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ABSTRACT

The Electrocardiogram (ECG) is a powerful diagnostic tool that offers valuable insights
into the complex functioning of the heart. Despite its widespread use, researchers face
significant challenges in accessing openly shared ECG datasets due to privacy concerns
and data scarcity. In response, synthetic data generated through Deep Learning (DL)
models has emerged as a promising solution. However, evaluating synthetic medical data
solely with general quality metrics may not be sufficient, as medical data must be both
realistic and clinically relevant.

This dissertation aims to overcome such challenges by advancing high-fidelity ECG
data generation and evaluation, presenting an approach for generating realistic ECG
signals using a diffusion model and introducing a novel evaluation metric based on a
DL evaluator model. The initial phase of this research focused on refining the state-
of-the-art Structured State Space Diffusion (SSSD-ECG) model through hyperparameter
optimization. The fidelity of the generated synthetic dataset was assessed using both
quantitative metrics and feedback from medical experts. Additionally, the diversity and
utility of the synthetic signals were assessed to ensure comprehensive evaluation. The
evaluator model was developed to classify individual synthetic ECG signals into four
quality levels and was trained on a custom-developed quality dataset specifically designed
for the generation of 12-lead ECG signals.

Regarding the goal of generating high-fidelity ECG data, both the evaluation metrics
and expert feedback indicate that the SSSD-ECG model was successful. In correlation
studies, the evaluator model demonstrated alignment with the fidelity metrics. Overall,
this research addresses key challenges in the generation and evaluation of synthetic
ECG data, contributing with a novel approach for generating realistic ECG signals, the
development of a quality dataset, and a new metric for classifying synthetic ECG data
into distinct quality levels.

Keywords: ECG synthesis, Deep Generative Models, Synthetic Data Evaluation, Human
Feedback
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REsumMo

O Eletrocardiograma (ECG) é uma ferramenta de diagnéstico que oferece informacgdes
valiosas sobre o funcionamento do coragdo. Apesar da sua ampla utilizacao, os investiga-
dores enfrentam desafios no acesso a conjuntos de dados de ECG, devido a preocupagdes
de privacidade e a escassez de dados. Como solugdo surgem os dados sintéticos gerados
através de modelos de Aprendizagem Profunda (AP). Contudo, avaliar dados médicos
sintéticos apenas com métricas gerais de qualidade é insuficiente, ja que estes devem ser
tanto realistas como clinicamente relevantes.

Esta dissertacdo aborda os desafios na geracdo e avaliacdo de dados de ECG realistas,
apresentando uma abordagem de geracdo que utiliza um modelo de difusao e introdu-
zindo uma nova métrica de avaliacdo baseada num modelo avaliador de AP. A fase inicial
desta pesquisa centrou-se no aprimoramento do modelo da literatura Structured State
Space Diffusion (SSSD-ECG) através da otimizac¢do de hiperparametros. A fidelidade do
conjunto de dados sintéticos gerado foi avaliada utilizando métricas quantitativas e feed-
back de médicos. Adicionalmente, a diversidade e a utilidade dos sinais sintéticos foram
avaliadas para garantir uma avaliacdo abrangente. O modelo avaliador foi desenvolvido
para classificar individualmente sinais de ECG sintéticos em quatro niveis de qualidade,
sendo treinado com um conjunto de dados de qualidade desenvolvido especificamente
para a geragao de sinais de ECG de 12 derivagdes.

Relativamente ao objetivo de gerar dados de ECG realistas, tanto as métricas como
o feedback dos especialistas indicam que o modelo SSSD-ECG foi bem-sucedido. Em
estudos de correlacdo, o modelo avaliador demonstrou alinhamento com as métricas de
fidelidade. Concluindo, este projeto aborda desafios relevantes na geracdo e avaliacdo de
dados de ECG sintéticos, contribuindo com uma abordagem inovadora para gerar sinais
realistas, com o desenvolvimento de um conjunto de dados de qualidade e uma nova
métrica para classificar dados sintéticos de ECG em niveis de qualidade distintos.

Palavras-chave: Sintese de ECG, Modelos generativos profundos, Avaliacdo de dados
sintéticos, Feedback Humano
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1

INTRODUCTION

1.1 Context and Motivation

Electrocardiograms (ECGs) are the cornerstone of cardiovascular diagnostics, offering
vital insights into the electrical activity of the heart. As a non-invasive and widely used
diagnostic tool, ECGs are crucial in detecting a broad spectrum of heart conditions [2].
The accuracy and reliability of these diagnoses depend heavily on the availability of
high-quality ECG data. However, the acquisition of large and diverse datasets of real ECG
recordings is often hindered by privacy concerns and data scarcity [3].

ECG data is highly sensitive, often compared to a human fingerprint due to its unique
patterns that can reveal individual-specific information when analyzed in both frequency
and time domains [3]. This sensitivity poses challenges in data sharing, limiting the
ability to leverage such data for research and the development of advanced diagnostic
tools. Additionally, the scarcity of data, due to difficulties in acquisition, presents another
obstacle. Data scientists, tasked with developing and training Machine Learning (ML)
models, often struggle with the need for substantial volumes of data that are both hetero-
geneous and representative of the population of interest [3]. Unfortunately, access to such

datasets, especially those with specific pathologies or rare conditions, remains a rarity.

To address these challenges, deep generative models have emerged as a promising
solution, capable of generating synthetic data that exhibits the same structural and sta-
tistical characteristics of real data. However, in the healthcare domain, the generation of
synthetic data is not sufficient. It is imperative that medical data, such as the ECG, is both
realistic and clinically relevant [4].

Evaluating the quality of synthetic data is therefore a critical step. Current evaluation
metrics, which rely on the statistical distributions between synthetic and real datasets,
have contributed to valuable advances in the field. However, these metrics might overlook
complex signal features essential for accurate medical interpretation. Additionally, clini-
cians often struggle to contextualize statistical criteria in clinical context. This highlights
the need for more sophisticated evaluation methods, potentially ones that assess data at
the sample level rather than collectively, and that offer more intuitive interpretation [4].

1



CHAPTER 1. INTRODUCTION

In addition to quantitative assessments, researchers have increasingly emphasized the
importance of qualitative evaluation by medical experts as a necessary step in identifying
discrepancies in synthetic samples [4]. Involving clinical professionals in the evaluation
process could provide valuable insights into the realism and clinical utility of synthetic
ECG data, as human experts offer the most reliable "ground truth" in determining realism
[5].

In response to these needs, this work was developed as part of the Synthetic and
Scalable Data Platform for Medical Empowered Al (AISym4Med) project. The primary
goal of the project is “developing a platform that provides healthcare data engineers,
practitioners and researchers access to a trustworthy dataset system augmented with
controlled data synthesis for experimentation and modeling purposes” [6].

1.2 Objectives

The aim of this dissertation is to evaluate and enhance the generation of synthetic ECG
data using deep generative models with an emphasis on achieving high realism. Another
key objective is to develop a robust metric that can accurately capture the complexity and
subtle nuances of individual ECG patterns. To accomplish this, three specific goals have
been set:

¢ Evaluate a State-of-the-Art Generative Model: Refine the chosen model to generate
synthetic ECG signals that are closely resembling real data in both appearance and
diagnostic relevance, and assess their quality through metrics that evaluate fidelity,

diversity, and utility.

* Develop an Individualized Evaluation Metric: Create a specialized metric for
evaluating each synthetic ECG sample individually, focusing on generation rather
than merely detecting artifacts and noise.

¢ Validate Generated Data Quality: Conduct comprehensive evaluations of the
synthetic ECG data using the newly developed metric and gather expert human
feedback to validate the fidelity of the generated signals.

By achieving these objectives, this dissertation aims to make a significant contribution
to the AISym4Med project and the broader field of Artificial Intelligence (Al) in healthcare.

1.3 Document Structure

This dissertation is organized into seven chapters. Chapter one introduces the motivation
behind the work and outlines its main objectives. Chapter two covers the foundational
concepts and theoretical knowledge that support the development of this research. In
chapter three, a review of the relevant literature is provided, focusing on deep generative

2



1.4. DECLARATION OF ORIGINALITY

models and current evaluation techniques. Chapter four details the dataset used for
training the generative models. Chapter five explains the methodology, including data
preprocessing, model implementation, design of a quality dataset, development of an
evaluation metric and the assessment of synthetic data. Chapter six presents a thorough
analysis of the results obtained throughout the study. Finally, chapter seven concludes the
dissertation by summarizing the key contributions, discussing limitations, and offering
suggestions for future research. Additionally, Appendix A provides supplementary
information about the human evaluation approach used in the study, while Annex I

includes descriptions of the diagnostic classes used for model training.

1.4 Declaration of Originality

The research work described in this dissertation was carried out in accordance with the
norms established in the ethics code of Universidade Nova de Lisboa. The work described
and the material presented in this dissertation, with the exceptions clearly indicated,

constitute original work carried out by the author.
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THEORETICAL BACKGROUND

2.1 Electrocardiogram

The ECG is a graphical representation of the heart’s electrical activity arising from the
processes of depolarization and repolarization within the cardiac muscle. In the ECG,
distinct characteristics are evident, each revealing specific aspects of cardiac function [7].
The initial P wave delineates the propagation of electrical impulses that spreads across
the atria. Then the QRS complex becomes prominent, indicating ventricular excitation,
while the T wave corresponds to the subsequent ventricular repolarization. The analysis
of these characteristic entities enables clinicians to extract valuable information, aiding in

the calculation of heart rate and the identification of rhythm abnormalities [7].

Amplitude

0.0 0.5 1.0 1.5 2.0 2.5
Time (s)

Figure 2.1: Example of normal ECG signal from the PTB-XL dataset, with labeled P wave,
QRS complex, and T wave. The x-axis represents time in seconds, and the y-axis shows
normalized amplitude using z-score normalization.

2.2 Machine Learning

In the domain of Al, ML stands as a subfield dedicated to investigating and developing
algorithms with the capacity to learn and predict outcomes from data. These algorithms

diverge from traditional static program instructions, as they derive predictions or decisions
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2.2. MACHINE LEARNING

from the data itself [8]. The classification of ML algorithms depends on the level of human
supervision during training, resulting in distinct types such as supervised, unsupervised,

semi-supervised, and reinforcement learning.

* Supervised learning algorithms are trained with labeled data. During this process,
the model learns the mapping from inputs to outputs, adjusting its parameters to
minimize the disparity between predictions and actual labels. Employing techniques
such as classification and regression, supervised learning extrapolates patterns to
forecast label values on additional unlabeled data [8].

¢ Unsupervised learning algorithms operate on unlabeled data, where models aim to
analyze and cluster the data to uncover inherent patterns based on the features of
the dataset [9].

¢ Semi-supervised learning uses both labeled and unlabeled data during training,
typically incorporating a small amount of labeled data alongside a substantial
amount of unlabeled data[9].

¢ Reinforcement Learning operates by enabling a model to learn through trial and
error which actions yield the greatest rewards [8].

2.21 Traditional Machine Learning

Traditional ML algorithms have long been the foundation of predictive modeling, pro-
viding powerful tools for analyzing structured data and making predictions based on
learned patterns. These algorithms are typically divided into two categories: classification
and regression. Classification methods predict discrete labels or classes, while regression
methods forecast continuous values. The choice of algorithm depends on the specific
application and the characteristics of the dataset being used [10].

One of the most widely employed traditional ML algorithms is Random Forest (RF),
which can be applied to both classification and regression tasks. RF is an ensemble
learning method that constructs multiple decision trees and combines their outputs to
enhance predictive accuracy and reduce overfitting [10]. In classification tasks, the final
prediction is determined by majority voting among the decision trees, while in regression
tasks, the result is the average of the trees’ outputs [11].

When evaluating the performance of ML models, it is essential to use appropriate
evaluation metrics to ensure the model generalizes well to unseen data. For binary
classification, a valuable evaluation tool is the confusion matrix. This matrix compares the
actual and predicted classes, offering a comprehensive view of the model’s performance.
Each row in a confusion matrix represents an actual class, while each column represents

a predicted class [9]. The main components of a confusion matrix are



CHAPTER 2. THEORETICAL BACKGROUND

True Positives (TP): Correctly predicted positive instances.

¢ True Negatives (TN): Correctly predicted negative instances.

False Positives (FP): Incorrectly predicted positive instances

False Negatives (FN): Incorrectly predicted negative instances

Table 2.1: Representation of a confusion matrix for a binary classification problem.

Predicted Predicted
Positive Class | Negative Class
Actual
Positive Class B N
Actual
Negative Class t N

To evaluate the performance of a model, various metrics are derived from the confusion
matrix. In this work, accuracy and F1-Score are the primary metrics used. Since the F1-

Score is the harmonic mean of precision and recall, both metrics are also presented.

* Accuracy: The ratio of correct samples to the total number of instances.

N TP +TN
T =
Ny = TP+ TN +FP + EN

¢ Precision: The proportion of correctly classified positive samples among all predicted

positives.
Precision = 1T
recision = ————
* Recall: The proportion of correctly predicted positive samples identified out of all

actual positives.
TP

Recall = m

¢ F1-Score: The harmonic mean of precision and recall.

Precision X Recall
Precision + Recall

Fl-score =2 X

2.2.2 Deep Learning

Deep Learning (DL) is a part of a broader family of ML methods based on learning data
representations. It aims to replace handcrafted features with efficient algorithms for
unsupervised or semi-supervised feature learning and hierarchical feature extraction [8].
The distinctiveness from traditional ML is prominent with large datasets, showcasing the
ability of DL to process a vast array of features effectively [12]. The term "Deep" refers to

6



2.2. MACHINE LEARNING

the incorporation of multiple layers in the model architecture, facilitating the construction
of a data-driven model [13].

DL is based on the concept of Artificial Neural Networks (ANNs), which draw in-
spiration from the organization of biological nervous systems. In an ANN, numerous
interconnected processing elements, or neurons, form the structure, with each neuron
generating a series of real-valued activations for the desired outcome.

In Sarker etal. [12], a taxonomy for DL is introduced, categorizing techniques into three
major groups: deep networks for supervised or discriminative learning, deep networks for
unsupervised or generative learning, and deep networks for hybrid learning, combining
both approaches.

In the first category, architectures like Multi-layer Perceptrons (MLPs) and Convo-
lutional Neural Networks (CNNs) are used to classify data by modeling the posterior
distributions of classes conditioned on observed data. In contrast, deep networks in the sec-
ond category focus on analyzing higher-order correlation features for pattern recognition
or synthesis. Deep generative models, such as Generative Adversarial Networks (GANs)
and Diffusion Models (DMs), are often employed for feature learning, data generation,
and representation [12].

2.2.2.1 Multi-layer Perceptron

A MLP is an ANN, with information flowing unidirectionally from input to output. The
typical MLP is fully connected, comprising an input layer for data reception, an output
layer for decisions, and hidden layers for computation [12]. Within these hidden layers,
transformations to input data are applied and each neuron in these layers has an associated
weight and bias. The output of an MLP is determined by activation functions like Rectified
Linear Unit (ReLU), Tanh, Sigmoid, or Softmax, introducing non-linearity for complex
pattern learning.

Training an MLP involves adapting the connection weights to minimize the difference
between the network output and the desired output. The most used algorithm for this
purpose is backpropagation, that calculates the derivatives of the loss function with
respect to the previous weights, aiding optimization. In the forward pass, the input data
propagates through the network layers to generate an output. The error, computed by
comparing this output to the actual target output using a designated loss function, serves
as a measure of the disparity between the predicted and desired outcomes. The backward
pass is initiated by computing the gradients of the error with respect to the weights. This
is achieved through the application of the chain rule from calculus, enabling the algorithm
to trace how changes in each weight contribute to the overall error. These gradients signify
the direction and magnitude of adjustments required to minimize the error. Subsequently,
the weights are updated in the opposite direction of the computed gradients, effectively
reducing the error. The learning rate, a hyperparameter, regulates the size of these weight
updates, ensuring a balance between convergence speed and stability.

7



CHAPTER 2. THEORETICAL BACKGROUND

This iterative process of forward and backward passes, weight updates, and error
minimization is repeated for multiple epochs until the neural network converges to a state

where the difference between its predictions and the actual outputs is minimized.

2.2.2.2 Convolutional Neural Network

Inspired by the human visual cortex, a CNN is a feedforward ANN, designed to reduce
the need for extensive preprocessing by automatically learning spatial hierarchies in
data. It excels in feature extraction from multidimensional data like images and videos,
demonstrating remarkable efficiency in tasks such as computer vision, pattern recognition,
and image processing [8]. The architecture of CNNs comprises three main types of layers:
convolutional, pooling, and fully connected layers. The stacking of these layers forms the
overall structure of the network.

¢ The Convolutional layer captures local patterns and hierarchies through convolution
operations. A kernel slides over input data, conducting element-wise multiplications
and summing the results for crucial feature extraction. The output feature map is
formed by convolving feature maps from the preceding layer with learnable kernels

and applying an activation function [14].

¢ The pooling layer aims to reduce the dimensionality of the representation simply
performing downsampling along the spatial dimensionality of the given data and
thus further reduce the number of parameters and the computational complexity
of the model. A common pooling operation is max pooling, that operates in local
regions of the input feature map. It slides a window, selecting the maximum value

in each region, which is then used to form the output feature map [14].

¢ Fully connected layers directly link neurons from two adjacent layers. They make
predictions based on learned features. Preceding these layers, data is flattened from
the current dimension to 1D, as fully connected layers operate on one-dimensional

vectors [14].

2.2.2.3 Generative Adversarial Networks

GANSs are a class of DL models crafted to generate artificial samples that closely resemble
real ones. Their primary objective is to autonomously discern and understand patterns
within input data, enabling the generation of new examples from the original dataset.
Comprising two neural networks, namely the generator and discriminator, these networks
function as antagonists. The generator strives to create synthetic data closely resembling
the real data from the training set, attempting to deceive the discriminator. On the
other hand, the discriminator assesses both genuine and fake data, aiming to distinguish
between them. Both networks undergo training in a competitive manner: the generator

adjusts its parameters to generate increasingly realistic data, while the discriminator

8



2.2. MACHINE LEARNING

improves its ability to differentiate between genuine and synthetic data [3]. Figure 2.2
illustrates the representation of the GAN framework.

Real dataset

=\
_

—ddne

Real ECG signal

,_____________

o’
o

—+ Real
——— Fake
—
vy —— — A P e
G J\—/\’M Discriminator

Noise Fake ECG signal

Generator

Figure 2.2: Representation of the GAN framework, adapted from [3].

2.2.2.4 Diffusion Models

DMs are generative models with a probabilistic nature, drawing inspiration from the
thermodynamic diffusion process in physics. These models are designed to reverse the
effects of data destruction or corruption, such as the introduction of noise, thereby enabling
the generation of realistic and clean data samples. Consequently, DMs can be employed
for generating new samples from a specific distribution, and they can implicitly learn the
underlying distribution from which real samples are drawn [15]. The process involves
two sequential steps: forward and reverse diffusion, as illustrated in Figure 2.3. The
forward diffusion process entails gradually introducing noise to the input signal until it
transforms into noise. On the other hand, the reverse diffusion process utilizes a trainable
neural network to systematically eliminate the noise and reconstruct the original signal.
Synthetic signals are subsequently generated by applying the trained neural network to

simple noise [3].

Forward diffusion

e — G

Real ECG signal

J\/—/\’M N / .

Fake ECG signal

Reverse diffusion

Figure 2.3: Illustration of the DM framework, adapted from [3].
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Structured State Space Diffusion ECG

In this section, the focus shifts to the specific DM applied in this dissertation: the
Structured State Space Diffusion ECG (SSSD-ECG), proposed by Alcaraz and Strodthoff
[16]. As illustrated in Figure 2.4, this model stands out among generative models for
12-lead ECG generation by leveraging two key components: the Structured State Space

Sequence Model (54) and the conditional diffusion process.
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Figure 2.4: Illustration of the SSSD-ECG model architecture, adapted from [16].

SSSD-ECG is an adaptation of the previously proposed SSSD°* model by the same
authors. SSSD stands for Structured State Space Diffusion and was originally designed for
time series imputation and forecasting [17]. The SSSD** model itself is built on the DiffWave
architecture developed by Kong et al. [18], a diffusion probabilistic model proposed for
audio synthesis, which employs a bidirectional dilated convolution architecture. In
SSSD%4, the dilated convolutions are replaced by two 5S4 layers, which are more effective
at capturing long-term dependencies in time series data.

The 54 layer forms the core of this architecture, enabling the model to capture both short-
and long-term dependencies in sequential data efficiently. It improves upon traditional
state space models by introducing a carefully structured design that allows for highly
efficient computations, even with very long sequences. This efficiency is achieved through a
specialized mathematical technique called the High-Order Polynomial Projection Operator
framework, which enables the model to represent and process long-term dependencies
in a compact form [19]. By replacing the dilated convolutions with S4 layers, the SSSD%*
enhances its ability to model complex temporal relationships, making it particularly suited
for time series tasks like ECG signal generation.

The key difference between SSSD>* and SSSD-ECG lies in the conditional informa-
tion used. While SSSD** receives an imputation mask and remaining input signals as
conditional information, SSSD-ECG is conditioned on a set of annotated ECG statements,
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represented as a binary vector of length 71. This vector is transformed into a continuous
representation by multiplying it with a learnable weight matrix, which is then passed
through a fully connected layer and used as conditional information in different SSSD>*
layers [16].

In addition, another modification was made to the SSSD-ECG model. It was adapted
to generate only 8 leads: leads I, aVF, and V1-V6, with the remaining 4 leads reconstructed
from these primary leads. This approach was based on the observation that, in a standard
12-lead ECG, only two of the six limb leads are independent. Consequently, any set of limb
leads can be reconstructed from two given limb leads using the following relationships:
MI=II-1,aVL=(1-1I)/2,aVF = (Il + III) /2, and -aVR = (I + II) /2 [16].

2.3 Evaluation Metrics for Synthetic Time Series

Many generative models and evaluation metrics for synthetic time series data have been
proposed. However, there is still no universally accepted approach or consensus among
researchers on how to quantify the quality of generated data. Assessing synthesis quality
is a complex task that encompasses fidelity, diversity, generalizability, and privacy consid-
erations [20]. In this work, the evaluation metrics selected to assess the quality of synthetic
ECG data were primarily chosen to evaluate fidelity, with diversity and utility considered

afterward.

2.3.1 Improved precision and recall

In the research by Sajjadi et al. [21], the authors proposed the precision and recall
metrics to express the quality of generated data in two different components: fidelity and
diversity. However, some practical limitations raised concerns, particularly the ambiguity
in interpreting relative density differences, the sensitive initialization of the k-means
algorithm, and the difficulty in reliably estimating extremes in situations such as mode
collapse or truncation.

To address these challenges, improved precision and recall metrics were proposed by
Kynkddnniemi et al. [22]. The improved metrics overcome these limitations by employing
non-parametric methods to better estimate the manifolds of real and generated data
distributions. The key innovation involves constructing a more accurate representation
of these distributions in a high-dimensional feature space, utilizing pairwise Euclidean
distances and k-nearest neighbors [22].

Precision measures the proportion of generated samples that are realistic. In the
improved version, precision is calculated by first embedding both real and generated
samples into a high-dimensional feature space using a pre-trained classifier. Next, the
manifold of the real data is estimated by calculating the Euclidean distance between the
teature vectors of real samples and constructing hyperspheres around each sample, with

the radius determined by the distance to its k-th nearest neighbor. Improved precision is
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then quantified by determining how many generated samples lie within this estimated
manifold of real data. This refined approach now accounts for the true geometric structure
of the data distribution [22].

On the other hand, recall measures the proportion of generated samples that cover the
diversity of real data. In the improved recall metric, the same non-parametric manifold
estimation is applied but in reverse. Recall assesses how many real samples fall within
the manifold of generated data. This manifold of synthetic samples is estimated in
the same way, by embedding the generated samples into the feature space, calculating
pairwise distances, and constructing hyperspheres. This method allows for a more
accurate assessment of how well the generated samples cover the variety of the real data
distribution [22].

2.3.2 Density and Coverage

Naeem et al. [23] highlighted in their work that the effectiveness of the improved precision
and recall metrics is limited due to their sensitivity to outliers, hyperparameters, and
computational inefficiency. To address these issues, the authors proposed density and
coverage metrics as practical solutions to remedy the mentioned problems.

Density improves the precision metric by correcting the overestimation of the manifold
around real outliers. Instead of simply checking whether the generated samples fall within
aneighborhood sphere of real data, as precision does, the density metric counts how many
real-sample neighborhood spheres contain a synthetic sample. This approach balances
the classic precision metric with the Parzen window estimate, providing a more reliable
assessment by rewarding samples in densely packed regions of real data while mitigating
the impact of outliers. Unlike precision, which is bounded by 1, density can exceed 1,
depending on the density of real samples surrounding the generated samples [23].

On the other hand, coverage is an enhancement of the recall metric, designed to better
capture the extent to which the diversity of real data is represented by the generated
samples. Instead of building manifolds around the generated samples, which are more
susceptible to outliers, coverage constructs nearest-neighbor manifolds around the real
samples. This approachis also computationally favorable, as the manifold can be computed
per dataset rather than per model. Coverage measures how many of these real samples
have neighborhoods containing at least one generated sample, and it is bounded between
0 and 1 [23]. Figure 2.5 demonstrates the comparison between precision, recall, density,

and coverage, underscoring the benefits of the newer metrics.

2.3.3 Train on Real, Test on Synthetic and Train on Synthetic, Test on Real

Evaluating the utility of synthetic data involves assessing how useful the generated data
is for practical applications compared to real-world data. One of the most common ways

to assess utility is through downstream classification tasks. Esteban et al. [24] proposed
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Figure 2.5: Comparison of precision, recall, density, and coverage metrics across two
example scenarios. The figure highlights how density provides a more robust alternative
to precision, while coverage enhances the recall metric. Adapted from [23].

two novel measures for evaluating the usefulness of synthetic data: Train on Synthetic,
Test on Real (TSTR) and Train on Real, Test on Synthetic (TRTS)

For TSTR, the dataset generated by the generative model is used to train a classifier,
which is then tested on an unseen set of true samples. Since the task is supervised, the
generated labels must be provided. According to the authors, this evaluation metric
is ideal because it demonstrates the practical value of the generated data, which could
potentially replace the real data without compromising model quality [24].

In TRTS, the approach is reversed: real data is used to train the supervised model
on a set of tasks, and then a test set of generated samples is used for evaluation. If the
classifier achieves high accuracy, one can assume that the generated samples have features
sufficiently similar to those in the real data [24].
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LITERATURE REVIEW

3.1 Generative Models

According to the World Health Organization, cardiovascular diseases are the leading
cause of death, underscoring the importance of accurate ECG analysis for timely detection
[25]. Given its crucial role in diagnosing heart conditions, the ECG is one of the most
synthesized biomedical signals.

In the initial stages of synthetic ECG signal generation, some of the first approaches
relied on mathematical models consisting of three coupled ordinary differential equations,
to mirror heart rate signals [26]. Alternatively, autoregressive models were employed to
capture temporal dependencies and intricate patterns in the ECG by predicting the next
value based on previous ones. Despite their ability to produce realistic signals in terms
of ECG morphology, these models often resulted in synthetic heartbeats that were too
standardized.

Recent DL advancements have greatly influenced the biomedical field, surpassing
traditional methods. Wulan et al. [27] employed a Deep Convolutional Generative
Adversarial Network (DC-GAN) to generate realistic ECG signals, encompassing different
types of heartbeats. However, challenges were identified, such as the need for R-peak-
centered data segments and limited extensibility to longer ECG signals and other biosignal
modalities, necessitating annotated data for R-peak location.

To address these challenges, the work presented by Dissanayake et al. [28] focuses
on 1D biosignal data, using adversarial models like GANSs, an adversarial autoencoder,
and a modality transfer GAN. The results indicate improved capabilities, including the
generation of independent peak annotations and longer synthetic signals with multiple
R-peaks compared to the DC-GAN approach.

In anothernotable contribution, Belo etal. [29] proposed a Deep Neural Network (DNN)
model that learns and synthesizes biosignals, demonstrating morphological equivalence
to real signals, including Electromyogram, ECG, and respiratory signals. The model,
consisting of an embedded matrix, three layers of Gated Recurrent Units, and a softmax
function, successfully captured the basic morphological and cyclical characteristics of the
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original signals. For ECG, the model showcased the ability to discern distinct traits of
each subject during training. Furthermore, Nishikimi et al. [30] introduced a DNN-based
method, utilizing the conditional Variational Autoencoder (VAE), to synthesize ECG
signals from cardiac parameters. The model, conditioned by the parameters, efficiently
generated accurate ECG signals and demonstrated feasibility in terms of computational
cost for creating a compilation of ECG signals.

Recent advancements in the DM domain have introduced remarkable approaches for
time series modeling, demonstrating outcomes that surpass GANs and autoregressive
models. Diffusion methods offer several advantages, including training stability and the
ability to generate diverse synthetic samples. Alcaraz and Strodthoff [16] proposed the
SSSD-ECG framework, which combines a conditional DM with structured state space
sequences to synthesize short 12-lead ECG signals based on over 71 statements in a multi-
label setting. Their approach excels in quantitative, qualitative, and human evaluations.
Inspired by SSSD-ECG, Zama and Schwenker [31] developed the Diffusion State Space
Augmented Transformer model, which also generates conditional 12-lead ECG data,
replacing 54 layers with State Space Augmented Transformer layers. This novel approach
also demonstrated strong performance in qualitative and authenticity assessments.

Additionally, Neifar et al. [32] developed a versatile framework based on Diffusion
Denoising Probabilistic Models for ECG signal generation, imputation, and forecasting.
Their approach integrates a simple yet efficient conditioning encoding, allowing seamless

transitions between tasks, and showed promising results across various evaluations.

3.2 Quality Metrics for Synthetic Data Evaluation

Several measures have been proposed to assess synthetic data quality, but the choice
of metrics depends on the specific problem and domain, leading to diverse evaluation
approaches. As a result, no universal metric or general approach exists for evaluating
synthetic data, particularly for time series, making it an active research area [20].

Stenger et al. [20] suggest categorizing the extensive list of proposed metrics for
synthetic time series evaluation into two groups: distribution-level metrics, which assess
all samples collectively, and sample-level metrics, which evaluate individual samples.

At the distribution level, common methods involve calculating the distance between
synthetic and real samples, such as Average Euclidean Distance, Jensen-Shannon Distance,
and Maximum Mean Discrepancy (MMD). Building upon these traditional metrics, Sajjadi
et al. [21] proposed a novel definition of precision and recall for distributions, based on
the estimated supports of real and synthetic data. Their approach moves beyond the one-
dimensional scores, offering a more nuanced assessment by separately evaluating quality
(precision) and diversity (recall) of synthetic datasets relative to real data. To demonstrate
the practical utility of these metrics, they applied them across several variants of GANs
and VAEs.
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Kynk&danniemi et al. [22] addressed limitations in the previous metrics by introducing
improved precision and improved recall, which better estimate real and synthetic data
distributions using non-parametric methods, pairwise Euclidean distances, and k-nearest
neighbors in a high-dimensional feature space. More recently, Naeem et al. [23] high-
lighted the unreliability of newer precision and recall metrics, introducing density and
coverage metrics as alternative approaches designed to be less vulnerable to outliers and
more computationally efficient, further advancing the evaluation of synthetic data. Both
articles demonstrated the effectiveness of the metrics using GANs.

Shifting focus to sample-level metrics, Dynamic Time Warping (DTW) is a widely used
distance measure for time series, as it captures flexible similarities under time distortions
[33]. This metric measures the similarity between two sequences by aligning them point-
to-point under certain constraints. Delaney et al. [34] employed DTW and MMD to
evaluate synthetic ECG signals generated by GANs, finding DTW more effective for ECG
data due to its sensitivity and robustness. However, a limitation of DTW is its sensitivity
to noise and outliers, which can distort the alignment and lead to inaccurate similarity
assessments. Another sample-based metric introduced by Alaa et al. [35] is a-Precision
and B-Recall, which builds on Sajjadi et al. metrics by using a refined soft-boundary
classification. These metrics assess how well synthetic samples cover typical regions of the
real data distribution, offering a more detailed evaluation that detects mode collapse or
distribution mismatches. However, the authors of the SSSD-ECG framework have raised
concerns about these metrics, citing issues with instability during the training of one-class
embeddings, which significantly affected the results.

Turning the attention to ECG quality assessment, several studies have utilized ML and
DL techniques for evaluating ECG signals. Notable works [36], [37], and [38] train ML
classifiers to assess various quality aspects, including background noise, beat consistency
(detecting unexpected events), amplitude range, and the identification of signals with
missing leads. In contrast, [39] and [40] employ non-feature-based approaches.

Despite their differing methodologies, all these studies rely on the PhysioNet/Computing
in Cardiology Challenge 2011 dataset, indicating a shared focus on artifact and noise de-
tection. Considering these findings, the proposed metric in this dissertation sets itself
apart by specifically evaluating the realism of individual ECG samples, concentrating on

the quality of the generated signals rather than merely identifying noise and artifacts.
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DATASET

To accomplish the objectives of this thesis, the PTB-XL dataset was employed for training
and evaluating the generative models. Additionally, it was used to develop one of the

classes in the quality dataset, which will be explained in the following chapter.

4.1 PTB-XL

The PTB-XL dataset used in this dissertation originates from the "Will Two Do? Varying
Dimensions in Electrocardiography: The PhysioNet/Computing in Cardiology Challenge
2021" [41]. This annual competition promotes the development of open-source solutions
for complex physiological signal processing and medical classification challenges. The
goal of the 2021 challenge was to identify clinical diagnoses using ECG data from various
lead configurations [41].

The dataset provided for this competition consists of annotated 12-lead ECG recordings
sourced from nine different databases. These recordings have been curated and standard-
ized to meet the specific needs of the competition, making the dataset both scalable and
adaptable for use in multiple algorithms. Consequently, this dissertation utilizes data
from this challenge, specifically focusing on the third source, the Physikalisch-Technische
Bundesanstalt (PTB), for training and evaluating generative models.

The PTB-XL dataset was selected due to its large number of 12-lead ECG samples
and its diversity in signal quality and pathology coverage. It comprises 21,837 clinical
12-lead ECG records, each 10 seconds in length, collected from 18,885 patients. It is
gender-balanced, with 52% male and 48% female participants, and covers a wide age
range from 0 to 95 years. Each ECG record was annotated by one or two cardiologists,
who assigned multiple ECG statements based on the SCP-ECG standard, covering form,
rhythm, and diagnostic categories. These annotations span 71 distinct categories [42].

The diagnostic labels, which were the primary focus of this research, are organized
hierarchically into 5 broad superclasses and 24 more specific subclasses. For the challenge,
however, all the labels were mapped to SNOMED-CT codes. A description of the classes

can be found in Annex I.
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METHODOLOGY

5.1 Overview

To accomplish the objectives outlined in Section 1.2, this dissertation was structured around
several key stages: data preprocessing, generative model implementation, synthetic ECG
signal generation, quality dataset construction, evaluator model development, and finally,
a comprehensive evaluation using quality metrics and expert feedback.

The first step involved preprocessing the ECG signals from the publicly available
PTB-XL dataset, which were used for model training and as a reference for evaluating
the synthetic signals through various metrics. The generative approaches implemented
included a GAN model and a DM from the literature, named SSSD-ECG. As anticipated,
in preliminary experiments, the DM outperformed his competitor in generating realistic
synthetic ECG samples, and therefore, only the signals generated by the SSSD-ECG
were used for subsequent evaluations. However, both models played a crucial role in
developing the custom quality dataset of 12-lead ECG signals, which was then used to
train the evaluator model. This model was specifically designed to classify synthetic data
into four distinct quality levels.

In the final stage, a thorough evaluation of the generated signals was conducted to
assess their fidelity, diversity and utility. This was achieved by employing state-of-the-art
evaluation metrics, along with a downstream classification task. To complement these
evaluations, the synthetic signals generated by the SSSD-ECG model were presented to
clinical experts via a questionnaire for qualitative assessment. This approach aimed to
ensure that the synthetic samples retained the essential characteristics of real ECG signals,

making them useful for future applications.

5.2 Data preprocessing

Both generative models were conditioned on the diagnostic labels associated with the ECG
signals, therefore data preprocessing was performed in two stages: one for the signals
and one for the labels.
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5.2.1 Real Signal Preprocessing

The ECG signals from the PTB-XL dataset were first resampled from 500Hz to 100Hz for
each lead. This resampling reduced the data size while preserving essential information,
making the data more manageable. A moving average filter was then applied to remove
baseline wander - a low-frequency noise component - by smoothing the signals and

subtracting the baseline wander from the original ECG signal.

Subsequently, each ECG channel was normalized using z-score normalization, which
standardizes the data by centering it around a mean of zero and scaling it to have a

standard deviation of one.

Finally, since the PTB-XL dataset is characterized by its diversity and contains many
co-occuring pathologies, signals with more than one diagnostic class label were excluded
from the data. This ensured that each signal in the new processed dataset belonged to
only one diagnostic ‘superclass’, to reduce complexity in model training. The distribution

of signals in each class after preprocessing is shown in Table 5.1.

Table 5.1: Distribution of ECG signals across different categories in the training dataset
after preprocessing.

Diagnostic Classes Number of signals
Conduction Disturbance (CD) 404
Myocardial Infarction (MI) 573
Hypertrophy (HYP) 91
ST/T change (STTC) 758
Normal (NORM) 8773

5.2.2 Diagnostic Label Preprocessing

As outlined in Section 4.1, the dataset contains 71 unique statements categorized into three
groups: diagnostic, form, and rhythm. Specifically, there are 44 diagnostic statements, 19
form statements describing the shape of the ECG signal, and 12 statements describing
the cardiac rhythm [42]. For the 2021 challenge, these statements were standardized
and mapped to SNOMED-CT codes to ensure a consistent representation of cardiac

abnormalities.

However, this dissertation narrows the focus to diagnostic classes, particularly the
five broad diagnostic ‘superclasses’. This decision was made because, for the validation
phase of the pipeline, it was impractical to present 71 examples of cardiac pathologies to
the clinical experts for evaluation. Additionally, consolidating the labels into fewer, more
general categories enhances model performance and generation robustness by providing
the model with a sufficient number of examples from each class, allowing it to learn

meaningful patterns.
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The preprocessing of labels involved two main steps. First, the labels were mapped
from SNOMED-CT codes back to the corresponding diagnostic "superclasses’. Second, the
labels were converted into one-hot encoded vectors, ensuring a consistent and structured

format for model input.

5.3 Generative Models

In this chapter, several generative models were explored for synthesizing ECG signals.
Among the approaches tested, the GAN and the SSSD-ECG models ultimately contributed
to the final work. While GANs have demonstrated significant potential in image generation
and time series applications, recent research indicates that DMs can outperform them
[43], [32]. Indeed, in preliminary experiences, the GAN model developed for this study
produced inferior results compared to the SSSD-ECG model, primarily due to higher noise
levels in the generated signals. Regardless, both models were essential in developing the

custom quality dataset.

53.1 GAN

As previously mentioned, the initial approach for generating realistic ECG samples in-
volved a GAN model. However, the performance was inferior compared to the SSSD-ECG
model. Even so, the GAN demonstrated the ability to produce signals with discernible
R peaks, while other waves were obscured by noise. These characteristics seemed ideal
for populating Class 2 of the quality dataset. Given that early-stage results from the
SSSD-ECG model did not meet the specific needs for Class 2, the decision was to adapt
the GAN architecture to generate the lower-quality signals required for this class.

The model consists of two CINNs: a discriminator and a generator. The discriminator
comprises four convolutional layers, each progressively increasing in the number of filters,
starting at 64 and doubling with each subsequent layer. These layers utilize a kernel size
of 4, a stride of 2, and padding of 1, followed by Leaky Rel.U activations (with a negative
slope of 0.2) to introduce non-linearity. The final convolutional layer compresses the
output to a single channel, which is reshaped and passed through a sigmoid activation
function to produce a binary classification output indicating whether the input is real or
generated.

The generator synthesizes 1D signals from a latent vector of size 128. It employs
five transposed convolutional layers to upsample the latent vector to the desired length
and dimensionality. Each layer uses the same kernel size, stride and padding as the
discriminator, as also the RelLU activations. Once the signal is upsampled, the output
is passed through 12 fully connected layers, each producing a 1000-dimensional sample,
corresponding to one signal channel. This allows the generator to produce 12-lead
synthetic ECG signals. A high-level schematic of the described GAN architecture is shown
in Figure 5.1.
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5.3. GENERATIVE MODELS

For training, the preprocessed 12-lead ECG dataset from PTB-XL was used. The dis-
criminator and generator were alternately updated using the Adaptive Moment Estimation
(Adam) optimizer, with a batch size of 64, over 35 epochs. The learning rates were set to
1 x 107 for the discriminator and 2 x 107 for the generator. Both networks used binary
cross-entropy loss.

For signal generation, outputs from epochs 25 to 35 were used to generate signals for
Class 2, as these outputs met the quality requirements. It is important to mention that the
conditional component was not used in generating signals for Class 2, as the focus was

on producing signals for all classes indiscriminately.
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Figure 5.1: Schematic representation of the GAN architecture used in this work. "Conv1D’
denotes one-dimensional convolutional layers, ‘ConvIransposelD’ represents transposed
convolutional layers, 'ReLU’, 'Leaky ReLU’, and "Sigmoid” are activation functions, "FC’
represents fully connected layers, and ‘Unsqueeze’ adds a dimension to the tensor.

5.3.2 SSSD-ECG

Since the developed GAN model was unsuccessful in generating realistic samples and
therefore unsuitable for further analysis, a novel approach, the SSSD-ECG model, emerged
as a promising solution for generating 12-lead ECG data. In the original paper, this model
excelled in various evaluation contexts, including qualitative, quantitative, and human
expert assessments [16].

The SSSD-ECG model, developed by Alcaraz and Strodthoff [16], represents a state-
of-the-art framework for ECG generation by leveraging conditional DMs and structured
state-space dynamics, as explained in detail in Section 2.2.2.4. In this thesis, two objectives
were defined for this model: to produce signals that resemble ECGs with visible periodic
R waves and most other waves observable, though containing conceptual errors (intended
for Class 3 in the quality dataset), and to generate highly realistic ECG samples for further

quality assessment by clinical experts.
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The first step in adapting this model for generation involved modifying its conditional
input. Instead of using the original 71 statements, the model was conditioned on five broad
annotated ECG statements, encoded as a binary vector of length 5, corresponding to the
PTB-XL database classes. Additionally, to accomplish the desired results for both objectives,
several hyperparameters were modified and tested across different configurations. Table
5.2 presents the experiments conducted with the tested hyperparameters, including the

variable names used for reference and their corresponding values.

Table 5.2: Hyperparameters tested in the experiments, detailing the experiment name, the
adjusted hyperparameter, its abbreviation for reference, and the respective values applied.

Experiment Hyperparameter (variable name) Value
Residual Layers 48 Number of Residual Layers (res_layers) 48
Residual Layers 24 Number of Residual Layers (res_layers) 24
Label Embedding Dimension Dimension of Label Embedding (label_embed_dim) 256
T Steps Number of Diffusion Time Steps (T_steps) 300
Batch Batch size (batch_size) 4
Diffusion Step Embedding In Dimension of Diffusion Step Embedding (diffusion_step_embed_dim_in) 256
54 State Dimension State Dimension for S4 Layer (s4_d_state) 128
S4 Dropout Dropout Rate for S4 Layer (s4_dropout) 0.2
S4 Layer Normalization Layer Normalization for S4 Layer (s4_layernorm) 0 (disable)
S4 Bidirectional Bidirectionality for S4 Layer (s4_bidirectional) 0 (disable)
Hyperparameter Combination res_layers, label_embed_dim, T_steps 48, 256, 300
Best Hyperparameter Combination res_layers, label_embed_dim, T_steps 48, 256, 1000

For the goal of generating realistic synthetic ECG signals, these experiments helped
fine-tune the model for improved performance. Only one hyperparameter was adjusted
at a time to assess its impact on the generation process. Subsequently, synthetic ECG
samples were generated for each configuration and evaluated using the improved precision,

improved recall, density, and coverage metrics.

The first effective configuration was achieved by combining the hyperparameters that
yielded the best results. The key hyperparameters were the number of diffusion time
steps (T_steps = 300), the number of residual layers (res_layers = 48), and the dimension
of the label embedding (label_embed_dim = 256). This configuration is referred to as
the “Hyperparameter Combination”. While these three hyperparameters significantly
improved the generation capacity of the model, further optimization was achieved by
increasing the number of diffusion time steps to 1000. This refined configuration is referred

to as the “Best Hyperparameter Combination.”

For generating Class 3 signals, the model used was the one with 24 residual layers.
This model was chosen based on extensive testing and visual inspection of generated
signals, selecting the configuration that best fit the criteria to populate the class.

It is important to highlight that the model selected for quality assessment was the
one with the highest performance as of July, when the evaluation questionnaire for the
clinical experts was developed. Even after this, experiments continued to improve model

performance, ultimately reaching a better hyperparameter combination.
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5.4 Quality Dataset

To develop an evaluator model capable of assessing the quality of synthetic ECG dataon a
sample-by-sample basis, it was essential to find a dataset that met several specific criteria:
it needed to include 12-lead ECG signals, provide a large number of samples suitable
for training a DNN, and offer clear, detailed descriptions of quality levels. During this
search, two databases were considered: the dataset from the PhysioNet/Computing in
Cardiology Challenge 2011 and the Brno University of Technology ECG Quality Database
(BUT QDB)

The PhysioNet dataset provided standard 12-lead ECG recordings, each graded by
multiple annotators for signal quality [44]. However, it lacked detailed criteria explaining
the factors leading to classifications of acceptable, indeterminate, or unacceptable signals,
making it unsuitable for the specific needs of this project.

The BUT QDB, on the other hand, was designed specifically for evaluating ECG quality,
with annotations categorizing signals into three quality classes based on the clarity and
detectability of significant waveforms [45]. Despite its relevance, this dataset was not
chosen due to its limited number of signals and focus on single-lead ECGs.

Given that neither dataset fully met the criteria, there was a need to construct a custom
quality dataset from scratch. The classification system from the BUT QDB inspired this
new dataset, ensuring that the evaluator model could effectively assess the realism and
quality of synthetic ECG signals.

The custom quality dataset was constructed using a mix of basic wave functions,
synthetic signals generated by a GAN model, synthetic signals from the SSSD-ECG model,
and real signals from the PTB-XL dataset. It was categorized into four distinct classes,
with examples of each class illustrated in Figure 5.2. The description of each class was
based on the ECG characteristic waves, particularly by the R wave, which is typically the
first feature a generative model learns when synthesizing ECG signals. The four classes

are defined as follows:

¢ Class 1: Signals that do not resemble ECGs.

¢ Class 2: Signals similar to ECGs, but only show discernible R peaks, with noise that

obscures other waves.

¢ Class 3: Signals that resemble ECGs with visible periodic R waves and most other
waves observable, but containing conceptual errors that result in highly improbable
ECG patterns.

¢ Class 4: Real ECG signals.

For Class 1, signals were created using basic wave functions, such as sine, triangular,
rectangular, and sawtooth waves, each with varying levels of noise. Class 2 samples were
generated using the GAN model described in Section 5.3.1, chosen for their higher noise
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Figure 5.2: Representative signal examples for each class in the Quality Dataset.

levels. Class 3 was produced with specific parameters from the SSSD-ECG model to
ensure higher fidelity, as detailed in Section 5.3.2. Class 4 consisted of real signals from
the PTB-XL database. The distribution of the number of signals generated for each class
is summarized in Table 5.3, providing a detailed breakdown of the dataset composition.
It is observable that Class 3 has fewer samples than the other classes, which is due to
the manual selection of samples that met the required characteristics, out of the initially

10,000 samples generated.

Table 5.3: Signal distribution across each class of the Quality Dataset.

Class Number of signals

1 10000
2 8960
3 176
4 10599

5.5 Evaluator Model

The proposed evaluator model serves as a novel evaluation metric for assessing the quality
of synthetic ECG data at the sample level, classifying each signal into one of four predefined
classes from the custom quality dataset. The necessity of such an evaluator model arises
from the limitations of conventional time series generation metrics, which typically rely on
statistical comparisons between real and synthetic datasets. These metrics often require
compressed representations of the signals, such as extracted features, and depend on
analyzing multiple samples from both datasets, which can compromise subject privacy.
In contrast, the evaluator model focuses on evaluating each synthetic ECG sample indi-
vidually. It was designed using ensemble DL techniques, selected for their demonstrated
success in various classification tasks, particularly with DN [46]. These architectures not
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only learn complex relationships between variables but also automatically extract features,
eliminating the need for traditional preprocessing.

The evaluator consists of five neural networks, each initialized with different random
seeds while maintaining a consistent architecture. Each network includes five convolu-
tional layers, followed by Leaky ReLU activations and dropout layers to prevent overfitting.
During training, signals and their corresponding class labels are passed through the net-
works. The output of the model is then compared to the target class label, and cross
entropy loss is calculated. The Adam optimizer is used to adjust the weights and biases,
minimizing this loss.

The training data used to develop this model was sourced from the custom quality
dataset described earlier, which was unbalanced. Notably, Class 3 contained fewer signals
than the other classes. To address this, a function to estimate class weights for the
unbalanced data was incorporated. This ensured that the underrepresented classes
received more weight during the training process, allowing the model to learn better from
the fewer signals available and reducing bias toward the more frequent classes.

Since ensemble learning enhances prediction performance by combining multiple
models, it was essential to define an effective strategy for aggregating predictions. There-
fore, soft voting was implemented, where each model predicts the probability for each
class label, and these probabilities are averaged across all models. The class with the
highest average probability is then selected as the final prediction, effectively considering
the confidence levels of all model predictions [47].

As mentioned, the training data was obtained from the quality dataset, which includes
both synthetic and real data. However, when this work is made publicly available,
researchers will have access to the model’s weights rather than the raw features of the real
and synthetic data. This approach introduces an additional layer of privacy protection,
compared to traditional assessment methods.

Additionally, because the quality dataset was specifically designed with diverse wave-
form characteristics, the evaluator is focused on classifying the quality of signal generation

rather than merely detecting noise and artifacts.

5.6 Evaluation

Assessing the quality of time-series generation has demonstrated to be a multidimensional
task, covering various aspects such as fidelity, diversity, and utility [20]. As outlined in
Section 1.2, the main goal of this work was to produce realistic synthetic ECG samples
using the SSSD-ECG model. Therefore, the focus was primarily on fidelity, by evaluating
how closely the generated samples resemble real ECG signals. In addition, the diversity
of synthetic signals was also evaluated to ensure that the samples represent the full
variability of the real data. Moreover, the utility of the synthetic data was assessed
through a downstream classification task to measure its usefulness for ML applications.
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To complement the quantitative metrics, the generated signals were also subjected
to qualitative evaluation by clinical experts through a questionnaire, providing expert

feedback on the realism of the data.

Finally, the evaluator model, designed to assess individual synthetic ECG samples, was
evaluated using performance metrics such as accuracy, F1-score, and a confusion matrix.
The correlation between the evaluation metrics for synthetic data and the evaluator was
analyzed to determine if the model aligns with the state-of-the-art metrics. Additionally,

the relationship between the human evaluation and the evaluator was also studied.

5.6.1 Fidelity and Diversity of Synthetic ECG Signals

The metrics used to assess the fidelity of the generated data were improved precision
and density, while improved recall and coverage metrics were used to evaluate diversity,
as proposed by Naeem et al. [23]. For simplicity, throughout this work, improved
precision and improved recall will be referred to as precision and recall, respectively. The
implementation was adapted to use 5 nearest neighbors (k=5) and 200 samples from each
diagnostic class for both real and synthetic data, ensuring a balanced dataset. However, it
is worth mentioning that the HYP category in the processed PTB-XL dataset had fewer
samples, as shown in Table 5.1. Consequently, the shape of the real dataset used was 891
samples, compared to 1000 synthetic samples.

During the 12 experiments conducted to optimize the performance of the SSSD-ECG
model, each experiment produced corresponding fidelity and diversity results for the
synthetic data generated. The real dataset used for comparison remained consistent across
all experiments.

To compute the metrics, features from multiple domains, such as statistical, spectral,
and temporal, were extracted using the Times Series Feature Extraction Library (TSFEL),
a Python package optimized for automatic feature extraction from time series data [43].

5.6.2 Utility of the Synthetic Dataset

The utility of the synthetic dataset was evaluated through a downstream classification
task using the TRTS and TSTR metrics proposed by Esteban et al. [24], as well as the
additional Train on Synthetic, Test on Synthetic (TSTS) metric, introduced in the work of
Fekri et al. [49].

The supervised classification task was carried out using a RF classifier (configured
with n_estimators=100 and random_state=42), and features were extracted from both
the real and synthetic datasets using the TSFEL library. For baseline comparisons, the
classifier was trained and tested on real data, with the dataset divided into training and

test sets. A test size of 30% was consistently used across all classification tasks.

From these evaluations, three performance measures were derived and analyzed:
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¢ TSTR: This metric assesses the capacity of synthetic data to replace real data by
evaluating how well a model trained on generated samples performs when tested
with real ones. This is essential for assessing the practical applicability of a synthetic

dataset in real-world scenarios.

® TRTS: This metric measures the realism of synthetic samples by training the classifier
on real data and evaluating its performance on synthetic data. It evaluates the ability

of the generative model to produce realistic samples.

¢ TSTS: This metric evaluates the internal consistency of the synthetic dataset by
measuring how well a model trained on synthetic samples generalizes to unseen
synthetic data.

5.6.3 Human Evaluation

The human evaluation specifically targeted the realism of the synthetic dataset, as realism
is a property for which humans can provide an unequivocal "ground truth" [5]. Unlike
diversity or utility, which may require more quantitative assessments, realism can be
directly validated by expert judgment.

To validate the realism of synthetic ECG samples generated by the SSSD-ECG model,
a structured questionnaire was developed using Microsoft Forms. The questionnaire
featured 20 images of ECG tracings — 10 synthetic signals from the generative model and
10 real signals from the PTB-XL database. This study was conducted in July and involved
the evaluations of three clinical experts: one cardiologist, one internist, and a final-year
medical student.

Each tracing was paired with a set of questions, beginning with an inquiry about the
nature of the signal. The respondents were asked to indicate whether they believed the
tracing to be an ECG or not. If uncertain, they could select the 'not sure” option, which
allowed them to proceed to the next image. For tracings identified as ECGs, participants
were then asked to classify the tracing into one of several diagnostic categories: NORM,
MI, STTC, HYP, or CD. These categories correspond to the five 'superclasses’ used to
classify the PTB-XL data in terms of disease diagnosis.

If a tracing was not recognized as an ECG, the clinical experts were asked to evaluate
its quality by selecting one of the following options, which correlate to the quality levels
defined in the quality dataset:

* Noise (Class 1): the tracing does not resemble an ECG, and the R waves are not

reliably observable.

* Clearly not an ECG (Class 2): periodic R waves are visible in some leads, but other
ECG waves are not clearly identifiable.

¢ Almost an ECG (Class 3): periodic R waves are visible, and most of the waves can be
observed, but there are conceptual errors resulting in highly unlikely ECG patterns.
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The signals selected for the questionnaire were chosen to represent the diversity within
the dataset. To achieve this, a method using a nearest neighbors model was employed
to determine how different each sample was from the others, ensuring that the selected
samples were as unique as possible. Each selected sample was then reviewed to ensure it
accurately reflected the diverse characteristics of the dataset. Ultimately, 10 samples were
carefully chosen to ensure a well-rounded representation of the dataset’s diversity.

The images of two example questions from the questionnaire used for the human

evaluation are provided in Appendix A.
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REsuLTs AND DiscussioN

This chapter presents and discusses the results of this dissertation in accordance with the
goals established in Section 1.2. First, the fidelity, diversity, and utility of the generative
model are evaluated. Then, the realism of the synthetic signals is validated through expert
feedback. Lastly, the performance of the custom evaluator model is assessed, along with

its alignment to both quality metrics and expert insights.

6.1 SSSD-ECG Synthetic Signal Evaluation

The hyperparameters from the original paper were used in initial experiments to generate
synthetic ECG signals, which were provided to clinical experts for qualitative assess-
ment. While awaiting feedback, further experimentation was conducted to enhance the
realism of the synthetic ECG signals, leading to the development of an improved set of
hyperparameters detailed in Section 5.3.2.

To assess the fidelity and diversity of the generated samples, a quantitative comparison
was made between the two hyperparameter configurations using precision, density, recall,
and coverage metrics. The results are summarized in Table 6.1 for each configuration
across the five diagnostic classes. Additionally, the utility of the synthetic dataset was
evaluated through downstream classification tasks, detailed in Table 6.2.

Table 6.1: Comparison of precision, recall, density, and coverage values across the diagnos-
tic classes for two hyperparameter configurations: the original and the best-performing.

" g Original Hyperparameters Best Hyperparameters
Diagnostic Class Precision ° Densiz; Igecall Coverage Precision Derz;li)ty ° Recall Coverage

CD 0.65 0.99 0.00 0.25 0.97 4.15 0.01 0.83

HYP 0.03 0.01 0.01 0.03 0.95 3.13 0.02 0.95

MI 0.95 1.41 0.00 0.32 0.89 2.73 0.03 0.79
NORM 0.28 0.17 0.00 0.06 0.90 3.99 0.04 0.91
STTC 0.95 1.43 0.00 0.27 0.98 5.25 0.06 0.99
Mean 0.57 0.80 0.00 0.19 0.94 3.85 0.03 0.89
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6.1.1 Fidelity and Diversity

As shown in Table 6.1, the average precision of the synthetic ECG signals increased sub-
stantially from 0.57 with the original hyperparameters to 0.94 with the best configuration.
The most significant improvement was observed in the HYP class, where precision dra-
matically increased from 0.03 to 0.95. Additionally, the density metric improved across all
diagnostic classes, with several exhibiting values greater than 1. Consequently, the overall
average density increased significantly from 0.80 to 3.85. These values suggest that the
model is generating more synthetic samples in proximity to real data points.

While these improvements in fidelity are significant, it is essential to examine the
diversity of the generated signals to gain a holistic comprehension of the performance of
the model. Although recall improved with the best set of hyperparameters, it remained
low, particularly for the CD and HYP classes. These results suggest that several synthetic
samples fall outside the real dataset space, especially for these diagnostic categories. In
contrast, the coverage metric showed notable improvements across all categories. Even
though some synthetic samples lie outside the real data space (as reflected by low recall),
the model is still capable of generating a diverse set of samples that cover the majority
of the data space. This increase in coverage may be attributed to the model building
the manifold using real samples rather than synthetic ones, as discussed in Section 2.3.2.
Therefore, coverage appears more effective in avoiding outliers in distributions compared
to recall.

After analyzing both the fidelity and diversity results, it is evident that the best
hyperparameters configuration have successfully achieved the goal of generating synthetic
ECG signals that exhibit statistical characteristics similar to those of real ones. As confirmed
by high precision and density values. However, the lower recall and higher coverage scores
indicate that while the model generates a broad array of signals (high coverage), many
real points are still not represented in the synthetic dataset (low recall). This limitation,
highlights the need for future work to enhance the diversity of the synthetic signals to
better capture the full range of characteristics present in real data.

6.1.2 Utility

Synthetic datasets are often used for specific ML applications, and their usefulness can be
assessed by evaluating how well they support these applications. The evaluation procedure
for assessing the utility of synthetic data involved performing several classification tasks
with a RF classifier, as detailed in Section 5.6.2 and shown in Table 6.2

The classifier trained on real data has nearly identical performance when tested on
both real (56.58%) and synthetic data (57.03%). These results indicate that the synthetic
dataset seems to preserve the characteristics of the real one, confirming the realism of the
generated samples.

The model trained on synthetic data performed significantly better on synthetic data
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(78.00%) compared to real data (40.84%). This suggests that while data conditioning pro-
duces consistent results, it may lack generalization when applied to real-world scenarios.
This limitation may be due to the lower values of the diversity metrics. Nevertheless, the
synthetic data still displays some quality, despite of not being able to fully replace real
data in practical applications

Examining the entire scope, the high similarity between the performance on real
and synthetic data suggests that the synthetic dataset replicates many patterns from the
real dataset. This is a positive indication of its quality and aligns with the main goal of
this dissertation. However, its utility is more limited for training models intended for
real-world applications. Nonetheless, this limitation provides an opportunity to enhance

synthetic data in future work.

Table 6.2: Macro Average Fl-score for RF classification on real and synthetic datasets.

Test on Real | Test on Synthetic
Train on Real 56.58% 57.03%
Train on Synthetic 40.84% 78.00%

6.2 Human Evaluation

To complement the quantitative metrics, three clinical experts evaluated the synthetic
signals to assess their realism. This evaluation was conducted through a questionnaire,
detailed in Section 5.6.3, where the primary objective was for the experts to classify the
samples as either real or synthetic. A total of 20 ECG tracings were used, consisting of 10
real and 10 synthetic samples generated with the original hyperparameter configuration.

After assessing each ECG tracing, different follow-up questions were presented de-
pending on the answer. If an ECG was considered real, the following question prompted
the expert to categorize the signal into one of five diagnostic classes. This step allowed
the evaluation of whether the model correctly generated signals corresponding to the
intended diagnostic categories. On the other hand, if an ECG was considered synthetic,
the expert was asked to indicate the quality level the signal belongs to. In turn, this pro-
vides insights into understanding where the generative process might have failed when
synthetic signals are accurately identified as such.The responses from all the questions are
compiled in Table A.1, which presents a detailed breakdown of the evaluations provided
by each expert.

The responses about the nature of the signals from each expert were first analyzed
individually, as illustrated in Figure 6.1, where classification outcomes are categorized
into distinct groups: real signals identified as real, real signals misclassified as synthetic,
synthetic signals misidentified as real, and synthetic signals correctly classified. Following
the individual assessments, the responses were then collectively evaluated through major-
ity voting. It is crucial to acknowledge that the first question for each ECG tracing allowed
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the evaluator to select the option "Not sure" regarding the nature of the signals. Although
only one expert used this option, for the statistical analysis, "Not sure" was treated as a
positive classification, indicating that the signal had sufficiently realistic characteristics to
cause indecision and was therefore considered real.

Examining individual cases, medical expert A classified all 20 signals as real, without
considering any as synthetic. Clinician B correctly identified 8 real signals but also
classified 8 synthetic signals as real. The final evaluator classified 5 real ECG tracings
as real but labeled the other 5 as synthetic, and 4 synthetic ECGs were classified as real.
These results suggest that the synthetic signals possess realistic characteristics, as most
were perceived as real. Additionally, the misclassification of some real ECG signals as
synthetic further supports the realism of the generated data.

EE Real as Real Synthetic as Synthetic
B Real as Synthetic Synthetic as Real

104

6

Number of ECG Tracings

A B
Medical Experts

Figure 6.1: Classification of real and synthetic ECG signals by clinical experts.

Taking a holistic view, the majority of the three clinicians identified 16 out of 20
signals as real and 4 as synthetic. Notably, 80% of the synthetic signals (8 out of 10) were
misclassified as real, while 20% of the real signals (2 out of 10) were misclassified as
synthetic. These results suggest a high degree of realism in the synthetic ECG signals, as
the generated data closely resembles genuine ECG tracings in terms of visual characteristics
and rhythmic patterns. This aligns with the previously evaluated metrics of precision
and density. Additionally, the 20% of real signals misclassified as synthetic highlights the
challenge medical experts face in distinguishing between real and generated data.

Figure 6.2 illustrates the realism achieved by presenting two normal 12-lead ECGs
evaluated by medical experts. Image 6.2a depicts a real signal from the PTB-XL database,
while image 6.2b shows a synthetic signal generated by the SSSD-ECG model using the

original hyperparameters. Notably, all evaluators identified the synthetic signal as real.
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For the analysis of the second set of follow-up questions, only the feedback from two
medical experts was considered, since there was no information on this scenario from one
clinician. As mentioned, 8 out of 10 synthetic signals were mistaken for real ones, while
the remaining two were correctly classified as synthetic. According to the evaluators, these
two synthetic samples fell into the “Noise” quality level (Class 1), characterized by the
absence of observable R waves. This finding suggests that, while the majority of synthetic
signals captured the characteristics of real signals, the two that were accurately identified
lack resemblance to authentic ECG tracings. Furthermore, the analysis of the synthetic
signals classified as real revealed a lack of consensus among the clinicians regarding
the assigned diagnostic categories. This inconsistency suggests that the conditional
aspect of the generative model may not be functioning as intended, indicating room for
improvement.

In conclusion, human evaluation validates the effectiveness of the SSSD-ECG model
in generating highly realistic ECG signals. While the evaluation was based on just three
clinicians, the results indicate that the synthetic data is considered to possess sufficient
quality to merit further exploration.

6.3 Evaluation of the Evaluator Model

6.3.1 Performance Assessment

The performance of the evaluator model was assessed using accuracy and Fl-score as
evaluation metrics, utilizing the test set from the quality dataset. Since the evaluator is an
ensemble of five CNNs, these metrics were averaged across all networks, resulting in a
mean accuracy of 99.9884% (+0.0045%) and an average F1-score of 99.6953% (+0.1171%).
The confusion matrix, presented in Figure 6.3, further demonstrates the performance of
the model, showing that the evaluator correctly classifies signals across all classes. The
only misclassification involves a Class 4 signal being incorrectly labeled as Class 3.

6000
Class1 {2964 0 0 0

5000

Class 2 0 2730 0 0 4000

3 3000
Class 3 0 0 50 0

2000

Class 4 - 0 0 1 1000

Class 1 Class 2 Class 3 Class 4
Predicted label

Figure 6.3: Confusion matrix for evaluator model performance.
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(b) Synthetic ECG generated by the SSSD-ECG.

Figure 6.2: Example of two Normal 12-lead ECG tracings presented in the human evalua-
tion questionnaire. Image (a) shows a real ECG from the PTB-XL database, and image (b)
represents a synthetic ECG generated by the SSSD-ECG model.
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During model evaluation, the class imbalance present in the data, particularly in class
3, was carefully considered as it could impact the model’s ability to generalize across
different datasets. Therefore, to mitigate this issue, more weight was assigned to the
underrepresented class during training, as explained in Section 5.5. Overall, these results
demonstrate the effectiveness of the model in distinguishing signals between different
quality levels.

6.3.2 Correlation Analysis Between Synthetic Evaluation Metrics and the
Evaluator Model

Another approach to assess the performance of the evaluator model involved exploring its
relationship with several key evaluation metrics: precision, density, recall, and coverage.
By examining these relationships, the objective was to determine whether the evaluator
model aligns with the established state-of-the-art metrics.

Synthetic datasets generated from hyperparameter experiments were passed through
the evaluator model to predict the percentage of signals classified as Class 4, which were
interpreted as real signals. The results for each experiment, including the values of
precision, density, recall, and coverage, are detailed in Table 6.3. The final row emphasizes
the values of the best hyperparameter configuration. Here, the evaluator model classified
96% of the signals as real, a finding that is corroborated by the high values of precision
and density, previously analyzed in this chapter.

Table 6.3: Synthetic datasets generated from each experiment, evaluated by the evaluator
model (signals classified as Class 4) and the evaluation metrics (precision, recall, density,
and coverage). These values were used to compute the correlations.

Hyperparameter Experiment Predicted Class 4 Precision Density Recall Coverage
Original 0.44 0.57 0.80 0.00 0.18
Residual Layers 0.71 0.58 0.49 0.00 0.14
Label Embedding Dimension 0.57 0.82 1.61 0.00 0.25
T Steps 0.61 0.62 0.46 0.01 0.15
Batch 0.10 0.34 0.36 0.00 0.09
Diffusion Step Embedding In 0.43 0.66 0.75 0.00 0.19
54 State Dimension 0.13 0.35 0.39 0.00 0.12
54 Dropout 0.24 0.59 0.87 0.00 0.19
54 Layer Normalization 0.02 0.27 0.21 0.00 0.08
S4 Bidirectional 0.05 0.10 0.09 0.00 0.09
Hyperparameter Combination 0.52 0.70 0.69 0.01 0.20
Best Hyperparameter Combination 0.96 0.94 3.85 0.03 0.89

The correlation values, presented in Figure 6.4, shows that the evaluator model
exhibits strong correlations with all evaluation metrics, with coefficients calculated using
the Pearson correlation method. Particularly, the model achieves a correlation of 0.88
with precision and a correlation of 0.72 with density. These strong correlations serve as a
positive indicator, since both precision and density metrics are focused on fidelity, similar

to the evaluator model.
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It is worth mentioning that the evaluator model operates at a sample level, whereas
the other metrics evaluate at a distribution level. Therefore the predictions of the model
were averaged across datasets in order to do this comparison. The significant correlation
between the evaluator model and these metrics confirms that the evaluator is a valid tool
for quality assessment.

[ 1
Predicted Class 4 1.00 0.88 0.72 0.71 0

(p = 1.00) (p = 0.00) (p =0.01) (p = 0.01)

Predicted Class 4 Precision Density Recall Coverage

Figure 6.4: Correlation values between evaluator model and evaluation metrics.

6.3.3 Correlation Analysis Between Human Evaluation and the Evaluator
Model

Another interesting perspective emerged from analyzing the relationship between the
evaluator model and the medical experts. The evaluator model was designed to assess
the quality of each ECG signal at a sample level, similar to how the experts performed
their evaluation. Thus, it was logical to examine the fidelity of the synthetic ECG signals
by comparing the performance of the evaluator model with that of the human evaluators,
using the same classification task.

The results, illustrated in Figure 6.5, reveal that the evaluator model correctly identified
7 real signals and classified 7 synthetic signals as real. This performance demonstrates a
notable degree of similarity with the medical experts, who also misclassified 8 synthetic
signals as real. Additionally, both the evaluator model and the experts exhibited some
difficulty in distinguishing certain real signals as real. The alignment in performance
between the evaluator model and the human evaluators supports the conclusion that the
synthetic data closely resembles genuine ECG tracings, reinforcing their fidelity.
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Figure 6.5: Confusion matrix for the classification of signals by the evaluator model.
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In summary, the results from the evaluator model and the human evaluators exhibit
significant similarity, which validates the realism of the ECG samples generated by the
SSSD-ECG model. This also suggests that the evaluator model has the potential to
approximate human-like classification performance. However, further experimentation
and additional studies are necessary to validate this potential.
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CoNcLusiONS AND FUTurReE WORK

7.1 Conclusion

Synthetic data has emerged as a promising solution to address the challenges of data
scarcity and privacy concerns. In healthcare, it has proven to be a tool with potential to
improve patient care by supporting clinical research and advancing the development and
training of ML models, that can serve as diagnostic support systems. However, in the
medical domain, generating data is not sufficient. Medical data must be of high quality
and have clinical relevance, as it can significantly impact patient outcomes. Therefore,
evaluating the generated data is a critical, yet ambiguous, step since there is no standard

procedure for assessing the quality of synthetic data.

Considering the above challenges, this dissertation introduces an approach for gener-
ating highly realistic ECG signals through the refinement of a state-of-the-art DM. This
was followed by a study conducted to validate the realism of the synthetic samples which
gathered insights from medical experts. Additionally, a novel evaluation metric based on
a DL evaluator model was proposed to assess the quality of synthetic ECG data at sample
level, focusing on generation quality rather than noise and artifacts. To evaluate how
this metric aligns with state-of-the-art evaluation methods, a comprehensive correlation

analysis was performed.

Regarding the goal of generating highly realistic ECG data, the present work success-
fully produced synthetic samples that closely resemble real ones. This was accomplished
through the adaptation of the SSSD-ECG model, which involved conducting various
experiments by modifying one hyperparameter at a time. The fidelity and diversity of
each generated ECG dataset were assessed using evaluation metrics from the literature.
This process led to the identification of the best model, achieved by combining the best
hyperparameters tested and refining them further. The evaluation results indicated that
the generated samples displayed statistical characteristics similar to those of real data. The
utility of the generated ECG dataset was further examined. The performance analysis
in classification tasks confirmed the realism of the synthetic data but also revealed its

limitations for training models intended for real-world applications.
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7.1. CONCLUSION

Despite these limitations, the research focused on achieving realism, and several
criteria support the synthetic ECG data as sufficiently realistic. Additionally, human
expert feedback was incorporated to validate the realism of the synthetic dataset. Three
medical experts evaluated the generated ECG signals through a questionnaire, where
they were presented with an equal number of real and synthetic signals and tasked
with identifying their authenticity. While the evaluations conducted by the clinicians
indicated that the conditional aspect of the generation did not perform as expected, the
consensus among them was that many of the synthetic signals were indistinguishable
from genuine ones, further validating the realism of the generated samples. Therefore,
the human evaluation supports the effectiveness of the SSSD-ECG model in generating
highly realistic ECG signals and demonstrates that the synthetic data is considered to
possess sufficient quality to be explored further.

Building on the diverse challenges in evaluating synthetic ECG data, a novel metric
for assessing generation quality has been developed. This metric is an evaluator model
leveraging a deep ensemble classifier, which categorizes synthetic ECG samples into four
levels of quality. Unlike other evaluation metrics in the literature, which operate at a
distribution level by assessing the statistical characteristics of synthetic and real data
distributions, this model focuses on evaluating the quality of individual ECG signals.
Additionally, while other classifiers often emphasize detecting quality by identifying the
absence of artifacts and noise, the developed evaluator model provides a more nuanced
assessment of synthetic ECG data.

The correlation study performed confirmed an alignment between the state-of-the-art
metrics and the evaluator model. The key advantage of the developed metric is that, while
it performs equally well at the distribution level, it provides a more detailed analysis
at the sample level compared to traditional metrics. Given that the evaluator model
assesses synthetic ECG data on a per-sample basis, it provided an interesting opportunity
to explore its relationship with human evaluators, who also evaluated individual ECG
signals. The results showed a notable degree of similarity between the two, suggesting
that the evaluator model might have potential to approximate human-like classification
performance, with further analysis and experimentation.

The evaluator model was trained using a quality dataset also developed in this disser-
tation. This is a significant contribution, as existing databases lack datasets that meet the
diverse criteria established in the custom quality dataset. It is categorized into four distinct
classes, with each class description based on ECG characteristic waves, particularly the R
wave, which is typically the first feature a generative model learns.

In conclusion, this dissertation addresses challenges in generating and evaluating
synthetic ECG data, presenting several key contributions. While there are always areas for
improvement, particularly in enhancing the diversity and utility of the synthetic dataset,
high-quality medical data remains essential for research and the development of models
for real-world applications. By taking significant steps towards high-fidelity ECG data
generation and evaluation, this work paves the way for future innovations in the field.
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CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.2 Contributions Summary

* Development of a quality dataset for the generation of 12-lead ECG signals.

¢ Implementation of an evaluator model that classifies synthetic ECG data into four
distinct quality levels.

¢ Correlation of the developed evaluator model with state-of-the-art metrics and

human evaluations.
¢ Design of an online questionnaire for medical assessment of synthetic ECG signals.

¢ Validation of the synthetic dataset produced by the SSSD-ECG model through

medical expert feedback.

7.3 Limitations and Future Work

The previous section discussed the main contributions of this work, but there are limi-
tations to consider. While the SSSD-ECG model has proven to be an excellent tool for
generating realistic ECG signals, the conditional part of the model still leaves room for
improvement. The generated samples do not have the desired amount of diversity, as
evidenced by significant low recall values, which indicate that the model still struggles
with capturing complex features of real signals. Despite this limitation, the DM achieved
significant results that support the fidelity of the synthetic ECG dataset, which was further
validated by medical experts. These experts confirmed the realism of the samples, but
this conclusion was based on a small number of clinical evaluators available at the time of
the questionnaire implementation. Therefore, further research involving a larger number
of evaluators would provide a more robust validation of the signals.

The evaluator model is a major contribution of this work, classifying synthetic ECG
data into four quality levels, from random noise signals to real ECG signals. It would
be valuable to enhance the model to not only distinguish between real and synthetic
samples but also assess whether the diagnostic labels of real signals are correctly assigned.
This would allow for a more comprehensive evaluation of the conditional part of the
generative model. Additionally, since the evaluator model operates at the sample level,
future projects could explore other sample-level metrics for synthetic data evaluation.
These considerations and suggestions could provide valuable insights and contribute to

further advancements in time series synthesis and evaluation.
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A

HumMAN EvALUATION QUESTIONNAIRE

This appendix provides additional information about the human evaluation approach
used to assess the realism of synthetic ECG signals generated by the SSSD-ECG model.
It first includes two example questions from the structured questionnaire, followed by a
table summarizing the responses from medical experts.
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APPENDIX A. HUMAN EVALUATION QUESTIONNAIRE

[Caso1/20] Considera que o tragado apresentado corresponde a um ECG? *

1
t 1 | vi
| |
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() Méotenho & certezz

Por favor, classifique o tragado na categoria de diagndstico adequada: *

@ Normal

(O Enfarte do Miocardio
() Alteracdo ST/T

() Distirbio de Conduggo

() Hipertrofia

Figure A.1: Example of the questionnaire developed for human evaluation of ECG signals.
The image illustrates the scenario where the ECG tracing is classified as real by the experts.
It then displays the follow-up question, prompting the classification of the signal into one
of five diagnostic categories.
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[Caso 2/20] Considera que o tragado apresentado corresponde a um ECG? -
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() N#otenhoa certeza

. = (= - d H des:
Indique, por favor, o nivel de g do trag entre as seg) pe:

) Ruido - néo se assemelha @ um ECG & a5 ondas R ndo sdo obsenvéveis de forma fiavel,
() Oaramente ndo € um ECG - ondas R periddicas visiveis em algumas dervacdes, mas outras ondas do ECG ndo s30 claramente identificiveis.

., Quase um ECG - ondas R periddicas sdo visivels e a maioria das ondas pode ser observada, mas existem efros conceituais que resuttam em padrdes de ECG altamente
” improvéveis.

Figure A.2: Example of the questionnaire developed for human evaluation of ECG signals.
This image depicts the scenario where the ECG tracing is perceived as synthetic by the
experts. It also shows the follow-up question, which prompts the classification of the
tracing into one of three quality levels.

47



87

Table A.1: Summary of the responses of medical experts to the questionnaire. The table presents data from the questionnaire answered by
medical experts, detailing their evaluation of each ECG tracing. For each signal, the actual nature (real or synthetic) and diagnostic category
are provided. The responses from each expert include the perceived nature of the signal (real or synthetic). If the signal is considered real,
the diagnostic category is assessed, but if the signal is considered synthetic, only the quality level is evaluated. If an expert was "Not sure"
about the nature of the signal, no diagnostic category or quality level was assigned.

Actual Medical Expert A Medical Expert B Medical Expert C

Signal =~ Nature Diagnostic Category Nature Diagnostic Category Quality Level Nature Diagnostic Category  Quality Level Nature  Diagnostic Category Quality Level
1 Real NORM Real HYP - Real NORM - Real MI -
2 Synthetic NORM Real CD = Real CD = Real CD =
3 Synthetic NORM Real CD - Real CD - Synthetic - Almost an ECG
4 Real CD Real HYP - Synthetic - Noise Synthetic - Clearly not an ECG
5 Synthetic CD Real NORM - Not sure - - Synthetic - Clearly not an ECG
6 Synthetic NORM Real NORM - Real CD - Real NORM -
7 Real NORM Real HYP - Not sure - - Real CD -
8 Real MI Real HYP = Not sure = = Synthetic = Clearly not an ECG
9 Synthetic NORM Real NORM - Not sure - - Real - -
10 Real STTC Real MI - Real CD - Synthetic - Clearly not an ECG
11 Synthetic HYP Real NORM - Synthetic - Noise Synthetic - Noise
12 Synthetic CD Real CD = Not sure = = Synthetic = Almost an ECG
13 Real NORM Real HYP - Real NORM - Real STTC -
14 Real NORM Real HYP = Real NORM = Real NORM =
15 Real HYP Real HYP - Synthetic - Almost an ECG ~ Synthetic - Almost an ECG
16 Synthetic STTC Real NORM - Not sure - - Synthetic - Clearly not an ECG
17 Synthetic MI Real NORM - Synthetic - Noise Synthetic - Noise
18 Real MI Real MI - Not sure - - Synthetic - Clearly not an ECG
19 Real NORM Real HYP - Real HYP - Real CD -

20 Synthetic NORM Real NORM - Real CD - Real CD -

HATVNNOILSANO NOILVNTIVAT NVINNH 'V XIANAddV



This annex presents a figure detailing the descriptions of the SCP-ECG acronyms from

PTB-XL DATASET

the PTB-XL dataset, which was used for training the generative models.

Acronym SCP statement Description
NORM Normal ECG
cD Conduction Disturbance
Superclasses MI Myocardial Infarction
HYP Hypertrophy
STTC ST/T change
NORM NORM Normal ECG
LAFB/LFFB left anterior/left posterior fascicular block
IRBEB incomplete right bundle branch block
ILBBB incomplete left bundle branch block
cb CLEBB complete left bundle branch block
CRBEB complete right bundle branch block
_AVB AV block
IVCB non-specific intraventricular conduction disturbance (block)
WPW ‘Wolff-Parkinson- White syndrome
LVH left ventricular hypertrophy
RHV right ventricular hypertrophy
Subclasses HYP LAO/LAE left atrial overload/enlargement
RAQ/RAE right atrial overload/enlargement
SEHYP septal hypertrophy
AMI anterior myocardial infarction
- IMI inferior myocardial infarction
LMI lateral myocardial infarction
PMI posterior myocardial infarction
ISCA ischemic in anterior leads
ISCI ischemic in inferior leads
STTC ISC_ non-specific ischemiec
STTC ST-T changes
NST non-specific ST changes

Figure I.1: SCP-ECG acronym descriptions for super- and subclasses, adapted from [42].
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