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ABSTRACT

Credit card fraud is a growing concern for financial institutions and consumers, leading to
significant financial losses and increased security risks. One of the main challenges in fraud
detection is the extreme class imbalance, where fraudulent transactions make up only a tiny
fraction of all transactions. This imbalance makes it difficult for machine learning models to
correctly identify fraud, as they tend to be biased toward the majority class. This paper
explores and compares the implementation of various imbalanced learning techniques,
including SMOTE, ROS, Borderline-SMOTE, ADASYN, K-means SMOTE, SMOTE-ENN, SMOTE-
Tomek, CT-GAN, and CT-GAN Synthesizer. The goal is to assist in the selection of high-
performance imbalanced learning techniques for fraud detection, ensuring its applicability
and robustness across imbalanced fraud datasets. Empirical results of extensive experiments
with 5 datasets show that traditional oversampling methods like ROS and SMOTE variants,
consistently improved model performance when combined with strong classifiers like Random
Forest and XGBoost. These methods not only increased recall, ensuring a higher detection rate
of fraudulent transactions, but also maintained a favorable balance with precision, reducing
the risk of flagging legitimate transactions as fraudulent. In contrast, more advanced
techniques, including GAN’s and K-means SMOTE, did not demonstrate the expected
improvements. Instead, these methods occasionally introduced variability that did not
translate into overall performance gains when compared to the traditional oversampling
strategies.
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1. INTRODUCTION

Credit card fraud is a significant and evolving threat to financial institutions and consumers
worldwide, as the increasing volume of online transactions has led to more sophisticated
fraudulent activities (Vanini, Rossi, Zvizdic, & Domenig, 2023). It refers to the unauthorized
use of a credit card or its information to make purchases or withdraw money without the
cardholder’s consent. It typically involves fraudsters obtaining sensitive information like credit
card numbers, CVV codes, or personal identification numbers (PINs) through various methods,
such as phishing, data breaches, or card skimming devices. These details are then used to
make fraudulent transactions, either by making direct purchases or selling the stolen data on
the dark web, resulting in substantial financial losses and reputational damage to financial
institutions (Alamri & Ykhlef, 2022).

In 2021 alone, global losses from credit card fraud amounted to $32.34 billion, with
projections indicating that these losses could exceed $38.5 billion by 2027 (Nilson Report,
2022). According to a report published by Security.org (2024), 60% of U.S. credit cardholders
have experienced fraud, and 45% have experienced fraud multiple times in 2023. The
increasing volume of online transactions, driven by the expansion of e-commerce, has
amplified the complexity and scale of fraudulent activities, posing substantial challenges for
fraud detection systems (Vanini et al., 2023). As a result, the demand for effective fraud
detection mechanisms has never been more urgent.

In response to these challenges, throughout the years, machine learning has emerged as a
powerful tool for fraud detection (Ngai, Hu, Wong, Chen, & Sun, 2011). By analyzing large
datasets and identifying complex patterns that may indicate fraudulent activity, machine
learning algorithms can significantly improve the accuracy and efficiency of detecting
fraudulent transactions (Ngai et al., 2011). Anomaly detection techniques have been
employed in credit card fraud detection to discover nonconforming patterns in credit card
transactions referred to as ‘oddities’ that can translate to fraudulent activities (Alamri &
Ykhlef, 2022). Anomaly detection systems train a model on normal transactions using a variety
of techniques to catch novel frauds. Classification algorithms such as Neural Networks,
Decision Trees, Bayesian approaches, Random Forests, K-nearest neighbors, and Support
Vector Machines have been used to detect fraudulent transactions in consumer behavior
(Roy, Sun, Mahoney, Alonzi, Adams, & Beling, 2018).

However, researchers have been discussing several challenges in the detection of financial
fraud (Hilal, Gadsden, Yawney, 2022). One of the most significant challenges in credit card
fraud detection is the highly imbalanced nature of most fraud datasets, where fraudulent
transactions represent a tiny fraction of the total (Dal Pozzolo, Boracchi, Caelen, Alippi, &
Bontempi, 2017). The class imbalance problem in machine learning refers to classification
tasks in which classes of data are not equally represented. According to different articles



(Krivko, 2010; Dal Pozzolo, Johnson, Caelen, Waterschoot, Chawla, & Bontempi, 2014), frauds
are typically less than 1% of the overall transactions. Machine learning models trained on such
imbalanced data often fail to correctly identify fraudulent activities, leading to high false-
positive rates (Alamri & Ykhlef, 2022). The nature of fraudulent transactions often implies a
heavy skew in the class distribution of this binary classification problem, i.e., in identifying
fraudulent or non-fraudulent transactions. As many algorithms aim to maximize classification
accuracy, the essential assumption of classification algorithms is that the data is balanced,
which induces bias in modeling towards the majority class (Muaz, Jayabalan, & Thiruchelvam,
2020). A classifier can achieve high accuracy scores even when it does not correctly predict a
single minority class instance. For instance, a trivial classifier that scores all credit card
transactions as legit will score an accuracy of 99.9%, assuming that 0.1% of transactions are
fraudulent; however, in this case, all fraudulent cases remain undetected.

Imbalanced learning techniques designed to enhance classification in the presence of class
imbalance can be grouped into three main categories: data-level methods, algorithm-level
methods, and hybrid approaches (Soh & Yusuf, 2019).

Data-level methods aim to change the class distribution towards a more balanced one to avoid
the majority class’s influence on the findings (Alamri & Ykhlef, 2022). This approach is divided
into oversampling, undersampling, and hybrid sampling. Oversampling consists of adding
instances to the minority class using duplicating existent samples or generating new ones
while undersampling resamples the data by removing cases from the majority class. Because
undersampling removes data, such methods face the risk of losing important concepts (Alamri
& Ykhlef, 2022), while oversampling may lead to overfitting when observations are merely
duplicated (Minastireanu & Mesnitd, 2020). Hybrid sampling is a group of techniques that
balances data by mixing oversampling and undersampling strategies. The goal of hybrid
sampling is to overcome the limitations of oversampling and undersampling when applied
alone (Khushi, Shaukat, Alam, Hameed, Uddin, Luo, Yang, & Reyes, 2021).

Algorithm-level methods, on the other hand, focus on adapting the learning algorithm itself
to account for imbalances, often by altering the model’s decision boundaries or assigning
higher costs to misclassifying minority class instances (Alamri & Ykhlef, 2022). Within
algorithm-level methods, there are two main approaches: cost-sensitive learning and
ensemble learning (Shi, Li, Zhu, Yang, & Xu, 2023). Cost-sensitive methods aim to provide
classification algorithms with different misclassification costs for each class. Alternatively,
ensemble learning combines multiple models to improve overall performance. When
combined with sampling techniques, these methods have proven to produce better results
than other algorithms for datasets with class imbalance problems (Khan, Chaudhari, &
Chandra, 2024).

Lastly, Hybrid approaches combine the benefits of both data and algorithm-level methods,
optimizing performance through a more balanced dataset and an adjusted learning algorithm
(Alamri & Ykhlef, 2022). In this approach, data-level methods modify the data distribution to
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reduce the degree of the imbalanced data, whereas algorithm-level methods adjust the
learning process to enhance classifier performance (Shi et al., 2023).

III

Another challenge in detecting fraudulent activities is understanding what “normal” behavior
looks like in credit card transactions. Establishing a clear boundary between normal and
anomalous behavior is challenging and lacks precision, which often leads to the
misclassification of fraudulent transactions (Hilal et al., 2022). The notion of fraud also varies
in the financial domain since a deviation of a certain degree might be considered normal (Hilal
et al., 2022). For instance, if a person typically makes small, local purchases and suddenly
spends a large sum at a foreign location, it might be seen as suspicious. However, if this same
individual regularly travels and occasionally makes larger purchases abroad, that same
transaction could be considered normal. This variability makes it difficult to standardize what
constitutes a fraud, as certain behaviors could represent both legitimate and fraudulent
activity, depending on the cardholder's profile and circumstances (Sulaiman, Nadher, &
Hameed, 2024).

Furthermore, the idea of the current normal behavior of credit card transactions may not be
representative enough of the future, as the increasing volume of online transactions has led
to more sophisticated fraudulent activities, ultimately increasing the difficulty of the detection
of fraud (Vanini et al., 2023).

Another concerning issue is the nature of the datasets available for research and model
development. Due to privacy concerns, real-world transaction data is often anonymized,
making it difficult to work with basic features such as customer identities, transaction
locations, and other specific card details. This anonymization is done through techniques such
as Principal Component Analysis (PCA) (Kulatilleke, 2017). For instance, datasets available for
research, like the well-known European credit card dataset from the Machine Learning Group,
contain anonymized variables (V1-V28) to remove any direct identifiers, leaving only
abstracted data that still represents the core transactional details, such as transaction time
and amount. This ensures that all personally identifiable information is either anonymized or
removed from the dataset to avoid the misuse of personal data (Kennedy, Villanustre,
Khoshgoftaar, & Salekshahrezaee, 2024). However, this anonymization limits the
interpretability of the features and the ability to directly relate the dataset variables to real-
world concepts since it is not possible to obtain semantic information from certain variables,
thus complicating the development of effective fraud detection models by removing
potentially informative features that could improve fraud prediction performance (Kulatilleke,
2017).

Besides privacy concerns, PCA is also used to reduce the dimensionality of credit card fraud
since these datasets usually contain a large number of features (Hilal et al., 2022). When
working in high-dimensional environments, anomalies often become hidden and unnoticed,
which is also known as the curse of dimensionality (Zimek, Schubert, & Kriegel, 2012). In that
sense, one can use PCA to transform the original features into new and uncorrelated variables
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called principal components, reducing the number of original features (Lever, Krzywinski, &
Altman, 2017). However, capturing intricate interactions among features in a high-
dimensional space remains a significant challenge, especially for identifying fraudulent
transactions that can manifest in subtle ways across multiple dimensions (Hilal et al., 2022).
Ensuring that essential information is retained in this reduced feature space is vital for
effective fraud detection. The heterogeneous nature of fraud further complicates this process,
as various fraudulent activities can present diverse patterns within the data, making it difficult
to maintain all relevant information during dimensionality reduction (Hilal et al., 2022).

Besides the limited availability of balanced datasets, credit card fraud datasets are rarely
available in general (Alamri & Ykhlef, 2022). This limitation arises from the sensitive nature of
financial data, which often leads researchers to rely on the same datasets in their studies
(Kulatilleke, 2022). A notable example is the European credit card dataset from the Machine
Learning Group, as previously mentioned, which has been widely used in fraud detection
research over the years (Muaz et al., 2020; Itoo, Meenakshi, & Singh, 2021; Chole, Mukherjee,
Gaikwad, Gawai, Bagde, Mahule, & Pawar, 2022; Bhakta, Ghosh, & Sadhukhan, 2023). This
specific dataset has 284.807 credit card transactions related to a two-day period in September
2013 by European cardholders. Out of 284.807 transactions, there are 492 or 0.172%
fraudulent transactions, indicating highly imbalanced data. Features are encoded in 28
principal components. Due to PCA encoding, it is not possible to obtain any semantic
information from the features, except for the transaction date and amount. It is important to
note that most contributions and results obtained from this dataset are specific to its
characteristics and may not be easily generalized to other credit card fraud detection contexts.
This dataset’s unique features, such as only containing numerical features resulting from PCA,
limit its applicability to broader fraud detection systems, highlighting the need for more
diverse datasets in future research (Sinap, 2024).

Given the challenges of credit card fraud detection, particularly the highly imbalanced nature
of fraudulent transactions and the limitations of currently available datasets, choosing the
right sampling technique becomes a critical step for improving the performance of classifiers.
Therefore, this thesis focuses on the following research questions: What is the impact of
different imbalanced learning techniques on the performance of machine learning models for
credit card fraud detection, and how can these techniques be optimized for better fraud
identification?

There are 5 main objectives that will guide this research:

e Compare the effectiveness of different imbalanced learning techniques in addressing
data imbalance in credit card fraud.

e Assess the performance of different classifiers when trained on datasets processed
with different imbalanced learning techniques.

e |dentify the optimal combination of imbalanced learning methods and classifier
hyperparameters.



e Determine whether imbalanced learning techniques consistently improve fraud
detection across multiple datasets or if their effectiveness varies.

e Evaluate the trade-offs between improving fraud detection rates and increasing false
positives due to imbalanced learning techniques.

The remainder of this work is organized as follows. Section 2 presents a review and a summary
of currently available imbalanced learning approaches. Special attention is paid to the related
work on the use of imbalanced learning techniques in the context of credit card fraud
detection. Section 3 presents the proposed framework to evaluate and compare the
imbalanced learning techniques established. The experimental results and discussion are
shown in section 4, followed by section 5, which presents the conclusions and future works.



2. LITERATURE REVIEW

2.1. IMBALANCED LEARNING APPROACHES

The most prevalent challenge that researchers face dealing with credit card fraud detection is
that fraud datasets are often imbalanced (Alamri & Ykhlef, 2022; Ahmad, Kasasbeh,
Aldabaybah, & Rawashdeh, 2022; Mienye & Sun, 2023). Most datasets are highly imbalanced
since genuine credit card transactions significantly outnumber fraudulent transactions
(Btoush, Zhou, Gururaian, Chan, & Tao, 2021).

Imbalanced learning techniques have been used in this context to address imbalanced data
(Alamri & Ykhlef, 2022; Kaur, Pannu, & Malhi, 2019). These techniques can be categorized into
three main types: the data-level, algorithm-level, and hybrid approaches (Soh & Yusuf, 2019).
These approaches impact different phases of the learning process, where the data-level can
be seen as a pre-processing step, while the algorithm-level implies a more customized and
complex intervention in the algorithms, and the hybrid approach combines both techniques.
In this section, we focus on previous work related to sampling techniques and ensemble
learning methods while briefly explaining cost-sensitive solutions.

2.1.1. Data-Level Approach

The use of data-level methods in imbalanced learning applications involves the modification
of an imbalanced dataset by removing the majority class instances and/ or generating artificial
minority instances to provide a balanced distribution (Alamri & Ykhlef, 2022). The data-level
approach has three subgroups of techniques: undersampling, oversampling, and hybrid
methods (Tarekegn, Giacobini, & Michalak, 2021). We will be focusing on oversampling
techniques as they are the most common approach to imbalanced learning in machine
learning in general and credit card fraud in particular (Alamri & Ykhlef, 2022; Dal Pozzolo et
al., 2017) while providing a brief explanation of undersampling and hybrid solutions.

2.1.1.1. Oversampling

Oversampling rebalances datasets by duplicating existing observations or generating new
artificial instances belonging to the minority classes (Chawla et al., 2002). Unlike with the
undersampling strategy, no valuable information is lost. However, when applied alone,
researchers found that oversampling can lead to overfitting that may cause higher accuracy
of the detection model due to the duplication of instances and overlapping, especially if the
dataset is vast and highly unbalanced (Minastireanu & Mesnita, 2020; Khushi et al., 2021).

Several oversampling techniques have been proposed and developed in the past. Random
oversampling (ROS) is a simple approach that randomly duplicates instances of the minority
class until the desired balance between classes is met, which makes it easier to implement
(Chawla et al., 2002). However, since the generated samples are merely replicates of the



original data, classifiers being trained on randomly oversampled data are more prone to
overfit (Batista, Prati, & Monard, 2004; Chawla, Japkowicz, & Kotcz, 2004).

In 2002, Chawla et al. proposed the Synthetic Minority Oversampling Technique (SMOTE)
algorithm, which prevents the risk of oversampling faced by the previous method since it
generates artificial data instead of duplicating it. SMOTE generates synthetic instances
through linear interpolation between a randomly chosen minority class sample and one of its
nearest minority neighbors (Chawla et al., 2002). As shown in Figure 1, the process involves
three steps: selecting a random minority instance d, identifying one of its k nearest neighbors

B, and then creating a synthetic point X using the formulaX = d + w X (B —d), where w is
a random weight between 0 and 1.

¥ Minority Sample
(X Selected Minority Sample
+  Generated Sample

=11
4
x

Figure 1 — SMOTE linearly interpolates a randomly selected minority sample and one of its
k = 4 nearest neighbors, adopted from (Douzas, Bacao, & Last, 2018)

This method was developed to improve the simple random oversampling technique. However,
it also has its own drawbacks in managing noise and class imbalance, as presented in Figure 2.
While SMOTE effectively addresses between-class imbalance by uniformly selecting minority
instances for synthetic generation (Douzas, Bacao, & Last, 2018), it does not resolve within-
class imbalance or the issue of small disjuncts. As a result, regions densely populated with
minority samples tend to become even more concentrated, while sparsely populated areas
may continue to lack sufficient representation, potentially leading to underrepresented
concepts in the dataset (Prati, Batista, & Monard, 2004). Additionally, a significant drawback
of SMOTE is its vulnerability to generating noise, as it does not differentiate between regions
where classes overlap and the “safe” areas where minority samples are more isolated
(Bunkhumpornpat, Sinapiromsaran, & Lursinsap, 2009).

The algorithm treats all minority instances equally, without prioritizing those near the decision
boundary. As a result, samples located far from the boundary are oversampled with the same
likelihood as those situated close to it. Research suggests that classifiers might perform better
if samples were generated closer to the boundary (Han, Wang, & Mao, 2005).
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Figure 2 — Behavior of SMOTE in the presence of noise and within-class imbalance, adopted
from (Douzas, Bacao, & Last, 2018)

Although SMOTE has certain limitations, it remains a widely accepted benchmark technique
for handling imbalanced datasets. Over time, numerous adaptations and enhancements have
been introduced to address its shortcomings and boost its effectiveness across various
contexts.

Focusing its attention on the decision boundary, in 2005, Han et al. proposed the Borderline-
SMOTE technique as an improved version of SMOTE that involves oversampling only the
borderline of the minority class. Borderline-SMOTE oversamples the borderline data of the
minority class, whereas SMOTE and random oversampling augment the minority class by using
all or a random subset of the minority class (Han et al., 2005). There are two types of
Borderline-SMOTE: Borderline-SMOTE1 and Borderline-SMOTE2. Borderline-SMOTE1
modifies the original SMOTE algorithm by replacing the random selection of samples with a
more focused approach that prioritizes instances near the decision boundary between classes
(Han et al., 2005). The method evaluates the labels of a sample’s k nearest neighbors to
determine whether it should be discarded as noise, retained due to its proximity to the
boundary, or ignored for being too distant from it (Han et al., 2005). In contrast, Borderline-
SMOTE2 builds upon this approach by enabling interpolation between a minority instance and
one of its majority class neighbors. The interpolation weight is set to less than 0.5, ensuring
that the synthetic sample remains closer to the minority class instance (Han et al., 2005).

In 2008, He et al. proposed the Adaptive Synthetic Sampling (ADASYN) method, which
dynamically generates synthetic minority class samples based on their distribution
characteristics. This technique emphasizes generating more synthetic data for minority
instances that are difficult to classify, thereby placing greater focus on complex regions of the
feature space. This strategy aims to reduce the bias caused by class imbalance and adjusts the
decision boundary to better capture challenging cases (Zou, 2021). Compared to Borderline-



SMOTE, ADASYN concentrates more intensely on areas where class overlap is most significant
(He, Bai, Garcia, & Li, 2008).

In 2018, Douzas et al. introduced the K-means SMOTE method, which combines the K-means
clustering technique with the SMOTE to improve the oversampling process for imbalanced
datasets. Empirical results show this method outperforms other oversampling techniques in
the majority of cases since it avoids noise generation by ensuring that oversampling occurs
primarily in safe regions (Douzas et al., 2018). It also focuses on both between-class and
within-class imbalance, and mitigates the small disjuncts problem by increasing the
representation of minority instances in sparsely populated areas (Douzas et al., 2018). An
overview of the algorithm is presented in Figure 3.

Input data Find k = 3 clusters and compute imbalance ratio (IR)
x x
x 5
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X Minority Sample

e Majority Sample
Decision Boundary

+ Generated Sample

Use SMOTE to oversample clusters with IR > 1,
Oversampled data rectifies decision boundary generating more samples in sparse clusters

Figure 3 — K-means SMOTE oversamples safe areas and combats within-class imbalance,
adopted from (Douzas, Bacao, & Last, 2018)

However, the application of this oversampler still remains underexplored in fraud detection.
Researchers found that its performance is inconsistent across different credit card fraud
datasets, and there is limited discussion on why clustering fails in some cases (Mahboob Alam,
Shaukat, Hameed, Luo, Sarwar, Shabbir, Li, & Khushi, 2020). Furthermore, finding the optimal
number of clusters and other hyperparameters is yet to be guided by rules of thumb (Douzas
et al., 2018), which could be established through further analysis of the relationship between
optimal hyperparameters and the specific characteristics of each dataset.



Researchers have also argued that synthetic data generative methods are one of the most
effective approaches to dealing with imbalanced data (Assefa, Dervovic, Mahfouz, Tillman,
Reddy, & Veloso, 2020; Lee, & Park, 2021). Among generative methods, one of the most
popular is Generative Adversarial Networks (GANs) developed by Goodfellow et al. (2014).
GANSs have first revolutionized the area of generating synthetic images, as they can generate
realistic images and videos (Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair,
Courville, & Bengio, 2014; Lu, Wu, Tai, & Tang, 2018). Due to their generative capability, GANs
resemble an oversampling data-level approach (Sauber-Cole & Khoshgoftaar, 2022). GANs are
based on the idea of competition, which consists of two neural networks trying to outsmart
each other: the generator G and the discriminator D. The generator aims to generate realistic
data from a batch of samples, while the discriminator distinguishes the synthetic data from
the real data (Goodfellow et al., 2014).

To model the generator’s distribution p, over data x, the generator learns a mapping function
from a prior noise distribution p,(z) to the data space through the function G(z; 6;). The
discriminator D(x; 6;), on the other hand, produces a scalar output indicating the likelihood
that a given sample x originates from the real training data rather than from the generator’s
distribution p,. During training, the parameters of both neural networks are updated in an
adversarial manner until the discriminator is no longer able to reliably distinguish between
real and generated samples (Goodfellow et al., 2014). Figure 4 represents the block diagram
of a GAN.

Generator h I’\:‘ ]
G(z, 0y)

Noise z

W

Discriminator
—_— D(x, 64) Real or Fake

Data x_]r

Figure 4 — General block diagram of Generative Adversarial Networks, adopted from
(Bollepalli, Juvela, & Alku, 2017)

Throughout the years, multiple GAN variants have been proposed to expand GAN’s
applicability, including to generate artificial samples in tabular settings (Khan et al., 2024;
Sauber-Cole & Khoshgoftaar, 2022; Cai, Xiong, Xu, Wang, Li, & Pan, 2021). Because GANs
generate instances that do not represent random replications of existing instances without
removing important information, researchers have argued that using GANs is a more effective
technique for handling the imbalanced class problem compared to other machine learning
techniques, including in the context of fraud detection (Ba, 2019; Sethia, Patel, & Raut, 2018;
Liu & Lang, 2019). Several studies report that GANs performance on imbalanced datasets is
superior to other imbalanced learning methods (Strelcenia & Prakoonwit, 2023). For instance,
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a relative study was conducted on the performances of GANs with other sampling methods,
such as SMOTE, and concluded that GANs can be more effective in mitigating the class
imbalanced problem (Ngwenduna & Mbuvha, 2021). Furthermore, this method has been
proven to be highly robust towards overlapping and overfitting due to its ability to understand
hidden structures of data and their flexibility (Charitou, Dragicevic, & Garcez, 2021).

In 2014, Mirza et al. proposed the Conditional Generative Adversarial Network (cGAN), which
extends the GAN model by conditioning the training procedure on external information y
coming from the training data. The conditioning can be performed by feeding y into both the
discriminator and generator as an additional input layer. Figure 5 illustrates the structure of a
simple conditional adversarial network.

Discriminator D(xly)
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Figure 5 — Conditional Generative Adversarial Network, adopted from (Mirza & Osindero,
2014).

In the generator, y and the prior input noise p,(z) are combined into a joint hidden
representation of a multi-layer perceptron (MLP), with the adversarial training framework
allowing significant flexibility in determining the composition of this hidden representation
(Mirza & Osindero, 2014). In the discriminator, x and y are provided as inputs to a
discriminative function, embodied again by a MLP in this case (Mirza & Osindero, 2014).

Several studies have tested cGANs ability to generate synthetic data with high fidelity for
imbalanced data. Douzas and Bacao (2018) used cGAN as an oversampling approach for binary
class imbalance data on 71 datasets with different imbalance ratios and number of features.
The proposed method was compared to ROS, SMOTE, Borderline SMOTE, ADASYN, and
Cluster-SMOTE. For the evaluation of the oversampling methods, LR, SVM, KNN, DT, and GBM
were used. Results showed cGAN performs better than other methods for most classifiers,
evaluation metrics, and datasets. In fact, cGAN outperformed all other methods for any
evaluation metrics when DT is used as a classifier. The authors concluded that this
improvement in performance is due to the ability of cGAN to recover the distribution of the
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training data, if given the proper time and enough capacity. Compared to standard
oversampling methods, once the training is finished, the cGAN can generate instances of the
minority class in a simple and effective way while accepting the noise and the label of the
minority class as input and outputs the generated data (Douzas & Bacao, 2018). However, the
authors highlight the need for more efficient ways to train the two neural networks in the
context of the imbalanced learning problem (Douzas & Bacao, 2018).

On the other hand, GANs pose unique challenges to model realistic tabular data due to the
need to simultaneously model discrete and continuous variables, the multi-modal non-
Gaussian values within each continuous column, and the severe imbalance of categorical
classes (Xu, Skoularidou, Cuesta-Infante, & Veeramachaneni, 2019).

To address the issues mentioned above, Xu et al. (2019) proposed a conditional tabular GAN
(CT-GAN), which is an extension of cGANs, to generate synthetic tabular data. Its goal is to
resample efficiently in a way that all categories from discrete attributes are sampled evenly
during the training process and to recover the real data distribution during the test phase (Xu
et al., 2019). Similarly to cGANs, CT-GAN uses a conditional generator that can generate
synthetic rows conditioned on one of the discrete columns. In CT-GAN, the mode-specific
normalization technique is leveraged to deal with columns that contain non-Gaussian and
multi-modal distributions, while a conditional generator and training-by-sampling methods
are used to combat class imbalance problems. The process starts by randomly selecting a
discrete column D; out of all the N, total columns, with equal probability. For example, in
Figure 6, the column selected was D,, which means the selected column’s index will be 2. With
training-by-sampling, the vector cond and training data are sampled according to the log
frequency of each category. Thus, CT-GAN can evenly explore all possible discrete values (Xu
et al,, 2019).

Select from Select a category
D, and D, from D, @@@ @@ z ~ Mo, 1)
D D
Say D, is selected Say category 1 is selected ! 2
Pick a row from T,.;, with D, = 1 Generator G(.)

N N N A o IS e A A S R E O

Critic C(.)

Score

Figure 6 — The CT-GAN Model, adopted from Xu et al. (2019)

In 2021, Ferreira et al. introduced a novel generative framework called Duo-GAN, as
demonstrated in Figure 7. The proposed method uses two GAN generators to handle the
imbalance problem, one generator for fraudulent instances and another for legitimate
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instances. This approach allows each GAN to learn the underlying distributions of data for each
class, addressing the challenge of overexposure to non-fraudulent transactions commonly
seen in single-GAN models (Ferreira, Lourengo, Cabral, & Fernandes, 2021). The Duo-GAN
architecture was developed in the context of imbalanced learning in credit card fraud
detection, proving to outperform single GAN generator models (Ferreira et al., 2021)., as
further explained in the next section.

Phase 1 Phase 2 Phase 3
- Synthetic
— gomﬂlve GAN T | " Positive
amples Samples
Separate Add target
Real samples and column and Syntheti
—— Synthetic
Data remove target concatenate Dataset
column the samples
) Synthetic
L gzg‘at:;g GAN Negative
p Samples

Figure 7 — The architecture of the Duo-GAN, adopted from (Ferreira et al., 2021)

In general, GANs have demonstrated considerable effectiveness in addressing class imbalance
problems. Their deep neural network architectures allow them to capture complex data
patterns, making them robust against issues like overfitting and class overlap. (Strelcenia &
Prakoonwit, 2023). In addition, GANs have also achieved significant progress in credit card
fraud detection by generating synthetic fraudulent samples, which improve model training
efficacy (Strelcenia & Prakoonwit, 2023). However, the inherent complexity of GANs
introduces challenges during training, such as instability and mode collapse, stemming from
the adversarial, game-theoretic training of two neural networks simultaneously (Zhou, Zhang,
Lv, Shi, & Chang, 2019). Another challenge regarding GANs for data augmentation in the
context of credit card fraud detection is that the generated samples may not be representative
enough of real-world fraudulent transactions (Niu, Wang, & Yang, 2019). Therefore, it is crucial
to rigorously assess the quality and representativeness of synthetic data to ensure it
accurately reflects real-world scenarios and is beneficial for training predictive models (Niu et
al., 2019; Mullick, Datta, & Das, 2020).

2.1.1.2. Undersampling

Undersampling involves reducing the size of the original dataset by removing instances from
the majority class to balance the data according to the minority class (Kubat & Matwin, 1997).
This method addresses the class imbalance problem and increases the computational
efficiency of the classification models, as it reduces the number of samples the model needs
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to process (Xie et al., 2021). As a result, undersampling can be advantageous in scenarios
where computational resources or time are limited, allowing for faster model training.

On the other hand, despite its computational benefits, undersampling has significant
drawbacks. According to previous studies (Alamri & Ykhlef, 2022; Mahboob Alam et al., 2020),
it may also result into information loss by eliminating instances from the majority class, which
can be detrimental to the quality of the results, raising the false-positive rate and increasing
the cost of investigations.

Random undersampling (RUS) is one of the simplest approaches, where instances from the
majority class are randomly removed until the dataset achieves a desired class distribution
(Batista et al., 2004). Despite its simplicity, this method has a significant flaw due to the loss
of potentially important information that is pertinent to the classifiers since one cannot
control what information about the majority class is eliminated (Minastireanu & Mesnita,
2020).

Tomek Links, Edited Nearest Neighbor, Near Miss, and cluster centroid undersampling are also
frequently used undersampling techniques (Alamri & Ykhlef, 2022). Tomek Links is an
undersampling method that identifies pairs of samples from different classes that are each
other’s nearest neighbors and removes the majority class sample from the pair (Tomek, 1976).
This process refines the decision boundary by eliminating overlapping majority samples,
thereby improving model performance in highly imbalanced scenarios (Batista et al., 2004).
Edited Nearest Neighbors (ENN) extends this concept by removing the majority of samples
misclassified by their k-nearest neighbors, further cleaning the dataset and reducing noise
(Wilson, 1972).

Near Miss is an undersampling approach designed to reduce information loss when
downsampling the majority class (Mani & Zhang, 2003). It operates by calculating average
distances between majority class samples and points from the minority class to preserve those
instances most informative for defining the class boundary. The method includes three
variants, each targeting a clearer separation between classes (Mani & Zhang, 2003). NearMiss-
1 chooses majority samples with the smallest average distance to their three nearest minority
neighbors. NearMiss-2 selects majority samples closest to the three farthest minority points,
emphasizing regions distant from minority clusters. Lastly, NearMiss-3 picks a specified
number of majority points closest to each minority instance (Mani & Zhang, 2003).

To address the limitations of random undersampling, more sophisticated methods have been
proposed. Cluster-based undersampling uses clustering algorithms to partition the majority
class into clusters (Alamri & Ykhlef, 2022). Cluster centroid undersampling is a popular and
successful unsupervised learning method that decreases the number of samples in the dataset
(Yen & Lee, 2009). The proposed method divides the majority class into clusters of similar
instances using the K-means clustering technique. Instead of keeping all the data points from
the majority class, each cluster is represented by its centroid, which is the average position of
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all the points in that cluster. The centroids effectively represent the overall structure of the
majority class, ensuring the retained samples capture the diversity of the majority class while
maintaining the data balance (Yen & Lee, 2009). This method helps mitigate the information
loss problem but is computationally more expensive than RUS (Yen & Lee, 2009).

2.1.1.3. Hybrid Sampling

Hybrid methods combine both oversampling and undersampling techniques, resulting in the
removal of instances of the majority classes and the generation of artificial instances of the
minority classes (Alamri & Ykhlef, 2022). As previously explained, when applied alone,
undersampling may discard useful information, while oversampling may lead to overfitting.
Different techniques have been proposed to overcome these limitations, combining both
methods (Khushi et al., 2021).

In 2004, Batista et al. developed a method that combines SMOTE with the undersampling
method ENN. As previously discussed, ENN functions as a data cleaning process by removing
majority class samples that disagree with the class labels of their nearest neighbors (Batista et
al.,, 2004). The SMOTE-ENN approach leverages SMOTE’s capability to generate synthetic
minority class samples while using ENN to eliminate ambiguous or noisy instances from both
classes, specifically those whose class label differs from that of their k-nearest neighbors
(Vairetti, Assadi, & Maldonado, 2024).

In that same research, Batista et al. (2004) also proposed SMOTE-Tomek, combining SMOTE
for oversampling and Tomek Links for undersampling. Tomek Links allow the removal of data
that is identified as Tomek Links from the majority class, including samples of data from the
minority class that are closest to the majority class (Alamri & Ykhlef, 2022). As a result, this
method is able to eliminate examples from both classes.

Results show that both these methods provide very good results in practice, in particular for
datasets with few positive (minority) examples (Batista et al., 2004). Thus, as a general
recommendation, these techniques should be applied to datasets with fewer positive cases.
The main issues with hybrid methods are that combining strategies can be extremely time-
consuming (Vairetti et al., 2024), and the removal of instances when using undersampling may
remove important data, which can negatively affect the overall classification performance
(Alamri & Ykhlef, 2022). For instance, in 2024, Vairetti et al. implemented the SMOTE-ENN
method over 35 different datasets, concluding that SMOTE-ENN was able to perform hybrid
sampling in minutes and provide better results than well-known sampling techniques.
However, a simple method such as RUS could perform very well in large-scale settings. The
authors tested that RUS could resample all datasets in less than four seconds, suggesting that
creating synthetic instances of the minority class is not strictly better nor necessary when
millions of samples are available (Vairetti et al., 2024).
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2.1.2. Algorithm-Level Approach

Algorithm-level methods are free of changes to the distribution of the data and instead
enhance the classification performance by improving the classifiers (Alamri & Ykhlef, 2022).
They attempt to eliminate algorithm sensitivity to the majority class so that the classifier's
decision boundary is less biased toward the majority class (Kaur & Gosain, 2018). Within
algorithm-level methods, there are two main approaches: cost-sensitive learning and
ensemble learning (Shi et al., 2023).

2.1.2.1. Cost Sensitive Approach

Cost-sensitive methods aim to minimize the impact of misclassification by incorporating a cost
matrix during the learning process, assigning different penalties to errors depending on the
class (Alamri & Ykhlef, 2022). These algorithms tend to be more adaptable and better at
identifying minority class instances because misclassifications of the minority class carry
higher costs compared to the majority class (Fonseca, Douzas, & Bacao, 2021). By taking into
account different losses for classification errors, cost-sensitive approaches avoid generating
or augmenting data, which helps prevent the introduction of noise into the model (Singh,
Ranjan, & Tiwari, 2021). The drawback of this method is the difficulty in precisely defining the
cost matrix, which typically requires expert input from domain specialists (Xie et al., 2021). In
the context of fraud detection, the cost of an undetected fraud is often assumed to be
proportional to the transaction amount (Sahin, Bulkan, & Duman, 2013; Correa Bahnsen,
Aouada, & Ottersten, 2015; Mahmoudi & Duman, 2015), leading to a higher misclassification
cost to fraudulent cases. This cost structure encourages classifiers to generate more alerts to
avoid missing fraud cases, often resulting in a high rate of false positives, while investigators
require precise alerts (Dal Pozzolo et al., 2017).

2.1.2.2. Ensemble Learning

Ensemble learning is a meta-learning machine learning method that combines the predictions
from multiple models to improve the predictive performance (Khan et al.,, 2024). The
predictions of the different and diverse models are often combined by simple averaging or
voting (possibly weighted). When combined with imbalanced learning techniques, ensemble
methods have proven to produce better results than other algorithms for datasets with class
imbalance problems (Khan et al., 2024). There are three main classes of ensemble learning:
bagging, boosting, and stacking (Mienye & Sun, 2022; Ganaie, Hu, Malik, Tanveer, &
Suganthan, 2022).

Bootstrap Aggregating (Bagging) (Breiman, 1996) combines bootstrapping and aggregation to
form an ensemble model. It uses bootstrapping as a sampling method to create different
samples to train different models and then aggregates the models’ predictions to select the
best prediction based on the average or majority of the results to compute a more accurate
estimate. Bagging usually uses a Decision Tree (DT) as a base model (weak learner) to be
trained on each bootstrapped dataset and combines the individual model predictions to
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produce a final estimate. This results in a bias-variance trade-off since it reduces variance by
averaging predictions from multiple models, making it less sensitive to noise and overfitting.
However, it does not inherently reduce bias since all individual models are trained on similar
data distributions, which results in the final model over-generalizing the data and missing
relevant features between samples while training (Khan et al., 2024).

Random Forest (RF) was later proposed as an extension of bagging (Breiman, 2001). In
comparison with conventional bagging, besides using the same ensemble learning framework,
RF can also split the data feature-wise, i.e., random subsets of features can be selected for
training each tree, enhancing the diversity between models. Hence, random forests can
provide greater diversity in the decision tree and lower variance, as they are better at
generalizing on test data when compared to decision trees (Biau & Scornet, 2015). In random
forests, the base models are restricted to decision trees, whereas bagging methods allow any
type of base model in the ensemble. However, random forests are the most prominent
implementation of the bagging method (Khan et al., 2024).

In 1997, Freund and Schapire proposed an ensemble technique — Boosting — designed to
sequentially improve the accuracy of weak learners by combining them into a strong learner.
Each new weak learner tries to correct the errors made by the previous model, aggregating
their predictions to make a final decision. Popular boosting methods include Adaptive
Boosting (AdaBoost) (Freund & Schapire, 1996), Gradient Boosting (Friedman, 2001), and
Extreme Gradient Boosting (XGBoost) (Chen & Guestrin, 2016).

AdaBoost is a boosting technique that was initially developed to improve the performance of
binary classification (Freund & Schapire, 1996). It combines several weak classifiers based on
decision trees, known as stumps, in order to form a single strong classifier. In contrast to RF,
the stumps created are dependent on each other, and not all stumps have equal weightage
since it works by iteratively adjusting the weights of the training samples (Freund & Schapire,
1996). Updated variations of AdaBoost have been developed to counter noisy data (Ratsch,
Onoda, & Miiller, 1999; Domingo & Watanabe, 2000; Oza, 2004; Gao & Gao, 2010), since
AdaBoost is sensitive to noisy data and outliers by assigning equal weight to all training
samples method (Khan et al., 2024).

Gradient Boosting is a versatile technique applicable to both classification and regression
tasks. Gradient Boosting Regressor optimizes the mean-squared error loss, and Gradient
Boosting Classifier minimizes the log-likelihood loss (Friedman, 2001), commonly referred to
as Gradient Boosting Machines (GBM) (Natekin & Knoll, 2013). Its goal is to minimize the loss
function by sequentially correcting the errors made by previous models by fitting subsequent
models to the residual errors (Friedman, 2001). Gradient Boosting is known for its high
predictive accuracy and capacity to handle large datasets effectively. However, as highlighted
by Bentéjac et al. (2021), its performance heavily depends on careful tuning of
hyperparameters such as the number of base learners and the learning rate.
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XGBoost is an optimized and scalable implementation of Gradient Boosting, making it well-
suited for high-dimensional problems and large-scale datasets for both classification and
regression problems (Chen & Guestrin, 2016). It uses advanced regularization to improve
model generalization capabilities, such as Lasso (L1) and ridge (L2) regularizations, which can
help prevent overfitting. It improves computational performance since its training can be
parallelized across clusters (Chen & Guestrin, 2016), and it is also considered to be a strong
model in competitive machine learning, particularly in Kaggle competitions (Bojer &
Meldgaard, 2021) due to the high accuracy and superior performance. Similar to Gradient
Boosting, XGBoost requires fine-tuning for optimal performance, and it can be sensitive to the
choice of parameters (Chen & Guestrin, 2016).

Wolpert (1992) proposed Stacking, an ensemble learning technique that combines multiple
models (base learners) on the same data and uses a different model (meta-learner) to learn
how to combine the predictions best. The predictions from the base learners are used as input
for meta-learners. While stacking uses a single model that integrates the predictions from
different models, boosting techniques use a sequence of models to enhance the predictions
made by earlier models. Compared to bagging, stacking utilizes the entire dataset to train
diverse base models, while bagging trains multiple base models on random subsets of the
training data (Khan et al., 2024).

2.1.3. Hybrid Approach

The last category is hybrid methods, which combines data-level and algorithm-level methods
(Alamri & Ykhlef, 2022). In hybrid methods, data-level methods can alter the data distribution
to reduce the degree of the imbalanced data, while algorithm-level methods can change the
learning process to improve the performance of the classifiers (Shi et al., 2023).

To address the instability in synthetic data generation and classification outcomes caused by
SMOTE’s randomness, Mansourifar and Shi (2020) introduced a method called Deep SMOTE,
which is a deep neural network regression model designed to learn the mapping used in
traditional SMOTE. In this architecture, a neural network is trained to accept two randomly
selected minority class instances and generate a new sample along the line connecting them,
preserving the original data dimensions (Mansourifar & Shi, 2020). Once trained, the model is
applied to generate synthetic samples, thereby balancing the class distribution (Mansourifar
& Shi, 2020). The authors concluded that Deep SMOTE performed better than SMOTE across
all evaluation metrics (Mansourifar & Shi, 2020). In that same study, it was also proposed Deep
Adversarial SMOTE (DA-SMOTE), which integrates concepts from SMOTE, generative
adversarial networks, and Deep SMOTE (Mansourifar & Shi, 2020). Unlike Deep SMOTE, DA-
SMOTE operates in an unsupervised manner, eliminating the need for explicit interpolation
targets during training (Mansourifar & Shi, 2020). The authors concluded that both these
techniques can enhance classification results, considering that DA-SMOTE has advantages
over Deep SMOTE since it is trained in an unsupervised mode (Mansourifar & Shi, 2020).
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In 2021, El Naby et al. proposed a new model, Oversampling with Convolution Neural Network
(OSCNN), which is based on oversampling preprocessing SMOTE and convolution neural
network (CNN). The model begins by oversampling the minority class by 0.25 to achieve a
majority class ratio of 75:25, overcoming the overfitting caused by the SMOTE (El Naby, EI-Din
Hemdan, & El-Sayed, 2021). This model was proposed and developed to detect fraudsters in
credit card transactions. Results show that OSCNN improves the predictive performance and
surpasses other models (El Naby et al., 2021), which is further explained in the next section.

2.2. IMBALANCED LEARNING APPROACHES FOR CREDIT CARD FRAUD DATA

This section focuses on the application of the imbalanced learning techniques previously
discussed, specifically applied in the context of credit card fraud detection. In recent years,
the unique challenges posed by fraudulent transactions, combined with the highly imbalanced
nature of the data, have led to the development of specialized methods tailored to improve
fraud detection. This section reviews existing studies and approaches that have applied
imbalanced learning strategies to credit card fraud detection, highlighting key findings,
methodologies, and areas for future research.

In the context of credit card fraud, several studies have concluded that SMOTE-based sampling
techniques tend to outperform undersampling methods (Alamri & Ykhlef, 2022). When
applied alone, undersampling leads to a general decrease in the performance of the
classification algorithms since it includes the removal of important information (Minastireanu
& Mesnita, 2020).

Muaz et al. (2020) trained four classification models using artificial neural networks (ANN),
gradient boosting, a stacked ensemble, and RF on different sampling methods. The
imbalanced learning methods included RUS, SMOTE, density-based-SMOTE (DB-SMOTE), and
the hybrid method SMOTE-ENN, which were used for all models. The dataset collected for this
study consisted of transaction data of European credit cardholders, previously mentioned as
one of the most common datasets used in fraud detection. Since the data had no missing
values and outliers, the authors did no further pre-processing techniques. The dataset was
split into 70% for training and 30% for testing using stratified random sampling. The findings
of this study showed promising results with SMOTE-based techniques, concluding that the
SMOTE method is the best sampling strategy to adopt. The authors considered the recall score
to be the best metric to evaluate the performance of the machine learning models, followed
by the precision and Fl-score metrics. Even though the highest recall score of 83% was
obtained with RUS with the ANN classifier, the model scored a very low precision of 27%. Thus,
the authors concluded that while most fraudulent transactions are detected with this model,
several genuine transactions are also misclassified as fraudulent. In that sense, the best
combination of these metrics was obtained with the SMOTE sampling strategy by the Random
Forest classifier, with a recall score of 81%, an Fl1-score of 84%, and a precision of 86% (Muaz
et al., 2020).
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Wibowo and Fatichah (2021) focused on analyzing oversampling approaches to address the
problem of high-class imbalance. ROS, ADASYN, SMOTE, and Borderline-SMOTE approaches
were compared in terms of performance. The classifiers RF, LR, and KNN were integrated with
all oversampling approaches using the previous European credit card dataset. Six basic metrics
were used for the evaluation of the study, namely accuracy, precision, recall, F1-score, Area
Under the Precision-Recall Curve (PR-AUC), and the Area Under the Receiver Operating
Characteristic Curve (ROC-AUC) to find out how well the model is able to differentiate
between positive and negative classes. The authors concluded that Borderline-SMOTE
achieved the highest results because it duplicates the margins of the minority class, which
strengthens the difference between the minority and majority class data. The results revealed
that combining RF with Borderline-SMOTE provided the best values, with an accuracy of
99.97%, precision of 94.74%, recall of 85.71%, F1-score of 90%, ROC-AUC of 93.88%, and PR-
AUC of 85.81% (Wibowo & Fatichah, 2021).

Itoo et al. (2021) focused on random undersampling technique to balance a credit card fraud
dataset with the classifiers Logistic Regression (LR), Naive Bayes, and K-nearest neighbor
(KNN). The dataset used was the same one previously described. In this research, the authors
also split the dataset in two with the same percentages (70:30). However, they opted to
implement the RUS by three different ratios: 50:50, 34:66, and 25:75 (fraud: nonfraud). To
evaluate the performance of the three different classification techniques, the measures
accuracy, recall, specificity, precision F1-measure and ROC-AUC were used. Overall, RUS
improved the performance of the classifiers. The best evaluation scores were obtained with
the LR model for all data proportions. In particular, LR obtained a recall of 87%, 77%, and 83%
for the ratios 50:50, 34:66, and 25:75, respectively. However, authors have argued that one
of the main disadvantages of RUS is that important information may be lost, and new sampling
methods should be implemented to understand better how different techniques might affect
the performance of the algorithms (Itoo et al., 2021).

Mahboob Alam et al. (2020) has shown that the combination of clustering methods with
imbalanced learning techniques can improve the predictive accuracy of fraud detection. The
authors applied different techniques, such as K-means SMOTE, ROS, SMOTE, ADASYN, SMOTE-
Tomek, Borderline-SMOTE, RUS, Near Miss, and Cluster Centroid. Three highly imbalanced
datasets related to credit card fraud were used and normalized using the Min-Max
normalization method. The datasets were split into training and test data with a ratio of 70:30.
Gradient Boosted Decision Tree (GBDT), AdaBoost, Bagging, Random Forest, KNN, Logistic
Regression, and stacking models were evaluated using performance measures such as
accuracy, precision, recall, F1-measure, ROC-AUC, and geometric mean (G-Mean). Overall, the
results show that the performance of oversampling techniques is better than that of
undersampling techniques. In fact, most classifiers improved their performance when K-
means SMOTE oversampling was applied. Moreover, the GBDT model also presented a higher
prediction accuracy rate than the traditional machine learning models. The best result
obtained for one of the datasets was with the GBDT method while utilizing the K-means
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SMOTE oversampling, with an accuracy of 88.7%, a recall of 92.2%, an F1-measure of 89%,
and a G-Mean of 89%. However, for the other two datasets, the performance of K-means
SMOTE is inconsistent, and there is limited discussion on why clustering fails in some cases
(Mahboob Alam et al., 2020).

A novel fraud detection method has also been developed, where customers were grouped
based on their transactions and behavioral patterns to create a profile for each cardholder
(Dornadula & Geetha, 2019). Once again, the European dataset was used. The authors started
the clustering method by dividing the cardholders into different groups based on their
transaction amount, i.e., high, medium, and low, using range partitioning. After preprocessing
and balancing the data using SMOTE, each group was trained on different classifiers - Local
Outlier Factor (LOF), Isolation Forest (IF), Logistic Regression, Decision Tree, and Random
Forest. Accuracy, precision, and the Matthews Correlation Coefficient (MCC) metrics were
used to evaluate the performance of the classifiers. The MCC measures the quality of binary
(two-class) classifications (Matthews, 1975). The authors considered MCC to be the best
parameter for dealing with imbalanced datasets. Furthermore, LR, DT, and RF were the
algorithms that provided the best results. In fact, RF scored the best, with an accuracy of 99%,
a precision of 99%, and a MCC of 99% (Dornadula & Geetha, 2019).

When it comes to ensemble methods, several studies have reported random forests to
achieve the best performance (Alamri & Ykhlef, 2022; Dal Pozzolo et al., 2017). In 2023, Jabeen
et al. implemented numerous machine learning algorithms, including DT and LR, and applied
the SMOTE technique to the same cardholder transactions from the European dataset,
concluding that RF produced the best rests across all traditional performance metrics tested,
achieving an fl-score of 98%, an accuracy of 99%, a precision of 98%, and a recall of 99%
(Jabeen, Singh, & Vats, 2023). Furthermore, other researchers (Mahesh, Afrouz, & Areeckal,
2022) have also explored the use of RF with undersampling and hybrid techniques to detect
fraudulent transactions, namely RUS and SMOTE-Tomek. The classification models used in this
study were RF, LR, KNN, and support vector machines (SVM). Once again, the dataset used
was the European credit card transactions dataset. Results showed that RF performed best
across all data imbalance techniques. In particular, undersampled data shows the best results
for classification predictions, with an F1-score of 0.94. However, the authors concluded that
this cannot be generalized with a high confidence level since the number of undersampled
data is much smaller. Among SMOTE and SMOTE-Tomek, the best results were obtained with
SMOTE-Tomek with an Fl-score of 0.93 (Mahesh et al., 2022). The effectiveness of RF with
SMOTE oversampling has also been tested with different credit card fraud datasets. A study
used four training datasets with different fraud rates from the University of California San
Diego Fair Isaac Corporation (UCSD FICO) data mining competition 2009 dataset, which is a
non-specific dataset for real-world credit card transactions (Ahirwar, Sharma, & Bano, 2020).
The SMOTE technique was applied, and the data was trained with Naive Bayes, KNN, SVM,
Bagging Ensemble, and RF models. The authors concluded that balanced data with Random
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Forest provides the best results, being able to achieve the best scores across all datasets,
offering a good ROC area, as well as a good accuracy and a low error rate (Ahirwar et al., 2020).

Several studies have been using boosting techniques to deal with credit card fraud prediction
(Jose, Devassy, & Antony, 2023; Khan et al., 2024; Mahboob Alam et al., 2020). In 2022, Chole
et al. implemented several machine learning algorithms, such as logistic regression, random
forest, decision trees, and XGBoost, for fraud detection using the well-known European credit
card transactions dataset. The data was balanced with SMOTE, ROS, and RUS methods. The
SMOTE oversampling produced the greatest area under the ROC curve for all algorithms used,
resulting in XGBoost being the best classifier for identifying credit card fraud, with 99.96 %
accuracy and precision.

A comparative study of ensemble learning algorithms (Bhakta et al.,, 2023) implemented
XGBoost, random forest, voting, gradient boosting, AdaBoost, and stacking for the purpose of
detecting fraudulent credit card transactions, including the traditional ones such as LR, DT,
SVM, and Naive Bayes. Once again, the European credit card transactions dataset was used.
Contrary to the other studies that used the same dataset, the authors of this research did not
implement any imbalanced learning technique. Instead, they focused on the feature
engineering process of the dataset by performing feature selection techniques, such as
correlation analysis and recursive feature elimination, and by creating new features using
domain knowledge and data exploration (Bhakta et al., 2023). The final results suggest that
the random forest and XGBoost algorithms demonstrated exceptional performance, achieving
significant levels of accuracy and Fl-score. The RF demonstrated a high level of accuracy of
99.96%, achieving a precision rate of 98.72%, a recall of 78.57%, and an F1-Score of 87.50%.
The XGBoost algorithm exhibited robust performance, achieving a 99.94% accuracy rate,
96.67% precision, a recall of 82.86%, and an F1-Score of 89.23%. The authors concluded that
ensemble learning methodologies outperformed traditional machine learning algorithms in
detecting fraudulent credit card transactions (Bhakta et al., 2023).

Nallabothula (2022) also focused on the analysis of machine learning algorithms for fraud
detection, including ensemble learning methods, for a more recent dataset. The dataset used
was generated by Vesta Corporation and the IEEE Computational Intelligence Society (IEEE-
CIS). The data was composed of two different files (identity and transaction), which are joined
by the ID of each transaction for each train and test dataset. After merging the two datasets,
the data had 590540 credit card transactions and 434 different variables. Once again, the data
was highly imbalanced, with a total of 20663 fraudulent transactions, representing only 3.5%
of the total transactions. The data contained missing values, outliers, and categorical and
anonymized features, which required a more complex and detailed data pre-processing step,
including data cleansing, label encoding, and data normalization. Due to its imbalance, data
was resampled with SMOTE and RUS. The data was further trained with several models,
including LR, RF, XGBoost, Decision Tree, SVM, and Gaussian Naive Bayes. To evaluate the
classifiers, accuracy, precision, recall, F1-score, and ROC-AUC metrics were used. The author
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concluded that RF was the best classifier for predicting fraud transactions for both sampling
methods. Overall, the implementation of the RF with the SMOTE technique achieved the best
results with 97.4% accuracy, 81.8% precision, 65.6% ROC-AUC, 45.5% F1-score, and 31.5%
recall (Nallabothula, 2022).

Hybrid methods have also been implemented to detect credit card fraud. El Naby et al. (2021)
used SMOTE in a hybrid form with a convolution neural network approach to improve credit
card fraud detection. Once again, the well-known European dataset was used, splitting it into
80% for training and 20% for validation. The oversampling convolution neural network model
(OSCNN) model starts by oversampling the minority class. A ratio of 0.25 oversampling was
used to solve the imbalance in the dataset so that the minority class-to-majority class ratio
becomes 75:25. This ratio was selected to compensate for SMOTE’s overfitting (El Naby et al.,
2021). After oversampling the data, the OSCNN model employs the CNN with the respective
hyperparameters and layers (El Naby et al., 2021). A multi-layer perceptron, with and without
SMOTE, was also applied to the dataset to compare the effectiveness of the OSCNN model.
Comparing the MLP-OSCNN results, they concluded that the OSCNN model achieved better
results with 98% accuracy, 97% precision, and 91% recall. In fact, the OSCNN method was able
to improve accuracy from 88% to 98% in comparison to the MLP model, with OSCNN
surpassing all other models (EI Naby et al., 2021).

Several studies have also tested the use of GANs as methods to cope with the class imbalance
problem in the detection of credit card fraud. Ali, Hasan, Ghandour, and Al-Hchimy (2024)
proposed a hybrid model that combined the predictions of DT, Naive Bayes, LR, and SVMs
models. Once again, the European dataset was used, and SMOTE, ROS, RUS, and a single GAN
were applied to solve the imbalance problem. The authors focused on frequently used metrics
to assess the model’s performance, including Fl-score, accuracy, precision, and recall.
Experimental results showed that the GAN implementation achieved the best results, scoring
an Fl-score of 99.9%, in addition to other exceptional metrics. The SMOTE algorithm scored
second-best, achieving an accuracy of 98.1% and an Fl-score of 98.3%, followed by the
random sampling methods that showed close performance between them. When examining
the ROC curve to predict financial fraud, authors also concluded that the GAN algorithm
provided the best results, concluding its superior ability to balance the data (Ali et al., 2024).

Ferreira et al. (2021) compared the performance of creating synthetic data with a double GAN
architecture to a single tabular GAN (TGAN) architecture. Different machine learning models,
such as XGBoost, AdaBoost, and Decision trees, were trained to evaluate the proposed
method, using both single GAN and Duo-GAN approaches. The dataset used was the European
dataset, which included some prior changes made to it to reduce the lack of balance and
runtime of the experiments. In that sense, the authors sampled all 492 fraudulent transactions
and then randomly sampled only 49.508 instances out of the remaining 284.315 legitimate
transactions, still leaving the datasets highly imbalance with just 1% of the total transactions
recorded as fraudulent (Ferreira et al., 2021). The experiments were conducted for 10,20, 50,
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100, and 200 training epochs for both GANs. However, for some training epochs, the single
GAN did not generate new fraudulent transactions during the epochs allowed to train.
Therefore, the authors only considered the experiments after 50 epochs, where the single
generator created fraudulent transactions. The results showed that Duo-GAN outperforms
single GAN generator models, being able to generate high-quality synthetic datasets that
allow the implementation of machine learning models that attain a performance similar to
those same models trained on real fraud datasets. Furthermore, Duo-GAN can better capture
the existing correlations between variables than the single GAN approach. Another interesting
aspect the authors concluded is that the results obtained for the models trained for 100 or
200 epochs obtain worse performance than the models trained for 50 epochs. In particular,
the best model was XGBoost, trained for 50 epochs with synthetic data generated by Duo-
GAN, which obtained a classification performance with a 5% disparity in F1-scores between
classifiers trained and tested on real data and those trained on synthetic data but tested on
real data (Ferreira et al., 2021). Furthermore, with the results of the XGBoost model, the recall
for the fraudulent class and a single GAN generator model is 3.62%, whilst for Duo-GAN as the
generator model, the recall for the same class is 81.9%. Even though the authors concluded
that Duo-GAN outperforms single GAN generator models, this framework did not include how
different configurations of Duo-GAN could impact the quality and utility of synthetic data,
including the computational resources and time required to train the models (Ferreira et al.,
2021).

The effectiveness of conditional tabular GANs was also tested in fraud detection. Duggal
(2022) has addressed the European dataset’s skewness problem by using SMOTE and CT-GAN.
Three classifiers were used to perform the experiments: IF, MLP, and RF. The performance
metric considered for evaluating all models was the PR-AUC. Results showed that CT-GAN was
successful for two of the three models, achieving a higher AUC score than SMOTE for IF and
MLP. In particular, the best score was obtained from Isolation Forest for CT-GAN, with a PR-
AUC of 86%. On the other hand, the SMOTE technique only performed better for the RF
algorithm, achieving an AUC of 63%, while CT-GAN only achieved 53% (Duggal, 2022). Future
work includes adjusting models’ parameters, such as learning rate and node count, to improve
the overall performance (Duggal, 2022). Moreover, Patil (2021) also combined the CT-GAN
with LR, RF, and XGBoost, to balance the same European credit card dataset. After removing
duplicates and scaling the original data, the author used the univariate feature selection
technique SelectkBest to select the best and most relevant features to maintain in the dataset.
After treating the dataset, the CT-GAN was applied to balance the data. Recall, F1-score, ROC-
AUC, and G-Mean metrics were selected to evaluate the performance of the models. Results
showed that classifiers trained on augmented data using CT-GAN significantly improved the
overall prediction performance. For instance, RF and LR recorded an increase of 25% in recall
score, which means that they made 25% fewer errors while classifying fraudulent transactions
on balanced data. In terms of recall and Fl-score values, RF combined with CT-GAN
outperformed all other classifiers, achieving a recall and an F1-score of 100%. In second place
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is the XGBoost model, with a recall of 91%, followed by the LR model, with a recall of 90%
(Patil, 2021).

Lastly, Veigas, Regulagadda, and Kokatnoor (2021) implemented an optimized stacking
ensemble (OSE) method using SMOTE-Tomek and tabular GANs to generate synthetic data.
Once again, the European dataset was used. After normalizing the data, oversampling
methods SMOTE-Tomek and GAN are used to balance the dataset. Individual models MLP,
KNN, and SVM are trained on the balanced data. SMOTE-Tomek is used to train the SVM
classifier, and GAN is used to train the KNN classifier and the MLP model. These base-learners
are incorporated into the stacking ensemble model to fit the meta-learner, which creates an
effective predictive model for credit card fraud detection. The test data is input to the
classifiers’ predictions, and these are sent to the OSE, i.e., the base learners SVM, KNN, and
MLP models are used as input for the meta-learner. The OSE uses LR as a meta-learner since
it forms no biases regarding the distributions of classes in a specific feature space, and the
stacked prediction from the OSE is considered the final output (Veigas et al., 2021). The
ensemble model starts by computing the accuracies and F1-scores of the classifiers and the
neural network models, comparing them separately, followed by the evaluation of the final
OSE model. The authors concluded that the performance of OSE enhanced both fraudulent
and genuine classification accuracies, proving to be more robust than the stand-alone
classifiers. The OSE achieved an Fl-score of 90.5% and the highest accuracy of 99.8%. KNN
showed the highest f1-score of 96% and an accuracy of 95%. Authors discussed that despite
the slightly lower f1-score than KNN, the proposed ensemble OSE is still preferable due to its
ability to harness the abilities of unsupervised MLP, which works better when finding hidden
patterns of fraudulent transactions in real-life scenarios (Veigas et al., 2021). This research
also highlighted the time taken for the OSE to train the given data as one major limitation.
Since the dataset used is non-stationary, i.e., the credit card transactions do not have a stable
or predictable behavior, it is harder to run the model with mostly pre-fitting and pre-trained
parameters. To improve the model further, it is recommended to implement and test the
concept of weighted voting to the predictions from the first layer of classifiers in the OSE.
Furthermore, the use of boosting algorithms which can be trained on the synthetic data
generated using the same oversampling techniques could also improve the model (Veigas et
al., 2021).

The following table presents a comparison of the mentioned studies and their results.
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Table 1 — Comparison of Imbalanced Learning Techniques for Credit Card Fraud Detection

Reference Dataset Imbalanced Classifiers Best Result | Performance Metrics
Techniques
(Ahirwar et UcCsD SMOTE Naive Bayes, KNN, | SMOTE + RF Accuracy = 99%
al., 2020) | FICO/2009 SVM, Bagging Fl-score = 99%
Ensemble, and RF Precision = 98%
Recall =99%
(Ali et al., European | SMOTE, ROS, RUS, | DT + Naive Bayes + | DT + Naive Accuracy = 99.9%
2024) dataset GAN LR + SVM Bayes + LR + Fl-score = 99.9%
SVM + GAN Precision = 99.9%
Recall =99.9%
(Bhakta et | European - LR, DT, SVM, Naive | RF/XGBoost Accuracy =
al., 2023) dataset Bayes, XGBoost, 99.96%/99.94%
RF, Voting, GB, Fl-score = 87.50%/
AdaBoost, 89.23%
Stacking Precision = 98.72%/
96.67%
Recall = 78.57%/
82.86%
(Chole et European SMOTE, ROS, RUS LR, RF, DT, SMOTE + Accuracy = 99.96%
al., 2022) dataset XGBoost XGBoost Precision = 99.96%
ROC-AUC=91%
(Dornadula | European SMOTE LR, DT, RF, LOF, IF | SMOTE + RF Accuracy = 99.98%
etal., dataset MCC = 99.96%
2019) Precision = 99.96%
(Duggal, European SMOTE, CT-GAN RF, IF, MLP CT-GAN + IF PR-AUC = 86%
2022) dataset
(El Naby et | European SMOTE, OSCNN MLP OSCNN Accuracy = 98%
al., 2021) dataset Precision = 97%
Recall =91%
(Ferreira et | European TGAN, Duo-GAN XGBoost, Duo-GAN + F1-score = 85.26%
al., 2021) dataset AdaBoost, XGBoost Precision (fraud class)
Decision trees =91.13%
Precision (normal
class) =99.83%
Recall (fraud class) =
81.88%
Recall (normal class)
=99.97%
(Itoo et al., | European RUS LR, Naive Bayes, RUS + LR Accuracy = 96%
2021) dataset KNN Fl-score = 91%

26




Precision = 99%
Recall = 84%
ROC-AUC =92%
Specificity = 99%

(Jabeen et | European SMOTE LR, DT, RF SMOTE + RF Accuracy = 99%
al., 2023) dataset Fl-score = 98%
Precision = 98%
(Mahboob 3 UCI SMOTE, ROS, K- GBDT, AdaBoost, K-means Accuracy = 88.7%
Alam et al., | datasets means SMOTE, Bagging, RF, KNN, SMOTE + F1-measure = 89%
2020) ADASYN, SMOTE- LR, Stacking GBDT G-Mean = 89%
Tomek, Borderline- Recall = 92.2%
SMOTE, RUS, Near
Miss, Cluster
Centroid
(Mahesh et | European SMOTE, RUS, RF, LR, KNN, SVM RUS + RF F1-score = 94%
al., 2022) dataset SMOTE-Tomek Precision = 94%
Recall = 94%
(Muaz et European SMOTE, RUS, DB- ANN, GBM, SMOTE + RF F1-measure = 84%
al.,2020) dataset SMOTE, SMOTE- Stacking, RF Precision = 86%
ENN Recall = 81%
(Nallaboth IEEE-CIS SMOTE, RUS LR, RF, XGBoost, | SMOTE + RF Accuracy = 97.4%
ula, 2022) | dataset DT, SVM, and F1-score = 45.5%
Naive Bayes Precision = 81.8%
Recall =31.5%
ROC-AUC = 65.6%
(Patil, European CT-GAN LR, RF, XGBoost CT-GAN + F1-score = 100%
2021) dataset RF G-Mean = 100%
Recall = 100%
ROC-AUC = 100%
(Veigas et | European SMOTE-Tomek + SVM, KNN, MLP, SMOTE- Accuracy = 99.8%
al., 2021) dataset TGAN Stacking Tomek + Fl-score = 90.5%
TGAN +
Stacking
(Wibowo European ROS, ADASYN, RF, LR, KNN Borderline- Accuracy = 99.97%
et al., dataset | SMOTE, Borderline- SMOTE + RF Fl-score = 90%
2021) SMOTE

Precision =94.74
PR-AUC = 85.81%
Recall = 85.71%
ROC-AUC =93.88%
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The review of relevant research dealing with the imbalance problem in credit card fraud data
has shown that SMOTE-based oversampling techniques outperform undersampling methods,
with Random Forest often being noted as the best-performing classifier. In fact, the SMOTE
technique gives the best performance for classification across different performance metrics
(Ahirwar et al., 2020; Nallabothula, 2022; Muaz et al., 2020; Dornadula & Geetha, 2019). As
previously discussed, this technique has some limitations, including overfitting due to the
duplication of instances and overlapping, which may cause higher accuracy than other
approaches (Ahammad, Hossain, & Alam, 2020). Some oversampling extensions can solve the
overfitting and overlapping issues and produce excellent results, such as Borderline-SMOTE
(Wibowo & Fatichah, 2021), K-means (Mahboob Alam et al., 2020), DB-SMOTE (Muaz et al.,
2020), and SMOTE-Tomek (Mahesh et al., 2022). Furthermore, GAN-based approaches, such
as Duo-GAN (Ferreira et al., 2021) and CT-GAN (Patil, 2021), have shown that they can
outperform traditional oversampling techniques in data augmentation for credit card fraud
detection. Moreover, combining sampling methods with ensemble techniques has also
proven to be consistently effective in fraud detection. Overall, independently of the sampling
technique being implemented, ensemble methods, such as Random Forest, XGBoost, and
Stacking, provided the best results (Ahirwar et al., 2020; Chole et al., 2022; Veigas et al., 2021).

In terms of performance measures, the best fraud detection performance is measured by low
error and false negative rates (Alamri & Ykhlef, 2022). Accuracy, although commonly reported,
is not a reliable metric for evaluating models on imbalanced datasets as it can be misleading
due to the dominance of the majority class. For instance, Nallabothula (2022) observed that
when applying traditional SMOTE, accuracy could reach very high levels, but Fl-score and
ROC-AUC were significantly lower. This occurred because the model would classify most of
the majority class (non-fraudulent transactions) correctly, but it failed to detect enough
fraudulent transactions, resulting in poor performance for the minority class. This illustrates
that high accuracy does not necessarily translate to a well-performing model, especially when
dealing with imbalanced data. Measurement metrics that consider the unbalanced nature of
the data should be focused instead. For example, Wibowo et al. (2021) used the ROC-AUC and
PR-AUC to demonstrate the effectiveness of Borderline-SMOTE in improving the separation
between fraudulent and non-fraudulent transactions. Similarly, Muaz et al. (2020) emphasized
the importance of the recall score, considering it the best metric to evaluate the performance
of machine learning models on fraudulent data, followed by the precision and Fl-score
metrics.

Furthermore, most studies reviewed used the same European credit card transactions
dataset, which contains anonymized features and a low fraud rate of 0.172%. This limits the
ability to generalize the results to other datasets in the context of fraud detection. Relying on
the results and conclusions obtained from a single dataset can lead to models not performing
well when applied to new or different datasets since the results are specific to the dataset’s
unique characteristics, such as its features and the imbalance ratio. This makes the findings to
be less applicable and potentially biased. Furthermore, the same data was preprocessed using
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different techniques in different studies, complicating the ability to compare and generalize
results. Some authors did not modify the dataset, applying the imbalanced learning
approaches directly to the original dataset. Others implemented different preprocessing
steps, such as feature selection, feature engineering, and data normalization. These variations
in preprocessing can significantly impact the model performance, as certain techniques may
enhance or worsen the data quality. Therefore, it is essential to incorporate a wider variety of
datasets that reflect diverse credit card fraud patterns and behaviors, to contribute to more
robust and generalizable findings in credit card fraud detection. Additionally, applying
standardized and pre-defined preprocessing steps across the datasets would provide more
consistency and allow for more precise comparisons between different imbalance
approaches. To deal with the highly imbalanced nature of credit card fraud datasets, different
sampling techniques should be implemented to understand their effectiveness in fraud
prediction. Each sampling technique should tested using different classifiers to ensure that
the results are not biased or overly dependent on a single model. To accurately assess model
performance in the presence of class imbalance, appropriate evaluation metrics should be
used instead of accuracy, which can be misleading in imbalanced scenarios. This
comprehensive approach allows for a more reliable evaluation of which sampling strategies
consistently improve fraud detection performance across different datasets, classifiers, and
class imbalance ratios.
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3. METHODOLOGY

This section describes the methodological approach used to implement and evaluate
imbalanced learning techniques and machine learning models for credit card fraud detection.
Figure 8 summarizes the steps taken in the proposed methodology. The first step focuses on
the data collection process of credit card fraud datasets and the discovery of insights about
the structure and quality of the data. This is followed by data preparation, covering all the
steps needed to clean, transform, and integrate the data to ensure its suitability for the
models. This includes treating inconsistencies, handling missing values, feature selection, data
encoding, and normalization. Having the data prepared, the imbalanced learning techniques
are implemented to address the imbalance problem in the chosen datasets. Once the data is
balanced, different classifiers are implemented to build predictive models to reach optimal
performance. Once the models are implemented, their performance is evaluated using
appropriate performance metrics to assess their effectiveness in detecting fraudulent
transactions. This experiment was carried out using Python 3.12.4 in a Jupyter Notebook
environment. The notebook was executed on a system running Windows 10. The code
implemented for this study is made available at https://github.com/rita-
avila/fraud_detection.

Data Collection &
Understanding

Data Preparation

Apply Imbalanced Learning Techniques
(SMOTE, ROS, Borderline-SMOTE, ADASYN, K-means SMOTE,
SMOTE-ENN, SMOTE-Tomek, CT-GAN, CT-GAN Synthesizer)

Train & Test Classifiers
(LR, RF, XGBoost)

Performance
Evaluation

Figure 8 — Proposed Methodology
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The following subsections provide a detailed explanation of each step, ensuring a systematic
approach to addressing the challenges associated with fraud detection in highly imbalanced
datasets.

3.1. DATA COLLECTION AND UNDERSTANDING

This section provides an overview of the datasets used, including their source, structure and
key characteristics. To evaluate the performance of the different imbalanced learning
techniques, five credit card fraud imbalanced datasets from Kaggle were used. Each dataset
was analyzed to understand their characteristics, such as the presence of missing values and
inconsistencies. Table 2 presents a summary of the dataset’s characteristics.

Table 2 — Summary of the Datasets

Dataset Dataset 1 | Dataset 2 Dataset 3 Dataset 4 Dataset 5
Source European | Simulated IEEE-CIS Dataset Synthetic Unnamed

Dataset Dataset Dataset Dataset
#Features 31 23 434 11 8
#instances 284807 1296675 590540 6362620 1000000
#Minority Class 492 7506 20663 8213 87403
#Majority Class 284315 1289169 569877 6354407 912597
#imbalance Ratio 577.88 171.75 27.58 773.70 10.44

Numerical . Numerical
. Numerical and .
Feature Types Numerical and . and Numerical
) categorical .
categorical categorical

#Duplicate 1081 0 0 0 0
Instances
Missing Values? No No Yes No No
Inconsistencies? No No No No No
Variables in the No No No No No
same scale?
Anonymized Yes No Yes No No
features?

All datasets used in this study share a common target variable, where 1 indicates fraud and 0
represents non-fraudulent transactions. However, they differ significantly in the number and
type of features, dataset size, and imbalance ratio.
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3.2. DATA PREPARATION

Data preparation is a crucial step involving the transformation of raw data into a format more
suitable for analysis and modeling (Ndung’u, 2022). It ensures data quality, consistency, and
relevance, directly impacting machine learning model performance. This section covers all the
steps taken to clean, preprocess, and standardize the data.

3.2.1. Inconsistencies Fix

The analysis made to all datasets revealed no major inconsistencies, such as negative
monetary units, invalid categories and incorrect timestamp. However, there were some cases
spotted that required correction.

As shown in Table 2, Dataset 1 contained 1081 duplicate values. In that sense, the duplicate
values were removed keeping the first occurrence. Furthermore, in Dataset 2, a meaningless
variable called ‘Unnamed: 0’ that works as an ID for the table was dropped. Additionally, the
variables that refer to datetime type, such as a user’s date of birth and the transaction
timestamp, were initially stored as object type. These were converted to the appropriate
datetime format.

3.2.2. Missing Values

Only one dataset, Dataset 3, contains missing values, with 45% of its data missing. Out of 434
columns, 414 have missing values. Since a significant number of features were composed by
mostly missing values, those with more than 5% of missing values were removed, eliminating
322 features and leaving 112. Among these, 92 features have minimal missing values, such as
0.2%. Given the low level of missingness, these features were retained, as they can be
effectively imputed without introducing significant bias. In that sense, the numerical missing
values were replaced with the median to mitigate the effect of outliers and ensure robust
central tendency representation, and the categorical missing values were replaced with the
mode to maintain the most frequently occurring category, minimizing data distortion (Lee &
Yun, 2024).

3.2.3. Data Encoding

For the datasets that contain categorical features, namely datasets 2, 3, and 4, these features
were converted into numerical format to ensure compatibility with machine learning models
by assigning integer values to each category. Different techniques were applied, namely Label
Encoding and One-Hot Encoding, depending on a feature’s type. Whenever a categorical
feature is not ordinal, i.e., it has no inherent order between categories, One-Hot Encoding is
applied converting categorical variables into binary without introducing ordinal relationships,
and whenever a categorical feature is ordinal, Label Encoding is applied assigning a unique
number to each category (Poslavskaya & Korolev, 2023).
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3.2.4. Feature Selection

As illustrated in table 2, the number of features significantly varies from dataset to dataset.
Even though the credit card fraud datasets selected for this study are not equal in terms of
the type of variables they have, the goal is that they are somehow comparable. Therefore,
having a similar number of features can help to guarantee a degree of comparison between
datasets. In that sense, different feature selection techniques were implemented, and their
results were combined to identify the most relevant features to keep that will increase the
performance of the models. For datasets with a large number of variables, such as datasets 1,
2, and 3, the techniques used were ANOVA f-test for continuous dependent variables (Siegel
& Wagner, 2022), Chi-Square for categorical dependent variables (Sikri, Singh, & Dalal, 2023),
Recursive Feature Elimination (Priyatno & Widiyaningtyas, 2024), and Decision Tree-based
feature importance, which ranks features based on how effectively they reduce impurity when
making splits (Scikit-learn, n.d.). Spearman’s Correlation was also used for all datasets,
including those with a smaller number of features, such as datasets 4 and 5, to remove
redundant and non-discriminative variables (Bocianowski, Dorota, Krysztofiak-Kaniewska,
Matusiak, & Wiatrowska, 2024). For each dataset, an assessment is made by considering the
majority vote across all feature selection techniques to identify the variables that are most
discriminative and relevant to the study.

3.2.5. Splitting the Datasets

The data is divided into two datasets, the train and test sets with a ratio of 70:30 using
stratified train-test split. The train set will be used to find hyperparameters for both classifiers
and imbalanced learning techniques, to balance the data and train the classifiers with the
balanced data, while the test set will be used to test the performance of the models on
unbalanced data. During training, cross-validation is applied with 5-folds to the train dataset.
Once the optimal hyperparameters are identified, the final models are trained using the entire
train set and evaluated on the test set. This process is detailed in the Modelling section.

3.2.6. Data Normalization

When working with multiple features, data normalization is essential to ensure consistency
and comparability across different scales and distributions (Amorim, Cavalcanti, & Cruz, 2022).
Features in each dataset have different scales, which can negatively impact the performance
of machine learning models. Therefore, data was normalized using the Min-Max scaler
(Amorim et al., 2022), which is a widely used normalization technique that rescales features
to a fixed range, preserving the relationships between data points while eliminating scale
disparities. In this case, data is rescaled between 0 and 1.
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3.3. IMBALANCED LEARNING TECHNIQUES

The following table enumerates the most relevant imbalanced learning techniques mentioned
in the Literature Review that are used as a benchmark to treat the imbalance present in the
described datasets, along with the set of hyperparameters used for each. All techniques are
used as implemented in the python library scikit-learn (Pedregosa et al., 2011) with default
parameters unless stated otherwise, except for the GAN models which is further explained.
The choice of the hyperparameters to optimize was based on the most relevant
hyperparameters that significantly impact both model performance and computational
efficiency, in order to avoid certain drawbacks, such as overfitting, noise, overlapping,
discarding useful information, lack of flexibility and over-generalization (Alamri & Ykhlef,
2022).
Table 3 — Hyperparameter Optimization for Imbalanced Learning Techniques

Imbalanced Learning Techniques Parameters
Random oversampling Default
SMOTE k_neighbors =3, 5, 20

k_neighbors =3, 5, 20
Borderline-SMOTE
kind = borderline-1, borderline-2

ADASYN k_neighbors =3, 5, 20

k_neighbors =3, 5, 20
K-means SMOTE
n_clusters: 2, 8, 20

SMOTE-ENN Default
SMOTE-Tomek Default
CT-GAN Default
CT-GAN Synthesizer Default

Regarding the conditional tabular modelling technique CT-GAN, the implementation proposed
by Xu et al. (2019) is selected, which is an open-source python package developed at MIT
available at the Synthetic Data Vault. Similarly, CT-GAN Synthesizer was also implemented
through an open-source python package developed at MIT available at the Synthetic Data
Vault. This model is a more recent and improved approach from the Synthetic Data Vault
library, which is built upon the CT-GAN model but offers additional improvements. It
automates metadata handling, simplifying the training process by automatically identifying
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and encoding categorical variables, which eliminates much of the manual setup required by
the original CT-GAN (SDV, 2024). To keep any biases and contamination introduced by any
specific parameterization from affecting the analysis of the results and increasing complexity,
the default parameters for both GAN models were selected taking into account the
recommendations of studies focused on improving fraud detection through the use of CT-
GANs (Algarni & Aljamaan, 2023; Duggal, 2022; Xu et al., 2019).

The optimal imbalance ratio is not obvious and has been discussed by other researchers (Chen
et al.,, 2024; Aymaz, 2025). The goal of this work is to create comparability among these
techniques. Consequently, it is most important that the same imbalance ratio is achieved
when generating new samples for the minority class. Therefore, all the listed methods were
parametrized so that minority and majority classes count the same number of samples for all
datasets. Furthermore, since the ultimate goal of all these techniques is to improve
classification results, their implementation is considered successful when compared to
classifiers trained on the original, unbalanced data.

3.4. MODELLING

As discussed in the literature, the most common approach for handling imbalanced data is a
combination of imbalanced learning techniques and classification algorithms (Alamri & Ykhlef,
2022). Both involve some hyperparameters that are often set to default values but could be
tuned for better performance.

To achieve optimal results for all classifiers and imbalanced learning techniques, both
components are going to be tuned. A grid search is first used to optimize the hyperparameters
of each classifier using the original train set with cross-validation. This means that the
unbalanced data will be used to determine the best hyperparameters (Kong, Kowalczyk,
Nguyen, Back, & Menzel, 2019). Results are obtained by using 5-fold cross-validation, where
each training dataset is split into five equal folds. For each possible combination of
hyperparameters, a model is trained on four folds and tested on the remaining fold. This
process is repeated five times, ensuring that each fold serves as a test set once.

After selecting the best hyperparameters for each classifier, imbalanced learning techniques
are applied. The same classifier hyperparameters found using the unbalanced training data
are retained for all imbalanced learning techniques. Once again, a grid search will also be used
to find the best parameters for these techniques. The Fl-score is used as the scoring
parameter in these grid searches, not only because it is one of the key metrics highlighted in
the Evaluation section but also because it helps select the best parameters by balancing a
model’s ability to detect fraud cases while minimizing false positives (Mahboob Alam et al.,
2020). Having all parameters defined, the data is balanced, and then the classifiers are trained
on the balanced data before being tested on the unbalanced test set. All performance metrics
described in Evaluation section are recorded for each classification result for further
comparison.
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3.4.1. Classifiers

For the evaluation of the various imbalanced learning techniques, different classifiers are
chosen to ensure that the results and conclusions obtained are not constrained to the usage
of a specific classifier and can be generalized. The choice of classifiers is further motivated by
the conclusions drawn from the literature review, which identify the most commonly used
classifiers in credit card fraud detection and those that yield the best performance. Therefore,
Random Forest, Logistic Regression, and XGBoost are used. These classifiers have
demonstrated effectiveness in handling imbalanced datasets, making them well-suited for this
study. All classifiers are used as implemented in the python library scikit-learn (Pedregosa et
al., 2011) with default parameters unless stated otherwise. The choice of the
hyperparameters to optimize was based on the most relevant hyperparameters that
significantly impact both model performance and computational efficiency (Khan et al., 2024;
Chereddy & Bolla, 2023; Bentéjac et al., 2021). Among the set of parameters that can be
tuned, table 4 enumerates the classifiers used in this study along with a set of values for their
respective hyperparameters:

Table 4 — Hyperparameter Optimization for Classifiers

Logistic Regression

Parameter Default Value Grid Search Values
class_weight None None, balanced
C 1 3,5,7

Random Forest

Parameter Default Value Grid Search Values
max_depth None None, 5, 10
min_samples_split 2 2,10, 20
n_estimators 100 50, 75, 100
XGBoost
Parameter Default Value Grid Search Values
learning_rate 0.1 0.025,0.1,0.3
gamma 0 0,0.1,0.2
max_depth 3 2,3,5
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3.5. EVALUATION

Evaluation metrics are an important aspect to access and understand the performance of the
machine learning models. The choice of a metric depends to a greater extent on the goal their
user seeks to achieve.

The most widely employed evaluation metrics are based on four types of classifications: true
positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). To illustrate
the alignment of the predictions with the true distribution, a confusion matrix (Figure 9) can
be constructed.

Predicted Class
Predicted Predicted
Positives Negatives
Actual TP FN
Actual Positives (P)
Class Actual
Negatives (N) FP ™

Figure 9 — Confusion Matrix

The most common metrics for classification problems are accuracy and its inverse, the error
rate.

Accuracy measures the number of correct overall predictions made by the model. However,
this metric assumes a balanced and constant class distribution (Provost, Fawcett, & Kohavi,
1998), which is not the case in imbalanced datasets like credit card fraud detection, as
previously discussed.

TP+TN

Accuracy = PIN

(1)
The same scenario happens for accuracy and its inverse, the error rate since these metrics
show bias towards the majority class in imbalanced datasets. For example, a naive classifier
which predicts all transactions as normal would achieve 99% accuracy in a dataset where only
1% of the transactions are fraudulent. While such high accuracy suggests an effective
classifier, these metrics hide the fact that not a single minority instance was predicted
correctly (He & Garcia, 2009).

Error Rate = 1 — Accuracy (2)

To solve the impact of class imbalance on classification performance metrics, other metrics
have been recommended (Luque, Carrasco, Martin, & de las Heras, 2019). The typical credit
card fraud detection measure is the Area Under the Receiver Operating Characteristic Curve
(ROC-AUC) (Dal Pozzolo et al., 2017). ROC is a probability curve, and AUC represents the
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degree of separability. ROC-AUC evaluates a model’s ability to distinguish between classes,
and it can be interpreted as the probability that a classifier ranks frauds higher than real
transactions (Muaz et al.,, 2020). Thus, the higher the AUC, the better the model is at
predicting. Many researchers have adopted this metric which gives a good indication of the
overall predictive performance of a model, being well suited for the class imbalanced problem
(Jabeen et al., 2023; Ahmad et al., 2022; Alamri & Ykhlef, 2022; Muaz et al., 2020).

Another widely used metric is the Area Under the Precision-Recall Curve (PR-AUC) (Hilal et al.,
2022). This metric shows the trade-off between recall and precision measures. Recall, also
known as sensitivity, computes the proportion of positive cases that are correctly identified
by the classifier, while the precision compares the instances the classifier said were positive
with the actual number of real positive instances (Mahboob Alam et al., 2020).

Recall = e (3)
CCat = TP Y FN
Precision = TP @
recision = TP n Fp

PR-AUC focuses on the performance of a model concerning the minority class, i.e., fraudulent
transactions, providing a more nuanced evaluation of a model’s ability to detected rare
events. In the context of credit card fraud, Leevy et al. (2022) concluded that PR-AUC can be
a more reliable metric for highly imbalanced datasets than the ROC-AUC metric, since it
doesn’t consider true-negatives and it focuses directly on the positive class.

The Fl-score is metric that combines the precision and recall as the harmonic mean. In the
context of fraud, a high Fl-score indicates a good trade-off between detecting fraud and
avoiding false alarms (Mahboob Alam et al., 2020).

B 2 X Precision X Recall

1= (5)

Precision + Recall

To take into account the unbalance nature of credit card fraud datasets and the metrics most
commonly used by other researchers previously described, the following metrics are chosen
to evaluate the performance of the classifiers:

=  Fl-score
= Recall

= Precision
= ROC-AUC
= PR-AUC
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4. RESULTS AND DISCUSSION

This section discusses the experimental results from all techniques implemented. In Appendix
A, Table 6 shows the performance of classification algorithms based on F1-score, Recall,
Precision, ROC-AUC, and PR-AUC for all techniques across all datasets.

To facilitate the analysis, the focus will be placed on recall, as it ensures that fraudulent
transactions are correctly identified despite the class imbalance. Given the high cost of missing
fraud cases, prioritizing recall helps minimize undetected fraud, even if it means accepting
some false positives as a trade-off. However, it is also essential to evaluate the trade-off
between recall and precision, as an excessive number of false positives can lead to
unnecessary operational costs and inefficiencies in fraud detection processes (Muaz et al.,
2020). The figures below show the recall scores obtained for each dataset with each model.
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Figure 10 — Recall scores for Dataset 1
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Figure 11 — Recall scores for Dataset 2

39



Recall Score

Recall Score

Recall Score

1.0+ Classifier
Il LR

3 RF

I XGBoost

o
'S

o
N
.

o
=}

Resampling Method

Figure 12 — Recall scores for Dataset 3
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Figure 13 — Recall scores for Dataset 4
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Figure 14 — Recall scores for Dataset 5
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Starting with the analysis of the first dataset, the results indicate that the highest recall was
achieved using ADASYN and SMOTE-ENN in combination with Logistic Regression, where the
recall reached 92%. Based on the findings from the literature review, it is surprising that LR
achieved the highest recall for this dataset, especially given the general consensus that more
complex models like Random Forest and XGBoost are typically better suited for imbalanced
datasets in fraud detection. The literature often emphasizes the superior performance of
ensemble and gradient boosting methods, such as Random Forest and XGBoost, which are
known to handle class imbalance more effectively through their ability to capture complex
patterns and interactions within the data. Therefore, it was unexpected to observe that a
simpler model like LR, typically associated with lower complexity, outperformed the others in
terms of recall. Even though these techniques combined with LR achieved the highest recall
score, they also drastically reduced precision, with values of 2% for ADASYN and 5% for
SMOTE-ENN. This means that while these models were effective in identifying fraud, they
flagged a large number of non-fraudulent transactions as fraudulent, leading to a higher
number of false positives. In real-life situations, this could lead to unnecessary fraud alerts
which is also not ideal. When examining stronger models based on their trade-off between
recall and precision, XGBoost with SMOTE and Random Forest with SMOTE-ENN produced
interesting results. Both techniques achieved a recall of 85%, while maintaining a better
precision compared to the previously mentioned techniques, with XGBoost showing a
precision of 60% and RF reaching 81%. These combinations provide a better balance between
correctly identifying fraudulent transactions and reducing the number of false positives,
offering an optimal trade-off between fraud detection and minimizing unnecessary alerts.
Furthermore, SMOTE-Tomek and SMOTE combined with RF reached a slightly lower recall of
84% but improved precision achieving 93%. The highest ROC-AUC scores, 0.99, were obtained
using XGBoost in combination with SMOTE-ENN, suggesting that this model exhibited a strong
ability to separate fraud cases from non-fraud cases. Similarly, the PR-AUC values were highest
for XGBoost with K-Means SMOTE, reaching 0.86. This indicates that this model exhibited
strong fraud detection capabilities, particularly in scenarios where the data is highly
imbalanced, as is often the case with credit card fraud datasets. Interestingly, RF and XGBoost
without any imbalanced learning technique applied also performed well, with recall scores of
81% for both classifiers. This suggests that, in certain cases, imbalanced techniques may not
always be necessary, as these classifiers were able to effectively handle the class imbalance
on their own. These models alone also achieved high scores in terms of ROC-AUC, with scores
ranging from 0.94 to 0.98. This reinforces the idea that imbalanced learning techniques are
not always necessary for high-performing classifiers like Random Forest and XGBoost, which
were able to effectively handle class imbalance without the need for additional sampling
techniques. Although K-means SMOTE and GAN-based techniques yielded good performance
in specific cases, they did not significantly outperform traditional techniques such as
Borderline-SMOTE or SMOTE-Tomek, especially when considering Fl-score and recall
together. In fact, these techniques could not improve much the recall score compared to
traditional methods and provided slightly lower Fl-scores. This contradicts the expectations
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set in the literature, where these advanced methods are often highlighted for their capacity
to generate more realistic synthetic samples and improve classifier performance (Mahboob
Alam et al., 2020; Patil, 2021).

Regarding the Simulated dataset, the recall scores obtained were higher than the previous
dataset. Interestingly, in this dataset, the highest score of 97% was obtained with Random
Oversampling and XGBoost. The fact that this method provides a better recall than other
methods such as SMOTE is unexpected given the findings from the literature review. Prior
research suggests that SMOTE generally outperforms ROS by generating synthetic minority
instances that help classifiers learn a more generalized decision boundary (Chawla et al.,
2002). However, the results indicate that for this dataset, SMOTE may have introduced noise
or synthetic samples that did not effectively enhance fraud detection, leading to a lower recall
compared to ROS. This could be due to the nature of the dataset's feature space, where
fraudulent transactions may not be well-represented through interpolation-based synthetic
sampling. On the other hand, ROS simply duplicates existing fraud samples, preserving the
original distribution and potentially reinforcing patterns that the classifier can learn more
effectively. These findings highlight that the effectiveness of imbalanced learning techniques
is dataset-dependent and suggests that in certain cases, simpler oversampling strategies may
yield better recall for fraud detection. However, the high recall was achieved at the cost of a
significantly low precision of 42%, which results in an excessive number of false positives,
which can be impractical in real-world applications. In contrast, SMOTE-based methods, such
as SMOTE-ENN and SMOTE-Tomek, provided a better balance between recall and precision.
Both methods with XGBoost achieved a recall of 87%, with higher precision scores of 68-69%.
Another interesting result is the fact that XGBoost achieved alone the highest F1-score of 89%,
along with a recall of 83% and a precision of 95%. The ability of XGBoost to perform well
without any imbalanced learning technique suggests that the dataset may not suffer from
extreme class imbalance or that XGBoost’s intrinsic ability to handle skewed distributions is
sufficient for effective fraud detection in this case. When comparing classifiers, XGBoost
consistently outperformed both RF and LR across all methods. Random Forest performed
reasonably well, achieving an F1-score of 84% without imbalance techniques, but showed a
slightly lower recall than XGBoost. Logistic Regression, on the other hand, struggled
significantly, with extremely low precision values across all sampling methods. This suggests
that the dataset contains complex, non-linear relationships that are better captured by tree-
based models rather than linear classifiers. Similarly to the previous dataset, more complex
techniques including GANs did not significantly improve the results as expected. Even though
they achieved higher precision scores, the recall dropped significantly.

Following the analysis of the third dataset, the IEEE-CIS Dataset achieved the lowest scores of
all datasets tested. This might be due to the fact that this dataset was more complex and
required more data preprocessing than the others. Similarly to the Simulated dataset, the
highest recall value of 80% among all tested configurations was achieved by XGBoost with
Random Oversampling. Once again, this came at a significant cost to a precision of 21%,
resulting in a low F1-score of 34%. This is consistent with the expected behavior of ROS, which
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replicates minority class instances without introducing new synthetic samples (Chawla et al.,
2002). While this improves the model’s ability to capture fraudulent transactions, it also
increases false positives, leading to reduced precision. This combination also achieves the
highest ROC-AUC of 0.93, showing strong overall classification capability. The following higher
recall scores were achieved with Logistic Regression, facing the same problem of extremely
low precision of only 10%, reinforcing the limitations of using linear classifiers for this task
(Jabeen et al., 2023; Mahesh et al., 2022). On the other hand, RF with ROS provides a medium
recall of 52% while maintaining a high precision of 85%, resulting in an Fl-score of 65%.
Furthermore, its ROC-AUC of 0.92 indicates a robust overall classification performance,
demonstrating that it effectively discriminates between fraudulent and non-fraudulent
transactions. SMOTE-ENN combined with RF was able to achieve a slightly higher recall of 53%,
even though it decreased the precision to 72% and F1-score to 61%. When comparing the
performance of SMOTE-ENN and ROS using RF, the results indicate that ROS delivers a slightly
better overall performance. Although SMOTE-ENN achieves a marginally higher recall score,
ROS outperforms all other evaluation metrics, including F1-score, precision, ROC-AUC, and PR-
AUC. This suggests that ROS achieves a more favorable balance between correctly identifying
fraudulent transactions and minimizing false positives. Given the small difference in recall but
the significant gain in precision and overall F1-score, ROS can be considered the more effective
technique in this case, ensuring a better trade-off between recall and precision.

When it comes to dataset 4, which is a synthetic dataset, methods such as ADASYN, SMOTE,
SMOTE-ENN, SMOTE-Tomek, and ROS with XGBoost produced recall values of 99-100%,
ensuring that nearly all fraudulent transactions are detected. However, these models suffer
from extremely low precision of less than 20%, meaning they generate a large number of false
positives. Borderline-SMOTE with XGBoost emerges as a strong candidate for the best trade-
off. It achieves an Fl-score of 79%, with 92% recall and a precision of 69%. Additionally, it
achieves an AUC-ROC of 1.00, confirming its strong discriminatory ability. CT-GAN with
XGBoost also shows a good trade-off, with an F1-score of 88%, 80% recall, and an exceptionally
high 97% precision. This suggests that the model is detecting a significant proportion of
fraudulent transactions while keeping false positives low. Additionally, it also achieves an AUC-
ROC of 1.00. ROS with RF and XGBoost alone also perform well, both achieving an F1-score of
87% with relatively balanced recall, 81% and 79%, respectively, and high precision of 94% and
97%, respectively.

Lastly, the fifth dataset that represents real-world data reveals the highest results in the
performance of different classifiers and imbalanced learning method combinations. Notably,
both RF and XGBoost classifiers, when combined with almost any technique, achieved perfect
or near-perfect performance metrics, with F1-scores, recall, precision, ROC-AUC, and PR-AUC
all reaching values close to or equal to 1.00. For instance, methods such as ADASYN, SMOTE,
Borderline-SMOTE, SMOTE-ENN, SMOTE-Tomek, ROS, and even the original unbalanced
dataset, when used with Random Forest, resulted in an F1-score, recall, precision, ROC-AUC,
and PR-AUC of 1.00. A similar trend is observed for XGBoost, where the performance slightly
varies but remains consistently high. Additionally, the application of synthetic data generation
techniques such as CT-GAN and CT-GAN Synthesizer also yielded strong results with both
classifiers, although a slight drop is observed in precision and Fl-score when compared to
traditional oversampling methods. In contrast to these classifiers, LR exhibited significantly
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lower performance across all metrics. Regardless of the technique used, the Fl-scores
remained between 69% and 72%, and recall ranged from 56% to 97%. The ROC-AUC values
with Logistic Regression reached a maximum of 0.98 with some techniques but were mostly
lower than those achieved with tree-based models. LR with K-means SMOTE was revealed to
be the worst combination as it achieved the lowest recall of 56%.

Table 5 summarizes the performance of the best imbalanced learning techniques in terms of
recall and the best trade-off between recall and precision for all datasets. Overall, across all
datasets and imbalanced learning techniques, Random Forest and XGBoost consistently
deliver the best performance, confirming findings from the literature review (Ahirwar et al.,
2020; Chole et al., 2022; Veigas et al., 2021). Both classifiers maintain high F1-scores, recall,
and precision, demonstrating their ability to effectively separate fraudulent and legitimate
transactions, while Logistic Regression tends to struggle, with significantly lower F1-scores and
precision, confirming its limitations when handling highly imbalanced datasets. Notably,
XGBoost achieves near-perfect ROC-AUC values (~1.00) across multiple datasets, highlighting
its strong generalization capabilities. Random Forest also exhibits stable and strong
performance, especially in hybrid approaches, making it a highly reliable classifier. These
results align with prior research, which has shown that ensemble methods tend to outperform
single classifiers as they are the most reliable classifiers for credit card fraud detection,
particularly when paired with sophisticated imbalanced learning techniques, due to their
ability to mitigate overfitting and capture complex fraud patterns (Alamri & Ykhlef, 2022;
Jabeen et al., 2023).

Applying oversampling techniques, including SMOTE, ROS, Borderline-SMOTE, and ADASYN,
resulted in varying levels of performance improvement across the classifiers. While
oversampling generally improved recall, it often led to a drop in precision, particularly for
Logistic Regression. Among these techniques, SMOTE tended to introduce synthetic noise,
which negatively impacted model performance. These findings align with prior research,
which identified SMOTE as a widely used technique that improves classification performance
but has inherent limitations (Ahammad, Hossain, & Alam, 2020). However, ROS performed
slightly better than SMOTE, particularly for Random Forest and XGBoost. Borderline-SMOTE
and ADASYN showed improved performance over standard SMOTE, as they focused on
generating synthetic samples in more informative regions of the feature space, which helped
XGBoost and Random Forest achieve higher Fl-scores and more balanced precision-recall
trade-offs.
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Table 5 — Comparison of the Best Imbalanced Techniques for Credit Card Fraud Datasets

Best Recall Performance Best Trade-Off Performance
Dataset (Method + Metrics for Best (Method + Metrics for Best
Classifier) Recall Classifier) Trade-Off
F1-score = 10% F1-score = 82%
Recall =92% Recall = 85%
E;;‘E;’::t” SMOTE-ENN + LR | Precision=5% | SMOTE-ENN+RF | Precision = 81%
ROC-AUC = 98% ROC-AUC = 98%
PR-AUC = 72% PR-AUC = 84%
F1-score = 59% F1-score =77%
i Recall =97% Recall = 87%
Sgl::zd ROS + XGBoost Precision =42% SMOXEI;)(T)Z:TI( ¥ Precision = 69%
ROC-AUC = 100% ROC-AUC = 100%
PR-AUC = 94% PR-AUC = 89%
Fl-score = 34% Fl-score = 65%
Recall = 80% Recall =52%
';Efafg ROS + XGBoost | Precision = 21% ROS + RF Precision = 85%
ROC-AUC =93% ROC-AUC =92%
PR-AUC = 59% PR-AUC = 69%
Fl-score =27% Fl-score = 79%
) Recall = 100% i Recall = 92%
Sé;:zse:tc A;(DGAI\?,SJclt‘L Precision = 16% BorderILnI:I;SMOTE Precision = 69%
ROC-AUC = 100% ROC-AUC = 100%
PR-AUC = 93% PR-AUC = 93%
F1l-score = 100% F1-score = 100%
Recall =100% Recall =100%
US:tzTeetd ADASYN +RF | Precision = 100% ADASYN + RF Precision = 100%

ROC-AUC = 100%
PR-AUC = 100%

ROC-AUC = 100%
PR-AUC = 100%

The application of hybrid approaches, such as SMOTE-ENN and SMOTE-Tomek, revealed
additional insights into classifier performance. These methods combined oversampling with
data-cleaning techniques, aiming to enhance class separability by removing noisy or
redundant samples from the majority class. As previously discussed in the literature review,
SMOTE-Tomek has been noted for its ability to improve recall while addressing overfitting
issues associated with traditional SMOTE (Mahesh et al., 2022). The results of this study
confirmed these findings, as SMOTE-ENN and SMOTE-Tomek were able to improve the trade-
off between recall and precision, making them highly suitable for fraud detection.

Although recent studies have emphasized the potential of advanced techniques such as K-
means SMOTE and CT-GANs to improve fraud detection performance in imbalanced datasets
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(Mahboob Alam et al., 2020; Patil, 2021), the empirical results obtained in this research
suggest otherwise. Across all five datasets, these newer approaches did not consistently
outperform traditional sampling methods like Borderline-SMOTE or ROS. In some datasets, K-
means SMOTE and CT-GAN-based approaches matched the performance of traditional
oversampling methods, while in others, they underperformed or resulted in higher variability,
particularly in terms of recall and Fl-score. This suggests that the increased complexity of
these methods does not necessarily translate into better fraud detection performance,
especially when combined with strong classifiers such as Random Forest and XGBoost. This
behavior might be due to the fact the datasets used in this study may not have contained
complex patterns or high-dimensional nonlinearities that would justify the use of
sophisticated generative models like CT-GANs (Xu et al., 2019). Traditional imbalanced
learning techniques were sufficient to expose fraudulent patterns. According to the literature,
K-means SMOTE is identified as an effective alternative to traditional oversampling methods,
reducing the risk of synthetic noise while improving class separability (Mahboob Alam et al.,
2020). The unexpected lower results might be due to the fact this technique requires selecting
an optimal number of clusters and can struggle when fraudulent instances are extremely
sparse or do not form distinct clusters. This may have limited its effectiveness in the datasets
evaluated. When comparing CT-GAN and CT-GAN Synthesizer, an interesting distinction
emerged. While both techniques slightly enhanced classification performance, CT-GAN
Synthesizer exhibited a slight advantage over standard CT-GAN, particularly in terms of
precision and F1-score. This improvement suggests that Synthesizer's approach to generating
synthetic fraud samples was more refined, leading to fewer misclassifications and a better
balance between detecting fraudulent transactions and reducing false positives. While CT-
GAN achieved slightly higher recall, its increased tendency to generate more diverse fraud
examples also led to a small drop in precision. The CT-GAN Synthesizer, on the other hand,
maintained strong recall while simultaneously improving precision, making it the more
balanced option of the two.
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5. CONCLUSIONS AND FUTURE WORKS

The growth of e-commerce and the increasing use of credit cards have resulted in a significant
rise in credit card fraud, impacting both financial institutions and consumers. Detecting credit
card fraud is a critical yet challenging task due to the complex and evolving nature of
fraudulent activities.

This study contributes to the existing literature by evaluating various imbalanced learning
techniques across five credit card fraud datasets to improve fraud detection performance
while maintaining computational efficiency. By addressing the research question — "What is
the impact of different imbalanced learning techniques on the performance of machine
learning models for credit card fraud detection, and how can these techniques be optimized
for better fraud identification?" — the study provides several key insights. Empirical results
highlight that traditional oversampling methods like ROS and SMOTE variants, consistently
improved model performance when combined with strong classifiers like Random Forest and
XGBoost. These methods not only increased recall, ensuring a higher detection rate of
fraudulent transactions, but also maintained a favorable balance with precision, thereby
minimizing the incidence of false positives. Hybrid methods such as SMOTE-ENN and SMOTE-
Tomek also improved recall while guaranteeing a balanced trade-off with precision. In
contrast, more advanced techniques, including CT-GAN and K-means SMOTE, did not
demonstrate the expected improvements. Instead, these methods occasionally introduced
variability that did not translate into overall performance gains when compared to the simpler
oversampling strategies.

In terms of optimization, the study shows that the effectiveness of imbalanced learning
techniques improves when they are paired with high-performing classifiers, confirming that
XGBoost and Random Forest are the most suited classifiers for credit card fraud detection,
regardless of the sampling method applied. Additionally, tuning hyperparameters through
grid search for all classifiers and imbalanced learning techniques allowed to identify the
optimal combination of imbalanced learning methods and classifier, which improved the
results. Furthermore, evaluating performance with metrics suited for imbalanced data was
crucial for guiding model optimization and ensuring reliable performance comparisons.

Another key contribution of this research is the use of five different datasets to validate the
robustness of imbalanced learning techniques. Most of the studies reviewed in the literature
relied on the same benchmark dataset, limiting their generalizability. Given that fraud
detection datasets vary in size, feature distributions, and fraud-to-non-fraud ratios, relying on
a single dataset may lead to biased conclusions. Some techniques, such as SMOTE, performed
well on datasets with moderate imbalance but struggled with extreme imbalance cases. GAN-
based methods showed potential in generating more realistic fraud instances, but their
performance varied across datasets. These findings emphasize the importance of dataset
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diversity when developing fraud detection models, ensuring that the proposed solutions
generalize well across different real-world scenarios.

Future work could explore additional ensemble methods beyond those tested in this study to
assess their potential for further improving fraud detection performance. Investigating other
ensemble approaches, such as stacked models that combine multiple classifiers and
incorporate anomaly detection methods, could provide valuable insights into optimizing fraud
detection while balancing interpretability and computational efficiency. Additionally, future
studies could also include a broader range of datasets, particularly those with more complex
and high-dimensional characteristics, to determine whether sophisticated generative models
can better capture data patterns in fraud detection. Since the datasets used were very
different from each other, data preprocessing could also be even more tailored to each
dataset according to its unique characteristics and components.
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APPENDIX A

The following table shows the output of the experiments done for all datasets, concerning all

imbalanced learning techniques tested.

Table 6 — Experimental Results

European Dataset

F1 | Recall | Precision ROC- | PR-

Method Classifier AUC | AUC
LR 0.66 | 0.53 0.88 0.97 | 0.75

None RF 0.89 | 0.81 0.98 0.94 | 0.85
XGBoost 0.88 | 0.81 0.97 0.98 | 0.85

LR 0.10 | 0.91 0.05 0.98 | 0.73

SMOTE RF 0.88 | 0.84 0.93 0.97 | 0.85
XGBoost 0.70 | 0.85 0.60 0.99 | 0.86

LR 0.11| 0.91 0.06 0.98 | 0.72

ROS RF 0.88 | 0.80 0.97 0.95 | 0.86
XGBoost 0.88 | 0.82 0.95 0.98 | 0.86

LR 0.34 | 0.86 0.21 0.98 | 0.70

Borderline-SMOTE RF 0.87 | 0.78 0.97 0.95 | 0.84
XGBoost 0.85 | 0.80 0.91 0.98 | 0.85

LR 0.04 | 0.92 0.02 0.98 | 0.66

ADASYN RF 0.88 | 0.83 0.93 0.97 | 0.85
XGBoost 0.66 | 0.84 0.55 0.99 | 0.84

LR 0.10 | 0.92 0.05 0.98 | 0.72

SMOTE-ENN RF 0.82 | 0.85 0.81 0.98 | 0.84
XGBoost 0.61 | 0.85 0.47 0.99 | 0.85

LR 0.11| 0.91 0.06 0.98 | 0.73

SMOTE-Tomek RF 0.88 | 0.84 0.93 0.98 | 0.86
XGBoost 0.63 | 0.83 0.50 0.99 | 0.84

LR 0.82 | 0.76 0.89 0.96 | 0.73

K-means SMOTE RF 0.87 | 0.80 0.95 0.95 | 0.86
XGBoost 0.87 | 0.82 0.92 0.98 | 0.86

LR 0.76 | 0.81 0.71 0.97 0.75

CT-GAN RF 0.84 | 0.834 0.84 0.95 | 0.84
XGBoost 0.86 | 0.80 0.93 0.99 | 0.85

LR 0.83 | 0.80 0.86 0.95 | 0.74

Sycn.l';;lGe?iTer RF 0.86 | 0.84 0.88 0.95 | 0.84
XGBoost 0.86 | 0.82 0.90 0.99 | 0.86
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Simulated Dataset

F1 | Recall | Precision ROC- | PR-

Method Classifier AUC | AUC
LR 0.15| 0.75 0.08 0.86 | 0.20

None RF 0.84 | 0.73 0.98 0.99 | 0.90
XGBoost 0.89 | 0.83 0.95 1.00 | 0.94

LR 0.14 | 0.75 0.08 0.86 | 0.20

SMOTE RF 0.83 | 0.78 0.88 0.99 | 0.87
XGBoost 0.80 | 0.85 0.75 1.00 | 0.90

LR 0.15| 0.75 0.08 0.86 | 0.20

ROS RF 0.86 | 0.78 0.96 0.99 | 0.92
XGBoost 0.59 | 0.97 0.42 1.00 | 0.94

LR 0.18 | 0.74 0.10 0.86 0.20

Borderline-SMOTE RF 0.82 | 0.78 0.86 0.99 | 0.86
XGBoost 0.81| 0.84 0.79 0.99 | 0.89

LR 0.14 | 0.75 0.08 0.86 | 0.20

ADASYN RF 0.82 | 0.77 0.88 0.99 0.87
XGBoost 0.79 | 0.85 0.73 1.00 | 0.89

LR 0.14 | 0.75 0.08 0.86 | 0.20

SMOTE-ENN RF 0.82 | 0.79 0.84 0.99 0.86
XGBoost 0.76 | 0.87 0.68 1.00 | 0.90

LR 0.14 | 0.75 0.08 0.86 | 0.20

SMOTE-Tomek RF 0.82 | 0.78 0.85 0.99 | 0.87
XGBoost 0.77 | 0.87 0.69 1.00 | 0.89

LR 0.07 | 0.48 0.03 0.76 | 0.10

K-means SMOTE RF 0.76 | 0.63 0.94 0.98 | 0.85
XGBoost 0.85 | 0.80 0.90 1.00 | 0.90

LR 0.13 | 0.75 0.07 0.84 | 0.19

CT-GAN RF 0.80 | 0.69 0.96 0.98 | 0.88
XGBoost 0.88 | 0.81 0.96 1.00 | 0.93

LR 0.17 | 0.59 0.10 0.83 | 0.17

Syi;ii‘::er RF 0.72 | 0.72 0.71 0.98 | 0.78
XGBoost 0.85 | 0.77 0.94 1.00 | 0.90
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IEEE-CIS Dataset

F1 | Recall | Precision ROC- | PR-

Method Classifier AUC | AUC
LR 0.16 | 0.68 0.09 0.78 0.17

None RF 0.61 | 0.46 0.91 0.92 | 0.69
XGBoost 0.56 | 0.41 0.88 0.92 | 0.63

LR 0.16 | 0.68 0.09 0.78 0.17

SMOTE RF 0.63 | 0.52 0.81 0.91 | 0.66
XGBoost 0.54 | 0.46 0.64 0.89 | 0.54

LR 0.16 | 0.68 0.09 0.78 0.17

ROS RF 0.65 | 0.52 0.85 0.92 | 0.69
XGBoost 0.34 | 0.80 0.21 0.93 | 0.59

LR 0.16 | 0.66 0.09 0.78 0.17

Borderline-SMOTE RF 0.62 | 0.51 0.81 0.91 0.65
XGBoost 0.53 | 0.42 0.70 0.90 | 0.54

LR 0.15| 0.70 0.09 0.78 0.17

ADASYN RF 0.62 | 0.51 0.80 0.91 0.65
XGBoost 0.53 | 0.43 0.69 0.89 | 0.54

LR 0.15| 0.69 0.09 0.78 0.17

SMOTE-ENN RF 0.61| 0.53 0.72 0.91 0.63
XGBoost 0.53 | 0.50 0.58 0.89 | 0.54

LR 0.16 | 0.68 0.09 0.78 | 0.16

SMOTE-Tomek RF 0.62 | 0.50 0.82 091 | 0.65
XGBoost 0.54 | 0.46 0.64 0.89 | 0.55

LR 0.07 | 0.08 0.07 0.63 | 0.06

K-means SMOTE RF 0.62 | 0.49 0.84 0.91 | 0.66
XGBoost 0.53 | 0.39 0.85 0.91 | 0.59

LR 0.17 | 0.57 0.10 0.75 | 0.16

CT-GAN RF 0.61 | 0.46 0.90 0.92 | 0.69
XGBoost 0.54 | 0.39 0.88 0.91 | 0.60

LR 0.17 | 0.59 0.10 0.76 | 0.16

Sycn.l';;lGe?iTer RF 0.60 | 0.45 0.89 0.92 | 0.68
XGBoost 0.54 | 0.39 0.87 0.91 | 0.60
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Synthetic Dataset

F1 | Recall | Precision ROC- PR-

Method Classifier AUC AUC
LR 045 | 031 0.78 0.96 0.44

None RF 0.86 | 0.77 0.98 0.99 0.91
XGBoost 0.87 | 0.79 0.97 1.00 0.93

LR 0.05 | 0.93 0.03 0.99 0.56

SMOTE RF 0.71| 0.97 0.56 1.00 0.96
XGBoost 0.32 | 0.99 0.19 1.00 0.94

LR 0.04 | 091 0.02 0.98 0.50

ROS RF 0.87 | 0.81 0.94 0.99 0.92
XGBoost 0.37 | 0.99 0.23 1.00 0.94

LR 0.04 | 0.92 0.02 0.98 0.50

Borderline-SMOTE RF 0.79 | 0.92 0.69 1.00 0.93
XGBoost 0.60 | 0.93 0.45 1.00 0.92

LR 0.03 | 0.96 0.02 0.99 0.55

ADASYN RF 0.60 | 0.97 0.43 1.00 0.95
XGBoost 0.27 | 1.00 0.16 1.00 0.93

LR 0.04 | 0.91 0.02 0.98 0.52

SMOTE-ENN RF 0.67 | 0.97 0.51 1.00 0.95
XGBoost 0.29 | 0.99 0.17 1.00 0.93

LR 0.04 | 091 0.02 0.98 0.50

SMOTE-Tomek RF 0.71 | 0.97 0.56 1.00 0.95
XGBoost 0.30 | 0.99 0.18 1.00 0.94

LR 0.10 | 0.69 0.05 0.96 0.48

K-means SMOTE RF 0.85 | 0.82 0.87 0.99 0.90
XGBoost 0.83 | 0.80 0.85 1.00 0.90

LR 0.02 | 0.92 0.01 0.97 0.51

CT-GAN RF 0.86 | 0.77 0.98 0.99 0.91
XGBoost 0.88 | 0.80 0.97 1.00 0.93

LR 0.04 | 0.89 0.02 0.98 0.48

Sycn.l';;lGe?iTer RF 0.43 | 0.81 0.30 0.99 0.74
XGBoost 0.31| 0.79 0.19 0.99 0.71
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Unnamed Dataset

F1 | Recall | Precision ROC- | PR-

Method Classifier AUC | AUC
LR 0.70 | 0.94 0.56 0.98 | 0.76

None RF 1.00 | 1.00 1.00 1.00 1.00
XGBoost 0.99 | 0.99 0.99 1.00 | 1.00

LR 0.70 | 0.95 0.56 0.98 | 0.76

SMOTE RF 1.00 | 1.00 1.00 1.00 1.00
XGBoost 0.99 | 1.00 0.98 1.00 | 1.00

LR 0.70 | 0.94 0.56 0.98 | 0.76

ROS RF 1.00 | 1.00 1.00 1.00 1.00
XGBoost 0.99 | 1.00 0.98 1.00 | 1.00

LR 0.72 | 0.95 0.58 0.98 | 0.76

Borderline-SMOTE RF 1.00 | 1.00 1.00 1.00 1.00
XGBoost 1.00 | 1.00 0.99 1.00 | 1.00

LR 0.70 | 0.97 0.54 0.98 0.71

ADASYN RF 1.00 | 1.00 1.00 1.00 1.00
XGBoost 0.99 | 1.00 0.98 1.00 | 1.00

LR 0.70 | 0.95 0.56 0.98 | 0.76

SMOTE-ENN RF 1.00 | 1.00 1.00 1.00 1.00
XGBoost 0.98 | 1.00 0.97 1.00 | 1.00

LR 0.70 | 0.95 0.56 0.98 | 0.76

SMOTE-Tomek RF 1.00 | 1.00 1.00 1.00 | 1.00
XGBoost 0.99 | 1.00 0.97 1.00 | 1.00

LR 0.69 | 0.56 0.90 0.96 | 0.78

K-means SMOTE RF 1.00 | 1.00 1.00 1.00 | 1.00
XGBoost 0.99 | 0.99 1.00 1.00 | 1.00

LR 0.69 | 0.95 0.55 0.98 | 0.76

CT-GAN RF 1.00 | 1.00 1.00 1.00 | 1.00
XGBoost 0.99 | 0.99 1.00 1.00 | 1.00

LR 0.70 | 0.92 0.57 0.98 | 0.72

Sycn.l';;lGe?iTer RF 0.97 | 1.00 0.94 1.00 | 1.00
XGBoost 0.96 | 1.00 0.93 1.00 | 1.00
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