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Abstract

Over the last years, oblivious pseudorandom functions (OPRFs) have emerged as a
fundamental building block in various cryptographic protocols and privacy-preserving
technologies. The demand for secure communication protocols has grown exponentially,
particularly in cloud-based systems where the transmission of sensitive data is common.

These type of protocols haves gained attention due to their promising approach to
preserving user privacy and preventing server-side database intrusions, by using OPRFs
to allow secure multiparty computation scenarios where the server and the client don’t
learn about each others private data. The security of these protocols however is heavily
reliant on the strength of the keys generated by the server.

This thesis aims to investigate the potential consequences of the server choosing
(intentionally or not) a weak key for the protocol and the changes in the security guarantees
when that happens. Furthermore, we analyze if a client selecting a strong password can
mitigate the security risks arising from predictable server-side keys, thereby maintaining
a secure connection.

With the results of this study, we intend to contribute to a broader understanding of
security protocols that use OPRFs and to better understand the impact that weak keys can
have in the security of OPRFs protocols, shedding light on the implications of weak keys
and the potential mitigation through client password strength. This would significantly
improve the security guarantees of many applications.

Keywords: Cryptography, Key Rotation, Oblivious Pseudorandom Functions (OPRFs),
Pseudorandom Functions (PRFs), Pseudorandomness, Weak Keys
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Resumo

Nos últimos anos, oblivious pseudorandom functions (OPRFs) tornaram-se peças fundamen-
tais em vários protocolos criptográficos e tecnologias de preservação de privacidade. A
procura de protocolos de comunicação seguros tem crescido exponencialmente, particu-
larmente em sistemas de cloud, onde a transmissão de dados sensíveis é frequente.

Estes tipos de protocolos tem ganho atenção devido à sua abordagem promissora
para preservar a privacidade dos utilizadores e prevenir intrusões em bases de dados no
lado do servidor, utilizando OPRFs para permitir cenários de computação multipartidária
segura, onde o servidor e o cliente não tomam conhecimento dos dados privados um do
outro. No entanto, a segurança destes protocolos depende fortemente da robustez das
chaves geradas pelo servidor.

Esta tese tem como objetivo investigar as potenciais consequências de o servidor
escolher (intencionalmente ou não) uma chave de robustez fraca para o protocolo e as
alterações nas garantias de segurança quando isso acontece. Além disso, analisamos se
um cliente que selecionar uma senha forte pode mitigar os riscos de segurança decorrentes
de chaves previsíveis do lado do servidor, mantendo assim uma ligação segura.

Com os resultados deste estudo, pretendemos contribuir para uma compreensão mais
ampla dos protocolos de segurança que utilizam OPRFs e entender melhor o impacto que
chaves fracas podem ter na segurança de protocolos OPRF, destacando as implicações
de chaves fracas e o potencial de mitigação através da força das senhas dos clientes. Isto
melhoraria significativamente as garantias de segurança de muitas aplicações.

Palavras-chave: Criptografia,Rotação De Chaves,Oblivious Pseudorandom Functions (OPRFs),
Pseudorandom Functions (PRFs), Pseudorandomness, Chaves fracas
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1

Introduction

1.1 Context

In recent years, the proliferation of online services and the exponential growth of digital
data have highlighted the critical importance of privacy and security in our digital inter-
actions. As individuals and organizations increasingly rely on cryptographic protocols
to protect sensitive information, the study and improvement of modern cryptography
and of these protocols has become imperative. One such cryptographic construct that has
garnered significant attention is the Oblivious Pseudorandom Function (OPRF), which
plays a very important role in various privacy-enhancing technologies [3, 18, 32, 42, 57,
70]. OPRFs enable a client to compute a function on their input with the help of a server
without the server learning anything about the client’s input. The output of the function
is pseudorandom, ensuring privacy and security during the computation. However, as
with any cryptographic tool, ensuring the long-term security of OPRF protocols remains
a challenge. One area of particular interest is the role of cryptographic keys in OPRF
protocols, which are crucial for ensuring security and privacy in modern cryptographic
systems.

Because of this, in OPRF protocols as is the case with all cryptographic protocols, care
must be taken to ensure that the key that is in use is rotated frequently to ensure that
a key compromise event does not cause security breaches for any protocol participants.
Such key rotations involve the OPRF server internally deriving a new key randomly. This
thesis aims to investigate what can happen if a server gets corrupted and can no longer
derive truly random keys, with this investigation we have the objective of contributing to a
broader understanding of OPRFs by investigating the impact in security of a non-uniform
key being used in an OPRF protocol and what that entails for applications that use OPRFs.
Addressing the challenges posed by malicious servers and weak keys remains an open
problem in the context of OPRFs [32]. This thesis aims to contribute to this ongoing
discussion by exploring the impact of weak keys in an OPRF protocol and potential
mitigation strategies.

As the title suggests, the focal point of this thesis revolves around an in-depth analysis

1



CHAPTER 1. INTRODUCTION

of specific cryptographic protocols and primitives, with a primary emphasis on oblivious
pseudorandom functions. To achieve this, we will be following the principles and common
practices of modern cryptography.

Consequently, it becomes important to lay the groundwork by providing a comprehen-
sive context for modern cryptography, elucidating its significance and its main principles.
Subsequently, we will introduce OPRFs and delve into their importance as a cryptographic
mechanism as well as their practical implications in the real world.

1.1.1 Cryptography and Modern Cryptography

Cryptography, was once regarded as simply the encoding and decoding of messages,
initially conceived as a tool for securing secret communications, it found its primary
application in government and military settings.

In the latter half of the 20th century, cryptography underwent a profound paradigm
shift, marked by the emergence of modern (post-80’s) cryptography. This new era, charac-
terized by its emphasis on precise definitions, formal assumptions, and rigorous security
proofs, signaled a departure from the ad-hoc methods of classical cryptography. As
articulated by Katz and Lindell [74], modern cryptography can be described as the field
of science that focuses on the examination of mathematical techniques to protect digital
information, systems, and distributed computations against adversarial attacks.

With the dawn of the digital age, cryptography evolved into a sophisticated science and
emerged as a pivotal component of modern information security, it has become a central
topic within computer science allowing us to fortify the foundations of trust, privacy and
integrity in our digital world by bridging the gap between mathematical abstraction and
practical application.

In current times, we can find the hand of cryptography everywhere as our lives
become increasingly intertwined with technology, from personal communications [45, 81],
to electronic voting [95], to online financial transactions [35], to the use of VPNs [54] and
blockchain technology and digital cash [87, 88], as well as in matters of national security
[90, 92], the need for robust cryptographic security measures and privacy safeguards has
never been more pronounced.

1.1.1.1 Importance of Modern Cryptography

In today’s digital world, where our personal, financial, and professional activities are
increasingly conducted online, the significance of modern cryptography cannot be over-
stated. It plays a vital role in protecting sensitive information during transmission and
storage, it provides us with the foundation for secure communication and transaction over
the Internet, it allows us to ensure privacy and confidentiality by encoding messages so
that only authorized parties can understand them, and it allows us to ensure that data
remains unaltered and authentic by using cryptographic techniques that enable us to
verify the integrity of messages and confirm their origin.

2



1.1. CONTEXT

However, while practical applications might seem the most appealing part of cryptogra-
phy, it is the rigorous exploration of theory, definitions and proofs in modern cryptography
that truly supports cryptographic reliability. By delineating the boundaries of security and
formulating provable security guarantees, theoretical constructs empower cryptographers
to evaluate the robustness of cryptographic primitives and identify vulnerabilities before
they can be exploited in practice.

Cryptographers and researchers scrutinize the theoretical foundations of crypto-
graphic primitives and protocols that are used in real life and establish precise definitions
and proofs, providing assurances of security that allow us to trust in the security, integrity
and effectiveness of cryptographic constructs in real-world scenarios.

To better understand the importance of the theory and scrutiny of cryptography, in the
following section we will give an introduction into what Katz and Lindell [74] identified as
the three main principles of modern cryptography: formal definitions, precise assumptions
and proofs of security. It is important to note that these principles of modern cryptography
are not only relevant to the "theory of cryptography" community. Nowadays, rigorous
proofs of security have become a requirement forcryptographic schemes to be standardized
and the importance of these principles is widely understood by developers and security
engineers who use cryptographic tools to build secure systems.

1.1.1.2 Principles of Modern Cryptography

In today’s context of modern cryptography, cryptographic schemes and constructions are
analyzed in a systematic manner and have the objective of giving rigorous proof that they
are secure. This approach is underpinned by three main principles: formal definitions,
precise assumptions and proofs of security.

In this subsection, we will provide a brief overview of these principles (we will delve
deeper into these principles and explore them in greater detail in the Related Work, Section
2.1):

• Formal definitions: Modern cryptography emphasizes the importance of establish-
ing formal definitions of security as a fundamental prerequisite in the design of
cryptographic primitives and protocols since these definitions provide a clear under-
standing of the security objectives that they aim to achieve. This is very important
because without a clear understanding of the desired security objectives, it becomes
challenging to determine whether those objectives have been met.

Furthermore, clearly defined definitions and security objectives pave the way for
a comprehensive analysis providing us with a rigorous framework for security
evaluation. They also foster confidence in the security of cryptographic solutions,
and help us find out potential vulnerabilities when those definitions are challenged
by new threats or advacemetns in cryptanalysis.

3



CHAPTER 1. INTRODUCTION

• Precise assumptions: In modern cryptography precise assumptions are very impor-
tant since many cryptographic constructions cannot be proven secure uncondition-
ally. Instead their security often relies on widely accepted assumptions regarding the
computational capabilities of potential adversaries, it is important to note that these
assumptions are carefully chosen based on our understanding of computational
hardness and the current state of technology.

The modern cryptographic methodology necessitates explicit and unequivocal dec-
laration of any such assumption.

A good example of this is the RSA algorithm [102], a popular cryptographic scheme
whose security depends on the assumption that it is computationally infeasible to
factor large numbers into their prime factors efficiently.

Following this principle is important in modern cryptographic methodology and
any such assumption should be explicit. By relying on precise assumption and
following this methodology we are able to construct cryptographic systems that are
secure under specific computational scenarios.

• Proofs of security: This third principle is built on the idea of the two previous princi-
ples, that if we rely on precise definitions of security and well defined cryptographic
assumptions we can prove the security of cryptographic schemes and constructions
and provide formal proofs of security.

The idea of this principle is crucial and cannot be overemphasized as it defines
the vital role of modern cryptography in today’s world. In the past, cryptographic
schemes were created mainly on the fly and were considered secure if the creators
themselves could not identify any vulnerabilities. On the other hand, modern
cryptography advocates the design of schemes supported by formal, mathematical
proofs of security in well-defined security models.

These proofs usually involve reduction arguments, where the security of a cryp-
tographic construction or scheme is reduced to the hardness of a well-studied
mathematical problem. By showing that breaking the cryptographic scheme im-
plies solving the underlying mathematical problem, we can obtain schemes and
constructions that are extremely unlikely to be broken.

This way we can guarantee that such cryptographic schemes and constructions are
secure(unless the the security definitions did not appropriately model the real world
security concerns or that the underlying assumptions are false), and by providing
proofs of security, we can provide strong evidence thata given scheme orconstruction
is robust against various attacks, presenting a level of trust regarding their practical
application.

In this thesis we will abide by these three main principles of modern cryptography,
we will present security models with formal definitions, precise assumptions and proofs

4



1.1. CONTEXT

of security. This comprehensive approach ensures the validity and reliability of our
findings, ultimately offering valuable insights for building more robust and trustworthy
cryptographic systems.

1.1.2 Oblivious Pseudorandom Functions

Now that we have established the value of cryptographic analysis and research and the
importance of modern cryptography, it is fitting to provide an introduction to primary
cryptographic construct that will be analyzing in this thesis: Oblivious Pseudorandom
Functions.

In Section 2.4.2, we will go into more detail about what is an OPRF, but in essence an
OPRF is a cryptographic construct that allows one party (the client) to obtain the evaluation
of a pseudorandom function (PRF) on their input, with the help of another party (the
server), without the server learning the client’s input and without the client learning
the server’s secret key. This property makes OPRFs very valuable in privacy-preserving
computation, especially in scenarios where sensitive data needs to be processed securely
without disclosing it to other parties.

More intuitevlty, a OPRF is a protocol between a client 𝐶 and a server 𝑆 where 𝐶 holds
an input 𝑥 and 𝑆 holds the key 𝑘 for some PRF. A PRF is a very common cryptographic
primitive that essentialy takes a key and some input and outputs some cryptographically
random value (we will go into a more careful explanation in Section 2.3.2). The security
goal of the OPRF protocol is that the client 𝐶 receives the output 𝑦 = 𝐹(𝑘, 𝑥) without
learning the key 𝑘 and the server 𝑆 does not learn the client’s input 𝑥.

Figure 1.1: OPRF protocol diagram
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CHAPTER 1. INTRODUCTION

1.1.2.1 Value of OPRFs

In an increasingly interconnected world, the need for secure and privacy-preserving
communication has become paramount and oblivious pseudorandom functions have
gained prominence as a powerful cryptographic tool to address these concerns. Specially
nowadays when we are living in an era where digital privacy is hard to maintain and
our personal data is often utilized by various entities without our explicit consent, OPRFs
have become extremely interesting and valuable to us since their obliviousness can allow
the construction of privacy-preserving protocols that guarantee that our data remains
private.

By allowing parties to perform computations on private data without revealing sen-
sitive information, OPRFs offer a crucial building block for enabling privacy-enhancing
technologies such as private set intersection (PSI) [64, 75, 77], secure password-based
authentication [69] and anonymous credential systems [43, 44] to name a few. Their
ability to facilitate secure data exchange while preserving confidentiality makes OPRFs
an important tool in modern cryptography. The adoption and integration of OPRFs into
diverse applications and services offer a promising avenue for reinforcing digital privacy
and instilling trust in our increasingly interconnected digital world.

Recognizing this importance and the potential impact of OPRFs, standardization
bodies and cryptographic communities have started efforts to develop standardized OPRF
protocols. Notably, the Internet Engineering Task Force (IETF) has established a working
group dedicated to standardizing OPRFs, further underscoring their importance. [42]

These standardization efforts aim to provide a common framework and interoperabil-
ity for OPRF implementations, fostering adoption, and enabling seamless integration of
OPRFs into various cryptographic systems. Standardization ensures that OPRFs meet
stringent security requirements and encourages widespread deployment, thereby enhanc-
ing trust and promoting consistent best practices.

1.1.2.2 Applications of OPRFs

Oblivious pseudorandom functions are a powerful tool since they allow a client to compute
a high-entropy cryptographic object (e.g., a key, or a token) from a low-entropy input
(e.g., a username, a an identifier, a password, or a file) and a high-entropy key. The fact
that the computation is assisted by one or many servers allows for protocols that are
lightweight on the client side. This allows for the secure storage of cryptographic material
on servers, which can then be accessed with the assistance of the OPRF. Additionally, the
obliviousness of the PRF evaluation conceals the client’s protocol input. This, combined
with efficiency and robust security, positions OPRFs as one of the most promising tools
for enhancing privacy in recent years.

Casacuberta et al. [32] demonstrated that applications of OPRFs in the literature
leverage OPRFs in essentially two ways:

6



1.1. CONTEXT

1. When OPRFs are used to let clients (re-)compute high-entropy cryptographic ob-
jects, such as cryptographic keys. This can be useful for example for: Secure
password verification [8, 27, 41, 69], server-assisted encryption [28], secret key
recovery/password-encrypted backups [7, 25, 66].

2. When OPRFs are used instead of hash functions, to enforce interaction when com-
puting hash values. This is useful in settings where limitation of hash evaluation
is desirable, for example for: precomputation-resistant password hardening [69],
rate limiting for web-services [43], secure comparison of private inputs [55, 64] (e.g.,
contact tracing [73]).

To be more concrete and to show some practical examples of the use of oblivious pseu-
dorandom functions we will mention below some interesting examples of cryptographic
protocols that utilize oblivious pseudorandom functions.

One example is secure multiparty computation (MPC). MPC protocols enable multiple
parties to jointly compute a function over their private inputs while revealing only the
desired output. By allowing parties to securely evaluate functions on private inputs
without disclosing sensitive information to each other, OPRFs can help enable secure
multiparty computation [72].

Another use that is relevant to look at is private information retrieval (PIR). PIR
protocols enable a client to retrieve specific data from a server without revealing which
data is being accessed, PIR protocols use OPRFs to ensure that the server learns nothing
about the client’s query beyond the requested data, preserving user privacy in data
retrieval scenarios [57].

Adding to its versatility of uses, OPRFs are instrumental in addressing another signifi-
cant cryptographic challenge: Private Set Intersection (PSI) [33, 75, 77]. PSI protocols are
cryptographic protocols that enable two parties, each holding a set of items, to determine
which items are common to both sets without disclosing any other information about the
items in their sets. This is used, for example, in Google’s Password Checkup [99], a Google
service that utilizes PSI to securely check if a user’s passwords have been compromised
in data breaches without the need to expose the passwords themselves.

OPRFs are also used for password-authenticated key exchange (PAKE) [21, 62] proto-
cols. An example of one of these protocols is OPAQUE [69] a protocol that uses OPRFs
to protect user passwords even if the server is compromised or if there are offline attacks.
OPAQUE is a cryptographic protocol designed to enhance the security of password-based
authentication, it provides password-authenticated key exchange functionality, allowing
two parties to establish a secure shared key using only a password as a shared secret. It is
an oblivious protocol in the sense that it ensures that no information about the passwords
is leaked during the authentication process.

Recently OPRFs have been applied to back up encrypted chat histories in WhatsApp
[45] and Facebook Messenger [81].
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To conclude, OPRFs have shown to be a central primitive for building secure and
privacy-preserving cryptographic protocols and applications in modern computing en-
vironments. Their unique properties, such as obliviousness, make them usefull in our
everyday life, enabling to construct protocols that protect private data, such as our pass-
words, our search inputs, our identities and our digital footprints . It is important to note
that OPRFs are used in a lot more cases besides the ones we mentioned here and we just
gave some examples of their use to give some context and to show their usefulness, we
will talk about more applications of OPRFs in Chapter 2.

1.2 Motivation

1.2.1 The Danger of Weak Keys

In an era where digital communication, financial transactions, and personal information
rely heavily on cryptography, the security of cryptographic keys is extremely important in
our lives. Cryptographic systems support a wide range of services, ensuring confidentiality,
authenticity, and integrity of data. However, the strength of these systems is critically
dependent on the robustness of the cryptographic keys. Weak keys pose a significant risk,
potentially undermining the entire cryptographic infrastructure.

Weak keys in cryptographic systems are those that fail to provide adequate security
against adversarial attacks. This may arise due to insufficient randomness (often measured
as entropy) during key generation, flawed algorithms, inadequate key lengths, or structural
weaknesses in the key generation process. Structural weaknesses can include biases or
predictable patterns in key generation that make certain keys more likely to be selected,
reducing the effective key space. Weak keys are a security problem since they can be
efficiently computed, predicted, or compromised using various cryptanalytic techniques,
making them highly vulnerable to attacks.

When weak keys are generated, the entire security of a cryptographic system can be
undermined, since weak keys drastically reduce the complexity of brute force and crypt-
analytic attacks, making them feasible for even moderately resourced attackers, allowing
them to potentially decrypt sensitive data and to forge signatures or authentication tokens.

A well-known real-world example of weak key generation is the Debian OpenSSL
vulnerability (2008) [111]. In this incident, a misconfiguration in the Debian Linux
distribution’s implementation of OpenSSL led to the generation of cryptographic keys
that were easily predictable. This issue arose from a bugfix in the OpenSSL library that
inadvertently reduced the entropy available during key generation. As a result of this
reduction in randomness, keypairs created on affected machines lacked sufficient entropy,
making them vulnerable to brute-force attacks. The flaw particularly affected SSL/TLS
and SSH servers, where predictable keys could allow attackers to derive the private key.
With this information, attackers could impersonate legitimate servers and, in many cases,
decrypt secure communication without detection.
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1.2.2 Investigating Key Security

As we described in the previous section OPRFs protocols find application in various
privacy-preserving scenarios and are a vital tool in modern cryptography. However the
security of OPRFs protocols is heavily reliant on the strength of the keys generated by the
server. Due to this dependency, addressing the challenges posed by malicious servers and
weakly generated keys is an open problem that necessitates careful consideration.

A key aspect of an OPRF’s security is its pseudorandomness, the property that ensures
the output of the OPRF is indistinguishable from random. When a weak key is used in
an OPRF protocol, the pseudorandomness of the function may be compromised since
this can lead to the OPRF using a key that has insufficient entropy, possibly making it
easier for adversaries to distinguish the OPRF output from a truly random function. In
particular, the pseudorandom function becomes vulnerable to attacks such as brute-force
guessing or cryptanalytic attacks, where an attacker can attempt to reverse-engineer or
predict the key. This lost of pseudorandomness may have several serious implications for
OPRF protocols since OPRFs protocols are used in privacy-preserving applications a lost
of pseudorandomness can possibly allow adversaries to infer the inputs being processed,
violating the privacy of the users involved in the protocol.

In some OPRFs constructions, VOPRFs (Verifiable Oblivious Pseundoramdom Func-
tions), the client can ensure that the server is behaving honestly by verifying proofs using
the public key generated by the server. So if the server chooses (intentionally or not) a
non-uniform key, then from the perspective of the client all checks pass, and the client
might now, for example, encrypt his data with a weak key. This is a big problem for OPRFs
and their implementation and its important to work on integrating well-formedness of
keys into OPRFs. This has not yet been considered, but would significantly improve
security guarantees of many applications.

It is also interesting to study if the current approach of placing client trust in the server-
based key rotation process can lead to concrete cryptographic vulnerabilities in existing
systems. This means that there might be cases where if a server has been corrupted and
can no longer derive truly random keypairs, there may exist potential scenarios in which
even rotating the server key no longer provides appropriate security guarantees. It is also
interesting and valuable to investigate the possibility of devising an alternative where the
clients are able to derive stronger trust guarantees from this type of protocols instead of
placing their full trust on the server’s key rotation and key generation.

1.2.3 Impact of the OPRF Key in OPRF Protocols and Applications

It is also interesting to look at applications and protocols that use OPRFs and study the
impact that the key has on the security of those protocols.

One good example of a type of protocol that uses OPRFs is the OPAQUE protocol [21],
a password-based authentication protocol that provides secure and privacy-preserving
authentication for users in a client-server setting. OPAQUE’s primary objective is to
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establish a secure and confidential channel between a client and a server without directly
revealing the user’s password to the server. Instead, it utilizes OPRFs to perform secure
computations on the password, ensuring that the server gains no knowledge of the
password itself. By doing so, OPAQUE effectively prevents the exposure of sensitive
user information even in the event of a server compromise or a malicious insider attack.
This way OPAQUE not only provides strong security guarantees but also offers resilience
against server-side attacks, such as offline dictionary attacks and password database
breaches. However, despite the robust security guarantees offered by OPAQUE, the
protocol’s effectiveness heavily relies on the proper generation and management of OPRF
keys. If the server chooses a weak or compromised key, it can potentially compromise
the security guarantees of the OPAQUE protocol. This highlights the importance of key
rotation security and the need for thorough analysis of the impact of weak keys on the
overall security of protocols utilizing OPRFs.

This is a open problem regarding OPRFs protocols, investigating the impact of weak
keys in protocols like OPAQUE and analyzing what are the specific security guarantees
changes in that case can help to a broader understanding of security protocols that
incorporate OPRFs and help their standardization. It is also interesting to investigate if
there are ways to mitigate these security losses.

1.3 Expected Contributions

The main goal of this thesis will be to study the impact that keys have in OPRF security
and in OPRF protocols. We want to investigate what can happen when the server sam-
ples(intentionally or not) a non-uniform key and if that can lead to concrete cryptographic
vulnerabilities in existing systems. More specifically, if a server has been corrupted and
can no longer derive truly random keypairs, we will identify potential scenarios in which
even rotating the server key no longer provides appropriate security guarantees.

We will then investigate the possibility of devising an alternative where we can have a
more transparent key rotation strategy that allow clients to derive stronger trust guarantees
from the entire exchange by changing the current approach of solely relying on the key
generated by the server into a solution that would allow us to argue security over both
the input and key distributions, with the idea of being able to derive randomness for the
OPRF not only from the server key but also from the client’s input.

With this in mind we will aim to answer the following research questions:

• Question 1: If a server has been corrupted and can no longer derive truly random
keypairs how does that affect the security guarantees of this type of protocols?

• Question 2: Is it possible to create an alternative to current OPRFs protocols that
allow clients to derive stronger trust guarantees from the entire exchange?

Considering these goals the expected contributions for this thesis are:
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• Investigate the impactof keys sampled from non-uniform distributions in the security
of OPRF protocols.

• Contribute to a broader understanding of security protocols that incorporate OPRFs.

• Provide insights into the implications of sampled weak keys in OPRFs protocols and
applications and explore potential strategies for mitigating their impact.

In conclusion we delve into the study of Oblivious Pseudorandom Functions and in
their applications. Specifically, we focus on investigating the vulnerabilities and potential
security implications that arise from the server’s choice of weak keys, both unilaterally
and non-unilaterally. By examining these scenarios, we aim to improve our understanding
of the criticality of secure key generation and management and the potential mitigation
strategies required to maintain the desired security properties in privacy-preserving
cryptographic protocols and applications that use OPRFs.

1.4 Document Organization

The document is organized as follows:

• Chapter 1 - The first chapter introduces the motivation and objectives of this thesis.

• Chapter 2 - The second chapter details important concepts and some cryptographic
background to better understand the document work.

• Chapter 3 - In the third chapter we introduce our PRF definition and our security
model.

• Chapter 4 - In the fourth chapter we study a specific OPRF construction and its
underlying PRF with the objective of investigating the impact on security of a non-
uniform key being used.

• Chapter 5 - The fifth chapter explores the possibility of mitigating the loss of security
analyzed in the fourth chapter by using the concept of a Dual PRF and exploring
the possibility of deriving randomness from the client input to avoid relying only
on the server key.

• Chapter 6 - In the sixth chapter we discuss the general implications for deployed
protocols based on the results of the investigation in this thesis.

• Chapter 7 - The last chapter concludes the dissertation, glancing over the main
contributions and possible future work.
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2

Background and Related Work

In this chapter, we go through and analyze some of the most important concepts related
to the thesis work. This will help establish the cryptographic notation and concepts that
we will be using in this thesis.

2.1 Modern Cryptography Principles and Theory

First of all it is important to note that in this thesis, we have followed the framework and
formalization presented in Katz and Lindell’s Introduction to Modern Cryptography (2nd
edition) [74]. Their comprehensive approach heavily informs the cryptographic definitions,
principles, and notation used throughout this thesis. By adopting this framework, we aim
to ensure consistency with widely accepted cryptographic practices and terminologies as
outlined in their book.

In this section, we will begin by discussing the foundational principles of modern
cryptography, including provable security and its relationship to real-world security.
Following this, we will introduce key cryptographic concepts that are essential for the
analysis in this thesis, such as polynomial-time algorithms, negligible functions, and other
fundamental notions used in cryptographic proofs.

2.1.1 Principles of Modern Cryptography

Modern cryptography is grounded in a rigorous and formal approach to analyzing the
security of cryptographic protocols. The goal is to move beyond intuitive security guaran-
tees and instead establish formal proofs of security that can withstand adversarial scrutiny.
This approach is built on three key principles that we mentioned in the introduction:

• Formal Definitions provide a clear and unambiguous specification of the security
goals that cryptographic schemes aim to achieve. Without these definitions, it would
be impossible to rigorously assess the security of a protocol.
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• Precise Assumptions establish the computational difficulty of specific problems
that underpin the security of cryptographic schemes. They define the adversarial
models within which we evaluate the resilience of cryptographic protocols.

• Proofs of Security, which often rely on reduction arguments, demonstrate that
breaking a cryptographic scheme is as difficult as solving a well-established mathe-
matical problem. These proofs offer a guarantee that a scheme remains secure unless
the underlying assumptions are violated.

These proofs are critical in modern cryptography because they provide rigorous
guarantees about the security of a protocol, as opposed to relying on heuristic or empirical
evidence. A cryptographic scheme is consideredprovably secure if it can be mathematically
demonstrated that no adversary can break the scheme unless they solve an underlying
hard problem, such as factoring large integers or solving discrete logarithms.

However, while provable security provides strong guarantees within an idealized
model, it does not always fully capture the complexities of real-world deployments. A
proof of security is always relative to a specific definition and the assumptions made. If
these assumptions or definitions do not accurately model the real-world scenario in which
the protocol is deployed, then the security guarantee may not hold in practice.

Additionally, real-world security encompasses factors that are not always captured in
formal proofs. Implementation errors, side-channel attacks, and hardware vulnerabilities
are some examples of real-world issues that may compromise a provably secure scheme.
Even when a scheme is proven secure under certain assumptions, real-world systems
must be carefully designed and tested to ensure that these assumptions hold in practice.

So it is important then to understand that provable security of a scheme does not
necessarily imply security of that scheme in the real world. Provable security needs
cryptographers to continually refine and investigate their definitions and assumptions
to more closely match and adapt to the real world, this way provable security does not
eliminate the ongoing struggle between attackers and defenders, but it establishes a
framework that helps tip the balance in favor of the defender. A good example of such a
framework that plays an important role in bridging the gap between provable and real-
world security is the Universal Composability (UC) framework [30]. The UC framework
allows for modular security proofs, ensuring that a cryptographic protocol remains secure
even when composed with other protocols. This is crucial for real-world applications
where different cryptographic protocols are often combined in complex ways. The UC
framework provides a strong foundation for ensuring that provably secure schemes can
be deployed securely in practice .

2.1.2 Security Parameter and Negligible Functions

In modern cryptography, the concept of security parameter and negligible functions is
fundamental to the formulation and analysis of security guarantees. In cryptography we
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use the concept of an integer-valued security parameter (denoted by 𝜆) that parameterizes
both cryptographic schemes as well as all involved parties. When an honest party initializes
a scheme (e.g, when it generates a key), it chooses some value 𝜆 for the security parameter,
this security parameter is assumed to be known to any adversary and we can look at
it more intuitively by thinking of the security parameter as the length of the key. In
cryptography, this allows us to model the running time of the adversary and its success
probability as functions of the security parameter, rather than as concrete numbers.

Now that we have explained the concept of the security parameter, we will move on to
the definition of negligible functions, explaining their importance, and illustrating their
application in cryptographic proofs.

2.1.2.1 Definition

A function neg : N→ R+ is said to be negligible if for every positive polynomial 𝑝(𝜆), there
exists an integer 𝜆0 such that for all 𝜆 > 𝜆0, the following inequality holds:

neg(𝜆) < 1
𝑝(𝜆) .

Formally, we write:

neg(𝜆) = 𝒪
(

1
𝑝(𝜆)

)
.

This definition implies that a negligible function decreases faster than the reciprocal of
any polynomial as the security parameter 𝜆 grows large. Therefore, as 𝜆 increases, neg(𝜆)
approaches zero more rapidly than any inverse polynomial.

2.1.2.2 Intuition

In the context of cryptography, negligible functions are used to quantify probabilities or
advantages that are so small that they can be considered effectively zero in practice for
sufficiently large security parameters 𝜆. For instance, when we assert that the probability
of an adversary successfully breaking a cryptographic scheme is negligible in 𝜆, we mean
that the adversary’s success probability decreases so rapidly as the security parameter
increases that it becomes impractical for any adversary to achieve a meaningful advantage.

Negligible functions thus allow us to formalize the notion of computational infeasibility
in a rigorous manner, which is essential for providing concrete security guarantees in
cryptographic protocols and primitives.

A common example of a negligible functions is 2−𝜆, which represents an exponentially
decreasing function. This function illustrates the idea that, as 𝜆 grows, the function value
diminishes to a point where it becomes insignificant.
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2.1.2.3 Application in Cryptographic Proofs

Negligible functions are crucial in cryptographic security proofs. For example, consider a
cryptographic protocol where the success probability of an adversary𝒜 in breaking the
protocol is denoted by Pr[Adv𝒜(𝜆)]. If we can show that this probability is bounded by
a negligible function neg(𝜆), we can conclude that the protocol is secure against 𝒜 for
sufficiently large 𝜆.

In such proofs, the notion of negligible probability allows cryptographers to make
strong statements about the security of a scheme. Specifically, the statement "the proba-
bility of breaking the scheme is negligible" indicates that while the adversary’s success
might not be zero, it is so small that it is negligible for all practical purposes.

This rigorous approach enables cryptographers to provide formal and precise security
assurances that are essential in both theoretical and applied cryptography.

2.1.3 Probabilistic Polynomial-Time (PPT) Algorithms

In the world of cryptography we rely on algorithms capable of making probabilistic choices
within polynomial time, known as Probabilistic Polynomial-Time (PPT) algorithms. As
Katz and Lindell [74] explain, this notion is fundamental in the formulation of secure
cryptographic definitions and security models since PPT algorithms are ingrained in
the theoretical principles and frameworks of how cryptographic systems are designed,
analyzed, and understood.

The notion of PPT algorithms is useful for various reasons in cryptography, including
efficientandrealistic modeling, adaptive adversarialmodeling, cryptographic assumptions
of hardness notions, and attack feasibility.

2.1.3.1 Efficiency and Realistic Modeling

Cryptographic systems operate in the real world where computational efficiency is a
critical consideration that we need to have, because of this PPT algorithms are useful in
cryptography since they provide a realistic model of computation.

PPT algorithms are designed to run in polynomial time, which means that their com-
putation time is proportional to a polynomial function of the input size. In mathematical
terms this means that if an algorithm runs in polynomial time, the time complexity
𝑇(𝜆) is upper-bounded by a polynomial function 𝑃(𝜆), where 𝜆 is the size of the input.
Mathematically, this can be expressed as:

𝑇(𝜆) = 𝑂(𝑃(𝜆))

This is why, for example, that an algorithm that has a time complexity of 𝑂(𝜆2) is a
polynomial time algorithm because the running time is proportional to the square of the
input size. In contrast to this, algorithms that run in exponential time, factorial time, or
other non-polynomial time complexities are generally considered less efficient, especially
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for large inputs. Polynomial time algorithms are generally more practical and scalable,
and they are often desirable in practical applications due to their efficient nature.

Because of this, as Katz and Lindell [74] refer, in modern cryptography we are only
interested in adversaries whose running time is polynomial in the security parameter 𝜆.
Since we measure the running time of an algorithm in terms of the length of its input, we
sometimes provide algorithms with the security parameter written in unary (i.e., as 1𝜆, or
a string of 𝑛 ones) as input. Parties (or, more precisely, the algorithms they run) may take
other inputs besides the security parameter, for example, a message to be encrypted, and
we allow their running time to be polynomial in the (total) length of their inputs.

Cryptographic systems need to operate within practical constraints, considering fac-
tors like limited computational power. Because of their polynomial-time nature, the
notion of PPT algorithms is useful in cryptography for realistic modeling, ensuring that
cryptographic definitions and security models align with the constraints of real-world
computing environments.

2.1.4 Adaptive Adversarial Modeling

Another key reason for using PPT algorithms in cryptographic definitions is the need
to realistically model adaptive adversaries. Unlike deterministic algorithms, PPT algo-
rithms can make probabilistic choices during their execution, providing a more accurate
representation of adversaries in real-world scenarios. This adaptive modeling is crucial
in assessing the security of cryptographic primitives and protocols against sophisticated
and dynamic threats.

2.1.5 Cryptographic Assumptions and Hardness Notions

Many cryptographic proofs, security models and security reductions rely on the assump-
tion that certain computational problems are difficult to solve in probabilistic polynomial
time. PPT algorithms serve as the foundation for defining computational hardness notions,
forming the basis for a lot of cryptographic assumptions. For instace, the hardness of
problems like factoring large integers or computing discrete logarithms is often expressed
in terms of PPT algorithms.

2.1.6 Feasibility of Attacks

In the analysis of cryptographic systems, it is essential to evaluate the feasibility of potential
attacks. PPT algorithms provide a yardstick for assessing computational feasibility. If
an adversary could break a cryptographic scheme in polynomial time, it would signify
a significant vulnerability. The use of PPT algorithms allows researchers to gauge the
practicality of attacks and design resilient cryptographic solutions.
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2.2 Keys in Cryptography

In modern life, cryptographic keys play an essential role in ensuring the security and pri-
vacy of digital communication, financial transactions, and sensitive data storage. Whether
unlocking a smartphone, securely accessing an online banking account, or protecting
confidential messages in messaging apps, cryptographic keys serve as the foundation for
authenticating users and encrypting information.

In practice, a cryptographic key is a value that algorithms use to transform plaintext
into ciphertext in encryption schemes or vice versa in decryption schemes. In private
key encryption (symmetric cryptography), the same key is used for both encryption and
decryption. An example of such a system is AES (Advanced Encryption Standard) [40].
In these cases, the key must remain secret between communicating parties because if an
adversary obtains the key, they can decrypt the ciphertext and access sensitive information.

Keys also play an essential role in public-key cryptography, where two distinct, but
mathematically related, keys are used: a public key (that can be shared openly) and a
private key (that is kept secret). The public key is often used for tasks like encrypting data
or verifying digital signatures, while the private key is used for decrypting data that was
encrypted with the corresponding public key or for creating digital signatures that prove
authenticity. This system allows two parties to communicate securely, even if they have
never met before, because the public key can be shared openly, and only the holder of the
private key can decrypt or authenticate messages related to that key.

Protocols like RSA [102] and ECC [76] rely on these key pairs, where security hinges
on the difficulty of solving problems like integer factorization or the discrete logarithm
problem. The strength of these systems depends not only on the key length but also on
how the keys are generated, stored, and managed throughout their lifecycle.

Because of this, protocols and primitives that use cryptographic keys fundamentally
depends on the strength and proper management of the keys.

2.2.1 Key Strength

Typically, when we talk about key strength, we think about key length. Key length refers to
the number of bits in the key, which directly influences the size of the key space. For a key
of length𝜆 bits, the total number of possible keys is 2𝜆. For example, a 128 bit key provides
2128 possible key combinations. The larger the key space, the more computationally
expensive it is for an adversary to search through all possible keys in a brute-force attack.

However, the effective key strength is not only a matter of key size. It also depends on
the randomness of the key generation process and the distribution from which the key
is drawn. Poorly generated or non-uniform keys can drastically reduce the security of a
system, as attackers could exploit patterns in the key generation process to narrow the
search space.

A weak key, in traditional cryptographic settings, is one that does not provide sufficient
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security, either because it is too short or due to issues related to how it is generated or
managed. Several factors can result in a weak key such as short key lengths, low entropy
and structural weaknesses in the key distribution.

When it comes to OPRFs, key strength is an interesting research topic, as weak keys
may impact the pseudorandomness required for security.

2.2.2 Key Rotation and Key Generation

Key rotation is an essential aspect of key management. It involves periodically replacing
cryptographic keys with new ones to reduce the potential impact of key compromise.
If a key is compromised, rotating it ensures that any future communications or data
are protected by a fresh, uncompromised key. This approach is particularly crucial in
long-term communication systems, where the same key is used across multiple sessions
or extended periods.

Rotating keys helps mitigate risks related to key exhaustion, where a cryptographic
key’s use over time could provide an attacker with enough material to attempt a brute-
force or cryptanalytic attack. In systems like TLS [24, 53], key rotation mechanisms are
implemented to ensure that even if an attacker compromises one session key, the exposure
is limited to that session, as future sessions will use new keys.

Key rotation implies generating new keys, key generation is a critical process that
produces the cryptographic keys used in encryption, decryption, signing, and verification.
For a key to be secure it must be unpredictable to attackers, which is why randomness
is essential for generating secure cryptographic keys. There are two main types of
randomness used in key generation:

• True Randomness: This is derived from unpredictable physical processes such
as radioactive decay, thermal noise, or atmospheric noise. True random number
generators (TRNGs) use these unpredictable sources to produce random bits. Since
true randomness comes from natural phenomena, it is highly unpredictable and
provides high entropy, making it ideal for key generation. However, accessing
sufficient true random data can be challenging and slow in certain environments,
which limits its use in many real-time cryptographic applications, nevertheless there
are some cases of its use like for example Cloudfare that uses lava lamps as a natural
source of randomness to help with encryption [38].

• Pseudorandomness: Due to the limitations of gathering true randomness, many
cryptographic systems rely on pseudorandom number generators (PRNGs). These
generators use deterministic algorithms that, given an initial seed (which should
be a truly random value), produce sequences of numbers that are computationally
indistinguishable from true random numbers. A special type of PRNG, called a
cryptographically secure pseudorandom number generator (CSPRNG), is typically
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used in key generation because its output is designed to be unpredictable even if
part of the seed or the output sequence is known.

2.2.3 The Challenge of Realizing Cryptographic Tasks Without Uniform
Randomness

In the field of cryptography, significant effort has been dedicated to studying whether
cryptographic tasks can be performed without perfect access to uniform randomness.
Traditional cryptographic protocols assume the availability of a perfectly random source
to generate keys, which is not always feasible in real world scenarios.

Several studies [2, 20, 49, 50, 51, 52, 85] have addressed this challenge by investigating
whether it is possible to achieve cryptographic tasks using non-uniform or imperfect
randomness. For example, the work of Dodis et al. [51] explores the feasibility of executing
cryptographic tasks with entropy sources that provide less-than-perfect randomness. Their
findings indicate that while some cryptographic tasks, like encryption and zero-knowledge
proofs, are impossible under such conditions, other tasks, like secure signature schemes,
can still be achieved under certain assumptions.

Some of this research on randomness has demonstrated that the assumption of uniform
randomness can be relaxed in certain settings, but this often comes with trade-offs in
security. Techniques like fuzzy extractors [31], bounded leakage models [4], and secure key
derivation functions [79] can sometimes ensure security despite the presence of weak keys,
as long as certain conditions are met, such as the availability of additional randomness
or structure in the protocol. Entropy-based approaches to randomness generation, also
offer some solutions by guaranteeing high entropy while acknowledging that perfect
randomness might not always be attainable.

2.2.4 Entropy and Its Role in Cryptographic Security

Because of this challenge, the concept of entropy becomes very relevant in cryptography.
Entropy measures the unpredictability or randomness of a cryptographic key, which can
directly influence the strength of the cryptographic protocol. A key that has low entropy
(meaning that it lacks sufficient randomness), can be guessed by an attacker, rendering
encryption ineffective. Therefore, understanding and applying entropy, particularly min-
entropy, is crucial in the design of secure cryptographic systems.

Cryptographic systems rely on randomness to ensure security. Randomness is used
in various contexts, including key generation, nonce selection, and the construction
of cryptographic primitives such as PRFs and encryption schemes. To quantify the
quality of randomness, cryptographers use the concept of entropy, which measures the
unpredictability of a random variable. The more unpredictable the random variable,
the higher the entropy. Two specific types of entropy that are particularly relevant in
cryptography are Shannon entropy and min-entropy.
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2.2.4.1 Shannon Entropy

Shannon entropy, introduced by Claude Shannon in 1948 [105], is the most commonly
known measure of unpredictability and uncertainty in information theory. It quantifies
the average amount of information produced by a random variable. Let 𝑋 be a discrete
random variable with possible outcomes 𝑥1 , 𝑥2 , . . . , 𝑥𝑛 , each occurring with probability
𝑝(𝑥𝑖). The Shannon entropy 𝐻(𝑋) is defined as:

𝐻(𝑋) = −
𝑛∑
𝑖=1

𝑝(𝑥𝑖) log2 𝑝(𝑥𝑖).

Shannon entropy measures the expected amount of uncertainty in a random variable. If
all outcomes are equally likely, the entropy is maximized. For example, if 𝑋 is a uniformly
distributed random variable over 𝑛 possible outcomes, the entropy is 𝑙𝑜𝑔𝑛. However,
Shannon entropy is an average measure, which means that it may not adequately capture
worst-case scenarios, where some outcomes are much more likely than others. This is
why other forms of entropy, such as min-entropy, are used in cryptography.

2.2.4.2 Min-Entropy

In cryptography, min-entropy [110] is often more relevant than Shannon entropy, as
it focuses on the worst-case predictability of a random variable rather than its average
behavior. Min-entropy is the notion that is most widely used for modeling weak sources of
randomness [34]. This model was introduced by Chor and Goldreich [37] and Zuckerman
[112].

Min-entropy measures the uncertainty associated with the most likely outcome of a
random variable. Formally, for a random variable 𝑋, the min-entropy 𝐻∞(𝑋) is defined
as:

𝐻∞(𝑋) = − log max
𝑥

Pr[𝑋 = 𝑥]

If the min-entropy of a random variable𝑋 is low, it means that there is a high likelihood
that 𝑋 takes on a particular value with significant probability. In contrast, if the min-
entropy is high, the random variable is well-distributed and hard to predict.

2.2.4.3 Relevance of Min-Entropy in Cryptography

Min-entropy measures the worst-case unpredictability by quantifying the probability that
an adversary can correctly guess the secret in a single attempt. Unlike Shannon entropy,
which averages over all possible outcomes, min-entropy focuses on the likelihood of the
most probable event. This makes it a more conservative and thus more appropriate
measure in cryptographic contexts, where we are concerned with the success probability
of an adversary who may have some prior knowledge about the secret.
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In cryptography, what is of primary interest is setting tight bounds on the adversary’s
success probability in any attack. The goal is to ensure that even in the worst-case scenario,
the adversary’s chances of guessing a secret value (such as a key, nonce, or password)
remain sufficiently low. Min-entropy is directly connected to this concept because it
defines the maximum probability with which the adversary could predict the value.
Higher min-entropy implies lower success probability for the adversary, translating to
stronger security guarantees.

Min-entropy is particularly important in cryptographic applications where even the
slightest bias in a random variable can lead to security vulnerabilities. Cryptographic keys,
for example, should be generated from distributions with high min-entropy to reduce
the probability that an adversary can predict them with significant likelihood. If the
key distribution has low min-entropy, it means that certain keys are much more likely
than others, making it easier for an attacker to guess or brute-force the key. In such cases,
adversaries can conduct distinguishing attacks, where they interact with the cryptographic
protocol multiple times and, due to the low min-entropy of the key, can detect patterns or
predict the secret key with non-negligible probability.

In modern cryptography, the use of high-min-entropy sources is a fundamental re-
quirement for ensuring the security of cryptographic protocols. Entropy sources are
typically tested for min-entropy to verify that they provide sufficient unpredictability, and
cryptographic standards (e.g., NIST) emphasize the need for high-min-entropy key gener-
ation processes [106]. As such, min-entropy is often used to set formal security thresholds
in cryptographic protocols, ensuring that secrets used in encryption, key exchange, and
authentication processes meet the security requirements.

2.3 Cryptographic Primitives

Cryptographic primitives are the foundational building blocks used to design secure
cryptographic protocols and systems. These primitives are typically simple, well-defined
mathematical functions or algorithms that exhibit specific security properties. Crypto-
graphic primitives form the core components of more complex protocols. This section
provides an overview of the most commonly used cryptographic primitives, which are
essential for understanding the security guarantees and constructions in modern crypto-
graphic systems.

• Symmetric-Key Primitives: These rely on a shared secret key between parties.
The most common examples are block ciphers such as AES [40], which operate on
fixed-size blocks of data, and stream ciphers like RC4 [103], which encrypt data in a
continuous stream.

• Public-Key Primitives: Public-key cryptography uses a key pair (public and private).
Prominentexamples include the RSA [102] encryption scheme, basedon the difficulty
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of factoring large integers, and Elliptic Curve Cryptography (ECC) [76], which offers
similar security with smaller key sizes.

• Cryptographic Hash Functions: Hash functions, such as SHA-256 [107], map
arbitrary data to fixed-size outputs. They are widely used for ensuring data integrity
and in applications like digital signatures and HMACs.

• Pseudorandom Functions (PRFs) and Pseudorandom Generators (PRGs): PRFs
produce pseudorandom outputs from a secret key and a message input, and PRGs
expand a short random seed into a longer pseudorandom sequence, both essential
for encryption and key generation.

• Message Authentication Codes (MACs): MACs are used to verify the integrity
and authenticity of a message. A widely used MAC scheme is HMAC [80], which
combines a hash function with a secret key.

We will now delve into more detail on specific primitives that are particularly rele-
vant for the analysis in this thesis, including Pseudorandom Generators, Pseudorandom
Functions, and Dual PRFs.

2.3.1 Pseudorandom Generators (PRGs)

A PRG is a deterministic algorithm that expands a short, truly random seed into a longer
sequence of bits that appears random to any efficient adversary. Formally, given a random
seed of length 𝜆, a PRG produces an output of length ℓ (𝜆), where ℓ (𝜆) > 𝜆. The key
property of a PRG is that its output is computationally indistinguishable from a truly
random sequence of length ℓ (𝜆).

Definition 1 (PRG [74]). Let ℓ be a polynomial and let 𝐺 be a deterministic polynomial-time
algorithm such that for any 𝜆 and any output 𝑠 ∈ {0, 1}𝜆, the result 𝐺(𝑠) is a string of length ℓ (𝜆).
We call ℓ the expansion factor of 𝐺. We say that G is a PRG if the following conditions hold:

1. Expansion: For every 𝜆 it holds that ℓ (𝜆) > 𝜆.

2. Pseudorandomness: For any PPT adversarie 𝒜, there is a negligible function negl such
that

|Pr[𝒜(𝐺(𝑠)) = 1] − Pr[𝒜(𝑟) = 1]|

where the first probability is taken over the uniform choice of 𝑠 ∈ {0, 1}𝜆 and the randomness
of 𝒜, and the second probability is taken over the uniform choice of 𝑟 ∈ {0, 1}ℓ (𝜆) and the
randomness of𝒜.
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This notion is fundamental for applications requiring a large amount of pseudorandom
data derived from a small, high-entropy seed, ensuring the expanded output appears
random and unpredictable. It is important to note that while PRGs do stretch small
amounts of data, the quality of the seed matters. If the seed doesn’t have sufficient entropy,
the pseudorandomness produced by the PRG may not be secure. Therefore, good entropy
sources are essential for the seed itself, even though PRGs generate large amounts of data
from that small seed . .

PRGs play a crucial role in various cryptographic constructions, including stream
ciphers, where a pseudorandom keystream is generated from a short secret key, and key
generation protocols, where secure keys are derived from small random seeds [59, 74,
93]. In the context of this thesis, PRGs are particularly relevant in understanding how
randomness can be derived and expanded efficiently, a concept that underpins many
cryptographic systems.

2.3.1.1 Key Generation

PRGs play a vital role in cryptographic key generation. Secure keys are essential for the
robustness of cryptographic protocols, and PRGs provide a means to derive pseudorandom
keys from shorter random seeds.

2.3.1.2 Efficient Use of Resources

PRGs enable the efficient use of random bits. Cryptographic systems often operate in
resource-constrained environments, and the ability to expand a limited amount of true
randomness into a larger pseudorandom sequence is invaluable.

In the context of OPRFs and the significance of secure key sampling, PRGs become
integral. The pseudorandom keys generated by PRGs contribute to the unpredictability
and privacy of the OPRF protocol. The reliance on a robust PRG ensures that the pseudo-
random keys used in OPRFs exhibit the necessary cryptographic properties to withstand
potential attacks.

2.3.2 Pseudorandom Functions (PRFs)

Pseudorandom functions have been introduced by Goldreich, Goldwasser and Micali [60],
they are cryptographic primitives, keyed functions that behave like random functions but
are actually deterministic and computationally efficient. A PRF takes an input key and an
input message and produces an output that appears random, even to a computationally
powerful adversary. PRFs have broad utility in cryptographic constructions such as, being
used in secure comunication protocols like TLS [47], being a building block for OPRFs
[75], being used for key derivation functions (KDFs) [79] and more.

Basically, a PRF is defined as a function 𝐹 that maps an input key 𝑘 and an input
message 𝑥 to an output 𝑦, where 𝑘 and 𝑥 can be bit strings of arbitrary length. Its denotes
as follows:
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𝑦 = 𝐹(𝑘, 𝑥).

Below we give give a formal definition of a PRF made by Casacuberta, Hesse, Lehmann
[32]:

Definition 2 (Pseundorandom function). A family of functions 𝑓𝑘 : {0, 1}𝑚 → {0, 1}𝑛 with
key 𝑘 ∈ {0, 1}𝜆 is called pseudorandom if the following holds:

• 𝑓𝑘(𝑥) is efficiently computable from 𝑘 and 𝑥. Meaning that there exists a deterministic
algorithm that, given a key 𝑘 ∈ {0, 1}𝜆 and an input 𝑥 ∈ {0, 1}𝑚 , computes 𝑓𝑘(𝑥) in
polynomial time with respect to 𝑚, 𝑛, and 𝜆.

• It is not efficiently decidable whether one has access to a computation oracle for 𝐹𝑠(.) or to an
oracle producing random bitstrings of length 𝑛.

The security of a PRF lies in its ability to resist various attacks, such as distinguishing
it from a truly random function. A PRF should exhibit the following main properties:

• Pseudorandomness: For any efficient algorithm, it should be computationally in-
feasible to distinguish the output of the PRF from the output of a random function,
given access to multiple queries of the function with different inputs. Formally,
we say that for any probabilistic polynomial-time adversary 𝒜 with oracle access,
the adversary’s advantage in distinguishing between the following two scenarios is
negligible in 𝜆:

– The oracle is a function 𝑓𝑘 , where 𝑘 is chosen uniformly at random from {0, 1}𝜆.

– The oracle is a truly random function that outputs uniformly random bitstrings
of length 𝑛 for each distinct input 𝑥.

Formally, for any probabilistic polynomial-time adversary 𝒜, the distinguishing
advantage is given by:���Pr[𝒜 𝑓𝑘 (·) = 1] − Pr[𝒜𝑅(·) = 1]

��� ≤ negl(𝜆),

where 𝑅(·) denotes a truly random function, and negl(𝜆) is a negligible function in
𝜆.

• Keyed Security: The security of the PRF should rely on the secrecy of the key. Like
Katz and Lindell [74] explain, when they introduce the notion of a PRF, that it is
meaningless to require that 𝐹𝑘 be pseudorandom if 𝑘 is known, since then it is trivial
to distinguish an oracle for 𝐹𝑘 from an oracle for 𝑓𝑛 given 𝑘: simply query the oracle
at the point 0𝑛 to obtain the answer 𝑦, and compare this to the result 𝑦′ = 𝐹𝑘(0𝑛) that
can be computed using the known value 𝑘. An oracle for 𝐹𝑘 will always return 𝑦 = 𝑦′,
while an oracle for a random function will have 𝑦 = 𝑦′ with probability only 2−𝑛 .
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In practice, this means that once 𝑘 is revealed, all claims to the pseudorandomness
of 𝐹𝑘 no longer hold. To take a concrete example: say 𝐹 is pseudorandom. Then
given oracle access to 𝐹𝑘 (for random 𝑘), it will be hard to find an input 𝑥 for which
𝐹𝑘(𝑥) = 0𝑛 (since it would be hard to find such an input for a truly random function
𝑓𝑛). But if 𝑘 is known, then finding such an input may be easy.

• Efficiency: A PRF should be computationally efficient, meaning that it should be
able to process input messages and produce outputs in a reasonable amount of time.
Formaly, there exists a deterministic algorithm that, given a key 𝑘 ∈ {0, 1}𝜆 and an
input 𝑥 ∈ {0, 1}𝑚 , computes 𝑓𝑘(𝑥) in polynomial time with respect to 𝑚, 𝑛, and 𝜆.
That is, 𝑓𝑘(𝑥) is efficiently computable for all 𝑘 and 𝑥.

• Resistance to Known Attacks: A PRF’s design and construction should be resilient
against known cryptographic attacks, such as differential and linear cryptanalysis,
birthday attacks, and related-key attacks.

We will go into greater detail into the security definition of a PRF in Chapter 3.

2.3.3 Dual Pseudorandom Functions (Dual PRFs)

A Dual Pseudorandom Function (dual PRF) is a cryptographic primitive that extends the
concept of a PRF to support two independent keys, meaning a PRF that is not only keyed
conventionally through its key, but also when “swapped” and keyed (unconventionally)
through its input(or message) [13].

Dual PRFs were first introduced in the context of HMAC by Bellare [10, 11]. HMAC
(Hash-based Message Authentication Code) [12] is a specific type of message authentica-
tion code (MAC) that was designed as a cryptographic-hash function-based PRF taking
two inputs, with first input being the key and the second the message. It is widely used,
for example in TLS, IPsec and SSH and is standardized by IEFT [80] and NIST [91].

However, more recently it has also been used as a key combiner, which additionaly
assumes to function as a swap-PRF (an assumption that has been validated in [13], meaning
that it also behaves as a PRF when the second input is treated as the key and the first input
as the message, having a dual PRF usage. This dual PRF assumption allowed for strong
security proofs of these constructions and is used in several Internet security protocols
such as TLS 1.3 [24, 53], hybrid key-exchange [15, 108], KEMTLS [104], post-quantum
versions of WireGuard [65] and Noise [5], and Message Layer Security (MLS) [23]. This
dual PRF assumption has been specifically analyzed in articles like [6, 13]

Intuitively, a dual PRF is a PRF that remains a PRF when the roles of its input and
key are switched. More formally, Backendal et al. [6] presented the following formal
definition of a dual-PRF by defining a PRF and a swap-PRF:

The definition of a PRF being a function family 𝐹 : 𝒦 × 𝒳 −→ 𝒴, where 𝐾 ∈ 𝒦 is the
key and 𝑋 ∈ 𝒳 is the input(or message), requires that the oracles for 𝐹(𝐾, ·) and a random

25



CHAPTER 2. BACKGROUND AND RELATED WORK

function 𝑓 : 𝒳 −→ 𝒴 be indistinguishable when 𝐾
$←− 𝒦 is not known to the attacker [60].

The swap of 𝐹 is the function family 𝐹↔ : 𝒳 ×𝒦 −→ 𝒴 defined by 𝐹↔(𝑋, 𝐾) = 𝐹(𝐾, 𝑋). We
say that 𝐹 is a swap-PRF if 𝐹↔ is a PRF. (That is, 𝐹 is a PRF when keyed by the second, or
message, input.)

Definition 3 (Dual-PRF). Formally, F is a dual-PRF if F is both a PRF and a swap-PRF. That is,
it is a PRF when keyed as usual by the first input, but also if keyed by the second input.

2.4 Cryptographic Protocols

Cryptographic protocols are the building blocks of secure communication in the digital
world, they consist on sets of rules and procedures that govern secure communication
or computation between multiple parties with the objective of achieving various security
goals such as confidentiality, integrity, authentication, and non-repudiation. They are vital
in ensuring the security and privacy of modern communication systems [56]. The growing
reliance on the internet for sensitive transactions, such as financial exchanges, medical data
sharing, and private communication, has made these protocols indispensable. Without
strong cryptographic protocols, the internet and digital systems would be vulnerable to
attacks like eavesdropping, data tampering, and impersonation.

An example of one of the most well-known cryptographic protocols is the Secure Socket
Layer (SSL) [58] or its successor, the Transport Layer Security (TLS) protocol [47, 101] used
for securing internet communications by enabling two parties to identify and authenticate
each other and to communicate with confidentiality and data integrity. The main goal of
both protocols is to provide privacy, data integrity, identification, and authentication. [39]

An example of a very relevant cryptographic protocol in the field of cryptography is
the Diffie-Hellman key exchange. This protocol is also specifically relevant for this thesis
since it is connected to the OPRF construction we will talk about in Chapter 4 so it is
valuable to talk about this protocol in more detail.

2.4.1 Diffie-Hellman Key Exchange

The Diffie-Hellman key exchange, a cryptographic protocol published by Whitfield Diffie
and Martin Hellman in 1976 [48], revolutionized the field of cryptography by introducing
the concept of public key cryptography. At its core, the Diffie-Hellman protocol allows two
parties to establish a shared secret key over an insecure communication channel, without
the need for prior communication or shared secrets.

This protocol relies on modular exponentiation as a fundamental mathematical opera-
tion to securely compute shared secret keys. To understand this, we must first introduce
some essential concepts from group theory and modular arithmetic [16].
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2.4.1.1 Modular Exponentiation

Modular exponentiation is the operation of raising a number to an exponent and then
taking the remainder when divided by a modulus. Formally, given a base 𝑔, an exponent
𝑥, and a modulus 𝑝, the modular exponentiation is defined as:

𝑔𝑥 mod 𝑝

where 𝑔𝑥 denotes the exponentiation of 𝑔 by 𝑥, and mod 𝑝 denotes taking the
remainder after division by 𝑝.

2.4.1.2 Group Definition

A group 𝐺 is a set of elements combined with a binary operation · (often multiplication or
addition) that satisfies the following four properties:

1. Closure: For any two elements 𝑎, 𝑏 ∈ 𝐺, the result of the operation 𝑎 · 𝑏 is also in 𝐺.

If 𝑎, 𝑏 ∈ 𝐺, then 𝑎 · 𝑏 ∈ 𝐺.

2. Associativity: For any three elements 𝑎, 𝑏, 𝑐 ∈ 𝐺, the equation (𝑎 · 𝑏) · 𝑐 = 𝑎 · (𝑏 · 𝑐)
holds.

(𝑎 · 𝑏) · 𝑐 = 𝑎 · (𝑏 · 𝑐).

3. Identity Element: There exists an element 𝑒 ∈ 𝐺 such that for every element 𝑎 ∈ 𝐺,
the equation 𝑎 · 𝑒 = 𝑒 · 𝑎 = 𝑎 holds.

∃ 𝑒 ∈ 𝐺 such that ∀ 𝑎 ∈ 𝐺, 𝑎 · 𝑒 = 𝑒 · 𝑎 = 𝑎.

4. Inverse Element: For each element 𝑎 ∈ 𝐺, there exists an element 𝑏 ∈ 𝐺 such that
𝑎 · 𝑏 = 𝑏 · 𝑎 = 𝑒, where 𝑒 is the identity element.

∀ 𝑎 ∈ 𝐺, ∃ 𝑏 ∈ 𝐺 such that 𝑎 · 𝑏 = 𝑏 · 𝑎 = 𝑒.

2.4.1.3 Multiplicative Group Z∗𝑝

In cryptographic contexts, we often work within the multiplicative group of non-zero
integers modulo a prime number 𝑝. This group, denoted as Z∗𝑝 (where ∗means that zero is
excluded), is defined as the set of integers {1, 2, 3, . . . , 𝑝 − 1} under multiplication modulo
𝑝. The group Z∗𝑝 satisfies the following properties:

• Closure: For any 𝑎, 𝑏 ∈ Z∗𝑝 , (𝑎 · 𝑏) mod 𝑝 ∈ Z∗𝑝 .

• Associativity: The operation (𝑎 · 𝑏) · 𝑐 = 𝑎 · (𝑏 · 𝑐) holds for all 𝑎, 𝑏, 𝑐 ∈ Z∗𝑝 .

• Identity Element: The element 1 serves as the identity, since for any 𝑎 ∈ Z∗𝑝 , 𝑎 · 1 ≡ 𝑎
mod 𝑝.
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• Inverse Element: For each 𝑎 ∈ Z∗𝑝 , there exists an 𝑎−1 ∈ Z∗𝑝 such that 𝑎 · 𝑎−1 ≡ 1
mod 𝑝.

In cryptography, there is a preference for cyclic groups of prime order. This prime
number 𝑝 is typically chosen to be large since it has been proven that certain mathematical
problems that are connected to the security of cryptographic systems, like the discrete-
logarithm problem, become easier if 𝑝 has (small) prime factors [74, 94].

Cyclic Groups and Generators: Another important property of Z∗𝑝 is that it is cyclic,
meaning there exists an element 𝑔 ∈ Z∗𝑝 (called a generator or primitive root) such that
every element of the group can be expressed as a power of 𝑔, modulo 𝑝. Formally, for
every element 𝑎 ∈ Z∗𝑝 , there exists an integer 𝑘 such that:

𝑎 = 𝑔𝑘 mod 𝑝

where 𝑘 ranges from 0 to 𝑝 − 2.

Having introduced this concepts, we now come back to the Diffie-Hellman Key Exchange
protocol. In this cryptographic scheme, Alice and Bob seek to establish a shared secret key.
To do this, they first agree on a generator 𝑔 and prime 𝑝. Then, they both generate their
private key 𝑥 randomly from a large set of possible values (1 to 𝑝 − 1), we will represent
Alice’s private key as 𝑎 and Bob’s as 𝑏.

Then they both compute their own public keys: Alice computes

𝑔𝑎 mod 𝑝

and Bob computes
𝑔𝑏 mod 𝑝

Then Alice and Bob exchange public keys, 𝑔𝑎 and 𝑔𝑏 and then both parties can compute
the shared secret key since:

(𝑔𝑏)𝑎 mod 𝑝 = (𝑔𝑎)𝑏 mod 𝑝

Both computations result in the same shared secret key, which both parties can use for
secure communication.

To obtain the private keys in this protocol, an adversary would need to extract 𝑎 and 𝑏
from the values 𝑔𝑎 and 𝑔𝑏 , respectively. The problem of determining the exponent 𝑥 in 𝑔𝑥

is known as the Discrete-Logarithm Problem (DLP). As the prime 𝑝 increases, computing
𝑥 from 𝑔𝑥 becomes increasingly difficult, while computing 𝑔𝑥 remains computationally
easy. In cryptography, we often rely on the assumption that computing the discrete
logarithm is hard, as no efficient general method is known for solving this problem in a
cyclic group.

Katz and Lindell [74] formally define the discrete-logarithm problem as follows:
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The discrete logarithm experiment DLog𝒜 ,𝒢(𝜆)
Consider the following experiment for a group-generation algorithm 𝒢, algorithm𝒜,

and security parameter 𝜆:

1. Run 𝒢(1𝜆) to obtain output (G, 𝑞, 𝑔), where G is a cyclic group of order 𝑝 (with
|𝑝 | = 𝜆) and 𝑔 is a generator of G.

2. Choose an uniform ℎ ∈ G.

3. 𝒜 is given G, 𝑝, 𝑔, ℎ, and outputs 𝑥 ∈ Z𝑞 .

4. The output of the experiment is defined to be 1 if 𝑔𝑥 = ℎ, and 0 otherwise.

Definition 4 (Discrete-Logarithm problem). We say the discrete logarithm problem is hard
relative to 𝒢 if for all probabilistic, polynomial-time algorithms𝒜 there exists a negligible function
negl(𝜆) such that

Pr[DLog𝒜 ,𝒢(𝜆) = 1] ≤ negl(𝜆).

Besides this assumption there are two other assumptions to help prove the security of
this protocol, these assumptions are the Computational Diffie–Hellman (CDH) assump-
tion and the Decisional Diffie–Hellman (DDH) assumption, both detailed in [17], which
respectively assume that computing 𝑔𝑎𝑏 from 𝑔𝑎 and 𝑔𝑏 is also a hard problem, and that
an adversary cannot learn something about 𝑔𝑎𝑏 or predict the value with some probability
since 𝑔𝑎𝑏 looks exactly like a random element from the group. We formally define these
two assumptions below:

Definition 5 (Computational Diffie-Hellman (CDH) assumption). Let G be a cyclic group
with a generator 𝑔. We say that the CDH problem is hard relative to 𝐺 if for all probabilistic
polynomial-time algorithms𝒜, there exists a negligible function negl(𝑛) such that

Pr
[
𝒜(𝑔, 𝑔𝑎 , 𝑔𝑏) = 𝑔𝑎𝑏

]
≤ negl(𝑛),

where the probabilities are taken over the random choices of 𝑎, 𝑏 ∈ Z𝑞 and the random bits of
𝒜.

The security of Diffie-Hellman key exchange relies on this hardness of the Decisional
Diffie-Hellman problem, that asserts that it is difficult to distinguish between a valid Diffie-
Hellman tuple anda random tuple in a cyclic group ofprime order, more precisely the DDH
assumption states that no polynomial-time algorithm can distinguish between a Diffie-
Hellman tuple (𝑔, 𝑔𝑎 , 𝑔𝑏 , 𝑔𝑎𝑏) and a random tuple (𝑔, 𝑔𝑎 , 𝑔𝑏 , 𝑔𝑐) with a non-negligible
advantage, where 𝑎, 𝑏, 𝑐 ∈ Z𝑞 are chosen uniformly at random.

Definition 6 (Decisional Diffie–Hellman (DDH) assumption). Formally, let G be a cyclic
group of prime order 𝑞 and generator 𝑔. The DDH problem is hard in G if for any probabilistic
polynomial-time algorithm𝒜 there exists a negligible function negl(𝑛) such that:
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��Pr[𝒜(𝑔, 𝑔𝑎 , 𝑔𝑏 , 𝑔𝑎𝑏) = 1] − Pr[𝒜(𝑔, 𝑔𝑎 , 𝑔𝑏 , 𝑔𝑐) = 1]
�� ≤ negl(𝑛),

where the probabilities are taken over the random choices of 𝑎, 𝑏, 𝑐 ∈ Z𝑞 and the random bits of
𝒜.

This protocol is one of the most relevant cryptographic protocols ever since it enabled
secure communication without the need for pre-shared secrets or a secure initial channel.
Besides that it had a profound impact on the field of cryptography, serving as the catalyst
for numerous research papers, proposals, and cryptographic systems, laying down the
foundations for countless cryptographic applications in today’s interconnected world.

2.4.2 Oblivious Pseudorandom Functions (OPRFs)

OPRFs are specific cryptographic protocols designed to enable two parties to securely
compute the output of a PRF while maintaining privacy.

In this protocol one of the parties (known as the server) holds the secret key 𝑘 for a
secure pseudorandom function 𝐹 and the other party (known as the client) has an input
𝑥 for the function. Through a series of interactions the two parties jointly compute the
output of the PRF. At the end of the protocol the client should know 𝐹(𝑘, 𝑥) and nothing
else while the server learns nothing. This way the protocol ensures that the server does
not learn the client’s input 𝑥 during evaluation and that the client doesn’t learn anything
about the the server’s secret PRF key [42].

The concept of OPRFs was introduced to address the limitations of traditional pseu-
dorandom functions in scenarios where one party needs to evaluate a function on private
inputs held by another party, since then OPRFs have gained significant attention in recent
years due to their numerous applications, such as oblivious keyword search (KS) [57, 77],
private information retriaval (PIR) [57], password-protected secret sharing (PPSS/TPASS)
[67], password-authenticated key exchange (PAKE) [67], private set intersection(PSI) [64,
71, 72, 77] and cloud key management [68].

However OPRFs are still evolving, and there is ongoing work in developing standard-
ized protocols and ensuring interoperability between different implementations. There
are various practical aspects of deploying OPRFs in real-world applications and some
documents and articles have already brought to attention some open problems and future
research directions related to OPRFs [32].

Below we give a formal definition of what is an OPRF:

Definition 7 (Oblivious pseudorandom function, [57]). A two-party protocol 𝜋 between a
client and a server is an oblivious pseudorandom function (OPRF) if there exists some PRF family
𝑓𝑘 , such that 𝜋 privately realizes the following functionality:

• Client has input 𝑥; Server has key 𝑘.

• Client outputs 𝑓𝑘(𝑥); Server outputs nothing.
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Figure 2.1: General OPRF protocol diagram

In this context, "𝜋 privately realizes" means that the server learns nothing about the
client’s input 𝑥, and the client only learns the output 𝑓𝑘(𝑥)without obtaining any informa-
tion about the server’s secret key 𝑘. That is, while both parties jointly compute the output
𝑓𝑘(𝑥), the server remains oblivious to the input 𝑥, and the client remains oblivious to the
key 𝑘. Formally:

• Client has input 𝑥: The client wants to compute the value of the pseudorandom
function 𝑓𝑘(𝑥), but does not know the secret key 𝑘.

• Server has the key 𝑘: The server knows the secret key 𝑘, but does not know the
input 𝑥 chosen by the client.

• Client outputs 𝑓𝑘(𝑥); Server outputs nothing: At the end of the protocol, the client
learns 𝑓𝑘(𝑥) (the result of the pseudorandom function evaluated at 𝑥 using the key
𝑘), while the server learns nothing.

This fulfills the security properties expected from an OPRF that, as a secure two-party
protocol, has the goals of privacy and obliviousness.

It is also important to note that there are many different constructions of OPRFs in the
literature and they have been listed based on their underlying PRF and high-level method
of oblivious evaluation [32].

One common OPRF construction is the Hashed Diffie-Hellman OPRF (HashDH), we
will be exploring this construction in more detail in Chapter 4. This OPRF uses a a very
simple “blinded exponentation” protocol depicted in the figure below:
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Figure 2.2: Blinded exponentiation for evaluating the HashDH PRF.

In this technique for evaluating the HashDH PRF the client starts by selecting a random
blinding factor 𝑟 chosen uniformly at random. Then the client computes a blinded version
of its input. This effectively masks the actual input value, after this the client sends the
blinded input to the server.

The key idea behind this construction is that the blinding factor applied by the client
ensures that the server cannot determine the actual input value from the blinded input it
receives. Additionally, the server computes the PRF output without revealing his secret
key to the client.

2.4.2.1 Verifiable Oblivious Pseudorandom Functions (VOPRFs)

VOPRs are an extension of OPRFs that add a verifiability property by enabling the server to
provide a cryptographic proof of the correctness of the computation. This allows the client
to verify that the server has evaluated the PRF correctly with respect to a prior commitment
to the key. So, basically a verifiable OPRF (VOPRF) is an OPRF where the server also
proves to the client that 𝐹(𝑘, 𝑥) was computed with the secret key 𝑘 corresponding to the
server’s public key, which the client knows [42].

In a VOPRF protocol, the client and server engage in a cryptographic interaction to
compute the output of the PRF on the client’s input. The key addition in a VOPRF is
that the server provides a proof, often in the form of a zero-knowledge proof or a non-
interactive proof, to convince the client that it has correctly computed the output without
revealing any information about the client’s input.
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Zero-Knowledge Proofs: Zero-Knowledge Proofs (ZKPs) are cryptographic protocols
that allow one party (the prover) to convince another party (the verifier) that a statement
is true without revealing any information beyond the validity of the statement itself. In
other words, the prover can demonstrate knowledge of a secret (e.g., a cryptographic key
or an internal computation) without actually revealing the secret itself. This is essential
for VOPRFs, where the server proves it correctly computed 𝐹(𝑘, 𝑥) without disclosing the
secret key 𝑘 or any internal details.

Formally introduced by Goldwasser, Micali, and Rackoff [61], zero-knowledge proofs
must satisfy three properties:

• Completeness: If the statement is true, an honest verifier will be convinced by the
proof.

• Soundness: If the statement is false, a dishonest prover cannot convince the verifier
that it is true.

• Zero-Knowledge: If the statement is true, the verifier learns nothing other than the
fact that the statement is true.

Many modern VOPRF constructions rely on Non-Interactive Zero-Knowledge Proofs
(NIZKs), which allow the server to generate a proof that the client can verify in a single
round, eliminating the need for extra interaction by allowing the prover to generate a
proof in advance that the verifier can later verify without needing further communication,
improving efficiency in practical implementations.

There is also the notion of VOPRFs to include public verifiability, where any third
party can verify the correctness of the computation [19].

VOPRFs have applications in various scenarios like the ones we specified in OPRFs
before but especially in scenarios where the verifiability of the server’s computation is
crucial to maintain trust and security [3].

2.4.2.2 OPRFs Constructions

In this subsection we show in Table 2.1 the list of practically relevant OPRFs from the
literature based on their underlying PRF and high-level method of oblivious evaluation.

To gain an overview of the many OPRF constructions in the literature, we first observe
that we can sort them into mainly four categories, as discussed by Casacuberta et al. in[32].
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PRF OPRFs Method

Naor-Reingold [19, 57, 63, 64] Oblivious Transfer
[1, 67] Homomorphic encryption

HashedDH [7, 8, 41, 43, 66, 67, 69, 70] Blinded exponentiation

Dodis-Yampolskiy [26, 29, 72, 86] Homomorphic encryption
[109] Blinded exponentiation

Any [73, 75, 77, 78, 96, 97, 98] Oblivious Transfer

Table 2.1: Classification of OPRF protocols based on their underlying PRF and method of
oblivious evaluation

2.4.3 Password-Based Authentication Protocols

Password-based authentication is one of the oldest and most widely used methods of
verifying the identity of an user in various systems and applications. It involves the use of
a password which is a secret string known only to the user to authenticate their access, the
server then compares the provided password with the stored password associated with
the user’s account to see if it matches.

This authentication method as the objective of ensuring that only authorized users
who possess the correct password can gain access to protected systems or information. It
relies on the assumption that the password is known only to the legitimate user and not
to unauthorized individuals.

Even though this authentication method is very popular, password-based authenti-
cation faces a lot of security challenges, such as password brute force attacks, password
leakage, and password database breaches.

To enhance security and to deal with this challenges password-based authentication
systems often employ additional measures like secure password storage and protection
and password-based authentication protocols.

2.4.3.1 Password Storage and Protection

This authentication method needs a way for the server to verify if the user password
corresponds to who the user is claiming to be, therefore after a user creates a password, a
copy of that password is stored by the system/server in a database.

This is a critical aspect of password-based authentication since storing passwords in
plaintext is highly insecure, and exposes them to potential attackers in the event of a
data breach. Because of this modern systems employ cryptographic techniques to store
passwords securely, for example they use hash functions such as bcrypt, scrypt, and
Argon2 to encrypt the passwords stored in the server.

However this just by itself is not sufficient enough to ensure security since these
passwords are still vulnerable to dictionary attacks or precomputation table attacks if the
attacker gets access to the server database.
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2.4.3.2 Password-Based Authentication Protocols

Password based authentication protocols have been developed to enhance security and
address some vulnerabilities of password based authentication.

Two notable examples are the Secure Remote Password (SRP) protocol, which provides
secure mutual authentication between a client and a server without revealing the password
to the server, and the Password Authenticated Key Exchange (PAKE) protocol, which
enables secure key establishment solely basedon passwordauthentication. These protocols
incorporate cryptographic techniques, such as zero-knowledge proofs and challenge-
response mechanisms, to prevent various attacks and ensure secure authentication.

2.4.3.3 Password-Authenticated Key Exchange (PAKE)

The PAKE protocol, which was first proposed by Bellovin and Merritt [14], is a special
form of the cryptographic key exchange protocol. Key exchange (or “key agreement”)
protocols are designed to assist two parties (call them the client and the server) in reaching
an agreement on a shared key, using public key cryptography. Early key exchange
protocols such as the famous Diffie-Hellman were unauthenticated, leaving them open to
man-in-the-middle attacks.

The distinctive feature of the PAKE protocol is that it provides key exchange capa-
bilities without requiring additional authentication factors, such as tokens or biometrics.
Instead, the authentication relies solely on the knowledge of the password by the involved
parties (the password or its hash is assumed to be known to the server, allowing for
verification). This allows for secure key establishment while leveraging passwords as the
shared secret. This way PAKE can provide secure authentication and key establishment
in scenarios where users only have a password as their secret authentication credential.
Traditional authentication protocols that rely on password-based authentication suffer
from various vulnerabilities, such as password guessing attacks, offline dictionary attacks,
and interception of passwords during transmission [62].

PAKE protocols address these vulnerabilities by employing cryptographic techniques
to protect the privacy and integrity of the password during the authentication process.
They ensure that the password is securely transformed into a shared cryptographic key
that can be used for subsequent secure communication between the client and the server.

What makes a PAKE truly useful is that it should also provide protection for the client’s
password. A stronger version of this guarantee can be stated as follows: after a login
attempt (valid, or invalid) both the client and server should learn only whether the client’s
password matched the server’s expected value, and no additional information.
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Figure 2.3: Ideal representation of a PAKE protocol. The two parties inputs also include
some randomness, which isn’t shown. An eavesdropper should not learn the strong shared
secret key K, which should itself be random and not simply a function of the password
[62].

2.4.4 OPAQUE Protocol

OPAQUE is a cryptographic protocol designed to enhance the security of password-
based authentication. It aims to protect user passwords even in the presence of server
compromise or offline attacks. The protocol was proposed and formally analyzed by
Stanislaw Jarecki, Hugo Krawcyzk and Jiayu Xu in 2018 [69].

The primary goal of OPAQUE is to provide password-authenticated key exchange
(PAKE) functionality, allowing two parties to establish a secure shared key over an insecure
channel using only a password as a shared secret. The protocol is oblivious in the sense
that it ensures that no information about the password is leaked during the authentication
process.

OPAQUE provides security against offline dictionary attacks by employing a verifiable
oblivious pseudorandom function (OPRF). An OPRF allows the client to generate a proof
that it has evaluated the function correctly on its password, without revealing the actual
password itself. This ensures that an attacker with access to the server’s data cannot
determine the user’s password.

By combining these techniques, OPAQUE offers a robust and secure solution for
password-authenticated key exchange. It provides strong security guarantees, even in the
face of server compromise or offline attacks on stored password data.

It is worth noting that OPAQUE has undergone several revisions and refinements since
its introduction, and different variants of the protocol have been proposed to address
specific security requirements or deployment scenarios. Nonetheless, the core principles
and goals of the OPAQUE protocol remain consistent across these variations.

The IRTF define OPAQUE as "A secure asymmetric password-authenticated key ex-
change (aPAKE) that supports mutual authentication in a client-server setting without
reliance on public key infrastructure (PKI) and with security against pre-computation
attacks upon server compromise. In addition, the protocol provides forward secrecy and
the ability to hide the password from the server, even during password registration" [21].
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2.4.4.1 OPAQUE protocol Overview

In this section we will look at a general overview of OPAQUE. First we provide a more
formal and technical overview of OPAQUE protocol according to the draft from the
IRTF(Internet Research Task Force) [21] and after we give a more intuitively overview of
the OPAQUE protocol. OPAQUE consists of two stages:

• Stage 1 : Registration - In this first stage the client registers its password with the
server and stores its credential file on the server.

• Stage 2 : Authenticated key exchange - After we have the second stage also known
as the "login" stage where the client recovers its authentication material and uses it
to perforam a mutually authenticated key exchange.

However prior to both stages there is a setup phase where the client and server need
to agree on a configuration that fully specifies the cryptographic algorithm dependencies
necessary to run the protocol, during these phase the server chooses a pair of keys (server
private key and server public key) for the AKE, and chooses a seed (oprf seed) of Nh bytes
for the OPRF. The server can then use this single pair of keys with multiple clients and
can opt to use multiple seeds (so long as they are kept consistent for each client).

During the first stage, also known as the registration stage, the client inputs its
credentials, which include its password and user identifier, and the server inputs its
parameters, which include its private key and other information. The only client output
of this stage is a single value export key that the client may use for application-specific
purposes, for example to encrypt additional information for storage on the server. The
server does not have access to this export key. On the other side, the server output of
this stage is a record corresponding to the client’s registration that it stores in a credential
file alongside other clients registrations as needed. These messages are the registration
request, registration response, and registration record, respectively.

It is important to note that this is the only stage in OPAQUE that requires a server-
authenticated channel with confidentiality and integrity: either physical, out-of-band,
PKI-based, etc.

Below we can see an image showing the registration flow of stage 1:
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Figure 2.4: Registration flow of stage 1 [21]

Now looking at the second stage, also known as the authenticated key exchange stage.
The client starts by obtaining credentials previously registered with the server, recovers
private key material using the password, and subsequently uses them as input to the
AKE protocol. As in the registration phase, the client inputs its credentials, including
its password and user identifier, and the server inputs its parameters and the credential
file record corresponding to the client. The client outputs two values, an export key
(matching that from registration) and a session key, the latter of which is the primary
AKE output. The server outputs a single value session key that matches that of the client.
Upon completion, clients and servers can use these values as needed. These messages
carry the messages of the concurrent execution of the key recovery process (OPRF) and
the authenticated key exchange (AKE).

Below we can see an image showing the authenticated key exchange flow of stage 2:

Figure 2.5: Authenticated key exchange flow of stage 2 [21]
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More intuitively OPAQUE protocol enables to store user secrets on a server, without
giving the server access to those secrets. This is done by storing a secret envelope in the
server that is “locked” by two pieces of information: the client’s password known only by
the client, and a random secret key (like a salt) known only by the server instead of storing
a traditional salted password hash. After that, to log in the client initiates a cryptographic
exchange that reveals the envelope key to the client, but not to the server.

After this the server then sends the envelope to the user, who now can retrieve the
encrypted keys. These keys, once unlocked, will be the inputs to an Authenticated Key
Exchange (AKE) protocol, which allows the user and server to establish a secret key which
can be used to encrypt their future communication [22].

To conclude, the user first signs up for a service picking a username and password
before the registration stage. Then the registration stage begins with the client and the
server engaging in an OPRF exhcange, the result is that the client has a random key
rkey, derived from the OPRF output 𝐹(kU, pwdU), where kU is a server-owned OPRF key
specific to the client and pwdU is the client’s password. Within its OPRF message, the
server sends the public key for its OPAQUE identity. The client then generates a new
private/public key pair, which will be its persistent OPAQUE identity for the server’s
service, and encrypts its private key along with the server’s public key with the rkey (this
results in an encrypted envelope that are the client’s credentials). The client then sends
its credentials along with its public key (unencrypted) to the server, who stores the data
the client provided, along with the client’s specific OPRF keysecret, in a database indexed
by its username.

Figure 2.6: Registration phase [22]

Then we have the next stage, the login or authenticated key exchange stage, it also starts
with an OPRF flow. However, this time on the server side, instead of generating a new
OPRF key, the server instead looks up the one it created during the client’s registration.
The server does this by looking up the client’s username (which the client provides in
the first message), and retrieving its record of the client. This record contains the client’s
public key, the credentials envelope, and the server’s OPRF key for the client.

The server also sends over the credentials which the client can decrypt with the output
of the OPRF flow. (If decryption fails, the client aborts the protocol, this likely indicates
that the client typed its password incorrectly, or that the server isn’t who it says it is). If
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decryption succeeds, the client now has its own secret key and the server’s public key. The
client inputs these into an AKE protocol with the server, who, in turn, inputs its private
key and the client’s public key, which gives them both a fresh shared secret key.

Figure 2.7: Login phase [22]

2.4.4.2 Security Considerations in OPAQUE

The OPAQUE protocol introduces several security considerations to ensure the robustness
of password-based authentication. Int this section we aim to explore and enumerate these
security aspects, emphasizing the strengths and potential vulnerabilities of the OPAQUE
protocol.

These are some of the security considerations that we have to take into account when
talking about OPAQUE:

• Password Security: One crucial aspect of OPAQUE is the protection of user pass-
words. The protocol employs verifiable oblivious pseudorandom functions (OPRFs)
to safeguard password privacy during authentication. This ensures that the server
does not gain knowledge of the actual password, even in the presence of server
compromise or offline attacks. By preventing offline dictionary attacks, OPAQUE
significantly enhances password security.

• Server Security: The security of the server storing password verifiers and perform-
ing authentication is of paramount importance. OPAQUE addresses this concern
through the use of salted password verifiers. By incorporating salts, which are
unique per user, OPAQUE protects against pre-computation attacks and rainbow
table attacks. Even if an attacker gains access to the server’s data, the salts and
hashed verifiers make it computationally infeasible to retrieve the actual passwords.

• Privacy Preservation: OPAQUE takes privacy preservation seriously during the
authentication process. By employing Diffie-Hellman key exchange, the client and
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server can establish a shared secret without disclosing their private keys or the
password itself. This ensures that eavesdroppers cannot gain any information about
the password or the exchanged keys. The use of public and private keys in the
protocol contributes to preserving the privacy of both parties.

• Resistance to Attacks: The OPAQUE protocol demonstrates resilience against var-
ious types of attacks. It is designed to withstand offline attacks, including pre-
computation attacks and password cracking attempts. By employing secure hashing
algorithms and OPRFs, OPAQUE ensures that even if an adversary gains access to
stored data, they cannot derive the user’s password. Additionally, the Diffie-Hellman
key exchange component provides resistance against man-in-the-middle attacks.

• Cryptographic Assumptions: The security of the OPAQUE protocol relies on certain
cryptographic assumptions. Specifically, the protocol assumes the security of the
Diffie-Hellman assumption and the OPRFs used. Any vulnerabilities or limitations
in these assumptions could have implications for the overall security of the proto-
col. Therefore, ongoing research and scrutiny of these underlying cryptographic
assumptions are essential to ensure the long-term security of OPAQUE.

• Side-Channel Attacks and Implementations: While the OPAQUE protocol offers
strong security guarantees, it is crucial to consider potential side-channel attacks
that could compromise its security. Side-channel attacks exploit information leaked
through physical implementations or timing measurements. Implementers must ad-
here to best practices, such as constant-time implementations and countermeasures
against power analysis attacks, to mitigate these risks and ensure the protocol’s
resilience in real-world deployments.

2.5 Summary and Critical Analysis

This chapter has provided an overview of the fundamental principles of modern cryptog-
raphy, focusing on cyrptographic keys and their generation and into the cryptographic
primitives and protocols that are related to OPRFs.

A critical examination of the related work reveals a key issue that lies at the heart
of this thesis: the reliance on high-entropy key generation to maintain the security of
cryptographic protocols. As emphasized in several sections, strong, unpredictable keys are
essential for ensuring the security guarantees provided by OPRFs and related applications.
However, the possibility of generating weak keys due to insufficient randomness, whether
due to a malicious or compromised server, poses a significant risk to the overall security
of these protocols.

The literature suggests that the security of OPRF is highly sensitive to the quality of
the key generation process, a critical dimension in the context of key rotation. This will
be something that we will investigate in this thesis.
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Furthermore, the analysis of certain primitives and assumptions in the literature,
such as dual PRFs, will be particular interesting when exploring whether alternative
mechanisms can be developed to strengthen trust guarantees for clients, even when the
server’s key generation process is potentially compromised. The ability of these constructs
to incorporate both the key and the input in generating pseudorandom outputs offers
a potential path toward greater trust and security in scenarios where the server’s key
rotation is unreliable.

This critical analysis serves as the basis for the following chapters, which will focus
on investigating the specific challenges and potential solutions surrounding key rotation
security in OPRF protocols, particularly in the context of a compromised server that can
no longer derive truly random keys.

It is also important to define that in this thesis we will be using the following notation.

Notation: We denote the security parameter as 𝜆. For any 𝜆 ∈ N, let 1𝜆 be the unary
representation of 𝜆. We write 𝑥

$← 𝒮 to indicate that we choose an element 𝑥 uniformly
at random from set 𝒮. Unless explicitly stated otherwise, all logarithms below are base 2.
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Analyzing PRF Security

In our pursuit of a deeper understanding of Oblivious Pseudo-Random Functions (OPRFs)
and the role played by the keys in these protocols, we start by focusing on the heart of
OPRF functionality: the pseudorandom function (PRF).

Therefore, in this chapter we present our formal definition of a PRF and we define our
security model, an instrument that will be essential for analyzing the security of the PRF.

3.1 PRF Security Model

As we discussed previously, in modern cryptography the scrutiny and analysis of crypto-
graphic primitives, such as pseudorandom functions (PRFs), is grounded in well-defined
security models. These models serve as essential instruments for evaluating the resilience
of cryptographic constructions, through a formalized set of rules and criteria these security
models not only delineate the security goals and operational boundaries of cryptographic
primitives but also provide a systematic framework for identifying and addressing poten-
tial vulnerabilities.

In this chapter, we will introduce our security model. We will start with formally
defining the pseudorandom function (PRF), accompanied by the formal definitions of
distributions for key and input selection, the security game and the adversary model. We
will follow the principles of modern cryptography, providing formal definitions, precise
assumptions and proofs of security.

3.1.1 Defining the PRF

In Chapter 2 we provided a brief introduction to the concept of a pseudorandom function
(PRF) but in this chapter we will go into a more careful analysis and will define the
Standard PRF security model. A PRF is a keyed function that behaves essentially like
a random function, to be more precise, a pseudorandom function (PRF) is a two-input
function that takes as input a secret key 𝑘 and an input 𝑥 producing an output that appears
indistinguishable from a truly random function.
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This is the primary security goal of a PRF: to be a "random-looking" function. But like
Katz and Lindell [74] said, it makes little sense to say that any fixed function 𝑓 : {0, 1}∗ →
{0, 1}∗ is pseudorandom, we must instead refer to the pseudorandomness of a distribution
on functions, such a distribution is induced naturally by considering keyed functions.

Definition 8 (Keyed function). A keyed function 𝐹 is a two-input keyed function 𝐹 : {0, 1}𝜆 ×
{0, 1}∗ → {0, 1}∗ where the first input is called the key and denoted 𝑘 and where the second input
is denoted by 𝑥.

A keyed function 𝐹 induces a natural distribution on functions given by choosing a
uniform key 𝑘 ∈ {0, 1}𝜆 and then considering the resulting single-input function 𝐹𝑘 . We
call 𝐹 pseudorandom if the function 𝐹𝑘 (for a uniform key 𝑘) is indistinguishable from
a function 𝑓𝑟 chosen uniformly at random from the set of all functions having the same
domain and range. In the formal definition bellow we will be using and defining the
following libraries: ℒ𝐹prf-real representing the PRF and ℒ𝐹prf-rand representing a function
chosen uniformly at random from the set of all functions having the same domain and
range.

We say that 𝐹 is efficient if there is a polynomial-time algorithm that computes 𝐹(𝑘, 𝑥)
given 𝑘 and 𝑥. In this security model we will assume this since we are only interested in
efficient keyed functions.

We will be using the security parameter 𝜆, it dictates the key length, input length, and
output length regarding the PRF.

3.1.2 Formal Definition

This is the standard PRF definition with the aim of expressing a standard PRF security
model. In this initial section of the security model, we will formally define the key
sammpling and input selection for the PRF and present a formal definition of the PRF.

3.1.2.1 Key generation

Let𝒟 = {𝒟𝜆}𝜆∈N be a family of distributions parameterized by a security parameter 𝜆
The key 𝑘 is then sampled according to the distribution𝒟𝜆:

𝑘 ← 𝒟𝜆

In most cryptographic constructions, including the security definitions for pseudoran-
dom functions, it is assumed that the distribution 𝒟𝜆 is the uniform distribution over
the key space. Thus, 𝑘 is chosen uniformly at random from the key space {0, 1}𝜆. This
assumption ensures that the key 𝑘 is chosen uniformly at random, which maximizes the
entropy of the key, this is critical since a high-entropy key makes it extremely difficult to
predict, which ensures strong security properties in cryptographic protocols. The more
entropy a key has, the more resistant it is to attacks such as brute-force, where an attacker
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tries all possible keys, or any other method that tries to predict the key based on patterns.
This uniform key distribution underpins the indistinguishability property that defines
the security of the PRF.

3.1.2.2 Input selection

In the standard PRF security model, the input 𝑥 is typically chosen by the adversary as
part of their queries to the PRF oracle. This is a key aspect of PRF security: the adversary
can choose specific inputs 𝑥 ∈ {0, 1}𝜆 and query the oracle.

For each new query that the adversary makes, he chooses an 𝑥 ∈ {0, 1}𝜆.

3.1.2.3 Libraries

We will use two libraries, one to represent the pseudorandom function and one to represent
a function chosen uniformly at random from the set of all functions having the same
domain and range.

• ℒ𝐹prf-real represents a PRF.

• ℒ𝐹prf-rand represents a function chosen uniformly at random from the set of all
functions having the same domain and range.

Choosing a function uniformly at random from the set of all functions having the
same domain and range might not sound very intuitive. We can look at this random
function as a uniformly chosen array/lookup table and it can be accessed through the
lookup subroutine of the following library:

ℒ𝐹prf-rand

𝑇 := empty associative array

lookup(𝑥 ∈ {0, 1}𝜆):

if 𝑇[𝑥] is undefined:
𝑇[𝑥] ← {0, 1}𝜆

return 𝑇[𝑥]

When the lookup function is called by the adversary (lookup(𝑥)), the PRF function
𝐹 takes the key 𝑘 and the input 𝑥 and produces an output 𝐹(𝑘, 𝑥). This function is
indistinguishable from the function PRF-rand, meaning that when the adversary performs
the lookup they do not know if they are interacting with the PRF function or with a random
function. Therefore, we call 𝐹 pseudorandom if the function 𝐹𝑘 (for a uniform key 𝑘) is
indistinguishable from a function chosen uniformly at random from the set of all functions
having the same domain and range, in other words, if no efficient adversary can distinguish
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whether it is interacting with 𝐹𝑘 (for uniform 𝑘) or 𝑓 (where 𝑓 is chosen uniformly from
the set of all functions mapping 𝜆-bit inputs to 𝜆-bit outputs).

More formally, the following library should be indistinguishable from the one above:

ℒ𝐹prf-real

𝑘 ← 𝒟𝜆

lookup(𝑥 ∈ {0, 1}𝜆):

return 𝐹(𝑘, 𝑥)

Definition 9 (PRF Security). Let 𝐹 : {0, 1}𝜆 × {0, 1}𝜆 → {0, 1}𝜆 be a deterministic function.
We say that 𝐹 is 𝒟-secure if ℒ𝐹prf-real ≈ ℒ

𝐹
prf-rand , where ≈ denotes computational indistin-

guishability, meaning that no efficient (polynomial-time) algorithm can distinguish between the
two distributions with a non-negligible probability.

However it’s important to make a note regarding these two libraries that we are
using: We want to build our security definitions with libraries that run in probabilistic
polynomial time (the rationale behind this is explained in Subsection 2.1.3), because of
this no matter how big the table T is meant to be, a polynomial-time calling program will
only access a polynomial amount of it. This means that T initially starts uninitialized, and
its values are only assigned as the calling program requests them. This changes when
each T [x] is sampled (if at all), but does not change how it is sampled (i.e., uniformly and
independently).

3.1.3 Adversary Model

In this subsection, we define the adversary model, detailing the capabilities and limitations
of the adversary in attacking the PRF, and clarifying the security goals.

We create a notion of a probabilistic-polynomial time adversary𝒜 that can query an
oracle 𝒪 which is either equal to the behaviour of ℒprf-real or ℒprf-rand.

The adversary 𝒜 may query its oracle at any point 𝑥 ∈ {0, 1}𝜆 in response to which
the oracle returns 𝒪(𝑥). The oracle computes a deterministic function and so it returns the
same result if queried twice on the same input, for this reason we may assume without
loss of generality tha𝒜 never queries the oracle twice on the same input.
𝒜 can interact freely with its oracle, choosing its queries adaptively based on all

previous outputs. However since𝒜 runs in polynomial time it can ask only polynomially
many queries.

Formally we say that PRF is secure if, for every probabilistic polynomial-time adversary
𝒜, there exists a negligible function negl such that:

AdvPRF(𝒜) =
���Pr[𝒜ℒ

𝐹
prf-real(1𝜆) = 1] − Pr[𝒜ℒ

𝐹
prf-rand(1𝜆) = 1]

��� ≤ negl(𝜆)
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where the first probability is taken over the randomness of𝒜, the randomness used
in the sampling of 𝑘. And the second probability is taken over the randomness of𝒜, and
by the random choice of ℒprf-rand choosing a random function by uniformly sampling its
truth table as needed(there are 2𝜆×2𝜆 possible functions for 𝑇). In simpler terms, if an
adversary cannot distinguish with non-negligible advantage whether they are interacting
with the PRF or a truly random function, then the PRF is considered secure.

It is also very important to understand that 𝒜 does not know 𝑘. If 𝑘 is revealed any
claims about the pseudorandomness of the PRF no longer hold since all the adversary
has to do is query the oracle at any point 𝑥 to obtain the answer y, and compare this to
the result 𝑦′ := 𝐹𝑘(𝑥) that it computes itself using the known value k. An oracle for 𝐹𝑘
will return 𝑦 = 𝑦′, while an oracle for a random function will have 𝑦 = 𝑦′ with probability
only 2−𝜆.

3.1.4 Security Game

We can also define this PRF by the notion of a security game.
Security games are a fundamental tool in cryptography for formally defining and

evaluating the security of cryptographic primitives and protocols. These games provide a
structured framework to analyze how well a system or primitive meets its security goals
under various conditions and potential attacks. We present a security game definition
in this subsection to help formalize the security properties and to help model potential
adversarial behavior.

PRF security game:
Let 𝐹 : {0, 1}𝜆 × {0, 1}𝜆 → {0, 1}𝜆. The security game is played between an adversary𝒜
and a challenger. The game is parameterized by a bit 𝑏 ∈ {0, 1}. This is like a coin flip that
the challenger does that chooses between the real game(𝑏 = 0) or the random game(𝑏 = 1).

1. If 𝑏 = 0, the challenger samples a key 𝑘 ← 𝒟𝜆 and sets 𝑓 = 𝐹(𝑘, .), meaning that he
will be answering to the adversary with ℒprf-real. If 𝑏 = 1, the challenger samples a
uniformly random function 𝑓 from the set of all functions with same domain and
range, formally 𝑓

$←− ℱ{0,1}𝜆→{0,1}𝜆 , meaning that he will be answering with ℒprf-rand.

2. The adversary chooses an 𝑥 ∈ {0, 1}𝜆 for each new query and sends it to the
challenger.

3. The challenger replies with 𝑓 (𝑥).

4. The adversary can continue to submit polynomially many queries to the challenger
(repeating steps 2 and 3) and at the end of the game the adversary outputs bit
𝑏′ ∈ {0, 1} as a guess (whether it believes it is interacting with 𝐹 (ℒprf-real) or a
random function(ℒprf-rand).)

The adversary𝒜 wins the game if 𝑏′ = 𝑏.
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The PRF 𝐹 is considered secure if for all efficient adversaries 𝒜, the probability of
winning the game (correctly distinguishing if it is interacting with ℒprf-real or ℒprf-rand) is
negligible. Formally, we require that:

Pr[𝑏′ = 𝑏] ≤ 1
2 + negl(𝜆)

where negl(𝜆) is a negligible function in the security parameter 𝜆.
This expresses that the probability of the adversary guessing the correct bit(denoted

Pr[𝑏′ = 𝑏]) should not significantly exceed 1
2 plus some negligible factor determined by

𝜆. This ensures that the adversary cannot do significantly better than random guessing,
indicating the security of the PRF.
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OPRF Construction

Now that we have the security model defined we can focus on an actual concrete cryptho-
graphic construction.

In this chapter we focus on the 2HashDH OPRF construction, and on its underlying
PRF, 𝐻(𝑥)𝑘 , providing formal proof that it is indeed a standard PRF and that it fits in
our PRF security model, subsequently we analyze the security impact when the key is
sampled from a non-uniform distribution.

4.1 OPRF Construction

We want to study a concrete PRF construction so that we can analyze more concretely
the impact of the key in the security of the PRF and consequently in the security of the
OPRF. In this case we will look into the 2HashDH OPRF construct(a slight variation of
the HashDH OPRF).

There are various OPRF constructions in literature as we illustrate in Subsection 2.4.2.2.
In this thesis we choose the 2HashDH OPRF construction for our analysis because, as it
has been shown by Jarecki et al. [7, 66, 67, 69], it can be proven secure in the Universal
Composability (UC) framework [30]. 2HashDH is a relevant, highly practical construction
that is used extensively in the literature [7, 8, 41, 43, 66, 69], it has also been demonstrated
that this construction is versatile in terms of properties since the protocol allows for
verifiable computation through efficient non-interactive zero knowledge proofs (NIZK),
or a threshold version for sharing the OPRF key among multiple servers.

Lastly, the 2HashDH construction is secure under the One-More Gap Diffie-Hellman
(OM-gapDH) assumption and with both hash functions modeled as random oracles. This
means that the security of the protocol can be proven based on the difficulty of solving
the OM-gapDH problem, with the additional assumption that the hash functions used in
the construction behave like ideal random oracles. We will go further into the one-more
gap Diffie-Hellman (OM-gapDH) assumption in the next subsection since the security of
this specific construct is formally proven based on this very important assumption.
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4.1.1 Hashed Diffie-Hellman(HashDH) Construction

The 2HashDH OPRF construction is a slight variation of the HashDH construction, so to
understand better the 2HashDH construction we will first look at the HashDH construction.

The underlying PRF in the HashDH OPRF is the function 𝑓 𝐻
𝑘
(𝑥) := 𝐻(𝑥)𝑘 with hash

function 𝐻. It is a PRF under the the idealized assumption that 𝐻 produces uniformly
random elements from a group ⟨𝑔⟩ [89], this means that 𝐻 is a hash function that maps
inputs to uniformly random elements from ⟨𝑔⟩which means that for any input 𝑥,𝐻(𝑥) can
be represented as 𝑔𝑎 for some random 𝑎 ∈ Z𝑞 due to cyclic group properties. Implicitly
when setting 𝑔𝑎 ← 𝐻(𝑥), 𝑓 𝐻

𝑘
(𝑥) = (𝑔𝑎)𝑘 = 𝑔𝑎𝑘 becomes a Diffie-Hellman value and

this is why this PRF is refered as HashDH. 𝑓 𝐻 can be obliviously evaluated with a
blinded exponentiation protocol, as shown below, which has been shown to be secure
under the one-more gap Diffie-Hellman(OM-gapDH) assumption in the random oracle
model(ROM)[67]. It is relevant to note that multiplicative blinding instead of blinded
exponentiation has been considered for HashDH since the first one requires only fixed-
base exponentiation and hence decreases the client’s computational cost, however this
has been very recently investigated by Jarecki et al. [70] and the conclusion is that the
resulting protocol cannot satisfy standard OPRF security notions and is recommended to
be used only when the correct value of the public key 𝑔𝑘 is authenticated, and when the
OPRF inputs are of high entropy. For this reason, in this thesis we will consider HashDH
with blinded exponentiation.

Blinded exponentiation protocol in the context of HashDH:

Figure 4.1: Diagram of the HashDH OPRF construction

• Client: Wants to compute 𝐻(𝑥)𝑘 without revealing 𝑥 to the server.
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• Server: Holds a secret key 𝑘 and helps in the computation without learning 𝑥 or
revealing 𝑘 to the client.

1. Client blinds the input:

• The client has an input 𝑥.

• The client chooses a random blinding factor 𝑟 ← Z𝑞 , where 𝑞 is a large prime.

• The client computes the blinded input 𝑎 = 𝐻(𝑥)𝑟 , the security assumption of
the discrete logarithm problem in the group Z𝑞 ensures that the server cannot
compute 𝑥 from 𝐻(𝑥)𝑟 .

2. Client sends the blinded input:

• The client sends 𝑎 = 𝐻(𝑥)𝑟 to the server.

3. Server’s computation:

• The server receives 𝑎 and computes 𝑏 = 𝑎𝑘 .

• Mathematically: 𝑏 = (𝐻(𝑥)𝑟)𝑘 = 𝐻(𝑥)𝑟𝑘 .

4. Server sends the result:

• The server sends 𝑏 back to the client.

5. Client unblinds the result:

• The client receives 𝑏 = 𝐻(𝑥)𝑟𝑘 and unblinds it by computing 𝑏1/𝑟 .

• Mathematically: 𝑏1/𝑟 = (𝐻(𝑥)𝑟𝑘)1/𝑟 = 𝐻(𝑥)𝑘 .

The idea behind this protocol, Blinded DH exponentiation, has been a known idea in
cryptography for some time, it has been used for example for building blind signatures
[36].

4.1.2 2HashDH Construction

The 2HashDH is a slight variation of the HashDH OPRF, its construction is also rooted
in the idea of blinded DH exponentiation and it forms the core of many protocols aiming
to achieve secure and oblivious interactions between parties. In this variation the client
adds an outer hash 𝐻2 and outputs 𝑓 2𝐻 := 𝐻2(𝑥, 𝐻1(𝑥)𝑘).

Like we mentioned earlier, the 2HashDH construction allows forverifiable computation
through efficient non-interactive zero knowledge proofs (NIZK) making it effectively a
VOPRF protocol where the client can verify that the server has evaluated the PRF with
the key 𝑘 corresponding to the server’s public key.

In 2HashDH, the client first hashes and blinds his input and requests the server’s secret
key application on this blinded value, like in HashDH. The client then verifies the server’s
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response and obtains the VOPRF output by applying a second hash function. This double
hashing action (which is essential in the security proof) is why these type of construction
has the “2Hash” prefix in its name.

To be exact, we will take into account the VOPRF 2HashDH construction presented by
Jarecki et al. in [67] that has the following structure:

• Client: Wants to compute𝐻1(𝑥)𝑘 (which is partof the VOPRF output𝐻2(𝜋, 𝑥, 𝐻1(𝑥)𝑘))
without revealing 𝑥 to the server. The client also wants to verify that the server is
honestly using its secret key 𝑘 without knowing 𝑘 itself.

• Server: Holds a secret key 𝑘 and helps in the computation of𝐻1(𝑥)𝑘 without learning
𝑥 or revealing 𝑘 to the client. Additionally, the server provides a Non-Interactive
Zero-Knowledge (NIZK) proof to convince the client that the computation was
performed correctly using the key 𝑘.

1. Client blinds the input:

• The client has an input 𝑥.

• The construction relies on a group of prime order 𝑞 (where 𝑞 is a large prime)
with a generator denoted 𝑔. The client chooses a random blinding factor from
this group, 𝑟 ← Z𝑞 .

• The client blinds the input 𝑎 = 𝐻1(𝑥)𝑟 , where 𝐻1 is a hash function that maps
inputs to uniformly random elements from ⟨𝑔⟩. The security assumption of
the discrete logarithm problem in the group Z𝑞 ensures that the server cannot
compute 𝑥 from 𝐻1(𝑥)𝑟 .

2. Client sends the blinded input:

• The client sends 𝑎 = 𝐻1(𝑥)𝑟 to the server.

3. Server’s computation:

• The secret key 𝑘 is chosen at random from Z𝑞 , and the public key is 𝑦 is set as
𝑦 = 𝑔𝑘 .

• The server receives 𝑎 and after checking that 𝑎 ∈ ⟨𝑔⟩ computes 𝑏 = 𝑎𝑘 .

4. Server sends the result:

• The server sends the pair (𝑦, 𝑏) to the client.

5. Client unblinds the result:

• The client receives 𝑏 = 𝐻1(𝑥)𝑟𝑘 and unblinds it by computing 𝑏1/𝑟 .

• The client then computes the VOPRF output as 𝐻2(𝜋, 𝑥, 𝐻1(𝑥)𝑘), where 𝜋 =

(𝑔, 𝑞, 𝑦) and 𝐻2 is a hash function onto {0, 1}𝜆 where 𝜆 is a security parameter.
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6. Verification (NIZK Proof):

• The client verifies that the tuple ⟨𝑔, 𝑦, 𝑎, 𝑏⟩ is a valid Decisional Diffie-Hellman
(DDH) tuple.

• If a DH𝑔,𝑦(·, ·) oracle is available, the client can directly test if ⟨𝑔, 𝑦, 𝐻1(𝑥), 𝑏1/𝑟⟩
is a valid DDH tuple.

• If such an oracle is not available, the server provides a Non-Interactive Zero-
Knowledge (NIZK) proof for equality of discrete logarithms to show that
log𝑔 𝑦 = log𝑎 𝑏.

• Specifically, the server:

– Selects a random value 𝑡 ← Z𝑞 .
– Computes 𝑤 = 𝐻3(𝑔, 𝑦, 𝑎, 𝑏, 𝑔𝑡 , 𝑎𝑡), where 𝐻3 is a cryptographic hash

function.
– Computes 𝑠 = 𝑡 + 𝑤 · 𝑘 mod 𝑞.
– Sends the proof 𝜁 = (𝑤, 𝑠) to the client, denoted as NIZKEQ

𝐻3
[𝑔, 𝑦, 𝑎, 𝑏].

• The client verifies 𝜁 by testing if 𝑤 = 𝐻3(𝑔, 𝑦, 𝑎, 𝑏, 𝑔𝑠𝑦−𝑤 , 𝑎𝑠𝑏−𝑤).
• If the check passes, the client is assured that the tuple ⟨𝑔, 𝑦, 𝑎, 𝑏⟩ satisfies

log𝑔 𝑦 = log𝑎 𝑏, meaning the server has correctly used the key 𝑘 in its computa-
tions.

4.1.3 The One-More Gap Diffie-Hellman (OM-gapDH) assumption

We presented in the related work, in Subsection 2.4.1, the traditional Diffie-Hellman
assumptions and explained how important they are in cryptography by reducing the
security of protocols to the hardness of a DH problem and providing a formal basis for
proving the security of cryptographic protocols.

The One-More Gap Diffie-Hellman (OM-gapDH) assumption is a stronger assumption
that extends the traditional Diffie-Hellman assumptions. Below we will present informally
and formally the One-More Diffie-Hellman (OMDH) assumption, and the One-More Gap
Diffie-Hellman (OM-gapDH) that builds on the OMDH and DDH assumptions [46].

• One-More Diffie-Hellman (OMDH): The One-More Diffie-Hellman assumption
[9] is a stronger variant of the Diffie-Hellman problem which asserts that the DH
problem is hard even with the ability to compute many Diffie-Hellman values(by
having acess to a Diffie-Hellman oracle 𝒪DH), since an adversary cannot compute
one more such value than they have queried.

Formally, let (G, 𝑞, 𝑔) ← KeyGen(𝜆) be the key generation algorithm that outputs a
multiplicative group of order 𝑞 and assume 𝑥 ← Z𝑞 . We say that the One-More-DH
problem is (negl(𝜆), 𝑡)-hard if for every algorithm𝒜 that runs in time 𝑡 we have:

Pr
[
{(𝑔𝑖 , (𝑔𝑖)𝑥)}𝑖=1,··· ,𝑣+1 ←𝒜𝒪DH(𝑔1 , · · · , 𝑔𝑐ℎ)

]
≤ negl(𝜆)
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where 𝑐ℎ > 𝑣 and𝒜 made at most 𝑣 queries to the 𝒪DH oracle.

• One-More Gap Diffie-Hellman (OM-gapDH): The One-More Gap Diffie-Hellman
assumption [71] is even stronger since it assumes the adversary has access to both a
Diffie-Hellman oracle and a decisional Diffie-Hellman oracle.

Formally, we say that the One-More Gap Diffie-Hellman problem is hard if One-More
Diffie-Hellman problem is hard even when the adversary has access to a decisional
Diffie-Hellman oracle 𝒪DDH:

Pr
[
{(𝑔𝑖 , (𝑔𝑖)𝑥)}𝑖=1,...,𝑣+1 ←𝒜𝒪DH ,𝒪DDH(𝑔1 , . . . , 𝑔ch)

]
≤ negl(𝜆)

where ch > 𝑣 and𝒜 made at most 𝑣 queries to the 𝒪DH oracle.

Basically, the OM-gapDH assumption is a stronger assumption as it encompasses the
OMDH assumption and adds the complexity of the DDH problem. If a construction
is secure under the OM-gapDH assumption, it implies that the construction is
resilient even when faced with the combined difficulties of both assumptions(DDH
and OMDH).

The formal security proof of the 2HashDH OPRF construction relies on demonstrating
that the adversary’s ability to compute one additional Diffie-Hellman value remains
negligible. The OM-gapDH assumption provides the necessary computational hardness
guarantee to support this proof, ensuring that the OPRF is secure in practical scenarios
and playing a crucial role in the security proof of the 2HashDH OPRF construction since
it establishes the inherent computational difficulty required to compromise the security
of the construction. Because of this, the security of the OPRF can be proven based on the
difficulty of solving the OM-gapDH problem, with the additional assumption that the
hash functions used in the construction behave like ideal random oracles.

4.2 Studying the underlying PRF

At the core of the HashDH and 2HashDH OPRF construction lies the PRF 𝐻(𝑥)𝑘 . Un-
derstanding the security definition of 𝐻(𝑥)𝑘 is essential for analyzing the security of the
OPRF construction.

The first question we address is the formal justification for considering 𝐻(𝑥)𝑘 as a
standard PRF. To do so, we focus on analyzing 𝐻(𝑥)𝑘 under the standard PRF defini-
tion, assessing its behavior under typical cryptographic assumptions and principles and
demonstrating that 𝐻(𝑥)𝑘 is a standard PRF.

4.2.1 𝐻(𝑥)𝑘 as a standard PRF

Let G be a cyclic group of prime order 𝑝 with generator 𝑔. Let 𝐻 be a hash function that
produces uniformly random elements from this group, where 𝐻(𝑥) = 𝑔ℎ𝑥 where ℎ𝑥 ∈ Z𝑝 ,
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and let 𝑘 ∈ Z𝑝 be a secret key chosen uniformly at random. We define the keyed function
𝑓𝑘(𝑥) = 𝐻(𝑥)𝑘 with structure 𝑓𝑘(𝑥) = 𝑔ℎ𝑥 ·𝑘 .

Theorem 4.2.1 (𝐻(𝑥)𝑘 as a secure PRF). Formally, we say that 𝑓𝑘(𝑥) = 𝐻(𝑥)𝑘 is a secure
pseudorandom function (PRF) if, for any probabilistic polynomial-time (PPT) adversary𝒜,
the advantage in distinguishing between the function 𝑓𝑘(𝑥) and a truly random function
𝑓𝑅 is negligible:

AdvPRF
𝒜 ( 𝑓𝑘) =

���Pr[𝒜 𝑓𝑘 (·) = 1] − Pr[𝒜 𝑓𝑅(·) = 1]
��� ≤ neg(𝜆)

where:

• 𝑓𝑘(𝑥) = 𝐻(𝑥)𝑘 is the pseudorandom function, with 𝑘 ∈ Z𝑝 chosen uniformly at
random,

• 𝑓𝑅(𝑥) is a truly random function that outputs uniformly random and independent
values in G for each distinct input 𝑥,

• 𝒜 is a PPT adversary that queries an oracle and attempts to distinguish whether the
oracle is computing 𝑓𝑘(𝑥) or 𝑓𝑅(𝑥).

Basically, we say that 𝑓𝑘(𝑥) is a secure PRF if for any such adversary 𝒜, the advantage
AdvPRF

𝒜 ( 𝑓𝑘) is negligible in the security parameter 𝜆.

To formally prove this theorem, we will model the security using a game-based
approach.

4.2.1.1 Security Game: PRF Security for 𝐻(𝑥)𝑘

The security of 𝐻(𝑥)𝑘 as a PRF is modeled by a security game between a challenger and
an adversary𝒜. The game proceeds as follows:

• Setup: The challenger chooses a secret key 𝑘 ∈ Z𝑝 uniformly at random and generates
the function 𝑓𝑘(𝑥) = 𝐻(𝑥)𝑘 .

• Oracle Access: The adversary 𝒜 is given access to an oracle 𝒪 which computes
either the PRF 𝑓𝑘(𝑥) or a truly random function 𝑓𝑅(𝑥). The challenger flips a hidden
bit 𝑏 ∈ {0, 1}:

– If 𝑏 = 0, the oracle computes 𝑓𝑘(𝑥) = 𝐻(𝑥)𝑘 .

– If 𝑏 = 1, the oracle computes a truly random function 𝑓𝑅(𝑥).

• Adversary Queries: The adversary𝒜 can make polynomially many queries to the
oracle, each with a different input 𝑥. The oracle responds with either 𝑓𝑘(𝑥) or 𝑓𝑅(𝑥),
depending on the value of 𝑏.
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• Distinguishing Phase: After querying the oracle, the adversary𝒜 outputs a guess
𝑏′ ∈ {0, 1}, indicating whether they believe the oracle was computing the PRF (𝑏′ = 0)
or the random function (𝑏′ = 1).

The adversary wins the game if it correctly guesses the nature of the oracle with a
probability significantly better than random guessing (greater than 1

2 ). This means that for
the adversary𝒜 to win the game, they need to reliably distinguish between the outputs
of the PRF 𝑓𝑘(𝑥) = 𝐻(𝑥)𝑘 and the outputs of a truly random function 𝑓𝑅(𝑥).

4.2.1.2 Reduction to the DDH Problem

Theorem 4.2.2. Let 𝑓𝑘(𝑥) = 𝐻(𝑥)𝑘 be a PRF, where 𝐻 is modeled as a hash function that
maps its input to uniformly random elements from cyclic group G generated by 𝑔. If
there exists a polynomial-time adversary𝒜 that distinguishes between 𝑓𝑘(𝑥) and a truly
random function with non-negligible advantage, then we can construct a polynomial-time
algorithmℬ that solves the Decisional Diffie-Hellman (DDH) problem with non-negligible
probability.

Proof. To formally prove the theorem above we will show that an adversary that wins the
PRF game too often can be turned into an algorithm that breaks an important hardness
assumption. To be more specific, we will show that if there exists an adversary𝒜 that can
win the PRF game with non-negligible advantage, then we can construct an algorithm ℬ
that solves the DDH problem with non-negligible probability.

We have formally defined the Decisional Diffie-Hellman assumption above. Intuitively,
the DDH problem is as follows: Given (𝑔, 𝑔𝑎 , 𝑔𝑏 , 𝑔𝑐), where 𝑎, 𝑏 ∈ Z𝑝 are chosen uniformly
at random, determine whether 𝑔𝑐 = 𝑔𝑎𝑏 (the "Diffie-Hellman" tuple) or whether 𝑔𝑐 is
a random element from G. The DDH assumption states that no efficient algorithm can
distinguish between 𝑔𝑎𝑏 and a random group element 𝑔𝑐 .

Reduction:
Suppose𝒜 is an adversary that can distinguish between 𝑓𝑘(𝑥) = 𝐻(𝑥)𝑘 and a random

function with non-negligible advantage 𝜖. We will construct an algorithm ℬ that solves
the DDH problem using𝒜 as a subroutine.

Given a DDH challenge (𝑔, 𝑔𝑎 , 𝑔𝑏 , 𝑔𝑐), the goal of ℬ is to determine whether 𝑔𝑐 = 𝑔𝑎𝑏

or whether 𝑔𝑐 is a random group element. Algorithm ℬ will simulate the PRF game for
𝒜 as follows:

• Input Transformation: ℬ receives the DDH challenge (𝑔, 𝑔𝑎 , 𝑔𝑏 , 𝑔𝑐), where 𝑔𝑎

corresponds to the hash function output 𝐻(𝑥), and 𝑔𝑏 corresponds to the secret key
𝑘.

Thus, ℬ sets 𝐻(𝑥1) = 𝑔𝑎 for a fixed input 𝑥1, and the potential output of the PRF,
𝐻(𝑥1)𝑘 = (𝑔𝑎)𝑏 = 𝑔𝑎𝑏 , corresponds to 𝑔𝑐 . 𝑔𝑐 is either 𝑔𝑎𝑏 (a valid PRF output) or a
random group element (simulating a random function).
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• Oracle Simulation: For each query 𝑥𝑖 made by𝒜, ℬ responds as follows:

– If 𝑥𝑖 = 𝑥1, ℬ returns 𝑔𝑐 , which simulates the PRF if 𝑔𝑐 = 𝑔𝑎𝑏 , or simulates a
random function if 𝑔𝑐 is a random group element.

– If 𝑥𝑖 ≠ 𝑥1, ℬ generates a random group element 𝑔𝑟 , simulating the response of
a truly random function.

• Adversary Output: After receiving responses to its queries, 𝒜 outputs a guess 𝑏′

for whether the oracle was computing the PRF or a random function.

• Reduction to DDH: If 𝒜 correctly distinguishes the PRF from a random function
with advantage 𝜖, then ℬ can use this information to determine whether 𝑔𝑐 = 𝑔𝑎𝑏

or 𝑔𝑐 is random. Specifically:

– If𝒜 guesses that the oracle is computing the PRF, then ℬ outputs that 𝑔𝑐 = 𝑔𝑎𝑏

(a valid Diffie-Hellman tuple).

– If𝒜 guesses that the oracle is computing a random function, then ℬ outputs
that 𝑔𝑐 is a random element.

Thus, if𝒜 has a non-negligible advantage 𝜖 in distinguishing the PRF from a random
function, then ℬ can solve the DDH problem with non-negligible advantage.

Since solving the DDH problem is assumed to be computationally infeasible, it must
also be infeasible for any polynomial-time adversary to break the PRF security of 𝑓𝑘(𝑥) =
𝐻(𝑥)𝑘 . Therefore, 𝑓𝑘(𝑥) = 𝐻(𝑥)𝑘 is a secure PRF under the DDH assumption.

□

4.3 Investigating the Impact of a Non-Uniform Key

In the previous section, we demonstrated that𝐻(𝑥)𝑘 is a secure PRF under the assumption
that the key 𝑘 is chosen uniformly at random. This assumption is critical for ensuring that
the outputs of the PRF are indistinguishable from random group elements, as it prevents
the adversary from exploiting any predictable structure in the key. This assumption is
fundamental for ensuring the security properties of the PRF and consequently the security
of the VOPRF.

As we have seen before, the 2HashDH VOPRF construction ensures that the client can
verify the server’s honest behavior without learning the server’s secret key 𝑘. To achieve
this, the server provides a Non-Interactive Zero-Knowledge proof (NIZK) that proves the
correctness of its computations without revealing 𝑘, by allowing the client to confirm that
the server used the secret key 𝑘 corresponding to the public key 𝑦 = 𝑔𝑘 . However this
only allows the client to ensure that the server is not cheating by using a different key
during the computation but it does not verify the quality of the key 𝑘.
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This leaves the VOPRF protocol and its implementation to the following pitfall: if the
server chooses (intentionally or not) a non-uniform key, then from the perspective of the
client all checks pass, and he might now, for example, encrypt his data with a weak key.

With the objective to address this problem, in this section we will analyze the impact
of a non uniform key and understand what that means to the advantage of an adversary
if the 𝑘 is non uniform.

4.3.1 Adversary’s Advantage with Non-Uniform Key

We first define a non-uniform key distribution as such:

Definition 10 (Non-Uniform Key Distribution). Let 𝑝 be a large prime, and let 𝑘 ∈ Z𝑝 be a
secret key. We say that 𝑘 is chosen from a non-uniform distribution if its probability distribution
deviates from the uniform distribution over Z𝑝 . Specifically:

• When the key 𝑘 is sampled from Z𝑝 according to a probability distribution 𝐷, where some
values of 𝑘 are more likely to be selected than others. Formally, 𝐷(𝑘𝑖) = Pr[𝑘 = 𝑘𝑖], where
𝐷(𝑘𝑖) differs for different values 𝑘𝑖 .

• When the key 𝑘 is uniformly sampled from a smaller subset 𝑆 ⊆ Z𝑝 , such that |𝑆 | ≪ 𝑝. The
distribution is uniform over the subset 𝑆, but since 𝑆 is much smaller than the original key
space Z𝑝 , the min-entropy of the key is significantly reduced.

Let 𝑘 be a secret key sampled from a possibly non-uniform distribution over Z𝑝 . The
adversary’s goal is to distinguish the output of the PRF 𝑓𝑘(𝑥) = 𝐻1(𝑥)𝑘 from that of a truly
random function 𝑓𝑅(𝑥).

In a formal cryptographic proof involving non-uniform key distributions, it is essential
to quantify the entropy of the key to help evaluate the adversary’s advantage. To formalize
this, we use min-entropy, as introduced in Subsection 2.2.4, which measures the worst-case
predictability of the key. Specifically, the min-entropy 𝐻∞(𝑘) of the key 𝑘 is defined as:

𝐻∞(𝑘) = − log2

(
max
𝑘𝑖∈Z𝑝

Pr[𝑘 = 𝑘𝑖]
)
.

This measures the predictability of the most likely value of 𝑘, the higher the min-
entropy, the lower the probability of the most likely key value, meaning the key is more
unpredictable. If the key is uniformly distributed, as it is assumed in standard security
definitions of a PRF, the min-entropy of 𝑘 will be𝐻∞(𝑘) = log2(𝑝), representing maximum
unpredictability. In typical cryptographic contexts, where the key space size 𝑝 is related
to the security parameter 𝜆 (with 𝑝 = 2𝜆 and 𝜆 representing the bit-length of the key), the
min-entropy becomes 𝐻∞(𝑘) = 𝜆. This reflects the maximum unpredictability of the key,
corresponding to 𝜆 bits of security.

However, if 𝑘 is sampled form a non-uniform distribution, then the min-entropy
of 𝑘 will be lower, meaning that certain values of 𝑘 are more likely to be chosen than
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others, and hence the key is more predictable. This creates potential vulnerabilities in
the security of the PRF and the OPRF because adversaries can exploit this reduction in
entropy to improve their chances of correctly guessing the key or distinguishing outputs
from random, which breaks critical security properties. This increases the adversary’s
advantage in distinguishing the PRF from random outputs, as it can potentially exploit
this reduction in entropy.

4.3.2 Bounding the Adversary’s Advantage

A key metric for evaluating the adversary’s success in guessing the secret key 𝑘 is derived
from the min-entropy of the key’s distribution. Specifically, the expression

2−𝐻∞(𝑘)

quantifies the probability of an adversary successfully guessing the key in a single attempt,
based on the likelihood of the most probable outcome in the distribution.

Formally, the adversary’s success probability can be bounded below by the min-entropy
of the key as follows:

If we aim to bound the adversary’s advantage based solely on the min-entropy of the
key, we can express it as:

AdvPRF
𝒜 ( 𝑓𝑘) ≥ 2−𝐻∞(𝑘).

4.3.2.1 Ideal Case: Uniformly Random Keys

If we consider an ideal situation, where 𝑘 is uniformly random and there are no exploitable
structural patterns in the PRF, the adversary’s advantage should be negligible. Since 𝑘 is
uniformly distributed over the entire key space Z𝑝 , then each key is equally likely. The
probability of any particular value 𝑘𝑖 is 1

𝑝 . The min-entropy in this case is:

H∞(𝑘) = log2(𝑝).

For
𝑝 = 2𝜆

, this represents full entropy (e.g., 𝜆-bit keys have 𝜆 bits of entropy) and ensures the key
is uniformly distributed over an exponentially large key space.

However, when 𝑘 is non-uniform and as the min-entropy decreases (as 𝑘 becomes
more predictable), 2−𝐻∞(𝑘) increases, which directly increases the adversary’s advantage
as we can see by the bound expression. For instance, if the min-entropy of 𝑘 is significantly
lower than the maximum possible entropy (e.g, 𝐻∞(𝑘) = 𝑂(log𝜆)) the adversary can
gain a clear statistical advantage in distinguishing the PRF outputs from random outputs
since entropy scales logarithmically with 𝜆 instead of exponentially. This results in a
polynomial key space making it computationally feasible for polynomial-time adversaries
to have success with brute force attacks.

59



CHAPTER 4. OPRF CONSTRUCTION

4.3.2.2 Limitations of Min-Entropy

This inequality provides a lower bound on the adversary’s success probability, which
reflects the fact that if the key distribution has low min-entropy, the adversary’s advantage
is at least as large as 2−𝐻∞(𝑘) and if the key distribution has low min-entropy than this
advantage is negligible, as shown in the previous subsection. However, in practice, the
adversary’s actual advantage could be higher since even if a key distribution has high
min-entropy, it might have structural weaknesses. For example, subsets of keys could
produce biased or predictable outputs for specific inputs that can allow the adversary
to achieve a success probability significantly greater than 2−𝐻∞(𝑘). Let us consider for
example an extreme case where the PRF has an output length of 1 bit. We define the set
BAD as follows:

BAD = {𝑘 : 𝐹𝑘(0) = 0}.

This means that BAD is the set of all secret keys 𝑘 such that when applying the PRF 𝐹𝑘
to the input 0, the output is 0. It is a large set, covering roughly half of the key space and
even though keys sampled from this set have high min-entropy (since they are sampled
uniformly from a large subset of the key space), the adversary can easily distinguish
between the PRF and a random function.

In this case, despite the high min-entropy of the keys in BAD, the adversary can guess
with high success probability„ approximately 3

4 , calculated as:

1
2 +

1
2 ×

1
2 =

3
4 ,

where:

• 1
2 is the probability that the key is in BAD,

• 1
2 × 1

2 represents the probability that the key is not in BAD but still produces the
output 0, since the PRF output is only 1 bit.

This example demonstrates that min-entropy alone does not fully capture the adver-
sary’s advantage. Even with a high min-entropy key, structural patterns in the PRF output
can give the adversary a significant advantage.

4.3.2.3 Statistical Distance

To better understand and measure the quality of the key distribution beyond min-entropy,
we can use the notion of statistical distance, defined as:

Statistical distance measures how close two distributions are. It is defined between
two distributions 𝑃 and 𝑄 over a set 𝑋 as:

Δ(𝑃, 𝑄) = 1
2

∑
𝑥∈𝑋
|Pr[𝑃 = 𝑥] − Pr[𝑄 = 𝑥]| .
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In the context of key distributions, 𝑃 represents the actual key distribution 𝒟𝜆, and 𝑄

represents the uniform distribution 𝒰𝜆. The statistical distance Δ(𝒟𝜆 ,𝒰𝜆) tells us how
much the key distribution deviates from the uniform distribution.

Here, 𝑃 represents the actual key distribution 𝒟𝜆, and 𝑄 represents the uniform
distribution𝒰𝜆. For the PRF to remain secure, we require the statistical distance between
𝒟𝜆 and𝒰𝜆 to be small. More formally, we will use the notation𝒟𝜆 ≈𝜖 𝒰𝜆 to denote that
the statistical distance is bounded by 𝜖, i.e., Δ(𝒟𝜆 ,𝒰𝜆) ≤ 𝜖.

By ensuring thatΔ(𝒟𝜆 ,𝒰𝜆) ≤ 𝜖, we can argue that the PRF outputs are computationally
indistinguishable from random, provided the adversary’s distinguishing advantage is
negligible.

4.3.3 Formal Proof of Concrete Security Impact with Low Min-Entropy

Let us formally prove that if the key 𝑘 is sampled from a key distribution that has low
min-entropy, there are concrete impacts in the security of the PRF 𝑓𝑘(𝑥) = 𝐻(𝑥)𝑘 .

Theorem 4.3.1. Let 𝑓𝑘(𝑥) = 𝐻(𝑥)𝑘 be a PRF, where 𝐻 is modeled as a hash function that
maps its input to uniformly random elements from cyclic group G generated by 𝑔. If the
key 𝑘 is sampled with low min-entropy, 𝐻∞(𝑘) = 𝑂(log𝜆) bits of min entropy, then there
exists an efficient adversary𝒜 that can distinguish between 𝑓𝑘(𝑥) and a random function
with non-negligible advantage.

Proof. We will prove the theorem by constructing an efficient adversary 𝒜 that exploits
the low min-entropy of the key 𝑘 to mount a distinguishing attack against the PRF 𝑓𝑘(𝑥).

Step 1: Problem Setup:
The adversary 𝒜 is given access to an oracle 𝒪, which either implements the PRF

𝑓𝑘(𝑥) = 𝐻(𝑥)𝑘 for some secret key 𝑘, or it implements a truly random function 𝑅(𝑥). The
adversary’s goal is to distinguish whether the oracle implements 𝑓𝑘(𝑥) or 𝑅(𝑥).

The key 𝑘 is not chosen uniformly at random but instead from a distribution with
min-entropy 𝐻∞(𝑘) = 𝑂(log𝜆), meaning there are approximately 𝜆𝑐 possible values for 𝑘,
where 𝑐 is a constant.

Step 2: Adversary Strategy:

1. Query the Oracle: The adversary𝒜 chooses a fixed input 𝑥1 and queries the oracle
𝒪(𝑥1), obtaining either:

• 𝒪(𝑥1) = 𝐻(𝑥1)𝑘 (if the oracle implements the PRF) or

• 𝒪(𝑥1) = 𝑅(𝑥1), where 𝑅(𝑥1) is a random element from G.

2. Key Space Search: Since 𝑘 is drawn from a distribution with min-entropy 𝑂(log𝜆)
this means that the number of required attempts grows polynomially, not exponen-
tially, making practical attacks feasible. The adversary can perform an exhaustive
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search over the 𝜆𝑐 possible values for 𝑘 since the number of possible key values
becomes polynomial in 𝜆. For each candidate key 𝑘′, the adversary computes:

𝐻(𝑥1)𝑘
′
= 𝑔𝑘

′

and compares it to the value 𝒪(𝑥1).

3. Distinguishing Oracle:

• If there exists a 𝑘′ ∈ {0, 1}𝑂(log𝜆) such that 𝐻(𝑥1)𝑘
′
= 𝒪(𝑥1), the adversary

concludes that the oracle is implementing the PRF 𝑓𝑘(𝑥) = 𝐻(𝑥)𝑘 .

• If no such 𝑘′ is found, the adversary concludes that the oracle is implementing
a truly random function 𝑅(𝑥).

Step 3: Analysis of Success Probability:

• Case 1: Oracle Implements PRF. In this case, there exists a correct key 𝑘 ∈
{0, 1}𝑂(log𝜆), and the adversary will find this key with probability 1 after searching
through the 𝜆𝑐 possible keys.

• Case 2: Oracle Implements Random Function. In this case, the oracle’s output is
independent of any 𝐻(𝑥1)𝑘 , and the adversary’s exhaustive search will fail to find a
matching key 𝑘′, with high probability.

Thus, it becomes computationally feasible for the adversary to distinguish between
the PRF and a random function.

Step 4: Concrete Security Impact:
When the key 𝑘 is chosen from a distribution with low min-entropy (e.g., 𝐻∞(𝑘) =

𝑂(log𝜆)), meaning that entropy scales logarithmically instead of exponentially in 𝜆, then
the number of possible key values becomes polynomial in 𝜆. Thus, the concrete security of
the PRF diminishes enough that polynomial-time attacks, such as exhaustive key search,
become practical. The security of the PRF 𝑓𝑘(𝑥) = 𝐻(𝑥)𝑘 is directly impacted by the
low entropy of the key distribution, since it becomes computationally feasible for the
adversary to distinguish whether the oracle implements 𝑓𝑘(𝑥) or 𝑅(𝑥), thus breaking the
pseudorandomness of the PRF.

□

4.3.4 Impact on Security Properties

After this analysis we get to the conclusion that when the key 𝑘 is non-uniform, sev-
eral critical security properties of the 2HashDH protocol and the underlying PRF are
compromised:
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1. Pseudorandomness: The pseudorandomness of 𝑓𝑘(𝑥) = 𝐻(𝑥)𝑘 relies on the key 𝑘
having high entropy. A non-uniform key with low min-entropy means the outputs
𝐻(𝑥)𝑘 are more predictable, allowing an adversary to distinguish them from random
with non-negligible advantage.

2. Indistinguishability: The ability of an adversary to distinguish the PRF from a
random function is directly tied to the uniformity of the key. If the key is non-uniform,
the indistinguishability of the PRF is no longer guaranteed since he adversary can
exploit the predictable key distribution to increase their advantage in distinguishing
the PRF from a truly random function.

3. Protocol Security: In the context of the 2HashDH VOPRF protocol, the security
of the protocol heavily relies on the pseudorandomness and unpredictability of
the underlying PRF 𝐻(𝑥)𝑘 . The assumption is that the secret key 𝑘 is uniformly
distributed across the key space, ensuring that the PRF behaves unpredictably and
resists attacks from adversaries. However, the potential pitfall arises when the server,
whether intentionally or unintentionally, selects a non-uniform key. The client, which
relies on the server to perform computations correctly, verifies the correctness of
the computations via public key-based checks (such as the DDH check or the NIZK
proof in the VOPRF). These checks verify that the computation is consistent with
the public key 𝑦 = 𝑔𝑘 but do not provide any guarantees about the distribution of
the secret key 𝑘 used in the 𝐻(𝑥)𝑘 computation, this means that the client might
unknowingly have a weak key used in the𝐻(𝑥)𝑘 computation, assuming full security
guarantees, when in fact the key is predictable and exploitable. This means that
if the key used in the protocol has low min-entropy, the protocol’s guarantees of
secrecy, authenticity, and overall security are undermined.

In conclusion, the security of the 2HashDH VOPRF protocol and its underlying PRF
𝑓𝑘(𝑥) = 𝐻(𝑥)𝑘 critically depends on the uniformity and high min-entropy of the key 𝑘.
When the key is non-uniform or has low min-entropy, the adversary’s advantage increases,
leading to a breakdown in the pseudorandomness and indistinguishability properties
that are essential for the protocol’s security. It is therefore imperative to ensure that the
key 𝑘 is chosen uniformly at random to maintain the integrity and security of the protocol.
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5

Mitigating Predictable Keys in the
2HashDH OPRF

In this chapter we investigate if it is possible to mitigate the risks posed by a weak
server-side key being used in an OPRF protocol. Specifically, our objective is to explore
whether the client-side entropy can compensate for the lack of entropy in the key, thereby
maintaining the pseudorandomness of the overall construction. To do this we will be
exploring the concept of dual PRFs.

5.1 The Problem and our Approach

The current approach of OPRF protocols places the client’s trust heavily in the server’s key
rotation process, where the key is assumed to be uniformly random. The reason for this is
that in the real world OPRFs are run by servers that hold a cryptographic keypair, where
the private key is used for the PRF computation and the public key is used to provide clients
with the ability to derive trust in the final output that they receive (as we explained in
the VOPRF functionality). As with all cryptographic protocols, to avoid security breaches
for any protocol participants in the case of a key compromise event, it is essential that
the keypair that is in use is rotated frequently. These key rotations involve the OPRF
server internally deriving a new keypair randomly and revealing the new public part of
the keypair to prospective clients. However, if a server becomes corrupted (intentionally
or not) and can no longer derive truly random keypairs, this server key rotation can lead
to non-uniform keys being used in the protocol and as we demonstrated in the previous
chapter in our analysis of the 2HashDH OPRF construction, non-uniformity of the server-
side key can significantly degrade the security of the protocol, particularly in terms of
pseudorandomness.

In this chapter, we propose a mitigation strategy that addresses the risks associatedwith
weak server-side keys by exploring whether it is possible to derive additional randomness
from the client-side input, thereby avoiding sole reliance on the server’s key. By potentially
extracting pseudorandomness from both the key and the input, we aim to strengthen the
security of the OPRF even when the server’s key is weak.
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This mitigation approach is relevant because it seeks to reduce the trust placed exclu-
sively in the server by allowing the client to play a more active role in the security of the
protocol. This configuration would provide stronger trust guarantees for clients, enabling
them to rely not only on the server’s key rotation process but also on their own input to
secure the protocol. The relevance of this approach is grounded in the vulnerabilities
identified in Chapter 4, where we proved that the non-uniformity of 𝑘 leads to a loss of
security. This configuration would lead to more transparent key rotation strategies that
allow clients to derive stronger trust guarantees from the entire exchange.

Proceeding in this chapter, we will:

• Leverage the dual PRF concept to analyze whether pseudorandomness can be
derived from the input 𝑥 to compensate for the lack of entropy in the key 𝑘. This
approach allows us to explore the input’s role in maintaining security.

• Examine under what assumption 𝐻(𝑥)𝑘 remains a PRF when "swapped", specifi-
cally focusing on scenarios where 𝑥 is chosen uniformly and 𝑘 is potentially weak
or adversarially chosen.

• Prove that𝐻(𝑥)𝑘 satisfies the dual PRF definition, this will help us explore whether
entropy can be derived from both the key and the input source.

• Propose a dual PRF configuration for𝐻(𝑥)𝑘 and develop a security model in which
entropy is derived from both the key 𝑘 and the input 𝑥, ensuring that it fits the
properties of a dual PRF while accounting for the interaction between key and input
entropy, providing robust security guarantees in scenarios where both the key and
input play a role in maintaining pseudorandomness.

5.2 𝐻(𝑥)𝑘 as a Dual PRF

In Subsection 2.3.3, we gave a brief introduction to the concept of dual PRFs, explaining
that a function family is considered a dual PRF is a PRF when keyed normally and also
when the roles of its key and input are swapped. This concept is relevant to us, as it
provides a framework in which we can study whether input 𝑥 can contribute to the
pseudorandomness of 𝐻(𝑥)𝑘 . It is particularly relevant for the analysis in this chapter
because it allows us to investigate whether both the server-side key 𝑘 and the client input
𝑥 can contribute to the pseudorandomness of the function.

The importance of the dual PRF lies in its ability to ensure security even when the
conventional roles of key and input are swapped, which aligns with our goal of analyzing
whether the input can play a more active role in maintaining security.

To begin this analysis, we will take into account the formal definition of a dual PRF
that we presented in Section 2.3.3 and we will formulate under what assumption is 𝐻(𝑥)𝑘

a PRF when 𝑥 is uniform and 𝑘 is chosen by the adversary. This will allow us to formally
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assess whether 𝐻(𝑥)𝑘 satisfies the dual PRF definition, which will help us conclude if it is
possible to mitigate the use of a weak server side key in the protocol if the client uses a a
strong input, chosen uniformly from a high-entropy distribution (e.g., a strong password).

5.2.1 Formal Analysis of 𝐻(𝑥)𝑘 when 𝑥 is Uniform and 𝑘 is Chosen by the
Adversary

In this section, we conduct a formal analysis of the PRF 𝐻(𝑥)𝑘 under the swapped
configuration, where the input 𝑥 is uniformly chosen from a high-entropy distribution,
and the key 𝑘 is adversarially chosen. We aim to explore under which assumptions 𝐻(𝑥)𝑘

remains secure as a PRF in this setting.

5.2.1.1 Configuration Setup

Let:

• 𝐺 be a cyclic group of prime order 𝑝, generated by an element 𝑔.

• 𝐻 : [0, 1]𝜆 → 𝐺 be a hash function modeled as a random oracle. The function 𝐻(𝑥)
produces uniformly random elements from a group ⟨𝑔⟩.

• 𝑥
$← 𝒟𝜆 this means that 𝑥 is sampled uniformly at random from a high-entropy

distribution𝒟𝜆 where 𝐻∞(𝑥) ≥ 𝜆 .

• 𝑘 is adversarially chosen, meaning the adversary has complete control over 𝑘.

The function we are analyzing is defined as:

𝐻(𝑥)𝑘 = 𝑔𝑎𝑘

where 𝑔𝑎 = 𝐻(𝑥) is derived from the uniformly random input 𝑥.
The goal is to determine whether 𝐻(𝑥)𝑘 behaves as a pseudorandom function in this

configuration and we can already understand that for this to work we have to make the
assumption that the adversary cannot know the value of 𝑥 since if the adversary knew
𝑥 it would be trivial to calculate 𝐻(𝑥) = 𝑔𝑎 and then, since the adversary is in control of
𝑘 in this configuration, he would be able to easily compute 𝐻(𝑥)𝑘 = 𝑔𝑎𝑘 and distinguish
it from a random group element, thus breaking the PRF security. This assumption of
the adversary not knowing the value of 𝑥 ensures that the adversary cannot compute
𝑔𝑎 = 𝐻(𝑥) directly, which is key to maintaining the pseudorandomness of 𝐻(𝑥)𝑘 .

Theorem 5.2.1. Let 𝑓𝑘(𝑥) = 𝐻(𝑥)𝑘 be a PRF, where 𝐻 is modeled as a hash function that
maps its input to uniformly random elements from cyclic group G generated by 𝑔, and
where 𝑥 is uniformly random and 𝑘 is chosen by the adversary, the adversary does not
know 𝑥. If there exists a polynomial-time adversary𝒜 that distinguishes between 𝑓𝑘(𝑥)
and a truly random function with non-negligible advantage, then we can construct a
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polynomial-time algorithm ℬ that solves the Decisional Diffie-Hellman (DDH) problem
with non-negligible probability.

Proof. We prove the theorem above by showing that if there exists an adversary 𝒜 that
can distinguish 𝐻(𝑥)𝑘 from a random function with non-negligible advantage, we can
construct a reduction ℬ that uses𝒜 to break the DDH assumption. This shows that the
PRF security of 𝐻(𝑥)𝑘 holds as long as the DDH assumption is valid.

In the DDH problem, the adversary is given a tuple (𝑔, 𝑔𝑎 , 𝑔𝑘 , 𝑇), where:

• 𝑔𝑎 ← 𝐻(𝑥) is derived from a uniformly random 𝑥,

• 𝑔𝑘 is chosen by the adversary,

• 𝑇 is either 𝑔𝑎𝑘 or a random element 𝑔𝑟 from 𝐺.

The adversary must distinguish whether𝑇 = 𝑔𝑎𝑘 or𝑇 = 𝑔𝑟 . If the adversary can distinguish
this with non-negligible probability, it breaks the DDH assumption.

5.2.2 Construction of Reduction

We construct a reduction ℬ that uses the adversary𝒜 to break the DDH assumption. We
do this by simulating the PRF game for𝒜, using the DDH challenge tuple (𝑔, 𝑔𝑎 , 𝑔𝑘 , 𝑇)
as input to ℬ.

Input to ℬ: ℬ receives a DDH challenge tuple (𝑔, 𝑔𝑎 , 𝑔𝑘 , 𝑇), where 𝑇 is either 𝑔𝑎𝑘 or
a random element 𝑔𝑟 . The goal of ℬ is to determine whether 𝑇 is 𝑔𝑎𝑘 or 𝑔𝑟 using the
adversary𝒜.

Simulation of the PRF Game: ℬ interacts with 𝒜 by simulating the PRF game as
follows:

• ℬ sets 𝑔𝑎 ← 𝐻(𝑥), where 𝑥 is sampled uniformly at random from a high-entropy
distribution, meaning 𝑥 is unknown to𝒜.

• ℬ sets 𝑔𝑘 according to𝒜’s choice of 𝑘. This simulates the adversarial control of 𝑘.

• For each query made by𝒜, ℬ returns the value of 𝑇:

– If 𝑇 = 𝑔𝑎𝑘 , ℬ simulates the real PRF by returning 𝑔𝑎𝑘 as the response to 𝒜’s
query.

– If 𝑇 = 𝑔𝑟 , ℬ simulates the random function by returning 𝑔𝑟 as the response to
𝒜’s query.

Adversary’s Success: If𝒜 can distinguish between the real PRF 𝐻(𝑥)𝑘 and a random
function with non-negligible advantage, then it implies that ℬ can distinguish whether
𝑇 = 𝑔𝑎𝑘 or 𝑇 = 𝑔𝑟 . Hence, ℬ breaks the DDH assumption by distinguishing 𝑔𝑎𝑘 from a
random group element.
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Since an adversary 𝒜 breaking the PRF security of 𝐻(𝑥)𝑘 directly leads to breaking
the DDH assumption, we conclude that 𝐻(𝑥)𝑘 is a secure pseudorandom function under
the DDH assumption, as long as 𝑥 is uniformly random and the adversary does not know
the value of 𝑥. □

5.2.3 Proving 𝐻(𝑥)𝑘 as a Dual PRF

We have now established that 𝐻(𝑥)𝑘 is a PRF when keyed by the input 𝑥. This proves that
𝐻(𝑥)𝑘 is a swap-PRF, as by definition, a swap-PRF is a PRF when the roles of the key and
input are switched. Specifically, we have shown that when 𝑥 is used as the key and 𝑘 is
treated as the input, the function still behaves pseudorandomly under the assumptions
that 𝐻(𝑥) acts like a random oracle, the adversary does not know the value of 𝑥, and that
the security is based on the DDH assumption.

In Chapter 4, we also formally proved that 𝐻(𝑥)𝑘 is a PRF when used in the traditional
manner, that is when 𝑘 is the key and x is the input. We did this by proving theorem 4.2.2.

5.2.3.1 Dual PRF Definition

Following the formal definiton of a dual PRF given in Subsection 2.3.3, a dual PRF is a
function that satisfies two conditions:

1. It is a PRF when keyed by the first input.

2. It is a swap-PRF, meaning it remains a PRF when the key and input roles are reversed
(when keyed by the second input).

Since we have now proven that 𝐻(𝑥)𝑘 satisfies both of these conditions:

• In its standard form, 𝐻(𝑥)𝑘 is a PRF when keyed by 𝑘 (𝑘 being uniform)with input 𝑥
(as proven in theorem 4.2.2).

• In its swapped form, 𝐻(𝑥)𝑘 remains a PRF when keyed by 𝑥 (𝑥 being uniform) with
input 𝑘, as shown above.

This formally establishes that 𝐻(𝑥)𝑘 is a dual PRF, under the assumption that 𝐻(𝑥)
behaves like a random oracle, 𝑥 is uniform and the adversary does not know 𝑥. The function
retains its pseudorandomness whether keyed by the first or second input, fulfilling the
definition of a dual PRF. Relying on the assumption that the key (whether it’s 𝑘 or 𝑥) is
sampled uniformly.

5.3 Security Model for the Dual PRF Configuration

Now that we understand under what assumptions𝐻(𝑥)𝑘 is a PRF, when 𝑥 is uniform and 𝑘
is chosen by the adversary we can define our security model for the dual PRF construction.
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Our model is designed with the aim of enhancing the functionality of OPRFs, deriving
entropy from both the key and the input by leveraging the benefits of a dual PRF being a
PRF not only when keyed conventionally (through its first input), but also when "swapped"
and keyed (unconventionally) through its second (message) input.

In Chapter 3 we defined the Standard PRF security model, in this section we will
modify that definition with the aim of expressing the standard PRF model and dual PRF
model with our security model. In particular, we will modify the definition so that the
adversary specifies the input distribution from which the input will be sampled, rather
than the input itself. We do this because of the conclusions of the last section were we
found that 𝐻(𝑥)𝑘 is a PRF if swapped (meaning when 𝑥 is uniform and 𝑘 is chosen by
the adversary) under the assumptions that 𝑥 is uniformly random and that the adversary
does not know the value of 𝑥.

In this initial section of the security model, we will formally define the key and input
sampling for the PRF and present a formal definition of the PRF.

We do this by modifying the standard definition so that the adversary specifies the
input distribution rather than the input. This way we can align our model with the
definition of a dual PRF, that is, a PRF that is a PRF when keyed as usual by the first input,
but also if keyed by the second input. We will dive deeper into this topic in this chapter
where we present our proposed dual PRF model where entropy is derived from both the
key and the input source.

5.3.1 Key Sampling

Let𝒟 = {𝒟𝜆}𝜆∈N be a family of distributions parameterized by a security parameter 𝜆.
The key 𝑘 is then sampled according to the distribution𝒟𝜆:

𝑘 ← 𝒟𝜆

5.3.2 Input Sampling

Let ℰ = {ℰ𝜆}𝜆∈N be another family of distributions parameterized by a security parameter
𝜆.

For each new query that the adversary makes, the input 𝑥 is sampled from a family of
distributions ℰ

For each new query that the adversary makes, 𝑥 ← ℰ𝜆.

We model the key and input sampling like this since in our configuration the pseudo-
randomness of the function is derived from both the key 𝑘 and the input 𝑥, each sampled
from their respective distributions.

The key 𝑘 is sampled from the family of distributions𝒟𝜆, while the input 𝑥 is sampled
from the family of distributions ℰ𝜆. The min-entropy of these distributions is critical to
ensure the unpredictability and security of the system.
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• The min-entropy of the key 𝑘 is determined by the min-entropy of the distribution
𝒟𝜆, while the min-entropy of the input 𝑥 is determined by the min-entropy of the
distribution ℰ𝜆.

• Specifically, the min-entropy of the key 𝑘 is defined as 𝐻∞(𝑘) = 𝐻∞(𝒟𝜆), where
𝐻∞(𝒟𝜆) is the min-entropy of the distribution𝒟𝜆.

• The min-entropy of the input 𝑥 is defined as 𝐻∞(𝑥) = 𝐻∞(ℰ𝜆), where 𝐻∞(ℰ𝜆) is the
min-entropy of the distribution ℰ𝜆.

5.3.3 Libraries

We will also define the libraries like we defined in Chapter 3:

• ℒ𝐹dualPRF-real represents a dual PRF.

• ℒ𝐹dualPRF-rand represents a function chosen uniformly at random from the set of all
functions having the same domain and range.

ℒ𝐹dualPRF-rand

𝑇 := empty associative array

for every new query that the adversary makes: 𝑥 ← ℰ𝜆

lookup(𝑥):

if 𝑇[𝑥] is undefined:
𝑇[𝑥] ← {0, 1}𝜆

return 𝑇[𝑥]

ℒ𝐹dualPRF-real

𝑘 ← 𝒟𝜆

for every new query that the adversary makes:
𝑥 ← ℰ𝜆

lookup(𝑥):

return 𝐹(𝑘, 𝑥)

Definition 11 (Dual PRF Security). Let 𝐹 : {0, 1}𝜆 × {0, 1}𝜆 → {0, 1}𝜆 be a deterministic
function.

We say that 𝐹 is𝒟 an ℰ-secure ifℒ𝐹dualPRF-real ≈ ℒ
𝐹
dualPRF-rand when 𝐹 is keyed conventually by

𝑘 with input 𝑥 but also when keyed by 𝑥 in a swapped configuration, where≈ denotes computational
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indistinguishability, meaning that no efficient (polynomial-time) algorithm can distinguish between
the two distributions with a non-negligible probability.

5.3.4 Security Through Entropy Extraction in the Dual PRF 𝐻(𝑥)𝑘

As demonstrated in the previous sections, the pseudorandomness of the dual PRF 𝐻(𝑥)𝑘

is derived from the uniformity of the key input (whether it’s 𝑘 or 𝑥). This means that if
𝑘 is non-uniform we could maintain the security of the function if we keyed it with an
uniform 𝑥.

However, we are also interested in a configuration were the pseudorandomness is
derived from the entropy of both the key 𝑘 and the input 𝑥, as our goal is to investigate the
combined impact of their entropy on the overall security guarantees. We are particularly
interested in the scenario where the server is compromised or corrupted, generating a key
𝑘 with low min-entropy. In such cases, we aim to mitigate the weakness of the key by
extracting sufficient entropy from the strong, high-entropy client input 𝑥. By leveraging
entropy from both the key and the input, we ensure that the PRF remains secure even in
the presence of a compromised server that can no longer derive uniform keys.

To formally understand how this construction would be able to retain security under
such conditions, we will leverage the concept of randomness extractors.

5.3.4.1 Randomness Extractors

A randomness extractor [34] is a deterministic algorithm that produces nearly uniform bits
given access to a weak random source. The quality of the output is measured using the
statistical distance between two distributions, we defined statistical distance in Subsection
4.3.2.3.

A randomness extractor for a family of distributions can be formally defined as follows:

Definition 12 ([34]). Let 𝑋 be a family of distributions on the universe {0, 1}𝑛 . A function
Ext : {0, 1}𝑛 → {0, 1}𝑚 is called an 𝜀-extractor for 𝑋 if for any distribution 𝑋 ∈ 𝒳, we have:

Δ(Ext(𝑋);𝑈𝑚) ≤ 𝜀.

The parameter 𝜀 is called the error of the extractor.

5.3.4.2 Two-Source Extractors

Given that our goal is to combine entropy from both the key 𝑘 and the input 𝑥, we make
use of a two-source extractor. A two-source extractor is designed to extract uniform
randomness from two weak but independent sources.

Definition 13 ([83]). A function TExt : {0, 1}𝑛1 × {0, 1}𝑛2 → {0, 1}𝑚 is a strong two-source
extractor for min-entropy 𝑘1 , 𝑘2 and error 𝜀 if for every independent (𝑛1 , 𝑘1) source 𝑋 and (𝑛2 , 𝑘2)
source 𝑌, we have:

|(TExt(𝑋,𝑌), 𝑋) − (𝑈𝑚 , 𝑋)| < 𝜀
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and
|(TExt(𝑋,𝑌), 𝑌) − (𝑈𝑚 , 𝑌)| < 𝜀,

where𝑈𝑚 is the uniform distribution on 𝑚 bits independent of (𝑋,𝑌).

As pointed out by Li in [82], explicit constructions of such functions have been highly
challenging. However these constructions have been proved to exist, with the first explicit
construction of a two-source extractor presented by Chor and Goldreich [37]. In this thesis
we are more interested in Raz’s work [100], which provided a two source extractor that
requires one source to have min-entropy larger than 𝜆/2, while the other source can have
min-entropy as low as 𝑂(log𝜆).

This implies that if the min-entropy of 𝑘 and 𝑥 are both large enough 𝐻(𝑥)𝑘 is indeed
a secure PRF in the setting of a strong two-source extractor. Moreover, it shows that even
if one source has low min-entropy it is possible to mitigate it by having the other source
be sampled from high min-entropy distribution.

5.3.4.3 Implications

In this configuration of the dual PRF 𝐻(𝑥)𝑘 , the pseudorandomness depends on the
combined min-entropy of both the key 𝑘 and the input 𝑥, which are sampled from their
respective distributions. In the case of the server being corrupted and the key 𝑘 being
sampled from a distribution with low min-entropy (as low as 𝐻∞(𝑘) = 𝑂(log𝜆)), we
need to ensure that the input 𝑥, provided by the client, has sufficient entropy to maintain
security (𝐻∞(𝑥) ≥ 𝜆/2).

Additionally, it’s important to ensure that the statistical distance between the output
distribution and uniform distribution remains small, and the outputs remain computa-
tionally indistinguishable from random functions to maintain security.

This can be very valuable for the OPRF construction that we analyzed in Chapter 4,
and for other OPRFs, since the client can derive stronger trust guarantees, from the entire
exchange by using a strong input. As a strong input can compensate for a low-entropy
server-side key, the client is not required to fully rely on the server’s key rotation and key
generation.
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Implications for deployed OPRF
Protocols

In this chapter, we discuss the broader implications of the results obtained in this thesis,
particularly focusing on the potential vulnerabilities in deployed OPRF protocols when
the server key is non-uniform or corrupted, and how our proposed mitigations can be
applied.

6.1 Impact of Non-Uniform Server Keys on OPRF Protocols

One of the central results of this thesis is the demonstration of a concrete security impact
when the OPRF protocol’s server key is non-uniform. Specifically, in Chapter 4, we
analyzed and proved that when a server is either intentionally or unintentionally corrupted
and the key rotation process is no longer able to derive uniform keys, the security
guarantees of the OPRF protocol may degrade significantly.

This loss of security arises because the strength of the OPRF protocol hinges on the
uniformity of the server-side key 𝑘. When 𝑘 is no longer sampled uniformly, it can result in
the output of the protocol becoming predictable, exposing the protocol to cryptographic
vulnerabilities. A non-uniform key 𝑘 essentially undermines the pseudorandomness
that the protocol relies upon, allowing adversaries to mount attacks by exploiting this
predictability.

In practical terms, this is particularly concerning for real-world OPRF deployments
in cloud-based or privacy-preserving systems, where the server plays a pivotal role in
generating secure keys. If a server is compromised or misconfigured, clients unknowingly
rely on weak keys, and the entire system’s security may collapse. The findings in this
thesis demonstrate the critical importance of ensuring that key rotation mechanisms
remain robust and continue to derive truly random keys, even in the face of corruption or
adversarial interference.
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6.2 Vulnerabilities in VOPRF Protocols

This vulnerability becomes even more pressing in VOPRFs protocols. In VOPRFs, the
client performs checks to ensure that the server is behaving honestly. However, as we have
shown in our investigation, when the server key is non-uniform, all verifiable checks from
the client’s perspective may still pass, despite the fact that the server is using a weak key.

This creates a dangerous scenario where the client, after performing all verification
steps, might proceed with the protocol under the false assumption that security guarantees
are intact. As a result, the client could, for instance, encrypt their sensitive data using
a weak key, exposing it to future attacks. The ability of an adversary to manipulate key
rotation or the key generation process effectively invalidates the security model of the
VOPRF, leaving the client and system vulnerable without detection.

The practical consequence here is that VOPRF protocols must be designed with an
awareness of this potential vulnerability, and extra safeguards must be implemented to
ensure that key rotation processes cannot be silently compromised. Strengthening the
verification process, or introducing transparency into the key rotation process, may be
necessary to mitigate these risks.

6.3 Mitigation Through Input-Derived Entropy: Dual PRFs and
Transparent Key Rotation

In Chapter 5, we explored an alternative approach to mitigate the vulnerabilities caused
by non-uniform server keys. Specifically, we proved that𝐻(𝑥)𝑘 , a central PRF construction
in OPRF protocols, can potentially function as a dual PRF. A dual PRF retains pseudoran-
domness even when the roles of key and input are swapped. This allowed us to propose a
configuration where entropy is derived not just from the server-side key 𝑘, but also from
the client-side input 𝑥.

By introducing the ability to derive entropy from both the key and the input, we
mitigate the reliance on the server key alone. In scenarios where the server key is weak
or non-uniform, a strong, high-entropy client input can still ensure that the output of the
OPRF protocol retains pseudorandomness. This approach provides an additional layer of
security, especially in situations where server-side processes (like key rotation) cannot be
fully trusted.

Furthermore, this construction opens up the possibility of exploring more transparent
key rotation strategies. In traditional OPRF protocols, the client places significant trust in
the server’s ability to generate and rotate secure keys. By allowing the client to play a more
active role in the entropy generation process, we reduce the need for blind trust in the
server’s key management. This shift towards more transparent key rotation mechanisms
enables clients to derive stronger trust guarantees from the entire OPRF exchange.
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6.4 Real-World Applications: OPAQUE and Privacy Pass

The results of this thesis have immediate implications for several real-world cryptographic
protocols that rely on OPRFs for security. Two key examples of such protocols are OPAQUE
and Privacy Pass. Below, we discuss how the vulnerabilities we uncovered, as well as the
proposed mitigations, affect these protocols in practice.

6.4.1 OPAQUE: Password-Authenticated Key Exchange (PAKE)

OPAQUE is a widely discussed password-authenticated key exchange protocol, which
leverages an OPRF to securely store and retrieve password-based secrets. In OPAQUE,
the user provides a password, and the server stores a corresponding OPRF output that it
uses to verify the user’s authentication attempts. The protocol provides strong security
guarantees by preventing the server from learning the user’s password directly.

6.4.1.1 Implications for OPAQUE:

The security of OPAQUE relies on the assumption that the server generates and rotates
keys uniformly at random, ensuring that the OPRF output remains pseudorandom and
secure. However, as demonstrated in this thesis, if the server is corrupted and the key
rotation process produces non-uniform keys, this directly compromises the security of
OPAQUE.

• Loss of Security: If the server is compromised and cannot generate uniform keys, the
OPRF output used for password verification may become predictable. This makes
it easier for an adversary to mount offline dictionary attacks by leveraging weak or
non-uniform keys to brute-force the user’s password.

• Client Trust: Since OPAQUE’s security is based on an OPRF output, the client un-
knowingly trusts the server to generate secure keys. If key rotation is faulty, the
user’s password-based secrets are exposed to attacks, undermining the core security
guarantees of the protocol.

6.4.1.2 Mitigation:

The mitigation strategies proposed in Chapter 5, deriving entropy from both the key and
the input, can be applied to OPAQUE to reduce reliance on the server’s key management
process. By deriving entropy from both the user’s password (the client input) and the
server-side key, OPAQUE can preserve its security guarantees, even if the server generates
weak keys. This provides an extra layer of security that compensates for potentially
compromised server key rotation processes.
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6.4.2 Privacy Pass: Anonymous Authentication with OPRFs

Privacy Pass is a protocol that allows users to anonymously authenticate with services
without revealing their identity. It uses OPRFs to generate tokens that users can later
redeem to prove they are legitimate users, while preserving their privacy.

6.4.2.1 Implications for Privacy Pass:

Privacy Pass heavily relies on the server to generate OPRF tokens securely. The tokens are
produced by combining the user’s input (a random value) with the server’s OPRF key. In
this setup, the server’s OPRF key is crucial for ensuring that the tokens are pseudorandom
and unlinkable, preserving the user’s anonymity.

However, as we demonstrated in this thesis, if the server’s key becomes predictable or
non-uniform due to a corruption or faulty key rotation process, the entire system breaks
down:

• Loss of Anonymity: An attacker who compromises the server’s key can link token
requests back to the users, breaking the anonymity guarantees that Privacy Pass is
designed to provide.

• Predictable Tokens: The predictability of the OPRF tokens allows an attacker to predict
valid tokens or replay them, violating the security and privacy guarantees of the
protocol.

6.4.2.2 Mitigation:

By applying the results from Chapter 5, Privacy Pass can be improved to derive security
from both the client-side input and the server’s key. The client’s input, used to generate
the OPRF tokens, can provide enough entropy to preserve pseudorandomness, even when
the server’s key is non-uniform or weak. This makes the system more robust against
server-side corruption, as the client input can compensate for any vulnerabilities in the
key generation process.

6.5 Key Well-Formedness and Protocol Limitations

It is important to note that in certain OPRF protocols, deriving randomness from client
input may not be feasible due to the nature of the input. For instance, in privacy-preserving
systems like PSI or certain anonymous authentication schemes, the client’s input may
be fixed, highly structured, or inherently low in entropy. In such cases, solely relying
on client input to bolster security may not be possible. These protocols often depend on
the server’s ability to generate strong keys, making server-side key rotation mechanisms
critical for maintaining the security of the entire protocol.

In scenarios where input-derived entropy is impractical, focusing on ensuring server
key well-formedness becomes even more important. One avenue for improving the
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security of OPRF protocols is by incorporating key well-formedness checks. Ensuring
that keys adhere to well defined security properties, such as being uniformly random and
meeting specific entropy requirements, can significantly bolster security guarantees. As
noted by Casacuberta et al. [32], the concept of key well-formedness has not been fully
explored in the context of OPRF protocols but presents a valuable direction for enhancing
both security and resilience against key-related attacks.

Techniques such as verifiable random functions (VRFs) or publicly verifiable random-
ness can help ensure that the key generation process remains robust and transparent, even
in situations where the client cannot contribute significant entropy.
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7

Conclusion and Future Work

7.1 Main Contributions

This thesis has explored the critical role of keys in the security of OPRF protocols. In partic-
ular, we have shown the vulnerabilities that can arise when servers generate non-uniform
keys, either intentionally or due to server corruption, and how weak key generation
undermines the security guarantees of OPRFs.

A significant contribution of this thesis is the formal analysis of weak keys sampled
from non-uniform distributions and their concrete security implications for an OPRF. We
formally demonstrated that non-uniformity in server-generated keys introduces severe
vulnerabilities, making traditional key rotation mechanisms insufficient. This highlights
the necessity for high-entropy, unpredictable key generation, especially in scenarios where
servers may be compromised.

We also proposed an alternative solution leveraging dual PRFs, combining entropy
from both the key and the client input. This approach mitigates the reliance on the server’s
key rotation process and enhances security by allowing clients to select a strong input to
compensate for a weak or non-uniform server-generated key, allowing clients to derive
stronger trust guarantees. Our formal analysis showed that this dual PRF construction
remains secure under certain assumptions, even when the server-generated key has low
min-entropy.

Moreover, this thesis contributes to the broader cryptographic discourse on OPRFs,
particularly in their critical role as tools for privacy protection. By addressing the chal-
lenges of secure key generation and rotation, especially in real-world applications such
as OPAQUE and Privacy Pass, we further demonstrated how OPRFs can enhance both
privacy and security. Our work introduces novel approaches to mitigate weak key vulner-
abilities, ensuring the continued efficacy of OPRFs in safeguarding sensitive data across
various privacy-preserving protocols.
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7.2 Future Work

While this thesis has contributed to the investigation of OPRF cryptography, several open
questions and potential research directions remain.

An interesting direction would be to integrate well-formedness of keys into OPRF
protocols. Incorporating this aspect could significantly strengthen the security guarantees
of OPRF-based applications. By ensuring that the generated keys adhere to a well-defined
structure, we could prevent a range of vulnerabilities caused by poorly formed keys or
malicious key generation. This would add another layer of robustness to the overall
cryptographic guarantees provided by OPRFs in practice.

Finding efficient post-quantum secure implementations of OPRFs is an area of active
research [3, 19]. Given the looming threat posed by quantum computing, which could
breakmany classical cryptosystems, it’s crucial to explore quantum-resistant cryptographic
primitives. While this thesis focuses on classical key rotation strategies and entropy-based
security, the insights gained here may help inform the development of post-quantum
OPRF protocols that combine secure key generation and input randomness. Investigating
whether dual PRFs can be adapted to post-quantum cryptographic models is a natural
extension of this work.

Finally, practical implementation and evaluation of the proposed dual PRF configura-
tion would be needed for real-world adoption. Future research could focus on deploying
this construction in existing OPRF-based protocols (e.g, OPAQUE) and evaluating its
performance and scalability. Investigating its computational overhead and feasibility in
large-scale systems would be critical for practical deployment.

79



Bibliography

[1] M. Abdalla et al. Robust Password-Protected Secret Sharing. Cryptology ePrint
Archive, Paper 2016/123. 2016. doi: 10.1007/978- 3- 319- 45741- 34. url:
https://eprint.iacr.org/2016/123 (cit. on p. 34).

[2] D. Aggarwal et al. On Secret Sharing, Randomness, and Random-less Reductions for
Secret Sharing. Cryptology ePrint Archive, Paper 2021/802. 2021. url: https:
//eprint.iacr.org/2021/802 (cit. on p. 19).

[3] M. R. Albrecht et al. “Round-Optimal Verifiable Oblivious Pseudorandom Func-
tions from Ideal Lattices”. In: Public-Key Cryptography – PKC 2021. Ed. by J. A.
Garay. Cham: Springer International Publishing, 2021, pp. 261–289. isbn: 978-3-
030-75248-4 (cit. on pp. 1, 33, 79).

[4] J. Alwen, Y. Dodis, and D. Wichs. Leakage-Resilient Public-Key Cryptography in the
Bounded-Retrieval Model. Cryptology ePrint Archive, Paper 2009/160. 2009. url:
https://eprint.iacr.org/2009/160 (cit. on p. 19).

[5] Y. Angel et al. “Post-Quantum Noise”. In: ACM CCS 2022. Ed. by H. Yin et al.
ACM Press, 2022-11, pp. 97–109 (cit. on p. 25).

[6] M. Backendal et al. “When Messages Are Keys: Is HMAC a Dual-PRF?” In:
Advances in Cryptology – CRYPTO 2023. Ed. by H. Handschuh and A. Lysyanskaya.
Cham: Springer Nature Switzerland, 2023, pp. 661–693 (cit. on p. 25).

[7] A. Bagherzandi et al. “Password Protected Secret Sharing”. In: Proceedings of the
18th ACM Conference on Computer and Communications Security. 2011 (cit. on pp. 7,
34, 49).

[8] C. Baum et al. “PESTO: Proactively Secure Distributed Single Sign-On, or How to
Trust a Hacked Server”. In: 2020 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE. 2020 (cit. on pp. 7, 34, 49).

[9] M. Bellare et al. “The one-more-RSA-inversion problems and the security of
Chaum’s blind signature scheme”. In: Journal of Cryptology (2003) (cit. on p. 53).

80

https://doi.org/10.1007/978-3-319-45741-3 4
https://eprint.iacr.org/2016/123
https://eprint.iacr.org/2021/802
https://eprint.iacr.org/2021/802
https://eprint.iacr.org/2009/160


BIBLIOGRAPHY

[10] M. Bellare. “New proofs for NMAC and HMAC: Security without collision resis-
tance”. In: Journal of Cryptology 28.4 (2015-10), pp. 844–878 (cit. on p. 25).

[11] M. Bellare. “New proofs for NMAC and HMAC: Security without collision-
resistance”. In: CRYPTO 2006. Ed. by C. Dwork. Vol. 4117. Lecture Notes in
Computer Science (LNCS). Heidelberg: Springer, 2006-08, pp. 602–619 (cit. on
p. 25).

[12] M. Bellare, R. Canetti, and H. Krawczyk. “Keying Hash Functions for Message
Authentication”. In: Advances in Cryptology – CRYPTO’96. Ed. by N. Koblitz.
Vol. 1109. Lecture Notes in Computer Science. Heidelberg: Springer, 1996-08,
pp. 1–15 (cit. on p. 25).

[13] M. Bellare and A. Lysyanskaya. “Symmetric and Dual PRFs from Standard As-
sumptions: A Generic Validation of a Prevailing Assumption”. In: Journal of
Cryptology 37 (2024), pp. 33–54. doi: 10.1007/s00145- 024- 09513- 6. url:
https://doi.org/10.1007/s00145-024-09513-6 (cit. on p. 25).

[14] S. Bellovin and M. Merritt. “Encrypted key exchange: password-based protocols
secure against dictionary attacks”. In: Proceedings 1992 IEEE Computer Society
Symposium on Research in Security and Privacy. 1992, pp. 72–84. doi: 10.1109/RISP.
1992.213269. url: https://www.cs.columbia.edu/~smb/papers/neke.pdf
(cit. on p. 35).

[15] N. Bindel et al. “Hybrid Key Encapsulation Mechanisms and Authenticated Key
Exchange”. In: Post-Quantum Cryptography - 10th International Conference, PQCrypto
2019. Ed. by J. Ding and R. Steinwandt. Heidelberg: Springer, 2019, pp. 206–226
(cit. on p. 25).

[16] S. R. Blackburn, C. Cid, and C. Mullan. “Group Theory in Cryptography”. In:
Department of Mathematics, Royal Holloway, University of London (2010) (cit. on p. 26).

[17] D. Boneh. “The Decision Diffie-Hellman Problem”. In: Proceedings of the Third
International Symposium on Algorithmic Number Theory (ANTS-III). Vol. 1423. Lecture
Notes in Computer Science (LNCS). Springer, 1998, pp. 48–63. doi: 10.1007/BFb0
054851. url: https://crypto.stanford.edu/~dabo/papers/DDH.pdf (cit. on
p. 29).

[18] D. Boneh, D. Kogan, and K. Woo. “A Post-Quantum Round-Optimal Oblivious
PRF from Isogenies”. In: ASIACRYPT 2020. Vol. 12492. LNCS. Springer, 2020,
pp. 520–550. url: https://doi.org/10.1007/978-3-030-64834-3_18 (cit. on
p. 1).

[19] D. Boneh, D. Kogan, and K. Woo. “Oblivious Pseudorandom Functions from
Isogenies”. In: Advances in Cryptology – ASIACRYPT 2020. Ed. by S. Moriai and H.
Wang. Cham: Springer International Publishing, 2020, pp. 520–550 (cit. on pp. 33,
34, 79).

81

https://doi.org/10.1007/s00145-024-09513-6
https://doi.org/10.1007/s00145-024-09513-6
https://doi.org/10.1109/RISP.1992.213269
https://doi.org/10.1109/RISP.1992.213269
https://www.cs.columbia.edu/~smb/papers/neke.pdf
https://doi.org/10.1007/BFb0054851
https://doi.org/10.1007/BFb0054851
https://crypto.stanford.edu/~dabo/papers/DDH.pdf
https://doi.org/10.1007/978-3-030-64834-3_18


BIBLIOGRAPHY

[20] C. Bosley and Y. Dodis. “Does Privacy Require True Randomness?” In: Theory of
Cryptography. Ed. by S. P. Vadhan. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 1–20 (cit. on p. 19).

[21] D. Bourdrez et al. The OPAQUE Asymmetric PAKE Protocol. Internet-Draft draft-
irtf-cfrg-opaque-11. Work in Progress. Internet Engineering Task Force, 2023. url:
https://datatracker.ietf.org/doc/draft-irtf-cfrg-opaque/11/ (cit. on
pp. 7, 9, 36–38).

[22] T. Bradley. OPAQUE: The Best Passwords Never Leave your Device. Cloudflare Blog.
2020. url: https://blog.cloudflare.com/opaque-oblivious-passwords/
(visited on 2023-05-24) (cit. on pp. 39, 40).

[23] C. Brzuska, E. Cornelissen, and K. Kohbrok. “Security Analysis of the MLS Key
Derivation”. In: 2022 IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, 2022-05, pp. 2535–2553 (cit. on p. 25).

[24] C. Brzuska et al. “Key-Schedule Security for the TLS 1.3 Standard”. In: ASIACRYPT
2022, Part I. Ed. by S. Agrawal and D. Lin. Vol. 13791. Lecture Notes in Computer
Science (LNCS). Heidelberg: Springer, 2022-12, pp. 621–650 (cit. on pp. 18, 25).

[25] J. Camenisch et al. “Memento: How to Reconstruct Your Secrets from a Single
Password in a Hostile Environment”. In: Annual Cryptology Conference. Springer,
2014 (cit. on p. 7).

[26] J. Camenisch and A. Lehmann. “Privacy-Preserving User-Auditable Pseudonym
Systems”. In: 2017 IEEE European Symposium on Security and Privacy (EuroSP). 2017,
pp. 269–284. doi: 10.1109/EuroSP.2017.36 (cit. on p. 34).

[27] J. Camenisch, A. Lehmann, and G. Neven. “Optimal Distributed Password Ver-
ification”. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. 2015 (cit. on p. 7).

[28] J. Camenisch et al. “Oblivious PRF on Committed Vector Inputs and Application
to Deduplication of Encrypted Data”. In: International Conference on Financial
Cryptography and Data Security. Springer, 2019 (cit. on p. 7).

[29] J. Camenisch et al. Oblivious PRF on Committed Vector Inputs and Application to
Deduplication of Encrypted Data. Cryptology ePrint Archive, Paper 2019/438. 2019.
url: https://eprint.iacr.org/2019/438 (cit. on p. 34).

[30] R. Canetti. “Universally Composable Security: A New Paradigm for Cryptographic
Protocols”. In: Proceedings 42nd IEEE Symposium on Foundations of Computer Science.
IEEE, 2001 (cit. on pp. 13, 49).

[31] R. Canetti et al. Reusable Fuzzy Extractors for Low-Entropy Distributions. Cryptology
ePrint Archive, Paper 2014/243. 2014. url: https://eprint.iacr.org/2014/243
(cit. on p. 19).

82

https://datatracker.ietf.org/doc/draft-irtf-cfrg-opaque/11/
https://blog.cloudflare.com/opaque-oblivious-passwords/
https://doi.org/10.1109/EuroSP.2017.36
https://eprint.iacr.org/2019/438
https://eprint.iacr.org/2014/243


BIBLIOGRAPHY

[32] S. Casacuberta, J. Hesse, and A. Lehmann. “SoK: Oblivious Pseudorandom Func-
tions”. In: 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&ampP).
IEEE, 2022-06. doi: 10.1109/eurosp53844.2022.00045. url: https://doi.org/
10.1109/eurosp53844.2022.00045 (cit. on pp. 1, 6, 24, 30, 31, 33, 77).

[33] M. Chase and P. Miao. “Private Set Intersection in the Internet Setting from
Lightweight Oblivious PRF”. In: Advances in Cryptology – CRYPTO 2020. Ed. by
D. Micciancio and T. Ristenpart. Vol. 12172. Lecture Notes in Computer Science
(LNCS). Springer, Cham, 2020, pp. 34–63. doi: 10.1007/978-3-030-56877-1_2
(cit. on p. 7).

[34] E. Chattopadhyay. “Guest Column: A Recipe for Constructing Two-Source Extrac-
tors”. In: SIGACT News 51.2 (2020), pp. 38–57. doi: 10.1145/3406678.3406688.
url: https://doi.org/10.1145/3406678.3406688 (cit. on pp. 20, 71).

[35] S. Chaudhry et al. “A secure and efficient authenticated encryption for electronic
payment systems using elliptic curve cryptography”. In: Electronic Commerce
Research 16 (2016), pp. 113–139. doi: 10.1007/s10660-015-9192-5. url: https:
//doi.org/10.1007/s10660-015-9192-5 (cit. on p. 2).

[36] D. Chaum. “Blind Signatures forUntraceable Payments”. In: Advances in Cryptology.
Springer, 1983, pp. 199–203 (cit. on p. 51).

[37] B. Chor and O. Goldreich. “Unbiased Bits from Sources of Weak Randomness
and Probabilistic Communication Complexity”. In: 26th Annual Symposium on
Foundations of Computer Science (sfcs 1985). Vol. 17. 1985-11, pp. 429–442. isbn:
0-8186-0644-4. doi: 10.1109/SFCS.1985.62 (cit. on pp. 20, 72).

[38] Cloudflare. How Lava Lamps Help Keep the Internet Secure. Accessed: June 24,
2024. 2020. url: https://www.cloudflare.com/learning/ssl/lava-lamp-
encryption/ (cit. on p. 18).

[39] Cryptographic security protocols: TLS. url: https://www.ibm.com/docs/en/ibm-
mq/9.4?topic=overview-cryptographic-security-protocols-tls (visited on
2024-07-19) (cit. on p. 26).

[40] J. Daemen and V. Rĳmen. The Design of Rĳndael: The Advanced Encryption Standard
(AES). 2nd. Information Security and Cryptography. Springer, 2020. isbn: 978-3-
662-60769-5. doi: 10.1007/978-3-662-60769-5. url: https://link.springer.
com/book/10.1007/978-3-662-60769-5 (cit. on pp. 17, 21).

[41] P. Das, J. Hesse, and A. Lehmann. “DPaSE: Distributed Password-Authenticated
Symmetric-Key Encryption, or How to Get Many Keys from One Password”. In:
Cryptology ePrint Archive (2020) (cit. on pp. 7, 34, 49).

83

https://doi.org/10.1109/eurosp53844.2022.00045
https://doi.org/10.1109/eurosp53844.2022.00045
https://doi.org/10.1109/eurosp53844.2022.00045
https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1145/3406678.3406688
https://doi.org/10.1145/3406678.3406688
https://doi.org/10.1007/s10660-015-9192-5
https://doi.org/10.1007/s10660-015-9192-5
https://doi.org/10.1007/s10660-015-9192-5
https://doi.org/10.1109/SFCS.1985.62
https://www.cloudflare.com/learning/ssl/lava-lamp-encryption/
https://www.cloudflare.com/learning/ssl/lava-lamp-encryption/
https://www.ibm.com/docs/en/ibm-mq/9.4?topic=overview-cryptographic-security-protocols-tls
https://www.ibm.com/docs/en/ibm-mq/9.4?topic=overview-cryptographic-security-protocols-tls
https://doi.org/10.1007/978-3-662-60769-5
https://link.springer.com/book/10.1007/978-3-662-60769-5
https://link.springer.com/book/10.1007/978-3-662-60769-5


BIBLIOGRAPHY

[42] A. Davidson, N. Sullivan, and C. Wood. Oblivious pseudorandom functions (OPRFs)
using prime-order groups. Tech. Rep. Internet Engineering Task Force, 2019. url:
https://datatracker.ietf.org/doc/draft-irtf-cfrg-voprf/ (cit. on pp. 1, 6,
30, 32).

[43] A. Davidson et al. “Privacy Pass: Bypassing Internet Challenges Anonymously”.
In: Proceedings on Privacy Enhancing Technologies (2018) (cit. on pp. 6, 7, 34, 49).

[44] A. Davidson. Privacy Pass - "The Math". Cloudflare Blog. 2017. url: https:
//blog.cloudflare.com/privacy-pass-the-math/ (visited on 2023-05-24) (cit.
on p. 6).

[45] G. T. Davies et al. “Security Analysis of the WhatsApp End-to-End Encrypted
Backup Protocol”. In: Advances in Cryptology – CRYPTO 2023: 43rd Annual Interna-
tional Cryptology Conference. Vol. Advances in Cryptology – CRYPTO 2023. Lecture
Notes in Computer Science (LNCS). Springer, 2023, pp. 330–361 (cit. on pp. 2, 7).

[46] E. De Cristofaro, P. Gasti, and G. Tsudik. “Fast and Private Computation of
Cardinality of Set Intersection and Union”. In: Cryptology and Network Security.
Springer Berlin Heidelberg, 2012, pp. 218–231 (cit. on p. 53).

[47] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246. 2008-08. doi: 10.17487/RFC5246. url: https://www.rfc-editor.
org/rfc/rfc5246 (cit. on pp. 23, 26).

[48] W. Diffie and M. E. Hellman. “New Directions in Cryptography”. In: IEEE
Transactions on Information Theory 22.6 (1976), pp. 644–654 (cit. on p. 26).

[49] Y. Dodis et al. “On the (Im)Possibility of Cryptography with Imperfect Random-
ness”. In: 45th Annual IEEE Symposium on Foundations of Computer Science. 2004,
pp. 196–205. doi: 10.1109/FOCS.2004.44 (cit. on p. 19).

[50] Y. Dodis and J. Spencer. “On the (Non)Universality of the One-Time Pad”. In:
Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science
(FOCS). IEEE, 2002-11, pp. 376–385 (cit. on p. 19).

[51] Y. Dodis and Y. Yao. Privacy with Imperfect Randomness. Cryptology ePrint Archive,
Paper 2014/623. 2014. url: https://eprint.iacr.org/2014/623 (cit. on p. 19).

[52] Y. Dodis et al. Differential Privacy with Imperfect Randomness. Cryptology ePrint
Archive, Paper 2012/435. 2012. url: https://eprint.iacr.org/2012/435
(cit. on p. 19).

[53] B. Dowling et al. “A Cryptographic Analysis of the TLS 1.3 Handshake Protocol”.
In: Journal of Cryptology 34.4 (2021-10), p. 37 (cit. on pp. 18, 25).

84

https://datatracker.ietf.org/doc/draft-irtf-cfrg-voprf/
https://blog.cloudflare.com/privacy-pass-the-math/
https://blog.cloudflare.com/privacy-pass-the-math/
https://doi.org/10.17487/RFC5246
https://www.rfc-editor.org/rfc/rfc5246
https://www.rfc-editor.org/rfc/rfc5246
https://doi.org/10.1109/FOCS.2004.44
https://eprint.iacr.org/2014/623
https://eprint.iacr.org/2012/435


BIBLIOGRAPHY

[54] W. Easttom. “Virtual Private Networks, Authentication, and Wireless Security”. In:
Modern Cryptography: Applied Mathematics for Encryption and Information Security.
Cham: Springer International Publishing, 2021, pp. 299–317. isbn: 978-3-030-63115-
4. doi: 10.1007/978-3-030-63115-4_14. url: https://doi.org/10.1007/978-
3-030-63115-4_14 (cit. on p. 2).

[55] S. Faust, C. Hazay, and D. Venturi. “Outsourced Pattern Matching”. In: Interna-
tional Colloquium on Automata, Languages, and Programming. Springer, 2013, pp. 545–
556 (cit. on p. 7).

[56] N. Ferguson, B. Schneier, and T. Kohno. Cryptography Engineering: Design Principles
and Practical Applications. Wiley, 2010 (cit. on p. 26).

[57] M. J. Freedman et al. “Keyword search and oblivious pseudorandom functions”.
In: Theory of Cryptography Conference. Springer, 2005, pp. 303–324 (cit. on pp. 1, 7,
30, 34).

[58] A. O. Freier, P. Karlton, and P. C. Kocher. The Secure Sockets Layer (SSL) Protocol
Version 3.0. RFC 6101. 2011-08. doi: 10.17487/RFC6101. url: https://www.rfc-
editor.org/rfc/rfc6101 (cit. on p. 26).

[59] O. Goldreich. Foundations of Cryptography: Volume 1 - Basic Tools. Cambridge
University Press, 2001. isbn: 9780521791725 (cit. on p. 23).

[60] O. Goldreich, S. Goldwasser, and S. Micali. “How to Construct Random Functions”.
In: Journal of the ACM (JACM) 33.4 (1986), pp. 792–807 (cit. on pp. 23, 26).

[61] S. Goldwasser, S. Micali, and C. Rackoff. “The Knowledge Complexity of Interactive
Proof Systems”. In: Proceedings of the 17th Annual ACM Symposium on Theory of
Computing (STOC). Providence, Rhode Island, USA: ACM, 1985, pp. 291–304. doi:
10.1145/22145.22178 (cit. on p. 33).

[62] M. Green. Let’s Talk about PAKE. Cryptography Engineering Blog. 2018. url:
https://blog.cryptographyengineering.com/2018/10/19/lets-talk-about-

pake/ (visited on 2023-06-15) (cit. on pp. 7, 35, 36).

[63] C. Hazay. “Oblivious Polynomial Evaluation and Secure Set-Intersection from
Algebraic PRFs”. In: J. Cryptology 31 (2018), pp. 537–586. doi: 10.1007/s00145-0
17-9263-y (cit. on p. 34).

[64] C. Hazay and Y. Lindell. “Efficient Protocols for Set Intersection and Pattern
Matching with Security against Malicious and Covert Adversaries”. In: Theory of
Cryptography Conference. Springer, 2008, pp. 155–175 (cit. on pp. 6, 7, 30, 34).

[65] A. Hulsing et al. “Post-Quantum WireGuard”. In: 2021 IEEE Symposium on Security
and Privacy. IEEE Computer Society Press, 2021-05, pp. 304–321 (cit. on p. 25).

[66] S. Jarecki et al. “TOPPSS: Cost Minimal Password-Protected Secret Sharing Based
on Threshold OPRF”. In: International Conference on Applied Cryptography and
Network Security. Springer, 2017 (cit. on pp. 7, 34, 49).

85

https://doi.org/10.1007/978-3-030-63115-4_14
https://doi.org/10.1007/978-3-030-63115-4_14
https://doi.org/10.1007/978-3-030-63115-4_14
https://doi.org/10.17487/RFC6101
https://www.rfc-editor.org/rfc/rfc6101
https://www.rfc-editor.org/rfc/rfc6101
https://doi.org/10.1145/22145.22178
https://blog.cryptographyengineering.com/2018/10/19/lets-talk-about-pake/
https://blog.cryptographyengineering.com/2018/10/19/lets-talk-about-pake/
https://doi.org/10.1007/s00145-017-9263-y
https://doi.org/10.1007/s00145-017-9263-y


BIBLIOGRAPHY

[67] S. Jarecki, A. Kiayias, and H. Krawczyk. “Round-Optimal Password-Protected Se-
cret Sharing and T-PAKE in the Password-Only Model”. In: International Conference
on the Theory and Application of Cryptology and Information Security. Springer, 2014,
pp. 233–253 (cit. on pp. 30, 34, 49, 50, 52).

[68] S. Jarecki, H. Krawczyk, and J. Resch. “Updatable Oblivious Key Management for
Storage Systems”. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security. 2019, pp. 379–393 (cit. on p. 30).

[69] S. Jarecki, H. Krawczyk, and J. Xu. OPAQUE: An Asymmetric PAKE Protocol
Secure Against Pre-Computation Attacks. Cryptology ePrint Archive, Paper 2018/163.
https://eprint.iacr.org/2018/163. 2018. url: https://eprint.iacr.org/2
018/163 (cit. on pp. 6, 7, 34, 36, 49).

[70] S. Jarecki, H. Krawczyk, and J. Xu. “On the (In)Security of the Diffie-Hellman
Oblivious PRF with Multiplicative Blinding”. In: Public-Key Cryptography – PKC
2021: 24th IACR International Conference on Practice and Theory of Public Key Cryp-
tography, Virtual Event, May 10–13, 2021, Proceedings, Part II. Springer-Verlag, 2021,
pp. 380–409 (cit. on pp. 1, 34, 50).

[71] S. Jarecki and X. Liu. “Fast Secure Computation of Set Intersection”. In: International
Conference on Security and Cryptography for Networks. Springer, 2010, pp. 418–435
(cit. on pp. 30, 54).

[72] S. Jarecki and X. Liu. “Efficient Oblivious Pseudorandom Function with Applica-
tions to Adaptive OT and Secure Computation of Set Intersection”. In: Theory of
Cryptography Conference. Springer, 2009, pp. 577–594 (cit. on pp. 7, 30, 34).

[73] D. Kales et al. “Mobile Private Contact Discovery at Scale”. In: 28th USENIX
Security Symposium (USENIX Security 19). USENIX Association, 2019, pp. 1447–
1464 (cit. on pp. 7, 34).

[74] J. Katz and Y. Lindell. Introduction to Modern Cryptography. 2nd ed. CRC Press,
2015 (cit. on pp. 2, 3, 12, 15, 16, 22–24, 28, 44).

[75] Á. Kiss et al. “Private Set Intersection for Unequal Set Sizes with Mobile Ap-
plications”. In: Proceedings of PETS’17 (2017), pp. 206–226 (cit. on pp. 6, 7, 23,
34).

[76] N. Koblitz. “Elliptic Curve Cryptosystems”. In: Mathematics of Computation 48.177
(1987), pp. 203–209. doi: 10.1090/S0025-5718-1987-0866109-5 (cit. on pp. 17,
22).

[77] V. Kolesnikov et al. “Efficient Batched Oblivious PRF with Applications to Private
Set Intersection”. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. 2016, pp. 818–829 (cit. on pp. 6, 7, 30, 34).

86

https://eprint.iacr.org/2018/163
https://eprint.iacr.org/2018/163
https://eprint.iacr.org/2018/163
https://doi.org/10.1090/S0025-5718-1987-0866109-5


BIBLIOGRAPHY

[78] V. Kolesnikov et al. Practical Multi-party Private Set Intersection from Symmetric-
Key Techniques. Cryptology ePrint Archive, Paper 2017/799. 2017. url: https:
//eprint.iacr.org/2017/799 (cit. on p. 34).

[79] H. Krawczyk. “Cryptographic Extraction and Key Derivation: The HKDF Scheme”.
In: Advances in Cryptology – CRYPTO 2010. Ed. by T. Rabin. Vol. 6223. Lecture
Notes in Computer Science. Heidelberg: Springer, 2010, pp. 631–648 (cit. on pp. 19,
23).

[80] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message
Authentication. RFC 2104. Updated by RFC 6151. RFC Editor, 1997-02. url:
https://www.rfc-editor.org/rfc/rfc2104 (cit. on pp. 22, 25).

[81] K. Lewi et al. Oblivious Revocable Functions and Encrypted Indexing. Tech. rep.
2022/1044. Cryptology ePrint Archive, 2022. url: https://eprint.iacr.org/20
22/1044 (cit. on pp. 2, 7).

[82] X. Li. “Improved Two-Source Extractors, and Affine Extractors for Polylogarithmic
Entropy”. In: 2016 IEEE 57th Annual Symposium on Foundations of Computer Science
(FOCS). 2016, pp. 168–177. doi: 10.1109/FOCS.2016.26 (cit. on p. 72).

[83] X. Li. Non-Malleable Extractors, Two-Source Extractors and Privacy Amplification.
Cryptology ePrint Archive, Paper 2012/188. 2012. url: https://eprint.iacr.
org/2012/188 (cit. on p. 71).

[84] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University
Lisbon. 2021. url: https://github.com/joaomlourenco/novathesis/raw/
main/template.pdf (cit. on p. i).

[85] J. L. McInnes and B. Pinkas. “On the Impossibility of Private Key Cryptography
with Weakly Random Keys”. In: Advances in Cryptology - CRYPTO ’90. Ed. by
A. J. Menezes and S. A. Vanstone. Vol. 537. Lecture Notes in Computer Science
(LNCS). Springer-Verlag Berlin Heidelberg, 1991, pp. 421–435. doi: 10.1007/3-5
40-38424-3_31 (cit. on p. 19).

[86] P. Miao et al. “Two-Sided Malicious Security for Private Intersection-Sum with
Cardinality”. In: Advances in Cryptology – CRYPTO 2020. Ed. by D. Micciancio
and T. Ristenpart. Cham: Springer International Publishing, 2020, pp. 3–33. isbn:
978-3-030-56877-1 (cit. on p. 34).

[87] D. Nagy. “On DigitalCash-Like PaymentSystems”. In: Communications in Computer
and Information Science. Springer, 2007 (cit. on p. 2).

[88] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. Tech. rep. Bitcoin.org,
2008. url: https://bitcoin.org/bitcoin.pdf (cit. on p. 2).

[89] M. Naor, B. Pinkas, and O. Reingold. “Distributed Pseudo-random Functions and
KDCs”. In: Advances in Cryptology — EUROCRYPT ’99. Springer, 1999, pp. 327–346
(cit. on p. 50).

87

https://eprint.iacr.org/2017/799
https://eprint.iacr.org/2017/799
https://www.rfc-editor.org/rfc/rfc2104
https://eprint.iacr.org/2022/1044
https://eprint.iacr.org/2022/1044
https://doi.org/10.1109/FOCS.2016.26
https://eprint.iacr.org/2012/188
https://eprint.iacr.org/2012/188
https://github.com/joaomlourenco/novathesis/raw/main/template.pdf
https://github.com/joaomlourenco/novathesis/raw/main/template.pdf
https://doi.org/10.1007/3-540-38424-3_31
https://doi.org/10.1007/3-540-38424-3_31
https://bitcoin.org/bitcoin.pdf


BIBLIOGRAPHY

[90] National Institute of Standards and Technology. Cryptography. url: https://www.
nist.gov/cryptography (cit. on p. 2).

[91] National Institute of Standards and Technology. The Keyed-Hash Message Authenti-
cation Code (HMAC). Federal Information Processing Standards Publication (FIPS
PUBS) 198-1. Washington, D.C.: U.S. Department of Commerce, 2008 (cit. on p. 25).

[92] National Security Agency. National Security Agency (NSA). url: https://www.nsa.
gov/ (cit. on p. 2).

[93] N. Nisan and A. Wigderson. “Hardness vs. randomness”. In: Journal of Computer
and System Sciences 49.2 (1994), pp. 149–167. url: https://theory.stanford.
edu/~liyang/teaching/projects/hardness-vs-randomness.pdf (cit. on p. 23).

[94] NIST. Recommendation for Pair-Wise Key-Establishment Schemes Using Discrete Loga-
rithm Cryptography. Tech. rep. SP 800-56A Rev. 3. Accessed: 2024-09-01. National
Institute of Standards and Technology, 2018. url: https://csrc.nist.gov/
publications/detail/sp/800-56a/rev-3/final (cit. on p. 28).

[95] T. Peacock et al. “Chapter e90 - Verifiable Voting Systems”. In: Computer and
Information Security Handbook (Third Edition). Third Edition. Elsevier, 2013, e293–
e315. isbn: 978-0-12-803843-7. url: https://www.sciencedirect.com/science/
article/pii/B9780128038437000909 (cit. on p. 2).

[96] B. Pinkas et al. Secure Two-Party Computation is Practical. Cryptology ePrint Archive,
Paper 2009/314. 2009. url: https://eprint.iacr.org/2009/314 (cit. on p. 34).

[97] B. Pinkas et al. Efficient Circuit-based PSI with Linear Communication. Cryptology
ePrint Archive, Paper 2019/241. 2019. url: https://eprint.iacr.org/2019/241
(cit. on p. 34).

[98] B. Pinkas et al. SpOT-Light: Lightweight Private Set Intersection from Sparse OT
Extension. Cryptology ePrint Archive, Paper 2019/634. 2019. url: https://
eprint.iacr.org/2019/634 (cit. on p. 34).

[99] J. Pullman, K. Thomas, and E. Bursztein. Protect Your Accounts From Data Breaches
With Password Checkup. 2019. url: https://security.googleblog.com/2019/02
/protect-your-accounts-from-data.html (cit. on p. 7).

[100] R. Raz. “Extractors with weak random seeds”. In: Proceedings of the Annual
ACM Symposium on Theory of Computing (2005), pp. 11–20. issn: 0737-8017. doi:
10.1145/1060590.1060593 (cit. on p. 72).

[101] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446. 2018-
08. doi: 10.17487/RFC8446. url: https://www.rfc-editor.org/rfc/rfc8446
(cit. on p. 26).

[102] R. Rivest, A. Shamir, and L. Adleman. “A Method for Obtaining Digital Signatures
andPublic-Key Cryptosystems”. In: Communications of the ACM 21.2 (1978), pp. 120–
126 (cit. on pp. 4, 17, 21).

88

https://www.nist.gov/cryptography
https://www.nist.gov/cryptography
https://www.nsa.gov/
https://www.nsa.gov/
https://theory.stanford.edu/~liyang/teaching/projects/hardness-vs-randomness.pdf
https://theory.stanford.edu/~liyang/teaching/projects/hardness-vs-randomness.pdf
https://csrc.nist.gov/publications/detail/sp/800-56a/rev-3/final
https://csrc.nist.gov/publications/detail/sp/800-56a/rev-3/final
https://www.sciencedirect.com/science/article/pii/B9780128038437000909
https://www.sciencedirect.com/science/article/pii/B9780128038437000909
https://eprint.iacr.org/2009/314
https://eprint.iacr.org/2019/241
https://eprint.iacr.org/2019/634
https://eprint.iacr.org/2019/634
https://security.googleblog.com/2019/02/protect-your-accounts-from-data.html
https://security.googleblog.com/2019/02/protect-your-accounts-from-data.html
https://doi.org/10.1145/1060590.1060593
https://doi.org/10.17487/RFC8446
https://www.rfc-editor.org/rfc/rfc8446


BIBLIOGRAPHY

[103] R. L. Rivest and J. Schuldt. “Spritz—a spongy RC4-like stream cipher and hash
function”. In: Proceedings of the 2014 International Conference on Cryptographic
Hardware and Embedded Systems (CHES). Springer, 2014, pp. 1–19. url: https:
//people.csail.mit.edu/rivest/pubs/RS14.pdf (cit. on p. 21).

[104] P. Schwabe, D. Stebila, and T. Wiggers. “Post-Quantum TLS without Handshake
Signatures”. In: ACM CCS 2020. Ed. by J. Ligatti et al. ACM Press, 2020-11,
pp. 1461–1480 (cit. on p. 25).

[105] C. E. Shannon. “A Mathematical Theory of Communication”. In: Bell System
Technical Journal 27 (1948), pp. 379–423, 623–656 (cit. on p. 20).

[106] N. I. of Standards and T. (NIST). Recommendation for the Entropy Sources Used for
Random Bit Generation. Tech. rep. NIST SP 800-90B. National Institute of Standards
and Technology (NIST), 2018-01. url: https://doi.org/10.6028/NIST.SP.800-
90B (cit. on p. 21).

[107] N. I. of Standards and T. (NIST). Secure Hash Standard (SHS). Tech. rep. FIPS 180-4.
National Institute of Standards and Technology, 2015. url: https://nvlpubs.
nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf (cit. on p. 22).

[108] D. Stebila, S. Fluhrer, and S. Gueron. Hybrid Key Exchange in TLS 1.3. https:
//datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-05.
draft-ietf-tls-hybrid-design-05. 2022-08 (cit. on p. 25).

[109] N. Tyagi et al. A Fast and Simple Partially Oblivious PRF, with Applications. Cryptology
ePrint Archive, Paper 2021/864. 2021. url: https://eprint.iacr.org/2021/864
(cit. on p. 34).

[110] S. P. Vadhan. Pseudorandomness. Vol. 7. Foundations and Trends in Theoretical
Computer Science 1-3. Now Publishers Inc., 2012, pp. 1–336 (cit. on p. 20).

[111] S. Yilek et al. “When private keys are public: results from the 2008 Debian
OpenSSL vulnerability”. In: Proceedings of the 9th ACM SIGCOMM Conference on
Internet Measurement. IMC ’09. Chicago, Illinois, USA: Association for Computing
Machinery, 2009, pp. 15–27. isbn: 9781605587714. doi: 10.1145/1644893.16448
96. url: https://doi.org/10.1145/1644893.1644896 (cit. on p. 8).

[112] D. Zuckerman. “General weak random sources”. In: Proceedings [1990] 31st Annual
Symposium on Foundations of Computer Science (1990), 534–543 vol.2 (cit. on p. 20).

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v7.0.2) [1]. 12cc90221730b8ba41bb3b1f8b517acd

[1] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021. URL: https://github.com/joaomlourenco/novathesis/raw/main/template.pdf (cit. on p. 89).

89

https://people.csail.mit.edu/rivest/pubs/RS14.pdf
https://people.csail.mit.edu/rivest/pubs/RS14.pdf
https://doi.org/10.6028/NIST.SP.800-90B
https://doi.org/10.6028/NIST.SP.800-90B
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-05
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-05
https://eprint.iacr.org/2021/864
https://doi.org/10.1145/1644893.1644896
https://doi.org/10.1145/1644893.1644896
https://doi.org/10.1145/1644893.1644896
https://github.com/joaomlourenco/novathesis
https://github.com/joaomlourenco/novathesis/raw/main/template.pdf




D
io

go
Ra

m
os

In
ve

st
ig

at
in

g
Ke

y
Ro

ta
tio

n
Se

cu
rit

y
in

O
bl

iv
io

us
Ps

eu
do

ra
nd

om
Fu

nc
tio

n
Pr

ot
oc

ol
s

20
24


	Front Matter
	Cover
	Front Page
	Copyright
	Acknowledgements
	Abstract
	Resumo
	Contents
	List of Figures

	1 Introduction
	1.1 Context
	1.1.1 Cryptography and Modern Cryptography
	1.1.2 Oblivious Pseudorandom Functions

	1.2 Motivation
	1.2.1 The Danger of Weak Keys
	1.2.2 Investigating Key Security
	1.2.3 Impact of the OPRF Key in OPRF Protocols and Applications

	1.3 Expected Contributions
	1.4 Document Organization

	2 Background and Related Work
	2.1 Modern Cryptography Principles and Theory
	2.1.1 Principles of Modern Cryptography
	2.1.2 Security Parameter and Negligible Functions
	2.1.3 Probabilistic Polynomial-Time (PPT) Algorithms
	2.1.4 Adaptive Adversarial Modeling
	2.1.5 Cryptographic Assumptions and Hardness Notions
	2.1.6 Feasibility of Attacks

	2.2 Keys in Cryptography
	2.2.1 Key Strength
	2.2.2 Key Rotation and Key Generation
	2.2.3 The Challenge of Realizing Cryptographic Tasks Without Uniform Randomness
	2.2.4 Entropy and Its Role in Cryptographic Security

	2.3 Cryptographic Primitives
	2.3.1 Pseudorandom Generators (PRGs)
	2.3.2 Pseudorandom Functions (PRFs)
	2.3.3 Dual Pseudorandom Functions (Dual PRFs)

	2.4 Cryptographic Protocols
	2.4.1 Diffie-Hellman Key Exchange
	2.4.2 Oblivious Pseudorandom Functions (OPRFs)
	2.4.3 Password-Based Authentication Protocols
	2.4.4 OPAQUE Protocol

	2.5 Summary and Critical Analysis

	3 Analyzing PRF Security
	3.1 PRF Security Model
	3.1.1 Defining the PRF
	3.1.2 Formal Definition
	3.1.3 Adversary Model
	3.1.4 Security Game


	4 OPRF Construction
	4.1 OPRF Construction
	4.1.1 Hashed Diffie-Hellman(HashDH) Construction
	4.1.2 2HashDH Construction
	4.1.3 The One-More Gap Diffie-Hellman (OM-gapDH) assumption

	4.2 Studying the underlying PRF
	4.2.1 H(x)k as a standard PRF

	4.3 Investigating the Impact of a Non-Uniform Key
	4.3.1 Adversary's Advantage with Non-Uniform Key
	4.3.2 Bounding the Adversary's Advantage
	4.3.3 Formal Proof of Concrete Security Impact with Low Min-Entropy
	4.3.4 Impact on Security Properties


	5 Mitigating Predictable Keys in the 2HashDH OPRF
	5.1 The Problem and our Approach
	5.2 H(x)k as a Dual PRF
	5.2.1 Formal Analysis of H(x)k when x is Uniform and k is Chosen by the Adversary
	5.2.2 Construction of Reduction
	5.2.3 Proving H(x)k as a Dual PRF

	5.3 Security Model for the Dual PRF Configuration
	5.3.1 Key Sampling
	5.3.2 Input Sampling
	5.3.3 Libraries
	5.3.4 Security Through Entropy Extraction in the Dual PRF H(x)k


	6 Implications for deployed OPRF Protocols
	6.1 Impact of Non-Uniform Server Keys on OPRF Protocols
	6.2 Vulnerabilities in VOPRF Protocols
	6.3 Mitigation Through Input-Derived Entropy: Dual PRFs and Transparent Key Rotation
	6.4 Real-World Applications: OPAQUE and Privacy Pass
	6.4.1 OPAQUE: Password-Authenticated Key Exchange (PAKE)
	6.4.2 Privacy Pass: Anonymous Authentication with OPRFs

	6.5 Key Well-Formedness and Protocol Limitations

	7 Conclusion and Future Work
	7.1 Main Contributions
	7.2 Future Work

	Bibliography
	Back Matter
	Back Cover
	sipne


