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ARTICLE INFO ABSTRACT

Handling Editor: Liu Yu The effects of global warming are becoming increasingly evident in our daily lives, making it essential to develop
sustainable, carbon-neutral solutions. The energy sector is a major contributor to global warming due to its

Keywords: reliance on coal, oil, and natural gas. Therefore, transitioning to renewable energy is crucial. However,

Hybrid algorithm
Multi-objective optimization
Hybrid renewable energy systems

renewable sources face intermittency issues, as their availability depends on weather conditions. To address this,
a hybrid energy system that integrates multiple renewable sources can enhance reliability.

This study optimized a hybrid renewable energy system for Portugal. It began with a systematic literature
review on artificial intelligence and energy, identifying nine relevant studies that helped formulate problem. A
hybrid system incorporating solar panels and wind turbines was designed and optimized using a novel algorithm
that combined Particle Swarm Optimization (PSO) and Grey Wolf Optimization (GWO). By leveraging the
strengths of both methods, the algorithm improved convergence toward the global optimum. To further enhance
efficiency, the algorithm was parallelized to reduce execution time and computational demands.

Three experiments were conducted to optimize the system. In the first experiment, the Average Best Fitness
(ABF) started below 0.420, decreased to 0.390 by the third iteration, but later increased to approximately 0.400.
To improve performance, hyperparameters were adjusted in a second experiment. However, results worsened,
with ABF starting at 0.480 and only reaching 0.455 by iteration 14. The third experiment yielded the most
promising results, with an initial ABF of 0.150, followed by a sharp drop at iteration 3 and a gradual decline with
fluctuations.

Future research should explore a broader range of hyperparameter combinations to refine optimization results.
Additionally, incorporating economic and social objectives alongside technical and environmental criteria will
provide a more comprehensive assessment of hybrid energy systems.
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gb, Amount of energy to be bought from the grid at time t
8st Amount of energy to be sold from the grid at time t Bilgen (2014) defines energy as "the ability to do work" that can be
:) Sv};zglctlu“:gszlsﬂ;gtﬁ;gfm?gﬁ ulti-objective defined by: the form in which can be found, how it is processed, and its
o Possible heights of E70 wind turbine installation source. Electricity, a crucial form of energy, plays a vital role in the
hgs2 Possible heights of E82 wind turbine installation modern economy, where its demand is projected to rise due to factors
hr Reference height of wind turbine such as increasing household incomes, the electrification of transport
i Hybrid Algorithm HFA-PSO multi-objective and heating systems, the growing use of digital devices, and the
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contributed to 2018 becoming a record year for global CO5 emissions in
the energy sector (Electricity — World Energy Outlook, 2019 — Analysis —
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IEA, 2019). Even before this record, the energy sector accounted for
two-thirds of global CO, emissions, underscoring the need to reduce
emissions through energy system decarbonization to combat global
warming (Energy Transitions and Societal Change | Research Institute
for Sustainability, 2024). Decarbonizing electricity could also help
reduce CO; emissions in other sectors, including construction, industry,
and transport (Electricity — World Energy Outlook, 2019 — Analysis —
IEA, 2019).

Several international agreements have been established with the
goal of creating a more sustainable future. In 1997, the Kyoto Protocol
was adopted by various countries to encourage the use of energy sources
with low levels of harmful emissions, doing this by introducing a price
for CO, and other greenhouse gases (Solomon and Krishna, 2011). In
2015, the Paris Agreement was adopted by 196 parties at the UN Climate
Change Conference (COP21), with the aim of keeping the rise in global
average temperature "well below 2 °C above pre-industrial levels" and to
pursue efforts “to limit the temperature increase to 1.5 °C above
pre-industrial levels” (The Paris Agreement | UNFCCC, 2023). That same
year, the UN established the 17 Sustainable Development Goals (SDGs),
agreed upon by multiple countries. The SDGs outline a vision of ending
poverty and other deprivations while simultaneously improving health,
education, reducing inequality and fostering economic growth — all
while addressing climate change and preserving the planet’s oceans and
forests (THE 17 GOALS | Sustainable Development, 2023).

The development of these agreements generally aims to achieve an
energy transition to combat climate change, which poses a serious threat
to the planet. Throughout history, energy transitions have been closely
linked to industrial revolutions (He, 2015). The first industrial revolu-
tion, in the late 18th century (Team, 2019), saw firewood replaced by
coal, leading to industrialized production, increased workplace pro-
ductivity, and the rise of railways (He, 2015). In the second industrial
revolution, at the end of the 19th century (Team, 2019), oil replaced
coal (Kabeyi and Olanrewaju, 2022), and electricity was introduced.
These innovations fueled mass production, such as Ford automatic en-
gine production lines, and revolutionized transportation and commu-
nication with the advent of cars and the telephone (He, 2015). The third
industrial revolution, beginning in the mid-20th century (Team, 2019),
was marked by the emergence of nuclear energy, electronics, telecom-
munications, and computers (Team, 2019). The current fourth industrial
revolution, or Industry 4.0, started in the early 21st century with the rise
of the Internet (Team, 2019). These industrial revolutions, spanning
several centuries, gave birth to an industrial civilization that, according
to He (2015), represents "an unsustainable form of human society”
contributing to resource depletion and climate change.

Before the revolutions that took place, communities relied on natural
resources for everyday tasks, like drying clothes under the sun. How-
ever, as previously mentioned, these practices have shifted towards the
use of fossil fuels, which harm our planet (Kabeyi and Olanrewaju,
2022). To address this, a transition to renewable energy sources (RES) is
essential (Kabeyi and Olanrewaju, 2022). Renewable energy is derived
from natural resources, this being “hydropower, solar, wind, wave,
geothermal power, waste energy such as gases from landfills, incinera-
tion, biomass, and liquid biofuels” (Bishoge et al., 2019). Renewable
energy stands out as a key option due to its availability, abundance,
minimal environmental impact (Ajiboye et al., 2023), while at the same
time offers numerous economic and social benefits, including environ-
mental sustainability, decentralized energy access, reduced emissions,
and local socio-economic development (Kabeyi and Olanrewaju, 2022).
However, relying solely on a single renewable energy source presents
challenges due to its intermittency, as it is weather-dependent. To
address this, the combination of two or more renewable sources to
create a hybrid renewable energy system (HRES) becomes necessary
(Ajiboye et al., 2023), in addition to this, the intermittency can also be
addressed through optimization to "create stability and reliability in
renewable energy supply and use" (Kabeyi and Olanrewaju, 2022).

A key area of focus in renewable energy research is Artificial
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Intelligence (AI), due to its potential for modeling, forecasting, opti-
mizing, and managing energy sources (Entezari et al., 2023). Constant
research into Al applications for the energy sector is crucial for devel-
oping more sustainable solutions, this type of research has expanded
rapidly in recent years, not only in renewable energy but also in areas
like smart grids, energy consumption, and storage (Entezari et al.,
2023).

To efficiently harness renewable energy, it is essential to design
optimal HRES using Al algorithms, which enable better monitoring,
operation, maintenance, and storage of renewable energy sources (Liu
et al., 2022). Al-based techniques have shown great promise, being
considered more acceptable than traditional methods due to their ability
to search for global optima, high computational precision, and fast
convergence rates (Sawle et al., 2023). However, as was pointed by
these authors relying on a single optimization algorithm often prevents
achieving truly optimal results. In fact, several researchers have recog-
nized opportunities for improvement through the combination of two or
more algorithms, which can "complement each other and produce better
optimization efficiency" (Cai et al., 2022). They argue that such hybrid
approaches "can provide more accurate results and have the ability to
solve multi-objective optimization problems" (Sawle et al., 2023) and
that could be especially beneficial since real-world problems usually
involve conflicting objectives that cannot be easily reduced to a single
objective function. However, this approach wasn’t yet properly
addressed in the Portuguese context by the scientific community.

This highlights the need for research on Al-based Hybrid Renewable
Energy Systems, focusing on exploring new combinations of optimiza-
tion algorithms that can efficiently handle multiple objective functions.
As a result, the research question (RQ) placed in this investigation is:
"What novel hybrid optimization algorithms can be developed to
effectively address diverse objective functions in the context of Al-based
Hybrid Renewable Energy Systems in Portugal?". As for the objectives to
achieve in the research, the following ones were set:

e Make a systematic literature review on the field of AI and Energy;

e Proposal of a hybrid optimization approach, which allows the exis-
tence of a complementarity and synergy between them to handle a
broader spectrum of objective functions;

e Development of experiments to evaluate the performance of the
hybrid optimization algorithm, to optimization of Hybrid Renewable
Energy System (HRES) in Portugal.

2. Related work

A Systematic Literature Review (SLR) was conducted following the
PRISMA methodology (Preferred Reporting Items for Systematic Re-
views and Meta-Analyses), with the purpose of exploring the current
state of the art on the research topic and to gather relevant knowledge.
To ensure a thorough review of the literature in the field of Al and En-
ergy, the following literature research questions (LRQs) are formulated:

LRQ1: What are the optimization algorithms that were used to create
hybrid optimization algorithms to optimize HRES?

LRQ2: How do optimization algorithms contribute to overcoming
challenges associated with the intermittent nature of renewable en-
ergy sources?

LRQ3: How has multi-objective optimization been used in the design
and operation of HRES?

To conduct the literature review, the steps outlined in the PRISMA
methodology were followed. It was defined the eligibility criteria,
establishing the inclusion and exclusion criteria for articles in the re-
view. It was included only articles published after 2014, ensuring that
the information gathered on Artificial Intelligence and Hybrid Renew-
able Energy Systems is only the most recent. Given that the objective of
this SLR is to explore the state of the art on Hybrid Renewable Energy
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Systems using Hybrid Optimization Algorithms with Multi-objective
Optimization in Portugal, the inclusion criteria outlined in Table 1
were defined. Regarding the exclusion criteria, articles were excluded if
they: do not align with the scope of this thesis, are unavailable in full
text, are not written in English, or focus on optimization software rather
than algorithms.

To conduct this SLR, several databases were used: Scopus, Web of
Science, I[EEE Xplore, and Taylor & Francis. These databases were
accessed directly, without the use of aggregators.

In the initial literature review, multiple keywords were identified,
and only those most relevant to the study were selected. This process led
to the development of the following query for an efficient search across
the various information sources:

"hybrid renewable energy systems" AND (ensemble* OR "hybrid algo-
rithm" OR "hybrid optimization") AND ("multiobjective optimization" OR
"multi-objective optimization")

This query was applied to the selected databases, where in the initial
identification phase, 39 articles were found across the databases: 8 from
Scopus, 6 from Web of Science, 1 from IEEE Xplore, and 24 from Taylor
& Francis. Additionally, 5 more relevant articles were identified through
other methods, bringing the total to 44 articles. After removing dupli-
cates, 38 articles remained. In the second phase, the screening phase,
these 38 articles were reviewed based on their titles and abstracts,
resulting in the exclusion of 27 articles that did not align with the scope
of this systematic literature review. The remaining 11 articles were then
retrieved, with all being successfully obtained, so none were excluded
for reason 2. During the eligibility phase, the full texts of these 11 studies
were evaluated against the inclusion and exclusion criteria, ultimately
leading to the inclusion of 9 articles in the final review. Subsequently,
the LRQ outlined before are answered for each of the 9 articles.

To determine the optimal size of a HRES, Amereh et al. (2014)
employed a hybrid algorithm, that results from the combination of ge-
netic algorithm (GA) and particle swarm optimization (PSO). The GA is
used in the initial optimization phase and after a set number of itera-
tions, defined as the Hybrid Constant (HC), PSO is applied to enhance
optimization speed and local tuning ability (Amereh et al., 2014). The
hybrid GA-PSO algorithm is designed to address a multi-objective
optimization problem, aiming to minimize the Total Net Present
Worth (TNPW) and maximize the Energy Index Reliability (EIR),
achieving this by employing an e-constraint method, where TNPW
serves as the primary optimization function and EIR acts as a constraint,
through this approach, the optimization makes it possible to obtain key
system parameters (wind turbine (WT) swept area, photovoltaic (PV)
panel area, and storage battery (SB) capacity) (Amereh et al., 2014). The
HRES in the study consists of wind turbines, photovoltaic panels, and a
storage battery, which is included to address the intermittency of
renewable energy sources (Amereh et al., 2014).

Diab et al. (2019) conducted a study focused on optimizing the size
of a HRES, where various algorithms have been applied: Whale Opti-
mization Algorithm (WOA), Water Cycle Algorithm (WCA), Moth-Flame
Optimizer (MFO), and the Hybrid Particle Swarm-Gravitational Search
Algorithm (PSOGSA). The hybrid PSOGSA algorithm combines PSO with

Table 1
Inclusion and exclusion criteria definition.

Inclusion Meet the scope of Considers a Hybrid Renewable Energy
criteria this thesis System (HRES)
Hybrid optimization algorithm in the
context of HRES
Multi-objective optimization algorithm in
the context of HRES
Exclusion Reason 1 Does not meet the scope
criteria Reason 2 Not available as full text
Reason 3 Not in English language
Reason 4 Uses software for optimization instead of

an algorithm
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the Gravitational Search Algorithm (GSA), leveraging the exploitation
capability of PSO and the exploration efficiency of GSA (Diab et al.,
2019). The optimization task was multi-objective, since its aim was to
minimize the Loss of Power Supply Probability (LPSP), Cost of Energy
(COE), and dummy load. To address the multiple objective functions,
weights for each were determined through trial and error, to achieve the
best results (Diab et al., 2019). Since the HRES in the study relies on
intermittent renewable energy sources, the authors incorporated an
energy storage system, specifically a battery bank, and a diesel gener-
ator, the latter being only used when renewable sources and the battery
bank could not meet energy demands (Diab et al., 2019).

The study developed by Capraz et al. (2020) aimed to optimize the
sizing of a hybrid renewable energy system without storage (HRES-WS),
by combining a weighted multi-objective mixed-integer linear pro-
gramming (WMO-MILP) model with Monte Carlo simulation. The
WMO-MILP model enables an analysis of how different objective func-
tions influence system sizing, with the weights assigned to each function
reflecting the decision-maker’s priorities, whether cost-based, environ-
mental-based, or a mix of both (Capraz et al., 2020). Monte Carlo
simulation is used to account for the stochastic nature of the modeling
environment, allowing for the prediction of weather data and load de-
mand based on historical data (Capraz et al., 2020). The model handles a
multi-objective optimization problem, where the goals are to minimize
the gap between total cost and revenue, and to reduce the total annual
CO; emissions. Capraz et al. (2020) found that increasing the weight of
the CO, minimization objective leads to higher system costs.

Rathish et al. (2021) conducted a study to optimize the design of a
HRES for Tamil Nadu, India, using a hybrid algorithm that combines the
Multi-objective Evolutionary Algorithm (MOEA) and GA. This optimi-
zation approach considered three key objectives: minimizing Net Pre-
sent Cost (NPC), unmet load, and the COy emissions from the system
(Rathish et al., 2021). The MOEA evaluates these objectives in a vector,
with each objective linked to the problem’s decision variables, enabling
the identification of a Pareto set of non-dominated solutions (Rathish
et al., 2021). The GA then selects the solution that minimizes NPC from
the component combinations generated by the MOEA (Rathish et al.,
2021). The proposed HRES consists of PV, wind, diesel, and battery
systems, though the study demonstrated that energy demand could be
met without relying on the diesel generator, highlighting the feasibility
of using renewable energy sources in the region (Rathish et al., 2021).

To determine the optimal size of a microgrid in Bihar, India, Suman
et al. (2021) used a hybrid PSO-GWO algorithm, which combines PSO
and Grey Wolf Optimization (GWO). While PSO is effective at exploi-
tation, it has limited exploration capability, often converging to local
optima rather than the global solution, to address this, GWO was inte-
grated in order to "minimize the probability of falling into a local min-
imum” (Suman et al, 2021). The optimization problem is
multi-objective, since it aims to minimize both the COE and the Deficit
of Power Supply Probability (DPSP), to address this they were trans-
formed into a single-objective problem using linear scalarization, where
"the objectives are either combined to form a linear function or are taken
as constraint for optimization" (Suman et al., 2021). Each objective
function was assigned a weight to reflect its importance, along with a
fraction between the value of the objective function and its maximum
limit (Suman et al., 2021). The study’s energy system is a HRES, relying
primarily on RES, which are inherently intermittent, to address this, the
system includes a battery storage unit and a diesel generator. When the
energy produced by RES exceeds demand, the excess is stored in the
battery. If the combined energy from the RES and the battery is insuf-
ficient to meet demand, the diesel generator is used as a backup (Suman
et al., 2021).

The study conducted by Cetinbas et al. (2022) focused on the "sizing
optimization and design of autonomous microgrids" (Cetinbas et al.,
2022) using the hybrid algorithm Harris Hawks Optimizer-Artithmetic
Optimization Algorithm (hHHO-AOA), that allows to improve the so-
lution accuracy and computational speed by improving search
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efficiency. The optimization problem addressed in the study is
multi-objective, with the goal of minimizing the LPSP and the COE, to
address this, the authors made the problem into a single-objective
optimization using the weighted sum method, where it is assigned
specific weights to each objective function (Cetinbas et al., 2022). In
response to the challenges associated with renewable energy sources,
the study incorporated a battery storage system (BSS) and a diesel
generator (DG) to ensure uninterrupted operation (Cetinbas et al.,
2022).

The study conducted by Fendzi Mbasso et al. (2023) aimed to "assess
and improve the reliability and autonomy of the HRES" (Fendzi Mbasso
et al., 2023), through the application of a hybrid algorithm that com-
bines PSO with GWO, the latter has the exploration capability, making it
possible to avoid local optima (Fendzi Mbasso et al., 2023). The opti-
mization problem is multi-objective, aiming to minimize the DPSP,
maximizing Autonomous Days (AD), and maximizing the energy stored
in the Battery Storage System (BSS), the authors achieved this optimi-
zation using two parameters obtained through trial and error (Fendzi
Mbasso et al., 2023). A component of the system is the battery storage
system (BSS), which ensures a "reliable, suitable, and sustainable sys-
tem" (Fendzi Mbasso et al., 2023) by addressing the intermittency of
renewable energy sources in the HRES.

The study of Hossain et al. (2023) aimed to determine the optimal
sizing of a HRES using a hybrid algorithm that combines the
Non-dominant Sorting Genetic Algorithm II (NSGA II) and the GWO.
NSGA 1II offers fast and efficient convergence but comes with high
computational complexity, while GWO has slower convergence, lower
complexity, and greater exploration ability (Hossain et al., 2023). By
merging these two algorithms, the NSGA-GWO "preserves the ingenuity
of both algorithms and combines them to generate a much more reliable
outcome" (Hossain et al., 2023). The problem was framed as a
multi-objective optimization with two main goals of minimizing the
total cost and the LPSP, addressing these as a single objective function
that simultaneously minimizes these two factors (Hossain et al., 2023).
To manage the intermittent nature of renewable energy, the study
incorporated an energy storage device within the HRES (Hossain et al.,
2023).

To tackle the problem of optimal sizing for a HRES, Giiven et al.
(2023) employed the Hybrid Firefly Particle Swarm Optimization
(HFAPSO) algorithm. This method was chosen for its ability to navigate
complex optimization landscapes, find global optimal solutions, and
handle intricate constraints, demonstrating its robustness (Giiven et al.,
2023). The optimization task is multi-objective, since it aims to mini-
mize the annual system cost (ASC), the levelized cost of energy (LCOE),
and the net present cost (NPC). To ensure system reliability, the HRES
integrates a battery and a diesel generator (Giiven et al., 2023).

As a result of the systematic literature, it was possible to draw con-
clusions regarding the decision variables and objective functions used by
context area, the most used objective functions and their respective best
results, and to identify the associated hybrid algorithms.

Analyzing the decision variables and hybrid algorithms, used in the
nine articles identified in the SLR, in the various context areas verified
(rural, university, smart cities, or home), it was possible to construct
Table 2. This table highlights that the decision variables, such as the
number of PV modules, wind turbines, and battery storage banks, are
present across all four context areas. The number of PV modules, wind
turbines and diesel generators hold particular significance in rural and
university settings. The number of autonomous days, while less
frequently used, appears in both rural and university areas. The
remaining decision variables are distributed sporadically across the
different context areas.

It was also essential to create Table 3 to assess the objective functions
applied across different context areas. According to the table, in rural
areas, the most used objective functions are minimizing the COE and
minimizing the DPSP, while in other areas of context, the objective
functions appear more varied. Overall, across all four context areas, the
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Table 2
Hybrid algorithm, context area and respective decision variables.

Context areas

R 8] SC H
Decision variables Ay
As
SBeap
Npy b), e) c), ), 1) d) h)
Nwr b), e) ), H,1) d) h)
NBart b) i) d) h)
Npg b), e) f), i)
gb, )
85t )
2 )
Pt d)
W d)
b, d)
d; d)
i d)
Pmingen d)
Pigen d)
Periticalgen d)
SOCsiop,, d)
SOChin d)
Nap g) f)
DPSP )
Edqumped 8)
p h)
h h)
ACS i)
LCOE i)
NPC i)
BS i)
Inverter i)
Ryr i)
Rpy i)

most frequently used objective functions are minimizing the COE, LPSP,
total annual CO5 emissions, TNPC, and DPSP.

Table 4 presents the most used objective functions mentioned earlier,
while also highlighting the best results obtained for each function,
leading to the identification of three hybrid algorithms: MOEA-GA, PSO-
GWO, and NSGA-GWO.

This systematic literature review (SLR) offers a novel contribution to
the field of Hybrid Renewable Energy Systems (HRES) optimization
through two key aspects: the inclusion of recent studies and a compre-
hensive analysis of hybrid optimization algorithms. By applying the
PRISMA methodology, this review ensures a rigorous and up-to-date
perspective on the state of the art, focusing on studies published after
2014. This timeframe captures the latest advancements in hybrid algo-
rithms and multi-objective optimization techniques applied to HRES,
particularly those incorporating Al By prioritizing recent studies, this
review presents a timely reflection of current trends and breakthroughs
in the field, ensuring that the findings remain relevant to ongoing
research and practical applications. The focus on recent developments
allows for a deeper understanding of emerging methodologies and their
impact on optimizing hybrid renewable energy systems. Additionally,
this review introduces a structured analysis of hybrid optimization al-
gorithms based on three key research questions: (i) identifying the
optimization algorithms used to develop hybrid approaches for HRES,
(ii) assessing how these algorithms address the challenges posed by the
intermittent nature of renewable energy sources, and (iii) examining the
role of multi-objective optimization in the design and operation of
HRES. Through this analysis, the review explores the decision variables
and optimization techniques applied in different context areas (rural
areas, universities, smart cities, and residential applications). It also
examines the objective functions commonly used in these environments
and highlights the best-performing approaches. This comparison pro-
vides new insights into how hybrid optimization algorithms can effec-
tively balance multiple objectives. Furthermore, it identifies key hybrid
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Table 3
Hybrid algorithm, context area and respective objective function.
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Hybrid algorithm

b) ) d e) i) g) h)
Objective functions Minimize COE ($/kWh) 0.185 0.169 0.209
Minimize LPSP (%) 9.073*1077 6.506 0
Minimize total annual amount of CO, produced (kg CO/year) 1469 806
Minimize TNPC 61,027.9 € 35,693.77$
Minimize DPSP (%) 6 1.375

Table 4
Systems performance, objective functions more used and respective best values
obtained.

Context areas

R U SC H

Objective Minimize TNPW ($)
functions Maximize EIR (%)
Minimize COE ($,/kWh) b), f)
e)
Minimize LPSP (%) b) 3] h)
Minimize Pgymmy (KkWh) b)
Minimize difference in total cost and c)
total revenue (USD)
Minimize total annual amount of CO, o
produced (kg COy/year)
Minimize TNPC ($) d h
Minimize UL (%) d)
Minimize DPSP (%) e),
g)
Maximize AD g)
Maximize Egumpea (KW) g)
Minimize ASC ($) i)
Minimize LCOE ($/kWh) i)
Minimize NPC ($) i)

optimization strategies that have demonstrated superior performance
across various scenarios, contributing to a clearer understanding of the
most effective methodologies for optimizing HRES.

Based on the analysis carried out previously, it is possible to rec-
ommended as decision variables to use in the context of rural areas and
universities: number of solar panels, wind turbines, and diesel genera-
tors. Regarding objective functions to use in the context of rural areas it
is recommended: minimizing COE and minimizing DPSP. For the other
considered contexts that aren’t mentioned in the recommendations of
decision variables and objective functions, the observations are too
scattered to make scientifically supported recommendations. Regarding
the choice of algorithms for developing a hybrid model, while several
algorithms, such as the WMO-MILP algorithm, are commonly employed
for optimizing hybrid renewable energy systems, based on Tables 4 and
it is recommended to use PSO, GWO, and NSGA. With this we opted to
proceed with the PSO-GWO algorithm.

3. Problem formulation

Following the analysis of related work, in this section it is applied the
information gathered so far to optimize a Hybrid Renewable Energy
System using a hybrid algorithm with multi-objective functions, within
the context of Portugal. This section is structured into three main points:
data, problem formulation, and algorithms. Point 3.1 presents the data
that was used, specific to Portugal: (1) characteristics of the most used
photovoltaic panels and wind turbines; (2) weather conditions; and (3)
load demand. Point 3.2 outlines the problem formulation, describing the
decision variables considered in the optimization process, the equations
used to calculate the power output of the photovoltaic panels and wind
turbines, and the objective functions. Finally, Section 3.3 introduces the
HPPSGWO hybrid algorithm.

3.1. Data collection

This point outlines the data used in terms of components, weather
conditions, and load demand.

Regarding the components, the idealized hybrid renewable energy
system consists of photovoltaic panels and wind turbines, therefore, data
on those that are most used in Portugal were gathered from manufac-
turers (Tables 5 and 6).

A renewable energy system depends on weather conditions for en-
ergy production, with this, it was necessary the collection of weather
data such as direct irradiance, diffuse irradiance, albedo irradiance, air
temperature, and wind speed to estimate energy output. For this pur-
pose, data from the Copernicus Atmosphere Monitoring Service (CAMS)
and the Copernicus Climate Change Service (C3S) was used (Table 8).

To gather data from CAMS, the option "Both cloud-free and actual
weather conditions" was chosen over "Cloud-free only" to ensure the
most accurate representation of weather conditions. The data retrieved
was specific to Portugal, with coordinates set to latitude 39.0000 and
longitude —7.0000, covering the period from January 2008 to April
2024, with an hourly time step and universal time reference (Copernicus
Atmosphere Monitoring Service, 2020) (Table 7). Additionally, data
from C3S was used, specifically the "wind speed at 10m" and "2m air
temperature" aggregated spatially at the country level and temporally at
an hourly level (Table 8). This resulted in one file per variable for the
entire time series (Copernicus Climate Change Service, 2020).

The data retrieved from CAMS and C3S was then preprocessed,
resulting in an unique dataframe. Given that the project involves opti-
mizing a hybrid renewable energy system for a single year, it can be
chosen any year between.

2008 and 2023, consequently, depending on the chosen year, the
preprocessed dataframe will cover from January of the selected year to
December of the same year (Table 7).

To calculate the considered objective functions and assess whether
the hybrid energy system generates enough energy to meet demand,
data on load demand in Portugal was collected and analyzed. This
involved using open-source data from REN (REN, 2024), which spans
from January 2008 to April 2024, although data for 2010 is only
available for January 1st (Table 9).

3.2. Problem formulation

The optimization of the HRES, that consists in photovoltaic panels
and wind turbines, was performed hourly over the span of a year,
equating to the optimization of 8760 h. The variables adjusted during
this process were Npy, B, Nyr and h. The optimization performed was
multi-objective, as it simultaneously addresses the minimization of LPSP
and the minimization of the amount of CO» emissions produced by the
hybrid system.

3.2.1. Decision variables and constraints

To optimize the size of a hybrid energy system, four decision vari-
ables were used, as mentioned earlier: Npy, p, Nyt and h. The constraints
defining the lower and upper limits for each decision variables are
outlined in equations (1)-(3), while equations (4) and (5) specify the
potential heights for the E70 and E82 wind turbines, respectively.
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Table 5
Characteristics of the solar panels considered.
# Manufacturer Power Output VMP IMP Voc Isc Temperature coefficient of Vo¢ Temperature coefficient of Is¢ NOCT Hpy
w) (%) (A) (W2} (A) (%/°C) (%/°C) (°C)
1 Tallmax 330 349 7.04 46.2 9.27 -0.29 0.05 44 17
2 Tallmax 335 35.1 7.12 46.3 9.36 -0.29 0.05 44 17.3
3 Tallmax 340 35.2 7.19 46.5 9.45 -0.29 0.05 44 17.5
4 Tallmax 345 35.5 7.25 46.7 9.50 -0.29 0.05 44 17.8
5 Tallmax 350 35.6 7.33 46.9 9.60 -0.29 0.05 44 18.0
6 Tallmax 355 35.8 7.40 47.0 9.69 -0.29 0.05 44 18.3
7 Canadian 355 35.4 7.32 46.8 9.61 —0.30 0.053 45 17.85
Solar
8 Canadian 360 35.6 7.36 47.0 9.69 —0.30 0.053 45 18.10
Solar
9 Canadian 365 35.8 7.41 47.2 9.77 —0.30 0.053 45 18.35
Solar
10 Canadian 370 36.0 7.45 47.4 9.85 —0.30 0.053 45 18.60
Solar
11 JA Solar 315 34.45 6.77 45.85 9.01 —0.33 0.058 45 16.22
12 JA Solar 320 34.64 6.84 46.12 9.09 —0.33 0.058 45 16.47
13 JA Solar 325 34.82 6.91 46.38 9.17 -0.33 0.058 45 16.73
14 JA Solar 330 35.03 6.97 46.40 9.28 —0.33 0.058 45 16.99
15 JA Solar 335 35.21 7.04 46.70 9.35 —0.33 0.058 45 17.25
16 JA Solar 340 35.06 7.09 46.86 9.46 —0.30 0.06 45 17.5
17 JA Solar 345 35.33 7.14 47.05 9.54 —0.30 0.06 45 17.76
18 JA Solar 350 35.59 7.19 47.24 9.61 —0.30 0.06 45 18.02
19 JA Solar 355 35.81 7.25 47.45 9.69 —0.30 0.06 45 18.28
20 JA Solar 360 36.03 7.31 47.66 9.78 -0.30 0.06 45 18.57
Table 6 Table 9
Characteristics of the wind turbines considered. df consume_year variables description.
# Manufacturer ~ Name A Veue—in Veur—out Ay h Name Units Description
2
gn/ (m/s) (m/s) (m2) Consumption ~ Wh Amount of electricity that has been consumed by end users
Total sold Wh Amount of electricity sold by REN
1 Enercon E70 14 2.5 34 3959 57
2 Enercon E70 14 2.5 34 3959 64
3 Enercon E70 14 2.5 34 3959 85 N';"}" <Npy < NIT“,D( [¢))
4 Enercon E70 14 2.5 34 3959 98
5 Enercon E70 14 2.5 34 3959 113 in ax
6  Enercon E82 12 2.5 34 5281 78 Nyr <Nyr < Ny7 2)
7 Enercon E82 12 2.5 34 5281 85
8 Enercon E82 12 2.5 34 5281 98 O’Sﬁ < 90° 3)
9 Enercon E82 12 2.5 34 5281 108
10 Enercon E82 12 2.5 34 5281 138 hE70 _ [577 64,85,1 13] 4
hgs2 =(78,85,98,108,138] 5)
Table 7
df_tmy_year and df_consume_year data description. 3.2.2. Modeling of hybrid renewable energy system
Data Latitude  Longitude  Temporal coverage Temporal The power generated by a PV panel is given by equation (6) (Hossain
type resolution et al., 2023), the calculation of which depends on equations (7)-(25).
Time 39.0000 —~7.0000  January of the selected year  1-hourly This is influenced by environmental factors, such as global solar irra-
series to December of the selected diance and ambient temperature, and on the manufacturer information
year that was gathered. Of the equations mentioned, we highlight the one
relating to global irradiance, that is the sum of direct, diffuse, and albedo
irradiance.
Table 8 P Nov. V. I FF 6
df tmy_year variables description. pv(t, f) = Nev. Voc(t, B) Isc(t, f)-FE(t) ©)
Name Units Description VMP . IMP
FFt)=——F— ———— 7
GHI Whm-  Global horizontal all sky irradiation Voc(t,p) . Isc(t, )
2
BHI \zNh m-  Direct horizontal all sky irradiation Voc(t, /}) _ {VOC_STC _ KvTc(t)} (8)
DHI Whm-  Diffuse horizontal all sky irradiation G(ﬁ )
2 ,
Isc(t, p) = {1 + K;[Tc(t) — 25C] 9
wind_speed ms-1 “Magnitude of the two-dimensional horizontal air se(t ) { scsre + Ki[To(t) ]} 1000 ®
velocity at height of 10 m” (Copernicus Climate
Change Service, 2020) G(p,a)
air_temperature °C “The ambient air temperature near to the surface, Tc (t) =Ta+ (N COoT - ZUC) 800 10$)
typically at height of 2m” (Copernicus Climate Change
Service, 2020
) Prv_amay(t, ) =11py . Npv Pry(t, f) a1
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G(p, ) =B(p, ) + D(B, ) + R(B, ) 12
B(B, &) =B max(0, cos 6s) a3
__BO a4
cos Oz
cos Os = [sign(¢)]sin 6 sin(abs(¢) — p) + cos & cos(abs(¢) — p)cos ®
(15)
B . [360(d, + 284)
§=23.45sin {T } 16)
®=15x (TO-AO -12) - (LL - LH) %)
By =1367 W/m? (18)
cos Oz =sin & sin ¢ + cos & cos ¢ cos @ 19)
D(B, o) =D'(B, @) + D(B, ) (20)
D'(B,0) =D(0) (1 —ky) w (1)
B
k] :BOCO (22)
=1+0.033 3604, (23)
g=1+0. cos< 365)
c _ D(0)k;
DE(B, o) = cos 0,5 M (0,cos 6s) 249
R(B.@) = pry G(0) 2P 25)

The power generated by a wind turbine is described by equations
(26) and (27) or (28) (Cetinbas et al., 2022; Hossain et al., 2023), this
being dependent on the wind speed, the turbine’s rated power, and
manufacturer-supplied parameters. The wind speed at a specific height
can be determined using equation (29), which considers the wind speed
at the reference height, the reference height, and the installation height
of the turbine - a decision variable of the optimization problem (Hossain
et al., 2023). The rated power is calculated using equation (30), incor-
porating the maximum power coefficient, a value provided by manu-
facturers and dependent on wind speed. The power curves provided by
each manufacturer on a wind turbine help to determine the maximum
power coefficient.

fv< cht—in or V> Veur out:

Pyr=0 (26)
If cht—in < v < Vr :

Py — V3 PWTr _p VSut in 27)
" Vr3 Vfut in v V3 Vfut in
If V> Veurourt
Pyr =Py, (28)
h\*®
o
1 3
PWT, = Cp,maxzpai;AWTVr (30)

3.2.3. Objective functions
One of the objective functions evaluated in this project is LPSP,
which serves as an indicator of the reliability of the hybrid renewable

Journal of Cleaner Production 511 (2025) 145564

energy system. The LPSP is defined as the ratio of unmet energy demand,
as expressed in equation (31), where its value ranges from O to 1, where
0 indicates that the energy demand is fully satisfied, representing
maximum system reliability, while a value of 1 signifies a complete
failure to supply energy to the load, indicating an unreliable system
(Cetinbas et al., 2022).

t=8760

Z Ep(t)
LPSP =5

> Eioan(t)

t=1

(31

The second objective function serves as an environmental indicator,
as it seeks to minimize the annual CO emissions generated by the hybrid
energy system. CO, emissions are calculated based on the amount of
electricity purchased from the grid, multiplied by the CO2 emission
coefficient per watt-hour (Wh), which is 0.000866 kg CO2/Wh (Capraz
et al., 2020). This objective function is represented by equation (32).

COy=¢) gb, (32)
teT

To perform the multi-objective optimization, the two objective
functions outlined earlier were both evaluated on an annual basis. This
multi-objective problem was approached as a single-objective optimi-
zation, using the weighted sum method, which is represented by equa-
tions (33) and (34) (Cetinbas et al., 2022; Suman et al., 2021), being this
later adapt to the optimization problem of this paper, resulting in
equation (35). Equation (33) normalizes the objective functions by
dividing the value of each objective function by its maximum, ensuring
the functions are scaled between 0 and 1 (Capraz et al., 2020). Since the
objective function related to the minimization of LPSP, already has
values between 0 and 1, only the objective function that seeks the
minimization of the annual CO; emissions generated by the system, was
normalized as indicated in equation (35). As the minimization of the
CO, emissions depends on the amount of electricity purchased from the
grid, it is assumed that its maximum value is achieved when all elec-
tricity consumption is met by the grid, meaning the hybrid energy sys-
tem generates no energy to meet demand.

(X
Fys (xpy) = Z fiax f;v (33
k
Y wi=1,0<wi<li=1,...,n (34

i=1

Fws (Npy, Nyr, 5, hh) = = min |:W1 . LPSP(Npy, Nyr, §, hh) +w,

CO2(Npy, Nwr, 5, hh) (35)

* CO2" (Npy, Ny, f, hh)

3.2.4. Hybrid parallel PSO-GWO (HPPSGWO)

To leverage the strengths of both PSO and GWO, Senel et al. (2019)
developed a hybrid PSO-GWO algorithm. However, its extended runtime
remained a key limitation due to the additional computational overhead
of incorporating GWO (Senel et al., 2019). To overcome this, the algo-
rithm was parallelized using the PPSO approach introduced by Char-
ilogis et al. (2023) and implemented on GPUs with CuPy and cuDF
libraries. This Hybrid Parallel PSO-GWO (HPPSGWO) aimed to reduce
the likelihood of getting stuck in local minima, shorten execution time,
and optimize computational resource utilization. By integrating PSO’s
exploitation capability, GWO’s global search efficiency, and the speedup
of PPSO-based parallelization, HPPSGWO achieves superior perfor-
mance. The pseudocode for HPPSGWO is shown in Algorithm 1, and its
graphical representation is provided in Fig. 1.

Algorithm 1. Pseudocode for Hybrid Parallel PSO-GWO.
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Algorithm 1: Pseudocode for Hybrid Parallel PSO-GWO.

N;: the total number of parallel processing units

Ng: the number of iterations, after which each processing unit will
send its best barticles to the remianing units

Np:the number of migrated particles between the parallel processing
units

PS:the number of population sizes set by the user

prob: small possibility rate set by the user

Initialize particles

k = 0 the iteration number

forj=1,..,Ndoinparallel

Execute an iteration of the HPSGW O algorithm on processing unit j
forj=1toPSdo
Run PSO
Update the velocity and the position of current particle
if rand(0,1) < prob then
Set a, A, C values
fork =1to10do
form =1to10do
Run GWO
Update the position of a, 3,5 wolves
Update a, 4, C values
end for
end for
position of current particle
= mean of the positions of three best wolves
end if
end for
if k mod Ny = 0 then
Get the best Np particles from algorithm j
Propagate these Np particles to the rest of processing units
end
end
Update k =k +1
Check the proposed termination rule.If the termination rule is valid,
continue else go to for loop
Terminate and report the best value from all processing units

teration or

stopping rule

False

Propagation
in k iterations

Run HPSGWO Run HPSGWO ‘ Run HPSGWO

¥ v v

Fig. 1. Flowchart of the HPPSGWO.
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Fig. 2. Average daily global irradiance in 2022.

4. Results
4.1. Exploration of data

An analysis of global irradiance, load power, and wind speed in
Portugal in the year of 2022 was conducted, having revealed significant
patterns relevant to energy production and consumption.

Global irradiance data shows a clear daily and seasonal cycle. Daily,
irradiance peaks at 1 p.m. with values exceeding 600 W/m?, while it
stays in 0 W/m? between 1 a.m. and 5 a.m. and from 9 p.m. to midnight.
This pattern reflects the hours of sunlight, with a gradual increase in
irradiance from just after 6 a.m. to the peak and a subsequent decline
after 1 p.m. (Fig. 2). Monthly data indicates that irradiance is highest in
July, approaching 350 W/m?2, and lowest in December, ranging between
50 and 100 W/m?. The seasonal trend shows higher irradiance from

~
g

g

g

Global irradiance (W/m2)
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Fig. 3. Average monthly global irradiance in 2022.
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Fig. 4. Average daily load power in 2022.
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Fig. 7. Average monthly wind speed in 2022.

spring to summer and lower values in winter, making April to August the
optimal period for solar energy production, with July being particularly
favorable (Fig. 3).

Load power data reveals that power consumption has distinct daily
and monthly trends. Daily, load power peaks at around 1 p.m. and again
between 9 p.m. and 10 p.m., reaching values over 6500 MW, while the
lowest consumption occurs around 6 a.m. This trend reflects increased
energy use during daytime and evening hours (Fig. 4). Monthly data

Table 10
Upper and lower bounds of decision variables for experiment 1 and 2.
Npy Nwr i h
Upper bound 1500 1001 90 (check 3.2.1.)

Lower bound 1000 500 0 (check 3.2.1.)

10
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Table 11
Values for the parameters of HPPSGWO for experiment 1, 2 and 3.
Parameter Meaning Experiment
1 2 3
PSO SiZ€swarm Size of swarm, number of particles to generate 100 100 200
itermax Maximum number of generations to perform 5 15 20
TUNSmax Maximum number of runs to perform 10 10 10
w Inertia weight 1.0 1.0 1.0
31 Cognitive component 1.0 1.0 2.0
(23 Social component 1.0 1.0 2.0
GWO prob Small possibility rate 0.4 0.4 0.4
itergman Small number of iterations that the GWO will run 10 10 10
smallsygrm Small number of swarm size that the GWO will run 10 10 10
MOO w1 Weight for objective function 1 0.5 0.5 0.5
wa Weight for objective function 2 0.5 0.5 0.5
Parallel execution Ny Total number of parallel processing units 4 4 8
Ng Number of iterations, after which a processing unit sends its best particles to the remaining units 15 15 15
Np Number of migrated particles between the parallel processing units 5 5 5
€ Small value (used in the termination rule) 10°° 10° 10
Num Number of continuous repetitions (used in the termination rule) 15 15 15
0.420 — w_1.0c1_1.0c2_1.0 0.480 — w_1.0c1_1.0c2_1.0
0.415 0.475
0.410
0.470
0.405 A
0.465
@ 0.400 u
< <
0.460
0.395
0.455 -
0.390
0.450
0.385
0.380 - 0.445 A
T T T T T T T T T T T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 2 4 6 8 10 12 14
lterations Iterations

Fig. 8. ABF results for experiment 1.

shows that load power is highest in January, exceeding 6000 MW, and
lowest in August, just above 5000 MW. The increased load in winter is
likely due to heating needs, while high consumption in summer is
attributed to cooling demands (Fig. 5).

Wind speed data displays both daily and monthly variations. Daily
wind speed peaks at 4 p.m. at approximately 3.6 m/s, with the lowest
speeds around 7 a.m. at about 2.4 m/s. Wind speeds are generally higher
in the afternoon and lower in the early morning (Fig. 6). Monthly data
shows that wind speed is highest in December, surpassing 3.0 m/s, and
lowest in February, dropping below 2.5 m/s. Seasonal patterns indicate
a moderate decrease in wind speed from winter to summer, with rela-
tively consistent speeds during the rest of the year (Fig. 7).

These figures depict the optimization process of key system param-
eters - number of photovoltaic panels, tilt angle, number of wind tur-
bines, and height of wind turbines—focusing on their impact on power
supply reliability and environmental benefits over a one-year period.
Overall, these observations provide valuable insights into the potential
for solar and wind energy production in Portugal and highlight patterns
in energy consumption, guiding future energy planning and use.

4.2. Experiments

Three experiments were conducted using the PSO-GWO parallel
hybrid algorithm.
The upper and lower bounds for the decision variables in

11

Fig. 9. ABF results for experiment 2.

experiments 1 and 2 are listed in Table 10. These bounds were selected
based on values used in the previous studies reviewed in the SLR that
employed the same decision variables.

The first experiment, lasted approximately 13 h to run, the
HPPSGWO algorithm was tested with the parameters present in
Table 11, with the upper and lower limits of the decision variables
specified in Table 10. The optimization process is shown in Fig. 8.
Regarding the convergence trend, the average best fitness (ABF) de-
creases over iterations, demonstrating the HPPSGWO algorithm’s ability
to improve solution fitness. Initially, the ABF is slightly below 0.420 and
decreases to 0.390, showing improvement, but then slightly increased to
around 0.400, indicating a minor deterioration. The shaded area around
the convergence line represents the variability in the ABF values. A
narrower shaded area indicates less variability, while a wider area sig-
nifies more. Observing Fig. 8, it is evident that variability increased over
the iterations, with a brief narrowing from iteration 3 to 4, which might
suggest potential stabilization if more iterations were performed. The
slight rise in ABF from iteration 3 to 4, indicates that the hybrid

Table 12
Upper and lower bounds of decision variables for experiment 3.
Npy Nwr i} h
Upper bound 2500 2500 90 (check 3.2.1.)
Lower bound 0 0 0 (check 3.2.1.)
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Fig. 10. ABF results for experiment 3.

algorithm encountered a local minimum. To address this, additional
iterations or parameter adjustments might be necessary. Overall, the
algorithm is optimizing effectively, though some parameter tuning
could enhance its performance.

In the second experiment, the focus was on increasing the number of
iterations to see if it helps escaping local minima and finding better
solutions. This experiment took about 30 h, used the parameters speci-
fied in Table 11 and the upper and lower limits of the decision variables
were set as it is indicated in Table 10. From the convergence curve
(Fig. 9), it can be observed that the optimization algorithm continues to
improve fitness as the.

Number of iterations increase. The ABF value starts at around 0.480
and, by iteration 14, reaches a value above 0.455, indicating a deteri-
oration over the first experiment. There was still high variability in the
ABF values, though less pronounced between iterations 4 and 6. The
results displayed similar behavior to the first experiment, particularly
between iterations 0 and 4. From iteration 4 to iteration 14, peaks and
troughs in the ABF values, suggest that the algorithm encounters local
minima, but manages to escape them, as evidenced by the convergence
line decreasing after each peak. Despite these fluctuations between it-
erations 4 and 14, the overall ABF trend shows a gradual decline, from
0.465 in iteration 4 to approximately 0.455 by the final iteration. The
reported behavior suggests that further experimentation with different
parameter values might be beneficial.

In the third experiment, various parameters of the HPPSGWO algo-
rithm were adjusted to improve optimization outcomes. These changes
are detailed in Table 11 and are explained next. The number of iterations
was increased to assess whether further improvements in ABF could be
achieved or if fitness would stabilize. For the PSO-specific parameters,
both cognitive and social components were set to 2, as this value “has
been shown to be appropriate for several applications” (Vanneschi and
Silva, 2023). Additionally, the swarm size in the Particle Swarm Opti-
mization was doubled to improve solution quality, as larger swarms
allow for the exploration of more regions within the solution space, thus
enhancing convergence towards the global optimum. To further explore
the search space, the upper and lower bounds for the decision variables —
number of solar panels and number of wind turbines — were increased
(as shown in Table 12). This adjustment expanded the search space,
allowing the algorithm to investigate solutions that were previously
inaccessible due to the earlier limits. Lastly, the number of parallel
processing units was increased to 8, as prior studies have shown that this
increase “significantly improves the efficiency of the technique in
finding the global minimum” (Charilogis et al., 2023). The convergence
line of this experiment is presented in Fig. 10, having lasted about 60 h.
The convergence curve shows that the hybrid algorithm begins with an

12
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Fig. 11. Experiment 3 best solution, mean number of solar panels per month.

initial ABF value of 0.150, which is significantly lower than the starting
values in experiment 1 and experiment 2. Between iterations 0 and 1, the
ABF value remains constant, followed by a slight increase from iteration
1 to 2. However, a sharp decrease occurs up to iteration 3, where the
lowest ABF value is reached. This rapid improvement in the early iter-
ations indicates that the algorithm is effective at enhancing solution
quality in its initial stages. After iteration 3, the algorithm’s performance
exhibits oscillations, with a gradual downward trend between iterations
6 (with an ABF value of 0.20) and 19 (where the ABF value falls below
0.10). This suggests that the algorithm is making incremental im-
provements over time. Observing Fig. 10 it is also possible to see a sig-
nificant variability across different runs, likely due to the stochastic
nature of the hybrid algorithm. While the fluctuations and variability
may indicate a strong exploration capability, further parameter tuning is
required to reduce variability and stabilize convergence.

For a potential experiment 4, it would be necessary to fine-tune the
parameters of the hybrid algorithm, to stabilize convergence and reduce
variability.

When comparing the convergence line of experiment 2 and experi-
ment 3, experiment 2 begins with an ABF value close to 0.480, which is
higher than the initial value of approximately 0.150 in experiment 3,
meaning that the initial solution of experiment 3 is of higher quality
than in experiment 2. Experiment 2 shows a general downward trend,
with minor fluctuations in the last few iterations, indicating that the
solution is stabilizing. In contrast, experiment 3 exhibits more oscilla-
tions and lacks a clear downward trend, suggesting less stability and a
stronger emphasis on exploration of the search space, even during the
final iterations. Analyzing the impact of parameter changes between the
two experiments, the larger swarm size in experiment 3, compared to
experiment 2, contributes to greater variability and more oscillations, as
larger swarm explores a wider area of the search space. The cognitive
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Fig. 12. Experiment 3 best solution, mean tilt angle of solar panels per month.
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Fig. 13. Experiment 3 best solution, mean number of wind turbines per month.
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Fig. 14. Experiment 3 best solution, mean height of wind turbines per month.

and social components were also increased from 1.0 in experiment 2 to
2.0 in experiment 3, amplifying the influence of individual and social
learning, this results in more exploration, leading to increased fluctua-
tions. Additionally, experiment 3 used broader decision variable limits
compared to experiment 2, expanding the search space and further
contributing to increased variability.

The experiments revealed that the lowest ABF value of 0.025 was
achieved in experiment 3, iteration 3. The run with the lowest fitness
value in iteration 3 was run 5, with a value of 0.000506, which was also
the lowest across all 20 iterations, thus, this configuration was analyzed
regarding the decision variables.

Fig. 11 shows the average number of solar panels per month, where
seasonal variations are observed. In winter months it is possible to see a
slight decline, reaching its lowest in February (above 1280 panels),
while summer shows a more pronounced decrease, bottoming out in
July (~1260 panels). The number rises in the fall, peaking in October
(~1340 panels).

Fig. 12 illustrates the mean angle of the solar panels throughout the
year, showing a seasonal pattern of a decrease followed by an increase
each season. The angle remains between 46° and just over 50°.

Fig. 13 presents the average number of wind turbines, with fluctu-
ations throughout the year. Winter shows a slight decrease, followed by
arise, while spring and summer exhibit a downward trend. Fall shows an
increasing trend, peaking in November (~1350 turbines).

Fig. 14 highlights the average height of wind turbines, showing a
consistent decrease across seasons, with the highest values seen at the
start of each season and ending with lower values.
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5. Conclusions and future work

This study addresses the urgent need for a sustainable and carbon-
neutral energy transition to mitigate global warming, emphasizing the
need to use natural resources for energy production. To address the
intermittent nature of renewable sources, the concept of Hybrid
Renewable Energy Systems is introduced. In the introduction it is dis-
cussed the growing research on applying artificial intelligence to opti-
mize HRES, particularly through combining algorithms to improve
outcomes. The research developed focused on framing a hybrid opti-
mization algorithm for HRES in Portugal, aimed at minimizing the loss
of power supply probability and the amount of CO5 produced.

A systematic literature review on Al and HRES optimization was
performed using the PRISMA methodology, having made it possible to
identify and analyze nine articles to understand the state of the art and
support the development of an informed proposal. The analysis carried
out allowed to identify key elements: decision variables, hybrid algo-
rithms used, system types, context, activity area, and objective func-
tions. This data was cross-referenced to gain insights and provide
recommendations on suitable decision variables, objective functions
based on the activity area, and algorithms for creating hybrid algorithms
in the context of Hybrid Renewable Energy Systems.

The empirical study began by selecting renewable energy sources for
creating a HRES, having chosen photovoltaic panels and wind turbines.
After defining the components, the models that are commonly used in
Portugal were identified, and their specifications were gathered. Addi-
tionally, data on Portugal’s weather conditions and load demand were
obtained. The problem was then formulated, defining decision variables,
constraints, objective functions, and equations for calculating the output
power of photovoltaic panels and wind turbines. Next, the development
of a hybrid parallel PSO-GWO optimization algorithm was explained.
Three experiments were conducted with varying parameters to find the
global optimum. In the third experiment, a local optimum close to the
global minimum was achieved early, but limited computational re-
sources and execution time constrained the number of experiments.

The development of a hybrid multi-objective algorithm for HRES in
Portugal faced several limitations during the empirical study. First,
identifying the components (photovoltaic panels and wind turbines)
commonly used in Portugal was challenging due to limited available
information, which was only obtained through expert input. For weather
data collection, incomplete datasets were an issue, and only a full
dataset containing essential variables (irradiance, temperature, wind
speed) was found via Copernicus.

Executing the hybrid PSO-GWO algorithm was hindered by limited
computational resources, requiring the use of a Cloud GPU platform and
the high execution time also restricted the ability to carrying out more
experiments regarding hyperparameters and restricted the number of
iterations and runs carried out.

Despite these constraints, the study made contributions to both Data
Science and the energy industry, setting a foundation for future research
aimed at solving energy challenges in Portugal and working towards a
more sustainable, carbon-neutral future.

The development of the proposed hybrid parallel PSO-GWO algo-
rithm for optimizing hybrid renewable energy systems (HRES) in
Portugal offers substantial potential across multiple applications. A key
area of impact is smart grid optimization, where the algorithm can
efficiently balance energy generation from diverse sources—such as
wind, solar, and hydro—ensuring a stable, reliable, and sustainable
energy supply. It also supports load balancing and real-time demand-
side management, reducing grid congestion and enhancing energy dis-
tribution. In rural and remote areas, integrating HRES with the algo-
rithm can drive regional development by improving access to clean
electricity, promoting energy equity, and fostering socioeconomic
growth. For businesses, the algorithm provides an opportunity to reduce
electricity costs, enhance power reliability, and support sustainability
objectives, making it a valuable tool for optimizing energy use and
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operations. Additionally, the algorithm improves energy dispatch by
optimizing the scheduling of renewable resources, reducing reliance on
fossil fuels, and strengthening the national grid. It enhances grid sta-
bility by ensuring the seamless integration and operation of hybrid en-
ergy systems, further reinforcing Portugal’s energy infrastructure. In
coastal regions, the algorithm can facilitate the integration of wave and
offshore wind energy with solar power, enabling efficient hybridization
and maximizing the potential of these renewable resources. Importantly,
the algorithm’s optimization capabilities can significantly contribute to
reducing Portugal’s carbon footprint, aligning with the country’s
ambitious carbon neutrality goals. By addressing these diverse appli-
cations, the hybrid parallel PSO-GWO algorithm demonstrates its
transformative potential to advance renewable energy adoption and
sustainability in Portugal.

For future research, it is recommended to use more powerful
computing resources to reduce computation time, allowing for more
extensive testing and increasing the likelihood of achieving the global
minimum. We aim to explore the application of the HMEO algorithm, as
Wang et al. (2024) demonstrated that this hybrid approach surpasses the
individual algorithms that constitute the HPSOGWO method proposed
in this study. The HMEO algorithm combines swarm intelligence and
physics-based mechanisms: swarm intelligence fosters diversity for
robust global exploration, while the physics-based component enhances
intensification for precise local optimization. Notably, Wang et al. ach-
ieved highly promising results when applying the HMEO algorithm to a
mobile robot path planning (MRPP) problem. Building on these findings,
future research should investigate the potential of HMEO in optimizing
hybrid energy systems. This approach could yield even more favorable
outcomes than those achieved in this study with HPSOGWO. Addition-
ally, exploring a broader range of hyperparameter combinations for
parameter tuning could enhance optimization results. The study could
also be expanded by incorporating two additional objective functions in
the economic and social categories, alongside the technical and envi-
ronmental aspects already addressed, to optimize the HRES design
comprehensively. Finally, obtaining feedback from AI and Energy ex-
perts in Portugal through interviews is suggested to refine the project
through an iterative improvement process.
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