].

Signatures. The path signature of 𝑋𝑡 over [𝑎, 𝑏] is defined as a
real sequence of numbers where each of its terms is an iterated in-
tegral defined in Eq. (2) with superscripts taken from the set 𝑊 =
(𝑖1,… , 𝑖𝑘)|𝑘 ≥ 1, 𝑖1,… , 𝑖𝑘 ∈ {1,… , 𝑑}} called the set of words on

the alphabet {1,… , 𝑑} containing exactly 𝑑 letters. In notation, this
sequence can be written as

𝑆(𝑋𝑡)𝑎,𝑏 ∶=
(

1, 𝑆(𝑋𝑡)1𝑎,𝑏, 𝑆(𝑋𝑡)2𝑎,𝑏, 𝑆(𝑋𝑡)
1,1
𝑎,𝑏 , 𝑆(𝑋𝑡)

1,2
𝑎,𝑏 ,… , 𝑆(𝑋𝑡)

𝑖1 ,…,𝑖𝑘
𝑎,𝑏 ,…

)

.

A well-known example of a path signature is that of a 2-dimensional
path. Its first few terms have been associated with Lévy area and sta-
tistical moments [29]. In general, suppose 𝑋𝑡 = {𝑋1

𝑡 , 𝑋2
𝑡 } = {𝑓 (𝑡), 𝑔(𝑡)}

ith 𝑑 𝑋𝑡 = {𝑑 𝑋1
𝑡 , 𝑑 𝑋2

𝑡 } = {𝑓 ′𝑑 𝑡, 𝑔′𝑑 𝑡} where 𝑓 and 𝑔 are differentiable
unctions in the interval [𝑎, 𝑏]. The first few terms of 𝑆(𝑋𝑡)𝑎,𝑏, for 𝑡 ∈
𝑎, 𝑏], are calculated as follows

𝑆(𝑋)1𝑎,𝑏 = ∫𝑎<𝑡<𝑏
𝑑 𝑋1

𝑡 = ∫

𝑏

𝑎
𝑓 ′ 𝑑 𝑡 = 𝑓 (𝑏) − 𝑓 (𝑎),

𝑆(𝑋)2𝑎,𝑏 = ∫𝑎<𝑡<𝑏
𝑑 𝑋2

𝑡 = ∫

𝑏

𝑎
𝑔′ 𝑑 𝑡 = 𝑔(𝑏) − 𝑔(𝑎),

𝑆(𝑋)1,1𝑎,𝑏 = ∫𝑎<𝑡1<𝑡2<𝑏
𝑑 𝑋1

𝑡1
𝑑 𝑋1

𝑡2
= ∫

𝑏

𝑎

[

∫

𝑡2

𝑎
𝑓 ′(𝑡1) 𝑑 𝑡1

]

𝑓 ′(𝑡2)𝑑 𝑡2,

𝑆(𝑋)1,2𝑎,𝑏 = ∫𝑎<𝑡1<𝑡2<𝑏
𝑑 𝑋1

𝑡1
𝑑 𝑋2

𝑡2
= ∫

𝑏

𝑎

[

∫

𝑡2

𝑎
𝑓 ′(𝑡1) 𝑑 𝑡1

]

𝑔′(𝑡2) 𝑑 𝑡2,

𝑆(𝑋)2,1𝑎,𝑏 = ∫𝑎<𝑡1<𝑡2<𝑏
𝑑 𝑋2

𝑡1
𝑑 𝑋1

𝑡2
= ∫

𝑏

𝑎

[

∫

𝑡2

𝑎
𝑔′(𝑡1) 𝑑 𝑡1

]

𝑓 ′(𝑡2) 𝑑 𝑡2,

𝑆(𝑋)2,2𝑎,𝑏 = ∫𝑎<𝑡1<𝑡2<𝑏
𝑑 𝑋2

𝑡1
𝑑 𝑋2

𝑡2
= ∫

𝑏

𝑎

[

∫

𝑡2

𝑎
𝑔′(𝑡1)𝑑 𝑡1

]

𝑔′(𝑡2)𝑑 𝑡2,

𝑆(𝑋)1,1,1𝑎,𝑏 = ∫𝑎<𝑡1<𝑡2<𝑡3<𝑏
𝑑 𝑋1

𝑡1
𝑑 𝑋1

𝑡2
𝑑 𝑋1

𝑡3

= ∫

𝑏

𝑎

[

∫

𝑡3

𝑎

[

∫

𝑡2

𝑎
𝑓 ′(𝑡1) 𝑑 𝑡1

]

𝑓 ′(𝑡2) 𝑑 𝑡2
]

𝑓 ′(𝑡3) 𝑑 𝑡3,

and so on.
5 
3.2. Desirable properties and comparison with literature

The concept of path signature was originally described in [39] in
which it was applied to piecewise smooth paths. Then in [40], it was
broadened to paths characterized by finite length. Path signature, as
a feature extraction technique, has characteristics that make it more
powerful and versatile (see Table 2 for a comparison with popular
feature extractors) – we point the reader to [29] for an intuitive intro-
duction to path signatures methods. Because the path signature consists
of iterated path integrals, it inherits their properties of translation and
reparametrization invariance. For instance, removing the rest times and
extracting measured profiles (e.g., voltage and current) over an SOC
range during an HPPC test, where we do not care about the absolute
start and end times, both translation and reparametrization invariance
are useful properties.

Multi-dimensional time series data can always be represented and
ncoded in a more compact and representative way by a fixed-length
ector. For instance, in this study information from three time series
pulse time, voltage, and current) was encoded in a fix-length feature
ector instead of having a separate set of features for each time series.
n this application, samples in the time series need not be evenly spaced
n time and samples can also be taken using large time steps; see [7]

for using signatures for subsampled data.
Another interesting property that makes signature a good set of fea-

tures for machine learning tasks is the fact that the full set of signatures
of a path 𝑋𝑡 (i.e., when the depth 𝑘 → ∞) uniquely characterizes 𝑋𝑡 up
o translations and reparameterizations [40].

It is also a universal nonlinearity, a good characteristic for any
achine learning problem. This property comes from the fact that

inear functionals on the signature 𝑆(𝑋𝑡) of the path 𝑋𝑡 are dense in the
unctional space of all functions of 𝑋𝑡. This means that if 𝑓 represents
he function to be learned during a supervised machine learning task
nd maps 𝑋𝑡 to a set of labels 𝑦, then the universal nonlinearity [41]

states that for any 𝜖 > 0, there exists a linear function 𝐿 such that
|

( )

|

|

|

𝑓 (𝑋𝑡) − 𝐿 𝑆(𝑋𝑡) |

|

< 𝜖 .
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Table 2
Comparison of path signatures to popular transforms and feature extractors in the lit-
erature through the lens of versatility, representation ability and invariance properties.

Versatility Path signatures are natural for capturing dependencies (area,
segmental and geometrical effects), in general, from any time
series data and also preserve these dependencies in the time
domain (unlike Fourier transform [44] that maps data into
the frequency domain and thus time-domain information is
lost). They are versatile, with rich theoretical guarantees
such as universal non-linearity [41], and not bound to a
specific data regime (unlike specially designed,
field-informed, classical methods targeting particular data
regions such as data under constant-current discharging [6]).

Data
representation

Signature is capable of encoding multi-dimensional time
series in a more compact and representative way by a
fixed-length vector. For instance, information from current
and voltage profiles from an HPPC test can be obtained from
a path with these profiles as components (stacked profiles)
instead of profile-to-profile feature extraction. This is
advantageous over popular chemistry-informed features
employed in [3,13] where features are independently derived
from profiles such as voltage, current, temperature, and
capacity while completely ignoring their joint interaction.

Invariance Path signatures are guaranteed with both time
parameterization and translation invariance. This means that
the extracted features will be robust to preprocessing such as
reparameterizing times (as in the case of removing rest times
from the HPPC test) and shifting measured profile values by
a constant value. This is not the case for auto-encoders [16]
and transformers [31]. Auto-encoders and transformers are
deep learning techniques which are sensitive to changes in
time steps or input data shifting.

This property further distinguishes the path signature from Fourier and
avelet basis because it establishes a relationship between the function
f 𝑋𝑡 (and not directly 𝑋𝑡) and a linear function of 𝑆(𝑋𝑡). This is

particularly useful in supervised machine learning (both regression and
classification) because the labels 𝑦 are always written as a function of
the features (i.e., 𝑦 = 𝑓 (𝑋𝑡)).

In this study, a discrete path was considered and a signature can
lso be calculated on such data. Because transforming a large amount
f data stream using signature transform can be highly computation-

ally intensive (especially in the case of a high dimensional path or
wanting many terms of the sequence), efficient packages including
iisignature [42] and signatory [43] (implemented in Python) have been
eveloped to handle signature calculation.

3.3. Feature extraction

The steps in generating features for models involve three processes:
ata extraction, data cleaning, and construction of path signature. As
or data extraction, pulse test data corresponding to both charge and
ischarge regimes were loaded from the 265 cells using the battery-
ata-toolkit Python library.1 For data cleaning, time series data for

current and voltage were selected. Rest periods within each profile were
removed before feature extraction (see Fig. 1). This ensured consistency
cross pulses. Concerning setting up path signature, a 3-dimensional

time-augmented path 𝑋𝑡 = {𝑡, 𝐼(𝑡), 𝑉 (𝑡)} was defined where 𝑡, 𝐼(𝑡) and
𝑉 (𝑡) are the cropped pulse time, current and voltage response respec-
tively. The path signature of 𝑋𝑡 was then calculated up to depth or level
𝑘 using the iisignature Python library [42], where 𝑘 was determined via
hyperparameter tuning:

𝑆(𝑋𝑡)𝑡0 ,𝑡𝑓 =
(

𝑆(𝑋𝑡)1𝑡0 ,𝑡𝑓 , 𝑆(𝑋𝑡)2𝑡0 ,𝑡𝑓 , 𝑆(𝑋𝑡)
1,1
𝑡0 ,𝑡𝑓

, 𝑆(𝑋𝑡)
1,2
𝑡0 ,𝑡𝑓

, 𝑆(𝑋𝑡)
2,1
𝑡0 ,𝑡𝑓

,

… , 𝑆(𝑋𝑡)
𝑖1 ,…,𝑖𝑘
𝑡0 ,𝑡𝑓

)

,

1 https://pypi.org/project/battery-data-toolkit/.
6 
where 𝑡0, 𝑡𝑓 are the initial and final times for a given pulse snapshot
respectively; 𝑖1,… , 𝑖𝑘 ∈ {1, 2, 3}.

For the model that predicts the EOL, only the first pulse test carried
ut within the first 100 cycles was used for signature calculation for

each of the cells, i.e, the feature matrix 𝑭 EOL in this case is given by

𝑭 EOL ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑆1
𝑐1

𝑆2
𝑐1

𝑆1,1
𝑐1 𝑆1,2

𝑐1 𝑆2,1
𝑐1 ⋯ 𝑆 𝑖1 ,…,𝑖𝑘

𝑐1

𝑆1
𝑐2

𝑆2
𝑐2

𝑆1,1
𝑐2 𝑆1,2

𝑐2 𝑆2,1
𝑐2 ⋯ 𝑆 𝑖1 ,…,𝑖𝑘

𝑐2

⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮

𝑆1
𝑐𝑁

𝑆2
𝑐𝑁

𝑆1,1
𝑐𝑁 𝑆1,2

𝑐𝑁 𝑆2,1
𝑐𝑁 ⋯ 𝑆 𝑖1 ,…,𝑖𝑘

𝑐𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ R𝑁× 3(3𝑘−1)
2 ,

(3)

where 𝑆(⋅)
𝑐𝑖 is understood as a signature component of 𝑆(𝑋𝑡)𝑡0 ,𝑡𝑓 cor-

responding to cell 𝑐𝑖. In the case of the model that predicts RUL,
signatures were calculated for each cell and every pulse test before the
OL. The classification model that predicts whether a cell has passed

its EOL mark or not has the same matrix structure as that of the RUL
model except for the fact that no restriction on the cycle at which the
pulse test is carried out. Thus the feature matrix 𝑭 RUL-CM in both cases
is given by

𝑭 RUL-CM ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑆1
𝑐1,1

𝑆2
𝑐1,1

𝑆1,1
𝑐1,1

𝑆1,2
𝑐1,1

𝑆2,1
𝑐1,1

⋯ 𝑆 𝑖1 ,…,𝑖𝑘
𝑐1,1

𝑆1
𝑐1,2

𝑆2
𝑐1,2

𝑆1,1
𝑐1,2

𝑆1,2
𝑐1,2

𝑆2,1
𝑐1,2

⋯ 𝑆 𝑖1 ,…,𝑖𝑘
𝑐1,2

⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮

𝑆1
𝑐1,𝑛1

𝑆2
𝑐1,𝑛1

𝑆1,1
𝑐1,𝑛1

𝑆1,2
𝑐1,𝑛1

𝑆2,1
𝑐1,𝑛1

⋯ 𝑆 𝑖1 ,…,𝑖𝑘
𝑐1,𝑛1

𝑆1
𝑐2,1

𝑆2
𝑐2,1

𝑆1,1
𝑐2,1

𝑆1,2
𝑐2,1

𝑆2,1
𝑐2,1

⋯ 𝑆 𝑖1 ,…,𝑖𝑘
𝑐2,1

𝑆1
𝑐2,2

𝑆2
𝑐2,2

𝑆1,1
𝑐2,2

𝑆1,2
𝑐2,2

𝑆2,1
𝑐2,2

⋯ 𝑆 𝑖1 ,…,𝑖𝑘
𝑐2,2

⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮

𝑆1
𝑐2,𝑛2

𝑆2
𝑐2,𝑛2

𝑆1,1
𝑐2,𝑛2

𝑆1,2
𝑐2,𝑛2

𝑆2,1
𝑐2,𝑛2

⋯ 𝑆 𝑖1 ,…,𝑖𝑘
𝑐2,𝑛2

⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮

𝑆1
𝑐𝑁 ,1 𝑆2

𝑐𝑁 ,1 𝑆1,1
𝑐𝑁 ,1 𝑆1,2

𝑐𝑁 ,1 𝑆2,1
𝑐𝑁 ,1 ⋯ 𝑆 𝑖1 ,…,𝑖𝑘

𝑐𝑁 ,1
𝑆1
𝑐𝑁 ,2 𝑆2

𝑐𝑁 ,2 𝑆1,1
𝑐𝑁 ,2 𝑆1,2

𝑐𝑁 ,2 𝑆2,1
𝑐𝑁 ,2 ⋯ 𝑆 𝑖1 ,…,𝑖𝑘

𝑐𝑁 ,2
⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮

𝑆1
𝑐𝑁 ,𝑛𝑁 𝑆2

𝑐𝑁 ,𝑛𝑁 𝑆1,1
𝑐𝑁 ,𝑛𝑁 𝑆1,2

𝑐𝑁 ,𝑛𝑁 𝑆2,1
𝑐𝑁 ,𝑛𝑁 ⋯ 𝑆 𝑖1 ,…,𝑖𝑘

𝑐𝑁 ,𝑛𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ R

𝑁
∑

𝑖=1
𝑛𝑖 ×

3(3𝑘 − 1)
2 , (4)

where 𝑆(⋅)
𝑐𝑖,𝑗 is an element of the sequence 𝑆(𝑋𝑡)𝑡0 ,𝑡𝑓 corresponding to

cell 𝑐𝑖 at pulse test 𝑗; 𝑛1,… , 𝑛𝑁 are the number of pulse tests for the
cells 𝑐1,… , 𝑐𝑁 respectively.

3.4. Machine learning models and techniques

The Extreme Gradient Boosting (XGBoost) [45] was chosen as a ma-
chine learning model in this research. An overview of the mathematical
etails of this algorithm is presented in the Supplementary Material.
he scikit-learn [46] implementation of the algorithm was used for all

the experiments carried out in this study. Three models were proposed,
amely EOL model, RUL model, and classification model, which predict

the EOL, RUL, and binary responses (a cell has passed the EOL or not),
respectively; see Table 3 for model description.

To train these models, 182 cells were set aside for training and
83 for testing and generalization error estimation. This approximately
corresponds to a 70%–30% train–test split strategy. Each split main-
tains the percentage of cells in the cathode groups such that ev-
ry cathode chemistry has cells represented in the splits (except for

Li1.35Ni0.33Mn0.67O2.35 which has 1 cell each in the train and test sets).
The feature matrix corresponding to the training set was standardized
by subtracting each column mean from the column values and dividing
the centred results by the respective standard deviation. The calculated

https://pypi.org/project/battery-data-toolkit/
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Table 3
Description of the machine learning models considered in this study. Voltage and Current profiles are denoted by 𝑉 and 𝐼 respectively.

Model name Model input What is predicted

EOL model 𝑉 , 𝐼 profiles of a single set of pulse tests carried out within the
first 100 cycles; see Eq. (3) for the corresponding feature matrix

EOL

RUL model 𝑉 , 𝐼 profiles of a single set of pulse tests carried out at any cycle 𝑛
before the EOL; see Eq. (4) for the corresponding feature matrix

RUL = EOL − 𝑛

Classification
model

𝑉 , 𝐼 profiles of a single set of pulse tests carried out at any cycle 𝑛;
see Eq. (4) for the corresponding feature matrix

Passed EOL (0); not
passed EOL (1)
Fig. 4. (a) EOL distribution and (b) its transformation via quantile transform. (c) RUL distribution and (d) its quantile transformation. Data are shown for all the cells in the
training set. The transformation ensures that skewness has a minimal effect on the generalization error of the machine learning model.
u
r
e
d

M
v
a

D
S

mean and standard deviation (on the training features) were used to
cale the feature matrices corresponding to the test set. In the case
f EOL and RUL models, targets were transformed using the Quantile
ransformation (details of this algorithm are presented in the Sup-
lementary Material). These were considered to mitigate the effect of
arget skewness on the models; see Fig. 4(a-d) for the transformation
esults.

Hyperparameter values for each of the models were chosen via cross-
validated grid search implemented via GridSearchCV class of the
scikit-learn. This involves the creation of a parameter space for the
selected hyperparameters, fitting an XGBoost model using each of the
combinations on the cross-validation training set, and evaluating the
resulting fitted model on the validation set using an error metric. The
combination of parameter values that produce the lowest error was kept
for fitting the final model. Hyperparameters were categorized into two:
data and model parameters. Data parameter controls the level or depth
𝑘 of signature used for feature matrix creation; the higher it is, the
more information extracted and the more complex the resulting model.
On the other hand, model parameters are XGBoost parameters that
were tuned to achieve robust and high-accuracy models. A list of such
parameters considered for tuning includes the number of estimators or
boosted trees, learning rate, maximum tree depth, and regularization
parameter. Full definitions of these parameters and how they affect
7 
model performance can be found in the XGBoost documentation.2
Evaluation metrics for selecting the best set of hyperparameters are, see
Eq. (6), the mean absolute error (MAE) for the EOL and RUL models
and the 𝐹1-score for the classification model.

Model generalization error was estimated using the test set. For the
EOL and RUL models, MAE and root mean squared error (RMSE) were
sed for the estimation. Precision, recall, 𝐹1-score, the area under the
eceiver operating characteristic curve (AUC ROC), and accuracy were
mployed in the case of the classification model. The mathematical
efinitions of these metrics are provided in Eq. (6). In addition, con-

fidence intervals were constructed for each metric using the notion of
bootstrap pivotal confidence intervals [47,48]; see the Supplementary

aterial for its mathematical description. Furthermore, cross-validation
ia ordinary and stratified 𝑘-fold was also explored to further test the
ccuracy and robustness of the various models proposed in this study.

Feature importance analysis via impurity-based technique [45] and
permutation approach [49] was carried out to show the impact of
the signature components on the performance of the proposed models.

etails of these feature importance algorithms are provided in the
upplementary Material.

2 https://xgboost.readthedocs.io/en/stable/parameter.html.

https://xgboost.readthedocs.io/en/stable/parameter.html
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Fig. 5. Cross-validation results from (a) RUL and (b) classification models obtained under different time thresholds of the HPPC test. At 𝑡 = 120 s (40% SOC for a fully charged
cell at the start of an HPPC test), there is a less significant increase in model accuracy and thus this time mark is adopted for any further analysis on fully charged cells.
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3.5. Choosing the time threshold for HPPC data extraction

As described in Section 2.2, each complete discharge and charge
profile of the HPPC took approximately 20 s. In this study, we aim
to use as little cross-sectional data as possible. To accomplish this,

UL and the classification models were cross-validated on the training
data using different time thresholds for feature extraction. In particular,
𝑡 ∈ {20𝑖 ∶ 𝑖 = 1, 2,… , 10} were considered, where 𝑡 is in seconds and
the largest time was chosen such that it covers all the HPPC profile
across cells; note that each 𝑖 corresponds to an SOC state (e.g., 𝑖 = 1
corresponds to 90% SOC, 𝑖 = 5 is 50% SOC). Since EOL is a particular
case of RUL (by using the definition RUL = EOL – 𝑛, and choosing 𝑛 to
e 1; i.e., the first cycle), the optimal threshold for the RUL model was
hosen for the EOL model.

The results of this experiment are presented in Fig. 5. As expected of
he proposed models, an increase in 𝑡 approximately corresponds to an
mproved metric value (a decrease in the MAE for the RUL model and
n increase in 𝐹1-score for the case of the classification model). This
rend results from the fact that more information is available for the

model to train and make accurate predictions as more data is extracted
from the HPPC test. Interestingly, the improvement looks rather subtle
fter the 𝑡 = 120 s mark (which corresponds to a 40% SOC for a cell with
00% SOC at the beginning of an HPPC test). Thus this time threshold
as adopted for any further experimentation in this research.

4. Results and discussion

4.1. Remaining useful life and end of life prediction models

The summary of the performance of both the EOL and RUL models
is provided in Table 4. EOL was predicted with an MAE and RMSE of
pproximately 85 and 148 cycles respectively on the test set. As for

RUL, the generalization error estimated on the test set yielded an MAE
and RMSE of approximately 91 and 134 cycles respectively. On the 95%
confidence intervals obtained from the bootstrap pivotal confidence
interval, it was discovered that the resulting length of each constructed
interval is moderately short, indicating confidence in the accuracy of
ach metric value. Another noticeable trend is the difference between

the accuracy of the EOL and RUL models on both the train and test sets.
he MAE and RMSE on EOL are generally lower (except for the RMSE
alues on the test set) in comparison to that of RUL. This is because the

target distributions are different; see Fig. 4(a-d). Target values for the
RUL model are obtained at different stages of the life cycle of each cell
(in contrast to that of EOL which is restricted to the first 100 cycles) and
thus introduce variability to the distribution (as a result of variability
in the chemical reactions in the cell).

Table 5 provides the summary of the cross-validation results ob-
ained from the application of a 𝑘-fold algorithm on the training set.
or each model, a 5-fold cross-validation was considered. It was discov-

ered that the standard deviation of MAE and RMSE across folds were
8 
Table 4
Performance metrics of the individual models that predict the EOL and RUL. The 95%
confidence interval (CI) is obtained via bootstrap pivotal confidence intervals.

MAE (cycles) RMSE (cycles)

Value CI Value CI

EOL Train 1.98 [1.49, 2.43] 3.82 [2.83, 4.86]
Test 85.16 [57.31, 108.89] 147.98 [97.14, 202.36]

RUL Train 6.69 [6.25, 7.12] 10.80 [10.00, 11.58]
Test 91.47 [83.69, 98.87] 133.75 [121.28, 146.13]

Table 5
Cross-validation results of the proposed EOL and RUL models. The mean (𝑥̄) and
standard deviation (𝜎) of the performance metrics were calculated for each model
cross-validated on the training set.

MAE (cycles) RMSE (cycles)

𝑥̄ 𝜎 𝑥̄ 𝜎

EOL 110.54 19.15 168.16 44.05
RUL 68.50 2.75 101.92 9.34

approximately 19 and 44 cycles respectively for the case of EOL; and
approximately 3 and 9 cycles respectively for the case of RUL. These
ow cross-validated standard deviations reflect a well-generalized, sta-
le, and reliable model. Fig. 6 shows the parity plots of the predictions

from both the EOL and RUL models on the test set. It can be seen that
ach model approximately has the same performance in predicting low
nd extreme cycle numbers. In addition, the embedded histogram of

residuals suggests that the prediction errors are not skewed (a balance
between over-prediction and under-prediction). Most of the residuals
all in the bin containing zero, indicating a reduction in the deviation
f predicted values from the true values.

4.2. Classification model for cell characterization

The summary of the performance of the classification model is given
in Table 6 and Fig. 7. From these results, it was discovered that there
was a balance between the precision and recall scores (92.94% and
93.08% respectively on the test set) indicating that the model per-
formed well in terms of minimizing false positives and false negatives.

his is also evident in the 𝐹1-score (93.01% on the test set) and also
uggests that the model is robust and consistent in its predictions as no
reference is given to one class over the other. These are all desirable
ualities because there are costs associated with wrongly predicting
 cell has passed its EOL and vice versa. The former would result in
nderutilizing the corresponding cell as it will be channelled to other
ow-power-consuming use cases (such as lighting) or recycled, while
he latter would lead to a risk of power failure.

The high AUC ROC score (with a generalization score of 98.36%)
implies a good discrimination ability of the model in differentiating
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Fig. 6. Parity plots alongside the histograms of residuals. These compare the predicted to the measured values for the case of (a) EOL and (b) RUL predictions on test data.
Histograms portray centrality and no evidence of skew.
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Table 6
Performance metrics of the classification model that predicts whether a cell has passed
its EOL or not based on pulse test data. The 95% confidence interval (CI) was calculated
using the concept of bootstrap pivotal CI.

Train Test

Value (%) CI Value (%) CI

Precision 100 [100, 100] 92.94 [91.01, 95.03]
Recall 100 [100, 100] 93.08 [91.19, 95.12]
𝐹1-score 100 [100, 100] 93.01 [91.63, 94.5]
AUC ROC 100 [100, 100] 98.36 [97.85, 98.93]
Accuracy 100 [100, 100] 94.44 [93.37, 95.63]

between the positive and negative classes. This is also corroborated by
the confusion matrix of Fig. 7(a) where the misclassification for ‘‘passed
OL’’ and ‘‘not passed EOL’’ are only 4.66% and 6.92% respectively. In

addition, this high AUC ROC score also suggests that the model has
 good true positive rate (also called sensitivity) while keeping a low
alse positive rate (also known as 1 − specificity). This also implies that
he model is robust to threshold variations as the area under the ROC
urve is obtained by evaluating the model performance across different
robability thresholds for classification. All these are evident in the
OC curve of Fig. 7(b) where the proposed XGBoost model is compared

to a classification model that produces true positives as much as false
positives.

The results of the stratified 5-fold cross-validation are provided in
Table 7. The stratification approach was considered to preserve the
proportion of each class across folds. One of the important deductions
from these results is that the mean of each metric is similar to the
generalization scores obtained from the test set; see Table 6. This
further shows the consistency of the model in predicting each class.
Another noticeable trend is the small standard deviation of each metric.
This implies model consistency, generalization, and reliability. In other
words, model performance metrics did not vary significantly when
different subsets of data were used for training and testing; and the
model has a high chance of generalizing well on unseen data.

4.3. Feature importance analysis

In this study, impurity-based [45] and permutation importance [49]
re employed for feature analysis. The former shows the significance
f each signature component in building trees for prediction while
he latter illustrates how the model performance would change if

there is an alteration (through permutation) in the feature-to-target
bond of the fitted model. Because signature depth was part of the
hyperparameters of the proposed model pipelines, the optimal values
(obtained via hyperparameter tuning) were 3, 6, and 6 for the EOL,
9 
Table 7
Cross-validation results of the proposed classification model that predicts whether a cell
as passed its EOL based on a single pulse test. The mean (𝑥̄) and standard deviation
𝜎) of the performance metrics were calculated for each model cross-validated on the

training set.
𝑥̄ (%) 𝜎 (%)

Precision 94.87 0.53
Recall 93.05 1.62
𝐹1-score 93.95 1.03
AUC ROC 98.65 0.36
Accuracy 94.63 0.87

RUL, and classification models respectively. The optimal depth for the
EOL model is different from the rest of the models because of the
difference in the dimension of their corresponding feature matrix; it
was shown in Eqs. (3) and (4) that 𝐹 EOL has a smaller dimension in
comparison to 𝐹RUL-CM, and thus a lengthier signature basis would
e required to capture the underlying function that links the features

to their corresponding targets. Using the shuffle product property of
the signature [29], a non-linear function of signatures can be written
as a linear combination of iterated integrals (see Section 3.1 for its
definition); this is akin to basis function expansion and the more terms
(or higher depth), the more representative is the underlying function—
striking a balance between efficacy and computational costs is also
needed.

The histograms of Fig. 8(a-f) show the first 10 most important
features according to the two algorithms considered. Importance val-
ues were scaled to be in an interval [0, 1] for ease of interpretation
(with 0 and 1 as the lowest and largest importance values respec-
tively). For both algorithms, the signature components involving all
the path functions (namely 𝑆2,3,2 and 𝑆3,3,1) were discovered to be the
most important for the EOL model. These features correspond to the
definitions
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑆2,3,2 = ∫

𝑡𝑓

𝑡0

[

∫

𝑡3

𝑡0

[

∫

𝑡2

𝑡0
𝐼 ′(𝑡1) 𝑑 𝑡1

]

𝑉 ′(𝑡2) 𝑑 𝑡2
]

𝐼 ′(𝑡3) 𝑑 𝑡3;

𝑆3,3,1 = ∫

𝑡𝑓

𝑡0

[

∫

𝑡3

𝑡0

[

∫

𝑡2

𝑡0
𝑉 ′(𝑡1) 𝑑 𝑡1

]

𝑉 ′(𝑡2) 𝑑 𝑡2
]

𝑑 𝑡3;

where 𝑡0 and 𝑡𝑓 are the initial and final pulse times respectively. These
efinitions suggest that the signature components capture the segmen-
al effect of both the pulse current and the voltage response profile.
he rationale behind their importance can be linked to the fact that
he battery voltage under the HPPC test gives a good indication of its
trength to withstand various real use cases, and the magnitude of the
ulse current determines the geometry of the current–voltage path. As
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Fig. 7. Performance of the classification model. The confusion matrix and ROC curve are provided in (a) and (b) respectively. The confusion matrix indicates there is a balance
of performance in correctly labelling each class and the ROC suggests that the proposed classification model is far from a random guess.
for the model that predicts the RUL, the signature component 𝑆1,3,3,2,1,3

and 𝑆3,1,1,3,2,2 were selected by the impurity-based and permutation
importance algorithms respectively. These correspond to the definitions
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑆1,3,3,2,1,3 = ∫

𝑡𝑓

𝑡0

[

∫

𝑡6

𝑡0

[

∫

𝑡5

𝑡0

[

∫

𝑡4

𝑡0

[

∫

𝑡3

𝑡0

[

∫

𝑡2

𝑡0
𝑑 𝑡1

]

𝑉 ′(𝑡2) 𝑑 𝑡2
]

× 𝑉 ′(𝑡3) 𝑑 𝑡3
]

𝐼 ′(𝑡4) 𝑑 𝑡4
]

𝑑 𝑡5
]

𝑉 ′(𝑡6)𝑑 𝑡6.

𝑆3,1,1,3,2,2 = ∫

𝑡𝑓

𝑡0

[

∫

𝑡6

𝑡0

[

∫

𝑡5

𝑡0

[

∫

𝑡4

𝑡0

[

∫

𝑡3

𝑡0

[

∫

𝑡2

𝑡0
𝑉 ′(𝑡1) 𝑑 𝑡1

]

𝑑 𝑡2
]

𝑑 𝑡3
]

× 𝑉 ′(𝑡4) 𝑑 𝑡4
]

𝐼 ′(𝑡5)𝑑 𝑡5
]

𝐼 ′(𝑡6) 𝑑 𝑡6.

As for 𝑆1,3,3,2,1,3 and 𝑆3,1,1,3,2,2, they do not only show the importance
of voltage and current load but also the HPPC time. The duration
of the pulses plays a significant role in the extent of information
derived from the HPPC test. The longer the test, the more information
would be available for model consumption. The intensity of the applied
pulse current determines the overall geometry of both the voltage and
current profiles, where one of the characteristics of signatures is their
sensitivity to the geometric shape of a path [29]. With regards to the
classification model, both feature importance techniques indicated that
𝑆1,3,1,3,3,3 is the most important signature component which is exactly
defined as

𝑆1,3,1,3,3,3 = ∫

𝑡𝑓

𝑡0

[

∫

𝑡6

𝑡0

[

∫

𝑡5

𝑡0

[

∫

𝑡4

𝑡0

[

∫

𝑡3

𝑡0

[

∫

𝑡2

𝑡0
𝑑 𝑡1

]

𝑉 ′(𝑡2) 𝑑 𝑡2
]

𝑑 𝑡3
]

× 𝑉 ′(𝑡4) 𝑑 𝑡4
]

𝑉 ′(𝑡5)𝑑 𝑡5
]

𝑉 ′(𝑡6) 𝑑 𝑡6,

which can also be explained in the light of 𝑆3,3,1 above.
The results of the effect of the active HPPC time threshold on the

feature importance are displayed in Fig. 8(g-i). For brevity, only the
impurity-based algorithm was considered. This experiment is motivated
by knowing how feature relevance (to model) changes when different
data volumes (controlled by active HPPC time in seconds) are used
for model building. For this purpose, the Jaccard similarity (which
measures the ratio of the cardinality of the intersection of two sets to
that of their union) was adopted. Overall, there is a significant feature
similarity across time thresholds for the EOL model whereas similarity
scores are not pronounced in both the RUL and classification models.
The EOL model uses data restricted to within the first 100 cycles, so it
is expected to have similar features under different time thresholds. On
10 
the other hand, the RUL and classification models draw features from
several cycle numbers (with different battery chemical changes); thus
features are expected to have dissimilarity under different HPPC times.

4.4. Model performance under different SOC ranges

In practice, a user might not have a fully charged battery at 100%
SOC and still want to make predictions with the current level of SOC.
To address this and further investigate the robustness of the proposed
models, data corresponding to SOC ranges of 20% and 10% differences
were extracted from the whole HPPC test. Concretely, the current–
voltage profiles of three different SOC ranges (100%–80%, 80%–60%,
and 60%–40% in the case of 20% difference) and five ranges (100%–
90%, 90%–80%, 80%–70%, 70%–60%, and 60%–50% for the 10%
difference) were extracted. Each range corresponds to two blocks of
the HPPC test for the 20% difference and one block for the 10%; see
Fig. 1 for a sample visualization of a block. Using this data, the models
described in Table 3 were trained and cross-validated.

Tables 8 and 9 show the 5-fold cross-validation results of the
resulting models. The performance metrics obtained under each SOC
range are competitive (however marginally worse) when compared to
those of Tables 5 and 7 (for an SOC range of 100%–40%). This shows
that data obtained over SOC ranges with windows of 20% and 10% are
capable of building an effective model for making inferences on new
data. Between Tables 8 and 9, the results in the former regarding EOL
and RUL are slightly better than those in the latter. The differences at
the level of the classification algorithm are marginal.

4.5. Comparison with the past literature

In this section, a comparison between the performance of the pro-
posed EOL model and that of the literature is presented. To the best of
our knowledge, the studies that used the data considered in this work
for EOL prediction are those of [3,31]. In [3], two feature-based machine
learning models namely Extratrees [50] and NuSVR [51] were proposed
for the prediction of EOL from one cycle (first cycle) and the first 100
cycles of battery cycling data. A total of 396 features were extracted
from the current, voltage, SOH, charge time, SOC, capacity, and IR.
Overall, an MAE of 103 and 73 cycles on test data were recorded in
their paper when predictions were made from one cycle and the first
100 cycles respectively. In addition, a leave-one-group-out validation
was performed on the proposed models by leaving a cathode group out
in turn for testing and using the rest for training models (excluding the
cells that live more than 1500 cycles for cycle distribution consistency).
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Fig. 8. XGBoost impurity-based feature importance analysis for (a) EOL, (b) RUL, and (c) classification models. Permutation feature importance analysis carried out on the training
set for (d) EOL, (e) RUL, and (f) classification models. In the case of impurity-based, the importance value depicts how frequently the corresponding feature was used in splitting
tree nodes during model training; whereas in the case of permutation, the importance value shows the degree of the effect of the corresponding feature on the fitted model when
its values are shuffled. The importance values are scaled to be in the interval [0, 1] for ease of interpretation. Jaccard similarity of top 10 most important features selected under
different time thresholds of the HPPC test for (g) EOL, (h) RUL, and (i) classification models. For brevity, the impurity-based feature importance algorithm was considered for this
analysis. Similarity scores under RUL and classification models are similar and both are distinguished from that of EOL.
Table 8
Cross-validation results from EOL, RUL, and classification models obtained under
different time ranges of the HPPC test. The window considered here ensures that there
are two complete discharge and charge regimes in each range. This experiment is motivated
by using data under different SOCs, which applies to situations where non-fully charged
cells are supplied for making predictions.

Time range (s) SOC range (%) MAE (cycles)

𝑥̄ 𝜎

EOL
0–40 100–80 118.75 20.88
40–80 80–60 117.09 25.87
80–120 60–40 124.72 25.15

RUL
0–40 100–80 75.37 6.41
40–80 80–60 79.10 3.16
80–120 60–40 72.01 1.16

𝐹1-score (%)

𝑥̄ 𝜎

Classification
0–40 100–80 91.25 1.37
40–80 80–60 92.34 1.32
80–120 60–40 92.68 0.73

Their NuSVR model generally outperforms the Extratrees algorithm
with the best MAE of 91 cycles when tested on 5Vspinel. In [31], a
deep learning approach called multi-variate transformer architecture was
adopted for the prediction of EOL using a single cycle of quantities
including discharge capacity, discharge energy, coulombic efficiency,
11 
Table 9
Cross-validation results from EOL, RUL, and classification models obtained under
different time ranges of the HPPC test. The window considered here ensures that there
is one complete discharge and charge regime in each range. This experiment is motivated
by using data under different SOCs, which applies to situations where non-fully charged
cells are supplied for making predictions.

Time range (s) SOC range (%) MAE (cycles)

𝑥̄ 𝜎

EOL

0–20 100–90 132.86 21.05
20–40 90–80 127.21 17.23
40–60 80–70 145.56 25.18
60–80 70–60 126.38 16.22
80–100 60–50 140.92 46.94

RUL

0–20 100–90 85.54 5.89
20–40 90–80 86.85 5.80
40–60 80–70 85.95 2.93
60–80 70–60 90.34 2.76
80–100 60–50 83.89 2.54

𝐹1-score (%)

𝑥̄ 𝜎

Classification

0–20 100–90 90.68 1.60
20–40 90–80 89.64 0.65
40–60 80–70 90.27 1.08
60–80 70–60 90.65 0.88
80–100 60–50 92.18 0.98
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Table 10
Comparison of the performance of our proposed model in predicting EOL. For comparison purposes, feature-based models built on the cycling
data belonging to [3,31] were considered. In places where numbers are marked with a dagger (†) and an asterisk (∗), it means the metric is
obtained from the Extratrees and NuSVR of [3] respectively. Meaning of symbols: measured voltage at time 𝑡 (𝑉 ), current (𝐼), capacity (𝑄),
discharge energy (𝐸), coulombic efficiency (𝐶eff), energy efficiency (𝐸eff), internal resistance (IR), state of health (SOH), state of charge (SOC),
and charge time (𝑡𝑐 ).

Papers Data used from [3] Data regime Cycles used Test MAE (cycles)

This
𝑉 , 𝐼 Single 1 85.16work HPPC test

[3] 𝐼 , 𝑉 , SOH, 𝑡𝑐 , SOC, 𝑄, IR Regular cycling 1 103†, 114∗
100 78†

[31] 𝑄, 𝐸, 𝐶eff, 𝐸eff, IR Regular cycling 1 231
t

m

Table 11
Comparison of the performance of our proposed model in predicting EOL. The model
was trained on all but one cathode chemistry and then tested on the left-out cathode
roup. In places where numbers are marked with a dagger (†) and an asterisk (∗),
t means the metric is obtained from the Extratrees and NuSVR of [3] respectively.

Meaning of symbols: measured voltage at time 𝑡 (𝑉 ), current (𝐼), capacity (𝑄), internal
resistance (IR), state of health (SOH), state of charge (SOC), and charge time (𝑡𝑐 ).

Cathode group MAE (cycles)

This work [3, Table 2a, 2b]

NMC111 175.04 507†, 287∗
NMC532 297.61 221†, 152∗
NMC622 199.66 156†, 117∗
NMC811 129.44 98†, 104∗
HE5050 249.84 181†, 276∗
5Vspinel 283.80 318†, 91∗

Data used 𝑉 , 𝐼 𝐼 , 𝑉 , SOH, 𝑡𝑐 , SOC, 𝑄, IR
Data regime Single HPPC test 100-cycle data (regular cycling)

energy efficiency, and IR drop. The recorded prediction accuracy of
heir proposed model on the test data is an MAE of 231 cycles.

In this study, a different and novel approach was adopted for the
prediction of EOL. The current and voltage profiles of a single HPPC
est carried out within the first 100 cycles were utilized for feature
xtraction via path signature. An XGBoost model was trained on the

extracted feature matrix and an MAE of approximately 85 cycles was
chieved on the test set. This model attained a competitive accuracy
hen compared to the one-cycle and 100-cycle modes of [3,31] and

ess data (in terms of measured profiles and data regime) is needed for
odel input; see Table 10 for more detail. In the leave-one-group-out

experiment (cells that lived more than 950 cycles were dropped for
distribution consistency; see Fig. 2(b)), our proposed models have a
ompetitive accuracy and even out-performed that of [3] in the case
f NMC111 (for NuSVR and Extratrees), HE5050 (for Extratrees) and
Vspinel (for Extratrees); see Table 11 for a detailed comparison.

5. Conclusion

The characterization of cells and the prediction of EOL and RUL
using current and voltage profiles of a single active HPPC test have been
investigated. The proposed models achieved a performance on par with
existing literature while strictly ignoring the cell’s general historical
usage, taking much less data as input and work consistently across
datasets with varying cathode chemistry. Additionally, each proposed
model has been validated in situations where cells are at different levels
of SOC and it is shown that data covering SOC ranges with a window of
20% suffices for effective prediction. This allows for making inferences
even if collected cells are not fully charged which is valuable for
manufacturers and end users of batteries who seek a quick, explainable,
and easy-to-use model for cell characterization and prognostics.

The models developed are transparent, using XGBoost and path
ignatures for explainability and interpretability. All model components
re traceable for easy practical maintenance and the data processing
nd model implementation are publicly available.
 e

12 
A potential future study is the investigation of the magnitude/
frequency of pulse loads as they uniquely determine the geometry of the
corresponding profiles (and the extracted signatures), thus, conditional
on relevant data being available, the proposed modelling procedure
should be tested on different types of pulse tests. This question aligns
with the lack of standardization of pulse tests, even though there are
proposed standards such as the HPPC. Nonetheless and unequivocally,
the HPPC data of the study contains sufficient information that, once
combined with the expressive power of path signatures, allows for
competitive predictive lifetime models. While the methods presented
in this research cannot be used as a quick tool to assess the battery
in minutes (such as real-time prediction while an electric vehicle is in
use), multiple pulse tests like the HPPC offer measurements in real-life
environments. The technique takes at least a couple of hours which is
still fast compared to other methods requiring data loggers for days or
even weeks. Future research should focus on finding a good trade-off
between the accuracy of the prediction and the time it takes to obtain
such predictions.

Methods

Savitzky–golay filter

Savitzky–Golay filter is one of the filtering techniques used in digital
signal processing (DSP) to remove noise and smoothing signals or data
streams. It makes use of the least-square smoothing where a polynomial
𝑝 of degree 𝑁 is repeatedly fitted to sub-samples (each of size 𝑤 called
the window size) of the original data obtained by shifting the window
o every point in the data; i.e, for every sub-sample 𝒙𝑠 ∈ R𝑤 of a signal

or data vector 𝒙 ∈ R𝑛, a symmetric set 𝑡 ∈ {−𝑀 ,−𝑀 + 1,… , 𝑀 − 1, 𝑀},
𝑀 = (𝑤− 1)∕2 is generated and a polynomial 𝑝 of degree 𝑁 is fitted by

inimizing the unconstrained optimization problem:
𝑀
∑

𝑡=−𝑀

[

𝑝(𝑡) − 𝒙𝑠(𝑡)
]2 ; 𝑝(𝑡) =

𝑁
∑

𝑘=0
𝛼𝑘𝑡

𝑘; 𝛼 ∈ R, (5)

where by 𝒙𝑠(𝑡) we mean the component of 𝒙𝑠 that coincides with the
discretized value 𝑡. For every fit, the filter will replace the median of
the corresponding sub-sample with the best fit value (i.e., the fitted
polynomial evaluated at the central point or median of the fitted
interval). Because of the symmetricity of the interval about its median,
this is equivalent to evaluating 𝑝(𝑡) at 𝑡 = 0 and this is the same as

𝑝(𝑡 = 0) = 𝛼0.

Thus, only the constant of the polynomial is needed to be solved. For
instance, if 𝑤 = 5, 𝑁 = 2, we have

𝑝(𝑡) = 𝛼0 + 𝛼1𝑡 + 𝛼2𝑡
2; 𝑀 = (5 − 1)∕2 = 2; 𝑡 ∈ {−2,−1, 0, 1, 2}.

Solving the Least-Square Problem (5) to obtain the first coefficient 𝛼0,

𝛼0 =
1
35

[

−3𝒙𝑠(−2) + 12𝒙𝑠(−1) + 17𝒙𝑠(0) + 12𝒙𝑠(1) − 3𝒙𝑠(2)] ,

which is the resulting digital filter for every sub-sample 𝒙𝑠.
As in the case of the median filter, the boundaries of the signal need

xtra treatment: one way is to pad the boundaries with some constant,
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say zero, and another approach (which was adopted in this research) is
o evaluate a degree 𝑁 polynomial, which is fitted to the last 𝑤 values
f the edges, on the last ⌊𝑤∕2⌋ output values. The SciPy [52] imple-
entation was used in this work via the function savgol_filter in

the signal module. Following this implementation, if 𝑤 is even, then
the evaluation set is given by 𝑡 ∈ {−(𝑤∕2) − 0.5,−(𝑤∕2) + 0.5,… , (𝑤∕2) −
1.5, (𝑤∕2) − 0.5}. In this case, the central point is the median which is
also zero.

Model performance metrics

For the regression problems (EOL and RUL predictions), mean abso-
ute error (MAE) and root mean squared error (RMSE) were used. The
lassification model that predicts whether a cell has passed its EOL was
valuated using precision, recall, 𝐹1-score, the area under the receiver

operating characteristic curve (AUC ROC), and accuracy. Each of these
etrics is defined below:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

MAE(𝑦, 𝑦̂) = 1
𝑛

𝑛
∑

𝑖=1
|𝑦𝑖 − 𝑦̂𝑖|,

RMSE(𝑦, 𝑦̂) =
√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑦̂𝑖)2,

precision = 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑃 ,

recall = 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑁 ,

𝐹1-score = 2 × precision × recall
precision + recall ,

AUC ROC = area under ROC curve

accuracy = 1
𝑛

𝑛
∑

𝑖=1
1(𝑦𝑖 − 𝑦̂𝑖)

(6)

where 𝑦𝑖 and 𝑦̂𝑖 are the actual and predicted values for sample 𝑖
espectively; 𝑇 𝑃 , 𝐹 𝑃 , and 𝐹 𝑁 are the number of true positives, false
ositives, and false negatives respectively; 𝑛 is the number of samples.
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