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Just because a machine can do faster calculations,
comparisons, and analytical solution creation, that
doesn’t make it smarter than you. It simply
computes faster. In my world, in my belief, smarts
have to do with your capacity to love, create, expand,
transcend. These are qualities that no machine can
ever bear, that are reserved to only humans.

7”7

— Pinar Seyhan Demirdag
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ABSTRACT

Medical imaging plays a crucial role in diagnosing and planning the treatment of vari-
ous medical conditions. While Magnetic Resonance Imaging (MRI) is highly effective in
visualizing soft tissue structures, its spatial resolution is often insufficient for detailed
anatomical assessments. This limitation is particularly evident in cases such as lumbar
disc herniations, where precise visualization of anatomical features is critical for accurate
diagnosis and treatment. As a result, Computed Tomography (CT) scans are frequently
employed to complement MRI by offering enhanced information on bone structures. The
enhancement of MRI resolution is crucial to reducing dependence on CT, however, achiev-
ing this improvement is constrained by hardware-related trade-offs. Recent advances
in deep learning-based Super-Resolution (SR) techniques have emerged as a promising
approach to overcoming these limitations and enhancing MRI resolution, potentially

mitigating the need for supplemental CT imaging.

Three state-of-the-art SR models, Fast Super-Resolution Convolutional Neural Network
(FSRCNN), Residual Dense Network (RDN) and Enhanced Super-Resolution Generative
Adversarial Network (ESRGAN), were implemented and rigorously tested. The primary
objective was to improve the clarity of spinal MRI images, surpassing the traditional
Bicubic Interpolation (BCI) method and enabling a clearer view of finer anatomical details.
After extensive optimisation, ESRGAN proved to be the most effective model, offering
superior perceptual quality and detail recovery. While RDN achieved better results in
pixel-to-pixel metrics such as Peak Signal-to-Noise Ratio (PSNR), Spatial Correlation
Coefficient (SCC), Structural Similarity Index (SSIM), Gradient Magnitude Similarity
Deviation (GMSD), and Visual Information Fidelity (VIF), ESRGAN excelled in free-
reference metrics like Signal-to-Noise Ratio (SNR) and the perceptual metric Perceptual
Image Quality Evaluator (PIQE), striking a better balance between noise reduction and

perceptual detail preservation, making it the preferred model.

When applied to high-quality high-resolution images, ESRGAN showed a tendency to
prioritise denoising, focusing more on noise reduction rather than upsampling. However,
when trained on images with minimal noise, the model was able to focus on upsampling,

and successfully increasing the resolution. Furthermore, ESRGAN output displayed fewer
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spatial artefacts, as reflected by its lower PIQE score, although the visual results were
comparable to those of BCL

The study also tested ESRGAN’s generalisability across various degradation scenarios
and different imaging modalities, including CT scans and grey-scale natural images.
ESRGAN demonstrated good adaptability, effectively handling degradation patterns and
consistently outperforming BCI in the SSIM, GMSD and VIF metrics.

The increased resolution achieved by ESRGAN paves the way for future advancements
in anatomical segmentation and structural reconstruction. This enhancement in resolution
holds the potential to enable more precise techniques, particularly in clinical applications.
By providing clearer visualisation, especially in cases such as lumbar disc herniations,
this improvement could greatly aid in surgical planning and contribute to better patient
outcomes.

Keywords: Magnetic Resonance Imaging, Computed Tomography, Natural Grey-Scale

Images, Deep Learning, Spatial Resolution, Super-Resolution Reconstruction, Image
Degradation, Diagnostic Accuracy, Surgical Planning.
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REsumMo

A imagiologia médica desempenha um papel indispensével no diagnéstico e planeamento
do tratamento de varias condi¢des médicas. Embora a Ressonancia Magnética (RM) seja
bastante eficaz na visualizac¢do de tecidos moles, a sua resolugdo espacial € frequentemente
insuficiente para avalia¢gdes anatémicas detalhadas. Esta limitagdo é particularmente evi-
dente em casos como as hérnias discais lombares, em que a visualizagdo precisa das
carateristicas anatémicas é fundamental para um diagnéstico e tratamento mais correto.
Como resultado, os exames de Tomografia Computadorizada (CT) sdo frequentemente
utilizados para complementar a RM oferecendo informag¢des melhoradas sobre as estrutu-
ras 6sseas. A melhoria da resolugdo da RM é crucial para reduzir a dependéncia da CT, no
entanto, a obtencao desta melhoria é limitada por compromissos relacionados com o hard-
ware. Avangos recentes em técnicas de Deep Learning (DL) baseadas em Super-Resolucao
(SR) surgiram como uma abordagem promissora para superar essas limitacdes e melhorar

a resolucdo de RM, potencialmente mitigando a necessidade de imagens suplementares
de CT.

Trés modelos de SR encontrados na literatura, Fast Super-Resolution Convolutional Dense
Network (FSRCNN), Residual Neural Network (RDN) e Enhanced Super-Resolution Generative
Adversarial Network (ESRGAN), foram implementados e rigorosamente testados. O princi-
pal objetivo foi melhorar a clareza das imagens de RM da coluna vertebral, superando o
método tradicional de Interpolac¢do Bictibica (BCI) e permitindo uma visualiza¢do mais
nitida dos detalhes anatémicos. Apés uma extensa otimiza¢do, o ESRGAN provou ser o
modelo mais eficaz, oferecendo uma qualidade perceptiva e uma recuperacao de detalhes
superior. Enquanto RDN obteve melhores resultados em métricas pixel-a-pixel, como Peak
Signal-to-Noise Ratio (PSNR), Spatial Correlation Coefficient (SCC), Structural Similarity Index
(SSIM), Gradient Magnitude Similarity Deviation (GMSD), e Visual Information Fidelity (VIF),
0 ESRGAN destacou-se em métricas de referéncia livre, como Signal-to-Noise Ratio (SNR)
e a métrica percetual Perceptual Image Quality Evaluator (PIQE), alcangando um melhor
equilibrio entre a reducdo de ruido e a preservagao de detalhes perceptuais, tornando-o o
modelo preferido.

Quando aplicado a imagens de alta-resolucdo e de alta qualidade, 0 ESRGAN mostrou
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uma tendéncia para priorizar a remocado de ruido, focando-se mais na reducdo do mesmo
do que no aumento da amostragem. No entanto, quando treinado em imagens com ruido
minimo, o modelo conseguiu concentrar-se na sobreamostragem e aumentar a resolucdo
com sucesso. Além disso, os resultados obtidos pelo ESRGAN demonstraram a presenca
de menos artefactos espaciais, refletido pelo baixo valor de PIQE, embora a qualidade
visual fosse comparavel a do BCL

O estudo também testou a capacidade de generalizagdo do ESRGAN em vérios cenarios
de degradacao e diferentes modalidades de imagem, incluindo CT e imagens naturais na
escala de cinzentos. O ESRGAN demonstrou uma boa adaptabilidade, lidando eficazmente
com os padrdes de degradagdo e superando consistentemente o BCI nas métricas de SSIM,
GMSD e VIE.

O aumento da resolugdo obtido pelo ESRGAN abre o caminho a futuros avangos na
segmentagdo anatémica e na reconstrugao estrutural. Este aumento de resolugao tem o
potencial de permitir técnicas mais precisas, nomeadamente em aplicagdes clinicas. Ao
proporcionar uma visualizagdo mais clara, especialmente em casos como as hérnias discais
lombares, esta melhoria pode optimizar o planeamento cirtrgico e, em tltima andlise,

conduzir a melhores resultados para os doentes.
Palavras-chave: Ressonancia Magnética, Tomografia Computorizada, Imagens Naturais

em Escala de Cinzentos, Aprendizagem Profunda, Resolugdo Espacial, Reconstrugdo por
Super-Resolucdo, Degradacao de Imagens, Precisdo Diagndstica, Planeamento Cirtrgico.
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1

INTRODUCTION

1.1 Context and Motivation

Medical imaging plays a crucial role in enabling healthcare professionals to accurately
identify pathological patterns and determine the underlying causes of patients” symptoms
[2]. Each imaging modality provides unique and specific information, which is the
reason why Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are
often used in a complementary way by doctors when diagnosing certain conditions. CT
scans offer high-resolution and detailed images of lesions, but they have limitations when
it comes to resolving soft tissue structures. In contrast, MRI excels at providing clear
visualisations of soft tissues without the use of ionizing radiation, yet still fails shortly
in offering detailed information about tissues such as bones. Consequently, relying on a
single imaging modality may not adequately capture the complexity of different tissues,
potentially complicating diagnosis and surgical planning [3].

An example of this application is the diagnosis and treatment of lumbar disc hernia-
tions. In the majority of cases, non-surgical treatments, including rest, medication and
physiotherapy, are an effective course of action. Nevertheless, in the event of persistent
or worsening pain, surgical intervention may be recommended. Physical examinations in
conjunction with imaging techniques play a pivotal role in this process, enabling a more
precise assessment and, subsequently, more efficacious surgical planning [4]. MRI is the
primary imaging technique for diagnosing lumbar disc herniations. However, CT scans
are still necessary in some cases, as the spatial resolution of MRI is often insufficient due
to the large thickness of the slices [5].

Surgical precision requires a level of anatomic accuracy that MRI often struggles to
achieve due to its limitations in spatial resolution. Consequently, it is crucial to enhance
the spatial resolution of MRI to bring it closer to that of CT, enabling more detailed
visualisation of anatomical structures and improving diagnostic accuracy. By doing so,
the need for additional CT scans could be minimised or even eliminated. This is particularly
advantageous, as CT scans expose patients to ionising radiation, which carries health

risks, especially with repeated exposure. Reducing reliance on CT scans offers a safer
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CHAPTER 1. INTRODUCTION

diagnostic process, particularly for patients requiring multiple imaging sessions.
Significant efforts have been made to achieve higher resolution MRI images. From
a hardware point of view, the acquisition of MRI images with higher spatial resolution
is limited by the trade-off between acquisition time, motion artefacts and overall image
quality. Super-Resolution (SR) image reconstruction has emerged as a promising approach
to address this challenge. This technique involves generating a High Resolution (HR)
image from one or more Low Resolution (LR) images. Recently, Deep Learning (DL)-based
techniques have gained widespread use in solving SR problems by extracting detailed

information from LR images to produce clearer high-quality images. [6].

1.2 Objectives

The primary aim of this study is to enhance the quality and resolution of anatomical MRI
images of the spine. To achieve this, the study seeks to implement a DL algorithm that
outperforms traditional SR methods. The goal is to improve image sharpness, enabling
the clear visualisation of intricate details that may not be fully discernible in the original
images. This, in turn, will provide clinicians with a more comprehensive understanding
of spinal lesions and assist in more informed surgical planning.

This overarching aim is broken down into specific objectives:

¢ Compare different Artificial Neural Network (ANN) architectures;

¢ Evaluate the performance of the DL models against traditional Bicubic Interpolation
(BCI);

¢ Apply the best-performing DL model, trained on LR images, to an already high-
quality MRI image, in order to assess the model’s maximum potential for enhancing

image resolution;

¢ Test the generalising ability of the best-performing model across different datasets

and different types of image degradation schemes.

The research work described in this dissertation was carried out in accordance with the
norms established in the ethics code of Universidade Nova de Lisboa. The work described
and the material presented in this dissertation, with the exceptions clearly indicated,

constitute original work carried out by the author.



2

THEORETICAL CONCEPTS

2.1 Magnetic Resonance Imaging

MRI is a non-invasive technique that explores the interaction between applied fields and

nuclear magnetic moments [7].

Spin, an intrinsic property of particles, varies according the particle type, being %2 for
electrons, protons and neutrons. In turn, hydrogen nuclei, with one proton, is one of the
most abundant biological elements in the human body [7]. As it has a positive charge, the

moving proton generates a small field known as its magnetic moment [8].

MRI phenomena can be described from a quantum perspective, considering each
proton’s behaviour, as well as from a classical approach, accounting for a group of nuclei.
From a classical standpoint, a proton in a uniform external magnetic field By undergoes a
force moment, causing it to precess around By. The precession frequency, proportional
to By, is determined by the Larmor Equation (2.1), where y represents the gyromagnetic

constant [8].

w =YX Bo (2-1)

The magnetisation M, shown in Figure 2.1, represents the sum of all the spins, initially
aligned along the z-axis, parallel to By. However, to measure the body’s magnetisation,
detectors are used in the transverse plane. By applying a radiofrequency pulse B; at
90°, perpendicular to By and at the Larmor frequency, M, shifts from the z-axis into the
transverse plane. Since the pulse maintains spin coherence, its deactivation leads to spin
dispersion, resulting in an exponentially decreasing signal amplitude and generating
the Free Induction Decay (FID). The flip angle can be altered depending on the time of
application or the intensity of the radiofrequency pulse [8].

3



CHAPTER 2. THEORETICAL CONCEPTS

Figure 2.1: Vector representation of the MRI phenomenon. The top row illustrates the longitudinal
relaxation, showing the recovery of the magnetisation component along the z-axis (M;). The
bottom row represents the transverse relaxation, showing the dephasing in the xy-plane, leading
to the decay of the magnetisation vector My,. Retrieved from [9].

There are two types of relaxation processes: longitudinal relaxation, characterised by
T time corresponding for the recovery of magnetisation along the z-axis, and transverse
relaxation, characterised by T, time for spin dephasing [8]. Also, T, relaxation is related
to T but, in addition to spin-spin interactions, is influenced by field heterogeneity, tissue
susceptibility, and spin diffusion, resulting in shorter timescales [10].

MRI doesn’t directly measure FID but detects the echoes generated during the imaging
process. These echoes arise from the rephasing of spins following the initial radiofrequency
pulse, allowing for the distinction and imaging of different tissue characteristics. There
are two main ways to achieve those echoes: spin echo, which yields higher-quality image,
and gradient echo, known for its shorter acquisition time [8].

2.2 Spatial Resolution

Spatial resolution refers to the sharpness with which an object is represented, determined
by the number of pixels in the image: higher resolution means more pixels within the
same Field of View (FOV), the observable area that can be captured by the imaging system,
leading to a more detailed image. This makes spatial resolution a key measure of imaging
system quality [6].

One common way to assess this quality is by measuring the Full With at Half Maximum
(FWHM) of the Point Spread Function (PSF), which is the width between points where
intensity drops to half its maximum value (see Figure 2.2). Ideally, an object point should
be represented by a single point in the image, but due to system imperfections, this point
"spreads" into an intensity distribution around it, defined by the PSF. The relationship
between the captured image I(x,y,z) and the object O(x,y,z) can be expressed by Equation
(2.2), where * represents the convolution operator and h(x,y,z) is the Three Dimensional
(3D) PSEF [6].

I(x,y,z) =0(x,y,z)* h(x,y, z) (2.2)

Spatial resolution is defined by the smallest separation between two point sources that

allows them to be distinguished by the imaging system. If these sources are too close,
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2.3. ENHANCING SPATIAL RESOLUTION IN MAGNETIC RESONANCE
IMAGING

Figure 2.2: Demonstration of spatial resolution with resolvable and non-resolvable point sources
based on FWHM. Retrieved from [6].

they may appear as a single blurred source. Two point sources can be resolved if their
separation exceeds the FWHM of the PSF. In Figure 2.2, the left side shows two resolvable
sources, while on the right, they appear indistinguishable [6].

The PSF is influenced by the number of data points acquired and the FOV. To capture
the full frequency content of an object, the sampling rate must satisfy the Nyquist theorem,
which requires it to be at least twice the maximum frequency present in the object. This
prevents aliasing, where higher frequencies are misinterpreted as lower ones. The width
of the PSF is inversely proportional to the number of samples, so the sampling frequency
must be high enough to capture fine details and ensure good resolution, avoiding artifacts
like data truncation. However, excessively high sampling rates can significantly increase
acquisition time allowing motion artifacts [11].

2.3 Enhancing Spatial Resolution in Magnetic Resonance

Imaging

In MR, in addition to factors such as the sampling rate, acquisition time, and moving
subjects artefacts already mentioned, the PSF is also influenced by the T,* time. A longer
T," maintains the coherence of the spins for much longer, allowing for a more gradual
signal decay during acquisition. In contrast, a low T2" results in a rapidly decaying signal
leading to a wider PSF and lower resolution [6].

To further enhance MRI resolution, advancements in hardware are essential, particu-
larly through the increase of magnetic field intensity. Elevating the magnetic field strength
Bp amplifies the magnetization My, which in turn generates a stronger signal and improves
Signal-to-Noise Ratio (SNR). Another method is increasing the number of receiver coil
channels (often referred to as antennas) to cover more volume, enhancing sensitivity and
signal quality [6]. Moreover, using smaller coils positioned closer to the area of interest
allows the capture of more localised signals while minimizing noise from surrounding
tissues, which further boosts the SNR [12].

Increasing resolution through hardware has its advantages, but it also presents chal-
lenges. Stronger magnetic fields require more complex infrastructures and higher costs. In
addition, the use of dedicated radiofrequency coils can lead to image artefacts and pose a

risk of burns due to radiofrequency heating. In contrast, SR methods aim at reconstructing
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HR images, with improved SNR from lower quality scans, effectively overcoming these

issues [6].

2.4 Super-Resolution Problem

SR is mostly achieved through two methods: Single Image Super-Resolution (SISR) and
Multi-Image Super-Resolution (MISR). SISR uses a single LR image to generate a HR
image, while MISR combines several LR images of the same object, obtained through
different degradation methods and possibly shifted by sub-pixels, to create the HR image.
MISR’s advantage is that each LR image captures different details, leading to better
performance. However, MISR requires more storage, memory, and computational power,
making it costly and often impractical. Although SISR is more challenging, it is more
teasible in real-world applications due to its simplicity and lower resource demands [13]
[14].

24.1 Formulation of Single-Image Super-Resolution Problem

The SR problem can be formulated using a linear image acquisition model, represented
by Equation (2.3), where the LR image Y € R" is obtained from the HR image X € R"
through blurring, downsampling, and the addition of zero-mean Gaussian noise during
acquisition. The operator B € R™*™ represents the blur matrix modelling the PSF, while
D: R™ — R" represents downsampling from HR to LR. N denotes the additive noise and
W =D | B e R"™™ (m > n) is the global transformation operator encompassing both blur
and downsampling [15].

Y=D|BX+N=WX+N (2.3)

The aim of SR is to reverse this process and recover the original HR image X free from
noise or blur. A common method involves defining the matrix W~! as a combination of a
restoration operator F € R"™*™, which aims to recover lost details, and the magnification
operator S : R" — R, which scales up the LR image Y to enhance spatial resolution.
This approach is formalised by Equation (2.4), where Z is the high-resolution interpolated
image Z = S 1Y and X the super-resolved image [16].

X=WlY)=FZ)=F(S 1Y) (2.4)

Given a training dataset made of pairs of HR/LR images, the DL approach to solving
the SR problem involves learning W~ so that the super-resolved images can be predicted.
With £ as the loss function used to optimise the network parameters, W™ is learned by
solving the expression (2.5), where O is the set of possible parameters of the network and
G(0) is a regularisation function [13]. The aim is to minimise the difference between HR

image, denoted as X, and the estimated super-resolved image, denoted as X [13].
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Figure 2.3: Diagram of BCI algorithm. Retrieved from [20].

arg ggg[lz(x, X) + G(6)] (2.5)

2.4.2 Bicubic Interpolation

BCl is a reference algorithm used to both downsample and upsample images, reducing
and increasing their resolution, respectively. Also known as resampling, this method
estimates new pixel intensity values based on the pixels in the original image. The result is
a smooth image, although less smooth than the image obtained by Bilinear Interpolation
(BLI), and with reduced aliasing effects, compared to Nearest Neighbour Interpolation
(NNI) [17].

BCI can be implemented using polynomial, cubic splines or cubic convolution algo-
rithms. During the BCI process (see Figure 2.3) the values of new pixels, B, are calculated
using the weighted sum of the 16 neighboring pixels arranged in a 4x4 grid, as described
in Equation (2.6). In this equation, B(r’, c’) represents the interpolated pixel value at the
new coordinates 7’ and ¢’, a;; denotes the intensity value of the pixel located at position
(i, j) within the neighboring 4x4 grid, represented in Figure 2.3 by the grid A, and W;; are
the corresponding weighting coefficients. The influence of each neighbouring pixel on the
interpolated value is determined by its geometric distance, x, from the newly interpolated
pixel [18]. This relationship is calculated using bicubic spline interpolation, as described
in Equation (2.7), where the constant «a is typically set to either -0.5 or -0.75 [19].

33
B(r',c’) = Z Z Wijaij (2.6)

(a+2)x|2=(a+3)x|>+1 for|x| <1
W(x) = { alx|® - 5a|x|? + 8alx| —4a forl < |x| <2 (2.7)

0 otherwise
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In a matrix-based approach, the Equations 2.8 and 2.9 represent the horizontal, H, and
the vertical, V, weight vectors of the interpolation kernel. These vectors are calculated
based on the horizontal and vertical distances from the interpolated point B(’, ¢’) to each
column and row, respectively, of matrix A. Using these weight vectors, the interpolated
value of the subpixel Bsyppixel is then determined by multiplying the vectors H and V with
matrix A, as shown in Equation (2.10) [21].

H=(W(+b), W(b), W -b), W2 -b)) (2.8)
V = (W(1 +a), W), W1 -a), W2 -a)) (2.9)
Bsubpix = HAV (2-10)

2.5 Artificial Intelligence

Artificial Intelligence (Al) is a field within computer science dedicated to developing
intelligent machines capable of learning and problem-solving, such as recognizing patterns
and relationships within data. These systems are autonomous and adapt dynamically as
more data becomes available, similar to human intelligence.

Machine Learning (ML), a subfield of Al, focuses on creating algorithms that enable
computers to learn and improve their performance on tasks through experience, without
the need for explicit programming [22]. ML systems are generally divided into four
categories, based on the nature of supervision provided during training. In supervised
learning, the data used for training is labelled, and the algorithm adjusts its predictions to
minimise errors against the known outcomes. In contrast, unsupervised learning involves
algorithms discovering patterns and structures within unlabelled data. A third approach,
known as semi-supervised learning, combines both labelled (in smaller quantities) and
unlabelled (in larger quantities) data to enhance learning efficiency. Finally, in reinforce-
ment learning, an agent learns by interacting with its environment, aiming to maximise
cumulative rewards, by seeking positive outcomes (rewards) or avoiding negative ones
(penalties) [23]. This study will focus on supervised learning, where the objective is to
minimise the difference between the super-resolved estimate and the HR ground truth
images.

DL is a subfield of ML that leverages ANNSs to address more complex problems, often
outperforming other ML algorithms. Its efficiency improves with the amount of training
data available [23].

2.5.1 Artificial Neural Network

An ANN operates through networks of artificial neurons, which are inspired by the
human brain and designed to progressively extract higher-level features from data. These
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artificial neurons are computational units that calculate the weighted sum of inputs and
apply a non-linear activation function to produce the output [23]. The activation function,
denoted as f, processes the weighted inputs and bias, b, and determine whether a neuron
should be activated, effectively deciding the relevance of the information. By introducing
non-linearity to the network, activation functions enable the model to capture complex
patterns in the data. These functions can vary between layers, with common examples
including sigmoid, softmax, and rectified linear unit (ReLU). Mathematically, given an ith
layer, its output y; is given by Equation (2.11), where W; is the weight matrix for the ith

layer and, y;_1 represents the output of the previous layer [23]:

yi = f(Wiyi-1 + b)) (2.11)

A fully connected, or dense layer, is one where every neuron is connected to all neurons
in the previous layer [23]. A DL network consists of multiple fully connected layers, with
each node containing information from the preceding layers. The data enters through
the input layer and passes through hidden layers, which transform the information into
different levels of abstraction. The output layer then delivers the final result based on
what was learned in the hidden layers. This process, known as feed-forward, directs
information from the input to the output layer [24].

A neural network operates in two phases: training and testing. During training, the
goal is to minimise or maximise the objective function, which evaluates the network’s
performance. When the objective function measures the error between the network’s
predictions and the actual values, it is often called the loss or cost function. The closer
this error is to zero, the better the network’s performance [23].

The optimal loss value is obtained by finding the best combination of the network’s
parameters. In a deep neural network, this is done by computing the gradient of the loss
function with respect to each parameter, which shows how to adjust them to minimise
the loss. This process uses Gradient Descent technique, where parameters are updated
in small steps to minimise the loss. The size of these steps is determined by the learning
rate, a user-defined hyper-parameter [23].

The learning cycle stops when either the minimum loss value is achieved or the
maximum number of epochs, complete iterations over the entire training set, is reached.
An appropriate learning rate is crucial for effective training. If the learning rate is too low,
the model may get stuck in local minima, slowing down convergence. Conversely, if it’s
too high, training may become unstable, leading to oscillations or divergence [23].

To properly evaluate a model and avoid overfitting, where the model becomes overly
attuned to the training data, including its noise, and thus struggles to generalise to new
data, the training data is further divided into training and validation sets. The training
data is used to adjust the model’s parameters, while validation data offers an unbiased
evaluation during training. The test data, unseen during training, is reserved for final

assessment once training is complete [23].
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Figure 2.4: Diagram of a CNN. Retrieved from [26].

2.5.2 Convolutional Neural Network

A Convolutional Neural Network (CNN), illustrated in Figure 2.4, is a specialised neural
network that efficiently captures spatial correlations between nearby data points through
a set of connections between layers. The convolutional layer represents the fundamental
building block of a CNN, where it learns feature representations by applying a sliding
window, often referred to as a filter or kernel, to the input image. Each convolutional
layer uses multiple trainable filters of the same size to convolve the input, producing
features maps that highlight specific patterns like edges and shapes. As the number of
convolutional layers increases, the network can detect more abstract features, such as
textures and complete shapes. During training, those filter coefficients are adjusted, based
on the output error, through backpropagation [23] [25].

While deeper networks generally offer better performance, they also have more param-
eters, leading to increased computational demands. To mitigate this, pooling layers reduce
the feature maps dimensionality, while retaining the most significant features, which also
helps to prevent overfitting. The output of the final pooling layer is then processed by
the fully connected layer, which serves to map the extracted features into the final output
space. This layer essentially acts as a classifier or regressor, depending on the task, by
combining and weighting the features learned in the previous layers to produce the final

prediction or classification [23].

2.5.3 Generative Adversarial Network

Generative Adversarial Networks (GANSs), shown in Figure 2.5, consist of two intercon-
nected neural networks: the generator and the discriminator. The generator takes the
input from a latent space, which is typically random noise, and generates data that aims
to mimic real data as closely as possible. The discriminator, on the other hand, evaluates

the generated data to determine whether it is real or synthetic. During training, the
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Figure 2.5: llustration of the GAN training process.

generator and discriminator engage in a competitive process. The generator aims to create
increasingly realistic data to fool the discriminator, while the discriminator improves its
ability to differentiate between real and generated data. The generator adjusts its weights
based on the feedback from the discriminator. If the discriminator identifies the generated
data as fake, the generator updates its output in the next iteration to more closely resemble
the real data. Meanwhile, the discriminator also updates its weights to enhance its ability
to distinguish between real and generated data, aiming to output values near to 1 for real
data and close to 0 for generated data [27].

Typically, both generator and discriminator use cross-entropy as their loss function to
adjust the weights and optimise performance [27]. Cross-entropy can be calculated using
Equation (2.12),

H(g,p) = —(qlog(p) + (1 - g)log(1 - p)) (2.12)

where H(qg, p) is the value of the cross-entropy loss, g is the true label (0 or 1), and p is the
probability that the instance belongs to the positive class, 1 [27].

The GAN loss, L an, which combines the generator, £, and discriminator, Lp, losses,
is often referred to as the min-max loss, as shown in Equation (2.13). This term reflects
the adversarial nature of GAN training, where the discriminator aims to maximise its
performance by correctly distinguishing between real and fake data, while the generator
seeks to reduce the discriminator’s effectiveness by producing the most realistic data
possible. [27].

Loan = mGinmEa)lx.ED +Lg (2.13)
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3

LITERATURE REVIEW

3.1 Conventional Methods for Image Super-Resolution

Conventional SR algorithms can be classified into three categories: interpolation-based,

reconstruction-based and learning-based.

Among interpolation methods, Jiang et al. [28] used the NNI to perform image scaling.
However, the authors conclude that this interpolation can generate unwanted artifacts,
recommending BLI or BCI for scaling tasks. In turn, Wang et al. [29] [30] showed that
BLI and BCI can generate zigzag artefacts. To resolve this, they proposed a parallelogram-
shaped interpolation kernel and suggested improvements in the discretisation of the
angle of these kernels to improve the model’s performance. To reduce staircase artefacts,
Suresha et al. [31] applied an adaptive BLI with 7 to 16 neighbours. The generation of
the LR image and the denoising performed after upsampling were done in the wavelet
domain, and the authors emphasise the importance of this domain in recovering edges.

The proposed algorithm proved to be superior to NNI, BLI and BCI methods.

Srilakshmi et al. [18] increased the resolution of MRI images by initially generating
LR versions via intensity scaling. Then they applied histogram equalisation, adaptative
histogram equalisation CLAHE to improve global and local contrast, and cubic B-spline
interpolation. Similarly, Bharati et al. [32] proposed a reconstruction model based on cubic
B-spline interpolation to improve image compression and increase information recovery
after decompression. The study highlighted that Peak Signal-to-Noise Ratio (PSNR) can
be improved with higher order splines and, also, that the SR process can be optimised in
the wavelet domain. Lehmann et al. [33], likewise, showed that higher degree B-splines
offer greater spatial accuracy and better preserve high Fourier frequencies. However,
they warn that large kernels can increase error by preserving the aliasing generated by
downsampling. Therefore, to avoid aliasing artefacts, they recommend smoothing the
high frequencies before downsampling. Compared to cubic interpolation, Blu et al. [34]
demonstrated that shifting the sampling points of linear splines by 1/5 of the distance
between them in the standard uniform spacing results in less smooth images with reduced
detail loss.
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Most authors conclude that interpolation methods fail to restore high frequencies,
making images excessively smooth, as they fail to increase the amount of information. To
address this limitation, Irani et al. [35] [36] [37] proposed the Iterative Back Projection (IBP)
algorithm, which starts with an estimate of the HR image and applies the image acquisition
model to generate LR images that correspond to those observed. In an iterative process,
the error between the real LR image and the one generated by the model is minimised by
updating the HR image estimate using gradient-based techniques. Although simple to
implement, IBP can converge to sub-optimal solutions if the initial estimate is far from the
ideal solution. To overcome this limitation, Nayak et al. [38] proposed a meta-heuristic
optimisation technique based on cuckoo search, which demonstrated superior results to
the gradient method.

Still within reconstruction methods, probabilistic algorithms such as the recursive
Baysian algorithm proposed by Alshammri et al. [39] are widely used. This method is
based on registration for motion estimation, interpolation for upscaling, restoration to
remove noise and blur, and histogram adjustment to improve the distribution of intensities.
Although good results were observed, particularly in cases where the levels of noise, blur
and motion are unknown, the authors add that the method should be improved using DL
techniques.

Machine learning techniques, especially those based on sparse modeling and dictionary
learning, have been essential in super-resolving images, significantly improving their
quality and resolution.

Sparse modelling is a technique for describing both local smoothness and non-local
self-similarities in an image. Dian et al. [40] advanced this concept by introducing a sparse
representation algorithm combined with non-local clustering using Kmeans, effectively
improving the efficiency of the sparse solution by exploiting similar patterns and structures
in LR images. In the same vein, Mikaeli et al. [41] proposed the Adaptive Group-based
Domain Selection technique, which refines this approach by grouping similar patches
and adaptively selecting sub-dictionaries, considering both local smoothness and self-
similarity. Based on these fundamental ideas, Barman et al. [42] developed an algorithm
for real-time SR, ideal for medical images, that takes advantage of sparse representations
by first calculating the sparse coding with a fixed dictionary, followed by adapting this
dictionary to the specific features in the LR image, and incorporating a new feature
extraction step to improve accuracy.

Also, Yan et al. [43] developed a SR technique based on dictionary learning that aimed
to increase the spectral resolution of multispectral images, bringing them closer to the
spatial resolution of hyperspectral images. The proposed algorithm only requires an
multispectral image and a spectral library, instead of pre-existing hyperspectral images.
After merging the multispectral with the spectral information, dictionaries are learnt to
capture the main features, and adaptive sparse coefficients are used to determine the
contribution of each dictionary. The authors suggest that the generality of the model can
be improved with DL techniques.
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Techniques based on dictionary learning improve resolution but face high compu-
tational complexity, particularly with large dictionaries or images, limiting their use in
real-time medical imaging. DL offers a more efficient alternative by learning hierarchical
features and scaling better with large datasets. Despite its computational demands, DL

provides faster inference, making it more suitable for real-time applications.

3.2 Deep Learning Methods for Image Super-Resolution

More recently, deep neural networks have significantly boosted the field of image SR, with
several innovative approaches being developed to overcome the limitations of traditional
methods and improve the quality of the HR images generated.

The first DL method for SR process was proposed by Dong et al. [44] called Super-
Resolution Neural Network (SRCNN). This method is an end-to-end CNN with three
convolutional layers: the first extracts patches from the LR image and represents them in
a high-dimensional vector; the second maps these vectors to another high-dimensional
representation; and the last layer reconstructs the super-resolved image. Although SRCNN
outperforms traditional methods, it is often criticised for generating blurred edges due
to its surface structure [45] [46] [47]. To address these limitations, Kim et al. [48]
incorporated a skip connection, which passes the input directly to later layers without
modification, helping to preserve information and ensure network stability while enabling
global residual learning. Combined with gradient clipping, this strategy enables the use
of a higher learning rate, leading to faster convergence and improved deeper networks
performance.

Increasing the depth of neural networks improves performance, but can cause overfit-
ting and make storage difficult. The Deeply-Recursive Convolutional Network [49] solves
this by using a recursive structure, which increases the depth without adding parameters.
To mitigate gradient problems, a recursive supervision and a skip connection are applied,
which reduce the need for extra recursive layers. However, this requires more memory
to store the intermediate outputs. Building on this approach, Tai et al. [50] proposed a
recursive block with residual units sharing weights to further facilitate training and ad-
dress gradient issues. The suggested framework not only supports local residual learning
but also benefits from global residual learning through the skip connection.

There are various approaches to upsampling in neural networks. In that context,
Zhang et al. [51] improved the SRCNN [44] by adding an initial layer to perform BCL
Alternatively, Lin et al. [52] used four consecutive deconvolution layers for the same
purpose, although this increased the computational cost and reduced the efficiency of
the network. Therefore, to improve the efficiency of the SRCNN [44], Dong et al. [53]
proposed the Fast Super-Resolution Convolutional Neural Network (FSRCNN), which
includes a deconvolution layer at the end of the network for upsampling, a reduction
layer to decrease the dimensions of the features before mapping and an expansion layer
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to increase the dimensions of the output features. These changes reduced the number of
parameters while maintaining performance.

On the other hand, Shi et al. [54] introduced the sub-pixel convolutional layer, which
performs convolutions in LR space, activating different parts of the filter according to the
location of the sub-pixels. The checkerboard artefacts caused by the shuffle process, in the
convolutional layer, were mitigated by an improved NNI approach.

Dong et al. [53] and Shi et al. [54] were pioneers in integrating the upsampling
operation into the network, an approach that is now common to improve efficiency in
super-resolution tasks.

Haris et al. [55] proposed the idea of alternating up and down sampling, where after
each projection the error is calculated by comparing the intermediate result with the map
of the features from the previous stage. Li et al. [56] advanced by integrating feedback
blocks made up of convolutional and deconvolutional layers with dense connections
into a residual network. In addition, the authors employ a curriculum learning strategy
to generate LR images from a complex degradation model, improving the recovery of
high-frequency details.

Huang et al. [57] introduced a densely connected CNN with skip connections, con-
necting the output of each block to all previous layers within the block. This approach of
concatenating features rather than adding them together optimises the flow of information
and gradients, resulting in a more efficient network with improved performance and no
overfitting. Building on this concept, Zhang et al. [58] presented the Residual Dense Block,
which refines the idea of dense connections by incorporating local residual fusion and
global residual learning, better preserving information and resulting in sharper details
and reduced blur artefacts.

In addition to these methods, Lai etal. [59] introduced the progressive upsampling idea.
The network proprosed features two branches: one for gradual resolution enhancement
via convolutional and transposed convolutional layers, and another for combining low
and high-frequency information for image reconstruction.

Another type of model widely used in SR are the GANs, which, although they can
reduce PSNR, they excel in perceptual quality and high-frequency details preservation.

The Super-Resolution GAN (SRGAN) proposed by Ledig et al. [60] introduces a total
loss as the weighted combination of the content loss, composed of Mean Squared Error
(MSE) and VGG loss, and the adversarial loss. The authors found an improvement in
perceptual quality. Wang et al. [61] improved this approach by incorporating dense blocks
with residual connections, without batch normalisation, to facilitate training. They also
introduced a relativistic discriminator that compares the probability of a real image being
more realistic than a generated image, rather than simply classifying images as real or fake.
To overcome situations where it is not possible to obtain LR/HR pairs of images or when
the image degradation process is unknown, Yuan et al. [62] proposed the CycleGAN.

Recently, various DL methods have proved effective in super-resolving medical images,
such as MRI and CT.

15



CHAPTER 3. LITERATURE REVIEW

Liu et al. [63] compared the performance of several state-of-the-art image SR models
in super-resolving MRI images. Of all the models evaluated, the research article showed
that SRGAN [59] is the one that provides the greatest visual richness. Complementing
these state-of-the-art architectures, Mithra K K et al. [64] propose an approach based on
texture transfer. Feature extraction and comparison is carried out in the wavelet domain,
where LR textures are replaced by the corresponding HR textures. A texture loss is also
proposed. The results indicate that axial texture transfer is superior to sagittal, suggesting
that the HR image’s axial textures were richer.

With the same objective of enhancing the resolution of MRI images and also mitigating
aliasing, Zhao et al. [65] developed two different algorithms. The 3D algorithm employs
zero-fill in k-space and uses the Fermi anti-ringing filter to blur the x-axis, subsequently
feeding LR/HR pairs into the network proposed by Lime et al. [66], eschewing the
upsampling layer. This was selected due to its capacity for local learning. The 2D
algorithm applies a Gaussian filter and introduces aliasing through downsampling and
upsampling, and then uses a self-supervised anti-aliasing network. The performance of
the algorithms was evaluated in the presence of Rician noise, demonstrating that varying
noise levels have a significant impact on their effectiveness.

To mitigate degradation problems and explosive gradients in deep networks, Zhu et al.
[67] develop a dense residual network by proposing multi-residual blocks that facilitate
information preservation.

Dual-domain methods, such as the one proposed by Li et al. [68], enhance SR by
combining learning in the frequency and image domains. Their approach uses cross-
attention to transfer high-frequency information from the T; modality to T, while implicit
attention handles upsampling at various scales. Similarly, Xiao et al. [69] applied the
Fourier Transform for frequency domain operations and a residual U-net for image domain
learning, focusing on adversarial, perceptual, and frequency losses. Eo et al. [70] and
Liu et al. [71] further explore both domains to reconstruct fully sampled images from
undersampled k-space data, enhancing reconstruction quality through cross-domain
interaction.

In essence, traditional SR techniques improve image quality but are often limited by
computational inefficiencies, especially with larger datasets or in real-time applications.
While DL models also require significant computational resources, they offer better scala-
bility and automatic feature learning, leading to more efficient performance and superior
results. This shift has greatly enhanced the precision and quality of image SR, making
DL crucial for medical imaging. In this work, FSRCNN [53], Residual Dense Network
(RDN) [58], and Enhanced Super-Resolution Generative Adversarial Network (ESRGAN)
[61] were selected for their proven ability to efficiently generate HR outputs. FSRCNN's
lightweight design is ideal for real-time tasks, RDN balances quality and speed by using
dense residual connections, and ESRGAN excels at producing sharp, high-fidelity images,
perfect for tasks requiring detailed textures. These models were chosen for their strengths
in addressing key SR challenges, combining efficiency with high-quality results.
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MATERIALS AND METHODS

The methodology of this study is organised into three stages. The first stage involves
selecting the most appropriate datasets for training and testing the DL models. The
second focuses on implementing the SR methods. The third stage consists of a quantitative
evaluation of the various networks, comparing their performances with one another and
against the standard BCI method. This stage also includes the application of the best-
performing model to the original MRI image and an analysis of its generalisability across
different datasets and image degradation methods.

4.1 Datasets

The MRI data used for training and testing the different models was obtained from the
publicly accessible repository Mendeley Data, specifically from the set of data entitled
Lumbar Spine MRI [72]. For the purposes of this study, T>-weighted scans acquired using
the Turbo Spin Echo sequence in the supine position and sagittal views were used, as these
are the most commonly used by clinicians for detecting lumbar disc hernias. The dataset
comprises anonymised MRI scans from 515 patients with back pain, encompassing a total
of 7,994 image slices. The scans predominantly focus on the three lowest vertebrae and
intervertebral discs. Table 4.1 provides an overview of the general characteristics of the
MRI slices used in this study.

Table 4.1: General information on the magnetic resonance slices used for training and testing the
DL models.

Characteristic Description

Slice thickness 4 mm

Pixel spacing Uniform

Spatial resolution ~ 320x320 and 310x310 pixels
Intensity resolution 12 bits per pixel

To evaluate the generalisability of the best-performing model, an additional 18 images,
from two other datasets were also used. The first dataset comprised CT scans sourced
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from the publicly available Computed Tomography (CT) of Brain - Object Detection dataset
on Kaggle [73], which includes scans featuring conditions such as cancer, tumors, and
aneurysms. The second dataset consisted of grey-scale natural images, also publicly
available, provided by the University of Cape Town [74]. It is worth noting that the
images in these two datasets have variable sizes. Examples of images from each modality
employed in this study are provided in Appendix A.

4.2 Image Pre-Processing

Image pre-processing is essential to prepare data for efficient integration into a model,
thus enhancing training and improving prediction accuracy. For the SR task, a specialised
pre-processing method was required: LR images were created from the original HR
images through image degradation techniques.

To train FSRCNN and RDN, patches, small rectangular regions of size 33x33 and
66X66, were extracted from both LR and HR images, respectively. Each LR patch was
paired with its corresponding HR patch. These patches, essentially cropped portions of
the original images, were treated as independent training samples, allowing the models
to focus on localised features such as textures, edges, and corners. This patch-based
approach enhanced the model’s ability to learn from fine details. In order to guarantee
the randomness of the training process, the patches were extracted in a non-sequential
manner. To train the ESRGAN, the images were first cropped to a uniform dimension of
310x310. After generating the LR/HR image pairs with sizes of 155x155 and 310x310,
respectively, no patches were created, and these images were fed directly into the model.
The decision to avoid using patches was driven by the substantial computational resources
and time required for processing, making this approach more efficient and feasible given
the constraints.

Finally, the input LR and their corresponding HR images were remodelled so that they
could have the correct tensor structure to be fed into the DL model during training and
then stored in an HDFS5 file.

4.2.1 Image-Domain Degradation Method

The first step in obtaining LR/HR pairs involved cropping the images to ensure that their
height and width were integer multiples of the scale factor, 2. The scale factor dictated
the resizing proportion, whether the image was scaled down to half size or scaled up to
twice the size. This adjustment was fundamental in generating the smaller LR image from
the original HR image whose dimensions were not multiples of 2 (such as with some CT
images), ensuring that the scaling process remained consistent across the entire image.
By maintaining integer multiples of the scale factor, the integrity of the image structure
was preserved, preventing any misalignment that could occur during the resizing process

by ensuring that the LR and HR pairs corresponded perfectly at every pixel level. These
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images were symmetrically cropped around their centres, ensuring that the resulting HR
images were evenly balanced along all edges.

In order to create the LR image at half the size of the HR image, the HR image was
resized using a bicubic filter from the OpenCV library. Subsequently, random Gaussian
noise with a mean of 0 and variance of 0.001 was added to the resized image, resulting in
the final LR image. This approach follows the strategy commonly adopted by most of the
studies reviewed in the literature.

4.2.2 Frequency-Domain Degradation Method

This method is particularly important in MRI since MRI images are acquired in Fourier
space and only later converted to image space. In this method, the HR image is generated
in the same way as described above regarding the image-domain degradation method in
the section 4.2.1. However, the generation of the LR image involves an additional step.
Before downsampling and adding noise, the image is converted to the frequency domain
using the Fourier Transform.

In the k-space (frequency domain), two different masks were applied to selectively
reduce sharpness by eliminating high frequencies, while preserving image contrast. The
first mask, known as the central mask, retains the points within a circle whose radius
is 25% of the maximum distance from the centre to the corner of the k-space matrix.
This means that all points within this circle are preserved (set to 1), while points outside
this region are eliminated (set to 0). This retains the low-frequency components, which
contribute to global contrast, but discards the high-frequency components responsible for
fine details and sharpness. The second mask, referred to as the radial mask, was designed
by combining the concept of radial-based matrices, as seen in previous studies such as the
one conducted by Yan et al. [75], with the contrast-preserving properties of the central
mask. Specifically, the radial mask also retains the points within a circle whose radius
is 25% of the maximum distance from the centre to the corner of the k-space matrix, to
preserve low-frequency contrast information, but outside this central region, the mask
applies a radial sampling pattern to capture the high-frequency components. Points along
specific rays extending outward from the central circle are retained (set to 1), while points
in between these rays are eliminated (set to 0). This hybrid design effectively preserves both
the low-frequency contrast in the central region and selected high-frequency components
in specific directions, mimicking more closely the real-world acquisition process in MRI
systems.

Once these masks have been applied in the k-space, the image is transformed back to
the spatial domain using the Inverse Fourier Transform. This simulates the undersampling
and artefacts typically occurred during the frequency-domain acquisition process in MRI,
providing a more realistic degradation method than the classical image-domain approach.
The LR/HR image pairs generated using this method were then employed to assess the
model’s ability to generalise to different types of degradation that more closely resemble
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real-world conditions during image acquisition.

4.3 Image Super-Resolution Methods

This study used three DL models for SR, alongside the BCI technique implemented with
the OpenCV Python library. FSRCNN [53] was selected for real-time efficiency; RDN [58]
for balancing quality and speed; and ESRGAN [61] for producing high-fidelity, detailed
outputs. These choices align with the goal of improving SR while maintaining compu-
tational efficiency. The MRI data was split into 70% for training, 20% for validation, and
10% for testing. The models were implemented with the ML frameworks TensorFlow and
Keras, without batch normalisation layers. This choice was made as batch normalisation
layers reduces range flexibility and consumes the same memory as convolutional layers.
Thus, by excluding them, larger models could be used. Detailed layer parameters for each
DL model are provided in Appendix A.

4.3.1 Fast Super-Resolution Convolutional Neural Network

The FSRCNN [53], Figure 4.1, is divided into five key stages: feature extraction, where a
convolutional layer with a kernel size of 5x5 is used to output 56 features maps; shrinking,
which reduces the dimensionality of the extracted features through a convolutional layer
with a kernel size of 1x1; non-linear mapping, consisting of 12 blocks of convolutional
layers that map the extracted features to a HR space; expanding, to reverse the shrinking
operation and finally, a deconvolutional layer with stride 2 that performs upsampling to
generate the HR image. All convolutions are followed by ReLU activation and the loss
function used for training was the MSE.

An early stopping strategy with a patience of 3 epochs was implemented, stopping
training if validation performance didn’t improve over 3 consecutive epochs, to avoid
overfitting. Additionally, the learning rate was reduced by 50% after 3 stagnant epochs
with a minimum threshold set at 1 x 107, starting at 1 x 107%. This helps the model

converge more effectively as training progresses, especially when performance plateaus.
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Figure 4.1: Architecture of the FSRCNN.
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4.3.2 Residual Dense Network

Residual learning is a technique where the network learns the residual, i.e. the difference
between the input and the output, instead of learning their mapping directly. This is
done using the residual blocks introduced by He et al. [76], which use skip connections
to transfer the information from the input directly to the output, facilitating learning.
The RDN architecture [58], Figure 4.2, combines residual learning with global and local
learning strategies (within each patch) to improve feature preservation and performance.
The initial layers extract low-level features through convolutions, followed by five Residual
Dense Blocks (RDBs), which use dense connections between layers, as shown in Figure 4.3.
Local learning occurs within the RDBs, while global learning is ensured by aggregating
the outputs of these blocks, which maintains continuous memory. The final upsampling

is performed through a transposed convolution with a stride of 2, generating HR outputs.
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Figure 4.3: Architecture of the RDB of the RDN.

During training, MSE was used as the loss function and the same early stopping and
learning rate reduction strategies were used as for the FSRCNN model. However, L2
regularisation was applied, which adds a penalty to large weights, preventing them from
dominating predictions. This encourages the network to learn smaller weights, making it
more robust and generalisable, while also allowing for faster convergence.
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4.3.3 Enhanced Super-Resolution Generative Adversarial Network

The ESRGAN [61] consists of two networks: the generator and the discriminator.

The generator, Figure 4.4, starts by extracting features with a 3x3 convolution. Then the
output passes through three Residual in Residual Dense Blocks (RRDBs), which consist
of three RDB, Figure 4.5, each with convolutions and internal dense connections. The
RDB used in ESRGAN is similar to the RDB in the RDN model described in the section
4.3.2. However, the RDB in ESRGAN includes an additional convolutional layer with
ReLU activation. Furthermore, before summing the input of the RDB with the output
of the final convolutional layer, a residual scaling factor of 0.2 is applied. This scaling
factor diminishes the influence of each RDB, helping to stabilize the training process by
preventing large updates and promoting smoother learning. The RRDBs blocks integrate
local residual learning, allowing the model to capture fine details. Moreover, the addition
of the original input to the final output after the convolution that follows the RRDBs,
enables global residual learning, further enhancing feature preservation. A convolution
is then applied to increase the number of feature maps. This is essential for the correct
operation of the pixel shuffle upsampling technique, which redistributes the channels
appropriately, increasing the image’s spatial resolution. The upsampling is followed by
two more convolutions that refine the final HR image.
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Figure 4.4: Architecture of the generator of the ESRGAN.
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Figure 4.5: Architecture of a RRDB of the ESRGAN.

The discriminator, Figure 4.6, uses multiple convolutional layers with a gradual in-
crease in the number of filters and a reduction in the size of the output by means of strides.
After these layers, the network includes a dense layer with 1024 units and a dropout layer

to reduce overfitting by randomly deactivating 40% of the neurons during training. Finally,
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the output is flattened to a one-dimensional vector and passed through another dense
layer that generates a single output.
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Figure 4.6: Architecture of the discriminator of the ESRGAN.

During training, the discriminator doesn’t just assess the probability of an input being
real, it determines the probability of a real input being more realistic than a fake input
by comparing its output for a real image, D(X,,1), with the expected value of the outputs
for the generated images, Ex,,,, [D(Xfake)]- In other words, the discriminator predicts
relative reality rather than an absolute value. Likewise, the output for the generated
images, D(Xfak.), is adjusted by the expected value of the outputs for the real images,
Ex,,..[D(Xrea1)] . The discriminator’s total loss Lp, Equation (4.1), is a combination of the
losses associated with the real images and the generated images. The discriminator is
penalised if it cannot adequately distinguish between real and fake images.

Lp=- Exrm, [1Og (D(Xreal) - EXfuk@ [D(Xfake)])]
- Exjrﬂke [log (1 - (D(xfuke) - Exrml [D(Xreal)]))] (41)

Based on these same principles, the generator’s relativistic loss £¢, Equation (4.2), was
designed to encourage the generator to produce images that the discriminator is more
likely to classify as real. In addition to the relativistic loss, the generator is trained using
the MSE loss Lse, and a perceptual loss me, that compares the features extracted from

the generated image and the real image using the pre-trained VGG-19, as defined by the
Equation (4.3).

£6 == By [1og (1= (Dvea) = B [D7are 1) )|
- Exfakg [10g (D(Xfake) = Exyoul [D(Xreul)])] 4.2)

'LGtutal = 0.005 - -LG +0.01- LMSE + Lperc (43)

4.4 Performance Evaluation

Assessment metrics are vital for evaluating model performance and improvements in

image quality. While the human eye can assess quality visually, it lacks objectivity
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for comparing methods. Therefore, objective image quality assessment methods are
necessary for quantitatively measuring resolution enhancements. The full-reference and

free-reference metrics used in this work will be discussed next.

44.1 Full-reference Metrics

Full-reference metrics evaluate image quality by directly comparing the super-resolved

image to the original HR image, which acts as the ground truth or reference standard.

4.4.1.1 Peak Signal-to-Noise Ratio

The PSNR, expressed in dB, is a widely used metric in SR for assessing the quality of
the super-resolved image, X, relative to the reference HR image, X. It is calculated from
the maximum pixel intensity, I (e.g., 255 for 8-bit images), and the MSE between the two
images, according to the Equation (4.4) [77]. The open-source image processing library
scikit-image was used, in order to perform this calculation.

2
PSNR = 10log,, (1—) (4.4)
MSE(X,X)

4.4.1.2 Structural Similarity Index

Structural Similarity Index (SSIM) measures the structural similarity between two images
and is more aligned with the human visual system, since it incorporates terms that reflect
perceptual phenomena such as contrast and luminance [16].

A 7x7 sliding window traverses the images, calculating the SSIM index at each window
using Equation (4.5). Here, X and X denote the HR reference and super-resolved images,
respectively, i and, 02 represent the mean and variance of each image and oy indicates
their covariance. The constants C; and C, stabilise the division. The final SSIM value is
the average of the SSIM values from all windows [16]. For this calculation, the scikit-image

library was also used.

(Z#XH)”( + C1)(2GXX + Cz)

SSIM(X, X) =
( ) ([ug( + y?{ + Cl)(ag( + 0?{ + Cp)

(4.5)

4.4.1.3 Gradient Magnitude Similarity Deviation

Gradient Magnitude Similarity Deviation (GMSD) was created to overcome limitations of
SSIM in evaluating textures and fine edges, offering greater precision in critical scenarios
such as medical images, and standing out for its optimisation and real-time performance
[78].

To compute the GMSD, first it is necessary to obtain the gradient magnitudes of the
reference image X, denoted by myx, and that of the super-resolved image X, denoted by
my,. This is achieved by Equations (4.6) and (4.7), respectively. These gradient magnitudes
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are determined by taking the square root of the sum of the squared directional gradients,
obtained by applying a 3x3 linear filter, such as the Sobel, along the orthogonal directions,
hy and hy. In the equations below * denote the convolution operator [78].

mix(i) = \JOC* 1 200) + (X » iy () (46)

mg (i) = (& * B P(0) + (R * 1y 2(0) (47)

The Gradient Magnitude Similarity (GMS) map assesses the similarity in gradient

magnitude between two images, calculated using the Equation (4.8) , where c is a positive

constant that stabilises the computation. The maximum value of the GMS is 1, indicating
a perfect match between the gradients m (i) and m (i) [78].

2mx(i)my (i) + ¢

GMS(i) = (4.8)

mx (i)? + mg (i)> + ¢

Different structures in an image can undergo varying levels of distortion. For example,
flat structures tend to be less impacted by blur compared to textured ones. The GMSD
takes these local differences into account by computing the standard deviation of the GMS
values across the image. This is represented by Equation (4.9), where N denotes the total
number of pixels and GMS denotes the average of the GMS across all pixels [78]. The
GMSD calculation was conducted using the Python sporco package.

1 L
GMSD = 4| & ; (GMS(i) - GMS) (4.9)

1

4.4.1.4 Visual Information Fidelity

Visual Information Fidelity (VIF) assesses the perceptual quality of the super-resolved
image X by comparing the amount of information preserved relative to the reference
image X. In the calculation of VIF, the focus is on how much of the original and true
information from the reference image is retained in the super-resolved image. Although
VIF involves complex Information Theory calculations, it can be simplified as Equation
(4.10) [79].

Information preserved in X
VIF = — - — (4.10)
Original information in X

VIF considers human visual perception, especially in terms of contrast and noise
sensitivity. Both reference and super-resolved images are decomposed into sub-bands of
various scales and orientations, to model how the human eye perceives visual information
at different levels of detail. The information preserved from the reference image is
calculated for these sub-bands and aggregated to determine the overall visual fidelity of
the super-resolved image [79]. For this calculation it was used the Python’s open source
library sewear.
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4.4.1.5 Spatial Correlation Coefficient

The Spatial Correlation Coefficient (SCC) [80] measures texture and detail preservation
by correlating variance between a reference image, X, and a super-resolved image, X.
SCC is computed from local variance, 02, and covariance, 0y %, maps derived from high-
frequency components of both images, extracted using a 3x3 high-pass filter like the
Laplacian. The variance maps are then produced after passing these components through
a smoothing filter of size 8x8, such as a moving average, in order to make it possible to
measure the degree of dispersion of pixel values around the mean. The SCC is defined
through Equation (4.11). For this calculation, the sewar library was also used.

()‘ A
SCC= — XX (4.11)
af( X o2
X

4.4.2 Free-reference Metrics

Free-reference metrics assess image quality without the need for a reference HR image,

only relying on the analysis of the super-resolved image itself.

4.4.2.1 Perceptual Image Quality Evaluator

Perceptual Image Quality Evaluator (PIQE) was calculated using the Python Image Pro-
cessing and Quantitative Evaluation (pypiqe) library. The algorithm begins by computing
the Mean Subtracted Contrast Normalised coefficient for each pixel, which measures how
pixel values deviate from the local mean, normalised by the local variation (contrast),
following the method proposed by Venkatanath et al. [81]. The image is then split into
non-overlapping 16x16 pixel blocks. In each block, it assesses distortions, such as blocking
artefacts and noise, through the aforementioned coefficients, identifying blocks with high
variance. Then, the algorithm aggregates this information to determine the overall image
quality, generating the final PIQE score (the average of the block scores). Additionally,
masks are created to highlight regions with potential distortions, noticeable artefacts, and
Gaussian noise. Areas of the Activity mask that are white, where pixels have a value of 1,
correspond to regions with higher variability due to the presence of artefacts and noise.
Conversely, black areas, with pixels set to 0, signify regions of low activity, where little to

no distortions are present [82].

4.4.2.2 Signal-to-Noise Ratio

The SNR measures image quality by comparing the strength of the signal with the variation
in noise. It is calculated as the ratio between the average pixel intensity, Usignal, and the

standard deviation of pixel intensities, onoise, a5 shown by Equation (4.12) [83].

SNR = Feignal 4.12)

Onoise
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5

REsuLTs AND DiscussioN

5.1 Comparative Analysis of DL Models and BCI

Figure 5.1 shows a region of the input LR image, generated by the image-domain degra-
dation method, alongside its ground truth HR image. The LR image is pixelated with
less sharpness, especially around the vertebrae, while the HR image has much higher
resolution, providing clearer details. The goal was to estimate a super-resolved image that
closely matched the HR ground truth, using only the LR image.

Figure 5.1: Comparison of input LR image (left) and HR ground truth (right), illustrating the
difference in detail and clarity between the initial input and the reference standard.

Figure 5.2 shows a region of the super-resolved images generated by FSRCNN, RDN,
ESRGAN and BCI, highlighting noticeable differences in quality. The FSRCNN output
appears more blurred, with less defined edges, likely due to the simplicity and limited
depth of its architecture, which hinders its ability to capture finer details, particularly
around the vertebrae. In contrast, RDN produces a sharper image with better-defined
edges, thanks to the introduction of dense feature fusion and residual learning. However,
some smoothing remains, indicating that, despite its complexity, it does not fully capture
all high-frequency details. ESRGAN excels in texture preservation and retains more detail
than the other models, with well-defined edges. This superior detail preservation is due
to the combination of perceptual loss, MSE, and adversarial learning, which enhance
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perceptually pleasing details. Additionally, ESRGAN'’s training on full images, rather
than patches like the other models, allows it to capture both local and global contextual
information more consistently across the entire image.

In the super-resolved image produced by BCI, there is noticeable noise and reduced
sharpness. BCI computes the value of each new pixel as a weighted combination of
neighbouring pixels but cannot learn or adapt to specific visual features like edges or
textures. It applies the same method uniformly across all pixels, without distinguishing
between noise and actual image details. Consequently, because the neighbouring pixels
contain noise, this noise is also incorporated into the interpolated value. As a result, noise
in the input image is preserved and may even become more prominent. In contrast, DL
models are trained to distinguish between noise and true features, preserving textures

and structural details, resulting in more accurate reconstructions with fewer distortions.

Figure 5.2: Top row: super-resolved outputs generated by FSRCNN (left) and RDN (right). Bottom
row: super-resolved outputs from ESRGAN (left) and BCI (right).

To provide an objective analysis of the super-resolved quality of the images, full-
reference metrics were used to compare each super-resolved image with the HR ground
truth. The average assessment metric values for each SR method, and their standard
deviations, are shown in Table 5.1.

Among the SR methods, RDN achieved the highest PSNR, showing it can more faith-
fully reconstruct the super-resolved image with fewer differences from the HR reference,
and better noise reduction. Additionally, RDN most accurately reproduced the spatial
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Table 5.1: Full-reference metrics results (mean + standard deviation) for each SR method.

Full-Reference Assessment Metrics

SR Methods

PSNR(dB) SCC SSIM GMSD VIF
FSRCNN 25+ 2 0,30 +0,03 0,69 +0,05 0,049 +0,005 0,43 =+0,03
RDN 30+ 3 0,32 +0,03 0,89 +0,02 0,047 +0,005 0,45 =+ 0,03
ESRGAN 29 +1 025+0,03 0,84+002 0,048+0,004 0,40=+0,03
BCI 21 +1 027 +£0,02 053+0,04 0,084+0,006 0,36=0,02

patterns of the original HR image, as indicated by its highest SCC value.

However, the PSNR and SCC values don’t always reflect the human visual perception.
To provide a more perceptually accurate evaluation, additional metrics like SSIM, GMSD,
and VIF were computed. SSIM was used to evaluate luminance, contrast, and structure by
comparing the structural similarity between the original and super-resolved images. RDN
performed best, with a SSIM value closest to 1, indicating better preservation of structural
integrity. In contrast, FSRCNN showed a low SSIM, indicating a weaker perception of
structural integrity. This is particularly noticeable around the vertebrae, where the texture
appears less detailed, largely due to the blur effect, which reduces contrast and sharpness.

In terms of GMSD, RDN and ESRGAN showed similar values, indicating both models
effectively preserve edge transitions and consequently minimizing distortion. However,
the slightly higher GMSD for ESRGAN suggests that while it retains more perceptual
details, it may introduce subtle distortions in finer areas.

Finally, RDN outperformed with a higher VIF value, indicating better preservation of
visual details. However, despite having a low VIF value, ESRGAN appears perceptually
detailed. This suggests that in its effort to enhance sharpness, ESRGAN may introduce
subtle distortions or even noise to create the appearance of a sharper image, which reduces
the amount of information actually preserved, explaining its lower VIF score.

The results for BCI are consistently inferior across most metrics compared to the DL
methods, aligning with the visual analysis. However, BCI demonstrated a slightly higher
SCC than ESRGAN, indicating better reproduction of spatial correlations in some cases.
The lower PSNR confirms greater noise, indicating a larger discrepancy from the original
HR image. The SSIM score shows poorer structural preservation, while the higher GMSD
highlights more edge distortions. Additionally, the reduced VIF suggests that BCI retains
less visual information overall.

The PIQE metric was used to better assess image quality from a human perceptual
perspective. A free-reference metric was chosen because it doesn't rely on a reference
image, which may contain noise or distortions. Full-reference metrics, which assume the
HR image is flawless, can be misleading if the reference image itself has imperfections. By
using free-reference metrics like PIQE, the focus is on practical visual quality as perceived
by users, which full-reference methods might overlook. Additionally, the SNR metric was

computed to assess the balance between signal preservation and noise reduction. Results
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for the three DL methods are shown in Table 5.2. ESRGAN achieved the lowest PIQE
score, indicating superior preservation of perceptual details like textures and patterns,
which are crucial for visual quality and fidelity. ESRGAN also recorded the highest SNR,
highlighting its ability to manage noise effectively and produce visually pleasing images.
Although RDN showed a higher PSNR, reflecting better pixel-to-pixel accuracy, ESRGAN’s
higher SNR combined with its lower PIQE, suggests that it balances noise reduction and
perceptual detail preservation more effectively. Despite its slightly lower pixel-to-pixel
accuracy compared to the reference HR image (yet still comparable to that of RDN), the
markedly better PIQE value of ESRGAN combined with its visibly superior detail recovery,
establishes it as the preferred model for further analysis. The activity masks showing
PIQE-detected distortions are presented in Appendix B.

Table 5.2: Free-reference assessment metrics (mean + standard deviation) for each DL model.

Free-Reference Assessment Metrics

DL Methods

SNR PIQE
FSRCNN 1,5+ 04 56 + 6
RDN 1,3+0,2 52+ 6
ESRGAN 2,0+0,6 25+7

5.2 Application of the ESRGAN to the Original MRI Image

Figure 5.3 compares a region of the super-resolved MRI images generated by ESRGAN
and BCI, both obtained from the original HR image. The ESRGAN image appears overly
smoothed, indicating that the model prioritises denoising at the expense of preserving
fine details and sharpness. This is due to its training on noisy images, making it more
effective at suppressing noise. Thus, when applied to the original HR image, which
is of good quality with minimal noise, ESRGAN tends to over-smooth removing both
noise and details, particularly in the tissues surrounding the vertebrae. This highlights
its difficulty in balancing noise reduction with detail preservation, leading to difficulties
in distinguishing between areas that need denoising and those requiring sharpness. In
contrast, the BCI image is sharper, as it doesn’t focus on noise removal. Although BCI
retains more noise, it preserves greater detail and sharpness.

The ESRGAN was then re-trained using images with low-level noise to prevent it
from prioritising denoising. These training images were created using the image-domain
degradation method, omitting the addition of Gaussian noise.

Figures 5.4 and 5.5 compare patches from the re-trained ESRGAN and BCI methods,
applied to both the LR image with low-level noise and the original HR image, to evaluate
the maximum resolution enhancement achieved by each. Comparing the super-resolved
images generated from the input LR image with low-level noise, the ESRGAN produces
noticeably sharper and more detailed results than BCI. This superior performance is
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\

Figure 5.3: The original HR image (left) and its corresponding ESRGAN (middle) and BCI (right)

enhanced versions.

Figure 5.4: Top row: the input LR image patch (left) and the corresponding ESRGAN-predicted
patch (right). Bottom row: the original HR patch (left), and its corresponding ESRGAN-enhanced
version (right).

attributed to ESRGAN’s specific training on this type of degraded images, where it
learned to reconstruct the missing details in such inputs effectively. In contrast, BCI did
not undergo any training and, as a result, only relies on the existing information within
the input, without learning to recover lost details, which limits its performance in this
context. When applied to the original HR image, ESRGAN also provided a improvement
in sharpness, with a slight better edge definition and enhanced fine textures. In this
case, where the original image contains minimal noise, BCI achieved a resolution increase
comparable to that of ESRGAN. This is because ESRGAN, having been trained on images

31



CHAPTER 5. RESULTS AND DISCUSSION

Figure 5.5: Top row: the input LR patch (left) and the corresponding BCI-predicted patch (right).
Bottom row: the original HR patch (left) and its corresponding BCI-enhanced version (right).

with low-level noise, emphasised upsampling rather than prioritising denoising, much
like BCI. The full images resulting from the application of both BCI and ESRGAN to the
original HR image are presented in Appendix B.

The free-reference metrics for the super-resolved images produced by both methods,
applied to the HR image, are shown in Table 5.3. The SNR values were similar, but since
noise in the original HR image is minimal, SNR reflects more signal variance rather than
noise. The slightly lower SNR for ESRGAN could be due to variations introduced when
generating new details. However, ESRGAN’s better PIQE score suggests fewer perceptual
artefacts. The PIQE masks, shown in Figure 5.6, indicate areas of distortion and noise, with
white regions signifying high activity and black regions representing minimal artefacts.
The BCI mask has more white regions, indicating more blocking artefacts than ESRGAN.
In the ESRGAN mask, artefacts are mainly concentrated along the vertebral edges and
textured areas. In contrast, the BCI mask reveals artefacts not only along the edges but
also in more homogeneous regions, suggesting lower image quality overall.

5.3 Analysis of the ESRGAN’s ability to Generalise

This section evaluates ESRGAN’s ability, trained on MRI images, to generalise across
different degradation scenarios and modalities. The model was first tested on data from
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Table 5.3: Free-reference assessment metrics (mean + standard deviation) for the super-resolved
images produced by ESRGAN and BCI, from the original HR input image.

Free-Reference Assessment Metrics

Methods

SNR PIQE
ESRGAN 0,9 +0,1 23+3
BCI 1,0+0,1 56 +3

Figure 5.6: Activity masks for the super-resolved images generated by ESRGAN (left) and BCI
(right) from the original HR image.

the frequency-domain degradation method, where the LR image undergoes a degradation
step in k-space simulating MRI acquisition limitations. Its performance was then assessed
on other modalities, such as CT and grey-scale natural images, to examine its versatility
beyond the clinical context it was trained for.

5.3.1 Analysis of the ESRGAN Performance in Frequency-Domain
Degradation Scenarios

Figure 5.7 illustrates the two masks used to generate the LR image along with a region
of the resulting images after their application. Both masks operate in k-space, however,
the central mask retains only low-frequency information related to structure and contrast,
while the radial mask additionally captures some high-frequency information in specific
directions, introducing anisotropy by preserving details in certain orientations. This mask
simulates data acquisition in k-space using a series of radial trajectories, where the centre
is densely sampled, while the outer regions are sampled less frequently and in a more
targeted manner. The central mask, circular and filled, maintains sharpness in the central
area but introduces ringing artefacts in the regions corresponding to the abrupt transition
at the edge of the circle in the mask. In contrast, the radial mask results in inconsistent
sharpness, with some regions showing better detail preservation along the radial lines and
others displaying slight blurring. This directional bias leads to variations in the resolution
depending on the orientation of the sampled lines. Despite its anisotropy, the radial
mask retains more high-frequency information than the central mask, which filters out
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CHAPTER 5. RESULTS AND DISCUSSION

more high-frequency details. As a result, the radial mask offered better overall resolution,
capturing finer details in some orientations, while the central mask more aggressively

reduces high-frequency content.

Figure 5.7: Top row: central mask (left) and image resulting from its application (right). Bottom
row: radial mask (left) and image resulting from its application (right).

Observing Figure 5.8, the super-resolved images from ESRGAN show more detail
and less noise than those from BCI, highlighting ESRGAN’s superior denoising ability.
Although both masks produce images with similar detail and sharpness, the radial mask
results in a slight loss of detail in the tissue around the vertebrae compared to the central
mask. This can be attributed to the anisotropic sampling of the radial mask that preserves
details more effectively along certain radial lines while losing clarity in other directions.
As a result, both BCI and ESRGAN face minor challenges in consistently recovering details.
The central mask, on the other hand, more evenly cuts high-frequency information, leading
to fewer issues with uneven sharpness. Despite these differences, the metrics in Tables
5.4 and 5.5 show no significant variations between the two masks, indicating comparable
image fidelity and detail preservation. While BCI performed similarly across both masks,
it consistently underperformed compared to ESRGAN, except in the SCC metric, where it
achieved a higher score, reflecting better reconstruction of spatial correlation. In conclusion,
ESRGAN performed better overall, demonstrating greater robustness in handling different
degradation patterns and reconstructing finer details than BCI, despite minor challenges

with the radial mask.
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Figure 5.8: Top row: super-resolved images generated by ESRGAN (left) and BCI (right) from LR
image generated with central mask. Bottom row: super-resolved images generated by ESRGAN
(left) and BCI (right) from LR image generated with radial mask.

Table 5.4: Full-reference assessment metrics results (mean + standard deviation) for each SR method,
for the central mask.

Full-Reference Assessment Metrics

Method

PSNR (dB) SCC SSIM GMSD VIF
ESRGAN 30 +2 0,25+0,03 0,83+0,02 0,051=+0,006 0,39+0,03
BCI 23+2 0,31+0,03 0,61+0,04 0,088+0,006 0,37+0,02

Table 5.5: Full-reference assessment metrics results (mean + standard deviation) for each SR method,
for the radial mask.

Full-Reference Assessment Metrics

Method

PSNR (dB) SCC SSIM GMSD VIF
ESRGAN 30+2 0,25+0,03 0,83+0,02 0,051+0,007 0,39+0,03
BCI 23+2 0,31+0,03 0,61+0,04 0,08 +0,006 0,37 +0,02

5.3.2 Analysis of the ESRGAN Performance Across Different Imaging
Modalities

To assess the model’s ability to perform SR on different types of images and thus be used
outside the clinical MRI context in which it was trained, the model was also tested on CT
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data and grey-scale natural images.

Observing the Figures 5.9 and 5.10, a clear increase in sharpness is evident for both
CT and natural images. In both cases, ESRGAN consistently outperformed BCI in terms
of visual sharpness and detail recovery by enhancing fine textures and sharp edges,
particularly in the soft tissue of CT image and in finer details like the textures of the
clothing and camera equipment in the natural image. In contrast, BCI produced less sharp
results, with more blurring and noise. However, when visually comparing the super-
resolved images generated by ESRGAN to the ground truth, while ESRGAN improved
resolution and outperformed BCI, it did not fully recover all perceptible details. In
contrast, for MRI images, where ESRGAN was specifically trained, the super-resolved
images achieved a greater recovery of fine details compared to the ground truth.

Figure 5.9: Resolution enhancement for CT images. Top row: the LR input (left) and the ESRGAN'’s
output (right). Bottom row: BCI’s output (left) and HR ground truth image (right).

The visual observations are consistent with the evaluation metrics (see Table 5.6 and
5.7). For the CT images, ESRGAN outperforms BCI across all key metrics: PSNR, SSIM,
GMSD, and VIF, confirming its ability to generate sharper images with fewer distortions.
The higher PSNR for ESRGAN reflects superior signal preservation, while the higher
SSIM indicates better structural integrity. The lower GMSD demonstrates improved edge
detail retention, and the higher VIF score highlights enhanced preservation of visual
information, ultimately improving the perceptual quality of the reconstructed images.
BCI shows a slightly higher SCC, suggesting better spatial correlation, but this doesn’t
improve visual clarity. For grey-scale natural images, ESRGAN again achieves better SSIM,
lower GMSD and higher VIF, producing sharper results, while BCI scores higher in PSNR
and SCC, indicating better pixel-level accuracy. Overall, ESRGAN enhances resolution for
both CT and natural images, outperforming BCI in the majority of the metrics. However,

the super-resolved MRI image visually resembles the ground-truth image the most, with
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Figure 5.10: Resolution enhancement for natural grey-scale images. Top row: the LR input (left)
and the ESRGAN’s output (right). Bottom row: BCI’s output (left) and HR ground truth image
(right).

better recovery of perceptual details. This suggests that while ESRGAN generalises well
to CT and natural images, its performance is slightly better in MRI, where it has been
specifically trained.

Table 5.6: Full-reference assessment metrics results (mean + standard deviation) for each SR method,
for CT images.

Full-Reference Assessment Metrics

SR Method

PSNR (dB) SCC SSIM GMSD VIF
ESRGAN 29 +2 025+0,04 0,79+0,02 0,076 +0,017 0,43 + 0,03
BCI 24 +2 032+0,04 063+006 0,094+0,010 0,42+ 0,03

Table 5.7: Full-reference assessment metrics results (mean + standard deviation) for each SR method,
for natural grey-scale images.

Full-Reference Assessment Metrics

SR Method

PSNR (dB) SCC SSIM GMSD VIF
ESRGAN 24 + 4 0,23 +3,56 0,77+0,06 0,079 +0,018 0,36 + 0,07
BCI 25+ 2 0,30 + 0,07 0,72+0,05 0,09 +0,011 0,35+ 0,06
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CONCLUSION

6.1 Main Conclusions

This study aimed to implement a DL method to acchieve SR of spinal MRI images, seeking
to surpass the current reference BCI technique. Three state-of-the-art models (FSRCNN,
RDN, and ESRGAN) were implemented and optimised to achieve their best performance.

Among all three models, ESRGAN demonstrated to be the most effective. Its generator’s
residual architecture, with dense connections, enabled learning at both local and global
levels across the image, resulting in sharper detail recovery. The use of perceptual loss,
alongside MSE improved the learning of textures and patterns, leading to enhanced visual
quality. While RDN achieved better full-reference metric scores, ESRGAN had the lower
PIQE value and preserved more visual details, indicating superior perceptual quality. This
highlights the limitation of relying only on full-reference metrics, which may miss visible

improvements, especially when the reference image is suboptimal.

When applied to the original HR image, ESRGAN prioritised denoising, sometimes
at the cost of fine detail. However, when re-trained on images with low-level noise,
ESRGAN successfully improved the definition of anatomical structures, although the
results remained visually similar to those of BCI, likely due to the minimal noise present
in the original image. With little noise to remove, ESRGAN focused more on upsampling,
similar to BCI, resulting in comparable outcomes without amplifying or retaining noise.

Another key aspect of this study explored the ESRGAN'’s generalisation ability across
different image degradation scenarios and different modalities, such as CT scans and
grey-scale natural images. Despite minor challenges like preserving anisotropic details,
the results suggest that ESRGAN has versatility, consistently outperforming BCI. For both
CT and grey-scale natural images, ESRGAN also surpassed BCI in the majority of the
assessment metrics, offering a better visual sharpness and detail recovery. However, as
expected, the model did not recover lost visual details as effectively as it did in MRI, where
it had been specifically trained and optimised.

This study successfully demonstrated the efficacy of DL methods, particularly ESR-
GAN, in the task of SR, outperforming the traditional BCI technique and enhancing image
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resolution. The findings lay a strong foundation for future advancements in medical im-
age processing. The ability of these models to improve resolution and recover perceptual
details, especially in MRI, highlights the potential of DL to enhance diagnostic accuracy
and treatment planning. The enhanced images produced by these techniques can be inte-
grated into clinical workflows, enabling more precise segmentation and reconstruction of
anatomical structures, thus providing healthcare professionals with more effective tools

for diagnosis, surgical planning, and treatment.

6.2 Limitations and Future Work

Several limitations were found in this study, potentially impacting the results and offering
opportunities for future improvements.

A key limitation is the lack of detailed information about the specific origin of the
MRI images, including whether they were acquired using a single machine or multiple
machines. This uncertainty affects data reliability, as noise and resolution can vary
between different equipment, impacting the consistency and generalisability of the results.
Additionally, using a Central Processing Unit (CPU) for model training and testing proved
inefficient, as CPUs are not well-suited for the parallel computations required by DL
models. This led to longer processing times and increased memory usage. Transitioning
to a Graphics Processing Unit (GPU), designed for parallel tasks, such as the NVIDIA
range, would significantly improve training speed and model performance.

Another limitation is ESRGAN'’s sensitivity to noise levels during training. When
trained on noisy images, the model prioritised denoising over preserving detail, leading
to excessive smoothing. This highlights the need to balance denoising and upsampling.
Future improvements could involve separating these tasks into specialised models or
exploring architectures that integrate these processes more effectively.

The fixed 2x upsampling factor is another constraint. In clinical settings, the required
upsampling factor may vary, but training separate models for each factor is impractical due
to the significant time, computational resources, and storage requirements. Developing a
dynamic model capable of adjusting to different scaling factors would enhance flexibility,
potentially using multi-branch networks or adaptive upsampling layers.

Moreover, the image degradation method used to artificially generate the training data
may not accurately reflect real-world conditions, where factors such as equipment quality,
patient movement, and variations in imaging protocols introduce specific artefacts. Future
improvements could involve incorporating real-world data, with HR images captured
using advanced imaging antennas that provide finer detail and reduce noise, while LR
images would be generated from systems lacking these antennas. This approach would
create more realistic training conditions, better representing the degradation typically
encountered in clinical environments.

The model also demonstrated its versatility by enhancing the resolution of images
beyond the scope of MRI. However, even though it visually produced superior detail
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CHAPTER 6. CONCLUSION

recovery when applied to MRI, further specialising in the unique characteristics of MRI,
such as incorporating T;-weighted information to improve T, resolution or using k-space
data, could improve its accuracy even more, particularly in addressing aliasing artefacts.

Furthermore, operating exclusively in the image domain may limit the model’s ability
to handle non-structural and non-local artefacts commonly found in real-world LR images.
Future work could explore frequency domain operations to address these issues better.

Additionally, this study only compared ESRGAN with BCI, and future evaluations
could include other conventional SR methods, such as BLI or dictionary learning tech-
niques, for a more comprehensive assessment.

Finally, the lack of qualitative assessment to validate the practical applicability of the
model is a significant limitation. Without this evaluation, it is challenging to confirm
that the observed improvements in resolution genuinely contribute to better diagnostic
accuracy.
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A

IMAGE MODALITIES AND LAYER

PARAMETERS FOR DL MODELS

Figure A.1 presents examples of images from the three different datasets used in this
study, representing distinct image modalities.

Figure A.1: Representation of different image modalities used in the study. From left to right: MRI
scan of the spine, CT scan of the chest, and a natural greys-scale image of a crowd.

The tables below outline the layer parameters used to construct each DL model,
providing insight into their respective architectures. Table A.1 provides details of the
configuration for the FSRCNN model, while Tables A.2 and A.3 relate to the RDN model.
Finally, Tables A.4 through A.6 outline the parameters for the ESRGAN. These tables
include key information such as the number of filters, kernel sizes, strides, and activation

functions used in each layer, illustrating the specific design choices made for each network.

Table A.1: Parameters of the FSRCNN.

Layer Type Number of Filters Kernel Size Stride Padding Activation Function
Conv2D (1st) 56 5%5 1 same ReLU
Conv2D (2nd) 12 1x1 1 same ReLU
Conv2D (Repeated 12x) 12 3x3 1 same ReLU
Conv2D (Pre-DeConv) 56 1x1 1 same RelLU
Conv2DTranspose (Upsample) 1 9x9 2 same -
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Table A.2: Parameters of the RDN.

Layer Number of Filters Kernel Size Stride Padding Activation Function Operation
Conv2D (1st) 32 9%9 1 same ReLU -

Conv2D (2nd) 64 9%9 1 same ReLU -

RDB (Repeated 5x) 64 3%3 1 same ReLU -
Concatenate - - - - - All RDB Outputs
Conv2D (3rd) 64 3%3 1 same ReLU -

Conv2D (4th) 32 3x3 1 same ReLU -

Add - - - - - Input + Conv2D (4th)
Conv2DTranspose (Upscaling, 2X) 1 2x2 2 same = =

Conv2D (5th) 1 9%9 1 same ReLU -

Table A.3: Parameters of the RDB of the RDN.

Layer Type Number of Filters Kernel Size Stride Padding Activation Function Operation

Conv2D (1st) 64 3x3 1 same ReLU -

Concatenate - - - - - Input, Conv2D (1st)
Conv2D (2nd) 64 3%3 1 same ReLU -

Concatenate - - - - - Input, Conv2D (1st + 2nd)
Conv2D (3rd) 64 3x3 1 same ReLU -

Concatenate - - - - - Input, Conv2D (st + 2nd + 3rd)
Conv2D (4th) 64 3x3 1 same - -

Add (Residual) - - - - - Input + Conv2D (4th)

Table A.4: Parameters of the generator of the ESRGAN.

Layer Number of Filters Kernel Size Stride Padding Activation Function Operation
Conv2D (1st) 64 3x%3 1 same ReLU -

RRDB Block (Repeated 3x) 64 3%3 1 same ReLU -

Conv2D (2nd) 64 3%3 1 same - -

Add (Residual) - - - - - Input + Conv2D (2nd)
Conv2D (3rd) 256 3x3 1 same -

SubPixel (Upscaling, 2x) - - - - - -

ReLU - - - - ReLU -

Conv2D (4td) 64 3%3 1 same ReLU -

Conv2D (5th) 1 3%x3 1 same - -

Table A.5: Parameters of the RDB of the generator of the ESRGAN.

Layer Type Number of Filters Kernel Size Stride Padding Activation Function Operation

Conv2D (1st) 64 3x3 1 same ReLU -

Concatenate - - - - - Input, Conv2D (1st)
Conv2D (2nd) 64 3x3 1 same ReLU -

Concatenate - - - - - Input, Conv2D (1st + 2nd)
Conv2D (3rd) 64 3x3 1 same ReLU -

Concatenate - - - - - Input, Conv2D (1st + 2nd + 3rd)
Conv2D (4th) 64 3x3 1 same ReLU -

Concatenate - - - - - Input, Conv2D (1st + 2nd + 3rd + 4th)
Conv2D (5th) 64 3x3 1 same - -

Multiply - - - - - 0.2 x Conv2D (5th)

Add (Residual) - - - - - Input + (0.2 x Conv2D (5th))

Table A.6: Parameters of the discriminator of the ESRGAN.

Layer Type Number of Filters Units Kernel Size Stride Padding Activation Function Dropout Rate

Conv2D (1st) 64 - 3x%3 1 same ReLU -
Conv2D (2nd) 64 - 3%x3 2 same ReLU -
Conv2D (3rd) 128 - 3x3 1 same ReLU -
Conv2D (4th) 128 - 3%3 2 same ReLU -
Conv2D (5th) 256 - 3%3 1 same ReLU -
Conv2D (6th) 256 - 3x%3 2 same ReLU -
Conv2D (7th) 512 - 3x3 1 same ReLU -
Conv2D (8th) 512 - 3%x3 2 same ReLU -
Dense - 1024 - - - - -
Dropout - - - - - - 0.4
Flatten - - - - - - -
Dense - 1 - - - - -
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ADDITIONAL REsSULTS

Figure B.1 presents the activity masks generated by the PIQE metric for the super-resolved
images produced by the three DL-models, using the LR image created through the image-
domain degradation method. More regions with a value of 1, representing high activity,
indicate that FSRCNN and RDN have more distortions than ESRGAN.

Figure B.1: Activity masks for the super-resolved images generated by FSRCNN (left), RDN (middle)
and ESRGAN (right).

Figure B.2 shows the full images produced by applying the re-trained ESRGAN and
BCI to the original HR image. Both methods display a similar level of detail and sharpness,
with comparable performance in preserving textures and edge clarity.
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Figure B.2: The ESRGAN (left) and BCI (right) enhanced versions from the original HR image.
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