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Abstract: Building energy management is crucial in reducing energy consumption and
maintaining occupant comfort, especially in heating systems. However, achieving opti-
mal space heating efficiency while maintaining consistent comfort presents significant
challenges. Traditional methods often fail to balance energy consumption with thermal
comfort, especially across multiple zones in buildings with varying operational demands.
This study investigates the role of deep learning models in optimizing space heating while
maintaining thermal comfort across multiple building zones. It aims to enhance heating
efficiency by developing predictive models for building temperature and heating consump-
tion, evaluating the effectiveness of different deep learning architectures, and analyzing
the impact of model-driven heating optimization on energy savings and occupant comfort.
To address this challenge, this study employs Long Short-Term Memory (LSTM), Gated
Recurrent Unit (GRU), and Transformer models to forecast area temperatures and predict
space heating consumption. The proposed methodology leverages historical building tem-
perature data, weather station measurements such as atmospheric pressure, wind speed,
wind direction, relative humidity, and solar radiation, along with other weather parameters,
to develop accurate and reliable predictions. A two-stage deep learning process is utilized:
first, temperature predictions are generated for different building zones, and second, these
predictions are used to estimate global heating consumption. This study also employs
grid search and cross-validation to optimize the model configurations and custom loss
functions to ensure energy efficiency and occupant comfort. Results demonstrate that the
Long Short-Term Memory and Transformer models outperform the Gated Recurrent Unit
regarding heating reduction, with a 20.95% and 20.69% decrease, respectively, compared
to actual consumption. This study contributes significantly to energy management by
providing a deep learning-driven framework that enhances energy efficiency while main-
taining thermal comfort across different building areas, thereby supporting sustainable and
intelligent building operations.

Keywords: optimization; heating; comfort; thermal; machine learning

1. Introduction

Building energy consumption represents a significant fraction of global energy use,
especially in heating, ventilation, and air conditioning (HVAC). According to the Interna-
tional Energy Agency (IEA), more than 40 percent of the world’s total energy is consumed
by buildings [1], and nearly all of that is used for space heating in colder climates. As energy
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efficiency in building environments becomes increasingly important, significant research
has been devoted to optimizing energy consumption while retaining occupant comfort.

Space heating consumption (SHC) optimization in this broader domain is signifi-
cant [2]. SHC systems can save vast amounts of energy wastage and greenhouse gas
emissions and provide sustainability to the built environment [3]. New approaches to
predict and optimize SHC have become possible with recent advances in data-driven
technologies and the increasing availability of real-time data from intelligent buildings [4].
Building management systems (BMS) time series data coupled with external factors (i.e.,
weather) and sensor data are used to dynamically control heating loads and improve
energy efficiency in these approaches. For example, studies have shown that incorporating
real-time weather data, such as temperature, humidity, and wind speed, can improve
temperature regulation and lead to a reduction in energy consumption by adjusting heating
systems to external conditions more efficiently [5,6]. Additionally, sensor data, including
occupancy patterns and indoor temperature readings, allow for adaptive control strategies
that maintain comfort while minimizing energy waste. The optimal temperature for oc-
cupant comfort typically ranges between 21 °C and 23 °C in winter [7], but this can vary
depending on external weather conditions such as ambient temperature and humidity. In
colder climates, slightly higher indoor temperatures may be necessary to maintain comfort,
whereas in milder climates, lower settings may be sufficient.

A recent interest has been found in integrating machine learning (ML) techniques
including deep learning (DL) into the optimization of SHC [8]. According to a global
report from the Global Energy & CO, Status [5], Al-based models could cut building
energy consumption by 10 to 20 percent through efficiency gains and automation of control
systems. They have been extensively used for time series forecasting and applied to
predicting building temperature dynamics and energy demand [9-11]. The models can
learn complicated temporal relations using historical data and make accurate temperature
control and SHC forecasting predictions.

However, optimizing SHC while maintaining occupant comfort is a difficult task.
The challenge is to balance energy savings and indoor comfort, keeping environments
at comfortable temperature ranges since occupancy patterns, weather conditions, and
the thermal characteristics of different building zones are inherently variable [12]. Fast
temperature changes make the occupant uncomfortable, demanding smooth temperature
transitions [13]. These conflicting priorities are managed through real-time decision making
with large amounts of data to leverage comfort and energy efficiency.

These challenges are well addressed by machine learning, including deep learning
models, as these models can then learn patterns from historical temperature and consump-
tion data and make informed predictions on energy consumption, allowing the adjustment
of heating systems dynamically concerning energy efficiency and comfort [14,15]. Addi-
tionally, hyperparameter tuning and optimization methods like grid search cross-validation
ensure that the models are set up for the best performance.

This study aims to develop and compare DL models for predicting SHC in buildings
and optimizing space heating systems. We mainly explore Long Short-Term Memory
(LSTM), Gated Recurrent Unit (GRU), and Transformer models to forecast temperature
in different building zones and predict SHC. In this two-stage approach, temperatures
are predicted based on SHC estimation, and a model is selected to minimize energy
consumption at an acceptable level of occupant comfort. This study aims to provide input
to more sustainable building management practices through real-time data and advanced
predictive techniques. The contributions of this study are the following;:

i.  This study develops a robust temperature prediction model using LSTM, GRU, and
Transformer architectures, specifically tailored to individual building zones. This
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approach ensures accurate thermal management, enhancing occupant comfort while
minimizing energy consumption.

ii. A two-stage machine learning framework is proposed, where temperature predictions
are first generated for different building zones and then used to estimate global space
heating consumption (SHC). By leveraging these predictions, this study optimizes
energy use across multiple zones, ensuring efficient heating distribution.

iii. Custom loss functions are introduced to regulate temperature variations while mini-
mizing energy consumption. These loss functions enforce thermal comfort constraints
and promote energy efficiency, making them crucial for balancing occupant comfort
with sustainable building management.

2. Related Work

In recent years, ML techniques including DL have intensely improved the capability
to predict and optimize energy consumption in buildings, especially space heating [13].
Table 1 compares various predictive models applied to forecast temperatures and energy
usage within building environments. These models leverage time series data, building
characteristics, and external factors like weather conditions to improve accuracy and
efficiency [16]. Prior studies have also explored methods to balance energy efficiency with
occupant comfort, introducing custom loss functions and optimization strategies to achieve
both goals in intelligent energy systems.

2.1. Energy Consumption Forecasting in Buildings

Energy consumption forecasting in buildings has become an essential area of research,
as it aids in optimizing HVAC operations, improving energy efficiency, and ensuring
occupant comfort. Various predictive models are being explored to accurately forecast
energy usage based on time series data, building characteristics, weather conditions, and
other influencing factors. These techniques range from machine learning models to more
advanced hybrid systems.

One of the prominent approaches in this domain is the use of Long Short-Term Memory
(LSTM) networks for predicting power consumption. Mahjoub et al. [17] explored the
effectiveness of LSTM in forecasting short-term power consumption, demonstrating that it
outperformed other models like GRU and Drop-GRU in terms of accuracy and precision.
This model helps in managing power consumption by preventing load peaks. Similarly,
in the domain of HVAC systems, Ghahramani et al. [18] employed a systematic analysis
of HVAC control policies using simulations, including building-level annual control and
zone-level control, to forecast energy savings and improve thermal comfort, finding up to
50% energy savings depending on the climate zone.

In a different approach, Chen et al. [19] applied data-driven models using machine
learning algorithms like Random Forest and Support Vector Machines (SVM) to optimize
energy consumption in commercial buildings. These techniques were used to ensure
that the buildings maintained thermal comfort while achieving significant cost savings
throughout their lifecycle. Their results suggest that predictive control strategies based on
these models help improve the efficiency of HVAC systems while ensuring energy efficiency.

Lastly, in the context of smart buildings, Almeida et al. [20] proposed an adaptive
strategy for optimizing HVAC systems’ setpoints to enhance energy efficiency during
the heating season. The approach, which used smart thermostat data from European
households, estimated energy savings of up to 5.2%. Despite being computationally
lightweight and suitable for real-world implementation, it faces challenges in handling
data drift and adjusting models without additional fine-tuning.
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2.2. Thermal Comfort and HVAC System Optimization

The optimization of HVAC systems, while maintaining thermal comfort, is another
crucial research focus. Many studies aim to enhance HVAC system operations to balance
energy consumption and thermal comfort, leading to the development of advanced con-
trol strategies and personalized comfort profiles. These innovations improve occupant
satisfaction while reducing energy wastage.

Talami et al. [21] focused on developing a temperature setpoint optimizer that adjusts
dynamically according to weather conditions and occupancy. By integrating external
factors, their method showed energy savings compared to using fixed setpoints. The study
analyzed HVAC energy consumption by considering varying occupancy rates and outdoor
temperatures. It quantified energy reductions by comparing HVAC usage at different
occupancy levels against a 100% occupancy baseline. Dynamic setpoints were adjusted
between 5 °C and 32 °C to balance heating, free-running, and cooling modes. However,
the model focused on air temperature and did not account for mean radiant temperature,
air velocity, or relative humidity, which are essential for thermal comfort. The study’s
limitations included the lack of variability in occupancy rates, which might hinder its
application across different real-world scenarios. Similarly, in a more generalized study,
Ghahramani et al. [22] proposed a knowledge-based system that integrates personalized
comfort preferences with energy consumption patterns. By utilizing online learning and
optimizing zone temperature setpoints, the system tailored comfort to individual occupants
while minimizing energy usage. The authors incorporated thermal comfort parameters
such as air temperature, mean radiant temperature, air velocity, and relative humidity.
Personalized comfort preferences are modeled at the zone level, with temperature setpoints
optimized for energy efficiency while maintaining comfort and indoor air quality. The
main challenge lies in scalability across different building types and occupant preferences.

On the other hand, Yadav and Kowli [16] introduced a simulation framework to model
HVAC behavior and energy consumption, addressing limitations in existing simulators.
Their approach simulated temperature distribution and power savings in homes, outper-
forming traditional zone comfort optimization techniques. The framework incorporated
thermal comfort metrics, including air temperature, mean radiant temperature, air velocity,
and relative humidity, to optimize AC setpoint control based on local comfort rather than
zonal comfort. While the results were promising, the framework’s reliance on limited
data sources restricted the generalizability of its findings. Lastly, Li et al. [23] explored a
demand response (DR) strategy for air-conditioning systems, combining thermal comfort
models with outdoor temperature predictions and time-of-use pricing to optimize indoor
temperatures dynamically. Their model incorporated the Predicted Mean Vote (PMV)
indicator, a widely used thermal comfort metric based on heat balance equations, to assess
human thermal comfort. The PMV index accounted for key environmental parameters,
including air temperature, mean radiant temperature, air velocity, and relative humidity,
ensuring a comprehensive evaluation of indoor comfort levels. The strategy adjusted
comfort thresholds during peak and off-peak electricity pricing periods to balance energy
efficiency and occupant comfort. Their model achieved notable energy savings, though its
applicability across varying building types and climates remains a limitation.

2.3. Prediction Models for Smart Buildings and District Heating

The integration of machine learning and predictive models for controlling smart
building systems and district heating is gaining traction. These models aim to predict
energy demand and optimize system operations for greater energy efficiency and comfort.

In this area, Cui et al. [24] proposed a heat load prediction model for district heating
systems, combining Whale Optimization Algorithm (WOA) with LSTM, attention mech-
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anism (ATT), and convolutional neural networks (CNN). This hybrid model addressed
challenges in predicting heat load under fluctuating conditions, though its reliance on a sin-
gle dataset and short observation periods limited its effectiveness. In a similar vein, Huang
et al. [25] developed a two-stage data-driven framework to predict indoor temperatures
and control heating systems in smart buildings. Their approach combined a univariate
AR model for ambient conditions with a multivariate XGBoost model for temperature
predictions. While it proved effective in managing energy use, its assumption of stationary
ambient conditions reduced its adaptability in dynamic environments.

Meanwhile, Yang et al. [26] explored an AE-GWO-GRU-based method for predicting
heat load in district heating systems, using autoencoder-based data augmentation and
grey wolf optimization for parameter tuning. This approach addressed issues such as heat
load fluctuations and transmission lags but was limited by its reliance on a small dataset,
which was augmented for better performance. Lastly, Qaisar et al. [27] introduced OPTnet,
a Transformer-based model for building occupancy prediction, which uses multi-sensor
data, including HVAC operations. Although it significantly improved HVAC control and
energy optimization, its dataset was limited to HVAC operational periods, reducing the

scope for broader application.

Table 1. Comparison of existing techniques and methods.

Ref. Year Focus Dataset Technique Result Limitation
Personalized . Potential
Ghahramani HVAC control The dataset Knowledge-based Ayerage dally. limitations in
2014 collected from .0 airflow reduction of s
etal. [22] for energy optimization 3 o scalability and
.. an occupant 57.6 m>/h (12.08%) L
efficiency generalizability
DOE references Building-level Reliance on
Ghahramani Analyzing small office EnerevPlus annual control simulation data
etal. [18] 2018  HVAC control buildings in simu((lg;zltions achieves 27.76% to ~ and simplified
' policies three U.S. 50.91% energy thermal comfort
climate zones savings modeling
5% incr in Difficulty in
Aryal and Comfort-driven Simulation and OCC;)J acnfase meeting ASHRAE
Becerik-Gerber 2018  zone-level RP884 database e pan o requirements for
. quantification satisfaction, 2.1%
[28] setpoints . occupant
Chetgy savings satisfaction
Indoor Predicted warm-up  Assumes stationary
Huang et al temperature Data from a time: 19 min ambient conditions
& ’ 2020  prediction and smart building AR, XGBoost ) ’ ..
[25] - Target temperature: ~ for predictive
heating system  sensor network o
224°C accuracy
control
]tﬁk)laetrar;li?ven élscf_‘;glATiermal Support Vector Total cost savings Scalability to
Chenetal. [19] 2021 Machine (SVM), exceed CNY different building
comfort Comfort Random Forest 1.5 million types or climates
optimization Database II ’ yP '
Thermal
. . behavior and More energy
Simulation . . .
energy Regression-based savings compared  Uncertain
Yadav and framework for . - - -
. 2022 consumption spatial thermal to traditional zonal  reliability of model
Kowli [16] HVAC .
data collected mapping comfort performance

optimization

from various
Sensors

optimization
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Table 1. Cont.

Ref. Year Focus Dataset Technique Result Limitation
Drop-GRU
Short-term fgr‘:;i; tion Ezglcll;ccedalie;ter Learning time
Mahjoub et al. power p LSTM, GRU, and Ay depends on the
2022 . data from prediction speed, .
[17] consumption . . Drop-GRU . forecasting method
forecasting Péronne city, with low RMSE used
France and MAE, and high
R (near +1)
Static occupancy
US. DOE N rates and specific
. HVAC energy HVAC zone Additional energy ~ problem
Talami et al. . reference - o .
2023  consumption . temperature savings of 2-10% formulation may
[21] L building energy . .. . .
optimization models setpoint optimizer achieved limit
generalizability to
different scenarios
Adaptable Smart e Feasibility on
. Predictive indoor .
Almeida et al. 2023 strategy for thermostat data temperature Energy savingsup  resource-
[20] HVAC from European moc{)els t0 5.2% constrained smart
setpoints households thermostat devices
. . 5.92% reduction in
Historical electricit Applicability to
Demand temperature Heat balance Y PP ty .
. o - consumption and different building
Lietal. [23] 2023  response and humidity equations, o . -
6.81% decrease in types and climates
control strategy  data of the RBFneuralnetwork ional
office building operational costs may vary
during DR periods
Superior
. Building Operational performance in Dataset only
Qaisar et al. Transformer accuracy and mean .
2023  occupancy data from includes HVAC
[27] . network (OPTnet) squared error .
prediction HVAC system operational hours
compared to other
method
Heat load }1}001(1)1}; iz:iset R? =0.9962, Limited to a single
Cui et al. [24] 2024 rediction exchanger CNN, LSTM MSE = 0.0001, dataset and short
P ang MAE = 0.0082 observation period
station
Heat load Data from DHS  Autoencoder, grey irelsiilicrient data,
Yang et al. [26] 2024 prediction in ina wolf optimization, RMSE: 47.90, auq men%ation for
8 ’ district heating ~ multifunctional =~ Gated Recurrent MAPE: 2.17% aug
. . improved model
systems region Unit
performance
Energy Real data from  Deep policy Effective balance of ~ Optimized only for
. management e . . .. .. e e
Jing et al. [29] 2024 Lo a building in gradient decision energy efficiency a specific time
optimization in .. .
1 Nanjing making and user comfort frame
buildings
3. Dataset

The European Central Bank (ECB) Headquarters in Frankfurt is a state-of-the-art build-
ing equipped with multiple sensor networks as part of an advanced Building Management
System, enabling granular analysis.

Data are collected from the district heating network that supplies the building, using
measurements from devices located in the heat exchange units responsible for transferring
heat from the district system to the building. Additionally, data from the building’s
weather station (BWS) offer a valuable foundation for analyzing the relationship between
environmental parameters, area temperatures (AT), and heating demand. By analyzing
trends from the BWS, we can identify key patterns and seasonal variations in space heating.
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3.1. Heating Consumption Data

The district heating system operates as the baseload supplier, which increases the
building foundation’s thermal reliability and diversification. These data are collected
by a smart meter which is located in the premises’ technical areas. This device tracks
energy consumption, with measurements taken at 15 min intervals. Although the heating
consumption data are recorded at 15 min intervals, real-time data are also collected from
Building Management Systems (BMSs) and sensors, ensuring inputs for more sustainable
building management practices. The data monitor is installed in the exchange technical
area between the provision heating network and the building’s heating system. This data
monitor is an integral part of the overall data acquisition process.

One of the parameters that can be used to forecast the energy demand needed to heat
a building is the Heating Degree Day (HDD). The number of degrees below an established
reference temperature proves a day’s mean temperature necessary to use heating in build-
ings [30]. In this case, the 15 °C threshold has been selected based on expert knowledge,
ensuring accuracy and relevance in measuring the building heating requirements. In this
study, Heating Degree Hours (HDH) are employed because it disaggregates and yields a
more accurate assessment of heating requirements, especially when working with hourly
temperature data compared to HDD. The formula for calculating HDH is as follows:

%Zut(h) if Tout(h) <15
0 1f Tou’t(h) Z 15

where Ty is the hourly outside temperature, and HDH represents the hourly degree hours.

3.2. Weather Variables from Building Weather Station (BWS)

The weather variables dataset consists of a broad range of meteorological parameters
for evaluating atmospheric conditions, including temperature, humidity, wind speed, and
many others. These factors indicate weather pattern dynamics that govern the operations
of buildings and their energy use. Obtained directly from a weather station built on
the top of the ECB skyscraper, this dataset provides accurate information that applies to
the immediate surroundings of the building. Positioning the weather station at such an
elevation maximizes gathering appropriate data that echo the building’s atmosphere.

The integration with the Building Automation System (BAS) significantly improves
data efficiency and accessibility. The seamless connection between the weather station and
BAS ensures smooth data transmission and storage, making real-time weather monitoring
readily available to building managers and operators. This integration enables informed
decision making in control rooms, leveraging up-to-date weather information for better
building management. Additionally, the BAS allows for the retrospective analysis of
historical weather data, enabling the identification of trends and patterns.

The inclusion of ATs is a key feature of the dataset, as they play a crucial role in
understanding building thermal dynamics. The temperatures extracted from the BAS
provide insights into how heating demands vary across different zones of the building.
Assessing the thermal behavior of each area requires careful consideration of these areas’
role in the business activity. When combined with weather data and SHC, they form
the foundation for accurately modeling the relationship between comfort, environmental
conditions, and energy usage, enabling more precise energy management and optimization.

3.3. Hourly Temperature Trends in Building Zones

The analysis of hourly temperature trends across various building zones reveals
distinct patterns between weekdays and weekends, highlighting the influence of occupancy
and operational demands on heating systems as shown in Figure 1. Temperatures remain
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higher almost daily during the week, particularly between the hours of working morning
through evening. This implies that heating systems operate more on weekdays where they
are more likely to be needed to maintain thermal comfort for building occupants.

Air Temperature by Zone - Weekdays Air Temperature by Zone - Weekends
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Figure 1. Average hourly air temperature across different zones on weekdays and weekends.

There is a clear hourly variation in the sense that temperatures decrease slowly during
the early morning hours (0-6 a.m.) and then increase during the day. Between 12 p.m. and
6 p.m., a gap between weekday and weekend temperatures can be seen, and this is the peak
heating time. The lower occupancy and operational demand on weekends are confirmed
further by reduced heating operations during non-working days.

Temperature trends in different building zones differ, which implies different heating
control strategies. For example, building zones GC_0_5 and HH_0_13 are more distinct
across the weekday and weekend, indicating that the heating adjustment takes place in
different ways on different floors. In addition, more heating seems to be needed in zones
characterized with higher sun exposure, such as the south face, and zones in shade show
somewhat more heating. This variation underscores the importance of tailored heating
strategies to optimize energy efficiency and occupant comfort in different building areas.
Zones like GC_0_5 and HH_0_13, with lower sun exposure or higher occupancy during
weekdays, show the need for more heating, while areas such as south-facing zones or those
with higher sunlight exposure may require less heating.

3.4. Space Heating Consumption and Air Temperature

Figure 2 presents the monthly scaled SHC from 2018 to early 2024. It reveals a
substantial seasonal variation in SHC, with the highest values occurring consistently during
the colder months—Q1 (January, February, March: winter to early spring) and Q4 (October,
November, December: fall to early winter).

3.5. Variables and Aggregation

The variables are categorized into three main groups: building weather station vari-
ables, time-related variables, and AT. Below is detailed information on each group and the
aggregation methods applied to some variables.



Energies 2025, 18, 2471

9 of 25

Monthly Scaled SHC

10

08

(=]

o
=]
i
| E—

Scaled SHC

02

(=]
-
s ———————— 1
1
D ——
I

00

Month-Year (mm/yy)

2 DD OO OO OO D ODDANDND D DD DD DD A
NIRRT IR AR IR IR R IR R IR R IR R AR R IR AR IR R IR R Y
A AR MR R R SR U MRS S RS

Figure 2. Relationship between SHC and external air temperature in winter of each year—reflecting
the increased demand for heating. In contrast, SHC significantly drops during the warmer months—
Q2 (April, May, June: spring to early summer) and Q3 (July, August, September: summer to early
fall)—suggesting reduced heating needs. The trend repeats yearly, with slightly higher peaks in
some years, possibly indicating colder winters or increased heating requirements. The data show
a stable seasonal consumption pattern, with a notable peak again in early 2024, suggesting similar

heating demands.

3.5.1. Area Temperature Variables

Specific building zones are used to predict AT, and the following (Table 2) variables

are aggregated from different building-specific areas. Thus, the aggregated variables are

averages of respective zone temperatures to obtain a clear picture of the fluctuations in the

corresponding areas of the building.

Table 2. Area Temperature Variables and Aggregation.

Aggregated Variable = Component Variables Aggregation Description
CA_0.5 ,Iccﬁf__ill',:(;égZYX'ZjIC/éXé:CAZ_E/' (CA2_ W', CAS, Common Areas on floors 0-5
NT_0_13 IETTS__;__E& 'E’}"ﬂg:;__gv\/\\//? /Sgéfiifglo/ﬁ}l\gg?ﬁ%Nw’ North Tower on floors 0-13
ST_0_13 ,ISSITS__;__SCO):" ,ISSITS__;__SSVV\\]/,? ’185;61?9__183630’;1:2}“91?5_\}3’_ SW, South Tower on floors 0-13
NT_14_25 I’II\\IT;F12 g__zzf__gv(\)/l/, I’E%%i:?i:ﬁ‘g’/,’ 1'11\\3"115__12 71__5‘/0\]”, North Tower on floors 14-25
ST 14,25 /STIA 17507, STI4 17 SW. ST 21,50’ STI8 21SW) g0t Tower onfloors 1425
NT_26_37 ,111\\11,1{32 g__g?;__gvo\]}, iﬁr{,éi:é?:ﬁ‘g,’: ,Igggf_—;;:g‘%’ North Tower on floors 26-37
ST 2637 ‘ST26_29_SO’, 'ST26_29_SW’, 'ST30_33_SO’, ‘ST30_33_SW’, South Tower on floors 26-37

‘ST34_37_SO’, 'ST34_37_SW’




Energies 2025, 18, 2471

10 of 25

3.5.2. Building Weather Station Variables

The building weather station (BWS) variables provide crucial environmental data
influencing AT predictions and SHC estimations. These variables include the following:

BWS_air_pressure: Atmospheric pressure at the building location.
BWS_air_temperature: External air temperature recorded by the BWS.
BWS_wind_speed: Speed of the wind measured by the BWS.
BWS_wind_direction: Direction from which the wind is blowing.
BWS_relative_humidity: Humidity level in the atmosphere.

BWS_global_radiation: Amount of solar radiation received.

3.5.3. Space Heating Consumption Variables

In the case of SHC prediction, the target variable used is the total SHC of the building.
This variable is computed with the help of the predicted AT, which is one of the main
inputs in the model. Other related features are also incorporated into the analysis to
improve the accuracy of the SHC estimates, apart from AT forecasts. Such features include
environmental conditions, for instance, wind speed, air pressure, and time features, such
as the hour of the day and the season.

3.5.4. Time-Related Variables

Time-related variables are integral to modeling, accounting for seasonal variations and
daily patterns affecting temperature and heating needs. The following (Table 3) variables
are considered:

Table 3. Time variables and their description.

Time Variable Description

year Year of the observation

month Month of the observation

day Day of the month

hour Hour of the day

day_of_week Day of the week (0 = Monday, 6 = Sunday)
season_fall Indicator for fall season

season_spring Indicator for spring season
season_summer Indicator for summer season
season_winter Indicator for winter season

HDH15 Heating Degree Hours (base 15 °C)
weekend Indicator for weekend days (1 if weekend, 0 otherwise)

The variables listed above will be utilized across the three research goals. The AT
variables will support Goal 1, while the SHC variable will be used explicitly for Goal 2. The
time-related variables will provide essential context for temperature predictions and SHC
modeling. Together, these variables enable a comprehensive analysis to optimize energy
consumption and maintain occupant comfort in building environments.

4. Proposed Methodology

The methodology of this study involves a two-stage machine learning framework
for energy consumption prediction, starting with preprocessing steps that extract date
and time components to capture temporal patterns, such as seasonal trends and daily
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variations, in energy usage. Missing values are handled primarily through imputation,
with linear regression used as a backup method when necessary. Feature engineering
includes the introduction of key features for heating demand to improve model accuracy.
The modeling phase develops a robust temperature prediction model using LSTM, GRU,
and Transformer architectures, specifically tailored to individual building zones, ensuring
accurate thermal management while minimizing energy consumption. Although LSTM,
GRU, and Transformer models are widely used, they are particularly well suited for time
series forecasting, which is critical for this study’s goal of predicting temperature and
heating consumption patterns. Performance is evaluated using metrics such as R-squared,
Mean Squared Error (MSE), and Mean Absolute Error (MAE), with thresholds set based
on model-specific requirements. The novelty of this work lies not only in the application
of these architectures to space heating optimization but also in the integration of custom
loss functions to balance energy efficiency and occupant comfort. The optimization of
space heating consumption and comfort is achieved through two models: one predicting
area temperatures, with smoothness enforced through a penalty, and another predicting
heating demand, which leverages temperature predictions to estimate global SHC and
optimize energy use across multiple zones. The two-stage predictive modeling approach
for both temperature forecasting and heating consumption prediction adds further value,
distinguishing this study from traditional applications of these models in the energy
domain. Custom loss functions are introduced to regulate temperature variations while
minimizing energy consumption, enforcing thermal comfort constraints and promoting
energy efficiency in sustainable building management.

4.1. Preprocessing

The data preprocessing phase is critical in preparing the dataset for effective modeling
and analysis. This process incorporates different data cleaning, transformation, and prepa-
ration methods to make the raw data in the correct format for modeling. These include
conversion of the extracted date and time into their paramount components, recognition
of seasons in the data stream, mechanism handling of missing data, and feature engineer-
ing of quantitative and categorical characteristics that synthetically dissect the applied
dataset. In addition, the data are classified into more generalized forms and normalized
to the same scale, and the data are organized into sequences for time series. Last but not
least, the dataset is split into train, validation, and test sets to make appropriate model
assessments possible.

4.1.1. Extracting Date and Time Components

The preprocessing begins by extracting essential date and time components from the
‘Datetime’ column. The code identifies and separates the following elements: year, month,
day, hour, and day of the week. This breakdown transforms the timestamp into individual
components that can effectively be utilized as features in the predictive models.

4.1.2. Determining Seasons

A function is defined to enrich further the dataset, which assigns a specific season
to each data point based on the month. The seasons are categorized as follows: Winter
encompasses December, January, and February; Spring includes March, April, and May;
Summer covers June, July, and August; and Fall consists of September, October, and
November. One-hot encoding is applied to create separate binary columns for each season,
such as ‘season_winter’ and ‘season_spring’, enabling the models to account for seasonal
variations in energy consumption.
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4.1.3. Handling Missing Values

The preprocessing process also addresses the issue of missing values within the
dataset. The code identifies variables that may have missing entries, including ‘SHC’,
‘BWS_air_pressure’, and others. For each variable with missing data, the code fills
these gaps using the mean values of groups defined by ‘year’, ‘month’, ‘hour’, and
‘BWS_air_temperature’. Suppose any missing values persist after this initial imputation.
In that case, a linear regression model is employed to predict and fill them based on the
‘BWS_air_temperature’ variable, ensuring the dataset is as complete as possible for analysis.

4.1.4. Feature Engineering

One of the most straightforward and compulsory techniques to enhance the effec-
tiveness of the predictive analysis of the model involves feature engineering. To describe
the heating demand when the outside temperature is less than or equal to 15 °C, a new
variable ‘'HDH15’ is introduced, and more information about the models is given. The
weekends binary column added indicates if the data point is on the weekend or not. This
feature is valuable for recording variations in heating requirements within the working and
weekend days.

4.1.5. Grouping Building Areas

To manage the complexity of the dataset, individual building ATs are grouped into
seven distinct categories by averaging related columns. For instance, Group 1, referred
to as ‘CA_0_5, combines temperatures from various areas such as ‘CA0_E’, “CAY’, and
others. Similar aggregations are applied to form Groups 2 through 7. Following this
grouping, the original columns used to create the groups are discarded. This step allows
for a focus on broader temperature patterns rather than individual ATs, facilitating more
effective modeling.

4.1.6. Data Scaling

When applied, feature scaling prepares the dataset for modeling. The feature columns,
the weather data, and time components go through the MinMaxScaler, which scales all
features in the dataset to a range of 0 and 1. Likewise, the target variables, such as the
grouped temperatures, are scaled for consistency across the dataset. In addition, the scalers
used for both features and targets are equally saved with joblib, which can also be used to
scale during the next prediction.

4.1.7. Data Splitting

Finally, the dataset, consisting of 61,320 rows (representing 24 h x 365 days x 7 years),
is divided into three sets for model training and evaluation. The training set, constituting
60% of the data, is utilized to train the models. The validation set, comprising 20%, is
employed to fine-tune model parameters and mitigate the risk of overfitting, using a 5-fold
cross-validation approach. The remaining 20% forms the test set, which assesses the final
models’ performance.

4.2. Area Temperature and Space Heating Consumption Prediction in Building Areas

This methodology has two primary objectives. The first objective is to predict the
temperatures of specific categories of building areas. The second objective is to predict the
SHC using LSTM, GRU, and Transformer algorithms. Based on the history of the building
temperature, data from the BWS, and parameters that define time, the approach identifies
the best models for temperature and SHC estimation, as depicted in Figure 3. To ensure
that the models have been used at their best, grid search cross-validation has been used for
the selection of hyperparameters in order to yield the best performance out of them.
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Figure 3. Proposed methodology for forecasting ATs and SHC.

4.2.1. LSTM Model

LSTM is a type of recurrent neural network (RNN) that is especially suited for se-
quence data and overcoming the deficiencies of the traditional RNN to preserve long-term
dependencies [31]. In contrast, other RNNs using simple feedback mechanisms are prone
to get stuck in vanishing gradient problems; LSTMs have a specific memory cell design
that allows the network to remember or forget information over relatively long intervals.
Each LSTM cell includes three key gates—input, forget, and output gates—that allow
control over which data should be allowed to enter or leave the cell state [32]. This gating
mechanism allows LSTMs to retain essential previous information and discard irrelevant
details, which makes the application of LSTMs ideal for applications that incorporate long-
term contexts, such as language comprehension, time series forecasting, intricate system
simulation, and complex system modeling.

In this study, the LSTM model is developed using the Keras Sequential API that enables
the creation of an architecture suitable to efficiently capture temporal structures, especially
in time series data [33]. In its basic form, the model utilizes an LSTM layer activation and
functions to develop the hierarchical interconnections of the inputs. To address the risk of
overfitting, a dropout layer is incorporated, which randomly deactivates a portion of the
neurons during training. Additionally, a dense output layer is included to align with the
number of target variables, allowing the model to predict multiple temperature groups.
The model is compiled with the Adam optimizer and utilizes the mean squared error loss
function to assess its performance. Training is conducted on the designated training set,
followed by validation on a separate validation set to ensure robustness. After training, the
model’s predictive capability is evaluated on the test set, and predictions are generated.
R-squared scores are then calculated for each target variable, providing valuable insight
into the model’s accuracy and effectiveness in temperature prediction.
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4.2.2. GRU Model

GRU network is a more compact LSTM network designed for sequence modeling to be
less computationally expansive while still efficient [10]. Like LSTMs, GRUs were developed
to overcome the problem of vanishing gradients inherent in traditional RNNs and restrict
the sequence information output [34]. GRUs achieve this through two primary gates: the
update gate and the reset gate. The update gate controls how much of the previous time
steps should be passed on to the next layer and, hence, how much information should be
kept in the current step, while the reset gate controls how much of the previous hidden
state should be forgotten in the current step. Its structure permits GRUs to learn long-
term dependencies of a sequential input without burdening the algorithm with as many
parameters as LSTMs, making for much quicker training. The GRU model’s training,
evaluation, and prediction are similar to the LSTM model in that they provide a proper
comparison between the two architectures.

4.2.3. Transformer Model

Transformers are a deep learning architecture designed to process a sequence better
than the RNN since it replaces recurrence with self-attention mechanisms [35]. Unlike
RNNSs, Transformers generalize information simultaneously and thus are very effective.
They can capture dependencies from the quadratic time complexity of sequences, making
them very effective in processing long sequences. The most crucial concept of Transformer
architecture is self-attention, which allows the model to decide on the importance of
a particular input in the output [35]. This mechanism is organized in several “heads”
across attention layers and works with various relations inside the data, leading to more
complex representations.

This paper develops a custom Transformer model to effectively capture long-term
dependencies within the data, enhancing the model’s ability to understand complex re-
lationships over extended periods [36]. The model’s architecture consists of multiple
Transformer encoder blocks; the attention mechanism is present to concentrate on the
most critical parts of the input sequence. Furthermore, employing layer normalization
and multi-head attention helps stabilize the model’s training and smooth the extraction of
complex relationships within the data. After the encoder blocks, the feed-forward network,
global average pooling layer, and dense layers are used to generate the output. When it
comes to the Transformer model, the training and testing protocols are the same as those
used for LSTM and GRU, thus presenting a clear comparison between them all.

4.2.4. Evaluation and Model Saving

R-squared metrics, along with mean squared error and mean absolute error, are uti-
lized to assess the predictive accuracy of temperatures for specific groups of building
areas and SHC. Following this evaluation, the trained models, labeled as Istm_modell,
gru_modell, and transformer_modell, are saved using the model save() method for Keras
models. This functionality ensures future access to the models without retraining, facilitat-
ing subsequent analyses and implementations.

4.3. Optimizing Space Heating Consumption While Maintaining Occupant Comfort

The third objective of this study is to reduce the building’s SHC while maintaining
occupants’ comfort levels. This is achieved through a two-stage machine learning process:
the first is a model to generate temperature estimates regarding the different building
zones, and the second is to use those temperature predictions to estimate global SHC. The
methodology uses GRU, LSTM, Transformer blocks, and custom loss functions to match
desired energy efficiency and comfort, as shown in Figure 4.
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Figure 4. Methodology of optimizing SHC while maintaining occupant comfort.

4.3.1. Model 1: Predicting Area Temperatures

In the first stage, temperature is forecasted in the specific areas of the building using
historical data from the BWS and time-related variables. The model employs deep learning
architecture such as GRU, LSTM, or Transformer blocks to capture temporal dependencies.

A custom loss function is implemented to regulate temperature predictions in line with
occupant comfort. During work hours (7 a.m. to 6 p.m.), the model applies a high penalty
for predicted temperatures falling below the recommended range of 21-23 °C, as outlined in
EN 16798-1 for winter thermal comfort [7]. Deviations from this threshold incur significant
penalties to ensure the temperature remains within the comfort zone. In contrast, during
non-work hours, the model allows the temperature to drop to 18 °C, promoting energy
savings. Although penalties for deviations during this period are less than work hours,
they do achieve the comfort and energy efficiency balance. When the building is typically
unoccupied on weekends, the model imposes penalties for temperatures exceeding 18 °C
during those times to capitalize on energy conservation opportunities.

Additional constraints in the loss function prevent excessive heating by applying
strong penalties for temperatures exceeding 23 °C, in accordance with the upper limit
of the recommended winter comfort range in EN 16798-1, which results in unnecessary
energy consumption. The model also discourages rapid temperature changes—predicted
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temperature shifts exceeding 0.5 °C between consecutive hours incur penalties, promoting
smoother, more efficient heating.

e Input and Output Handling:

The model inputs sequential environmental and time-related features, including
historical temperature, wind speed, and time of day, normalized between 0 and 1 with
specific cutoffs for work and non-work hours. The output consists of the predicted ATs,
passed to the second model for SHC prediction. The training process for Model 1 utilizes the
custom loss function, custom_loss_modell, as previously described. To prevent overfitting,
validation is conducted using the val_step_modell function. Additionally, smoothness
constraints within the loss function ensure gradual transitions in temperature predictions,
promoting comfort and energy efficiency.

4.3.2. Model 2: Predicting Space Heating Consumption

Once Model 1 makes the AT predictions, they serve as additional inputs for Model 2,
which forecasts the overall SHC required to maintain the predicted temperatures. Model
2 uses original input features (e.g., outdoor temperature, pressure, and wind speed) and
the temperature predictions from Model 1. This is achieved by concatenating the outputs
of Model 1 with other input features.

A custom loss function is implemented for Model 2 to minimize energy waste. This
loss function imposes a heavier penalty for overestimating heating needs, as such overes-
timations result in unnecessary energy consumption. The model accurately predicts the
exact amount of heating needed to maintain occupant comfort without overshooting by
placing greater emphasis on penalizing over-predictions than under-predictions.

The input is a concatenation of predicted temperatures from Model 1 and various
environmental variables. Combining these datasets constitutes a comprehensive basis
for the model to process and analyze. Model 2’s output is the predicted values of SHC.
Real-world energy consumption data are then used to compare with these predicted
values in order to effectively evaluate the model and its performance in predicting actual
consumption data.

4.3.3. Custom Loss Function Design

The success of both models hinges on their tailored loss functions, which strategically
balance occupant comfort and energy efficiency. For Model 1 (AT Prediction), the loss
function emphasizes maintaining comfort thresholds during work hours (21 °C-22 °C)
while allowing for energy-saving measures during non-work hours and weekends by
relaxing temperature constraints. Additional penalties are applied to avoid excessive
heating (>22 °C) and to ensure smooth transitions in temperature predictions, promoting
both comfort and operational efficiency. The custom loss function operates on multiple
layers, ensuring that temperature predictions remain close to the lower limit to minimize
energy consumption. At the same time, it enhances consistency by reducing volatility,
leading to a more stable temperature profile that improves overall comfort. This two-phase
design balances energy efficiency with stability, preventing abrupt fluctuations that could
disrupt occupant comfort.

For Model 2 (SHC Prediction), the loss function prioritizes accuracy in heating predic-
tions, with a heavier penalty on over-predictions to prevent unnecessary energy consump-
tion. Under-predictions are penalized less severely to allow for efficient heating within
acceptable comfort ranges. By aligning Model 1’s stable temperature predictions with
Model 2's optimized SHC forecasts, the custom loss functions ensure that energy efficiency
is achieved without compromising thermal comfort. Together, these custom loss functions
align the predictive goals of both models—ensuring the temperature predictions from
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Model 1 lead to optimized SHC predictions in Model 2, achieving a cohesive strategy for
energy-efficient building management.

4.3.4. Mathematical Formulation of Loss Function

The custom loss functions for both models are designed to balance occupant comfort
and energy efficiency.

For Model 1, the loss function £ combines the temperature prediction error with
penalties for excessive heating and smoothness. It is designed as follows:

*Cl = “Zt (‘Tpred (t) - Tactual(t) ‘ + th(max(O, Tpred (t) —22 )) + VZ’C ( (Tpred (t) - Tpred (t -1 ) )2) 1

where Tpreq(t) is the predicted temperature at time t, Tpeq(t) is the actual measured
temperature at time t, «, 3, y are hyperparameters that control the weights of each term.
The first term minimizes the temperature prediction error. The second term penalizes
temperatures above 22 °C, which is the upper comfort limit. The third term penalizes
the volatility in temperature changes, ensuring smooth transitions and reducing abrupt
fluctuations.

For Model 2, the loss function £, penalizes over-predictions more severely than
under-predictions to prioritize energy savings. The equation is defined as follows:

Ly = 52,;(7115!3((0, Qpred(t) - Qactuul(t) )2)+€Zt<max<0/ Quctual(t) - Qpred(t> )2) 2)

where Qpred(t) is the predicted space heating consumption at time t, Q,cqa1 (t) is the actual
easured heating consumption at time t, 6 and € are hyperparameters, where 6 > € to penalize
over-predictions more heavily than under-predictions.

The final combined loss function L final integrates the objectives of both models
(temperature and heating consumption), ensuring that the temperature predictions from
Model 1 guide the heating consumption predictions from Model 2:

‘Cfinal = Ll +)\£2 (3)

where A is a scaling factor that balances the contributions from both loss functions, ensuring
that both temperature prediction and heating consumption optimization are aligned.

4.3.5. Model Evaluation

The models were evaluated through a comprehensive analysis of their performance
metrics on unseen data. Each model was assessed based on specific criteria, such as accuracy
in predicting temperature deviations from target values during defined periods, adherence
to established upper-temperature limits, and the smoothness of temperature transitions
over consecutive hours. Additionally, average deviations from target temperatures during
working, non-working, and weekend hours were calculated to evaluate how well each
model maintained comfort levels. The effectiveness of the models was further examined
by comparing their predicted values against actual observations, focusing on the overall
reduction in percentage difference between actual and predicted outcomes.

5. Results and Discussion

This section presents a comprehensive analysis of the results obtained from the im-
plemented machine learning models for temperature and SHC predictions. The results
demonstrate these predictive capabilities” contribution to energy usage optimization in the
building while maintaining comfort standards across dynamic operational conditions.
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5.1. Area Temperature and SHC Forecasting

The results of the temperature prediction model for various heating zones demonstrate
notable differences in performance, as measured by the R-squared values as shown in
Table 4. Across the heating zones, the Transformer model consistently achieves the highest
R-squared values, particularly in the CA_0_5 zone, where it reaches 0.945718, indicating
its superior capability in capturing the underlying patterns in the temperature data. The
LSTM and GRU models also perform well, with R-squared values close to the Transformer,
especially in the NT_0_13 and NT_14_25 zones, where the LSTM model achieves R-squared
values of 0.935583 and 0.948459, respectively. This suggests that while LSTM and GRU
models are compelling, the Transformer model may leverage its attention mechanisms to
better understand the temporal dependencies and interactions in the data.

Table 4. Models evaluation in area temperature forecasting.

Heating Zone LSTM R-Squared =~ GRU R-Squared  Transformer R-Squared

CA_0.5 0.92 0.92 0.95
NT_0_13 0.94 0.94 0.94
ST_0_13 0.92 0.92 0.91
NT_14_25 0.95 0.95 0.95
ST_14_25 091 0.91 0.91
NT_26_37 0.95 0.95 0.95
ST_26_37 0.92 0.91 0.91

In the ST_0_13 zone, all three models show relatively similar performance, with
R-squared values hovering around 0.92, indicating consistent temperature predictions
regardless of the model used. However, the least favorable performance is observed in
the ST_26_37 zone, where both the LSTM and GRU models yield slightly better R-squared
values compared to the Transformer model. This suggests that the complexities of this
specific heating zone’s data may not align as well with the Transformer’s architecture.

The results of the SHC prediction models demonstrate strong performance across
the LSTM, GRU, and Transformer architectures, with R-squared values indicating high
accuracy. The GRU achieves the highest R-squared value of 0.9522, closely followed by
the LSTM at 0.9519, highlighting their effectiveness in capturing complex relationships
within the dataset. The GRU’s slight advantage may stem from its efficient management of
temporal dependencies through its gating mechanism. In contrast, the Transformer model
shows a respectable R-squared value of 0.9389 but falls short of the other two models,
suggesting that its capabilities may not be fully utilized for this specific dataset, as shown
in Figure 5. Overall, these findings emphasize the suitability of the GRU and LSTM models
for SHC prediction, which will significantly enhance energy management strategies and
optimize energy usage in buildings.

The Transformer model shows the lowest R-squared value, suggesting it may not
be the optimal choice for energy consumption prediction despite its ability to handle
sequential data. This could be due to its requirement for large datasets to capture long-
range dependencies, which was not fully possible with our smaller dataset.
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Figure 5. Model evaluation in SHC forecasting.

5.2. Optimizing SHC for Occupant Comfort Using Predictive Modeling

5.2.1. Experimental Setup

The models were evaluated with comfort metrics tracked on unseen data, consisting
of February and March 2024 temperatures. Table 5 shows the comfort metrics used in this

paper’s evaluation.

Table 5. Comfort metrics with their description.

Comfort Metric

Description

Upper Limit Violation Percentage

The percentage of time temperatures in each area
exceeded 22 °C, a critical threshold for energy
efficiency.

Deviation from 21 °C during
Work Hours

The average deviation from the ideal temperature
of 21 °C during work hours (6 a.m. to 6 p.m.) is
crucial for maintaining occupant comfort.

Deviation from 18 °C during
Non-Work Hours

Average deviation from 18 °C during non-working
hours (7 p.m. to 5 a.m.), representing
energy-saving opportunities.

Deviation from 18 °C during
Weekends

Deviation from 18 °C during weekends when the
building is unoccupied is needed to assess
energy-saving potential.

Smoothness Violation Percentage

The percentage of ATs that changed by more than
0.5 °C from one hour to the next is essential for
avoiding discomfort and unnecessary energy
consumption.

The analysis compared the models’ performances using the above metrics to the actual
building data without a model, allowing for a detailed evaluation of the comfort profiles
achieved by each predictive model. Table 6 presents the comfort metrics for the unseen

data when no predictive model was applied.
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Table 6. Comfort metric of unseen data.

Deviation from Deviation from 18 °C Deviation from

Area 51]5:) I;::I(I;rlln:/‘l)t 21 °C During During Non-Work 18 °C During \S]Iil;(l):ttil;r;le;?
Work Hours Hours Weekends
CA_0.5 0.00 0.48 3.33 3.26 0.00
NT_0_13 3.76 0.43 2.99 2.83 0.00
ST_0_13 23.12 0.75 3.41 3.31 0.74
NT_14_25 7.39 0.56 2.95 2.77 0.07
ST_14_25 27.22 0.82 3.50 3.38 0.94
NT_26_37 8.94 0.62 2.90 2.73 0.40
ST_26_37 26.81 0.95 3.37 3.26 3.16
Average 13.89 0.66 3.21 3.08 0.76

5.2.2. Performance Evaluation

The LSTM model’s results show a significant reduction compared to the actual values
of SHC, with a 20.95% reduction. The Upper Limit Violation was successfully avoided
over all areas by analyzing the comfort metrics in Table 7, where thresholds were not
exceeded above 22 °C, a critical point for energy efficiency. The model was able to keep the
temperatures close to the 21 °C ideal for occupant comfort in 0.347 °C average deviation
from 21 °C during 8:00 to 18:00 (work hours).

Table 7. Performance evaluation of LSTM SHC optimization.

.. Deviation from Deviation from 18 °C Deviation from
Upper Limit Smoothness

Area Zones Violation % iéoori I]_)I:::;g ggfllrr;g Non-Worlk %\SIe‘;iglérsing Violation %
CA_0.5 0.00 0.14 2.07 2.00 0.76
NT_0_13 0.00 0.53 1.02 0.91 6.25

ST 0_13 0.00 0.30 1.29 1.16 9.38
NT_14_25 0.00 0.46 0.19 0.02 14.31
ST_14_25 0.00 0.39 1.22 1.07 11.81
NT_26_37 0.00 0.30 0.35 0.17 14.72

ST _26_37 0.00 0.32 091 0.75 12.71
Average 0.00 0.35 1.01 0.87 9.99

The deviation from 18 °C averaged 1.006 °C during non-working hours, showing that
the model maintained a reasonable energy-saving vs. comfort balance during periods of
lower occupancy. The deviation from 18 °C over weekends was also lower by 0.869 °C,
indicating that the model could optimize energy use when the building was empty.

The Smoothness Violation showed that around 10% of temperatures changed over
0.5 °C within one hour. While a slight loss of comfort sensation could occur, the model
performs reasonably well overall in keeping temperature transitions stable, given the
significant reduction in energy consumption.

The GRU model moderately improved SHC, achieving a 2.33% decrease from actual
SHC. In comfort metrics, the Upper Limit Violation stayed consistently at 0%, meaning the
predicted temperatures never exceeded the 22 °C threshold in any zone and maintained
energy efficiency, as shown in Table 8.



Energies 2025, 18, 2471

21 of 25

Table 8. Performance evaluation of GRU in SHC optimization.

Area Zones

Upper Limit
Violation %

Deviation from 18 °C Deviation from
During Non-Work

Hours

Deviation from
21 °C During 18 °C During
Work Hours Weekends

Smoothness
Violation %

CA_0.5

0.00

0.98 2.00 2.00 0.07

NT_0_13

0.00

2.05 0.91 0.91 0.69

ST_0_13

0.00

1.79 1.16 1.16 0.83

NT_14_25

0.00

291 0.02 0.02 1.67

ST 14 25

0.00

1.86 1.07 1.07 1.46

NT_26_37

0.00

2.71 0.17 0.17 2.29

ST_26_37

0.00

2.12 0.75 0.75 2.36

Average

0.00

2.06 0.87 0.87 1.34

However, there were differences from the ideal temperatures (particularly during
work hours), with an average deviation of 2.06 °C from the ideal 21 °C. The GRU model’s
performance is higher than the LSTM model’s, suggesting it may have had difficulty
maintaining optimal comfort temperature during work hours.

The average deviation of 18 °C from non-work hours was 0.87 °C, with variation
but still within an acceptable range for saving energy. The deviation from 18 °C during
weekends was about 0.87 °C, which indicated that the model worked well with unoccu-
pied periods.

The Smoothness Violation metric had a much better result (1.34%) than the LSTM
model. This implies that the resulting temperature shifts in the GRU model exceeded 0.5 °C
in fewer occasions of cases, ensuring comfort sensation and decreasing energy usage.

The Transformer model exhibited high energy efficiency, with a saving percentage
(20.69%) similar to the LSTM model. The Transformer model’s performance in the Upper
Limit Violation metric showed that 0% of zones violated their temperature, which helped
accomplish the energy-saving goals.

As we can verify in Table 9, the average deviation from the ideal 21 °C of 0.40 °C did
represent a significant improvement over the GRU and all LSTM models during work hours.
This implies that the Transformer model could have a more consistent and comfortable
indoor environment during working hours and manage occupant comfort.

Table 9. Performance evaluation of Transformer in SHC optimization.

Area Zones

Upper Limit
Violation %

Deviation from
18 °C During

Deviation from 18 °C
During Non-Work

Deviation from

21 °C During Smoothness

Violation %

Work Hours Hours Weekends
CA_0.5 0.00 0.19 2.07 2.00 5.76
NT_0_13 0.00 0.44 1.02 0.91 9.44
ST_0_13 0.00 0.39 1.29 1.16 10.14
NT_14_25 0.00 0.38 0.19 0.02 11.53
ST_14_25 0.00 0.56 1.23 1.08 11.39
NT _26_37 0.00 0.34 0.35 0.17 11.88
ST_26_37 0.00 0.47 0.91 0.75 10.97
Average 0.00 0.40 1.01 0.87 10.16
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The average deviation from 18 °C for non-work hours was 1.01 °C, slightly higher
than other models but still within an acceptable range for energy efficiency. Likewise,
the deviation was 0.87 °C, which is comparable to the non-work hour performance, and
reasonable temperature control is achieved during non-used hours.

The percentage of Smoothness Violations was considerable, 10.16%, which meant that
the Transformer model had more abrupt temperature changes than the rest of the models.

It is clear from the above experimental analysis results that the LSTM and Transformer
models have similar results on both energy savings and comfort metrics. Both perform
better than the GRU in terms of SHC while preserving occupant comfort. These results
show the effectiveness of energy savings balanced with comfort using the LSTM and
Transformer models with a 20.95% reduction in heating consumption. Additionally, it
recorded the lowest average deviations from target temperatures over work and non-
work hours and the fewest Upper Limit Violations and Smoothness Violations so that the
temperature changes were steady and comfortable. In comparison, the Transformer model
achieved strong performance with a 20.69% reduction in consumption while transitioning
between the temperatures. However, Smoothness Violations are more indicative of less
stable temperature transitions. While the GRU model achieved the lowest energy savings
(2.33%), comfort metrics were consistently performed.

Although the proposed models are trained on historical data, their design supports
extension to real-time applications. The modular two-stage architecture allows for incre-
mental updates using new data streams, enabling periodic retraining or online learning
strategies. While the dataset used in this study is limited in size, it offers fine-grained,
high-frequency measurements from a real-world multi-zone building, capturing diverse
spatial and temporal heating dynamics.

5.3. Assessment of Indoor Thermal Comfort

Thermal comfort is a critical factor in evaluating indoor environmental quality, par-
ticularly in buildings that implement demand response (DR) strategies for heating and
cooling optimization. To ensure a comprehensive long-term thermal comfort analysis, we
incorporate the three primary environmental categories outlined in EN 16798-1:2019 [7].
These categories classify indoor environments based on their suitability for different oc-
cupant groups, defining operative temperature ranges for winter and summer conditions.
Given that our analysis covers the first three months of the year (January, February, and
March)—corresponding to winter conditions—the target comfort range for our study is
21-23 °C, as specified for Category I (high comfort).

To assess the indoor environmental quality of the studied building, we computed the
total area average temperature, along with specific averages for working days (Monday to
Friday including the 24 h of the day) and working hours (Monday to Friday, 7 a.m.—6 p.m.).
These calculations help determine whether the observed temperatures align with the
EN 16798-1 winter comfort range. The results are summarized in Table 10.

Table 10. Computed average temperatures and comparison with EN 16798-1 winter comfort range.

Category

Computed Average Target Comfort Compliance with EN 16798-1

Temperature (°C) Range (Winter, °C) (Category I: 21-23 °C)
Total Area Average 21.02 21-23 Within Range
Total Area Average Working Days 21.15 21-23 Within Range

Total Area Average Working Hours 21.31 21-23 Within Range
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6. Limitation

This study contributes to the field by demonstrating the effectiveness of deep learning
models in predicting heating demand using readily available building and environmental
data, offering a scalable approach for energy optimization in institutional buildings.

However, this study has certain limitations. Direct occupancy measurements were not
available due to the absence of sensors; instead, temporal variables such as hour of day, day
of week, and season were used as proxies, given their typical correlation with occupancy
patterns in institutional settings. While these features helped capture occupancy-driven
heating variations, the lack of real-time occupancy data may limit the models” adaptability
to dynamic usage.

Additionally, this study does not specifically address the stricter thermal comfort
and air quality standards required for IEQ Category I spaces, which are designed for
sensitive groups such as children or the elderly. The assumption that indoor air, radiant,
and operative temperatures are equal (ta = tr = to) was made for simplicity, particularly
suited to winter conditions where differences are minimal. However, this may not apply in
other seasons.

7. Conclusions

This study uses LSTM, GRU, and Transformer deep learning models to predict the
ATs and SHC while maintaining occupant comfort. Models reduced SHC by up to 20.95%
through a two-stage process based on LSTM and 20.69% through a two-stage process based
on Transformer. This showcases that these models could optimize the energy consumption
in complex building environments from increased SHC. The historical temperature data
and time-specific parameters have been used to forecast precisely and act as good energy
managers in different space heating zones. These results underscore the importance
of leveraging advanced machine-learning techniques to improve energy efficiency and
sustainability in modern buildings.

Future research can explore integrating advanced deep learning models like reinforce-
ment learning to enhance prediction accuracy and real-time optimization. Furthermore,
the framework can be extended further to introduce renewable energy sources; real-time
feedback of occupancy patterns can be expected to add further enhancements to real-time
energy management. The use of hybrid models combining multiple machine-learning tech-
niques may also be explored to improve model reliability and interpretability. In addition,
multi-agent reinforcement learning (MARL) can be considered for dynamic management
of multiple HVAC zones. Finally, the methodology can be applied to larger-scale, multi-
building environments to gain further insight into their robustness and scalability for a
wide variety of operational conditions.

Author Contributions: Conceptualization, FA., M.C., L.M. and N.C.-R.; methodology, F.A.; software,
F.A,; validation, M.C., L.M. and N.C.-R,; formal analysis, F.A.; investigation, F.A.; resources, FA.;
data curation, F.A.; writing—original draft preparation, FA.; writing—review and editing, M.C. and
N.C.-R,; visualization, F.A.; supervision, M.C., L.M. and N.C.-R,; project administration, FA., M.C.
and N.C.-R; funding acquisition, M.C. and N.C.-R. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was funded by the European Union under NextGenerationEU. Ecosystem
INEST Interconnected Nord-Est Innovation; PNRR Mission 4, Component 2, Investment 1.5, Views
and opinions expressed are however those of the author(s) only and do not necessarily reflect
those of the European Union or The European Research Executive Agency. Neither the Euro-
pean Union nor the granting authority can be held responsible for them. This work was also
supported by national funds through FCT (Fundagao para a Ciénciae a Tecnologia), under the



Energies 2025, 18, 2471 24 of 25

project- UIDB/04152 /2020 (doi:10.54499 /UIDB/04152/2020)-Centro de Investigagao em Gestao de
Informagao (MaglIC)/NOVA IMS.

Data Availability Statement: The datasets used and/or analyzed during the current study are
available from the corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature
Term Description
AT Area Temperature
BWS Building Weather Station
CA Common Area
LSTM Long Short-Term Memory model
GRU Gated Recurrent Unit model
MSE Mean Squared Error
MAE Mean Absolute Error
NT North Tower
R-squared (R%)  Coefficient of determination, a statistical measure of the goodness of fit
SHC Space Heating Consumption
ST South Tower
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