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A B S T R A C T

The effects of global warming are becoming increasingly evident in our daily lives, making it essential to develop 
sustainable, carbon-neutral solutions. The energy sector is a major contributor to global warming due to its 
reliance on coal, oil, and natural gas. Therefore, transitioning to renewable energy is crucial. However, 
renewable sources face intermittency issues, as their availability depends on weather conditions. To address this, 
a hybrid energy system that integrates multiple renewable sources can enhance reliability.

This study optimized a hybrid renewable energy system for Portugal. It began with a systematic literature 
review on artificial intelligence and energy, identifying nine relevant studies that helped formulate problem. A 
hybrid system incorporating solar panels and wind turbines was designed and optimized using a novel algorithm 
that combined Particle Swarm Optimization (PSO) and Grey Wolf Optimization (GWO). By leveraging the 
strengths of both methods, the algorithm improved convergence toward the global optimum. To further enhance 
efficiency, the algorithm was parallelized to reduce execution time and computational demands.

Three experiments were conducted to optimize the system. In the first experiment, the Average Best Fitness 
(ABF) started below 0.420, decreased to 0.390 by the third iteration, but later increased to approximately 0.400. 
To improve performance, hyperparameters were adjusted in a second experiment. However, results worsened, 
with ABF starting at 0.480 and only reaching 0.455 by iteration 14. The third experiment yielded the most 
promising results, with an initial ABF of 0.150, followed by a sharp drop at iteration 3 and a gradual decline with 
fluctuations.

Future research should explore a broader range of hyperparameter combinations to refine optimization results. 
Additionally, incorporating economic and social objectives alongside technical and environmental criteria will 
provide a more comprehensive assessment of hybrid energy systems.

Acronyms

AOA Arithmetic Optimization Algorithm
AI Artificial Intelligence
AD Autonomous Days
BSS Battery Storage Systems
COE Cost of Energy
DPSP Deficit of Power Supply Probability
DG Diesel Generator
EIR Energy Index Reliability
GA Genetic Algorithm
GPUs Graphic Processing Units
GSA Gravitational Search Algorithm
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GWO Grey Wolf Optimizer
H Home
HHO Harris Hawks Optimizer
hHHO- 

AOA
Harris Hawks Optimizer-Arithmetic Optimization Algorithm

HC Hybrid Constant
HFAPSO Hybrid Firefly Particle Swarm Optimization
PSOGSA Hybrid Particle Swarm-Gravitational Search Algorithm
HRES Hybrid Renewable Energy System
HRES-WS Hybrid Renewable Energy System Without Storage
LCOE Levelized Cost Of Energy
LRQ Literature Research Question
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LPSP Loss of Power Supply Probability
MFO Moth-Flame-Optimizer
MOEA Multi-objective Evolutionary Algorithm
MOPSO Multi-objective Particle Swarm Optimization
NPC Net Present Cost
NSGA II Non-dominant Sorting Genetic Algorithm II
PSO Particle Swarm Optimization
PV Photovoltaic
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
R Rural areas
REN Redes Energéticas Nacionais
RES Renewable Energy Sources
RQ Research Question
SB Storage Battery
SC Smart Cities
SDGs Sustainable Development Goals
SLR Systematic Literature Review
TNPW Total Net Present Worth
U University
WCA Water Cycle Algorithm
WMO- 

MILP
Weighted Multi-Objective Mixed-Integer Linear Programming

WOA Whale Optimization Algorithm
WT Wind Turbines

Nomenclature

a) Hybrid Algorithm GA-PSO multi-objective
ACS Annual cost of the system
AO Time by which clocks are set ahead of the local time zone
AS Photovoltaic panel area
AW Wind turbine swept area
AWT Total swept area of a wind turbine
b) Hybrid Algorithm PSO-GSA multi-objective
B Direct irradiance falling on a surface perpendicular to the sun’s rays
B0 Solar constant (1367 W/m2)
B(β,α) Direct irradiance on an inclined surface
BS Battery storage capacity
bt Type of battery
c) Hybrid Algorithm WMO-MILP-Monte Carlo simulation multi-objective
Cp max Power coefficient of the wind turbine
cos θS Angle of incidence between the sun’s rays and the normal to the surface
cos θZS Solar zenith angle
d) Hybrid Algorithm MOEA-GA multi-objective
DPSP Deficit of power supply probability
D(β,α) Diffuse irradiance on an inclined surface
DC(β,α) Circumsolar component of diffuse irradiance on an inclined surface
DI(β,α) Isotropic component of diffuse irradiance on an inclined surface
dn Day number counted from the beginning of the year
dt Type of diesel generator
e) Hybrid Algorithm PSO-GWO multi-objective
EDE (t) Energy deficit (kWh)
Edumped Energy stored into the battery
ELOAD (t) Total annual energy demand of the load (kWh/year)
f) Hybrid Algorithm hHHO-AOA multi-objective
FF Fill factor
fi(xDV) ith objective function of the weight sum method
fmax

i (xDV) upper bound of the ith objective function of the weight sum method
FWS Scalarized objective function of the weight sum method
g) Hybrid Algorithm PSO-GWO multi-objective
G Global solar irradiance on a PV module
G(β,α) Global irradiance on an inclined surface
gbt Amount of energy to be bought from the grid at time t
gst Amount of energy to be sold from the grid at time t
h) Hybrid Algorithm NSGA-GWO multi-objective
h Wind turbines installation height
hE70 Possible heights of E70 wind turbine installation
hE82 Possible heights of E82 wind turbine installation
hr Reference height of wind turbine
i) Hybrid Algorithm HFA-PSO multi-objective
IMP Maximum power current
Inverter Inverter capacity
ISC Short circuit current of a PV module
ISC STC Short circuit current of a PV module for standard test conditions
it Type of inverter/charger
k1 Anisotropy index
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KI Short circuit current temperature coefficient
KV Open circuit voltage temperature coefficient
LCOE Levelized cost of energy
LH Reference longitude õf the local time zone
LL Local longitude
LPSP Loss of power supply probability
NOCT Nominal operating cell temperature
NPC Net present cost
NAD Number of autonomous days
nBatt Number of battery storage banks
nDG Number of diesel generators
NPV Number of PV modules
Nmin

PV Minimum number of PV modules
Nmax

PV Maximum number of PV modules
NWT Number of wind turbines
Nmin

WT Minimum number of wind turbines
Nmax

WT Maximum number of wind turbines
P1gen Crossing point of supplying energy cost by means of the AC generator 

and batteries
Pcriticalgen Power in which the diesel generator provides the insignificant power
Pmingen Minimal diesel generator operations power
PPV Power produced by PV modules
PPV array Total output power from a PV array
pt Type of PV panel
PWT Power output wind turbine
PWTr Rated Power
R(β,α) Albedo irradiance on an inclined surface
RPV Solar panel power
RWT Wind turbine power
SBcap Battery capacity
SOCmin Minimum SOC of the battery bank
SOCstopgen SOC set point of the batteries
t Particular hour
TO Local standard time
TA Ambient temperature
VMP Maximum power voltage
v Wind speed at hub height
V Wind speed
Vcut− in Cut-in wind speed
Vcut− out Cut-out wind speed
VOC Open circuit voltage of a PV module
VOC STC Open circuit voltage of a PV module for standard test conditions
vr Wind speed at reference height
Vr Rated wind speed
xDV Vector of the decision variables of the problem
wi ith weighting coefficient
wt Type of wind turbine
zt Binary variables for maximum and minimum limit of amount of energy 

to be bought from the grid
β Tilt angle of the PV modules
ηPV Efficiency of PV module
α Power law coefficient
ρair Air density (kg/m3)
ρref Reflectivity of the ground
δ Solar declination
ϕ Geographic latitude
ω True solar time
ԑ0 Eccentricity correction factor
ԑ CO2 emissions coefficient (kg CO2/Wh)

1. Introduction

Bilgen (2014) defines energy as "the ability to do work" that can be 
defined by: the form in which can be found, how it is processed, and its 
source. Electricity, a crucial form of energy, plays a vital role in the 
modern economy, where its demand is projected to rise due to factors 
such as increasing household incomes, the electrification of transport 
and heating systems, the growing use of digital devices, and the 
expansion of air conditioning (Electricity – World Energy Outlook, 2019
– Analysis – IEA, 2019). Bilgen (2014) also observed that economic 
growth leads to higher energy consumption, highlighting a direct rela
tionship between these two variables. The surge in electricity demand 
contributed to 2018 becoming a record year for global CO2 emissions in 
the energy sector (Electricity – World Energy Outlook, 2019 – Analysis – 
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IEA, 2019). Even before this record, the energy sector accounted for 
two-thirds of global CO2 emissions, underscoring the need to reduce 
emissions through energy system decarbonization to combat global 
warming (Energy Transitions and Societal Change | Research Institute 
for Sustainability, 2024). Decarbonizing electricity could also help 
reduce CO2 emissions in other sectors, including construction, industry, 
and transport (Electricity – World Energy Outlook, 2019 – Analysis – 
IEA, 2019).

Several international agreements have been established with the 
goal of creating a more sustainable future. In 1997, the Kyoto Protocol 
was adopted by various countries to encourage the use of energy sources 
with low levels of harmful emissions, doing this by introducing a price 
for CO2 and other greenhouse gases (Solomon and Krishna, 2011). In 
2015, the Paris Agreement was adopted by 196 parties at the UN Climate 
Change Conference (COP21), with the aim of keeping the rise in global 
average temperature "well below 2 ◦C above pre-industrial levels" and to 
pursue efforts “to limit the temperature increase to 1.5 ◦C above 
pre-industrial levels” (The Paris Agreement | UNFCCC, 2023). That same 
year, the UN established the 17 Sustainable Development Goals (SDGs), 
agreed upon by multiple countries. The SDGs outline a vision of ending 
poverty and other deprivations while simultaneously improving health, 
education, reducing inequality and fostering economic growth — all 
while addressing climate change and preserving the planet’s oceans and 
forests (THE 17 GOALS | Sustainable Development, 2023).

The development of these agreements generally aims to achieve an 
energy transition to combat climate change, which poses a serious threat 
to the planet. Throughout history, energy transitions have been closely 
linked to industrial revolutions (He, 2015). The first industrial revolu
tion, in the late 18th century (Team, 2019), saw firewood replaced by 
coal, leading to industrialized production, increased workplace pro
ductivity, and the rise of railways (He, 2015). In the second industrial 
revolution, at the end of the 19th century (Team, 2019), oil replaced 
coal (Kabeyi and Olanrewaju, 2022), and electricity was introduced. 
These innovations fueled mass production, such as Ford automatic en
gine production lines, and revolutionized transportation and commu
nication with the advent of cars and the telephone (He, 2015). The third 
industrial revolution, beginning in the mid-20th century (Team, 2019), 
was marked by the emergence of nuclear energy, electronics, telecom
munications, and computers (Team, 2019). The current fourth industrial 
revolution, or Industry 4.0, started in the early 21st century with the rise 
of the Internet (Team, 2019). These industrial revolutions, spanning 
several centuries, gave birth to an industrial civilization that, according 
to He (2015), represents "an unsustainable form of human society" 
contributing to resource depletion and climate change.

Before the revolutions that took place, communities relied on natural 
resources for everyday tasks, like drying clothes under the sun. How
ever, as previously mentioned, these practices have shifted towards the 
use of fossil fuels, which harm our planet (Kabeyi and Olanrewaju, 
2022). To address this, a transition to renewable energy sources (RES) is 
essential (Kabeyi and Olanrewaju, 2022). Renewable energy is derived 
from natural resources, this being “hydropower, solar, wind, wave, 
geothermal power, waste energy such as gases from landfills, incinera
tion, biomass, and liquid biofuels” (Bishoge et al., 2019). Renewable 
energy stands out as a key option due to its availability, abundance, 
minimal environmental impact (Ajiboye et al., 2023), while at the same 
time offers numerous economic and social benefits, including environ
mental sustainability, decentralized energy access, reduced emissions, 
and local socio-economic development (Kabeyi and Olanrewaju, 2022). 
However, relying solely on a single renewable energy source presents 
challenges due to its intermittency, as it is weather-dependent. To 
address this, the combination of two or more renewable sources to 
create a hybrid renewable energy system (HRES) becomes necessary 
(Ajiboye et al., 2023), in addition to this, the intermittency can also be 
addressed through optimization to "create stability and reliability in 
renewable energy supply and use" (Kabeyi and Olanrewaju, 2022).

A key area of focus in renewable energy research is Artificial 

Intelligence (AI), due to its potential for modeling, forecasting, opti
mizing, and managing energy sources (Entezari et al., 2023). Constant 
research into AI applications for the energy sector is crucial for devel
oping more sustainable solutions, this type of research has expanded 
rapidly in recent years, not only in renewable energy but also in areas 
like smart grids, energy consumption, and storage (Entezari et al., 
2023).

To efficiently harness renewable energy, it is essential to design 
optimal HRES using AI algorithms, which enable better monitoring, 
operation, maintenance, and storage of renewable energy sources (Liu 
et al., 2022). AI-based techniques have shown great promise, being 
considered more acceptable than traditional methods due to their ability 
to search for global optima, high computational precision, and fast 
convergence rates (Sawle et al., 2023). However, as was pointed by 
these authors relying on a single optimization algorithm often prevents 
achieving truly optimal results. In fact, several researchers have recog
nized opportunities for improvement through the combination of two or 
more algorithms, which can "complement each other and produce better 
optimization efficiency" (Cai et al., 2022). They argue that such hybrid 
approaches "can provide more accurate results and have the ability to 
solve multi-objective optimization problems" (Sawle et al., 2023) and 
that could be especially beneficial since real-world problems usually 
involve conflicting objectives that cannot be easily reduced to a single 
objective function. However, this approach wasn’t yet properly 
addressed in the Portuguese context by the scientific community.

This highlights the need for research on AI-based Hybrid Renewable 
Energy Systems, focusing on exploring new combinations of optimiza
tion algorithms that can efficiently handle multiple objective functions. 
As a result, the research question (RQ) placed in this investigation is: 
"What novel hybrid optimization algorithms can be developed to 
effectively address diverse objective functions in the context of AI-based 
Hybrid Renewable Energy Systems in Portugal?". As for the objectives to 
achieve in the research, the following ones were set: 

• Make a systematic literature review on the field of AI and Energy;
• Proposal of a hybrid optimization approach, which allows the exis

tence of a complementarity and synergy between them to handle a 
broader spectrum of objective functions;

• Development of experiments to evaluate the performance of the 
hybrid optimization algorithm, to optimization of Hybrid Renewable 
Energy System (HRES) in Portugal.

2. Related work

A Systematic Literature Review (SLR) was conducted following the 
PRISMA methodology (Preferred Reporting Items for Systematic Re
views and Meta-Analyses), with the purpose of exploring the current 
state of the art on the research topic and to gather relevant knowledge. 
To ensure a thorough review of the literature in the field of AI and En
ergy, the following literature research questions (LRQs) are formulated: 

LRQ1: What are the optimization algorithms that were used to create 
hybrid optimization algorithms to optimize HRES?
LRQ2: How do optimization algorithms contribute to overcoming 
challenges associated with the intermittent nature of renewable en
ergy sources?
LRQ3: How has multi-objective optimization been used in the design 
and operation of HRES?

To conduct the literature review, the steps outlined in the PRISMA 
methodology were followed. It was defined the eligibility criteria, 
establishing the inclusion and exclusion criteria for articles in the re
view. It was included only articles published after 2014, ensuring that 
the information gathered on Artificial Intelligence and Hybrid Renew
able Energy Systems is only the most recent. Given that the objective of 
this SLR is to explore the state of the art on Hybrid Renewable Energy 
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Systems using Hybrid Optimization Algorithms with Multi-objective 
Optimization in Portugal, the inclusion criteria outlined in Table 1
were defined. Regarding the exclusion criteria, articles were excluded if 
they: do not align with the scope of this thesis, are unavailable in full 
text, are not written in English, or focus on optimization software rather 
than algorithms.

To conduct this SLR, several databases were used: Scopus, Web of 
Science, IEEE Xplore, and Taylor & Francis. These databases were 
accessed directly, without the use of aggregators.

In the initial literature review, multiple keywords were identified, 
and only those most relevant to the study were selected. This process led 
to the development of the following query for an efficient search across 
the various information sources: 

"hybrid renewable energy systems" AND (ensemble* OR "hybrid algo
rithm" OR "hybrid optimization") AND ("multiobjective optimization" OR 
"multi-objective optimization")

This query was applied to the selected databases, where in the initial 
identification phase, 39 articles were found across the databases: 8 from 
Scopus, 6 from Web of Science, 1 from IEEE Xplore, and 24 from Taylor 
& Francis. Additionally, 5 more relevant articles were identified through 
other methods, bringing the total to 44 articles. After removing dupli
cates, 38 articles remained. In the second phase, the screening phase, 
these 38 articles were reviewed based on their titles and abstracts, 
resulting in the exclusion of 27 articles that did not align with the scope 
of this systematic literature review. The remaining 11 articles were then 
retrieved, with all being successfully obtained, so none were excluded 
for reason 2. During the eligibility phase, the full texts of these 11 studies 
were evaluated against the inclusion and exclusion criteria, ultimately 
leading to the inclusion of 9 articles in the final review. Subsequently, 
the LRQ outlined before are answered for each of the 9 articles.

To determine the optimal size of a HRES, Amereh et al. (2014)
employed a hybrid algorithm, that results from the combination of ge
netic algorithm (GA) and particle swarm optimization (PSO). The GA is 
used in the initial optimization phase and after a set number of itera
tions, defined as the Hybrid Constant (HC), PSO is applied to enhance 
optimization speed and local tuning ability (Amereh et al., 2014). The 
hybrid GA-PSO algorithm is designed to address a multi-objective 
optimization problem, aiming to minimize the Total Net Present 
Worth (TNPW) and maximize the Energy Index Reliability (EIR), 
achieving this by employing an ε-constraint method, where TNPW 
serves as the primary optimization function and EIR acts as a constraint, 
through this approach, the optimization makes it possible to obtain key 
system parameters (wind turbine (WT) swept area, photovoltaic (PV) 
panel area, and storage battery (SB) capacity) (Amereh et al., 2014). The 
HRES in the study consists of wind turbines, photovoltaic panels, and a 
storage battery, which is included to address the intermittency of 
renewable energy sources (Amereh et al., 2014).

Diab et al. (2019) conducted a study focused on optimizing the size 
of a HRES, where various algorithms have been applied: Whale Opti
mization Algorithm (WOA), Water Cycle Algorithm (WCA), Moth-Flame 
Optimizer (MFO), and the Hybrid Particle Swarm-Gravitational Search 
Algorithm (PSOGSA). The hybrid PSOGSA algorithm combines PSO with 

the Gravitational Search Algorithm (GSA), leveraging the exploitation 
capability of PSO and the exploration efficiency of GSA (Diab et al., 
2019). The optimization task was multi-objective, since its aim was to 
minimize the Loss of Power Supply Probability (LPSP), Cost of Energy 
(COE), and dummy load. To address the multiple objective functions, 
weights for each were determined through trial and error, to achieve the 
best results (Diab et al., 2019). Since the HRES in the study relies on 
intermittent renewable energy sources, the authors incorporated an 
energy storage system, specifically a battery bank, and a diesel gener
ator, the latter being only used when renewable sources and the battery 
bank could not meet energy demands (Diab et al., 2019).

The study developed by Capraz et al. (2020) aimed to optimize the 
sizing of a hybrid renewable energy system without storage (HRES-WS), 
by combining a weighted multi-objective mixed-integer linear pro
gramming (WMO-MILP) model with Monte Carlo simulation. The 
WMO-MILP model enables an analysis of how different objective func
tions influence system sizing, with the weights assigned to each function 
reflecting the decision-maker’s priorities, whether cost-based, environ
mental-based, or a mix of both (Capraz et al., 2020). Monte Carlo 
simulation is used to account for the stochastic nature of the modeling 
environment, allowing for the prediction of weather data and load de
mand based on historical data (Capraz et al., 2020). The model handles a 
multi-objective optimization problem, where the goals are to minimize 
the gap between total cost and revenue, and to reduce the total annual 
CO2 emissions. Capraz et al. (2020) found that increasing the weight of 
the CO2 minimization objective leads to higher system costs.

Rathish et al. (2021) conducted a study to optimize the design of a 
HRES for Tamil Nadu, India, using a hybrid algorithm that combines the 
Multi-objective Evolutionary Algorithm (MOEA) and GA. This optimi
zation approach considered three key objectives: minimizing Net Pre
sent Cost (NPC), unmet load, and the CO2 emissions from the system 
(Rathish et al., 2021). The MOEA evaluates these objectives in a vector, 
with each objective linked to the problem’s decision variables, enabling 
the identification of a Pareto set of non-dominated solutions (Rathish 
et al., 2021). The GA then selects the solution that minimizes NPC from 
the component combinations generated by the MOEA (Rathish et al., 
2021). The proposed HRES consists of PV, wind, diesel, and battery 
systems, though the study demonstrated that energy demand could be 
met without relying on the diesel generator, highlighting the feasibility 
of using renewable energy sources in the region (Rathish et al., 2021).

To determine the optimal size of a microgrid in Bihar, India, Suman 
et al. (2021) used a hybrid PSO-GWO algorithm, which combines PSO 
and Grey Wolf Optimization (GWO). While PSO is effective at exploi
tation, it has limited exploration capability, often converging to local 
optima rather than the global solution, to address this, GWO was inte
grated in order to "minimize the probability of falling into a local min
imum” (Suman et al., 2021). The optimization problem is 
multi-objective, since it aims to minimize both the COE and the Deficit 
of Power Supply Probability (DPSP), to address this they were trans
formed into a single-objective problem using linear scalarization, where 
"the objectives are either combined to form a linear function or are taken 
as constraint for optimization" (Suman et al., 2021). Each objective 
function was assigned a weight to reflect its importance, along with a 
fraction between the value of the objective function and its maximum 
limit (Suman et al., 2021). The study’s energy system is a HRES, relying 
primarily on RES, which are inherently intermittent, to address this, the 
system includes a battery storage unit and a diesel generator. When the 
energy produced by RES exceeds demand, the excess is stored in the 
battery. If the combined energy from the RES and the battery is insuf
ficient to meet demand, the diesel generator is used as a backup (Suman 
et al., 2021).

The study conducted by Çetinbaş et al. (2022) focused on the "sizing 
optimization and design of autonomous microgrids" (Çetinbaş et al., 
2022) using the hybrid algorithm Harris Hawks Optimizer-Artithmetic 
Optimization Algorithm (hHHO-AOA), that allows to improve the so
lution accuracy and computational speed by improving search 

Table 1 
Inclusion and exclusion criteria definition.

Inclusion 
criteria

Meet the scope of 
this thesis

Considers a Hybrid Renewable Energy 
System (HRES)
Hybrid optimization algorithm in the 
context of HRES
Multi-objective optimization algorithm in 
the context of HRES

Exclusion 
criteria

Reason 1 Does not meet the scope
Reason 2 Not available as full text
Reason 3 Not in English language
Reason 4 Uses software for optimization instead of 

an algorithm
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efficiency. The optimization problem addressed in the study is 
multi-objective, with the goal of minimizing the LPSP and the COE, to 
address this, the authors made the problem into a single-objective 
optimization using the weighted sum method, where it is assigned 
specific weights to each objective function (Çetinbaş et al., 2022). In 
response to the challenges associated with renewable energy sources, 
the study incorporated a battery storage system (BSS) and a diesel 
generator (DG) to ensure uninterrupted operation (Çetinbaş et al., 
2022).

The study conducted by Fendzi Mbasso et al. (2023) aimed to "assess 
and improve the reliability and autonomy of the HRES" (Fendzi Mbasso 
et al., 2023), through the application of a hybrid algorithm that com
bines PSO with GWO, the latter has the exploration capability, making it 
possible to avoid local optima (Fendzi Mbasso et al., 2023). The opti
mization problem is multi-objective, aiming to minimize the DPSP, 
maximizing Autonomous Days (AD), and maximizing the energy stored 
in the Battery Storage System (BSS), the authors achieved this optimi
zation using two parameters obtained through trial and error (Fendzi 
Mbasso et al., 2023). A component of the system is the battery storage 
system (BSS), which ensures a "reliable, suitable, and sustainable sys
tem" (Fendzi Mbasso et al., 2023) by addressing the intermittency of 
renewable energy sources in the HRES.

The study of Hossain et al. (2023) aimed to determine the optimal 
sizing of a HRES using a hybrid algorithm that combines the 
Non-dominant Sorting Genetic Algorithm II (NSGA II) and the GWO. 
NSGA II offers fast and efficient convergence but comes with high 
computational complexity, while GWO has slower convergence, lower 
complexity, and greater exploration ability (Hossain et al., 2023). By 
merging these two algorithms, the NSGA-GWO "preserves the ingenuity 
of both algorithms and combines them to generate a much more reliable 
outcome" (Hossain et al., 2023). The problem was framed as a 
multi-objective optimization with two main goals of minimizing the 
total cost and the LPSP, addressing these as a single objective function 
that simultaneously minimizes these two factors (Hossain et al., 2023). 
To manage the intermittent nature of renewable energy, the study 
incorporated an energy storage device within the HRES (Hossain et al., 
2023).

To tackle the problem of optimal sizing for a HRES, Güven et al. 
(2023) employed the Hybrid Firefly Particle Swarm Optimization 
(HFAPSO) algorithm. This method was chosen for its ability to navigate 
complex optimization landscapes, find global optimal solutions, and 
handle intricate constraints, demonstrating its robustness (Güven et al., 
2023). The optimization task is multi-objective, since it aims to mini
mize the annual system cost (ASC), the levelized cost of energy (LCOE), 
and the net present cost (NPC). To ensure system reliability, the HRES 
integrates a battery and a diesel generator (Güven et al., 2023).

As a result of the systematic literature, it was possible to draw con
clusions regarding the decision variables and objective functions used by 
context area, the most used objective functions and their respective best 
results, and to identify the associated hybrid algorithms.

Analyzing the decision variables and hybrid algorithms, used in the 
nine articles identified in the SLR, in the various context areas verified 
(rural, university, smart cities, or home), it was possible to construct 
Table 2. This table highlights that the decision variables, such as the 
number of PV modules, wind turbines, and battery storage banks, are 
present across all four context areas. The number of PV modules, wind 
turbines and diesel generators hold particular significance in rural and 
university settings. The number of autonomous days, while less 
frequently used, appears in both rural and university areas. The 
remaining decision variables are distributed sporadically across the 
different context areas.

It was also essential to create Table 3 to assess the objective functions 
applied across different context areas. According to the table, in rural 
areas, the most used objective functions are minimizing the COE and 
minimizing the DPSP, while in other areas of context, the objective 
functions appear more varied. Overall, across all four context areas, the 

most frequently used objective functions are minimizing the COE, LPSP, 
total annual CO2 emissions, TNPC, and DPSP.

Table 4 presents the most used objective functions mentioned earlier, 
while also highlighting the best results obtained for each function, 
leading to the identification of three hybrid algorithms: MOEA-GA, PSO- 
GWO, and NSGA-GWO.

This systematic literature review (SLR) offers a novel contribution to 
the field of Hybrid Renewable Energy Systems (HRES) optimization 
through two key aspects: the inclusion of recent studies and a compre
hensive analysis of hybrid optimization algorithms. By applying the 
PRISMA methodology, this review ensures a rigorous and up-to-date 
perspective on the state of the art, focusing on studies published after 
2014. This timeframe captures the latest advancements in hybrid algo
rithms and multi-objective optimization techniques applied to HRES, 
particularly those incorporating AI. By prioritizing recent studies, this 
review presents a timely reflection of current trends and breakthroughs 
in the field, ensuring that the findings remain relevant to ongoing 
research and practical applications. The focus on recent developments 
allows for a deeper understanding of emerging methodologies and their 
impact on optimizing hybrid renewable energy systems. Additionally, 
this review introduces a structured analysis of hybrid optimization al
gorithms based on three key research questions: (i) identifying the 
optimization algorithms used to develop hybrid approaches for HRES, 
(ii) assessing how these algorithms address the challenges posed by the 
intermittent nature of renewable energy sources, and (iii) examining the 
role of multi-objective optimization in the design and operation of 
HRES. Through this analysis, the review explores the decision variables 
and optimization techniques applied in different context areas (rural 
areas, universities, smart cities, and residential applications). It also 
examines the objective functions commonly used in these environments 
and highlights the best-performing approaches. This comparison pro
vides new insights into how hybrid optimization algorithms can effec
tively balance multiple objectives. Furthermore, it identifies key hybrid 

Table 2 
Hybrid algorithm, context area and respective decision variables.

Context areas

R U SC H

Decision variables AW ​ ​ ​ ​
AS ​ ​ ​ ​
SBcap ​ ​ ​ ​
NPV b), e) c), f), i) d) h)
NWT b), e) c), f), i) d) h)
nBatt b) i) d) h)
nDG b), e) f), i) ​ ​
gbt ​ c) ​ ​
gst ​ c) ​ ​
zt ​ c) ​ ​
pt ​ ​ d) ​
wt ​ ​ d) ​
bt ​ ​ d) ​
dt ​ ​ d) ​
it ​ ​ d) ​
Pmingen ​ ​ d) ​
P1gen ​ ​ d) ​
Pcriticalgen ​ ​ d) ​
SOCstopgen ​ ​ d) ​
SOCmin ​ ​ d) ​
NAD g) f) ​ ​
DPSP g) ​ ​ ​
Edumped g) ​ ​ ​
β ​ ​ ​ h)
h ​ ​ ​ h)
ACS ​ i) ​ ​
LCOE ​ i) ​ ​
NPC ​ i) ​ ​
BS ​ i) ​ ​
Inverter ​ i) ​ ​
RWT ​ i) ​ ​
RPV ​ i) ​ ​
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optimization strategies that have demonstrated superior performance 
across various scenarios, contributing to a clearer understanding of the 
most effective methodologies for optimizing HRES.

Based on the analysis carried out previously, it is possible to rec
ommended as decision variables to use in the context of rural areas and 
universities: number of solar panels, wind turbines, and diesel genera
tors. Regarding objective functions to use in the context of rural areas it 
is recommended: minimizing COE and minimizing DPSP. For the other 
considered contexts that aren’t mentioned in the recommendations of 
decision variables and objective functions, the observations are too 
scattered to make scientifically supported recommendations. Regarding 
the choice of algorithms for developing a hybrid model, while several 
algorithms, such as the WMO-MILP algorithm, are commonly employed 
for optimizing hybrid renewable energy systems, based on Tables 4 and 
it is recommended to use PSO, GWO, and NSGA. With this we opted to 
proceed with the PSO-GWO algorithm.

3. Problem formulation

Following the analysis of related work, in this section it is applied the 
information gathered so far to optimize a Hybrid Renewable Energy 
System using a hybrid algorithm with multi-objective functions, within 
the context of Portugal. This section is structured into three main points: 
data, problem formulation, and algorithms. Point 3.1 presents the data 
that was used, specific to Portugal: (1) characteristics of the most used 
photovoltaic panels and wind turbines; (2) weather conditions; and (3) 
load demand. Point 3.2 outlines the problem formulation, describing the 
decision variables considered in the optimization process, the equations 
used to calculate the power output of the photovoltaic panels and wind 
turbines, and the objective functions. Finally, Section 3.3 introduces the 
HPPSGWO hybrid algorithm.

3.1. Data collection

This point outlines the data used in terms of components, weather 
conditions, and load demand.

Regarding the components, the idealized hybrid renewable energy 
system consists of photovoltaic panels and wind turbines, therefore, data 
on those that are most used in Portugal were gathered from manufac
turers (Tables 5 and 6).

A renewable energy system depends on weather conditions for en
ergy production, with this, it was necessary the collection of weather 
data such as direct irradiance, diffuse irradiance, albedo irradiance, air 
temperature, and wind speed to estimate energy output. For this pur
pose, data from the Copernicus Atmosphere Monitoring Service (CAMS) 
and the Copernicus Climate Change Service (C3S) was used (Table 8).

To gather data from CAMS, the option "Both cloud-free and actual 
weather conditions" was chosen over "Cloud-free only" to ensure the 
most accurate representation of weather conditions. The data retrieved 
was specific to Portugal, with coordinates set to latitude 39.0000 and 
longitude − 7.0000, covering the period from January 2008 to April 
2024, with an hourly time step and universal time reference (Copernicus 
Atmosphere Monitoring Service, 2020) (Table 7). Additionally, data 
from C3S was used, specifically the "wind speed at 10m" and "2m air 
temperature" aggregated spatially at the country level and temporally at 
an hourly level (Table 8). This resulted in one file per variable for the 
entire time series (Copernicus Climate Change Service, 2020).

The data retrieved from CAMS and C3S was then preprocessed, 
resulting in an unique dataframe. Given that the project involves opti
mizing a hybrid renewable energy system for a single year, it can be 
chosen any year between.

2008 and 2023, consequently, depending on the chosen year, the 
preprocessed dataframe will cover from January of the selected year to 
December of the same year (Table 7).

To calculate the considered objective functions and assess whether 
the hybrid energy system generates enough energy to meet demand, 
data on load demand in Portugal was collected and analyzed. This 
involved using open-source data from REN (REN, 2024), which spans 
from January 2008 to April 2024, although data for 2010 is only 
available for January 1st (Table 9).

3.2. Problem formulation

The optimization of the HRES, that consists in photovoltaic panels 
and wind turbines, was performed hourly over the span of a year, 
equating to the optimization of 8760 h. The variables adjusted during 
this process were NPV , β, NWT and h. The optimization performed was 
multi-objective, as it simultaneously addresses the minimization of LPSP 
and the minimization of the amount of CO2 emissions produced by the 
hybrid system.

3.2.1. Decision variables and constraints
To optimize the size of a hybrid energy system, four decision vari

ables were used, as mentioned earlier: NPV , β, NWT and h. The constraints 
defining the lower and upper limits for each decision variables are 
outlined in equations (1)–(3), while equations (4) and (5) specify the 
potential heights for the E70 and E82 wind turbines, respectively. 

Table 3 
Hybrid algorithm, context area and respective objective function.

Hybrid algorithm

b) c) d) e) f) g) h)

Objective functions Minimize COE ($/kWh) 0.185 ​ ​ 0.169 0.209 ​ ​
Minimize LPSP (%) 9.073*10− 7 ​ ​ ​ 6.506 ​ 0
Minimize total annual amount of CO2 produced (kg CO2/year) ​ 1469 806 ​ ​ ​ ​
Minimize TNPC ​ ​ 61,027.9 € ​ ​ ​ 35,693.77$
Minimize DPSP (%) ​ ​ ​ 6 ​ 1.375 ​

Table 4 
Systems performance, objective functions more used and respective best values 
obtained.

Context areas

R U SC H

Objective 
functions

Minimize TNPW ($) ​ ​ ​ ​
Maximize EIR (%) ​ ​ ​ ​
Minimize COE ($/kWh) b), 

e)
f) ​ ​

Minimize LPSP (%) b) f) ​ h)
Minimize Pdummy (kWh) b) ​ ​ ​
Minimize difference in total cost and 
total revenue (USD)

​ c) ​ ​

Minimize total annual amount of CO2 

produced (kg CO2/year)
​ c) d) ​

Minimize TNPC ($) ​ ​ d) h)
Minimize UL (%) ​ ​ d) ​
Minimize DPSP (%) e), 

g)
​ ​ ​

Maximize AD g) ​ ​ ​
Maximize Edumped (Kw) g) ​ ​ ​
Minimize ASC ($) ​ i) ​ ​
Minimize LCOE ($/kWh) ​ i) ​ ​
Minimize NPC ($) ​ i) ​ ​
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Nmin
PV ≤NPV ≤ Nmax

PV (1) 

Nmin
WT ≤NWT ≤ Nmax

WT (2) 

0̊≤ β ≤ 90◦ (3) 

hE70 = [57, 64,85,113] (4) 

hE82 = [78, 85,98,108,138] (5) 

3.2.2. Modeling of hybrid renewable energy system
The power generated by a PV panel is given by equation (6) (Hossain 

et al., 2023), the calculation of which depends on equations (7)–(25). 
This is influenced by environmental factors, such as global solar irra
diance and ambient temperature, and on the manufacturer information 
that was gathered. Of the equations mentioned, we highlight the one 
relating to global irradiance, that is the sum of direct, diffuse, and albedo 
irradiance. 

PPV(t, β) =NPV . VOC(t, β).ISC(t, β).FF(t) (6) 

FF(t)=
VMP . IMP

VOC(t, β) . ISC(t, β)
(7) 

VOC(t, β)=
{
VOC STC − KVTC(t)

}
(8) 

ISC(t, β) =
{
ISCSTC +KI[TC(t) − 25̊C]

}G(β, α)
1000

(9) 

TC(t)=TA + (NCOT − 20̊C)
G(β, α)

800
(10) 

PPV array(t, β)= ηPV . NPV .PPV(t, β) (11) 

Table 5 
Characteristics of the solar panels considered.

# Manufacturer Power Output 
(W)

VMP 
(V)

IMP 
(A)

VOC 

(V)
ISC 

(A)
Temperature coefficient of VOC 

(%/oC)
Temperature coefficient of ISC 

(%/oC)
NOCT 
(oC)

ηPV

1 Tallmax 330 34.9 7.04 46.2 9.27 − 0.29 0.05 44 17
2 Tallmax 335 35.1 7.12 46.3 9.36 − 0.29 0.05 44 17.3
3 Tallmax 340 35.2 7.19 46.5 9.45 − 0.29 0.05 44 17.5
4 Tallmax 345 35.5 7.25 46.7 9.50 − 0.29 0.05 44 17.8
5 Tallmax 350 35.6 7.33 46.9 9.60 − 0.29 0.05 44 18.0
6 Tallmax 355 35.8 7.40 47.0 9.69 − 0.29 0.05 44 18.3
7 Canadian 

Solar
355 35.4 7.32 46.8 9.61 − 0.30 0.053 45 17.85

8 Canadian 
Solar

360 35.6 7.36 47.0 9.69 − 0.30 0.053 45 18.10

9 Canadian 
Solar

365 35.8 7.41 47.2 9.77 − 0.30 0.053 45 18.35

10 Canadian 
Solar

370 36.0 7.45 47.4 9.85 − 0.30 0.053 45 18.60

11 JA Solar 315 34.45 6.77 45.85 9.01 − 0.33 0.058 45 16.22
12 JA Solar 320 34.64 6.84 46.12 9.09 − 0.33 0.058 45 16.47
13 JA Solar 325 34.82 6.91 46.38 9.17 − 0.33 0.058 45 16.73
14 JA Solar 330 35.03 6.97 46.40 9.28 − 0.33 0.058 45 16.99
15 JA Solar 335 35.21 7.04 46.70 9.35 − 0.33 0.058 45 17.25
16 JA Solar 340 35.06 7.09 46.86 9.46 − 0.30 0.06 45 17.5
17 JA Solar 345 35.33 7.14 47.05 9.54 − 0.30 0.06 45 17.76
18 JA Solar 350 35.59 7.19 47.24 9.61 − 0.30 0.06 45 18.02
19 JA Solar 355 35.81 7.25 47.45 9.69 − 0.30 0.06 45 18.28
20 JA Solar 360 36.03 7.31 47.66 9.78 − 0.30 0.06 45 18.57

Table 6 
Characteristics of the wind turbines considered.

# Manufacturer Name Vr 

(m/ 
s)

Vcut− in 
(m/s)

Vcut− out 

(m/s)
AW 

(m2)
h

1 Enercon E70 14 2.5 34 3959 57
2 Enercon E70 14 2.5 34 3959 64
3 Enercon E70 14 2.5 34 3959 85
4 Enercon E70 14 2.5 34 3959 98
5 Enercon E70 14 2.5 34 3959 113
6 Enercon E82 12 2.5 34 5281 78
7 Enercon E82 12 2.5 34 5281 85
8 Enercon E82 12 2.5 34 5281 98
9 Enercon E82 12 2.5 34 5281 108
10 Enercon E82 12 2.5 34 5281 138

Table 7 
df_tmy_year and df_consume_year data description.

Data 
type

Latitude Longitude Temporal coverage Temporal 
resolution

Time 
series

39.0000 − 7.0000 January of the selected year 
to December of the selected 
year

1-hourly

Table 8 
df_tmy_year variables description.

Name Units Description

GHI Wh m- 
2

Global horizontal all sky irradiation

BHI Wh m- 
2

Direct horizontal all sky irradiation

DHI Wh m- 
2

Diffuse horizontal all sky irradiation

wind_speed m s-1 “Magnitude of the two-dimensional horizontal air 
velocity at height of 10 m” (Copernicus Climate 
Change Service, 2020)

air_temperature ◦C “The ambient air temperature near to the surface, 
typically at height of 2m” (Copernicus Climate Change 
Service, 2020)

Table 9 
df_consume_year variables description.

Name Units Description

Consumption Wh Amount of electricity that has been consumed by end users
Total sold Wh Amount of electricity sold by REN
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G(β, α)=B(β, α) + D(β, α) + R(β, α) (12) 

B(β, α)=B max(0, cos θS) (13) 

B=
B(0)

cos θZS
(14) 

cos θS = [sign(ϕ)]sin δ sin(abs(ϕ) – β) + cos δ cos(abs(ϕ) – β)cos ω
(15) 

δ=23.45̊ sin
[
360(dn + 284)

365

]

(16) 

ω=15 x (TO – AO – 12) – (LL – LH) (17) 

B0 =1367 W
/
m2 (18) 

cos θZS = sin δ sin ϕ + cos δ cos ϕ cos ω (19) 

D(β, α)=DI(β, α) + DC(β, α) (20) 

DI(β, α)=D(0) (1 − k1)
1 + cos β

2
(21) 

k1 =
B

B0ԑ0
(22) 

ԑ0 =1 + 0.033 cos
(

360 dn

365

)

(23) 

DC(β, α)= D(0)k1

cos θZS
max (0, cos θS) (24) 

R(β, α)= ρref G(0)
1 − cos β

2
(25) 

The power generated by a wind turbine is described by equations 
(26) and (27) or (28) (Çetinbaş et al., 2022; Hossain et al., 2023), this 
being dependent on the wind speed, the turbine’s rated power, and 
manufacturer-supplied parameters. The wind speed at a specific height 
can be determined using equation (29), which considers the wind speed 
at the reference height, the reference height, and the installation height 
of the turbine - a decision variable of the optimization problem (Hossain 
et al., 2023). The rated power is calculated using equation (30), incor
porating the maximum power coefficient, a value provided by manu
facturers and dependent on wind speed. The power curves provided by 
each manufacturer on a wind turbine help to determine the maximum 
power coefficient.

If V < Vcut− in or V > Vcut− out : 

PWT =0 (26) 

If Vcut− in ≤ V ≤ Vr : 

PWT =V3
(

PWTr

V3
r − V3

cut− in

)

− PWTr .

(
V3

cut− in

V3
r − V3

cut− in

)

(27) 

If V > Vcut− out: 

PWT =PWTr (28) 

Vr

(
h
hr

)α

(29) 

PWTr =Cp max
1
2

ρairAWTV3
r (30) 

3.2.3. Objective functions
One of the objective functions evaluated in this project is LPSP, 

which serves as an indicator of the reliability of the hybrid renewable 

energy system. The LPSP is defined as the ratio of unmet energy demand, 
as expressed in equation (31), where its value ranges from 0 to 1, where 
0 indicates that the energy demand is fully satisfied, representing 
maximum system reliability, while a value of 1 signifies a complete 
failure to supply energy to the load, indicating an unreliable system 
(Çetinbaş et al., 2022). 

LPSP=

∑t=8760

t=1
EDE(t)

∑t=8760

t=1
ELOAD(t)

(31) 

The second objective function serves as an environmental indicator, 
as it seeks to minimize the annual CO2 emissions generated by the hybrid 
energy system. CO2 emissions are calculated based on the amount of 
electricity purchased from the grid, multiplied by the CO2 emission 
coefficient per watt-hour (Wh), which is 0.000866 kg CO2/Wh (Capraz 
et al., 2020). This objective function is represented by equation (32). 

CO2 = ԑ
∑

t ϵ T
gbt (32) 

To perform the multi-objective optimization, the two objective 
functions outlined earlier were both evaluated on an annual basis. This 
multi-objective problem was approached as a single-objective optimi
zation, using the weighted sum method, which is represented by equa
tions (33) and (34) (Çetinbaş et al., 2022; Suman et al., 2021), being this 
later adapt to the optimization problem of this paper, resulting in 
equation (35). Equation (33) normalizes the objective functions by 
dividing the value of each objective function by its maximum, ensuring 
the functions are scaled between 0 and 1 (Capraz et al., 2020). Since the 
objective function related to the minimization of LPSP, already has 
values between 0 and 1, only the objective function that seeks the 
minimization of the annual CO2 emissions generated by the system, was 
normalized as indicated in equation (35). As the minimization of the 
CO2 emissions depends on the amount of electricity purchased from the 
grid, it is assumed that its maximum value is achieved when all elec
tricity consumption is met by the grid, meaning the hybrid energy sys
tem generates no energy to meet demand. 

FWS (xDV)=
∑k

i=1
wi.

fi(xDV)

fmax
i (xDV)

(33) 

∑k

i=1
wi =1, 0 < wi ≤ 1, i = 1,…, n (34) 

FWS (NPV ,NWT , β, hh)= =min
[

w1 . LPSP(NPV ,NWT , β, hh)+w2

.
CO2(NPV ,NWT , β, hh)

CO2max(NPV ,NWT , β, hh)

] (35) 

3.2.4. Hybrid parallel PSO-GWO (HPPSGWO)
To leverage the strengths of both PSO and GWO, Şenel et al. (2019)

developed a hybrid PSO-GWO algorithm. However, its extended runtime 
remained a key limitation due to the additional computational overhead 
of incorporating GWO (Şenel et al., 2019). To overcome this, the algo
rithm was parallelized using the PPSO approach introduced by Char
ilogis et al. (2023) and implemented on GPUs with CuPy and cuDF 
libraries. This Hybrid Parallel PSO-GWO (HPPSGWO) aimed to reduce 
the likelihood of getting stuck in local minima, shorten execution time, 
and optimize computational resource utilization. By integrating PSO’s 
exploitation capability, GWO’s global search efficiency, and the speedup 
of PPSO-based parallelization, HPPSGWO achieves superior perfor
mance. The pseudocode for HPPSGWO is shown in Algorithm 1, and its 
graphical representation is provided in Fig. 1. 

Algorithm 1. Pseudocode for Hybrid Parallel PSO-GWO.  
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Fig. 1. Flowchart of the HPPSGWO.
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4. Results

4.1. Exploration of data

An analysis of global irradiance, load power, and wind speed in 
Portugal in the year of 2022 was conducted, having revealed significant 
patterns relevant to energy production and consumption.

Global irradiance data shows a clear daily and seasonal cycle. Daily, 
irradiance peaks at 1 p.m. with values exceeding 600 W/m2, while it 
stays in 0 W/m2 between 1 a.m. and 5 a.m. and from 9 p.m. to midnight. 
This pattern reflects the hours of sunlight, with a gradual increase in 
irradiance from just after 6 a.m. to the peak and a subsequent decline 
after 1 p.m. (Fig. 2). Monthly data indicates that irradiance is highest in 
July, approaching 350 W/m2, and lowest in December, ranging between 
50 and 100 W/m2. The seasonal trend shows higher irradiance from 

spring to summer and lower values in winter, making April to August the 
optimal period for solar energy production, with July being particularly 
favorable (Fig. 3).

Load power data reveals that power consumption has distinct daily 
and monthly trends. Daily, load power peaks at around 1 p.m. and again 
between 9 p.m. and 10 p.m., reaching values over 6500 MW, while the 
lowest consumption occurs around 6 a.m. This trend reflects increased 
energy use during daytime and evening hours (Fig. 4). Monthly data 

Fig. 3. Average monthly global irradiance in 2022.

Fig. 4. Average daily load power in 2022.

Fig. 5. Average monthly load power in 2022.

Fig. 6. Average daily wind speed in 2022.

Fig. 7. Average monthly wind speed in 2022.

Fig. 2. Average daily global irradiance in 2022.

Table 10 
Upper and lower bounds of decision variables for experiment 1 and 2.

NPV NWT β h

Upper bound 1500 1001 90 (check 3.2.1.)
Lower bound 1000 500 0 (check 3.2.1.)
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shows that load power is highest in January, exceeding 6000 MW, and 
lowest in August, just above 5000 MW. The increased load in winter is 
likely due to heating needs, while high consumption in summer is 
attributed to cooling demands (Fig. 5).

Wind speed data displays both daily and monthly variations. Daily 
wind speed peaks at 4 p.m. at approximately 3.6 m/s, with the lowest 
speeds around 7 a.m. at about 2.4 m/s. Wind speeds are generally higher 
in the afternoon and lower in the early morning (Fig. 6). Monthly data 
shows that wind speed is highest in December, surpassing 3.0 m/s, and 
lowest in February, dropping below 2.5 m/s. Seasonal patterns indicate 
a moderate decrease in wind speed from winter to summer, with rela
tively consistent speeds during the rest of the year (Fig. 7).

These figures depict the optimization process of key system param
eters - number of photovoltaic panels, tilt angle, number of wind tur
bines, and height of wind turbines—focusing on their impact on power 
supply reliability and environmental benefits over a one-year period. 
Overall, these observations provide valuable insights into the potential 
for solar and wind energy production in Portugal and highlight patterns 
in energy consumption, guiding future energy planning and use.

4.2. Experiments

Three experiments were conducted using the PSO-GWO parallel 
hybrid algorithm.

The upper and lower bounds for the decision variables in 

experiments 1 and 2 are listed in Table 10. These bounds were selected 
based on values used in the previous studies reviewed in the SLR that 
employed the same decision variables.

The first experiment, lasted approximately 13 h to run, the 
HPPSGWO algorithm was tested with the parameters present in 
Table 11, with the upper and lower limits of the decision variables 
specified in Table 10. The optimization process is shown in Fig. 8. 
Regarding the convergence trend, the average best fitness (ABF) de
creases over iterations, demonstrating the HPPSGWO algorithm’s ability 
to improve solution fitness. Initially, the ABF is slightly below 0.420 and 
decreases to 0.390, showing improvement, but then slightly increased to 
around 0.400, indicating a minor deterioration. The shaded area around 
the convergence line represents the variability in the ABF values. A 
narrower shaded area indicates less variability, while a wider area sig
nifies more. Observing Fig. 8, it is evident that variability increased over 
the iterations, with a brief narrowing from iteration 3 to 4, which might 
suggest potential stabilization if more iterations were performed. The 
slight rise in ABF from iteration 3 to 4, indicates that the hybrid 

Table 11 
Values for the parameters of HPPSGWO for experiment 1, 2 and 3.

Parameter Meaning Experiment

1 2 3

PSO sizeswarm Size of swarm, number of particles to generate 100 100 200
itermax Maximum number of generations to perform 5 15 20
runsmax Maximum number of runs to perform 10 10 10
w Inertia weight 1.0 1.0 1.0
c1 Cognitive component 1.0 1.0 2.0
c2 Social component 1.0 1.0 2.0

GWO prob Small possibility rate 0.4 0.4 0.4
itersmall Small number of iterations that the GWO will run 10 10 10
smallswarm Small number of swarm size that the GWO will run 10 10 10

MOO w1 Weight for objective function 1 0.5 0.5 0.5
w2 Weight for objective function 2 0.5 0.5 0.5

Parallel execution NI Total number of parallel processing units 4 4 8
NR Number of iterations, after which a processing unit sends its best particles to the remaining units 15 15 15
NP Number of migrated particles between the parallel processing units 5 5 5
ϵ Small value (used in the termination rule) 10–6 10–6 10–6

NM Number of continuous repetitions (used in the termination rule) 15 15 15

Fig. 8. ABF results for experiment 1. Fig. 9. ABF results for experiment 2.

Table 12 
Upper and lower bounds of decision variables for experiment 3.

NPV NWT β h

Upper bound 2500 2500 90 (check 3.2.1.)
Lower bound 0 0 0 (check 3.2.1.)
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algorithm encountered a local minimum. To address this, additional 
iterations or parameter adjustments might be necessary. Overall, the 
algorithm is optimizing effectively, though some parameter tuning 
could enhance its performance.

In the second experiment, the focus was on increasing the number of 
iterations to see if it helps escaping local minima and finding better 
solutions. This experiment took about 30 h, used the parameters speci
fied in Table 11 and the upper and lower limits of the decision variables 
were set as it is indicated in Table 10. From the convergence curve 
(Fig. 9), it can be observed that the optimization algorithm continues to 
improve fitness as the.

Number of iterations increase. The ABF value starts at around 0.480 
and, by iteration 14, reaches a value above 0.455, indicating a deteri
oration over the first experiment. There was still high variability in the 
ABF values, though less pronounced between iterations 4 and 6. The 
results displayed similar behavior to the first experiment, particularly 
between iterations 0 and 4. From iteration 4 to iteration 14, peaks and 
troughs in the ABF values, suggest that the algorithm encounters local 
minima, but manages to escape them, as evidenced by the convergence 
line decreasing after each peak. Despite these fluctuations between it
erations 4 and 14, the overall ABF trend shows a gradual decline, from 
0.465 in iteration 4 to approximately 0.455 by the final iteration. The 
reported behavior suggests that further experimentation with different 
parameter values might be beneficial.

In the third experiment, various parameters of the HPPSGWO algo
rithm were adjusted to improve optimization outcomes. These changes 
are detailed in Table 11 and are explained next. The number of iterations 
was increased to assess whether further improvements in ABF could be 
achieved or if fitness would stabilize. For the PSO-specific parameters, 
both cognitive and social components were set to 2, as this value “has 
been shown to be appropriate for several applications” (Vanneschi and 
Silva, 2023). Additionally, the swarm size in the Particle Swarm Opti
mization was doubled to improve solution quality, as larger swarms 
allow for the exploration of more regions within the solution space, thus 
enhancing convergence towards the global optimum. To further explore 
the search space, the upper and lower bounds for the decision variables – 
number of solar panels and number of wind turbines – were increased 
(as shown in Table 12). This adjustment expanded the search space, 
allowing the algorithm to investigate solutions that were previously 
inaccessible due to the earlier limits. Lastly, the number of parallel 
processing units was increased to 8, as prior studies have shown that this 
increase “significantly improves the efficiency of the technique in 
finding the global minimum” (Charilogis et al., 2023). The convergence 
line of this experiment is presented in Fig. 10, having lasted about 60 h. 
The convergence curve shows that the hybrid algorithm begins with an 

initial ABF value of 0.150, which is significantly lower than the starting 
values in experiment 1 and experiment 2. Between iterations 0 and 1, the 
ABF value remains constant, followed by a slight increase from iteration 
1 to 2. However, a sharp decrease occurs up to iteration 3, where the 
lowest ABF value is reached. This rapid improvement in the early iter
ations indicates that the algorithm is effective at enhancing solution 
quality in its initial stages. After iteration 3, the algorithm’s performance 
exhibits oscillations, with a gradual downward trend between iterations 
6 (with an ABF value of 0.20) and 19 (where the ABF value falls below 
0.10). This suggests that the algorithm is making incremental im
provements over time. Observing Fig. 10 it is also possible to see a sig
nificant variability across different runs, likely due to the stochastic 
nature of the hybrid algorithm. While the fluctuations and variability 
may indicate a strong exploration capability, further parameter tuning is 
required to reduce variability and stabilize convergence.

For a potential experiment 4, it would be necessary to fine-tune the 
parameters of the hybrid algorithm, to stabilize convergence and reduce 
variability.

When comparing the convergence line of experiment 2 and experi
ment 3, experiment 2 begins with an ABF value close to 0.480, which is 
higher than the initial value of approximately 0.150 in experiment 3, 
meaning that the initial solution of experiment 3 is of higher quality 
than in experiment 2. Experiment 2 shows a general downward trend, 
with minor fluctuations in the last few iterations, indicating that the 
solution is stabilizing. In contrast, experiment 3 exhibits more oscilla
tions and lacks a clear downward trend, suggesting less stability and a 
stronger emphasis on exploration of the search space, even during the 
final iterations. Analyzing the impact of parameter changes between the 
two experiments, the larger swarm size in experiment 3, compared to 
experiment 2, contributes to greater variability and more oscillations, as 
larger swarm explores a wider area of the search space. The cognitive 

Fig. 10. ABF results for experiment 3.

Fig. 11. Experiment 3 best solution, mean number of solar panels per month.

Fig. 12. Experiment 3 best solution, mean tilt angle of solar panels per month.
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and social components were also increased from 1.0 in experiment 2 to 
2.0 in experiment 3, amplifying the influence of individual and social 
learning, this results in more exploration, leading to increased fluctua
tions. Additionally, experiment 3 used broader decision variable limits 
compared to experiment 2, expanding the search space and further 
contributing to increased variability.

The experiments revealed that the lowest ABF value of 0.025 was 
achieved in experiment 3, iteration 3. The run with the lowest fitness 
value in iteration 3 was run 5, with a value of 0.000506, which was also 
the lowest across all 20 iterations, thus, this configuration was analyzed 
regarding the decision variables.

Fig. 11 shows the average number of solar panels per month, where 
seasonal variations are observed. In winter months it is possible to see a 
slight decline, reaching its lowest in February (above 1280 panels), 
while summer shows a more pronounced decrease, bottoming out in 
July (~1260 panels). The number rises in the fall, peaking in October 
(~1340 panels).

Fig. 12 illustrates the mean angle of the solar panels throughout the 
year, showing a seasonal pattern of a decrease followed by an increase 
each season. The angle remains between 46◦ and just over 50◦.

Fig. 13 presents the average number of wind turbines, with fluctu
ations throughout the year. Winter shows a slight decrease, followed by 
a rise, while spring and summer exhibit a downward trend. Fall shows an 
increasing trend, peaking in November (~1350 turbines).

Fig. 14 highlights the average height of wind turbines, showing a 
consistent decrease across seasons, with the highest values seen at the 
start of each season and ending with lower values.

5. Conclusions and future work

This study addresses the urgent need for a sustainable and carbon- 
neutral energy transition to mitigate global warming, emphasizing the 
need to use natural resources for energy production. To address the 
intermittent nature of renewable sources, the concept of Hybrid 
Renewable Energy Systems is introduced. In the introduction it is dis
cussed the growing research on applying artificial intelligence to opti
mize HRES, particularly through combining algorithms to improve 
outcomes. The research developed focused on framing a hybrid opti
mization algorithm for HRES in Portugal, aimed at minimizing the loss 
of power supply probability and the amount of CO2 produced.

A systematic literature review on AI and HRES optimization was 
performed using the PRISMA methodology, having made it possible to 
identify and analyze nine articles to understand the state of the art and 
support the development of an informed proposal. The analysis carried 
out allowed to identify key elements: decision variables, hybrid algo
rithms used, system types, context, activity area, and objective func
tions. This data was cross-referenced to gain insights and provide 
recommendations on suitable decision variables, objective functions 
based on the activity area, and algorithms for creating hybrid algorithms 
in the context of Hybrid Renewable Energy Systems.

The empirical study began by selecting renewable energy sources for 
creating a HRES, having chosen photovoltaic panels and wind turbines. 
After defining the components, the models that are commonly used in 
Portugal were identified, and their specifications were gathered. Addi
tionally, data on Portugal’s weather conditions and load demand were 
obtained. The problem was then formulated, defining decision variables, 
constraints, objective functions, and equations for calculating the output 
power of photovoltaic panels and wind turbines. Next, the development 
of a hybrid parallel PSO-GWO optimization algorithm was explained. 
Three experiments were conducted with varying parameters to find the 
global optimum. In the third experiment, a local optimum close to the 
global minimum was achieved early, but limited computational re
sources and execution time constrained the number of experiments.

The development of a hybrid multi-objective algorithm for HRES in 
Portugal faced several limitations during the empirical study. First, 
identifying the components (photovoltaic panels and wind turbines) 
commonly used in Portugal was challenging due to limited available 
information, which was only obtained through expert input. For weather 
data collection, incomplete datasets were an issue, and only a full 
dataset containing essential variables (irradiance, temperature, wind 
speed) was found via Copernicus.

Executing the hybrid PSO-GWO algorithm was hindered by limited 
computational resources, requiring the use of a Cloud GPU platform and 
the high execution time also restricted the ability to carrying out more 
experiments regarding hyperparameters and restricted the number of 
iterations and runs carried out.

Despite these constraints, the study made contributions to both Data 
Science and the energy industry, setting a foundation for future research 
aimed at solving energy challenges in Portugal and working towards a 
more sustainable, carbon-neutral future.

The development of the proposed hybrid parallel PSO-GWO algo
rithm for optimizing hybrid renewable energy systems (HRES) in 
Portugal offers substantial potential across multiple applications. A key 
area of impact is smart grid optimization, where the algorithm can 
efficiently balance energy generation from diverse sources—such as 
wind, solar, and hydro—ensuring a stable, reliable, and sustainable 
energy supply. It also supports load balancing and real-time demand- 
side management, reducing grid congestion and enhancing energy dis
tribution. In rural and remote areas, integrating HRES with the algo
rithm can drive regional development by improving access to clean 
electricity, promoting energy equity, and fostering socioeconomic 
growth. For businesses, the algorithm provides an opportunity to reduce 
electricity costs, enhance power reliability, and support sustainability 
objectives, making it a valuable tool for optimizing energy use and 

Fig. 13. Experiment 3 best solution, mean number of wind turbines per month.

Fig. 14. Experiment 3 best solution, mean height of wind turbines per month.
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operations. Additionally, the algorithm improves energy dispatch by 
optimizing the scheduling of renewable resources, reducing reliance on 
fossil fuels, and strengthening the national grid. It enhances grid sta
bility by ensuring the seamless integration and operation of hybrid en
ergy systems, further reinforcing Portugal’s energy infrastructure. In 
coastal regions, the algorithm can facilitate the integration of wave and 
offshore wind energy with solar power, enabling efficient hybridization 
and maximizing the potential of these renewable resources. Importantly, 
the algorithm’s optimization capabilities can significantly contribute to 
reducing Portugal’s carbon footprint, aligning with the country’s 
ambitious carbon neutrality goals. By addressing these diverse appli
cations, the hybrid parallel PSO-GWO algorithm demonstrates its 
transformative potential to advance renewable energy adoption and 
sustainability in Portugal.

For future research, it is recommended to use more powerful 
computing resources to reduce computation time, allowing for more 
extensive testing and increasing the likelihood of achieving the global 
minimum. We aim to explore the application of the HMEO algorithm, as 
Wang et al. (2024) demonstrated that this hybrid approach surpasses the 
individual algorithms that constitute the HPSOGWO method proposed 
in this study. The HMEO algorithm combines swarm intelligence and 
physics-based mechanisms: swarm intelligence fosters diversity for 
robust global exploration, while the physics-based component enhances 
intensification for precise local optimization. Notably, Wang et al. ach
ieved highly promising results when applying the HMEO algorithm to a 
mobile robot path planning (MRPP) problem. Building on these findings, 
future research should investigate the potential of HMEO in optimizing 
hybrid energy systems. This approach could yield even more favorable 
outcomes than those achieved in this study with HPSOGWO. Addition
ally, exploring a broader range of hyperparameter combinations for 
parameter tuning could enhance optimization results. The study could 
also be expanded by incorporating two additional objective functions in 
the economic and social categories, alongside the technical and envi
ronmental aspects already addressed, to optimize the HRES design 
comprehensively. Finally, obtaining feedback from AI and Energy ex
perts in Portugal through interviews is suggested to refine the project 
through an iterative improvement process.
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Çetinbaş, İ., Tamyurek, B., Demirtaş, M., 2022. The hybrid harris hawks optimizer- 
arithmetic optimization algorithm: a new hybrid algorithm for sizing optimization 
and design of microgrids. IEEE Access 10. https://doi.org/10.1109/ 
ACCESS.2022.3151119, 1–1. 

Charilogis, V., Tsoulos, I.G., Tzallas, A., 2023. An improved parallel particle swarm 
optimization. SN Computer Science 4 (6), 766. https://doi.org/10.1007/s42979- 
023-02227-9.

Copernicus Atmosphere Monitoring Service, 2020. CAMS solar radiation time-series. htt 
ps://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-solar-radiation-timeser 
ies?tab=overview.

Copernicus Climate Change Service, 2020. Climate and energy indicators for Europe 
from 1979 to present derived from reanalysis [object Object]. https://doi.org/10 
.24381/CDS.4BD77450.

Diab, A., Sultan, H., Mohamed, I.S., Kuznetsov, O., Do, T., 2019. Application of different 
optimization algorithms for optimal sizing of PV/Wind/Diesel/Battery storage stand- 
alone hybrid microgrid. IEEE Access. https://doi.org/10.1109/ 
ACCESS.2019.2936656, 1–1. 

Electricity – World Energy Outlook 2019 – Analysis – IEA, 2019. IEA. https://www.iea. 
org/reports/world-energy-outlook-2019/electricity.

Energy Transitions and Societal Change, 2024. Research Institute for Sustainability. htt 
ps://www.rifs-potsdam.de/en/research-area/energy-systems-and-societal-change.

Entezari, A., Aslani, A., Zahedi, R., Noorollahi, Y., 2023. Artificial intelligence and 
machine learning in energy systems: a bibliographic perspective. Energy Strategy 
Rev. 45, 101017. https://doi.org/10.1016/j.esr.2022.101017.

Fendzi Mbasso, W., Dzonde Naoussi, S., Molu, R.J.J., Tsobzé, S., 2023. Contribution into 
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