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Abstract: Building energy management is crucial in reducing energy consumption and

maintaining occupant comfort, especially in heating systems. However, achieving opti-

mal space heating efficiency while maintaining consistent comfort presents significant

challenges. Traditional methods often fail to balance energy consumption with thermal

comfort, especially across multiple zones in buildings with varying operational demands.

This study investigates the role of deep learning models in optimizing space heating while

maintaining thermal comfort across multiple building zones. It aims to enhance heating

efficiency by developing predictive models for building temperature and heating consump-

tion, evaluating the effectiveness of different deep learning architectures, and analyzing

the impact of model-driven heating optimization on energy savings and occupant comfort.

To address this challenge, this study employs Long Short-Term Memory (LSTM), Gated

Recurrent Unit (GRU), and Transformer models to forecast area temperatures and predict

space heating consumption. The proposed methodology leverages historical building tem-

perature data, weather station measurements such as atmospheric pressure, wind speed,

wind direction, relative humidity, and solar radiation, along with other weather parameters,

to develop accurate and reliable predictions. A two-stage deep learning process is utilized:

first, temperature predictions are generated for different building zones, and second, these

predictions are used to estimate global heating consumption. This study also employs

grid search and cross-validation to optimize the model configurations and custom loss

functions to ensure energy efficiency and occupant comfort. Results demonstrate that the

Long Short-Term Memory and Transformer models outperform the Gated Recurrent Unit

regarding heating reduction, with a 20.95% and 20.69% decrease, respectively, compared

to actual consumption. This study contributes significantly to energy management by

providing a deep learning-driven framework that enhances energy efficiency while main-

taining thermal comfort across different building areas, thereby supporting sustainable and

intelligent building operations.

Keywords: optimization; heating; comfort; thermal; machine learning

1. Introduction

Building energy consumption represents a significant fraction of global energy use,

especially in heating, ventilation, and air conditioning (HVAC). According to the Interna-

tional Energy Agency (IEA), more than 40 percent of the world’s total energy is consumed

by buildings [1], and nearly all of that is used for space heating in colder climates. As energy
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efficiency in building environments becomes increasingly important, significant research

has been devoted to optimizing energy consumption while retaining occupant comfort.

Space heating consumption (SHC) optimization in this broader domain is signifi-

cant [2]. SHC systems can save vast amounts of energy wastage and greenhouse gas

emissions and provide sustainability to the built environment [3]. New approaches to

predict and optimize SHC have become possible with recent advances in data-driven

technologies and the increasing availability of real-time data from intelligent buildings [4].

Building management systems (BMS) time series data coupled with external factors (i.e.,

weather) and sensor data are used to dynamically control heating loads and improve

energy efficiency in these approaches. For example, studies have shown that incorporating

real-time weather data, such as temperature, humidity, and wind speed, can improve

temperature regulation and lead to a reduction in energy consumption by adjusting heating

systems to external conditions more efficiently [5,6]. Additionally, sensor data, including

occupancy patterns and indoor temperature readings, allow for adaptive control strategies

that maintain comfort while minimizing energy waste. The optimal temperature for oc-

cupant comfort typically ranges between 21 ◦C and 23 ◦C in winter [7], but this can vary

depending on external weather conditions such as ambient temperature and humidity. In

colder climates, slightly higher indoor temperatures may be necessary to maintain comfort,

whereas in milder climates, lower settings may be sufficient.

A recent interest has been found in integrating machine learning (ML) techniques

including deep learning (DL) into the optimization of SHC [8]. According to a global

report from the Global Energy & CO2 Status [5], AI-based models could cut building

energy consumption by 10 to 20 percent through efficiency gains and automation of control

systems. They have been extensively used for time series forecasting and applied to

predicting building temperature dynamics and energy demand [9–11]. The models can

learn complicated temporal relations using historical data and make accurate temperature

control and SHC forecasting predictions.

However, optimizing SHC while maintaining occupant comfort is a difficult task.

The challenge is to balance energy savings and indoor comfort, keeping environments

at comfortable temperature ranges since occupancy patterns, weather conditions, and

the thermal characteristics of different building zones are inherently variable [12]. Fast

temperature changes make the occupant uncomfortable, demanding smooth temperature

transitions [13]. These conflicting priorities are managed through real-time decision making

with large amounts of data to leverage comfort and energy efficiency.

These challenges are well addressed by machine learning, including deep learning

models, as these models can then learn patterns from historical temperature and consump-

tion data and make informed predictions on energy consumption, allowing the adjustment

of heating systems dynamically concerning energy efficiency and comfort [14,15]. Addi-

tionally, hyperparameter tuning and optimization methods like grid search cross-validation

ensure that the models are set up for the best performance.

This study aims to develop and compare DL models for predicting SHC in buildings

and optimizing space heating systems. We mainly explore Long Short-Term Memory

(LSTM), Gated Recurrent Unit (GRU), and Transformer models to forecast temperature

in different building zones and predict SHC. In this two-stage approach, temperatures

are predicted based on SHC estimation, and a model is selected to minimize energy

consumption at an acceptable level of occupant comfort. This study aims to provide input

to more sustainable building management practices through real-time data and advanced

predictive techniques. The contributions of this study are the following:

i. This study develops a robust temperature prediction model using LSTM, GRU, and

Transformer architectures, specifically tailored to individual building zones. This
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approach ensures accurate thermal management, enhancing occupant comfort while

minimizing energy consumption.

ii. A two-stage machine learning framework is proposed, where temperature predictions

are first generated for different building zones and then used to estimate global space

heating consumption (SHC). By leveraging these predictions, this study optimizes

energy use across multiple zones, ensuring efficient heating distribution.

iii. Custom loss functions are introduced to regulate temperature variations while mini-

mizing energy consumption. These loss functions enforce thermal comfort constraints

and promote energy efficiency, making them crucial for balancing occupant comfort

with sustainable building management.

2. Related Work

In recent years, ML techniques including DL have intensely improved the capability

to predict and optimize energy consumption in buildings, especially space heating [13].

Table 1 compares various predictive models applied to forecast temperatures and energy

usage within building environments. These models leverage time series data, building

characteristics, and external factors like weather conditions to improve accuracy and

efficiency [16]. Prior studies have also explored methods to balance energy efficiency with

occupant comfort, introducing custom loss functions and optimization strategies to achieve

both goals in intelligent energy systems.

2.1. Energy Consumption Forecasting in Buildings

Energy consumption forecasting in buildings has become an essential area of research,

as it aids in optimizing HVAC operations, improving energy efficiency, and ensuring

occupant comfort. Various predictive models are being explored to accurately forecast

energy usage based on time series data, building characteristics, weather conditions, and

other influencing factors. These techniques range from machine learning models to more

advanced hybrid systems.

One of the prominent approaches in this domain is the use of Long Short-Term Memory

(LSTM) networks for predicting power consumption. Mahjoub et al. [17] explored the

effectiveness of LSTM in forecasting short-term power consumption, demonstrating that it

outperformed other models like GRU and Drop-GRU in terms of accuracy and precision.

This model helps in managing power consumption by preventing load peaks. Similarly,

in the domain of HVAC systems, Ghahramani et al. [18] employed a systematic analysis

of HVAC control policies using simulations, including building-level annual control and

zone-level control, to forecast energy savings and improve thermal comfort, finding up to

50% energy savings depending on the climate zone.

In a different approach, Chen et al. [19] applied data-driven models using machine

learning algorithms like Random Forest and Support Vector Machines (SVM) to optimize

energy consumption in commercial buildings. These techniques were used to ensure

that the buildings maintained thermal comfort while achieving significant cost savings

throughout their lifecycle. Their results suggest that predictive control strategies based on

these models help improve the efficiency of HVAC systems while ensuring energy efficiency.

Lastly, in the context of smart buildings, Almeida et al. [20] proposed an adaptive

strategy for optimizing HVAC systems’ setpoints to enhance energy efficiency during

the heating season. The approach, which used smart thermostat data from European

households, estimated energy savings of up to 5.2%. Despite being computationally

lightweight and suitable for real-world implementation, it faces challenges in handling

data drift and adjusting models without additional fine-tuning.
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2.2. Thermal Comfort and HVAC System Optimization

The optimization of HVAC systems, while maintaining thermal comfort, is another

crucial research focus. Many studies aim to enhance HVAC system operations to balance

energy consumption and thermal comfort, leading to the development of advanced con-

trol strategies and personalized comfort profiles. These innovations improve occupant

satisfaction while reducing energy wastage.

Talami et al. [21] focused on developing a temperature setpoint optimizer that adjusts

dynamically according to weather conditions and occupancy. By integrating external

factors, their method showed energy savings compared to using fixed setpoints. The study

analyzed HVAC energy consumption by considering varying occupancy rates and outdoor

temperatures. It quantified energy reductions by comparing HVAC usage at different

occupancy levels against a 100% occupancy baseline. Dynamic setpoints were adjusted

between 5 ◦C and 32 ◦C to balance heating, free-running, and cooling modes. However,

the model focused on air temperature and did not account for mean radiant temperature,

air velocity, or relative humidity, which are essential for thermal comfort. The study’s

limitations included the lack of variability in occupancy rates, which might hinder its

application across different real-world scenarios. Similarly, in a more generalized study,

Ghahramani et al. [22] proposed a knowledge-based system that integrates personalized

comfort preferences with energy consumption patterns. By utilizing online learning and

optimizing zone temperature setpoints, the system tailored comfort to individual occupants

while minimizing energy usage. The authors incorporated thermal comfort parameters

such as air temperature, mean radiant temperature, air velocity, and relative humidity.

Personalized comfort preferences are modeled at the zone level, with temperature setpoints

optimized for energy efficiency while maintaining comfort and indoor air quality. The

main challenge lies in scalability across different building types and occupant preferences.

On the other hand, Yadav and Kowli [16] introduced a simulation framework to model

HVAC behavior and energy consumption, addressing limitations in existing simulators.

Their approach simulated temperature distribution and power savings in homes, outper-

forming traditional zone comfort optimization techniques. The framework incorporated

thermal comfort metrics, including air temperature, mean radiant temperature, air velocity,

and relative humidity, to optimize AC setpoint control based on local comfort rather than

zonal comfort. While the results were promising, the framework’s reliance on limited

data sources restricted the generalizability of its findings. Lastly, Li et al. [23] explored a

demand response (DR) strategy for air-conditioning systems, combining thermal comfort

models with outdoor temperature predictions and time-of-use pricing to optimize indoor

temperatures dynamically. Their model incorporated the Predicted Mean Vote (PMV)

indicator, a widely used thermal comfort metric based on heat balance equations, to assess

human thermal comfort. The PMV index accounted for key environmental parameters,

including air temperature, mean radiant temperature, air velocity, and relative humidity,

ensuring a comprehensive evaluation of indoor comfort levels. The strategy adjusted

comfort thresholds during peak and off-peak electricity pricing periods to balance energy

efficiency and occupant comfort. Their model achieved notable energy savings, though its

applicability across varying building types and climates remains a limitation.

2.3. Prediction Models for Smart Buildings and District Heating

The integration of machine learning and predictive models for controlling smart

building systems and district heating is gaining traction. These models aim to predict

energy demand and optimize system operations for greater energy efficiency and comfort.

In this area, Cui et al. [24] proposed a heat load prediction model for district heating

systems, combining Whale Optimization Algorithm (WOA) with LSTM, attention mech-
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anism (ATT), and convolutional neural networks (CNN). This hybrid model addressed

challenges in predicting heat load under fluctuating conditions, though its reliance on a sin-

gle dataset and short observation periods limited its effectiveness. In a similar vein, Huang

et al. [25] developed a two-stage data-driven framework to predict indoor temperatures

and control heating systems in smart buildings. Their approach combined a univariate

AR model for ambient conditions with a multivariate XGBoost model for temperature

predictions. While it proved effective in managing energy use, its assumption of stationary

ambient conditions reduced its adaptability in dynamic environments.

Meanwhile, Yang et al. [26] explored an AE-GWO-GRU-based method for predicting

heat load in district heating systems, using autoencoder-based data augmentation and

grey wolf optimization for parameter tuning. This approach addressed issues such as heat

load fluctuations and transmission lags but was limited by its reliance on a small dataset,

which was augmented for better performance. Lastly, Qaisar et al. [27] introduced OPTnet,

a Transformer-based model for building occupancy prediction, which uses multi-sensor

data, including HVAC operations. Although it significantly improved HVAC control and

energy optimization, its dataset was limited to HVAC operational periods, reducing the

scope for broader application.

Table 1. Comparison of existing techniques and methods.

Ref. Year Focus Dataset Technique Result Limitation

Ghahramani
et al. [22]

2014

Personalized
HVAC control
for energy
efficiency

The dataset
collected from
an occupant

Knowledge-based
optimization

Average daily
airflow reduction of
57.6 m3/h (12.08%)

Potential
limitations in
scalability and
generalizability

Ghahramani
et al. [18]

2018
Analyzing
HVAC control
policies

DOE references
small office
buildings in
three U.S.
climate zones

EnergyPlus
simulations

Building-level
annual control
achieves 27.76% to
50.91% energy
savings

Reliance on
simulation data
and simplified
thermal comfort
modeling

Aryal and
Becerik-Gerber
[28]

2018
Comfort-driven
zone-level
setpoints

RP884 database
Simulation and
quantification

25% increase in
occupant
satisfaction, 2.1%
energy savings

Difficulty in
meeting ASHRAE
requirements for
occupant
satisfaction

Huang et al.
[25]

2020

Indoor
temperature
prediction and
heating system
control

Data from a
smart building
sensor network

AR, XGBoost

Predicted warm-up
time: 19 min,
Target temperature:
22.4 ◦C

Assumes stationary
ambient conditions
for predictive
accuracy

Chen et al. [19] 2021

Data-driven
thermal
comfort
optimization

ASHRAE
Global Thermal
Comfort
Database II

Support Vector
Machine (SVM),
Random Forest

Total cost savings
exceed CNY
1.5 million

Scalability to
different building
types or climates.

Yadav and
Kowli [16]

2022

Simulation
framework for
HVAC
optimization

Thermal
behavior and
energy
consumption
data collected
from various
sensors

Regression-based
spatial thermal
mapping

More energy
savings compared
to traditional zonal
comfort
optimization

Uncertain
reliability of model
performance
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Table 1. Cont.

Ref. Year Focus Dataset Technique Result Limitation

Mahjoub et al.
[17]

2022

Short-term
power
consumption
forecasting

Power
consumption
data from
Péronne city,
France

LSTM, GRU, and
Drop-GRU

Drop-GRU
produced better
accuracy and
prediction speed,
with low RMSE
and MAE, and high
R (near +1)

Learning time
depends on the
forecasting method
used

Talami et al.
[21]

2023
HVAC energy
consumption
optimization

U.S. DOE
reference
building energy
models

HVAC zone
temperature
setpoint optimizer

Additional energy
savings of 2–10%
achieved

Static occupancy
rates and specific
problem
formulation may
limit
generalizability to
different scenarios

Almeida et al.
[20]

2023

Adaptable
strategy for
HVAC
setpoints

Smart
thermostat data
from European
households

Predictive indoor
temperature
models

Energy savings up
to 5.2%

Feasibility on
resource-
constrained smart
thermostat devices

Li et al. [23] 2023
Demand
response
control strategy

Historical
temperature
and humidity
data of the
office building

Heat balance
equations,
RBFneuralnetwork

5.92% reduction in
electricity
consumption and
6.81% decrease in
operational costs
during DR periods

Applicability to
different building
types and climates
may vary

Qaisar et al.
[27]

2023
Building
occupancy
prediction

Operational
data from
HVAC system

Transformer
network (OPTnet)

Superior
performance in
accuracy and mean
squared error
compared to other
method

Dataset only
includes HVAC
operational hours

Cui et al. [24] 2024
Heat load
prediction

1100 h dataset
from a heat
exchanger
station

CNN, LSTM
R2 = 0.9962,
MSE = 0.0001,
MAE = 0.0082

Limited to a single
dataset and short
observation period

Yang et al. [26] 2024

Heat load
prediction in
district heating
systems

Data from DHS
in a
multifunctional
region

Autoencoder, grey
wolf optimization,
Gated Recurrent
Unit

RMSE: 47.90,
MAPE: 2.17%

Insufficient data,
requiring
augmentation for
improved model
performance

Jing et al. [29] 2024

Energy
management
optimization in
buildings

Real data from
a building in
Nanjing

Deep policy
gradient decision
making

Effective balance of
energy efficiency
and user comfort

Optimized only for
a specific time
frame

3. Dataset

The European Central Bank (ECB) Headquarters in Frankfurt is a state-of-the-art build-

ing equipped with multiple sensor networks as part of an advanced Building Management

System, enabling granular analysis.

Data are collected from the district heating network that supplies the building, using

measurements from devices located in the heat exchange units responsible for transferring

heat from the district system to the building. Additionally, data from the building’s

weather station (BWS) offer a valuable foundation for analyzing the relationship between

environmental parameters, area temperatures (AT), and heating demand. By analyzing

trends from the BWS, we can identify key patterns and seasonal variations in space heating.
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3.1. Heating Consumption Data

The district heating system operates as the baseload supplier, which increases the

building foundation’s thermal reliability and diversification. These data are collected

by a smart meter which is located in the premises’ technical areas. This device tracks

energy consumption, with measurements taken at 15 min intervals. Although the heating

consumption data are recorded at 15 min intervals, real-time data are also collected from

Building Management Systems (BMSs) and sensors, ensuring inputs for more sustainable

building management practices. The data monitor is installed in the exchange technical

area between the provision heating network and the building’s heating system. This data

monitor is an integral part of the overall data acquisition process.

One of the parameters that can be used to forecast the energy demand needed to heat

a building is the Heating Degree Day (HDD). The number of degrees below an established

reference temperature proves a day’s mean temperature necessary to use heating in build-

ings [30]. In this case, the 15 ◦C threshold has been selected based on expert knowledge,

ensuring accuracy and relevance in measuring the building heating requirements. In this

study, Heating Degree Hours (HDH) are employed because it disaggregates and yields a

more accurate assessment of heating requirements, especially when working with hourly

temperature data compared to HDD. The formula for calculating HDH is as follows:

{

15−Tout(h)
24 i f Tout(h) < 15

0 i f Tout(h) ≥ 15

}

where Tout is the hourly outside temperature, and HDH represents the hourly degree hours.

3.2. Weather Variables from Building Weather Station (BWS)

The weather variables dataset consists of a broad range of meteorological parameters

for evaluating atmospheric conditions, including temperature, humidity, wind speed, and

many others. These factors indicate weather pattern dynamics that govern the operations

of buildings and their energy use. Obtained directly from a weather station built on

the top of the ECB skyscraper, this dataset provides accurate information that applies to

the immediate surroundings of the building. Positioning the weather station at such an

elevation maximizes gathering appropriate data that echo the building’s atmosphere.

The integration with the Building Automation System (BAS) significantly improves

data efficiency and accessibility. The seamless connection between the weather station and

BAS ensures smooth data transmission and storage, making real-time weather monitoring

readily available to building managers and operators. This integration enables informed

decision making in control rooms, leveraging up-to-date weather information for better

building management. Additionally, the BAS allows for the retrospective analysis of

historical weather data, enabling the identification of trends and patterns.

The inclusion of ATs is a key feature of the dataset, as they play a crucial role in

understanding building thermal dynamics. The temperatures extracted from the BAS

provide insights into how heating demands vary across different zones of the building.

Assessing the thermal behavior of each area requires careful consideration of these areas’

role in the business activity. When combined with weather data and SHC, they form

the foundation for accurately modeling the relationship between comfort, environmental

conditions, and energy usage, enabling more precise energy management and optimization.

3.3. Hourly Temperature Trends in Building Zones

The analysis of hourly temperature trends across various building zones reveals

distinct patterns between weekdays and weekends, highlighting the influence of occupancy

and operational demands on heating systems as shown in Figure 1. Temperatures remain
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higher almost daily during the week, particularly between the hours of working morning

through evening. This implies that heating systems operate more on weekdays where they

are more likely to be needed to maintain thermal comfort for building occupants.

tt

 

ff

ff ff ff

ff ff

ffi ff

Figure 1. Average hourly air temperature across different zones on weekdays and weekends.

There is a clear hourly variation in the sense that temperatures decrease slowly during

the early morning hours (0–6 a.m.) and then increase during the day. Between 12 p.m. and

6 p.m., a gap between weekday and weekend temperatures can be seen, and this is the peak

heating time. The lower occupancy and operational demand on weekends are confirmed

further by reduced heating operations during non-working days.

Temperature trends in different building zones differ, which implies different heating

control strategies. For example, building zones GC_0_5 and HH_0_13 are more distinct

across the weekday and weekend, indicating that the heating adjustment takes place in

different ways on different floors. In addition, more heating seems to be needed in zones

characterized with higher sun exposure, such as the south face, and zones in shade show

somewhat more heating. This variation underscores the importance of tailored heating

strategies to optimize energy efficiency and occupant comfort in different building areas.

Zones like GC_0_5 and HH_0_13, with lower sun exposure or higher occupancy during

weekdays, show the need for more heating, while areas such as south-facing zones or those

with higher sunlight exposure may require less heating.

3.4. Space Heating Consumption and Air Temperature

Figure 2 presents the monthly scaled SHC from 2018 to early 2024. It reveals a

substantial seasonal variation in SHC, with the highest values occurring consistently during

the colder months—Q1 (January, February, March: winter to early spring) and Q4 (October,

November, December: fall to early winter).

3.5. Variables and Aggregation

The variables are categorized into three main groups: building weather station vari-

ables, time-related variables, and AT. Below is detailed information on each group and the

aggregation methods applied to some variables.
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Figure 2. Relationship between SHC and external air temperature in winter of each year—reflecting

the increased demand for heating. In contrast, SHC significantly drops during the warmer months—

Q2 (April, May, June: spring to early summer) and Q3 (July, August, September: summer to early

fall)—suggesting reduced heating needs. The trend repeats yearly, with slightly higher peaks in

some years, possibly indicating colder winters or increased heating requirements. The data show

a stable seasonal consumption pattern, with a notable peak again in early 2024, suggesting similar

heating demands.

3.5.1. Area Temperature Variables

Specific building zones are used to predict AT, and the following (Table 2) variables

are aggregated from different building-specific areas. Thus, the aggregated variables are

averages of respective zone temperatures to obtain a clear picture of the fluctuations in the

corresponding areas of the building.

Table 2. Area Temperature Variables and Aggregation.

Aggregated Variable Component Variables Aggregation Description

CA_0_5
‘CA0_E‘, ‘CA0_W‘, ‘CA1‘, ‘CA2_E‘, ‘CA2_W‘, ‘CA3‘,
‘CA4_A1‘, ‘CA4_A2‘, ‘CA5‘

Common Areas on floors 0–5

NT_0_13
‘NT0_1_NO‘, ‘NT0_1_NW‘, ‘NT10_13_NO‘, ‘NT10_13_NW‘,
‘NT2_5_NO‘, ‘NT2_5_NW‘, ‘NT6_9_NO‘, ‘NT6_9_NW‘

North Tower on floors 0–13

ST_0_13
‘ST0_1_SO‘, ‘ST0_1_SW‘, ‘ST10_13_SO‘, ‘ST10_13_SW‘,
‘ST2_5_SO‘, ‘ST2_5_SW‘, ‘ST6_9_SO‘, ‘ST6_9_SW‘

South Tower on floors 0–13

NT_14_25
‘NT22_25_NO‘, ‘NT22_25_NW‘, ‘NT18_21_NO‘,
‘NT18_21_NW’, ‘NT14_17_NO’, ‘NT14_17_NW’

North Tower on floors 14–25

ST_14_25
‘ST14_17_SO’, ‘ST14_17_SW’, ‘ST18_21_SO’, ‘ST18_21_SW’,
‘ST22_25_SO’, ‘ST22_25_SW’

South Tower on floors 14–25

NT_26_37
‘NT26_29_NO’, ‘NT26_29_NW’, ‘NT30_33_NO’,
‘NT30_33_NW’, ‘NT34_37_NO’, ‘NT34_37_NW’

North Tower on floors 26–37

ST_26_37
‘ST26_29_SO’, ‘ST26_29_SW’, ‘ST30_33_SO’, ‘ST30_33_SW’,
‘ST34_37_SO’, ‘ST34_37_SW’

South Tower on floors 26–37
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3.5.2. Building Weather Station Variables

The building weather station (BWS) variables provide crucial environmental data

influencing AT predictions and SHC estimations. These variables include the following:

• BWS_air_pressure: Atmospheric pressure at the building location.

• BWS_air_temperature: External air temperature recorded by the BWS.

• BWS_wind_speed: Speed of the wind measured by the BWS.

• BWS_wind_direction: Direction from which the wind is blowing.

• BWS_relative_humidity: Humidity level in the atmosphere.

• BWS_global_radiation: Amount of solar radiation received.

3.5.3. Space Heating Consumption Variables

In the case of SHC prediction, the target variable used is the total SHC of the building.

This variable is computed with the help of the predicted AT, which is one of the main

inputs in the model. Other related features are also incorporated into the analysis to

improve the accuracy of the SHC estimates, apart from AT forecasts. Such features include

environmental conditions, for instance, wind speed, air pressure, and time features, such

as the hour of the day and the season.

3.5.4. Time-Related Variables

Time-related variables are integral to modeling, accounting for seasonal variations and

daily patterns affecting temperature and heating needs. The following (Table 3) variables

are considered:

Table 3. Time variables and their description.

Time Variable Description

year Year of the observation

month Month of the observation

day Day of the month

hour Hour of the day

day_of_week Day of the week (0 = Monday, 6 = Sunday)

season_fall Indicator for fall season

season_spring Indicator for spring season

season_summer Indicator for summer season

season_winter Indicator for winter season

HDH15 Heating Degree Hours (base 15 ◦C)

weekend Indicator for weekend days (1 if weekend, 0 otherwise)

The variables listed above will be utilized across the three research goals. The AT

variables will support Goal 1, while the SHC variable will be used explicitly for Goal 2. The

time-related variables will provide essential context for temperature predictions and SHC

modeling. Together, these variables enable a comprehensive analysis to optimize energy

consumption and maintain occupant comfort in building environments.

4. Proposed Methodology

The methodology of this study involves a two-stage machine learning framework

for energy consumption prediction, starting with preprocessing steps that extract date

and time components to capture temporal patterns, such as seasonal trends and daily
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variations, in energy usage. Missing values are handled primarily through imputation,

with linear regression used as a backup method when necessary. Feature engineering

includes the introduction of key features for heating demand to improve model accuracy.

The modeling phase develops a robust temperature prediction model using LSTM, GRU,

and Transformer architectures, specifically tailored to individual building zones, ensuring

accurate thermal management while minimizing energy consumption. Although LSTM,

GRU, and Transformer models are widely used, they are particularly well suited for time

series forecasting, which is critical for this study’s goal of predicting temperature and

heating consumption patterns. Performance is evaluated using metrics such as R-squared,

Mean Squared Error (MSE), and Mean Absolute Error (MAE), with thresholds set based

on model-specific requirements. The novelty of this work lies not only in the application

of these architectures to space heating optimization but also in the integration of custom

loss functions to balance energy efficiency and occupant comfort. The optimization of

space heating consumption and comfort is achieved through two models: one predicting

area temperatures, with smoothness enforced through a penalty, and another predicting

heating demand, which leverages temperature predictions to estimate global SHC and

optimize energy use across multiple zones. The two-stage predictive modeling approach

for both temperature forecasting and heating consumption prediction adds further value,

distinguishing this study from traditional applications of these models in the energy

domain. Custom loss functions are introduced to regulate temperature variations while

minimizing energy consumption, enforcing thermal comfort constraints and promoting

energy efficiency in sustainable building management.

4.1. Preprocessing

The data preprocessing phase is critical in preparing the dataset for effective modeling

and analysis. This process incorporates different data cleaning, transformation, and prepa-

ration methods to make the raw data in the correct format for modeling. These include

conversion of the extracted date and time into their paramount components, recognition

of seasons in the data stream, mechanism handling of missing data, and feature engineer-

ing of quantitative and categorical characteristics that synthetically dissect the applied

dataset. In addition, the data are classified into more generalized forms and normalized

to the same scale, and the data are organized into sequences for time series. Last but not

least, the dataset is split into train, validation, and test sets to make appropriate model

assessments possible.

4.1.1. Extracting Date and Time Components

The preprocessing begins by extracting essential date and time components from the

‘Datetime’ column. The code identifies and separates the following elements: year, month,

day, hour, and day of the week. This breakdown transforms the timestamp into individual

components that can effectively be utilized as features in the predictive models.

4.1.2. Determining Seasons

A function is defined to enrich further the dataset, which assigns a specific season

to each data point based on the month. The seasons are categorized as follows: Winter

encompasses December, January, and February; Spring includes March, April, and May;

Summer covers June, July, and August; and Fall consists of September, October, and

November. One-hot encoding is applied to create separate binary columns for each season,

such as ‘season_winter’ and ‘season_spring’, enabling the models to account for seasonal

variations in energy consumption.
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4.1.3. Handling Missing Values

The preprocessing process also addresses the issue of missing values within the

dataset. The code identifies variables that may have missing entries, including ‘SHC’,

‘BWS_air_pressure’, and others. For each variable with missing data, the code fills

these gaps using the mean values of groups defined by ‘year’, ‘month’, ‘hour’, and

‘BWS_air_temperature’. Suppose any missing values persist after this initial imputation.

In that case, a linear regression model is employed to predict and fill them based on the

‘BWS_air_temperature’ variable, ensuring the dataset is as complete as possible for analysis.

4.1.4. Feature Engineering

One of the most straightforward and compulsory techniques to enhance the effec-

tiveness of the predictive analysis of the model involves feature engineering. To describe

the heating demand when the outside temperature is less than or equal to 15 ◦C, a new

variable ‘HDH15’ is introduced, and more information about the models is given. The

weekends binary column added indicates if the data point is on the weekend or not. This

feature is valuable for recording variations in heating requirements within the working and

weekend days.

4.1.5. Grouping Building Areas

To manage the complexity of the dataset, individual building ATs are grouped into

seven distinct categories by averaging related columns. For instance, Group 1, referred

to as ‘CA_0_5’, combines temperatures from various areas such as ‘CA0_E’, ‘CA1’, and

others. Similar aggregations are applied to form Groups 2 through 7. Following this

grouping, the original columns used to create the groups are discarded. This step allows

for a focus on broader temperature patterns rather than individual ATs, facilitating more

effective modeling.

4.1.6. Data Scaling

When applied, feature scaling prepares the dataset for modeling. The feature columns,

the weather data, and time components go through the MinMaxScaler, which scales all

features in the dataset to a range of 0 and 1. Likewise, the target variables, such as the

grouped temperatures, are scaled for consistency across the dataset. In addition, the scalers

used for both features and targets are equally saved with joblib, which can also be used to

scale during the next prediction.

4.1.7. Data Splitting

Finally, the dataset, consisting of 61,320 rows (representing 24 h × 365 days × 7 years),

is divided into three sets for model training and evaluation. The training set, constituting

60% of the data, is utilized to train the models. The validation set, comprising 20%, is

employed to fine-tune model parameters and mitigate the risk of overfitting, using a 5-fold

cross-validation approach. The remaining 20% forms the test set, which assesses the final

models’ performance.

4.2. Area Temperature and Space Heating Consumption Prediction in Building Areas

This methodology has two primary objectives. The first objective is to predict the

temperatures of specific categories of building areas. The second objective is to predict the

SHC using LSTM, GRU, and Transformer algorithms. Based on the history of the building

temperature, data from the BWS, and parameters that define time, the approach identifies

the best models for temperature and SHC estimation, as depicted in Figure 3. To ensure

that the models have been used at their best, grid search cross-validation has been used for

the selection of hyperparameters in order to yield the best performance out of them.
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Figure 3. Proposed methodology for forecasting ATs and SHC.

4.2.1. LSTM Model

LSTM is a type of recurrent neural network (RNN) that is especially suited for se-

quence data and overcoming the deficiencies of the traditional RNN to preserve long-term

dependencies [31]. In contrast, other RNNs using simple feedback mechanisms are prone

to get stuck in vanishing gradient problems; LSTMs have a specific memory cell design

that allows the network to remember or forget information over relatively long intervals.

Each LSTM cell includes three key gates—input, forget, and output gates—that allow

control over which data should be allowed to enter or leave the cell state [32]. This gating

mechanism allows LSTMs to retain essential previous information and discard irrelevant

details, which makes the application of LSTMs ideal for applications that incorporate long-

term contexts, such as language comprehension, time series forecasting, intricate system

simulation, and complex system modeling.

In this study, the LSTM model is developed using the Keras Sequential API that enables

the creation of an architecture suitable to efficiently capture temporal structures, especially

in time series data [33]. In its basic form, the model utilizes an LSTM layer activation and

functions to develop the hierarchical interconnections of the inputs. To address the risk of

overfitting, a dropout layer is incorporated, which randomly deactivates a portion of the

neurons during training. Additionally, a dense output layer is included to align with the

number of target variables, allowing the model to predict multiple temperature groups.

The model is compiled with the Adam optimizer and utilizes the mean squared error loss

function to assess its performance. Training is conducted on the designated training set,

followed by validation on a separate validation set to ensure robustness. After training, the

model’s predictive capability is evaluated on the test set, and predictions are generated.

R-squared scores are then calculated for each target variable, providing valuable insight

into the model’s accuracy and effectiveness in temperature prediction.
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4.2.2. GRU Model

GRU network is a more compact LSTM network designed for sequence modeling to be

less computationally expansive while still efficient [10]. Like LSTMs, GRUs were developed

to overcome the problem of vanishing gradients inherent in traditional RNNs and restrict

the sequence information output [34]. GRUs achieve this through two primary gates: the

update gate and the reset gate. The update gate controls how much of the previous time

steps should be passed on to the next layer and, hence, how much information should be

kept in the current step, while the reset gate controls how much of the previous hidden

state should be forgotten in the current step. Its structure permits GRUs to learn long-

term dependencies of a sequential input without burdening the algorithm with as many

parameters as LSTMs, making for much quicker training. The GRU model’s training,

evaluation, and prediction are similar to the LSTM model in that they provide a proper

comparison between the two architectures.

4.2.3. Transformer Model

Transformers are a deep learning architecture designed to process a sequence better

than the RNN since it replaces recurrence with self-attention mechanisms [35]. Unlike

RNNs, Transformers generalize information simultaneously and thus are very effective.

They can capture dependencies from the quadratic time complexity of sequences, making

them very effective in processing long sequences. The most crucial concept of Transformer

architecture is self-attention, which allows the model to decide on the importance of

a particular input in the output [35]. This mechanism is organized in several “heads”

across attention layers and works with various relations inside the data, leading to more

complex representations.

This paper develops a custom Transformer model to effectively capture long-term

dependencies within the data, enhancing the model’s ability to understand complex re-

lationships over extended periods [36]. The model’s architecture consists of multiple

Transformer encoder blocks; the attention mechanism is present to concentrate on the

most critical parts of the input sequence. Furthermore, employing layer normalization

and multi-head attention helps stabilize the model’s training and smooth the extraction of

complex relationships within the data. After the encoder blocks, the feed-forward network,

global average pooling layer, and dense layers are used to generate the output. When it

comes to the Transformer model, the training and testing protocols are the same as those

used for LSTM and GRU, thus presenting a clear comparison between them all.

4.2.4. Evaluation and Model Saving

R-squared metrics, along with mean squared error and mean absolute error, are uti-

lized to assess the predictive accuracy of temperatures for specific groups of building

areas and SHC. Following this evaluation, the trained models, labeled as lstm_model1,

gru_model1, and transformer_model1, are saved using the model save() method for Keras

models. This functionality ensures future access to the models without retraining, facilitat-

ing subsequent analyses and implementations.

4.3. Optimizing Space Heating Consumption While Maintaining Occupant Comfort

The third objective of this study is to reduce the building’s SHC while maintaining

occupants’ comfort levels. This is achieved through a two-stage machine learning process:

the first is a model to generate temperature estimates regarding the different building

zones, and the second is to use those temperature predictions to estimate global SHC. The

methodology uses GRU, LSTM, Transformer blocks, and custom loss functions to match

desired energy efficiency and comfort, as shown in Figure 4.
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Figure 4. Methodology of optimizing SHC while maintaining occupant comfort.

4.3.1. Model 1: Predicting Area Temperatures

In the first stage, temperature is forecasted in the specific areas of the building using

historical data from the BWS and time-related variables. The model employs deep learning

architecture such as GRU, LSTM, or Transformer blocks to capture temporal dependencies.

A custom loss function is implemented to regulate temperature predictions in line with

occupant comfort. During work hours (7 a.m. to 6 p.m.), the model applies a high penalty

for predicted temperatures falling below the recommended range of 21–23 ◦C, as outlined in

EN 16798-1 for winter thermal comfort [7]. Deviations from this threshold incur significant

penalties to ensure the temperature remains within the comfort zone. In contrast, during

non-work hours, the model allows the temperature to drop to 18 ◦C, promoting energy

savings. Although penalties for deviations during this period are less than work hours,

they do achieve the comfort and energy efficiency balance. When the building is typically

unoccupied on weekends, the model imposes penalties for temperatures exceeding 18 ◦C

during those times to capitalize on energy conservation opportunities.

Additional constraints in the loss function prevent excessive heating by applying

strong penalties for temperatures exceeding 23 ◦C, in accordance with the upper limit

of the recommended winter comfort range in EN 16798-1, which results in unnecessary

energy consumption. The model also discourages rapid temperature changes—predicted
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temperature shifts exceeding 0.5 ◦C between consecutive hours incur penalties, promoting

smoother, more efficient heating.

• Input and Output Handling:

The model inputs sequential environmental and time-related features, including

historical temperature, wind speed, and time of day, normalized between 0 and 1 with

specific cutoffs for work and non-work hours. The output consists of the predicted ATs,

passed to the second model for SHC prediction. The training process for Model 1 utilizes the

custom loss function, custom_loss_model1, as previously described. To prevent overfitting,

validation is conducted using the val_step_model1 function. Additionally, smoothness

constraints within the loss function ensure gradual transitions in temperature predictions,

promoting comfort and energy efficiency.

4.3.2. Model 2: Predicting Space Heating Consumption

Once Model 1 makes the AT predictions, they serve as additional inputs for Model 2,

which forecasts the overall SHC required to maintain the predicted temperatures. Model

2 uses original input features (e.g., outdoor temperature, pressure, and wind speed) and

the temperature predictions from Model 1. This is achieved by concatenating the outputs

of Model 1 with other input features.

A custom loss function is implemented for Model 2 to minimize energy waste. This

loss function imposes a heavier penalty for overestimating heating needs, as such overes-

timations result in unnecessary energy consumption. The model accurately predicts the

exact amount of heating needed to maintain occupant comfort without overshooting by

placing greater emphasis on penalizing over-predictions than under-predictions.

The input is a concatenation of predicted temperatures from Model 1 and various

environmental variables. Combining these datasets constitutes a comprehensive basis

for the model to process and analyze. Model 2’s output is the predicted values of SHC.

Real-world energy consumption data are then used to compare with these predicted

values in order to effectively evaluate the model and its performance in predicting actual

consumption data.

4.3.3. Custom Loss Function Design

The success of both models hinges on their tailored loss functions, which strategically

balance occupant comfort and energy efficiency. For Model 1 (AT Prediction), the loss

function emphasizes maintaining comfort thresholds during work hours (21 ◦C–22 ◦C)

while allowing for energy-saving measures during non-work hours and weekends by

relaxing temperature constraints. Additional penalties are applied to avoid excessive

heating (>22 ◦C) and to ensure smooth transitions in temperature predictions, promoting

both comfort and operational efficiency. The custom loss function operates on multiple

layers, ensuring that temperature predictions remain close to the lower limit to minimize

energy consumption. At the same time, it enhances consistency by reducing volatility,

leading to a more stable temperature profile that improves overall comfort. This two-phase

design balances energy efficiency with stability, preventing abrupt fluctuations that could

disrupt occupant comfort.

For Model 2 (SHC Prediction), the loss function prioritizes accuracy in heating predic-

tions, with a heavier penalty on over-predictions to prevent unnecessary energy consump-

tion. Under-predictions are penalized less severely to allow for efficient heating within

acceptable comfort ranges. By aligning Model 1′s stable temperature predictions with

Model 2′s optimized SHC forecasts, the custom loss functions ensure that energy efficiency

is achieved without compromising thermal comfort. Together, these custom loss functions

align the predictive goals of both models—ensuring the temperature predictions from
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Model 1 lead to optimized SHC predictions in Model 2, achieving a cohesive strategy for

energy-efficient building management.

4.3.4. Mathematical Formulation of Loss Function

The custom loss functions for both models are designed to balance occupant comfort

and energy efficiency.

For Model 1, the loss function L1 combines the temperature prediction error with

penalties for excessive heating and smoothness. It is designed as follows:

L1 = α∑ t (|Tpred(t)− Tactual(t) |+ β∑ t(max(0, Tpred(t)− 22 )) + γ∑ t ( (Tpred(t)− Tpred(t − 1 ) ) 2 ) (1)

where Tpred(t) is the predicted temperature at time t, Tpred(t) is the actual measured

temperature at time t, α,β,γ are hyperparameters that control the weights of each term.

The first term minimizes the temperature prediction error. The second term penalizes

temperatures above 22 ◦C, which is the upper comfort limit. The third term penalizes

the volatility in temperature changes, ensuring smooth transitions and reducing abrupt

fluctuations.

For Model 2, the loss function L2 penalizes over-predictions more severely than

under-predictions to prioritize energy savings. The equation is defined as follows:

L2 = δ∑ t(max(0, Q̂pred(t)− Q̂actual(t) )
2 )+ϵ∑ t(max(0, Q̂actual(t)− Q̂pred(t) )

2 ) (2)

where Q̂pred(t) is the predicted space heating consumption at time t, Q̂actual(t) is the actual

easured heating consumption at time t, δ and ϵ are hyperparameters, where δ > ϵ to penalize

over-predictions more heavily than under-predictions.

The final combined loss function L final integrates the objectives of both models

(temperature and heating consumption), ensuring that the temperature predictions from

Model 1 guide the heating consumption predictions from Model 2:

Lfinal = L1 + λL2 (3)

where λ is a scaling factor that balances the contributions from both loss functions, ensuring

that both temperature prediction and heating consumption optimization are aligned.

4.3.5. Model Evaluation

The models were evaluated through a comprehensive analysis of their performance

metrics on unseen data. Each model was assessed based on specific criteria, such as accuracy

in predicting temperature deviations from target values during defined periods, adherence

to established upper-temperature limits, and the smoothness of temperature transitions

over consecutive hours. Additionally, average deviations from target temperatures during

working, non-working, and weekend hours were calculated to evaluate how well each

model maintained comfort levels. The effectiveness of the models was further examined

by comparing their predicted values against actual observations, focusing on the overall

reduction in percentage difference between actual and predicted outcomes.

5. Results and Discussion

This section presents a comprehensive analysis of the results obtained from the im-

plemented machine learning models for temperature and SHC predictions. The results

demonstrate these predictive capabilities’ contribution to energy usage optimization in the

building while maintaining comfort standards across dynamic operational conditions.
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5.1. Area Temperature and SHC Forecasting

The results of the temperature prediction model for various heating zones demonstrate

notable differences in performance, as measured by the R-squared values as shown in

Table 4. Across the heating zones, the Transformer model consistently achieves the highest

R-squared values, particularly in the CA_0_5 zone, where it reaches 0.945718, indicating

its superior capability in capturing the underlying patterns in the temperature data. The

LSTM and GRU models also perform well, with R-squared values close to the Transformer,

especially in the NT_0_13 and NT_14_25 zones, where the LSTM model achieves R-squared

values of 0.935583 and 0.948459, respectively. This suggests that while LSTM and GRU

models are compelling, the Transformer model may leverage its attention mechanisms to

better understand the temporal dependencies and interactions in the data.

Table 4. Models evaluation in area temperature forecasting.

Heating Zone LSTM R-Squared GRU R-Squared Transformer R-Squared

CA_0_5 0.92 0.92 0.95

NT_0_13 0.94 0.94 0.94

ST_0_13 0.92 0.92 0.91

NT_14_25 0.95 0.95 0.95

ST_14_25 0.91 0.91 0.91

NT_26_37 0.95 0.95 0.95

ST_26_37 0.92 0.91 0.91

In the ST_0_13 zone, all three models show relatively similar performance, with

R-squared values hovering around 0.92, indicating consistent temperature predictions

regardless of the model used. However, the least favorable performance is observed in

the ST_26_37 zone, where both the LSTM and GRU models yield slightly better R-squared

values compared to the Transformer model. This suggests that the complexities of this

specific heating zone’s data may not align as well with the Transformer’s architecture.

The results of the SHC prediction models demonstrate strong performance across

the LSTM, GRU, and Transformer architectures, with R-squared values indicating high

accuracy. The GRU achieves the highest R-squared value of 0.9522, closely followed by

the LSTM at 0.9519, highlighting their effectiveness in capturing complex relationships

within the dataset. The GRU’s slight advantage may stem from its efficient management of

temporal dependencies through its gating mechanism. In contrast, the Transformer model

shows a respectable R-squared value of 0.9389 but falls short of the other two models,

suggesting that its capabilities may not be fully utilized for this specific dataset, as shown

in Figure 5. Overall, these findings emphasize the suitability of the GRU and LSTM models

for SHC prediction, which will significantly enhance energy management strategies and

optimize energy usage in buildings.

The Transformer model shows the lowest R-squared value, suggesting it may not

be the optimal choice for energy consumption prediction despite its ability to handle

sequential data. This could be due to its requirement for large datasets to capture long-

range dependencies, which was not fully possible with our smaller dataset.
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Figure 5. Model evaluation in SHC forecasting.

5.2. Optimizing SHC for Occupant Comfort Using Predictive Modeling

5.2.1. Experimental Setup

The models were evaluated with comfort metrics tracked on unseen data, consisting

of February and March 2024 temperatures. Table 5 shows the comfort metrics used in this

paper’s evaluation.

Table 5. Comfort metrics with their description.

Comfort Metric Description

Upper Limit Violation Percentage
The percentage of time temperatures in each area
exceeded 22 ◦C, a critical threshold for energy
efficiency.

Deviation from 21 ◦C during
Work Hours

The average deviation from the ideal temperature
of 21 ◦C during work hours (6 a.m. to 6 p.m.) is
crucial for maintaining occupant comfort.

Deviation from 18 ◦C during
Non-Work Hours

Average deviation from 18 ◦C during non-working
hours (7 p.m. to 5 a.m.), representing
energy-saving opportunities.

Deviation from 18 ◦C during
Weekends

Deviation from 18 ◦C during weekends when the
building is unoccupied is needed to assess
energy-saving potential.

Smoothness Violation Percentage

The percentage of ATs that changed by more than
0.5 ◦C from one hour to the next is essential for
avoiding discomfort and unnecessary energy
consumption.

The analysis compared the models’ performances using the above metrics to the actual

building data without a model, allowing for a detailed evaluation of the comfort profiles

achieved by each predictive model. Table 6 presents the comfort metrics for the unseen

data when no predictive model was applied.
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Table 6. Comfort metric of unseen data.

Area
Upper Limit
Violation %

Deviation from
21 ◦C During
Work Hours

Deviation from 18 ◦C
During Non-Work
Hours

Deviation from
18 ◦C During
Weekends

Smoothness
Violation %

CA_0_5 0.00 0.48 3.33 3.26 0.00

NT_0_13 3.76 0.43 2.99 2.83 0.00

ST_0_13 23.12 0.75 3.41 3.31 0.74

NT_14_25 7.39 0.56 2.95 2.77 0.07

ST_14_25 27.22 0.82 3.50 3.38 0.94

NT_26_37 8.94 0.62 2.90 2.73 0.40

ST_26_37 26.81 0.95 3.37 3.26 3.16

Average 13.89 0.66 3.21 3.08 0.76

5.2.2. Performance Evaluation

The LSTM model’s results show a significant reduction compared to the actual values

of SHC, with a 20.95% reduction. The Upper Limit Violation was successfully avoided

over all areas by analyzing the comfort metrics in Table 7, where thresholds were not

exceeded above 22 ◦C, a critical point for energy efficiency. The model was able to keep the

temperatures close to the 21 ◦C ideal for occupant comfort in 0.347 ◦C average deviation

from 21 ◦C during 8:00 to 18:00 (work hours).

Table 7. Performance evaluation of LSTM SHC optimization.

Area Zones
Upper Limit
Violation %

Deviation from
21 ◦C During
Work Hours

Deviation from 18 ◦C
During Non-Work
Hours

Deviation from
18 ◦C During
Weekends

Smoothness
Violation %

CA_0_5 0.00 0.14 2.07 2.00 0.76

NT_0_13 0.00 0.53 1.02 0.91 6.25

ST_0_13 0.00 0.30 1.29 1.16 9.38

NT_14_25 0.00 0.46 0.19 0.02 14.31

ST_14_25 0.00 0.39 1.22 1.07 11.81

NT_26_37 0.00 0.30 0.35 0.17 14.72

ST_26_37 0.00 0.32 0.91 0.75 12.71

Average 0.00 0.35 1.01 0.87 9.99

The deviation from 18 ◦C averaged 1.006 ◦C during non-working hours, showing that

the model maintained a reasonable energy-saving vs. comfort balance during periods of

lower occupancy. The deviation from 18 ◦C over weekends was also lower by 0.869 ◦C,

indicating that the model could optimize energy use when the building was empty.

The Smoothness Violation showed that around 10% of temperatures changed over

0.5 ◦C within one hour. While a slight loss of comfort sensation could occur, the model

performs reasonably well overall in keeping temperature transitions stable, given the

significant reduction in energy consumption.

The GRU model moderately improved SHC, achieving a 2.33% decrease from actual

SHC. In comfort metrics, the Upper Limit Violation stayed consistently at 0%, meaning the

predicted temperatures never exceeded the 22 ◦C threshold in any zone and maintained

energy efficiency, as shown in Table 8.
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Table 8. Performance evaluation of GRU in SHC optimization.

Area Zones
Upper Limit
Violation %

Deviation from
21 ◦C During
Work Hours

Deviation from 18 ◦C
During Non-Work
Hours

Deviation from
18 ◦C During
Weekends

Smoothness
Violation %

CA_0_5 0.00 0.98 2.00 2.00 0.07

NT_0_13 0.00 2.05 0.91 0.91 0.69

ST_0_13 0.00 1.79 1.16 1.16 0.83

NT_14_25 0.00 2.91 0.02 0.02 1.67

ST_14_25 0.00 1.86 1.07 1.07 1.46

NT_26_37 0.00 2.71 0.17 0.17 2.29

ST_26_37 0.00 2.12 0.75 0.75 2.36

Average 0.00 2.06 0.87 0.87 1.34

However, there were differences from the ideal temperatures (particularly during

work hours), with an average deviation of 2.06 ◦C from the ideal 21 ◦C. The GRU model’s

performance is higher than the LSTM model’s, suggesting it may have had difficulty

maintaining optimal comfort temperature during work hours.

The average deviation of 18 ◦C from non-work hours was 0.87 ◦C, with variation

but still within an acceptable range for saving energy. The deviation from 18 ◦C during

weekends was about 0.87 ◦C, which indicated that the model worked well with unoccu-

pied periods.

The Smoothness Violation metric had a much better result (1.34%) than the LSTM

model. This implies that the resulting temperature shifts in the GRU model exceeded 0.5 ◦C

in fewer occasions of cases, ensuring comfort sensation and decreasing energy usage.

The Transformer model exhibited high energy efficiency, with a saving percentage

(20.69%) similar to the LSTM model. The Transformer model’s performance in the Upper

Limit Violation metric showed that 0% of zones violated their temperature, which helped

accomplish the energy-saving goals.

As we can verify in Table 9, the average deviation from the ideal 21 ◦C of 0.40 ◦C did

represent a significant improvement over the GRU and all LSTM models during work hours.

This implies that the Transformer model could have a more consistent and comfortable

indoor environment during working hours and manage occupant comfort.

Table 9. Performance evaluation of Transformer in SHC optimization.

Area Zones
Upper Limit
Violation %

Deviation from
21 ◦C During
Work Hours

Deviation from 18 ◦C
During Non-Work
Hours

Deviation from
18 ◦C During
Weekends

Smoothness
Violation %

CA_0_5 0.00 0.19 2.07 2.00 5.76

NT_0_13 0.00 0.44 1.02 0.91 9.44

ST_0_13 0.00 0.39 1.29 1.16 10.14

NT_14_25 0.00 0.38 0.19 0.02 11.53

ST_14_25 0.00 0.56 1.23 1.08 11.39

NT_26_37 0.00 0.34 0.35 0.17 11.88

ST_26_37 0.00 0.47 0.91 0.75 10.97

Average 0.00 0.40 1.01 0.87 10.16
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The average deviation from 18 ◦C for non-work hours was 1.01 ◦C, slightly higher

than other models but still within an acceptable range for energy efficiency. Likewise,

the deviation was 0.87 ◦C, which is comparable to the non-work hour performance, and

reasonable temperature control is achieved during non-used hours.

The percentage of Smoothness Violations was considerable, 10.16%, which meant that

the Transformer model had more abrupt temperature changes than the rest of the models.

It is clear from the above experimental analysis results that the LSTM and Transformer

models have similar results on both energy savings and comfort metrics. Both perform

better than the GRU in terms of SHC while preserving occupant comfort. These results

show the effectiveness of energy savings balanced with comfort using the LSTM and

Transformer models with a 20.95% reduction in heating consumption. Additionally, it

recorded the lowest average deviations from target temperatures over work and non-

work hours and the fewest Upper Limit Violations and Smoothness Violations so that the

temperature changes were steady and comfortable. In comparison, the Transformer model

achieved strong performance with a 20.69% reduction in consumption while transitioning

between the temperatures. However, Smoothness Violations are more indicative of less

stable temperature transitions. While the GRU model achieved the lowest energy savings

(2.33%), comfort metrics were consistently performed.

Although the proposed models are trained on historical data, their design supports

extension to real-time applications. The modular two-stage architecture allows for incre-

mental updates using new data streams, enabling periodic retraining or online learning

strategies. While the dataset used in this study is limited in size, it offers fine-grained,

high-frequency measurements from a real-world multi-zone building, capturing diverse

spatial and temporal heating dynamics.

5.3. Assessment of Indoor Thermal Comfort

Thermal comfort is a critical factor in evaluating indoor environmental quality, par-

ticularly in buildings that implement demand response (DR) strategies for heating and

cooling optimization. To ensure a comprehensive long-term thermal comfort analysis, we

incorporate the three primary environmental categories outlined in EN 16798-1:2019 [7].

These categories classify indoor environments based on their suitability for different oc-

cupant groups, defining operative temperature ranges for winter and summer conditions.

Given that our analysis covers the first three months of the year (January, February, and

March)—corresponding to winter conditions—the target comfort range for our study is

21–23 ◦C, as specified for Category I (high comfort).

To assess the indoor environmental quality of the studied building, we computed the

total area average temperature, along with specific averages for working days (Monday to

Friday including the 24 h of the day) and working hours (Monday to Friday, 7 a.m.–6 p.m.).

These calculations help determine whether the observed temperatures align with the

EN 16798-1 winter comfort range. The results are summarized in Table 10.

Table 10. Computed average temperatures and comparison with EN 16798-1 winter comfort range.

Category
Computed Average
Temperature (◦C)

Target Comfort
Range (Winter, ◦C)

Compliance with EN 16798-1
(Category I: 21–23 ◦C)

Total Area Average 21.02 21–23 Within Range

Total Area Average Working Days 21.15 21–23 Within Range

Total Area Average Working Hours 21.31 21–23 Within Range
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6. Limitation

This study contributes to the field by demonstrating the effectiveness of deep learning

models in predicting heating demand using readily available building and environmental

data, offering a scalable approach for energy optimization in institutional buildings.

However, this study has certain limitations. Direct occupancy measurements were not

available due to the absence of sensors; instead, temporal variables such as hour of day, day

of week, and season were used as proxies, given their typical correlation with occupancy

patterns in institutional settings. While these features helped capture occupancy-driven

heating variations, the lack of real-time occupancy data may limit the models’ adaptability

to dynamic usage.

Additionally, this study does not specifically address the stricter thermal comfort

and air quality standards required for IEQ Category I spaces, which are designed for

sensitive groups such as children or the elderly. The assumption that indoor air, radiant,

and operative temperatures are equal (ta = tr = to) was made for simplicity, particularly

suited to winter conditions where differences are minimal. However, this may not apply in

other seasons.

7. Conclusions

This study uses LSTM, GRU, and Transformer deep learning models to predict the

ATs and SHC while maintaining occupant comfort. Models reduced SHC by up to 20.95%

through a two-stage process based on LSTM and 20.69% through a two-stage process based

on Transformer. This showcases that these models could optimize the energy consumption

in complex building environments from increased SHC. The historical temperature data

and time-specific parameters have been used to forecast precisely and act as good energy

managers in different space heating zones. These results underscore the importance

of leveraging advanced machine-learning techniques to improve energy efficiency and

sustainability in modern buildings.

Future research can explore integrating advanced deep learning models like reinforce-

ment learning to enhance prediction accuracy and real-time optimization. Furthermore,

the framework can be extended further to introduce renewable energy sources; real-time

feedback of occupancy patterns can be expected to add further enhancements to real-time

energy management. The use of hybrid models combining multiple machine-learning tech-

niques may also be explored to improve model reliability and interpretability. In addition,

multi-agent reinforcement learning (MARL) can be considered for dynamic management

of multiple HVAC zones. Finally, the methodology can be applied to larger-scale, multi-

building environments to gain further insight into their robustness and scalability for a

wide variety of operational conditions.
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Nomenclature

Term Description

AT Area Temperature

BWS Building Weather Station

CA Common Area

LSTM Long Short-Term Memory model

GRU Gated Recurrent Unit model

MSE Mean Squared Error

MAE Mean Absolute Error

NT North Tower

R-squared (R2) Coefficient of determination, a statistical measure of the goodness of fit

SHC Space Heating Consumption

ST South Tower
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