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ABSTRACT 

Credit card fraud is a growing concern for financial institutions and consumers, leading to 

significant financial losses and increased security risks. One of the main challenges in fraud 

detection is the extreme class imbalance, where fraudulent transactions make up only a tiny 

fraction of all transactions. This imbalance makes it difficult for machine learning models to 

correctly identify fraud, as they tend to be biased toward the majority class. This paper 

explores and compares the implementation of various imbalanced learning techniques, 

including SMOTE, ROS, Borderline-SMOTE, ADASYN, K-means SMOTE, SMOTE-ENN, SMOTE-

Tomek, CT-GAN, and CT-GAN Synthesizer. The goal is to assist in the selection of high-

performance imbalanced learning techniques for fraud detection, ensuring its applicability 

and robustness across imbalanced fraud datasets. Empirical results of extensive experiments 

with 5 datasets show that traditional oversampling methods like ROS and SMOTE variants, 

consistently improved model performance when combined with strong classifiers like Random 

Forest and XGBoost. These methods not only increased recall, ensuring a higher detection rate 

of fraudulent transactions, but also maintained a favorable balance with precision, reducing 

the risk of flagging legitimate transactions as fraudulent. In contrast, more advanced 

techniques, including GAN’s and K-means SMOTE, did not demonstrate the expected 

improvements. Instead, these methods occasionally introduced variability that did not 

translate into overall performance gains when compared to the traditional oversampling 

strategies. 
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1. INTRODUCTION 

Credit card fraud is a significant and evolving threat to financial institutions and consumers 

worldwide, as the increasing volume of online transactions has led to more sophisticated 

fraudulent activities (Vanini, Rossi, Zvizdic, & Domenig, 2023). It refers to the unauthorized 

use of a credit card or its information to make purchases or withdraw money without the 

cardholder’s consent. It typically involves fraudsters obtaining sensitive information like credit 

card numbers, CVV codes, or personal identification numbers (PINs) through various methods, 

such as phishing, data breaches, or card skimming devices. These details are then used to 

make fraudulent transactions, either by making direct purchases or selling the stolen data on 

the dark web, resulting in substantial financial losses and reputational damage to financial 

institutions (Alamri & Ykhlef, 2022). 

 

In 2021 alone, global losses from credit card fraud amounted to $32.34 billion, with 

projections indicating that these losses could exceed $38.5 billion by 2027 (Nilson Report, 

2022). According to a report published by Security.org (2024),  60% of U.S. credit cardholders 

have experienced fraud, and 45% have experienced fraud multiple times in 2023. The 

increasing volume of online transactions, driven by the expansion of e-commerce, has 

amplified the complexity and scale of fraudulent activities, posing substantial challenges for 

fraud detection systems (Vanini et al., 2023). As a result, the demand for effective fraud 

detection mechanisms has never been more urgent.  

 

In response to these challenges, throughout the years, machine learning has emerged as a 

powerful tool for fraud detection (Ngai, Hu, Wong, Chen, & Sun, 2011). By analyzing large 

datasets and identifying complex patterns that may indicate fraudulent activity, machine 

learning algorithms can significantly improve the accuracy and efficiency of detecting 

fraudulent transactions (Ngai et al., 2011). Anomaly detection techniques have been 

employed in credit card fraud detection to discover nonconforming patterns in credit card 

transactions referred to as ‘oddities’ that can translate to fraudulent activities (Alamri & 

Ykhlef, 2022). Anomaly detection systems train a model on normal transactions using a variety 

of techniques to catch novel frauds. Classification algorithms such as Neural Networks, 

Decision Trees, Bayesian approaches, Random Forests, K-nearest neighbors, and Support 

Vector Machines have been used to detect fraudulent transactions in consumer behavior 

(Roy, Sun, Mahoney, Alonzi, Adams, & Beling, 2018). 

However, researchers have been discussing several challenges in the detection of financial 

fraud (Hilal, Gadsden, Yawney, 2022). One of the most significant challenges in credit card 

fraud detection is the highly imbalanced nature of most fraud datasets, where fraudulent 

transactions represent a tiny fraction of the total (Dal Pozzolo, Boracchi, Caelen, Alippi, & 

Bontempi, 2017). The class imbalance problem in machine learning refers to classification 

tasks in which classes of data are not equally represented. According to different articles 
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(Krivko, 2010; Dal Pozzolo, Johnson, Caelen, Waterschoot, Chawla, & Bontempi, 2014), frauds 

are typically less than 1% of the overall transactions. Machine learning models trained on such 

imbalanced data often fail to correctly identify fraudulent activities, leading to high false-

positive rates (Alamri & Ykhlef, 2022). The nature of fraudulent transactions often implies a 

heavy skew in the class distribution of this binary classification problem, i.e., in identifying 

fraudulent or non-fraudulent transactions. As many algorithms aim to maximize classification 

accuracy, the essential assumption of classification algorithms is that the data is balanced, 

which induces bias in modeling towards the majority class (Muaz, Jayabalan, & Thiruchelvam, 

2020). A classifier can achieve high accuracy scores even when it does not correctly predict a 

single minority class instance. For instance, a trivial classifier that scores all credit card 

transactions as legit will score an accuracy of 99.9%, assuming that 0.1% of transactions are 

fraudulent; however, in this case, all fraudulent cases remain undetected. 

Imbalanced learning techniques designed to enhance classification in the presence of class 

imbalance can be grouped into three main categories: data-level methods, algorithm-level 

methods, and hybrid approaches (Soh & Yusuf, 2019). 

Data-level methods aim to change the class distribution towards a more balanced one to avoid 

the majority class’s influence on the findings (Alamri & Ykhlef, 2022). This approach is divided 

into oversampling, undersampling, and hybrid sampling. Oversampling consists of adding 

instances to the minority class using duplicating existent samples or generating new ones 

while undersampling resamples the data by removing cases from the majority class. Because 

undersampling removes data, such methods face the risk of losing important concepts (Alamri 

& Ykhlef, 2022), while oversampling may lead to overfitting when observations are merely 

duplicated (Mînăstireanu & Meșniță, 2020). Hybrid sampling is a group of techniques that 

balances data by mixing oversampling and undersampling strategies. The goal of hybrid 

sampling is to overcome the limitations of oversampling and undersampling when applied 

alone (Khushi, Shaukat, Alam, Hameed, Uddin, Luo, Yang, & Reyes, 2021). 

Algorithm-level methods, on the other hand, focus on adapting the learning algorithm itself 

to account for imbalances, often by altering the model’s decision boundaries or assigning 

higher costs to misclassifying minority class instances (Alamri & Ykhlef, 2022). Within 

algorithm-level methods, there are two main approaches: cost-sensitive learning and 

ensemble learning (Shi, Li, Zhu, Yang, & Xu, 2023). Cost-sensitive methods aim to provide 

classification algorithms with different misclassification costs for each class. Alternatively, 

ensemble learning combines multiple models to improve overall performance. When 

combined with sampling techniques, these methods have proven to produce better results 

than other algorithms for datasets with class imbalance problems (Khan, Chaudhari, & 

Chandra, 2024).   

Lastly, Hybrid approaches combine the benefits of both data and algorithm-level methods, 

optimizing performance through a more balanced dataset and an adjusted learning algorithm 

(Alamri & Ykhlef, 2022). In this approach, data-level methods modify the data distribution to 
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reduce the degree of the imbalanced data, whereas algorithm-level methods adjust the 

learning process to enhance classifier performance (Shi et al., 2023). 

Another challenge in detecting fraudulent activities is understanding what “normal” behavior 

looks like in credit card transactions. Establishing a clear boundary between normal and 

anomalous behavior is challenging and lacks precision, which often leads to the 

misclassification of fraudulent transactions (Hilal et al., 2022). The notion of fraud also varies 

in the financial domain since a deviation of a certain degree might be considered normal (Hilal 

et al., 2022). For instance, if a person typically makes small, local purchases and suddenly 

spends a large sum at a foreign location, it might be seen as suspicious. However, if this same 

individual regularly travels and occasionally makes larger purchases abroad, that same 

transaction could be considered normal. This variability makes it difficult to standardize what 

constitutes a fraud, as certain behaviors could represent both legitimate and fraudulent 

activity, depending on the cardholder's profile and circumstances (Sulaiman, Nadher, & 

Hameed, 2024). 

Furthermore, the idea of the current normal behavior of credit card transactions may not be 

representative enough of the future, as the increasing volume of online transactions has led 

to more sophisticated fraudulent activities, ultimately increasing the difficulty of the detection 

of fraud (Vanini et al., 2023). 

Another concerning issue is the nature of the datasets available for research and model 

development. Due to privacy concerns, real-world transaction data is often anonymized, 

making it difficult to work with basic features such as customer identities, transaction 

locations, and other specific card details. This anonymization is done through techniques such 

as Principal Component Analysis (PCA) (Kulatilleke, 2017). For instance, datasets available for 

research, like the well-known European credit card dataset from the Machine Learning Group, 

contain anonymized variables (V1-V28) to remove any direct identifiers, leaving only 

abstracted data that still represents the core transactional details, such as transaction time 

and amount. This ensures that all personally identifiable information is either anonymized or 

removed from the dataset to avoid the misuse of personal data (Kennedy, Villanustre, 

Khoshgoftaar, & Salekshahrezaee, 2024). However, this anonymization limits the 

interpretability of the features and the ability to directly relate the dataset variables to real-

world concepts since it is not possible to obtain semantic information from certain variables, 

thus complicating the development of effective fraud detection models by removing 

potentially informative features that could improve fraud prediction performance (Kulatilleke, 

2017). 

Besides privacy concerns, PCA is also used to reduce the dimensionality of credit card fraud 

since these datasets usually contain a large number of features (Hilal et al., 2022). When 

working in high-dimensional environments, anomalies often become hidden and unnoticed, 

which is also known as the curse of dimensionality (Zimek, Schubert, & Kriegel, 2012). In that 

sense, one can use PCA to transform the original features into new and uncorrelated variables 
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called principal components, reducing the number of original features (Lever, Krzywinski, & 

Altman, 2017). However, capturing intricate interactions among features in a high-

dimensional space remains a significant challenge, especially for identifying fraudulent 

transactions that can manifest in subtle ways across multiple dimensions (Hilal et al., 2022). 

Ensuring that essential information is retained in this reduced feature space is vital for 

effective fraud detection. The heterogeneous nature of fraud further complicates this process, 

as various fraudulent activities can present diverse patterns within the data, making it difficult 

to maintain all relevant information during dimensionality reduction (Hilal et al., 2022). 

Besides the limited availability of balanced datasets, credit card fraud datasets are rarely 

available in general (Alamri & Ykhlef, 2022). This limitation arises from the sensitive nature of 

financial data, which often leads researchers to rely on the same datasets in their studies 

(Kulatilleke, 2022). A notable example is the European credit card dataset from the Machine 

Learning Group, as previously mentioned, which has been widely used in fraud detection 

research over the years (Muaz et al., 2020; Itoo, Meenakshi, & Singh, 2021; Chole, Mukherjee, 

Gaikwad, Gawai, Bagde, Mahule, & Pawar, 2022; Bhakta, Ghosh, & Sadhukhan, 2023). This 

specific dataset has 284.807 credit card transactions related to a two-day period in September 

2013 by European cardholders. Out of 284.807 transactions, there are 492 or 0.172% 

fraudulent transactions, indicating highly imbalanced data. Features are encoded in 28 

principal components. Due to PCA encoding, it is not possible to obtain any semantic 

information from the features, except for the transaction date and amount. It is important to 

note that most contributions and results obtained from this dataset are specific to its 

characteristics and may not be easily generalized to other credit card fraud detection contexts. 

This dataset’s unique features, such as only containing numerical features resulting from PCA, 

limit its applicability to broader fraud detection systems, highlighting the need for more 

diverse datasets in future research (Sinap, 2024). 

Given the challenges of credit card fraud detection, particularly the highly imbalanced nature 

of fraudulent transactions and the limitations of currently available datasets, choosing the 

right sampling technique becomes a critical step for improving the performance of classifiers. 

Therefore, this thesis focuses on the following research questions: What is the impact of 

different imbalanced learning techniques on the performance of machine learning models for 

credit card fraud detection, and how can these techniques be optimized for better fraud 

identification? 

There are 5 main objectives that will guide this research: 

• Compare the effectiveness of different imbalanced learning techniques in addressing 

data imbalance in credit card fraud. 

• Assess the performance of different classifiers when trained on datasets processed 

with different imbalanced learning techniques. 

• Identify the optimal combination of imbalanced learning methods and classifier 

hyperparameters. 
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• Determine whether imbalanced learning techniques consistently improve fraud 

detection across multiple datasets or if their effectiveness varies.  

• Evaluate the trade-offs between improving fraud detection rates and increasing false 

positives due to imbalanced learning techniques. 

The remainder of this work is organized as follows. Section 2 presents a review and a summary 

of currently available imbalanced learning approaches. Special attention is paid to the related 

work on the use of imbalanced learning techniques in the context of credit card fraud 

detection. Section 3 presents the proposed framework to evaluate and compare the 

imbalanced learning techniques established. The experimental results and discussion are 

shown in section 4, followed by section 5, which presents the conclusions and future works.   
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2. LITERATURE REVIEW 

2.1. IMBALANCED LEARNING APPROACHES 

The most prevalent challenge that researchers face dealing with credit card fraud detection is 

that fraud datasets are often imbalanced (Alamri & Ykhlef, 2022; Ahmad, Kasasbeh, 

Aldabaybah, & Rawashdeh, 2022; Mienye & Sun, 2023). Most datasets are highly imbalanced 

since genuine credit card transactions significantly outnumber fraudulent transactions 

(Btoush, Zhou, Gururaian, Chan, & Tao, 2021). 

Imbalanced learning techniques have been used in this context to address imbalanced data 

(Alamri & Ykhlef, 2022; Kaur, Pannu, & Malhi, 2019). These techniques can be categorized into 

three main types: the data-level, algorithm-level, and hybrid approaches (Soh & Yusuf, 2019). 

These approaches impact different phases of the learning process, where the data-level can 

be seen as a pre-processing step, while the algorithm-level implies a more customized and 

complex intervention in the algorithms, and the hybrid approach combines both techniques. 

In this section, we focus on previous work related to sampling techniques and ensemble 

learning methods while briefly explaining cost-sensitive solutions. 

2.1.1. Data-Level Approach 

The use of data-level methods in imbalanced learning applications involves the modification 

of an imbalanced dataset by removing the majority class instances and/ or generating artificial 

minority instances to provide a balanced distribution (Alamri & Ykhlef, 2022). The data-level 

approach has three subgroups of techniques: undersampling, oversampling, and hybrid 

methods (Tarekegn, Giacobini, & Michalak, 2021). We will be focusing on oversampling 

techniques as they are the most common approach to imbalanced learning in machine 

learning in general and credit card fraud in particular (Alamri & Ykhlef, 2022; Dal Pozzolo et 

al., 2017) while providing a brief explanation of undersampling and hybrid solutions. 

2.1.1.1. Oversampling 

Oversampling rebalances datasets by duplicating existing observations or generating new 

artificial instances belonging to the minority classes (Chawla et al., 2002). Unlike with the 

undersampling strategy, no valuable information is lost. However, when applied alone, 

researchers found that oversampling can lead to overfitting that may cause higher accuracy 

of the detection model due to the duplication of instances and overlapping, especially if the 

dataset is vast and highly unbalanced (Mînăstireanu & Meșniță, 2020; Khushi et al., 2021). 

Several oversampling techniques have been proposed and developed in the past. Random 

oversampling (ROS) is a simple approach that randomly duplicates instances of the minority 

class until the desired balance between classes is met, which makes it easier to implement 

(Chawla et al., 2002). However, since the generated samples are merely replicates of the 
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original data, classifiers being trained on randomly oversampled data are more prone to 

overfit (Batista, Prati, & Monard, 2004; Chawla, Japkowicz, & Kołcz, 2004). 

In 2002, Chawla et al. proposed the Synthetic Minority Oversampling Technique (SMOTE) 

algorithm, which prevents the risk of oversampling faced by the previous method since it 

generates artificial data instead of duplicating it. SMOTE generates synthetic instances 

through linear interpolation between a randomly chosen minority class sample and one of its 

nearest minority neighbors (Chawla et al., 2002). As shown in Figure 1, the process involves 

three steps: selecting a random minority instance 𝑎⃗, identifying one of its k nearest neighbors 

𝑏⃗⃗, and then creating a synthetic point 𝑥⃗ using the formula 𝑥⃗ = 𝑎⃗ + 𝑤 × (𝑏⃗⃗ − 𝑎⃗), where 𝑤 is 

a random weight between 0 and 1. 

 

Figure 1 – SMOTE linearly interpolates a randomly selected minority sample and one of its 
𝑘 =  4 nearest neighbors, adopted from (Douzas, Bacao, & Last, 2018) 

This method was developed to improve the simple random oversampling technique. However, 

it also has its own drawbacks in managing noise and class imbalance, as presented in Figure 2. 

While SMOTE effectively addresses between-class imbalance by uniformly selecting minority 

instances for synthetic generation (Douzas, Bacao, & Last, 2018), it does not resolve within-

class imbalance or the issue of small disjuncts. As a result, regions densely populated with 

minority samples tend to become even more concentrated, while sparsely populated areas 

may continue to lack sufficient representation, potentially leading to underrepresented 

concepts in the dataset (Prati, Batista, & Monard, 2004). Additionally, a significant drawback 

of SMOTE is its vulnerability to generating noise, as it does not differentiate between regions 

where classes overlap and the “safe” areas where minority samples are more isolated 

(Bunkhumpornpat, Sinapiromsaran, & Lursinsap, 2009).  

The algorithm treats all minority instances equally, without prioritizing those near the decision 

boundary. As a result, samples located far from the boundary are oversampled with the same 

likelihood as those situated close to it. Research suggests that classifiers might perform better 

if samples were generated closer to the boundary (Han, Wang, & Mao, 2005). 
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Figure 2 – Behavior of SMOTE in the presence of noise and within-class imbalance, adopted 
from (Douzas, Bacao, & Last, 2018) 

Although SMOTE has certain limitations, it remains a widely accepted benchmark technique 

for handling imbalanced datasets. Over time, numerous adaptations and enhancements have 

been introduced to address its shortcomings and boost its effectiveness across various 

contexts. 

Focusing its attention on the decision boundary, in 2005, Han et al. proposed the Borderline-

SMOTE technique as an improved version of SMOTE that involves oversampling only the 

borderline of the minority class. Borderline-SMOTE oversamples the borderline data of the 

minority class, whereas SMOTE and random oversampling augment the minority class by using 

all or a random subset of the minority class (Han et al., 2005). There are two types of 

Borderline-SMOTE: Borderline-SMOTE1 and Borderline-SMOTE2. Borderline-SMOTE1 

modifies the original SMOTE algorithm by replacing the random selection of samples with a 

more focused approach that prioritizes instances near the decision boundary between classes 

(Han et al., 2005). The method evaluates the labels of a sample’s k nearest neighbors to 

determine whether it should be discarded as noise, retained due to its proximity to the 

boundary, or ignored for being too distant from it (Han et al., 2005). In contrast, Borderline-

SMOTE2 builds upon this approach by enabling interpolation between a minority instance and 

one of its majority class neighbors. The interpolation weight is set to less than 0.5, ensuring 

that the synthetic sample remains closer to the minority class instance (Han et al., 2005). 

In 2008, He et al. proposed the Adaptive Synthetic Sampling (ADASYN) method, which 

dynamically generates synthetic minority class samples based on their distribution 

characteristics. This technique emphasizes generating more synthetic data for minority 

instances that are difficult to classify, thereby placing greater focus on complex regions of the 

feature space. This strategy aims to reduce the bias caused by class imbalance and adjusts the 

decision boundary to better capture challenging cases (Zou, 2021). Compared to Borderline-
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SMOTE, ADASYN concentrates more intensely on areas where class overlap is most significant 

(He, Bai, Garcia, & Li, 2008). 

In 2018, Douzas et al. introduced the K-means SMOTE method, which combines the K-means 

clustering technique with the SMOTE to improve the oversampling process for imbalanced 

datasets. Empirical results show this method outperforms other oversampling techniques in 

the majority of cases since it avoids noise generation by ensuring that oversampling occurs 

primarily in safe regions (Douzas et al., 2018). It also focuses on both between-class and 

within-class imbalance, and mitigates the small disjuncts problem by increasing the 

representation of minority instances in sparsely populated areas (Douzas et al., 2018). An 

overview of the algorithm is presented in Figure 3. 

 

Figure 3 – K-means SMOTE oversamples safe areas and combats within-class imbalance, 
adopted from (Douzas, Bacao, & Last, 2018) 

However, the application of this oversampler still remains underexplored in fraud detection. 

Researchers found that its performance is inconsistent across different credit card fraud 

datasets, and there is limited discussion on why clustering fails in some cases (Mahboob Alam, 

Shaukat, Hameed, Luo, Sarwar, Shabbir, Li, & Khushi, 2020). Furthermore, finding the optimal 

number of clusters and other hyperparameters is yet to be guided by rules of thumb (Douzas 

et al., 2018), which could be established through further analysis of the relationship between 

optimal hyperparameters and the specific characteristics of each dataset. 
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Researchers have also argued that synthetic data generative methods are one of the most 

effective approaches to dealing with imbalanced data (Assefa, Dervovic, Mahfouz, Tillman, 

Reddy, & Veloso, 2020; Lee, & Park, 2021). Among generative methods, one of the most 

popular is Generative Adversarial Networks (GANs) developed by Goodfellow et al. (2014). 

GANs have first revolutionized the area of generating synthetic images, as they can generate 

realistic images and videos (Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, 

Courville, & Bengio, 2014; Lu, Wu, Tai, & Tang, 2018). Due to their generative capability, GANs 

resemble an oversampling data-level approach (Sauber-Cole & Khoshgoftaar, 2022). GANs are 

based on the idea of competition, which consists of two neural networks trying to outsmart 

each other: the generator 𝐺 and the discriminator 𝐷. The generator aims to generate realistic 

data from a batch of samples, while the discriminator distinguishes the synthetic data from 

the real data (Goodfellow et al., 2014). 

To model the generator’s distribution 𝑝𝑔 over data 𝑥, the generator learns a mapping function 

from a prior noise distribution 𝑝𝑧(𝑧) to the data space through the function 𝐺(𝑧; 𝜃𝑔). The 

discriminator 𝐷(𝑥; 𝜃𝑑), on the other hand, produces a scalar output indicating the likelihood 

that a given sample 𝑥 originates from the real training data rather than from the generator’s 

distribution 𝑝𝑔. During training, the parameters of both neural networks are updated in an 

adversarial manner until the discriminator is no longer able to reliably distinguish between 

real and generated samples (Goodfellow et al., 2014). Figure 4 represents the block diagram 

of a GAN. 

 

Figure 4 – General block diagram of Generative Adversarial Networks, adopted from 
(Bollepalli, Juvela, & Alku, 2017) 

Throughout the years, multiple GAN variants have been proposed to expand GAN’s 

applicability, including to generate artificial samples in tabular settings (Khan et al., 2024; 

Sauber-Cole & Khoshgoftaar, 2022; Cai, Xiong, Xu, Wang, Li, & Pan, 2021). Because GANs 

generate instances that do not represent random replications of existing instances without 

removing important information, researchers have argued that using GANs is a more effective 

technique for handling the imbalanced class problem compared to other machine learning 

techniques, including in the context of fraud detection (Ba, 2019; Sethia, Patel, & Raut, 2018; 

Liu & Lang, 2019). Several studies report that GANs performance on imbalanced datasets is 

superior to other imbalanced learning methods (Strelcenia & Prakoonwit, 2023). For instance, 
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a relative study was conducted on the performances of GANs with other sampling methods, 

such as SMOTE, and concluded that GANs can be more effective in mitigating the class 

imbalanced problem (Ngwenduna & Mbuvha, 2021). Furthermore, this method has been 

proven to be highly robust towards overlapping and overfitting due to its ability to understand 

hidden structures of data and their flexibility (Charitou, Dragicevic, & Garcez, 2021). 

In 2014, Mirza et al. proposed the Conditional Generative Adversarial Network (cGAN), which 

extends the GAN model by conditioning the training procedure on external information 𝑦 

coming from the training data. The conditioning can be performed by feeding 𝑦 into both the 

discriminator and generator as an additional input layer. Figure 5 illustrates the structure of a 

simple conditional adversarial network. 

 

Figure 5 – Conditional Generative Adversarial Network, adopted from (Mirza & Osindero, 
2014). 

In the generator, 𝑦 and the prior input noise 𝑝𝑧(𝑧) are combined into a joint hidden 

representation of a multi-layer perceptron (MLP), with the adversarial training framework 

allowing significant flexibility in determining the composition of this hidden representation 

(Mirza & Osindero, 2014). In the discriminator, 𝑥 and 𝑦 are provided as inputs to a 

discriminative function, embodied again by a MLP in this case (Mirza & Osindero, 2014). 

Several studies have tested cGANs ability to generate synthetic data with high fidelity for 

imbalanced data. Douzas and Bacao (2018) used cGAN as an oversampling approach for binary 

class imbalance data on 71 datasets with different imbalance ratios and number of features. 

The proposed method was compared to ROS, SMOTE, Borderline SMOTE, ADASYN, and 

Cluster-SMOTE. For the evaluation of the oversampling methods, LR, SVM, KNN, DT, and GBM 

were used. Results showed cGAN performs better than other methods for most classifiers, 

evaluation metrics, and datasets. In fact, cGAN outperformed all other methods for any 

evaluation metrics when DT is used as a classifier. The authors concluded that this 

improvement in performance is due to the ability of cGAN to recover the distribution of the 
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training data, if given the proper time and enough capacity. Compared to standard 

oversampling methods, once the training is finished, the cGAN can generate instances of the 

minority class in a simple and effective way while accepting the noise and the label of the 

minority class as input and outputs the generated data (Douzas & Bacao, 2018). However, the 

authors highlight the need for more efficient ways to train the two neural networks in the 

context of the imbalanced learning problem (Douzas & Bacao, 2018). 

On the other hand, GANs pose unique challenges to model realistic tabular data due to the 

need to simultaneously model discrete and continuous variables, the multi-modal non-

Gaussian values within each continuous column, and the severe imbalance of categorical 

classes (Xu, Skoularidou, Cuesta-Infante, & Veeramachaneni, 2019). 

To address the issues mentioned above, Xu et al. (2019) proposed a conditional tabular GAN 

(CT-GAN), which is an extension of cGANs, to generate synthetic tabular data. Its goal is to 

resample efficiently in a way that all categories from discrete attributes are sampled evenly 

during the training process and to recover the real data distribution during the test phase (Xu 

et al., 2019). Similarly to cGANs, CT-GAN uses a conditional generator that can generate 

synthetic rows conditioned on one of the discrete columns. In CT-GAN, the mode-specific 

normalization technique is leveraged to deal with columns that contain non-Gaussian and 

multi-modal distributions, while a conditional generator and training-by-sampling methods 

are used to combat class imbalance problems. The process starts by randomly selecting a 

discrete column 𝐷𝑖  out of all the 𝑁𝑑 total columns, with equal probability. For example, in 

Figure 6, the column selected was 𝐷2, which means the selected column’s index will be 2. With 

training-by-sampling, the vector cond and training data are sampled according to the log 

frequency of each category. Thus, CT-GAN can evenly explore all possible discrete values (Xu 

et al., 2019). 

 

Figure 6 – The CT-GAN Model, adopted from Xu et al. (2019) 

In 2021, Ferreira et al. introduced a novel generative framework called Duo-GAN, as 

demonstrated in Figure 7. The proposed method uses two GAN generators to handle the 

imbalance problem, one generator for fraudulent instances and another for legitimate 
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instances. This approach allows each GAN to learn the underlying distributions of data for each 

class, addressing the challenge of overexposure to non-fraudulent transactions commonly 

seen in single-GAN models (Ferreira, Lourenço, Cabral, & Fernandes, 2021). The Duo-GAN 

architecture was developed in the context of imbalanced learning in credit card fraud 

detection, proving to outperform single GAN generator models (Ferreira et al., 2021)., as 

further explained in the next section. 

 

Figure 7 – The architecture of the Duo-GAN, adopted from (Ferreira et al., 2021) 

In general, GANs have demonstrated considerable effectiveness in addressing class imbalance 

problems. Their deep neural network architectures allow them to capture complex data 

patterns, making them robust against issues like overfitting and class overlap. (Strelcenia & 

Prakoonwit, 2023). In addition, GANs have also achieved significant progress in credit card 

fraud detection by generating synthetic fraudulent samples, which improve model training 

efficacy (Strelcenia & Prakoonwit, 2023). However, the inherent complexity of GANs 

introduces challenges during training, such as instability and mode collapse, stemming from 

the adversarial, game-theoretic training of two neural networks simultaneously (Zhou, Zhang, 

Lv, Shi, & Chang, 2019). Another challenge regarding GANs for data augmentation in the 

context of credit card fraud detection is that the generated samples may not be representative 

enough of real-world fraudulent transactions (Niu, Wang, & Yang, 2019). Therefore, it is crucial 

to rigorously assess the quality and representativeness of synthetic data to ensure it 

accurately reflects real-world scenarios and is beneficial for training predictive models (Niu et 

al., 2019; Mullick, Datta, & Das, 2020). 

2.1.1.2. Undersampling 

Undersampling involves reducing the size of the original dataset by removing instances from 

the majority class to balance the data according to the minority class (Kubát & Matwin, 1997). 

This method addresses the class imbalance problem and increases the computational 

efficiency of the classification models, as it reduces the number of samples the model needs 
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to process (Xie et al., 2021). As a result, undersampling can be advantageous in scenarios 

where computational resources or time are limited, allowing for faster model training. 

On the other hand, despite its computational benefits, undersampling has significant 

drawbacks. According to previous studies (Alamri & Ykhlef, 2022; Mahboob Alam et al., 2020), 

it may also result into information loss by eliminating instances from the majority class, which 

can be detrimental to the quality of the results, raising the false-positive rate and increasing 

the cost of investigations. 

Random undersampling (RUS) is one of the simplest approaches, where instances from the 

majority class are randomly removed until the dataset achieves a desired class distribution 

(Batista et al., 2004). Despite its simplicity, this method has a significant flaw due to the loss 

of potentially important information that is pertinent to the classifiers since one cannot 

control what information about the majority class is eliminated (Mînăstireanu & Meșniță, 

2020). 

Tomek Links, Edited Nearest Neighbor, Near Miss, and cluster centroid undersampling are also 

frequently used undersampling techniques (Alamri & Ykhlef, 2022). Tomek Links is an 

undersampling method that identifies pairs of samples from different classes that are each 

other’s nearest neighbors and removes the majority class sample from the pair (Tomek, 1976). 

This process refines the decision boundary by eliminating overlapping majority samples, 

thereby improving model performance in highly imbalanced scenarios (Batista et al., 2004). 

Edited Nearest Neighbors (ENN) extends this concept by removing the majority of samples 

misclassified by their k-nearest neighbors, further cleaning the dataset and reducing noise 

(Wilson, 1972). 

Near Miss is an undersampling approach designed to reduce information loss when 

downsampling the majority class (Mani & Zhang, 2003). It operates by calculating average 

distances between majority class samples and points from the minority class to preserve those 

instances most informative for defining the class boundary. The method includes three 

variants, each targeting a clearer separation between classes (Mani & Zhang, 2003). NearMiss-

1 chooses majority samples with the smallest average distance to their three nearest minority 

neighbors. NearMiss-2 selects majority samples closest to the three farthest minority points, 

emphasizing regions distant from minority clusters. Lastly, NearMiss-3 picks a specified 

number of majority points closest to each minority instance (Mani & Zhang, 2003). 

To address the limitations of random undersampling, more sophisticated methods have been 

proposed. Cluster-based undersampling uses clustering algorithms to partition the majority 

class into clusters (Alamri & Ykhlef, 2022). Cluster centroid undersampling is a popular and 

successful unsupervised learning method that decreases the number of samples in the dataset 

(Yen & Lee, 2009). The proposed method divides the majority class into clusters of similar 

instances using the K-means clustering technique. Instead of keeping all the data points from 

the majority class, each cluster is represented by its centroid, which is the average position of 
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all the points in that cluster. The centroids effectively represent the overall structure of the 

majority class, ensuring the retained samples capture the diversity of the majority class while 

maintaining the data balance (Yen & Lee, 2009). This method helps mitigate the information 

loss problem but is computationally more expensive than RUS (Yen & Lee, 2009). 

2.1.1.3. Hybrid Sampling 

Hybrid methods combine both oversampling and undersampling techniques, resulting in the 

removal of instances of the majority classes and the generation of artificial instances of the 

minority classes (Alamri & Ykhlef, 2022). As previously explained, when applied alone, 

undersampling may discard useful information, while oversampling may lead to overfitting. 

Different techniques have been proposed to overcome these limitations, combining both 

methods (Khushi et al., 2021).  

In 2004, Batista et al. developed a method that combines SMOTE with the undersampling 

method ENN. As previously discussed, ENN functions as a data cleaning process by removing 

majority class samples that disagree with the class labels of their nearest neighbors (Batista et 

al., 2004). The SMOTE-ENN approach leverages SMOTE’s capability to generate synthetic 

minority class samples while using ENN to eliminate ambiguous or noisy instances from both 

classes, specifically those whose class label differs from that of their k-nearest neighbors 

(Vairetti, Assadi, & Maldonado, 2024). 

In that same research, Batista et al. (2004) also proposed SMOTE-Tomek, combining SMOTE 

for oversampling and Tomek Links for undersampling. Tomek Links allow the removal of data 

that is identified as Tomek Links from the majority class, including samples of data from the 

minority class that are closest to the majority class (Alamri & Ykhlef, 2022).  As a result, this 

method is able to eliminate examples from both classes. 

Results show that both these methods provide very good results in practice, in particular for 

datasets with few positive (minority) examples (Batista et al., 2004). Thus, as a general 

recommendation, these techniques should be applied to datasets with fewer positive cases. 

The main issues with hybrid methods are that combining strategies can be extremely time-

consuming (Vairetti et al., 2024), and the removal of instances when using undersampling may 

remove important data, which can negatively affect the overall classification performance 

(Alamri & Ykhlef, 2022). For instance, in 2024, Vairetti et al. implemented the SMOTE-ENN 

method over 35 different datasets, concluding that SMOTE-ENN was able to perform hybrid 

sampling in minutes and provide better results than well-known sampling techniques. 

However, a simple method such as RUS could perform very well in large-scale settings. The 

authors tested that RUS could resample all datasets in less than four seconds, suggesting that 

creating synthetic instances of the minority class is not strictly better nor necessary when 

millions of samples are available (Vairetti et al., 2024). 
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2.1.2. Algorithm-Level Approach 

Algorithm-level methods are free of changes to the distribution of the data and instead 

enhance the classification performance by improving the classifiers (Alamri & Ykhlef, 2022). 

They attempt to eliminate algorithm sensitivity to the majority class so that the classifier's 

decision boundary is less biased toward the majority class (Kaur & Gosain, 2018). Within 

algorithm-level methods, there are two main approaches: cost-sensitive learning and 

ensemble learning (Shi et al., 2023). 

2.1.2.1. Cost Sensitive Approach 

Cost-sensitive methods aim to minimize the impact of misclassification by incorporating a cost 

matrix during the learning process, assigning different penalties to errors depending on the 

class (Alamri & Ykhlef, 2022). These algorithms tend to be more adaptable and better at 

identifying minority class instances because misclassifications of the minority class carry 

higher costs compared to the majority class (Fonseca, Douzas, & Bacao, 2021). By taking into 

account different losses for classification errors, cost-sensitive approaches avoid generating 

or augmenting data, which helps prevent the introduction of noise into the model (Singh, 

Ranjan, & Tiwari, 2021). The drawback of this method is the difficulty in precisely defining the 

cost matrix, which typically requires expert input from domain specialists (Xie et al., 2021). In 

the context of fraud detection, the cost of an undetected fraud is often assumed to be 

proportional to the transaction amount (Sahin, Bulkan, & Duman, 2013; Correa Bahnsen, 

Aouada, & Ottersten, 2015; Mahmoudi & Duman, 2015), leading to a higher misclassification 

cost to fraudulent cases. This cost structure encourages classifiers to generate more alerts to 

avoid missing fraud cases, often resulting in a high rate of false positives, while investigators 

require precise alerts (Dal Pozzolo et al., 2017). 

2.1.2.2. Ensemble Learning 

Ensemble learning is a meta-learning machine learning method that combines the predictions 

from multiple models to improve the predictive performance (Khan et al., 2024). The 

predictions of the different and diverse models are often combined by simple averaging or 

voting (possibly weighted). When combined with imbalanced learning techniques, ensemble 

methods have proven to produce better results than other algorithms for datasets with class 

imbalance problems (Khan et al., 2024). There are three main classes of ensemble learning: 

bagging, boosting, and stacking (Mienye & Sun, 2022; Ganaie, Hu, Malik, Tanveer, & 

Suganthan, 2022). 

Bootstrap Aggregating (Bagging) (Breiman, 1996) combines bootstrapping and aggregation to 

form an ensemble model. It uses bootstrapping as a sampling method to create different 

samples to train different models and then aggregates the models’ predictions to select the 

best prediction based on the average or majority of the results to compute a more accurate 

estimate. Bagging usually uses a Decision Tree (DT) as a base model (weak learner) to be 

trained on each bootstrapped dataset and combines the individual model predictions to 
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produce a final estimate. This results in a bias-variance trade-off since it reduces variance by 

averaging predictions from multiple models, making it less sensitive to noise and overfitting. 

However, it does not inherently reduce bias since all individual models are trained on similar 

data distributions, which results in the final model over-generalizing the data and missing 

relevant features between samples while training (Khan et al., 2024). 

Random Forest (RF) was later proposed as an extension of bagging (Breiman, 2001). In 

comparison with conventional bagging, besides using the same ensemble learning framework, 

RF can also split the data feature-wise, i.e., random subsets of features can be selected for 

training each tree, enhancing the diversity between models. Hence, random forests can 

provide greater diversity in the decision tree and lower variance, as they are better at 

generalizing on test data when compared to decision trees (Biau & Scornet, 2015). In random 

forests, the base models are restricted to decision trees, whereas bagging methods allow any 

type of base model in the ensemble. However, random forests are the most prominent 

implementation of the bagging method (Khan et al., 2024). 

In 1997, Freund and Schapire proposed an ensemble technique – Boosting – designed to 

sequentially improve the accuracy of weak learners by combining them into a strong learner. 

Each new weak learner tries to correct the errors made by the previous model, aggregating 

their predictions to make a final decision. Popular boosting methods include Adaptive 

Boosting (AdaBoost) (Freund & Schapire, 1996), Gradient Boosting (Friedman, 2001), and 

Extreme Gradient Boosting (XGBoost) (Chen & Guestrin, 2016).  

AdaBoost is a boosting technique that was initially developed to improve the performance of 

binary classification (Freund & Schapire, 1996). It combines several weak classifiers based on 

decision trees, known as stumps, in order to form a single strong classifier. In contrast to RF, 

the stumps created are dependent on each other, and not all stumps have equal weightage 

since it works by iteratively adjusting the weights of the training samples (Freund & Schapire, 

1996). Updated variations of AdaBoost have been developed to counter noisy data (Rätsch, 

Onoda, & Müller, 1999; Domingo & Watanabe, 2000; Oza, 2004; Gao & Gao, 2010), since 

AdaBoost is sensitive to noisy data and outliers by assigning equal weight to all training 

samples method (Khan et al., 2024). 

Gradient Boosting is a versatile technique applicable to both classification and regression 

tasks. Gradient Boosting Regressor optimizes the mean-squared error loss, and Gradient 

Boosting Classifier minimizes the log-likelihood loss (Friedman, 2001), commonly referred to 

as Gradient Boosting Machines (GBM) (Natekin & Knoll, 2013). Its goal is to minimize the loss 

function by sequentially correcting the errors made by previous models by fitting subsequent 

models to the residual errors (Friedman, 2001). Gradient Boosting is known for its high 

predictive accuracy and capacity to handle large datasets effectively. However, as highlighted 

by Bentéjac et al. (2021), its performance heavily depends on careful tuning of 

hyperparameters such as the number of base learners and the learning rate. 
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XGBoost is an optimized and scalable implementation of Gradient Boosting, making it well-

suited for high-dimensional problems and large-scale datasets for both classification and 

regression problems (Chen & Guestrin, 2016). It uses advanced regularization to improve 

model generalization capabilities, such as Lasso (L1) and ridge (L2) regularizations, which can 

help prevent overfitting. It improves computational performance since its training can be 

parallelized across clusters (Chen & Guestrin, 2016), and it is also considered to be a strong 

model in competitive machine learning, particularly in Kaggle competitions (Bojer & 

Meldgaard, 2021) due to the high accuracy and superior performance.  Similar to Gradient 

Boosting, XGBoost requires fine-tuning for optimal performance, and it can be sensitive to the 

choice of parameters (Chen & Guestrin, 2016). 

Wolpert (1992) proposed Stacking, an ensemble learning technique that combines multiple 

models (base learners) on the same data and uses a different model (meta-learner) to learn 

how to combine the predictions best. The predictions from the base learners are used as input 

for meta-learners. While stacking uses a single model that integrates the predictions from 

different models, boosting techniques use a sequence of models to enhance the predictions 

made by earlier models. Compared to bagging, stacking utilizes the entire dataset to train 

diverse base models, while bagging trains multiple base models on random subsets of the 

training data (Khan et al., 2024). 

2.1.3. Hybrid Approach 

The last category is hybrid methods, which combines data-level and algorithm-level methods 

(Alamri & Ykhlef, 2022). In hybrid methods, data-level methods can alter the data distribution 

to reduce the degree of the imbalanced data, while algorithm-level methods can change the 

learning process to improve the performance of the classifiers (Shi et al., 2023). 

To address the instability in synthetic data generation and classification outcomes caused by 

SMOTE’s randomness, Mansourifar and Shi (2020) introduced a method called Deep SMOTE, 

which is a deep neural network regression model designed to learn the mapping used in 

traditional SMOTE. In this architecture, a neural network is trained to accept two randomly 

selected minority class instances and generate a new sample along the line connecting them, 

preserving the original data dimensions (Mansourifar & Shi, 2020). Once trained, the model is 

applied to generate synthetic samples, thereby balancing the class distribution (Mansourifar 

& Shi, 2020). The authors concluded that Deep SMOTE performed better than SMOTE across 

all evaluation metrics (Mansourifar & Shi, 2020). In that same study, it was also proposed Deep 

Adversarial SMOTE (DA-SMOTE), which integrates concepts from SMOTE, generative 

adversarial networks, and Deep SMOTE (Mansourifar & Shi, 2020). Unlike Deep SMOTE, DA-

SMOTE operates in an unsupervised manner, eliminating the need for explicit interpolation 

targets during training (Mansourifar & Shi, 2020). The authors concluded that both these 

techniques can enhance classification results, considering that DA-SMOTE has advantages 

over Deep SMOTE since it is trained in an unsupervised mode (Mansourifar & Shi, 2020). 
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In 2021, El Naby et al. proposed a new model, Oversampling with Convolution Neural Network 

(OSCNN), which is based on oversampling preprocessing SMOTE and convolution neural 

network (CNN). The model begins by oversampling the minority class by 0.25 to achieve a 

majority class ratio of 75:25, overcoming the overfitting caused by the SMOTE (El Naby, El-Din 

Hemdan, & El-Sayed, 2021). This model was proposed and developed to detect fraudsters in 

credit card transactions. Results show that OSCNN improves the predictive performance and 

surpasses other models (El Naby et al., 2021), which is further explained in the next section. 

2.2. IMBALANCED LEARNING APPROACHES FOR CREDIT CARD FRAUD DATA 

This section focuses on the application of the imbalanced learning techniques previously 

discussed, specifically applied in the context of credit card fraud detection. In recent years, 

the unique challenges posed by fraudulent transactions, combined with the highly imbalanced 

nature of the data, have led to the development of specialized methods tailored to improve 

fraud detection. This section reviews existing studies and approaches that have applied 

imbalanced learning strategies to credit card fraud detection, highlighting key findings, 

methodologies, and areas for future research. 

In the context of credit card fraud, several studies have concluded that SMOTE-based sampling 

techniques tend to outperform undersampling methods (Alamri & Ykhlef, 2022). When 

applied alone, undersampling leads to a general decrease in the performance of the 

classification algorithms since it includes the removal of important information (Mînăstireanu 

& Meșniță, 2020). 

Muaz et al. (2020) trained four classification models using artificial neural networks (ANN), 

gradient boosting, a stacked ensemble, and RF on different sampling methods. The 

imbalanced learning methods included RUS, SMOTE, density-based-SMOTE (DB-SMOTE), and 

the hybrid method SMOTE-ENN, which were used for all models. The dataset collected for this 

study consisted of transaction data of European credit cardholders, previously mentioned as 

one of the most common datasets used in fraud detection. Since the data had no missing 

values and outliers, the authors did no further pre-processing techniques. The dataset was 

split into 70% for training and 30% for testing using stratified random sampling. The findings 

of this study showed promising results with SMOTE-based techniques, concluding that the 

SMOTE method is the best sampling strategy to adopt. The authors considered the recall score 

to be the best metric to evaluate the performance of the machine learning models, followed 

by the precision and F1-score metrics. Even though the highest recall score of 83% was 

obtained with RUS with the ANN classifier, the model scored a very low precision of 27%. Thus, 

the authors concluded that while most fraudulent transactions are detected with this model, 

several genuine transactions are also misclassified as fraudulent. In that sense, the best 

combination of these metrics was obtained with the SMOTE sampling strategy by the Random 

Forest classifier, with a recall score of 81%, an F1-score of 84%, and a precision of 86% (Muaz 

et al., 2020). 
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Wibowo and Fatichah (2021) focused on analyzing oversampling approaches to address the 

problem of high-class imbalance. ROS, ADASYN, SMOTE, and Borderline-SMOTE approaches 

were compared in terms of performance. The classifiers RF, LR, and KNN were integrated with 

all oversampling approaches using the previous European credit card dataset. Six basic metrics 

were used for the evaluation of the study, namely accuracy, precision, recall, F1-score, Area 

Under the Precision-Recall Curve (PR-AUC), and the Area Under the Receiver Operating 

Characteristic Curve (ROC-AUC) to find out how well the model is able to differentiate 

between positive and negative classes. The authors concluded that Borderline-SMOTE 

achieved the highest results because it duplicates the margins of the minority class, which 

strengthens the difference between the minority and majority class data. The results revealed 

that combining RF with Borderline-SMOTE provided the best values, with an accuracy of 

99.97%, precision of 94.74%, recall of 85.71%, F1-score of 90%, ROC-AUC of 93.88%, and PR-

AUC of 85.81% (Wibowo & Fatichah, 2021). 

Itoo et al. (2021) focused on random undersampling technique to balance a credit card fraud 

dataset with the classifiers Logistic Regression (LR), Naïve Bayes, and K-nearest neighbor 

(KNN). The dataset used was the same one previously described. In this research, the authors 

also split the dataset in two with the same percentages (70:30). However, they opted to 

implement the RUS by three different ratios: 50:50, 34:66, and 25:75 (fraud: nonfraud). To 

evaluate the performance of the three different classification techniques, the measures 

accuracy, recall, specificity, precision F1-measure and ROC-AUC were used. Overall, RUS 

improved the performance of the classifiers. The best evaluation scores were obtained with 

the LR model for all data proportions. In particular, LR obtained a recall of 87%, 77%, and 83% 

for the ratios 50:50, 34:66, and 25:75, respectively. However, authors have argued that one 

of the main disadvantages of RUS is that important information may be lost, and new sampling 

methods should be implemented to understand better how different techniques might affect 

the performance of the algorithms (Itoo et al., 2021). 

Mahboob Alam et al. (2020) has shown that the combination of clustering methods with 

imbalanced learning techniques can improve the predictive accuracy of fraud detection. The 

authors applied different techniques, such as K-means SMOTE, ROS, SMOTE, ADASYN, SMOTE-

Tomek, Borderline-SMOTE, RUS, Near Miss, and Cluster Centroid. Three highly imbalanced 

datasets related to credit card fraud were used and normalized using the Min-Max 

normalization method. The datasets were split into training and test data with a ratio of 70:30. 

Gradient Boosted Decision Tree (GBDT), AdaBoost, Bagging, Random Forest, KNN, Logistic 

Regression, and stacking models were evaluated using performance measures such as 

accuracy, precision, recall, F1-measure, ROC-AUC, and geometric mean (G-Mean). Overall, the 

results show that the performance of oversampling techniques is better than that of 

undersampling techniques. In fact, most classifiers improved their performance when K-

means SMOTE oversampling was applied. Moreover, the GBDT model also presented a higher 

prediction accuracy rate than the traditional machine learning models. The best result 

obtained for one of the datasets was with the GBDT method while utilizing the K-means 
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SMOTE oversampling, with an accuracy of 88.7%, a recall of 92.2%, an F1-measure of 89%, 

and a G-Mean of 89%. However, for the other two datasets, the performance of K-means 

SMOTE is inconsistent, and there is limited discussion on why clustering fails in some cases 

(Mahboob Alam et al., 2020). 

A novel fraud detection method has also been developed, where customers were grouped 

based on their transactions and behavioral patterns to create a profile for each cardholder 

(Dornadula & Geetha, 2019). Once again, the European dataset was used. The authors started 

the clustering method by dividing the cardholders into different groups based on their 

transaction amount, i.e., high, medium, and low, using range partitioning. After preprocessing 

and balancing the data using SMOTE, each group was trained on different classifiers - Local 

Outlier Factor (LOF), Isolation Forest (IF), Logistic Regression, Decision Tree, and Random 

Forest. Accuracy, precision, and the Matthews Correlation Coefficient (MCC) metrics were 

used to evaluate the performance of the classifiers. The MCC measures the quality of binary 

(two-class) classifications (Matthews, 1975). The authors considered MCC to be the best 

parameter for dealing with imbalanced datasets. Furthermore, LR, DT, and RF were the 

algorithms that provided the best results. In fact, RF scored the best, with an accuracy of 99%, 

a precision of 99%, and a MCC of 99% (Dornadula & Geetha, 2019). 

When it comes to ensemble methods, several studies have reported random forests to 

achieve the best performance (Alamri & Ykhlef, 2022; Dal Pozzolo et al., 2017). In 2023, Jabeen 

et al. implemented numerous machine learning algorithms, including DT and LR, and applied 

the SMOTE technique to the same cardholder transactions from the European dataset, 

concluding that RF produced the best rests across all traditional performance metrics tested, 

achieving an f1-score of 98%, an accuracy of 99%, a precision of 98%, and a recall of 99% 

(Jabeen, Singh, & Vats, 2023). Furthermore, other researchers (Mahesh, Afrouz, & Areeckal, 

2022) have also explored the use of RF with undersampling and hybrid techniques to detect 

fraudulent transactions, namely RUS and SMOTE-Tomek. The classification models used in this 

study were RF, LR, KNN, and support vector machines (SVM). Once again, the dataset used 

was the European credit card transactions dataset. Results showed that RF performed best 

across all data imbalance techniques. In particular, undersampled data shows the best results 

for classification predictions, with an F1-score of 0.94. However, the authors concluded that 

this cannot be generalized with a high confidence level since the number of undersampled 

data is much smaller. Among SMOTE and SMOTE-Tomek, the best results were obtained with 

SMOTE-Tomek with an F1-score of 0.93 (Mahesh et al., 2022). The effectiveness of RF with 

SMOTE oversampling has also been tested with different credit card fraud datasets. A study 

used four training datasets with different fraud rates from the University of California San 

Diego Fair Isaac Corporation (UCSD FICO) data mining competition 2009 dataset, which is a 

non-specific dataset for real-world credit card transactions (Ahirwar, Sharma, & Bano, 2020). 

The SMOTE technique was applied, and the data was trained with Naïve Bayes, KNN, SVM, 

Bagging Ensemble, and RF models. The authors concluded that balanced data with Random 
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Forest provides the best results, being able to achieve the best scores across all datasets, 

offering a good ROC area, as well as a good accuracy and a low error rate (Ahirwar et al., 2020). 

Several studies have been using boosting techniques to deal with credit card fraud prediction 

(Jose, Devassy, & Antony, 2023; Khan et al., 2024; Mahboob Alam et al., 2020). In 2022, Chole 

et al. implemented several machine learning algorithms, such as logistic regression, random 

forest, decision trees, and XGBoost, for fraud detection using the well-known European credit 

card transactions dataset. The data was balanced with SMOTE, ROS, and RUS methods. The 

SMOTE oversampling produced the greatest area under the ROC curve for all algorithms used, 

resulting in XGBoost being the best classifier for identifying credit card fraud, with 99.96 % 

accuracy and precision. 

A comparative study of ensemble learning algorithms (Bhakta et al., 2023) implemented 

XGBoost, random forest, voting, gradient boosting, AdaBoost, and stacking for the purpose of 

detecting fraudulent credit card transactions, including the traditional ones such as LR, DT, 

SVM, and Naïve Bayes. Once again, the European credit card transactions dataset was used. 

Contrary to the other studies that used the same dataset, the authors of this research did not 

implement any imbalanced learning technique. Instead, they focused on the feature 

engineering process of the dataset by performing feature selection techniques, such as 

correlation analysis and recursive feature elimination, and by creating new features using 

domain knowledge and data exploration (Bhakta et al., 2023). The final results suggest that 

the random forest and XGBoost algorithms demonstrated exceptional performance, achieving 

significant levels of accuracy and F1-score. The RF demonstrated a high level of accuracy of 

99.96%, achieving a precision rate of 98.72%, a recall of 78.57%, and an F1-Score of 87.50%. 

The XGBoost algorithm exhibited robust performance, achieving a 99.94% accuracy rate, 

96.67% precision, a recall of 82.86%, and an F1-Score of 89.23%. The authors concluded that 

ensemble learning methodologies outperformed traditional machine learning algorithms in 

detecting fraudulent credit card transactions (Bhakta et al., 2023). 

Nallabothula (2022) also focused on the analysis of machine learning algorithms for fraud 

detection, including ensemble learning methods, for a more recent dataset. The dataset used 

was generated by Vesta Corporation and the IEEE Computational Intelligence Society (IEEE- 

CIS). The data was composed of two different files (identity and transaction), which are joined 

by the ID of each transaction for each train and test dataset. After merging the two datasets, 

the data had 590540 credit card transactions and 434 different variables. Once again, the data 

was highly imbalanced, with a total of 20663 fraudulent transactions, representing only 3.5% 

of the total transactions. The data contained missing values, outliers, and categorical and 

anonymized features, which required a more complex and detailed data pre-processing step, 

including data cleansing, label encoding, and data normalization. Due to its imbalance, data 

was resampled with SMOTE and RUS. The data was further trained with several models, 

including LR, RF, XGBoost, Decision Tree, SVM, and Gaussian Naïve Bayes. To evaluate the 

classifiers, accuracy, precision, recall, F1-score, and ROC-AUC metrics were used. The author 
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concluded that RF was the best classifier for predicting fraud transactions for both sampling 

methods. Overall, the implementation of the RF with the SMOTE technique achieved the best 

results with 97.4% accuracy, 81.8% precision, 65.6% ROC-AUC, 45.5% F1-score, and 31.5% 

recall (Nallabothula, 2022).  

Hybrid methods have also been implemented to detect credit card fraud. El Naby et al. (2021) 

used SMOTE in a hybrid form with a convolution neural network approach to improve credit 

card fraud detection. Once again, the well-known European dataset was used, splitting it into 

80% for training and 20% for validation. The oversampling convolution neural network model 

(OSCNN) model starts by oversampling the minority class. A ratio of 0.25 oversampling was 

used to solve the imbalance in the dataset so that the minority class-to-majority class ratio 

becomes 75:25. This ratio was selected to compensate for SMOTE’s overfitting (El Naby et al., 

2021). After oversampling the data, the OSCNN model employs the CNN with the respective 

hyperparameters and layers (El Naby et al., 2021). A multi-layer perceptron, with and without 

SMOTE, was also applied to the dataset to compare the effectiveness of the OSCNN model. 

Comparing the MLP-OSCNN results, they concluded that the OSCNN model achieved better 

results with 98% accuracy, 97% precision, and 91% recall. In fact, the OSCNN method was able 

to improve accuracy from 88% to 98% in comparison to the MLP model, with OSCNN 

surpassing all other models (El Naby et al., 2021). 

Several studies have also tested the use of GANs as methods to cope with the class imbalance 

problem in the detection of credit card fraud. Ali, Hasan, Ghandour, and Al-Hchimy (2024) 

proposed a hybrid model that combined the predictions of DT, Naïve Bayes, LR, and SVMs 

models. Once again, the European dataset was used, and SMOTE, ROS, RUS, and a single GAN 

were applied to solve the imbalance problem. The authors focused on frequently used metrics 

to assess the model’s performance, including F1-score, accuracy, precision, and recall. 

Experimental results showed that the GAN implementation achieved the best results, scoring 

an F1-score of 99.9%, in addition to other exceptional metrics. The SMOTE algorithm scored 

second-best, achieving an accuracy of 98.1% and an F1-score of 98.3%, followed by the 

random sampling methods that showed close performance between them. When examining 

the ROC curve to predict financial fraud, authors also concluded that the GAN algorithm 

provided the best results, concluding its superior ability to balance the data (Ali et al., 2024). 

Ferreira et al. (2021) compared the performance of creating synthetic data with a double GAN 

architecture to a single tabular GAN (TGAN) architecture. Different machine learning models, 

such as XGBoost, AdaBoost, and Decision trees, were trained to evaluate the proposed 

method, using both single GAN and Duo-GAN approaches. The dataset used was the European 

dataset, which included some prior changes made to it to reduce the lack of balance and 

runtime of the experiments. In that sense, the authors sampled all 492 fraudulent transactions 

and then randomly sampled only 49.508 instances out of the remaining 284.315 legitimate 

transactions, still leaving the datasets highly imbalance with just 1% of the total transactions 

recorded as fraudulent (Ferreira et al., 2021). The experiments were conducted for 10,20, 50, 
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100, and 200 training epochs for both GANs. However, for some training epochs, the single 

GAN did not generate new fraudulent transactions during the epochs allowed to train. 

Therefore, the authors only considered the experiments after 50 epochs, where the single 

generator created fraudulent transactions. The results showed that Duo-GAN outperforms 

single GAN generator models, being able to generate high-quality synthetic datasets that 

allow the implementation of machine learning models that attain a performance similar to 

those same models trained on real fraud datasets. Furthermore, Duo-GAN can better capture 

the existing correlations between variables than the single GAN approach. Another interesting 

aspect the authors concluded is that the results obtained for the models trained for 100 or 

200 epochs obtain worse performance than the models trained for 50 epochs. In particular, 

the best model was XGBoost, trained for 50 epochs with synthetic data generated by Duo-

GAN, which obtained a classification performance with a 5% disparity in F1-scores between 

classifiers trained and tested on real data and those trained on synthetic data but tested on 

real data (Ferreira et al., 2021). Furthermore, with the results of the XGBoost model, the recall 

for the fraudulent class and a single GAN generator model is 3.62%, whilst for Duo-GAN as the 

generator model, the recall for the same class is 81.9%. Even though the authors concluded 

that Duo-GAN outperforms single GAN generator models, this framework did not include how 

different configurations of Duo-GAN could impact the quality and utility of synthetic data, 

including the computational resources and time required to train the models (Ferreira et al., 

2021). 

The effectiveness of conditional tabular GANs was also tested in fraud detection. Duggal 

(2022) has addressed the European dataset’s skewness problem by using SMOTE and CT-GAN. 

Three classifiers were used to perform the experiments: IF, MLP, and RF. The performance 

metric considered for evaluating all models was the PR-AUC. Results showed that CT-GAN was 

successful for two of the three models, achieving a higher AUC score than SMOTE for IF and 

MLP. In particular, the best score was obtained from Isolation Forest for CT-GAN, with a PR-

AUC of 86%. On the other hand, the SMOTE technique only performed better for the RF 

algorithm, achieving an AUC of 63%, while CT-GAN only achieved 53% (Duggal, 2022). Future 

work includes adjusting models’ parameters, such as learning rate and node count, to improve 

the overall performance (Duggal, 2022). Moreover, Patil (2021) also combined the CT-GAN 

with LR, RF, and XGBoost, to balance the same European credit card dataset. After removing 

duplicates and scaling the original data, the author used the univariate feature selection 

technique SelectKBest to select the best and most relevant features to maintain in the dataset. 

After treating the dataset, the CT-GAN was applied to balance the data. Recall, F1-score, ROC-

AUC, and G-Mean metrics were selected to evaluate the performance of the models. Results 

showed that classifiers trained on augmented data using CT-GAN significantly improved the 

overall prediction performance. For instance, RF and LR recorded an increase of 25% in recall 

score, which means that they made 25% fewer errors while classifying fraudulent transactions 

on balanced data. In terms of recall and F1-score values, RF combined with CT-GAN 

outperformed all other classifiers, achieving a recall and an F1-score of 100%. In second place 



25 
 

is the XGBoost model, with a recall of 91%, followed by the LR model, with a recall of 90% 

(Patil, 2021). 

Lastly, Veigas, Regulagadda, and Kokatnoor (2021) implemented an optimized stacking 

ensemble (OSE) method using SMOTE-Tomek and tabular GANs to generate synthetic data. 

Once again, the European dataset was used. After normalizing the data, oversampling 

methods SMOTE-Tomek and GAN are used to balance the dataset. Individual models MLP, 

KNN, and SVM are trained on the balanced data. SMOTE-Tomek is used to train the SVM 

classifier, and GAN is used to train the KNN classifier and the MLP model. These base-learners 

are incorporated into the stacking ensemble model to fit the meta-learner, which creates an 

effective predictive model for credit card fraud detection. The test data is input to the 

classifiers’ predictions, and these are sent to the OSE, i.e., the base learners SVM, KNN, and 

MLP models are used as input for the meta-learner. The OSE uses LR as a meta-learner since 

it forms no biases regarding the distributions of classes in a specific feature space, and the 

stacked prediction from the OSE is considered the final output (Veigas et al., 2021). The 

ensemble model starts by computing the accuracies and F1-scores of the classifiers and the 

neural network models, comparing them separately, followed by the evaluation of the final 

OSE model. The authors concluded that the performance of OSE enhanced both fraudulent 

and genuine classification accuracies, proving to be more robust than the stand-alone 

classifiers. The OSE achieved an F1-score of 90.5% and the highest accuracy of 99.8%. KNN 

showed the highest f1-score of 96% and an accuracy of 95%. Authors discussed that despite 

the slightly lower f1-score than KNN, the proposed ensemble OSE is still preferable due to its 

ability to harness the abilities of unsupervised MLP, which works better when finding hidden 

patterns of fraudulent transactions in real-life scenarios (Veigas et al., 2021). This research 

also highlighted the time taken for the OSE to train the given data as one major limitation. 

Since the dataset used is non-stationary, i.e., the credit card transactions do not have a stable 

or predictable behavior, it is harder to run the model with mostly pre-fitting and pre-trained 

parameters. To improve the model further, it is recommended to implement and test the 

concept of weighted voting to the predictions from the first layer of classifiers in the OSE. 

Furthermore, the use of boosting algorithms which can be trained on the synthetic data 

generated using the same oversampling techniques could also improve the model (Veigas et 

al., 2021). 

The following table presents a comparison of the mentioned studies and their results. 
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Table 1 – Comparison of Imbalanced Learning Techniques for Credit Card Fraud Detection 

Reference Dataset Imbalanced 
Techniques 

Classifiers Best Result Performance Metrics 

(Ahirwar et 
al., 2020) 

UCSD 
FICO/2009 

SMOTE Naïve Bayes, KNN, 
SVM, Bagging 

Ensemble, and RF 

SMOTE + RF Accuracy = 99% 

F1-score = 99% 
Precision = 98% 

Recall = 99% 

(Ali et al., 
2024) 

European 
dataset 

SMOTE, ROS, RUS, 
GAN 

DT + Naïve Bayes + 
LR + SVM 

DT + Naïve 
Bayes + LR + 
SVM + GAN 

Accuracy = 99.9% 

F1-score = 99.9% 
Precision = 99.9% 

Recall = 99.9% 

(Bhakta et 
al., 2023) 

European 
dataset 

- LR, DT, SVM, Naïve 
Bayes, XGBoost, 
RF, Voting, GB, 

AdaBoost, 
Stacking 

RF/XGBoost Accuracy = 
99.96%/99.94% 

F1-score = 87.50%/ 
89.23% 

Precision = 98.72%/ 
96.67% 

Recall = 78.57%/ 
82.86% 

(Chole et 
al., 2022) 

European 
dataset 

SMOTE, ROS, RUS LR, RF, DT, 
XGBoost 

SMOTE + 
XGBoost 

Accuracy = 99.96% 

Precision = 99.96% 

ROC-AUC = 91% 

(Dornadula 
et al., 
2019) 

European 
dataset 

SMOTE LR, DT, RF, LOF, IF SMOTE + RF Accuracy = 99.98% 

MCC = 99.96% 

Precision = 99.96% 

(Duggal, 
2022) 

European 
dataset 

SMOTE, CT-GAN RF, IF, MLP CT-GAN + IF PR-AUC = 86% 

(El Naby et 
al., 2021) 

European 
dataset 

SMOTE, OSCNN MLP OSCNN Accuracy = 98% 

Precision = 97% 

Recall = 91% 

(Ferreira et 
al., 2021) 

European 
dataset 

TGAN, Duo-GAN XGBoost, 
AdaBoost, 

Decision trees 

Duo-GAN + 
XGBoost 

F1-score = 85.26% 

Precision (fraud class) 
= 91.13% 

Precision (normal 
class) = 99.83% 

Recall (fraud class) = 
81.88% 

Recall (normal class) 
= 99.97% 

(Itoo et al., 
2021) 

European 
dataset 

RUS LR, Naïve Bayes, 
KNN 

RUS + LR Accuracy = 96% 

F1-score = 91% 
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Precision = 99% 

Recall = 84% 

ROC-AUC = 92% 

Specificity = 99% 

(Jabeen et 
al., 2023) 

European 
dataset 

SMOTE LR, DT, RF SMOTE + RF Accuracy = 99% 

F1-score = 98% 
Precision = 98% 

(Mahboob 
Alam et al., 

2020) 

3 UCI 
datasets 

SMOTE, ROS, K-
means SMOTE, 

ADASYN, SMOTE-
Tomek, Borderline-
SMOTE, RUS, Near 

Miss, Cluster 
Centroid 

GBDT, AdaBoost, 
Bagging, RF, KNN, 

LR, Stacking 

K-means 
SMOTE + 

GBDT 

Accuracy = 88.7% 

F1-measure = 89% 

G-Mean = 89% 

Recall = 92.2% 

(Mahesh et 
al., 2022) 

European 
dataset 

SMOTE, RUS, 
SMOTE-Tomek 

RF, LR, KNN, SVM RUS + RF F1-score = 94% 

Precision = 94% 

Recall = 94% 

(Muaz et 
al.,2020)  

European 
dataset 

SMOTE, RUS, DB-
SMOTE, SMOTE-

ENN 

ANN, GBM, 
Stacking, RF 

SMOTE + RF F1-measure = 84% 

Precision = 86% 

Recall = 81% 

(Nallaboth
ula, 2022) 

IEEE-CIS 
dataset 

SMOTE, RUS LR, RF, XGBoost, 
DT, SVM, and 
Naïve Bayes 

SMOTE + RF Accuracy = 97.4% 

F1-score = 45.5% 

Precision = 81.8% 

Recall = 31.5% 

ROC-AUC = 65.6% 

(Patil, 
2021) 

European 
dataset 

CT-GAN LR, RF, XGBoost CT-GAN + 
RF 

F1-score = 100% 

G-Mean = 100% 

Recall = 100% 

ROC-AUC = 100% 

(Veigas et 
al., 2021) 

European 
dataset 

SMOTE-Tomek + 
TGAN 

SVM, KNN, MLP, 
Stacking 

SMOTE-
Tomek + 
TGAN + 
Stacking 

Accuracy = 99.8% 

F1-score = 90.5% 

(Wibowo 
et al., 
2021) 

European 
dataset 

ROS, ADASYN, 
SMOTE, Borderline-

SMOTE 

RF, LR, KNN Borderline-
SMOTE + RF 

Accuracy = 99.97% 

F1-score = 90% 

Precision = 94.74 

PR-AUC = 85.81% 

Recall = 85.71% 

ROC-AUC = 93.88% 
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The review of relevant research dealing with the imbalance problem in credit card fraud data 

has shown that SMOTE-based oversampling techniques outperform undersampling methods, 

with Random Forest often being noted as the best-performing classifier. In fact, the SMOTE 

technique gives the best performance for classification across different performance metrics 

(Ahirwar et al., 2020; Nallabothula, 2022; Muaz et al., 2020; Dornadula & Geetha, 2019). As 

previously discussed, this technique has some limitations, including overfitting due to the 

duplication of instances and overlapping, which may cause higher accuracy than other 

approaches (Ahammad, Hossain, & Alam, 2020). Some oversampling extensions can solve the 

overfitting and overlapping issues and produce excellent results, such as Borderline-SMOTE 

(Wibowo & Fatichah, 2021), K-means (Mahboob Alam et al., 2020), DB-SMOTE (Muaz et al., 

2020), and SMOTE-Tomek (Mahesh et al., 2022). Furthermore, GAN-based approaches, such 

as Duo-GAN (Ferreira et al., 2021) and CT-GAN (Patil, 2021), have shown that they can 

outperform traditional oversampling techniques in data augmentation for credit card fraud 

detection. Moreover, combining sampling methods with ensemble techniques has also 

proven to be consistently effective in fraud detection. Overall, independently of the sampling 

technique being implemented, ensemble methods, such as Random Forest, XGBoost, and 

Stacking, provided the best results (Ahirwar et al., 2020; Chole et al., 2022; Veigas et al., 2021). 

In terms of performance measures, the best fraud detection performance is measured by low 

error and false negative rates (Alamri & Ykhlef, 2022). Accuracy, although commonly reported, 

is not a reliable metric for evaluating models on imbalanced datasets as it can be misleading 

due to the dominance of the majority class. For instance, Nallabothula (2022) observed that 

when applying traditional SMOTE, accuracy could reach very high levels, but F1-score and 

ROC-AUC were significantly lower. This occurred because the model would classify most of 

the majority class (non-fraudulent transactions) correctly, but it failed to detect enough 

fraudulent transactions, resulting in poor performance for the minority class. This illustrates 

that high accuracy does not necessarily translate to a well-performing model, especially when 

dealing with imbalanced data. Measurement metrics that consider the unbalanced nature of 

the data should be focused instead. For example, Wibowo et al. (2021) used the ROC-AUC and 

PR-AUC to demonstrate the effectiveness of Borderline-SMOTE in improving the separation 

between fraudulent and non-fraudulent transactions. Similarly, Muaz et al. (2020) emphasized 

the importance of the recall score, considering it the best metric to evaluate the performance 

of machine learning models on fraudulent data, followed by the precision and F1-score 

metrics. 

Furthermore, most studies reviewed used the same European credit card transactions 

dataset, which contains anonymized features and a low fraud rate of 0.172%. This limits the 

ability to generalize the results to other datasets in the context of fraud detection. Relying on 

the results and conclusions obtained from a single dataset can lead to models not performing 

well when applied to new or different datasets since the results are specific to the dataset’s 

unique characteristics, such as its features and the imbalance ratio. This makes the findings to 

be less applicable and potentially biased. Furthermore, the same data was preprocessed using 
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different techniques in different studies, complicating the ability to compare and generalize 

results. Some authors did not modify the dataset, applying the imbalanced learning 

approaches directly to the original dataset. Others implemented different preprocessing 

steps, such as feature selection, feature engineering, and data normalization. These variations 

in preprocessing can significantly impact the model performance, as certain techniques may 

enhance or worsen the data quality. Therefore, it is essential to incorporate a wider variety of 

datasets that reflect diverse credit card fraud patterns and behaviors, to contribute to more 

robust and generalizable findings in credit card fraud detection. Additionally, applying 

standardized and pre-defined preprocessing steps across the datasets would provide more 

consistency and allow for more precise comparisons between different imbalance 

approaches. To deal with the highly imbalanced nature of credit card fraud datasets, different 

sampling techniques should be implemented to understand their effectiveness in fraud 

prediction. Each sampling technique should tested using different classifiers to ensure that 

the results are not biased or overly dependent on a single model. To accurately assess model 

performance in the presence of class imbalance, appropriate evaluation metrics should be 

used instead of accuracy, which can be misleading in imbalanced scenarios. This 

comprehensive approach allows for a more reliable evaluation of which sampling strategies 

consistently improve fraud detection performance across different datasets, classifiers, and 

class imbalance ratios. 



30 
 

3. METHODOLOGY 

This section describes the methodological approach used to implement and evaluate 

imbalanced learning techniques and machine learning models for credit card fraud detection. 

Figure 8 summarizes the steps taken in the proposed methodology. The first step focuses on 

the data collection process of credit card fraud datasets and the discovery of insights about 

the structure and quality of the data. This is followed by data preparation, covering all the 

steps needed to clean, transform, and integrate the data to ensure its suitability for the 

models. This includes treating inconsistencies, handling missing values, feature selection, data 

encoding, and normalization. Having the data prepared, the imbalanced learning techniques 

are implemented to address the imbalance problem in the chosen datasets. Once the data is 

balanced, different classifiers are implemented to build predictive models to reach optimal 

performance. Once the models are implemented, their performance is evaluated using 

appropriate performance metrics to assess their effectiveness in detecting fraudulent 

transactions. This experiment was carried out using Python 3.12.4 in a Jupyter Notebook 

environment. The notebook was executed on a system running Windows 10. The code 

implemented for this study is made available at https://github.com/rita-

avila/fraud_detection. 

 

Figure 8 – Proposed Methodology 

https://github.com/rita-avila/fraud_detection
https://github.com/rita-avila/fraud_detection


31 
 

The following subsections provide a detailed explanation of each step, ensuring a systematic 

approach to addressing the challenges associated with fraud detection in highly imbalanced 

datasets. 

3.1. DATA COLLECTION AND UNDERSTANDING 

This section provides an overview of the datasets used, including their source, structure and 

key characteristics. To evaluate the performance of the different imbalanced learning 

techniques, five credit card fraud imbalanced datasets from Kaggle were used. Each dataset 

was analyzed to understand their characteristics, such as the presence of missing values and 

inconsistencies. Table 2 presents a summary of the dataset’s characteristics. 

Table 2 – Summary of the Datasets 

Dataset Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 

Source 
European 
Dataset 

Simulated 
Dataset 

IEEE-CIS Dataset 
Synthetic 
Dataset 

Unnamed 
Dataset 

#Features 31 23 434 11 8 

#Instances 284807 1296675 590540 6362620 1000000 

#Minority Class 492 7506 20663 8213 87403 

#Majority Class 284315 1289169 569877 6354407 912597 

#Imbalance Ratio 577.88 171.75 27.58 773.70 10.44 

Feature Types Numerical 
Numerical 

and 
categorical 

Numerical and 
categorical 

Numerical 
and 

categorical 
Numerical 

#Duplicate 
Instances 

1081 0 0 0 0 

Missing Values? No No Yes No No 

Inconsistencies? No No No No No 

Variables in the 
same scale? 

No No No No No 

Anonymized 
features? 

Yes No Yes No No 

 

All datasets used in this study share a common target variable, where 1 indicates fraud and 0 

represents non-fraudulent transactions. However, they differ significantly in the number and 

type of features, dataset size, and imbalance ratio. 
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3.2. DATA PREPARATION 

Data preparation is a crucial step involving the transformation of raw data into a format more 

suitable for analysis and modeling (Ndung’u, 2022). It ensures data quality, consistency, and 

relevance, directly impacting machine learning model performance. This section covers all the 

steps taken to clean, preprocess, and standardize the data. 

3.2.1. Inconsistencies Fix 

The analysis made to all datasets revealed no major inconsistencies, such as negative 

monetary units, invalid categories and incorrect timestamp. However, there were some cases 

spotted that required correction. 

As shown in Table 2, Dataset 1 contained 1081 duplicate values. In that sense, the duplicate 

values were removed keeping the first occurrence. Furthermore, in Dataset 2, a meaningless 

variable called ‘Unnamed: 0’ that works as an ID for the table was dropped. Additionally, the 

variables that refer to datetime type, such as a user’s date of birth and the transaction 

timestamp, were initially stored as object type. These were converted to the appropriate 

datetime format. 

3.2.2. Missing Values 

Only one dataset, Dataset 3, contains missing values, with 45% of its data missing. Out of 434 

columns, 414 have missing values. Since a significant number of features were composed by 

mostly missing values, those with more than 5% of missing values were removed, eliminating 

322 features and leaving 112. Among these, 92 features have minimal missing values, such as 

0.2%. Given the low level of missingness, these features were retained, as they can be 

effectively imputed without introducing significant bias. In that sense, the numerical missing 

values were replaced with the median to mitigate the effect of outliers and ensure robust 

central tendency representation, and the categorical missing values were replaced with the 

mode to maintain the most frequently occurring category, minimizing data distortion (Lee & 

Yun, 2024). 

3.2.3. Data Encoding 

For the datasets that contain categorical features, namely datasets 2, 3, and 4, these features 

were converted into numerical format to ensure compatibility with machine learning models 

by assigning integer values to each category. Different techniques were applied, namely Label 

Encoding and One-Hot Encoding, depending on a feature’s type. Whenever a categorical 

feature is not ordinal, i.e., it has no inherent order between categories, One-Hot Encoding is 

applied converting categorical variables into binary without introducing ordinal relationships, 

and whenever a categorical feature is ordinal, Label Encoding is applied assigning a unique 

number to each category (Poslavskaya & Korolev, 2023). 
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3.2.4. Feature Selection 

As illustrated in table 2, the number of features significantly varies from dataset to dataset. 

Even though the credit card fraud datasets selected for this study are not equal in terms of 

the type of variables they have, the goal is that they are somehow comparable. Therefore, 

having a similar number of features can help to guarantee a degree of comparison between 

datasets. In that sense, different feature selection techniques were implemented, and their 

results were combined to identify the most relevant features to keep that will increase the 

performance of the models. For datasets with a large number of variables, such as datasets 1, 

2, and 3, the techniques used were ANOVA f-test for continuous dependent variables (Siegel 

& Wagner, 2022), Chi-Square for categorical dependent variables (Sikri, Singh, & Dalal, 2023), 

Recursive Feature Elimination (Priyatno & Widiyaningtyas, 2024), and Decision Tree-based 

feature importance, which ranks features based on how effectively they reduce impurity when 

making splits (Scikit-learn, n.d.). Spearman’s Correlation was also used for all datasets, 

including those with a smaller number of features, such as datasets 4 and 5, to remove 

redundant and non-discriminative variables (Bocianowski, Dorota, Krysztofiak-Kaniewska, 

Matusiak, & Wiatrowska, 2024). For each dataset, an assessment is made by considering the 

majority vote across all feature selection techniques to identify the variables that are most 

discriminative and relevant to the study. 

3.2.5.  Splitting the Datasets 

The data is divided into two datasets, the train and test sets with a ratio of 70:30 using 

stratified train-test split. The train set will be used to find hyperparameters for both classifiers 

and imbalanced learning techniques, to balance the data and train the classifiers with the 

balanced data, while the test set will be used to test the performance of the models on 

unbalanced data. During training, cross-validation is applied with 5-folds to the train dataset. 

Once the optimal hyperparameters are identified, the final models are trained using the entire 

train set and evaluated on the test set. This process is detailed in the Modelling section. 

3.2.6. Data Normalization 

When working with multiple features, data normalization is essential to ensure consistency 

and comparability across different scales and distributions (Amorim, Cavalcanti, & Cruz, 2022). 

Features in each dataset have different scales, which can negatively impact the performance 

of machine learning models. Therefore, data was normalized using the Min-Max scaler 

(Amorim et al., 2022), which is a widely used normalization technique that rescales features 

to a fixed range, preserving the relationships between data points while eliminating scale 

disparities. In this case, data is rescaled between 0 and 1.  
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3.3. IMBALANCED LEARNING TECHNIQUES 

The following table enumerates the most relevant imbalanced learning techniques mentioned 

in the Literature Review that are used as a benchmark to treat the imbalance present in the 

described datasets, along with the set of hyperparameters used for each. All techniques are 

used as implemented in the python library scikit-learn (Pedregosa et al., 2011) with default 

parameters unless stated otherwise, except for the GAN models which is further explained. 

The choice of the hyperparameters to optimize was based on the most relevant 

hyperparameters that significantly impact both model performance and computational 

efficiency, in order to avoid certain drawbacks, such as overfitting, noise, overlapping, 

discarding useful information, lack of flexibility and over-generalization (Alamri & Ykhlef, 

2022). 

Table 3 – Hyperparameter Optimization for Imbalanced Learning Techniques 

Imbalanced Learning Techniques Parameters 

Random oversampling Default 

SMOTE k_neighbors = 3, 5, 20 

Borderline-SMOTE 
k_neighbors = 3, 5, 20 

kind = borderline-1, borderline-2 

ADASYN k_neighbors = 3, 5, 20 

K-means SMOTE 
k_neighbors = 3, 5, 20 

n_clusters: 2, 8, 20 

SMOTE-ENN Default 

SMOTE-Tomek Default 

CT-GAN Default 

CT-GAN Synthesizer Default 

Regarding the conditional tabular modelling technique CT-GAN, the implementation proposed 

by Xu et al. (2019) is selected, which is an open-source python package developed at MIT 

available at the Synthetic Data Vault. Similarly, CT-GAN Synthesizer was also implemented 

through an open-source python package developed at MIT available at the Synthetic Data 

Vault. This model is a more recent and improved approach from the Synthetic Data Vault 

library, which is built upon the CT-GAN model but offers additional improvements. It 

automates metadata handling, simplifying the training process by automatically identifying 
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and encoding categorical variables, which eliminates much of the manual setup required by 

the original CT-GAN (SDV, 2024). To keep any biases and contamination introduced by any 

specific parameterization from affecting the analysis of the results and increasing complexity, 

the default parameters for both GAN models were selected taking into account the 

recommendations of studies focused on improving fraud detection through the use of CT-

GANs (Alqarni & Aljamaan, 2023; Duggal, 2022; Xu et al., 2019). 

The optimal imbalance ratio is not obvious and has been discussed by other researchers (Chen 

et al., 2024; Aymaz, 2025). The goal of this work is to create comparability among these 

techniques. Consequently, it is most important that the same imbalance ratio is achieved 

when generating new samples for the minority class. Therefore, all the listed methods were 

parametrized so that minority and majority classes count the same number of samples for all 

datasets. Furthermore, since the ultimate goal of all these techniques is to improve 

classification results, their implementation is considered successful when compared to 

classifiers trained on the original, unbalanced data. 

3.4. MODELLING 

As discussed in the literature, the most common approach for handling imbalanced data is a 

combination of imbalanced learning techniques and classification algorithms (Alamri & Ykhlef, 

2022). Both involve some hyperparameters that are often set to default values but could be 

tuned for better performance. 

To achieve optimal results for all classifiers and imbalanced learning techniques, both 

components are going to be tuned. A grid search is first used to optimize the hyperparameters 

of each classifier using the original train set with cross-validation. This means that the 

unbalanced data will be used to determine the best hyperparameters (Kong, Kowalczyk, 

Nguyen, Bäck, & Menzel, 2019). Results are obtained by using 5-fold cross-validation, where 

each training dataset is split into five equal folds. For each possible combination of 

hyperparameters, a model is trained on four folds and tested on the remaining fold. This 

process is repeated five times, ensuring that each fold serves as a test set once. 

After selecting the best hyperparameters for each classifier, imbalanced learning techniques 

are applied. The same classifier hyperparameters found using the unbalanced training data 

are retained for all imbalanced learning techniques. Once again, a grid search will also be used 

to find the best parameters for these techniques. The F1-score is used as the scoring 

parameter in these grid searches, not only because it is one of the key metrics highlighted in 

the Evaluation section but also because it helps select the best parameters by balancing a 

model’s ability to detect fraud cases while minimizing false positives (Mahboob Alam et al., 

2020). Having all parameters defined, the data is balanced, and then the classifiers are trained 

on the balanced data before being tested on the unbalanced test set. All performance metrics 

described in Evaluation section are recorded for each classification result for further 

comparison. 
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3.4.1. Classifiers 

For the evaluation of the various imbalanced learning techniques, different classifiers are 

chosen to ensure that the results and conclusions obtained are not constrained to the usage 

of a specific classifier and can be generalized. The choice of classifiers is further motivated by 

the conclusions drawn from the literature review, which identify the most commonly used 

classifiers in credit card fraud detection and those that yield the best performance. Therefore, 

Random Forest, Logistic Regression, and XGBoost are used. These classifiers have 

demonstrated effectiveness in handling imbalanced datasets, making them well-suited for this 

study. All classifiers are used as implemented in the python library scikit-learn (Pedregosa et 

al., 2011) with default parameters unless stated otherwise. The choice of the 

hyperparameters to optimize was based on the most relevant hyperparameters that 

significantly impact both model performance and computational efficiency (Khan et al., 2024; 

Chereddy & Bolla, 2023; Bentéjac et al., 2021). Among the set of parameters that can be 

tuned, table 4 enumerates the classifiers used in this study along with a set of values for their 

respective hyperparameters: 

Table 4 – Hyperparameter Optimization for Classifiers 

Logistic Regression 

Parameter Default Value Grid Search Values 

class_weight None None, balanced 

C 1 3, 5, 7 

Random Forest 

Parameter Default Value Grid Search Values 

max_depth None None, 5, 10 

min_samples_split 2 2, 10, 20 

n_estimators 100 50, 75, 100 

XGBoost 

Parameter Default Value Grid Search Values 

learning_rate 0.1 0.025, 0.1, 0.3 

gamma 0 0, 0.1, 0.2 

max_depth 3 2, 3, 5 
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3.5. EVALUATION 

Evaluation metrics are an important aspect to access and understand the performance of the 

machine learning models. The choice of a metric depends to a greater extent on the goal their 

user seeks to achieve. 

The most widely employed evaluation metrics are based on four types of classifications: true 

positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). To illustrate 

the alignment of the predictions with the true distribution, a confusion matrix (Figure 9) can 

be constructed. 

Predicted Class 

 
Predicted 
Positives 

Predicted 
Negatives 

Actual 
Class 

Actual 
Positives (P) 

TP FN 

Actual 
Negatives (N) 

FP TN 

Figure 9 – Confusion Matrix 

The most common metrics for classification problems are accuracy and its inverse, the error 

rate. 

Accuracy measures the number of correct overall predictions made by the model. However, 

this metric assumes a balanced and constant class distribution (Provost, Fawcett, & Kohavi, 

1998), which is not the case in imbalanced datasets like credit card fraud detection, as 

previously discussed. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
 (1) 

The same scenario happens for accuracy and its inverse, the error rate since these metrics 

show bias towards the majority class in imbalanced datasets. For example, a naive classifier 

which predicts all transactions as normal would achieve 99% accuracy in a dataset where only 

1% of the transactions are fraudulent. While such high accuracy suggests an effective 

classifier, these metrics hide the fact that not a single minority instance was predicted 

correctly (He & Garcia, 2009). 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 = 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (2) 

To solve the impact of class imbalance on classification performance metrics, other metrics 

have been recommended (Luque, Carrasco, Martín, & de las Heras, 2019). The typical credit 

card fraud detection measure is the Area Under the Receiver Operating Characteristic Curve 

(ROC-AUC) (Dal Pozzolo et al., 2017). ROC is a probability curve, and AUC represents the 
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degree of separability. ROC-AUC evaluates a model’s ability to distinguish between classes, 

and it can be interpreted as the probability that a classifier ranks frauds higher than real 

transactions (Muaz et al., 2020). Thus, the higher the AUC, the better the model is at 

predicting. Many researchers have adopted this metric which gives a good indication of the 

overall predictive performance of a model, being well suited for the class imbalanced problem 

(Jabeen et al., 2023; Ahmad et al., 2022; Alamri & Ykhlef, 2022; Muaz et al., 2020). 

Another widely used metric is the Area Under the Precision-Recall Curve (PR-AUC) (Hilal et al., 

2022). This metric shows the trade-off between recall and precision measures. Recall, also 

known as sensitivity, computes the proportion of positive cases that are correctly identified 

by the classifier, while the precision compares the instances the classifier said were positive 

with the actual number of real positive instances (Mahboob Alam et al., 2020). 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4) 

PR-AUC focuses on the performance of a model concerning the minority class, i.e., fraudulent 

transactions, providing a more nuanced evaluation of a model’s ability to detected rare 

events. In the context of credit card fraud, Leevy et al. (2022) concluded that PR-AUC can be 

a more reliable metric for highly imbalanced datasets than the ROC-AUC metric, since it 

doesn’t consider true-negatives and it focuses directly on the positive class. 

The F1-score is metric that combines the precision and recall as the harmonic mean. In the 

context of fraud, a high F1-score indicates a good trade-off between detecting fraud and 

avoiding false alarms (Mahboob Alam et al., 2020). 

𝐹1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (5) 

To take into account the unbalance nature of credit card fraud datasets and the metrics most 

commonly used by other researchers previously described, the following metrics are chosen 

to evaluate the performance of the classifiers: 

▪ F1-score 

▪ Recall 

▪ Precision 

▪ ROC-AUC 

▪ PR-AUC 
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4. RESULTS AND DISCUSSION 

This section discusses the experimental results from all techniques implemented. In Appendix 

A, Table 6 shows the performance of classification algorithms based on F1-score, Recall, 

Precision, ROC-AUC, and PR-AUC for all techniques across all datasets. 

To facilitate the analysis, the focus will be placed on recall, as it ensures that fraudulent 

transactions are correctly identified despite the class imbalance. Given the high cost of missing 

fraud cases, prioritizing recall helps minimize undetected fraud, even if it means accepting 

some false positives as a trade-off. However, it is also essential to evaluate the trade-off 

between recall and precision, as an excessive number of false positives can lead to 

unnecessary operational costs and inefficiencies in fraud detection processes (Muaz et al., 

2020). The figures below show the recall scores obtained for each dataset with each model. 

 

Figure 10 – Recall scores for Dataset 1 

 

Figure 11 – Recall scores for Dataset 2 
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Figure 12 – Recall scores for Dataset 3 

 

Figure 13 – Recall scores for Dataset 4 

 

Figure 14 – Recall scores for Dataset 5 
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Starting with the analysis of the first dataset, the results indicate that the highest recall was 

achieved using ADASYN and SMOTE-ENN in combination with Logistic Regression, where the 

recall reached 92%. Based on the findings from the literature review, it is surprising that LR 

achieved the highest recall for this dataset, especially given the general consensus that more 

complex models like Random Forest and XGBoost are typically better suited for imbalanced 

datasets in fraud detection. The literature often emphasizes the superior performance of 

ensemble and gradient boosting methods, such as Random Forest and XGBoost, which are 

known to handle class imbalance more effectively through their ability to capture complex 

patterns and interactions within the data. Therefore, it was unexpected to observe that a 

simpler model like LR, typically associated with lower complexity, outperformed the others in 

terms of recall. Even though these techniques combined with LR achieved the highest recall 

score, they also drastically reduced precision, with values of 2% for ADASYN and 5% for 

SMOTE-ENN. This means that while these models were effective in identifying fraud, they 

flagged a large number of non-fraudulent transactions as fraudulent, leading to a higher 

number of false positives. In real-life situations, this could lead to unnecessary fraud alerts 

which is also not ideal. When examining stronger models based on their trade-off between 

recall and precision, XGBoost with SMOTE and Random Forest with SMOTE-ENN produced 

interesting results. Both techniques achieved a recall of 85%, while maintaining a better 

precision compared to the previously mentioned techniques, with XGBoost showing a 

precision of 60% and RF reaching 81%. These combinations provide a better balance between 

correctly identifying fraudulent transactions and reducing the number of false positives, 

offering an optimal trade-off between fraud detection and minimizing unnecessary alerts. 

Furthermore, SMOTE-Tomek and SMOTE combined with RF reached a slightly lower recall of 

84% but improved precision achieving 93%. The highest ROC-AUC scores, 0.99, were obtained 

using XGBoost in combination with SMOTE-ENN, suggesting that this model exhibited a strong 

ability to separate fraud cases from non-fraud cases. Similarly, the PR-AUC values were highest 

for XGBoost with K-Means SMOTE, reaching 0.86. This indicates that this model exhibited 

strong fraud detection capabilities, particularly in scenarios where the data is highly 

imbalanced, as is often the case with credit card fraud datasets. Interestingly, RF and XGBoost 

without any imbalanced learning technique applied also performed well, with recall scores of 

81% for both classifiers. This suggests that, in certain cases, imbalanced techniques may not 

always be necessary, as these classifiers were able to effectively handle the class imbalance 

on their own. These models alone also achieved high scores in terms of ROC-AUC, with scores 

ranging from 0.94 to 0.98. This reinforces the idea that imbalanced learning techniques are 

not always necessary for high-performing classifiers like Random Forest and XGBoost, which 

were able to effectively handle class imbalance without the need for additional sampling 

techniques. Although K-means SMOTE and GAN-based techniques yielded good performance 

in specific cases, they did not significantly outperform traditional techniques such as 

Borderline-SMOTE or SMOTE-Tomek, especially when considering F1-score and recall 

together. In fact, these techniques could not improve much the recall score compared to 

traditional methods and provided slightly lower F1-scores. This contradicts the expectations 
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set in the literature, where these advanced methods are often highlighted for their capacity 

to generate more realistic synthetic samples and improve classifier performance (Mahboob 

Alam et al., 2020; Patil, 2021). 

Regarding the Simulated dataset, the recall scores obtained were higher than the previous 

dataset. Interestingly, in this dataset, the highest score of 97% was obtained with Random 

Oversampling and XGBoost. The fact that this method provides a better recall than other 

methods such as SMOTE is unexpected given the findings from the literature review. Prior 

research suggests that SMOTE generally outperforms ROS by generating synthetic minority 

instances that help classifiers learn a more generalized decision boundary (Chawla et al., 

2002). However, the results indicate that for this dataset, SMOTE may have introduced noise 

or synthetic samples that did not effectively enhance fraud detection, leading to a lower recall 

compared to ROS. This could be due to the nature of the dataset's feature space, where 

fraudulent transactions may not be well-represented through interpolation-based synthetic 

sampling. On the other hand, ROS simply duplicates existing fraud samples, preserving the 

original distribution and potentially reinforcing patterns that the classifier can learn more 

effectively. These findings highlight that the effectiveness of imbalanced learning techniques 

is dataset-dependent and suggests that in certain cases, simpler oversampling strategies may 

yield better recall for fraud detection. However, the high recall was achieved at the cost of a 

significantly low precision of 42%, which results in an excessive number of false positives, 

which can be impractical in real-world applications. In contrast, SMOTE-based methods, such 

as SMOTE-ENN and SMOTE-Tomek, provided a better balance between recall and precision. 

Both methods with XGBoost achieved a recall of 87%, with higher precision scores of 68-69%. 

Another interesting result is the fact that XGBoost achieved alone the highest F1-score of 89%, 

along with a recall of 83% and a precision of 95%. The ability of XGBoost to perform well 

without any imbalanced learning technique suggests that the dataset may not suffer from 

extreme class imbalance or that XGBoost’s intrinsic ability to handle skewed distributions is 

sufficient for effective fraud detection in this case. When comparing classifiers, XGBoost 

consistently outperformed both RF and LR across all methods. Random Forest performed 

reasonably well, achieving an F1-score of 84% without imbalance techniques, but showed a 

slightly lower recall than XGBoost. Logistic Regression, on the other hand, struggled 

significantly, with extremely low precision values across all sampling methods. This suggests 

that the dataset contains complex, non-linear relationships that are better captured by tree-

based models rather than linear classifiers. Similarly to the previous dataset, more complex 

techniques including GANs did not significantly improve the results as expected. Even though 

they achieved higher precision scores, the recall dropped significantly.  

Following the analysis of the third dataset, the IEEE-CIS Dataset achieved the lowest scores of 
all datasets tested. This might be due to the fact that this dataset was more complex and 
required more data preprocessing than the others. Similarly to the Simulated dataset, the 
highest recall value of 80% among all tested configurations was achieved by XGBoost with 
Random Oversampling. Once again, this came at a significant cost to a precision of 21%, 
resulting in a low F1-score of 34%. This is consistent with the expected behavior of ROS, which 
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replicates minority class instances without introducing new synthetic samples (Chawla et al., 
2002). While this improves the model’s ability to capture fraudulent transactions, it also 
increases false positives, leading to reduced precision. This combination also achieves the 
highest ROC-AUC of 0.93, showing strong overall classification capability. The following higher 
recall scores were achieved with Logistic Regression, facing the same problem of extremely 
low precision of only 10%, reinforcing the limitations of using linear classifiers for this task 
(Jabeen et al., 2023; Mahesh et al., 2022). On the other hand, RF with ROS provides a medium 
recall of 52% while maintaining a high precision of 85%, resulting in an F1-score of 65%. 
Furthermore, its ROC-AUC of 0.92 indicates a robust overall classification performance, 
demonstrating that it effectively discriminates between fraudulent and non-fraudulent 
transactions. SMOTE-ENN combined with RF was able to achieve a slightly higher recall of 53%, 
even though it decreased the precision to 72% and F1-score to 61%. When comparing the 
performance of SMOTE-ENN and ROS using RF, the results indicate that ROS delivers a slightly 
better overall performance. Although SMOTE-ENN achieves a marginally higher recall score, 
ROS outperforms all other evaluation metrics, including F1-score, precision, ROC-AUC, and PR-
AUC. This suggests that ROS achieves a more favorable balance between correctly identifying 
fraudulent transactions and minimizing false positives. Given the small difference in recall but 
the significant gain in precision and overall F1-score, ROS can be considered the more effective 
technique in this case, ensuring a better trade-off between recall and precision. 
 
When it comes to dataset 4, which is a synthetic dataset, methods such as ADASYN, SMOTE, 

SMOTE-ENN, SMOTE-Tomek, and ROS with XGBoost produced recall values of 99-100%, 

ensuring that nearly all fraudulent transactions are detected. However, these models suffer 

from extremely low precision of less than 20%, meaning they generate a large number of false 

positives. Borderline-SMOTE with XGBoost emerges as a strong candidate for the best trade-

off. It achieves an F1-score of 79%, with 92% recall and a precision of 69%. Additionally, it 

achieves an AUC-ROC of 1.00, confirming its strong discriminatory ability. CT-GAN with 

XGBoost also shows a good trade-off, with an F1-score of 88%, 80% recall, and an exceptionally 

high 97% precision. This suggests that the model is detecting a significant proportion of 

fraudulent transactions while keeping false positives low. Additionally, it also achieves an AUC-

ROC of 1.00. ROS with RF and XGBoost alone also perform well, both achieving an F1-score of 

87% with relatively balanced recall, 81% and 79%, respectively, and high precision of 94% and 

97%, respectively.  

Lastly, the fifth dataset that represents real-world data reveals the highest results in the 
performance of different classifiers and imbalanced learning method combinations. Notably, 
both RF and XGBoost classifiers, when combined with almost any technique, achieved perfect 
or near-perfect performance metrics, with F1-scores, recall, precision, ROC-AUC, and PR-AUC 
all reaching values close to or equal to 1.00. For instance, methods such as ADASYN, SMOTE, 
Borderline-SMOTE, SMOTE-ENN, SMOTE-Tomek, ROS, and even the original unbalanced 
dataset, when used with Random Forest, resulted in an F1-score, recall, precision, ROC-AUC, 
and PR-AUC of 1.00. A similar trend is observed for XGBoost, where the performance slightly 
varies but remains consistently high. Additionally, the application of synthetic data generation 
techniques such as CT-GAN and CT-GAN Synthesizer also yielded strong results with both 
classifiers, although a slight drop is observed in precision and F1-score when compared to 
traditional oversampling methods. In contrast to these classifiers, LR exhibited significantly 
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lower performance across all metrics. Regardless of the technique used, the F1-scores 
remained between 69% and 72%, and recall ranged from 56% to 97%. The ROC-AUC values 
with Logistic Regression reached a maximum of 0.98 with some techniques but were mostly 
lower than those achieved with tree-based models. LR with K-means SMOTE was revealed to 
be the worst combination as it achieved the lowest recall of 56%. 
 
Table 5 summarizes the performance of the best imbalanced learning techniques in terms of 

recall and the best trade-off between recall and precision for all datasets. Overall, across all 

datasets and imbalanced learning techniques, Random Forest and XGBoost consistently 

deliver the best performance, confirming findings from the literature review (Ahirwar et al., 

2020; Chole et al., 2022; Veigas et al., 2021). Both classifiers maintain high F1-scores, recall, 

and precision, demonstrating their ability to effectively separate fraudulent and legitimate 

transactions, while Logistic Regression tends to struggle, with significantly lower F1-scores and 

precision, confirming its limitations when handling highly imbalanced datasets. Notably, 

XGBoost achieves near-perfect ROC-AUC values (~1.00) across multiple datasets, highlighting 

its strong generalization capabilities. Random Forest also exhibits stable and strong 

performance, especially in hybrid approaches, making it a highly reliable classifier. These 

results align with prior research, which has shown that ensemble methods tend to outperform 

single classifiers as they are the most reliable classifiers for credit card fraud detection, 

particularly when paired with sophisticated imbalanced learning techniques, due to their 

ability to mitigate overfitting and capture complex fraud patterns (Alamri & Ykhlef, 2022; 

Jabeen et al., 2023). 

Applying oversampling techniques, including SMOTE, ROS, Borderline-SMOTE, and ADASYN, 

resulted in varying levels of performance improvement across the classifiers. While 

oversampling generally improved recall, it often led to a drop in precision, particularly for 

Logistic Regression. Among these techniques, SMOTE tended to introduce synthetic noise, 

which negatively impacted model performance. These findings align with prior research, 

which identified SMOTE as a widely used technique that improves classification performance 

but has inherent limitations (Ahammad, Hossain, & Alam, 2020). However, ROS performed 

slightly better than SMOTE, particularly for Random Forest and XGBoost. Borderline-SMOTE 

and ADASYN showed improved performance over standard SMOTE, as they focused on 

generating synthetic samples in more informative regions of the feature space, which helped 

XGBoost and Random Forest achieve higher F1-scores and more balanced precision-recall 

trade-offs. 
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Table 5 – Comparison of the Best Imbalanced Techniques for Credit Card Fraud Datasets 

Dataset 
Best Recall 
(Method + 
Classifier) 

Performance 
Metrics for Best 

Recall 

Best Trade-Off 
(Method + 
Classifier) 

Performance 
Metrics for Best 

Trade-Off 

European 
Dataset 

SMOTE-ENN + LR 

F1-score = 10% 

Recall = 92% 

Precision = 5% 

ROC-AUC = 98% 

PR-AUC = 72% 

SMOTE-ENN + RF 

F1-score = 82% 

Recall = 85% 

Precision = 81% 

ROC-AUC = 98% 

PR-AUC = 84% 

Simulated 
Dataset 

ROS + XGBoost 

F1-score = 59% 

Recall = 97% 

Precision = 42% 

ROC-AUC = 100% 

PR-AUC = 94% 

SMOTE-Tomek + 
XGBoost 

F1-score = 77% 

Recall = 87% 

Precision = 69% 

ROC-AUC = 100% 

PR-AUC = 89% 

IEEE-CIS 
Dataset 

ROS + XGBoost 

F1-score = 34% 

Recall = 80% 

Precision = 21% 

ROC-AUC = 93% 

PR-AUC = 59% 

ROS + RF 

F1-score = 65% 

Recall = 52% 

Precision = 85% 

ROC-AUC = 92% 

PR-AUC = 69% 

Synthetic 
Dataset 

ADASYN + 
XGBoost 

F1-score = 27% 

Recall = 100% 

Precision = 16% 

ROC-AUC = 100% 

PR-AUC = 93% 

Borderline-SMOTE 
+ RF 

F1-score = 79% 

Recall = 92% 

Precision = 69% 

ROC-AUC = 100% 

PR-AUC = 93% 

Unnamed 
Dataset 

ADASYN + RF 

F1-score = 100% 

Recall = 100% 

Precision = 100% 

ROC-AUC = 100% 

PR-AUC = 100% 

ADASYN + RF 

F1-score = 100% 

Recall = 100% 

Precision = 100% 

ROC-AUC = 100% 

PR-AUC = 100% 

 

The application of hybrid approaches, such as SMOTE-ENN and SMOTE-Tomek, revealed 

additional insights into classifier performance. These methods combined oversampling with 

data-cleaning techniques, aiming to enhance class separability by removing noisy or 

redundant samples from the majority class. As previously discussed in the literature review, 

SMOTE-Tomek has been noted for its ability to improve recall while addressing overfitting 

issues associated with traditional SMOTE (Mahesh et al., 2022). The results of this study 

confirmed these findings, as SMOTE-ENN and SMOTE-Tomek were able to improve the trade-

off between recall and precision, making them highly suitable for fraud detection. 

Although recent studies have emphasized the potential of advanced techniques such as K-

means SMOTE and CT-GANs to improve fraud detection performance in imbalanced datasets 
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(Mahboob Alam et al., 2020; Patil, 2021), the empirical results obtained in this research 

suggest otherwise. Across all five datasets, these newer approaches did not consistently 

outperform traditional sampling methods like Borderline-SMOTE or ROS. In some datasets, K-

means SMOTE and CT-GAN-based approaches matched the performance of traditional 

oversampling methods, while in others, they underperformed or resulted in higher variability, 

particularly in terms of recall and F1-score. This suggests that the increased complexity of 

these methods does not necessarily translate into better fraud detection performance, 

especially when combined with strong classifiers such as Random Forest and XGBoost. This 

behavior might be due to the fact the datasets used in this study may not have contained 

complex patterns or high-dimensional nonlinearities that would justify the use of 

sophisticated generative models like CT-GANs (Xu et al., 2019). Traditional imbalanced 

learning techniques were sufficient to expose fraudulent patterns. According to the literature, 

K-means SMOTE is identified as an effective alternative to traditional oversampling methods, 

reducing the risk of synthetic noise while improving class separability (Mahboob Alam et al., 

2020). The unexpected lower results might be due to the fact this technique requires selecting 

an optimal number of clusters and can struggle when fraudulent instances are extremely 

sparse or do not form distinct clusters. This may have limited its effectiveness in the datasets 

evaluated. When comparing CT-GAN and CT-GAN Synthesizer, an interesting distinction 

emerged. While both techniques slightly enhanced classification performance, CT-GAN 

Synthesizer exhibited a slight advantage over standard CT-GAN, particularly in terms of 

precision and F1-score. This improvement suggests that Synthesizer's approach to generating 

synthetic fraud samples was more refined, leading to fewer misclassifications and a better 

balance between detecting fraudulent transactions and reducing false positives. While CT-

GAN achieved slightly higher recall, its increased tendency to generate more diverse fraud 

examples also led to a small drop in precision. The CT-GAN Synthesizer, on the other hand, 

maintained strong recall while simultaneously improving precision, making it the more 

balanced option of the two. 
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5. CONCLUSIONS AND FUTURE WORKS 

The growth of e-commerce and the increasing use of credit cards have resulted in a significant 

rise in credit card fraud, impacting both financial institutions and consumers. Detecting credit 

card fraud is a critical yet challenging task due to the complex and evolving nature of 

fraudulent activities. 

This study contributes to the existing literature by evaluating various imbalanced learning 

techniques across five credit card fraud datasets to improve fraud detection performance 

while maintaining computational efficiency. By addressing the research question – "What is 

the impact of different imbalanced learning techniques on the performance of machine 

learning models for credit card fraud detection, and how can these techniques be optimized 

for better fraud identification?" – the study provides several key insights. Empirical results 

highlight that traditional oversampling methods like ROS and SMOTE variants, consistently 

improved model performance when combined with strong classifiers like Random Forest and 

XGBoost. These methods not only increased recall, ensuring a higher detection rate of 

fraudulent transactions, but also maintained a favorable balance with precision, thereby 

minimizing the incidence of false positives. Hybrid methods such as SMOTE-ENN and SMOTE-

Tomek also improved recall while guaranteeing a balanced trade-off with precision. In 

contrast, more advanced techniques, including CT-GAN and K-means SMOTE, did not 

demonstrate the expected improvements. Instead, these methods occasionally introduced 

variability that did not translate into overall performance gains when compared to the simpler 

oversampling strategies. 

In terms of optimization, the study shows that the effectiveness of imbalanced learning 

techniques improves when they are paired with high-performing classifiers, confirming that 

XGBoost and Random Forest are the most suited classifiers for credit card fraud detection, 

regardless of the sampling method applied. Additionally, tuning hyperparameters through 

grid search for all classifiers and imbalanced learning techniques allowed to identify the 

optimal combination of imbalanced learning methods and classifier, which improved the 

results. Furthermore, evaluating performance with metrics suited for imbalanced data was 

crucial for guiding model optimization and ensuring reliable performance comparisons. 

Another key contribution of this research is the use of five different datasets to validate the 

robustness of imbalanced learning techniques. Most of the studies reviewed in the literature 

relied on the same benchmark dataset, limiting their generalizability. Given that fraud 

detection datasets vary in size, feature distributions, and fraud-to-non-fraud ratios, relying on 

a single dataset may lead to biased conclusions. Some techniques, such as SMOTE, performed 

well on datasets with moderate imbalance but struggled with extreme imbalance cases. GAN-

based methods showed potential in generating more realistic fraud instances, but their 

performance varied across datasets. These findings emphasize the importance of dataset 
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diversity when developing fraud detection models, ensuring that the proposed solutions 

generalize well across different real-world scenarios. 

Future work could explore additional ensemble methods beyond those tested in this study to 

assess their potential for further improving fraud detection performance. Investigating other 

ensemble approaches, such as stacked models that combine multiple classifiers and 

incorporate anomaly detection methods, could provide valuable insights into optimizing fraud 

detection while balancing interpretability and computational efficiency. Additionally, future 

studies could also include a broader range of datasets, particularly those with more complex 

and high-dimensional characteristics, to determine whether sophisticated generative models 

can better capture data patterns in fraud detection. Since the datasets used were very 

different from each other, data preprocessing could also be even more tailored to each 

dataset according to its unique characteristics and components. 
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APPENDIX A 

The following table shows the output of the experiments done for all datasets, concerning all 

imbalanced learning techniques tested. 

Table 6 – Experimental Results 

European Dataset 

Method Classifier 
F1 Recall Precision 

ROC-
AUC 

PR-
AUC 

None 

LR 0.66 0.53 0.88 0.97 0.75 

RF 0.89 0.81 0.98 0.94 0.85 

XGBoost 0.88 0.81 0.97 0.98 0.85 

SMOTE 

LR 0.10 0.91 0.05 0.98 0.73 

RF 0.88 0.84 0.93 0.97 0.85 

XGBoost 0.70 0.85 0.60 0.99 0.86 

ROS 

LR 0.11 0.91 0.06 0.98 0.72 

RF 0.88 0.80 0.97 0.95 0.86 

XGBoost 0.88 0.82 0.95 0.98 0.86 

Borderline-SMOTE 

LR 0.34 0.86 0.21 0.98 0.70 

RF 0.87 0.78 0.97 0.95 0.84 

XGBoost 0.85 0.80 0.91 0.98 0.85 

ADASYN 

LR 0.04 0.92 0.02 0.98 0.66 

RF 0.88 0.83 0.93 0.97 0.85 

XGBoost 0.66 0.84 0.55 0.99 0.84 

SMOTE-ENN 

LR 0.10 0.92 0.05 0.98 0.72 

RF 0.82 0.85 0.81 0.98 0.84 

XGBoost 0.61 0.85 0.47 0.99 0.85 

SMOTE-Tomek 

LR 0.11 0.91 0.06 0.98 0.73 

RF 0.88 0.84 0.93 0.98 0.86 

XGBoost 0.63 0.83 0.50 0.99 0.84 

K-means SMOTE 

LR 0.82 0.76 0.89 0.96 0.73 

RF 0.87 0.80 0.95 0.95 0.86 

XGBoost 0.87 0.82 0.92 0.98 0.86 

CT-GAN 

LR 0.76 0.81 0.71 0.97 0.75 

RF 0.84 0.84 0.84 0.95 0.84 

XGBoost 0.86 0.80 0.93 0.99 0.85 

CT-GAN 
Synthesizer 

LR 0.83 0.80 0.86 0.95 0.74 

RF 0.86 0.84 0.88 0.95 0.84 

XGBoost 0.86 0.82 0.90 0.99 0.86 
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Simulated Dataset 

Method Classifier 
F1 Recall Precision 

ROC-
AUC 

PR-
AUC 

None 

LR 0.15 0.75 0.08 0.86 0.20 

RF 0.84 0.73 0.98 0.99 0.90 

XGBoost 0.89 0.83 0.95 1.00 0.94 

SMOTE 

LR 0.14 0.75 0.08 0.86 0.20 

RF 0.83 0.78 0.88 0.99 0.87 

XGBoost 0.80 0.85 0.75 1.00 0.90 

ROS 

LR 0.15 0.75 0.08 0.86 0.20 

RF 0.86 0.78 0.96 0.99 0.92 

XGBoost 0.59 0.97 0.42 1.00 0.94 

Borderline-SMOTE 

LR 0.18 0.74 0.10 0.86 0.20 

RF 0.82 0.78 0.86 0.99 0.86 

XGBoost 0.81 0.84 0.79 0.99 0.89 

ADASYN 

LR 0.14 0.75 0.08 0.86 0.20 

RF 0.82 0.77 0.88 0.99 0.87 

XGBoost 0.79 0.85 0.73 1.00 0.89 

SMOTE-ENN 

LR 0.14 0.75 0.08 0.86 0.20 

RF 0.82 0.79 0.84 0.99 0.86 

XGBoost 0.76 0.87 0.68 1.00 0.90 

SMOTE-Tomek 

LR 0.14 0.75 0.08 0.86 0.20 

RF 0.82 0.78 0.85 0.99 0.87 

XGBoost 0.77 0.87 0.69 1.00 0.89 

K-means SMOTE 

LR 0.07 0.48 0.03 0.76 0.10 

RF 0.76 0.63 0.94 0.98 0.85 

XGBoost 0.85 0.80 0.90 1.00 0.90 

CT-GAN 

LR 0.13 0.75 0.07 0.84 0.19 

RF 0.80 0.69 0.96 0.98 0.88 

XGBoost 0.88 0.81 0.96 1.00 0.93 

CT-GAN 
Synthesizer 

LR 0.17 0.59 0.10 0.83 0.17 

RF 0.72 0.72 0.71 0.98 0.78 

XGBoost 0.85 0.77 0.94 1.00 0.90 

 

 

 

 

 

 

 



63 
 

IEEE-CIS Dataset 

Method Classifier 
F1 Recall Precision 

ROC-
AUC 

PR-
AUC 

None 

LR 0.16 0.68 0.09 0.78 0.17 

RF 0.61 0.46 0.91 0.92 0.69 

XGBoost 0.56 0.41 0.88 0.92 0.63 

SMOTE 

LR 0.16 0.68 0.09 0.78 0.17 

RF 0.63 0.52 0.81 0.91 0.66 

XGBoost 0.54 0.46 0.64 0.89 0.54 

ROS 

LR 0.16 0.68 0.09 0.78 0.17 

RF 0.65 0.52 0.85 0.92 0.69 

XGBoost 0.34 0.80 0.21 0.93 0.59 

Borderline-SMOTE 

LR 0.16 0.66 0.09 0.78 0.17 

RF 0.62 0.51 0.81 0.91 0.65 

XGBoost 0.53 0.42 0.70 0.90 0.54 

ADASYN 

LR 0.15 0.70 0.09 0.78 0.17 

RF 0.62 0.51 0.80 0.91 0.65 

XGBoost 0.53 0.43 0.69 0.89 0.54 

SMOTE-ENN 

LR 0.15 0.69 0.09 0.78 0.17 

RF 0.61 0.53 0.72 0.91 0.63 

XGBoost 0.53 0.50 0.58 0.89 0.54 

SMOTE-Tomek 

LR 0.16 0.68 0.09 0.78 0.16 

RF 0.62 0.50 0.82 0.91 0.65 

XGBoost 0.54 0.46 0.64 0.89 0.55 

K-means SMOTE 

LR 0.07 0.08 0.07 0.63 0.06 

RF 0.62 0.49 0.84 0.91 0.66 

XGBoost 0.53 0.39 0.85 0.91 0.59 

CT-GAN 

LR 0.17 0.57 0.10 0.75 0.16 

RF 0.61 0.46 0.90 0.92 0.69 

XGBoost 0.54 0.39 0.88 0.91 0.60 

CT-GAN 
Synthesizer 

LR 0.17 0.59 0.10 0.76 0.16 

RF 0.60 0.45 0.89 0.92 0.68 

XGBoost 0.54 0.39 0.87 0.91 0.60 
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Synthetic Dataset 

Method Classifier 
F1 Recall Precision 

ROC-
AUC 

PR-
AUC 

None 

LR 0.45 0.31 0.78 0.96 0.44 

RF 0.86 0.77 0.98 0.99 0.91 

XGBoost 0.87 0.79 0.97 1.00 0.93 

SMOTE 

LR 0.05 0.93 0.03 0.99 0.56 

RF 0.71 0.97 0.56 1.00 0.96 

XGBoost 0.32 0.99 0.19 1.00 0.94 

ROS 

LR 0.04 0.91 0.02 0.98 0.50 

RF 0.87 0.81 0.94 0.99 0.92 

XGBoost 0.37 0.99 0.23 1.00 0.94 

Borderline-SMOTE 

LR 0.04 0.92 0.02 0.98 0.50 

RF 0.79 0.92 0.69 1.00 0.93 

XGBoost 0.60 0.93 0.45 1.00 0.92 

ADASYN 

LR 0.03 0.96 0.02 0.99 0.55 

RF 0.60 0.97 0.43 1.00 0.95 

XGBoost 0.27 1.00 0.16 1.00 0.93 

SMOTE-ENN 

LR 0.04 0.91 0.02 0.98 0.52 

RF 0.67 0.97 0.51 1.00 0.95 

XGBoost 0.29 0.99 0.17 1.00 0.93 

SMOTE-Tomek 

LR 0.04 0.91 0.02 0.98 0.50 

RF 0.71 0.97 0.56 1.00 0.95 

XGBoost 0.30 0.99 0.18 1.00 0.94 

K-means SMOTE 

LR 0.10 0.69 0.05 0.96 0.48 

RF 0.85 0.82 0.87 0.99 0.90 

XGBoost 0.83 0.80 0.85 1.00 0.90 

CT-GAN 

LR 0.02 0.92 0.01 0.97 0.51 

RF 0.86 0.77 0.98 0.99 0.91 

XGBoost 0.88 0.80 0.97 1.00 0.93 

CT-GAN 
Synthesizer 

LR 0.04 0.89 0.02 0.98 0.48 

RF 0.43 0.81 0.30 0.99 0.74 

XGBoost 0.31 0.79 0.19 0.99 0.71 
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Unnamed Dataset 

Method Classifier 
F1 Recall Precision 

ROC-
AUC 

PR-
AUC 

None 

LR 0.70 0.94 0.56 0.98 0.76 

RF 1.00 1.00 1.00 1.00 1.00 

XGBoost 0.99 0.99 0.99 1.00 1.00 

SMOTE 

LR 0.70 0.95 0.56 0.98 0.76 

RF 1.00 1.00 1.00 1.00 1.00 

XGBoost 0.99 1.00 0.98 1.00 1.00 

ROS 

LR 0.70 0.94 0.56 0.98 0.76 

RF 1.00 1.00 1.00 1.00 1.00 

XGBoost 0.99 1.00 0.98 1.00 1.00 

Borderline-SMOTE 

LR 0.72 0.95 0.58 0.98 0.76 

RF 1.00 1.00 1.00 1.00 1.00 

XGBoost 1.00 1.00 0.99 1.00 1.00 

ADASYN 

LR 0.70 0.97 0.54 0.98 0.71 

RF 1.00 1.00 1.00 1.00 1.00 

XGBoost 0.99 1.00 0.98 1.00 1.00 

SMOTE-ENN 

LR 0.70 0.95 0.56 0.98 0.76 

RF 1.00 1.00 1.00 1.00 1.00 

XGBoost 0.98 1.00 0.97 1.00 1.00 

SMOTE-Tomek 

LR 0.70 0.95 0.56 0.98 0.76 

RF 1.00 1.00 1.00 1.00 1.00 

XGBoost 0.99 1.00 0.97 1.00 1.00 

K-means SMOTE 

LR 0.69 0.56 0.90 0.96 0.78 

RF 1.00 1.00 1.00 1.00 1.00 

XGBoost 0.99 0.99 1.00 1.00 1.00 

CT-GAN 

LR 0.69 0.95 0.55 0.98 0.76 

RF 1.00 1.00 1.00 1.00 1.00 

XGBoost 0.99 0.99 1.00 1.00 1.00 

CT-GAN 
Synthesizer 

LR 0.70 0.92 0.57 0.98 0.72 

RF 0.97 1.00 0.94 1.00 1.00 

XGBoost 0.96 1.00 0.93 1.00 1.00 
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