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Cell therapy manufacturing requires precise monitoring of critical parameters to ensure product quality, con-
sistency and to facilitate the implementation of cost-effective processes. While conventional analytical methods
offer limited real-time insights, integration of process analytical technology tools such as Raman spectroscopy in
bioprocessing has the potential to drive efficiency and reliability during the manufacture of cell-based therapies
while meeting stringent regulatory requirements. The non-destructive nature of Raman spectroscopy, combined
with its ability to be integrated on-line with scalable platforms, allows for continuous data acquisition, enabling
real-time correlations between process parameters and critical quality attributes.

Herein, we review the role of Raman spectroscopy in cell therapy bioprocessing and discuss how simultaneous
measurement of distinct parameters and attributes, such as cell density, viability, metabolites and cell identity
biomarkers can streamline on-line monitoring and facilitate adaptive process control. This, in turn, enhances
productivity and mitigates process-related risks. We focus on recent advances integrating Raman spectroscopy
across various manufacturing stages, from optimizing culture media feeds to monitoring bioprocess dynamics,
covering downstream applications such as detection of co-isolated contaminating cells, cryopreservation, and
quality control of the drug product. Finally, we discuss the potential of Raman spectroscopy to revolutionize

current practices and accelerate the development of advanced therapy medicinal products.

1. Raman spectroscopy in bioprocessing

Cell therapies have shown great potential in the treatment of many
currently intractable diseases, and recent years have witnessed an
accelerated growth in their use in clinical trials and in the pharmaceu-
tical marketplace. To meet the high demand for clinically-relevant cell
doses at affordable costs and the need for safe products, scalable, tightly
monitored, and controlled bioprocesses are required.

Allogeneic and “off-the-shelf” cell therapies demand the develop-
ment of bioprocesses where one batch is usually linked to the production
of several doses for patient treatment. Given the high costs associated to
production batches, it is critical that cell manufacturing risks are mini-
mized. On the other hand, in autologous cell therapies, the biological
variability inherent to the use of variable starting material needs to be
managed. To ensure that both allogeneic and autologous strategies
successfully reach clinical application and are commercially viable, it is
fundamental that the cell therapy industry adopts quality risk manage-
ment strategies and bioprocesses that are robust to the biological vari-
ability of the input material. This can be in part accomplished through

real-time monitoring and process control.

Real-time monitoring of cell culture enabling rapid feedback to
perturbations has been restricted to parameters such as dissolved oxy-
gen, pH and temperature. Other parameters, such as cell density, cell
viability, metabolites and by-products concentration, and presence of
biomarkers of interest are usually evaluated offline following manual
sampling. Nonetheless, it is possible to analyze several of these process
parameters in real-time and automatically while avoiding open opera-
tions and sample wasting using Process Analytical Technology (PAT)
tools such as Raman spectroscopy (Matuszczyk et al., 2023), Near Infra-
Red (NIR) spectroscopy (Kozma et al., 2019), acoustic sensors — e.g.,
based on ultrasonic pulsed Doppler (Akbari et al., 2022) -, dielectric
spectroscopy — e.g., Incyte capacitance sensor (Isidro et al., 2021) -,
Nuclear Magnetic Resonance (NMR) spectroscopy (Urzi et al., 2022),
and Fourier Transform Infrared (FTIR) spectroscopy (Marienberg et al.,
2024).

By offering a non-destructive approach to measure multiple critical
process parameters (CPP) while allowing fast and continuous data
acquisition, these techniques can accelerate biopharmaceutical
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Fig. 1. Implementation variants of Raman spectroscopy and other PAT tools.
Raman spectroscopy probes can operate as in-line or on-line sensors, which,
contrary to off-line analysis, do not require samples to be withdrawn and enable
real-time monitoring and process control. While in-line Raman sensors allow
spectra collection in the process stream, at-line Raman is collected at a location
close to the production process.

development. PAT tools have been widely adopted, for instance, in the
antibody industry (using CHO cells) to monitor and identify variations in
bioprocesses.

Particularly relevant to the cell therapy field is the ability of process
monitoring supported by PAT tools to relate process parameters with
critical quality attributes (CQA), identifying descriptors that could be
used to not only increase productivity but also manage process risks
therefore minimizing batch-to-batch variability on manufacturing pro-
cesses. Indeed, increased throughput, reduced need of sampling
handling by the operator and higher control over bioprocesses can be
enabled by applying real-time (on-line) or near real-time (at-line) PAT
tools (Fig. 1) which, ultimately, can reduce the probability of batch
failure.

Given its low water interferences, particularly when compared with
FTIR, Raman spectroscopy is seen as a versatile spectroscopic technique
to monitor multiple process output parameters during cell culture. The
utility of Raman spectroscopy-based methods in the biopharmaceutical
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industry has already been demonstrated in different stages of
manufacturing (Fig. 2) and it is envisioned that its application will
broaden in the upcoming years. While not exhaustive, the list of appli-
cations successfully using Raman spectroscopy in the manufacture of
biologics includes quantification of chemical components, such as amino
acids, in cell culture medium (Costa et al., 2023; Li et al., 2010),
monitoring bioprocesses from small to larger bioreactors (Li et al.,
2013), identification of protein aggregation during downstream pro-
cessing (Zhang et al., 2019), assessment of product concentration during
purification steps (Yilmaz et al., 2020) and identification of intracellular
ice formed during cryopreservation (Dong et al., 2010; Li et al., 2020a;
Pollock et al., 2016; Yu et al., 2021). Although studies reporting the use
of Raman spectroscopy in cell therapies are limited, this review high-
lights several advances in Raman applications for biopharmaceutical
manufacturing, which hold significant potential for the development of
next-generation cell therapies.

Integration of Raman spectroscopy in cell bioprocessing can be
essential to track key phenotypic markers, viability or even endotoxin
levels in real-time and could therefore contribute to assess lot consis-
tency and the phenotypic uniformity of a manufactured batch of cells or
cell-derived products. By providing rapid insights into product quality,
Raman spectroscopy allow process parameters to be dynamically
adjusted, mitigating trial and error during process development, and
minimizing the need for time-consuming off-line analyses. This can, not
only streamline process optimization, but also significantly lower
manufacturing costs and minimize batch failure by facilitating rapid
quality control release of manufactured batches. Coupled with regula-
tory requirements, these benefits are driving a higher adoption level of
PAT and, particularly, of Raman spectroscopy in the biopharmaceutical
industry. Indeed, although it has been since the early 1990s that Raman
spectroscopy has been increasingly applied to investigate the biochem-
ical properties of living cells (Puppels et al., 1990), the Food and Drug
Administration (FDA) PAT initiative released in 2004 has encouraged
the use of on-line PAT tools such as Raman spectroscopy to understand
and control the manufacturing of biopharmaceuticals (Center for Drug
Evaluation and Research, 2004).

Being increasingly demanded by regulators, efforts are performed to

Improving bioprocess efficiency with Raman spectroscopy
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Fig. 2. Application of Raman spectroscopy across the entire lifecycle of cell therapy manufacturing, from upstream applications to downstream processing and
formulation steps, including Tech Transfer (TT) activities and QC. By providing real-time information on both raw material attributes and critical quality attributes of
the drug product, Raman spectroscopy can be used to adjust critical process parameters (CPP) aiming at increased bioprocess efficiency and at reaching the ultimate

goal of real-time product release.



M.H.G. Costa et al.

. O]

Biotechnology Advances 77 (2024) 108472

140000

120000

100000

Region Selection

50 1000 1500 200 200

Raman Shift (cm™1)

®

x  Data Points
- Model 1

—— Model 2

Predicted
Concentration (umol/L)

20 25 30 35 a0 as 50

Measured Concentration (umol/L)

? e . —— Predicted
. ® Measured

o0 oy Cosmic Ray Removal °
Raman Shift (cm™) %
(0] o o
g Baseline Correction
@ a
s . :
a Smoothing
>
=
wv 6 " n
S Normalization
=
= 500 1000 1500 2000 2500
Raman Shift (cm™?) @
> 200
-~
V) 250000
[
8 200000 1
| =
(=P

Concentration
(umol/L)

EY 1600 200 50

100
Raman shft (cm-1)

Raman Shift (cm™?) @

0 25 50 75 100 125 150 175
Time (hours)

Fig. 3. Workflow from Raman spectra acquisition to predict key bioprocess variables. Spectral pre-processing improves the signal-to-noise ratio and prepares the
data for analysis using baseline correction and cosmic ray removal algorithms. After pre-processing, a multivariate prediction model is developed, optimized, and
validated, allowing for simultaneous prediction of variables based on spectra acquisition. This process highlights the steps required to achieve useful predictions and
showcases the potential for Raman spectroscopy as a monitoring and decision-aiding tool for bioprocesses.

increase the robustness and standardization of bioprocessing alongside
with digital record of manufacturing, aspects that are tightly associated
with automation. Since Raman spectroscopy-based methods are
amenable to automated operation and, importantly, are not harmful to
live cells if an adequate power density, wavelength and duration of
exposure are used, they can significantly contribute to implement bio-
process control and intensification through the development of predic-
tive and feedback control strategies. Raman spectroscopy data can be
used to support key decisions during manufacturing workflows, namely
to adjust feed rates throughout a bioprocess to optimal levels, identify
critical time points for steps such as cell transduction, harvest or to
supplement cell culture medium with biological cues triggering cell
differentiation. Altogether, this could contribute to increase product
quality and maximize yields and, ultimately, increase the accessibility of
cell therapies to patients.

2. Principles of Raman spectroscopy

Raman spectroscopy, first described in 1928 by the Indian physicist
C. V. Raman (Raman and Krishnan, 1928), is a non-invasive, label-free,
and sensitive optical technique used to identify characteristic finger-
prints of molecules. This versatile method is employed in various fields
such as chemistry, materials science, and physics for the analysis and
characterization of a broad range of substances. In the field of biology,
Raman spectroscopy is particularly valuable for analyzing and identi-
fying biomolecules, often without requiring sample preparation.

The application of Raman spectroscopy to biological samples results
in signals generated by lipids, proteins, nucleic acids, and metabolites,
based on the inelastic scattering of a monochromatic laser at distinct
wavelengths. When a photon interacts with a molecule, its energy can
temporarily increase, and as the molecule relaxes, it releases a different
quantity of energy relative to the incident photon — a phenomenon
known as Raman scattering. The small changes in frequency between
the absorbed and emitted photons reflect characteristic molecular vi-
brations corresponding to specific chemical bonds, as the energy
required to excite a particular molecular vibration is unique to the
functional groups of a given molecule. This energy consists of the dif-
ference in energy between the incident and scattered photon. Since each
molecule has a unique set of molecular vibrations, detection of the
scattered photons results in a series of peaks that reflect the sample
composition. Importantly, the inelastic scattering of photons is propor-
tional to the number of a given chemical bond, therefore allowing
quantitative analysis of different compounds present in a sample. Raman
spectroscopy is, however, a low-probability physical process as only 1 in
approximately 108 photons are subjected to Raman scattering and,
therefore, this technique is limited in its ability to measure low con-
centrations of a substance (Huser and Chan, 2015). Besides the analyte
concentration, the intensity of Raman scattering is also impacted by the
polarizability of molecules. Indeed, in a study where samples collected
from a bioreactor were analyzed by Raman spectroscopy, NIR and 2D-
fluorescence techniques, 2D-fluorescence presented a higher sensi-
tivity for ammonium (but not for glucose and lactate). This resulted from
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the fact that ammonium was present at low concentration and also
shows lower polarizability compared to glucose and lactate (Rowland-
Jones et al., 2017). Nonetheless, Raman techniques such as surface-
enhanced Raman spectroscopy (SERS) (Goel et al., 2024), coherent
anti-Stokes Raman scattering (CARS) (Li et al., 2020b) and stimulated
Raman scattering (SRS) (Yu et al., 2024) can significantly enhance
Raman sensitivity. In SERS, for instance, antibodies, linked to gold
nanoparticles, specifically recognize cell surface markers with a sensi-
tivity up to one in one million cells (Szaniawska and Kudelski, 2021),
while, in comparison, current flow cytometry assays can reliably detect
0.01 % of abnormal cells (Craig and Foon, 2008). By combining the
chemical selectivity of the Raman spectrum with the spatial resolution of
scanning tunnelling microscope (STM) and atomic force microscopy
(AFM), tip-enhanced Raman Spectroscopy (TERS) demonstrates sensi-
tivity to single molecules (Cao and Sun, 2022).

Although a broad range of excitation light wavelength, from infrared
to deep ultraviolet, could be explored in Raman spectroscopy, for most
biomedical applications involving cells, long wavelength light (785 nm,
633 nm) is usually explored due to its low phototoxicity. The trade-off
between photodamage risk and sensitivity while minimizing fluores-
cence interference results in the use of the near infrared region for
continuous monitoring of live cells without disturbing physiological
properties.

3. Building Raman spectroscopy analyte prediction models

Pre-processing and analysis of Raman spectra involve several critical
steps, ranging from data acquisition to model development (Fig. 3).
Researchers can implement pre-processing pipelines effectively with the
help of various software and libraries. Numerous free and open-source
Python packages, such as Rampy, PySpectra, and PyChemometrics,
are available for spectral data analysis. Additionally, commercial soft-
ware options like BWSpec by B&W Tek, LabSpec 6 by Horiba Scientific,
and SIMCA by Sartorius offer robust functionalities that streamline the
pre-processing and analysis of spectral data. In this section, we provide
an overview of the typical pipeline required to build Raman predictive
models.

3.1. Data acquisition

Commonly used analyzers for bioprocesses include the Ram-
anRxn2™ from Endress+Hauser (Baradez et al., 2018; Berry et al., 2015;
Rafferty et al., 2020a), Viserion® 785 nm Analyzer from Indatech
(Hagedorn et al., 2023), BioPAT®Spectro and compatible probes, such
as the HyperFluxPRO Raman spectrometer from Tornado Spectral Sys-
tems (Rowland-Jones et al., 2021).

Relevant settings for Raman spectra acquisition include the excita-
tion wavelength, exposure time, spectral resolution, and the number of
accumulations. Choosing the appropriate excitation wavelength (e.g.,
532 nm, 633 nm, 785 nm, or 1064 nm) balances signal intensity and
fluorescence. 785 nm is typically chosen for bioprocessing purposes.
Exposure time, ranging from milliseconds to minutes, affects the signal-
to-noise ratio and total acquisition time. Spectral resolution (typically
between 4 cm ! and 10 em™!, influenced by the spectrometer’s slit
width and grating) determines the ability to differentiate closely spaced
spectral lines. Also, the accumulation refers to the number of scans that
are averaged to improve signal to noise ratio. This increases acquisition
time, so a balance must be reached according to how fast one expects the
system to considerably change.

3.2. Region selection

Specific regions of the Raman spectrum correspond to different
molecular vibrations and thus different chemical components. Selecting
the right spectral region can enhance the detection and analysis of key
bioprocessing parameters. The most commonly focused region is what is
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sometimes referred as “fingerprint region”, located between 400 and
1800 cm ™!, where many distinct peaks corresponding to organic com-
pounds, proteins, lipids, and nucleic acids can be found (Rafferty et al.,
2020a).

3.3. Spike detection

Cosmic ray events (CRE) can introduce spurious spikes in Raman
spectra, significantly distorting the data. These spikes, caused by high-
energy particles striking the detector, obscure the true Raman signals.
Effective detection and correction of these spikes are crucial to ensure
the integrity of the spectral analysis. Methods such as wavelet transform
and threshold-based algorithms are commonly employed to identify and
remove these artifacts, preserving the accuracy of the Raman spectra
and enabling reliable interpretation of the sample’s properties (Li and
Dai, 2011). Recently, machine learning-enhanced wavelet transforms
have been applied for spike detection and noise filtering. Adaptive
thresholding techniques — driven by unsupervised learning methods
such as k-means clustering — dynamically adjusts to the unique noise
characteristics of each spectrum.

3.4. Baseline correction

One of the major limitations of Raman spectroscopy techniques is
linked to the low intensity of the Raman signal, which can be easily
masked by noise (Smulko et al., 2014). Preprocessing and baseline
normalization of Raman spectral data can contribute to improve the
signal-to-noise ratio (Beier and Berger, 2009), with particular focus on
mitigating fluorescence signals, a major challenge in cell culture due to
the accumulation of organic metabolites (Matthews et al., 2018). While
traditional methods like first- or second-order derivative, frequency
domain filtering and polynomial fitting have been widely applied
(Beumers et al., 2018; Cadusch et al., 2013; Lieber and Mahadevan-
Jansen, 2003), more advanced approaches using deep learning, such
as autoencoders — unsupervised neural networks — are now employed to
automatically recognize and subtract fluorescence from Raman spectra,
significantly enhancing baseline correction (Han et al., 2024). This al-
lows the peaks of the Raman spectral signal to be distinguished amongst
the diversity of molecular interactions present in the cell culture
environment.

3.5. Smoothing

While spike detection reduces the effects of CRE and baseline
correction reduces the effects of fluorescence, smoothing is the process
used to reduce noise. Smoothing techniques help in minimizing this
noise while preserving the true signal characteristics. One of the most
commonly used smoothing methods is the Savitzky-Golay filter (Barton
et al., 2018). The Savitzky-Golay filter applies a polynomial regression
to a moving window of the spectral data, effectively smoothing the data
by fitting successive polynomial curves and averaging them. Addition-
ally, machine learning algorithms, such as convolutional neural net-
works (CNNs), can be applied to automatically identify and filter out
noise while preserving relevant spectral features (Fuentes et al., 2023).

3.6. Normalization

Two commonly used normalization methods are Standard Normal
Variate and Multiplicative Scatter Correction (Fearn et al., 2009).
Standard Normal Variate works by transforming each spectrum to have
a mean of zero and a standard deviation of one. Multiplicative Scatter
Correction, on the other hand, adjusts the spectra by modelling and
removing the scatter effects through a reference spectrum, typically the
mean spectrum. Both methods are widely adopted for their effectiveness
in improving the quality of Raman spectral data, facilitating more ac-
curate analyses.
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Fig. 4. Raman spectroscopy measurements performed across different bioreactor scales. Raman spectroscopy measurements in miniature bioreactors can be per-
formed using integrated at-line systems (which have the advantage of allowing several conditions to be tested in parallel, therefore covering wider analyte con-
centration ranges, particularly if analytes are spiked directly in the bioreactors) while, typically, larger-scale process development bioreactors allow installation of in-
line Raman probes in headplates, using autoclave procedures to sterilize the Raman sensor (following Clean in Place (CIP) and Sterilize in Place (SIP) procedures).
Commercial manufacturing bioreactors can also use side ports that are often explored in single-use bioreactors to integrate gamma sterilized fittings of Raman probes.
By aligning offline measurements with the measured Raman spectra, Raman models can be generated for different process parameters. The identified CPP are then
kept within target ranges by using feedback controllers such as the proportional integral derivative (PID) controller based on in-line information provided by the

continuously acquired Raman spectra.

3.7. Model development

Using Raman spectra to predict and monitor bioprocess variables in
real-time requires establishing robust statistical models. Multivariate
predictive models, such as partial least squares regression (PLSR)
(Tulsyan et al., 2020), are employed to correlate spectral patterns (that
are affected by cell debris, presence of bubbles, cell culture media
components and cell by-products) with process parameters (Craven and
Whelan, 2015). Other methods such as Ridge, XGBoost, or Neural Net-
works can be used, and their efficacy varies between different experi-
mental variables and even types of analytes (Tanemura et al., 2023).
Since deep neural networks (DNNs) and CNNs can handle large datasets
and complex non-linear relationships without requiring manual feature
selection, they are used to automatically extract relevant features from
Raman spectra.

Hybrid Artificial Intelligence (AI) models that combine traditional
methods (e.g., PLSR) with deep learning techniques offer an optimal
balance between computational efficiency and predictive accuracy.
Explainable AI techniques, such as SHAP (Shapley Additive exPlana-
tions) and LIME (Local Interpretable Model-agnostic Explanations), can
potentially enhance the transparency and interpretability of Al models
in Raman spectroscopy (Contreras and Bocklitz, 2024).

Generating calibration data for robust Raman models can be time
and resource intensive, as it should cover the entire operation space and
changes in culture conditions can decrease the accuracy of the generated
calibration models (Berry et al., 2015; Mehdizadeh et al., 2015). Inte-
grating analyte variability into Raman calibration processes either re-
quires spiking strategies or design of experiment studies that incorporate
a wide range of analyte concentrations and demand a high number of
runs to be performed (Santos et al., 2018). An alternative to in situ ac-
quired Raman data that are obtained following insertion of Raman
probes in bioreactor ports relies on flow cells installed on bypass loops
integrated in perfused cell culture systems (Romann et al., 2022)
(Fig. 4). To limit time/resource consuming process development runs to
generate Raman models, strategies that would not require dedicated
runs to obtain calibration data are needed. Recently, a method to build

Raman calibration models without using culture data was developed
(Hara et al., 2023). By using samples of artificially mixed analytes that
did not involve cell culture to identify the Raman peak positions, in-
tensities and baseline changes of each analyte, this approach results in a
cost effective and less time-consuming method to develop robust cali-
bration models for cell culture monitoring.

Transfer learning enables models pre-trained on one set of bioprocess
conditions to rapidly adjust to new datasets with minimal retraining,
therefore improving model scalability and reducing calibration costs.
Despite its promise for bioprocess development and guiding novel
manufacturing processes, its application remains underexplored and it
does not overcome the challenge of requiring large amounts of data for
initial model training (Helleckes et al., 2023; Kalatzis et al., 2023). To
unlock the full potential of transfer learning, a broader approach to
open-source data sharing is essential.

Remarkably, initiatives such as “MicrobioRaman”, a recently created
open-access web-based repository for microbiological Raman spectros-
copy data, if widely implemented by the cell therapy community, could
contribute to strengthen collaboration amongst researchers and help
generating more relevant and generalizable models (Lee et al., 2024).

4. Improving bioprocess control and efficiency using Raman
spectroscopy

4.1. Upstream processing

Enhanced process understanding to predict cell CQAs online can be
achieved by real-time monitoring of several cell culture parameters in
combination with mathematical modelling (Dong et al., 2024; Tane-
mura et al., 2023). Identification of individual peaks of the Raman
spectra enables simultaneous detection of several metabolites/amino
acids, pH level in cell culture conditioned medium and cell concentra-
tion, viability and identity, allowing adaptive feeding strategies to be
implemented. This can be critical during both upstream process devel-
opment and in commercial manufacturing batches as, frequently, more
than one factor is responsible to define the success of a batch production.
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Table 1

Overview of examples of Raman spectroscopy studies focused on monitoring and upstream bioprocessing control of distinct cell types (stem, immune cells and CHO
cells). The use of bioreactors is highlighted as well as the main findings of each study. AT-MSC - adipose tissue-derived mesenchymal stromal cells; BM-MSC - bone
marrow-derived mesenchymal stromal cells; hESC — human embryonic stem cells; hiPSC — human induced pluripotent stem cells.

Application Cell type Monitoring type Culture Bioreactor Operation mode Feedback control Key findings Ref.
platform operation implemented based
on Raman data?

Cell identity Stem and AT-MSC, CARS microscope Static plates No NA Successful non-invasive (Downes
immune osteoblasts, monitoring of et al., 2011)
cells adipocytes mesenchymal stromal

cells differentiation into
osteoblasts and
adipocytes was

performed.
BM-MSC Raman Static plates Successful non-invasive (Ravera
microscope monitoring of et al., 2021)

mesenchymal stromal
cells differentiation into
chondrocytes was

performed.
BM-MSC Raman Static plates Raman spectroscopy (Kukolj et al.,
microscope detected inter-individual 2022)

differences between BM-
MSC isolated from five
distinct donors that were
not highlighted by
standard analytical
methods investigating
cell morphology,
multilineage
differentiation potential,
phenotype, colony-
forming capacity or
proliferative potential.

Neural stem cells Raman Static plates The differentiation status (Geng et al.,
microscope of neural stem cells was 2021)
monitored by Raman
spectroscopy.
Dental pulp stem Confocal Raman 3D spheroids Variations in 3D (Kim et al.,
cell spheroids microscope in static differentiation of stem  2021)
platform cell spheroids was

associated with the
efficiency of diffusion of
medium following
correlation of cell-
differentiation related
peaks (hydroxyapatite,
p-carotene and protein/
cellular components) and
water/medium Raman

peaks.
hESC-derived Raman Chambers of Raman spectroscopy has (Pascut et al.,
cardiomyocytes microscope with 3.5 cm the potential to non- 2011)
(CMs) environmental diameter and invasively monitor time-
enclosure 1.5 cm height dependent molecular
changes in hESC,
particularly hESC-

derived CMs (as spectral
differences attributed to
glycogen and myofibril
bands can help
distinguish CM from non-

CMs).
hiPSC-derived =~ Raman Static plates Three biomarkers (fatty (Ishigaki
erythropoietin ~ microscope acids, glycoproteins and et al., 2022)
producing cells DMSO), directly

correlated with hiPSC-
differentiation into
erythropoietin producing
cells, were successfully
detected over the course

of the cell
differentiation.
B cells, T cells Confocal Raman Static plates Raman spectroscopy (Hobro et al.,
microscope provided biochemical 2016)

information that allowed
to distinguish T- from B-

(continued on next page)
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Table 1 (continued)
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Application Cell type

Monitoring type

Bioreactor Operation mode Feedback control
implemented based

Key findings Ref.

T cells, NK cells
and dendritic

cells

hESC

Metabolite (glucose) AT-MSC

Metabolite (glucose, T cells

lactate, glutamine) and
cell concentration

Metabolite (glucose, CHO cells
lactate), VCD, TCD,
osmolality

Metabolites (glucose,
glutamine, glutamate,
lactate, ammonium),
VCD, TCD, viability

Metabolites (glucose,
lactate and ammonia)

Metabolites (glucose,
lactate, glutamate,
ammonium), VCD,
TCD, product (mAbs)
concentration

Amino acids (tyrosine,
tryptophan,
phenylalanine,
methionine)

Confocal Raman
microscope

Off-line

In-line

In-line

In-line

In-line

In-line

In-line

In-line

Fed-batch

Fed-batch

Fed-batch

Fed-batch

Fed-batch

Fed-batch

Fed-batch

Fed-batch

cells and between

individual T- and B-cell

lines.

Wavelength-modulated (Chen et al.,
Raman spectroscopy can 2015)

be used for immune cell
discrimination (namely

CD4", CD8" T cells and

CD56" NK cells as well as

myeloid (mDC) and
lymphoid/plasmacytoid

(pDC) dendritic cell

populations.

Changes in pluripotency (Hagedorn
of ESC can be detected in et al., 2023)
Raman spectra of spent

media (being

particularly reflected in

the Raman bands

associated with lipids).

Cell culture at low (Costa et al.,
glucose levels, 2023)
monitored using Raman

probes in scalable STB,

can improve EV

manufacturing yields.

Changes in Raman peak (Baradez
intensity were correlated et al., 2018)
with concentration and

viability of T cells

isolated from different

donors.

Good prediction Raman (Berry et al.,
models were reported for 2015)
glucose, lactate and

osmolality although, for

viable and total cell

densities, these

components exhibited

different performance

depending on bioreactor

scale.

Raman spectroscopy was (Abu-Absi
used to simultaneously et al., 2011)
monitor in-line the

concentration of

multiple culture

parameters (metabolites

and cell concentration)

in large scale bioreactors.

Cubist outperformed PLS (Rafferty
for modelling the Raman et al., 2020a)
spectra of metabolites at

1L and 5 L scale. It was

used to predict the levels

of glucose, lactate and

ammonia at the 2000 L
manufacturing scale

bioreactor.

Accurate models were ~ (Webster
built using 5 L scale data et al., 2018)
and transferred to 10 L

scale for glucose, lactate,

ammonium, VCD, TCD

but not for product

(mAbs) or glutamate

concentrations.

Raman spectroscopy (Bhatia et al.,
allowed to in-line 2018)
monitor the

(continued on next page)
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Table 1 (continued)

Application Cell type Monitoring type  Culture Bioreactor Operation mode Feedback control Key findings Ref.
platform operation implemented based
on Raman data?

concentration of several
amino acids in parallel.
Metabolites (glucose, In-line 1L,3Land Fed-batch A good model fit was (Mehdizadeh
lactate) and VCD 500 L STB obtained, except for low et al., 2015)
concentrations of glucose
and lactate where the
model accuracy was

limited.
Metabolites (glucose, Off-line 10 L STB Fed-batch When mimicking the (Rowland-
lactate and operational constraints Jones et al.,
ammonium) specific to miniature 2017)

bioreactors (i.e., low
sampling volume and
short acquisition times),
Raman spectroscopy
showed better
correlation with off-line
measurements of
metabolites than NIR and
2D-fluorescence.

Metabolites (glucose, At-line and on- 15 mL STB Fed-batch Miniature bioreactors, (Rowland-
lactate, ammonium, line (ambr®15) where experimental Jones et al.,
glutamine, glutamate) and 50 L STB variation can be 2021)
and product (mAbs) introduced through
concentration spiking, allow robust

model generation at low
costs. An integrated
spectroscopy solution
was implemented to
facilitate technology
continuity and model
transfer between
miniature and large-scale

bioreactors.
Metabolites (glucose, Off-line and at- 15 mL STB Fed-batch A high-throughput (Goldrick
lactate), VCD, antibody line (ambr®15) Raman spectroscopy et al., 2020)
concentration microscope was

successfully applied to
both USP and DSP

operations.
Glycoprotein titer Off-line 2L, 100-200 Fed-batch Raman spectroscopy was (Li et al.,
L, 1000 L, used to predict the 2013)
5000 L STB glycoprotein yield in

small scale batches up to
5000 L bioreactors.

Amino acids, vitamins, On-line 0.25 L STB Fed-batch Raman models were (Tanemura
VCD, viability, constructed for a wide et al., 2023)
osmolarity, antibody range of analytes (not
titer, pH, ions only detecting

compounds with
covalent bonds but also
hydrogen ions, metal
ions, oxygen, carbon
dioxide) using spectra
measured in a
microfluidic channel.

Metabolites (glucose, On-line 0.25 L STB Fed-batch Multi-parallel mini (Graf et al.,
lactate, glutamine, bioreactors integrating ~ 2022b)
glutamate), mAb titer flow cells enabling on-

line Raman

measurements (and
reference measurements
provided by a
bioanalyzer) can
generate robust models
for nutrients, metabolites
and product titer.

(continued on next page)
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Application

Culture
platform

Monitoring type

Bioreactor Operation mode Feedback control

operation

Key findings Ref.
implemented based
on Raman data?

VCD, viability, viable cell
volume and cell
diameter

Metabolites (glucose,
lactate, glutamate,
glutamine), VCD,
osmolality, ions (K",
Na®, NH4™), pCO, and
titer (IgG)

Metabolite (glucose)

Metabolite (glucose)

Metabolites (glucose)

Metabolite (glucose)

Metabolites (glucose),
amino acids (arginine)

Metabolites (glucose,
lactate, ammonium),
VCD and product
concentration

In-line 15,000 L

In-line 3LSTB

In-line 5L STB

In-line 5L,315L

STB

In-line flow cell
included in the
cell-free harvest
stream of a
perfusion process

Rocking
motion (2 L
and 20 L)

0.25 L STB

On-line

2L STB

In-line

Off-line or at-line 15 mL STB
(ambr®15)

Fed-batch

Perfusion

Fed-batch

Fed-batch

Perfusion

Fed-batch

Fed-batch

Fed-batch Yes (targeting
glucose
concentration)

Yes (based on Raman spectroscopy
capacitance values) supported capacitance
data to deliver the
feeding strategy.
Raman spectroscopy (Chen et al.,
constitutes a robust tool 2021)

to monitor and control

continuous

manufacturing

processes, successfully

establishing an auto-

control strategy for VCD.

Raman spectroscopy can (Berry et al.,
be used to control culture 2016)
conditions, namely
maintaining glucose at
low concentration and,
consequently, reducing
antibody glycation by
over 50 %.

Shifting the Raman
excitation wavelength
towards the near-
infrared (993 nm,
alternatively to the
commonly used 785 nm
excitation wavelength)
allows reduction of
autofluorescence in a
mammalian cell culture
process, contributing to
establish a Raman
adaptive feeding to
maintain glucose at the
target setpoint.

In-line Raman
spectroscopy enabled
maintenance of stable
glucose concentration
(<£0.4 g/L)in a
prolonged perfused-
operated bioreactor.
High throughput
bioreactors were
successfully controlled
by a predictive Raman
model for glucose.
Higher cell proliferation (Domjan

et al., 2022)

(Rafferty
et al., 2020c)

Yes (viable cell
density control)

Yes (targeting
glucose)

(Matthews
et al., 2018)

Yes (targeting
glucose)

Yes (targeting
glucose
concentration)

(Graf et al.,
2022a)

Yes (targeting
glucose)

(Sibley et al.,
2020)

Yes (targeting

glucose and arginine and viability and,

concentration) consequently, antibody
production were
achieved following
feeding control strategies
enabled by Raman data
in comparison to the
standard bolus fed
culture.

A DoE approach was (Rowland-Jones and Jaques, 2019)

applied using

miniature

bioreactors to cover

the design space.

The output of a

Raman model

focused on viable

cell and glucose

concentrations was

(continued on next page)
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Application Cell type Monitoring type  Culture Bioreactor Operation mode Feedback control Key findings Ref.
platform operation implemented based
on Raman data?
used to control feed
rates.
Metabolites (glucose, In-line 3 Land 15L STB Fed-batch Yes (targeting Raman calibration (Whelan et al., 2012)
glutamine, lactate, glucose models were
ammonia, glutamate), concentration)  successfully
TCD and VCD transferred from 3 L
to 15 L bioreactor
scale.
Metabolite (glucose, On-line 15 L STB Fed-batch Yes (targeting Based on Raman (Craven et al., 2014)
glutamine, lactate and glucose data, efficient
ammonia), VCD concentration) bioprocess control
(targeting glucose
concentration) was
achieved ina 15 L
bioreactor.
Metabolites (glucose, HEK293 In-line 51,200 L and Fed-batch Yes (targeting Closed loop control (Matthews et al., 2016)
lactate) cells 315 L STB glucose and of glucose and
lactate lactate
concentration) concentrations

based on Raman

data resulted in an
85 % improvement
in the harvest titer.

Although the majority of the studies exploring Raman spectroscopy
during upstream processing collect Raman spectra using in-line probes
directly inserted in bioreactors, few reports have also explored Raman
microscopy, particularly to extend the utility of Raman from measuring
pH, metabolites, amino acids, cell viability and cell volume into analysis
of biomarkers that could open the road to control the differentiation and
reprogramming of stem and immune cells and to ensure the purity of the
manufactured cell population for clinical applications (Table 1).

4.1.1. pH control

Control of the pH level is commonly implemented during the
manufacture of biological products, with most bioreactors being
equipped with electrochemical or optical pH probes that continuously
monitor pH. However, undesirable deviations of pH can occur due to pH
probe drift (Saucedo et al., 2011). Raman spectroscopy, coupled to PLS
regression modelling, has shown its potential to perform in-line mea-
surements of pH, therefore eliminating the need of off-line daily samples
to correct potential pH probe drifts in bioreactor-operated cell cultures
(Rafferty et al., 2020b).

Remarkably, SERS has also been applied to monitor the intracellular
pH of single cells (Kneipp et al., 2010) as intracellular pH can reflect
important physiological and pathological processes, such as tumour
formation, inflammation and infection (Damaghi et al., 2013). Using
Raman microimaging coupled with nanosensors enabling spatial pH
sensing has also been applied to detect endothelial inflammation trig-
gered by tumour necrosis factor-o (TNF-a) (Jaworska et al., 2015). These
studies highlight the dual role of Raman spectroscopy to potentially both
control pH during cell culture and as a sensor of cell state.

4.1.2. Metabolites

Real-time monitoring of metabolites such as amino acids is crucial in
cell therapy bioprocessing, where shifts in metabolite levels can directly
impact cell expansion, differentiation or secretion of target products.
Traditional off-line methods often fail to provide a comprehensive view
of metabolic states, hindering process control. On the contrary, Raman
spectroscopy enables continuous assessment of metabolites, contrib-
uting to the consistency of the manufactured cell therapeutic product.

So far, the majority of the studies employing Raman spectroscopy
tools during both bioprocess development and at commercial scale have
focused on monitoring the concentration of metabolites (Table 1).
Bhatia and colleagues, for instance, have showed that chemometric
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models applied to Raman spectroscopy could accurately quantify
phenylalanine, tryptophan and tyrosine concentrations (Bhatia et al.,
2018). Besides online monitoring, controlling the concentration of me-
tabolites, both nutrients and metabolic by-products, can further tailor
the use of nutrients by cells, increasing their metabolic efficiency
(Wlaschin and Hu, 2006) and help guide cell fate decisions. Notably,
incorporation of feedback control systems fbased on Raman measure-
ments have contributed to optimize nutrient supply. Matthews et al., for
instance, implemented a dual-metabolite feedback system to better
control the metabolic profile of a conventional mammalian cell
manufacturing process (Matthews et al., 2016). Raman measurements
were performed to track glucose and lactate levels in a fed-batch
HEK293 cell culture exploring small scale bench (5 L) and pilot (200 L
and 315 L) bioreactors. Based on the real-time concentrations of glucose
and lactate, an adaptive feeding of glucose was implemented to avoid
lactate accumulation while limiting glucose depletion. When lactate
levels reached the 4 g/L threshold, the Raman control halted the glucose
feeds, promoting consumption of lactate by the mammalian cells until
lactate reached the minimum setpoint and glucose feeding was reini-
tiated. The control of glucose and lactate concentrations in a closed-loop
rendered an increase of 85 % on the protein production levels, only
extending the process timeline by two days (Matthews et al., 2016). In
other studies, target glucose and phenylalanine (Webster et al., 2021) or
glucose and arginine (Domjdn et al., 2022) concentrations were main-
tained through feed-rate adjustments of a fed-batch culture of a CHO cell
line guided by in-line Raman models. Besides avoiding daily offline
sampling, this strategy decreased the feed addition of glucose and
phenylalanine by 19 % and 27 %, respectively, comparing to manually
adjusted feeds. The arginine-based dynamic feeding strategy also
contributed to decrease by more than half the supplied feed medium,
resulting in economically relevant gains, an approach that could be
extended from therapeutic protein manufacturing into the cell therapy
field. Indeed, Raman probes can be used to continuously track glucose
concentration during culture of mesenchymal stem/stromal cells (MSC)
in small-scale stirred-tank bioreactors (STB), facilitating the identifica-
tion of optimal extracellular vesicle (EV) collection time points as lower
glucose concentration has been suggested to maximize the number of
EVs secreted per cell (Costa et al., 2023). This suggests that real-time
prediction of metabolites using Raman spectroscopy can also be
explored to biochemically tune cell culture and therefore attain higher
control over the cell secretome.
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Fig. 5. Label-free Raman microscopy to monitor cell state, tracking processes such as stem cell differentiation and activation of immune cells. The photons emitted
from a laser light (typically using excitation laser wavelengths in the near-infrared range (e.g., 785 nm) for eukaryotic cells) are differentially scattered according to
the biochemical composition of a cell. The Raman spectrum results from Raman Stokes scattered photons that are recorded by the spectrometer while Rayleigh and
anti-Stokes scattered light is filtered. Several challenges arise when using Raman spectroscopy in cell therapy bioprocesses. These include the low probability of
Raman scattering events, which can hinder the detection of rare cells (1), external interferences, resulting in false peaks or mask peak identification (2) and the
inherent complexity of cells and their surrounding microenvironment, making it difficult to isolate specific signals (3).

Integration of Raman spectroscopy during upstream cell culture
processes contributes to increase the robustness of the manufacturing
process by enabling real-time monitoring of critical culture parameters
such as nutrient levels and cell health, for instance, facilitating a more
precise control of feeding strategies and ensuring timely adjustments to
the process. By facilitating the identification of critical time points to
initiate/terminate process steps, Raman spectroscopy not only maxi-
mizes product yields but also contributes to maintain consistent product
quality, thereby reducing the variability and risks associated with batch
failure. This real-time and data-driven approach strengthens the overall
process control, which is critical to reach scalable and reproducible
manufacturing workflows.

4.1.3. Cell concentration and viability

Besides accurately monitoring pH, metabolite and nutrient produc-
tion/consumption, Raman spectroscopy serves as a powerful tool for
monitoring cell concentration and viability — key metrics in the pro-
duction of cell therapies. Alterations in Raman peak intensities correlate
with viable and total cell densities, allowing for real-time assessment of
cell health and production levels. In a study performed with CHO cells
using larger scale bioreactors (500 L), viable and total cell densities
showed high level of agreement between measured and predicted values
(Abu-Absi et al., 2011). In another study, Rafferty and colleagues pro-
posed Raman spectroscopy as an in-line solution to model viable cell
density (VCD), viable cell volume (VCV), viability and cell diameter in
15,000 L fed-batch bioreactors (Rafferty et al., 2020c). In the context of
immunotherapies, Baradez and colleagues, besides developing chemo-
metric models for glucose, lactate, ammonia, glutamine and glutamate
during T cell culture in small-scale (200 mL) STB containing a Raman
spectroscopy probe, demonstrated high correlation between Raman
measurements and changes in cell numbers over time. Nonetheless,
weaker correlation was observed for cell viability (Baradez et al., 2018).
Although Raman bands can be used as surrogate markers to predict
viability, differences in cell death and apoptotic mechanisms can lead to
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discrepancies amongst studies. Brauchle and colleagues, for instance,
showed good correlation between Raman peak at 1375 cm™! and
apoptosis of sarcoma cell lines (Brauchle et al., 2014), while negative
correlation was found in another study evaluating T cell death and
apoptosis (Xiao et al., 2021). Detection of apoptosis is possible using
Raman signatures that are observed during alterations of the cell
composition typical of apoptotic processes, known to lead to an increase
in lipid vesicles and degradation of nucleic acids (Rangan et al., 2018).
Changes in peaks associated with DNA (at 782, 788 and 1095 cm_l), for
instance, have shown the applicability of Raman spectroscopy in
determining the cell cycle stage and distinguishing live from dead cells
(Notingher et al., 2003; Rangan et al., 2018; Uzunbajakava et al., 2003;
Verrier et al., 2004). Interestingly, in a study performed with CHO cells,
it was possible to detect cells entering apoptosis before they stained
positive for annexin V (Brauchle et al., 2014). This ability to characterize
cell populations non-destructively and in real time is invaluable for
ensuring the quality and high yields of the manufactured cell products.

4.2. Downstream processing

Besides the pointed advantages of applying Raman spectroscopy
during upstream processing, online monitoring of downstream steps is
equally relevant to ensure that the cellular products retain their func-
tionality throughout the entire manufacturing process. Even though
Raman probes have been adopted in protein purification processes to
ensure product consistency, their application in downstream monitoring
of cell therapy products remains underexplored (Yilmaz et al., 2020). By
providing insights into protein concentration, quality attributes such as
protein aggregation and glycosylation (Goldrick et al., 2020; Wang
et al., 2023; Zhang et al., 2019), early detection of membrane fouling
during filtration (Tang et al., 2020), and structural conformational
changes of proteins in chromatographic processes (Wang et al., 2020),
Raman spectroscopy presents a powerful tool for enhancing the reli-
ability and efficiency of DSP.
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Although downstream processing (DSP) for cell-based therapies in-
cludes several steps such as harvesting cell or cell-derived products,
washing, cell concentration or volume reduction, formulation, and fill
and finish before cryopreservation, only few works have highlighted the
potential of Raman spectroscopy in downstream process monitoring. In
the following sections, we present some studies focused on using Raman
spectroscopy as a non-destructive and fast tool to help identifying cell
purity as well as to improve and determine the impact of cryopreser-
vation methods on cell quality and viability.

4.2.1. Purity

In the cell therapy field, besides ensuring that cells retain high
viability and proliferate to the required levels, manufacturers need to
ensure that they are correctly differentiated and functional before DSP is
initiated. Additionally, it is essential that downstream processing steps
do not affect CQA. As continuous manufacturing is increasingly seen as
the path to generate cell products more efficiently, the frontier between
USP and DSP is becoming tighter. Ideally, the aim of manufacturing safe
cell products, whose purity and function are tightly controlled, should
be pursued during both USP and DSP, a requirement that is even more
imperative in a scenario where cell or cell-secreted products are
continuously harvested. In this regard, Raman spectroscopy can
contribute to identify impurities during cell manufacturing and to select
optimal time points to initiate DSP after cell expansion and
differentiation.

Cell-based therapies require that both ex-vivo isolated and in vitro
expanded cell populations are clearly identified and the potential co-
isolation/co-culture of contaminating and undefined cell types is
detected. Embryonic stem cells (ESC) and human induced pluripotent
stem cells (hiPSC), for instance, are a relevant starting material to
generate specialized cells for promising therapies. However, the pres-
ence of pluripotent stem cells in the final product poses risks, as these
cells can lead to tumorigenesis (Sart et al., 2022). Exploring SRS, Nitta
et al. demonstrated the effectiveness of Raman image-activated cell
sorting to isolate hiPSC at a throughput of approximately 100 events per
second, thereby enhancing purity by removing undesired cell types
without the need for fluorescent labelling (Nitta et al., 2020). While this
technique could be used for downstream characterization (e.g., RNA
sequencing of selected cell populations), Raman-image activated sorting
could also ensure compliance with regulatory requirements as the
presence of undesired cell types is detected. Unlike techniques involving
antibody labelling (magnetic bead isolation or fluorescence-activated
cell sorting), the non-invasive nature of Raman-based sorting mini-
mizes risks associated with traditional methods that can activate or
modify the isolated cells. Furthermore, real-time assessment of distinct
cell populations during DSP steps can significantly extend our under-
standing of the clinical potential of the manufactured cells. This topic
will be discussed further in Section 4.3.

Overall, Raman probes can be very useful to support critical de-
cisions during DSP and to streamline the QC of the manufactured cell
and cell-derived products during the final steps of the manufacturing
workflow.

4.2.2. Cryopreservation

Effective methods of cell cryopreservation allowing their long-term
storage are critical for clinical and commercial applications. However,
some cell types are challenging to be cryopreserved, limiting their off-
the-shelf use. Raman spectroscopy can constitute a useful tool to gain
insight into cells with poor freezing response as Raman signature reflects
changes occurring during and after freezing and thawing protocols.

Low-temperature Raman spectroscopy has been widely applied to
characterize the freezing response of different cell types. Louwagie and
colleagues used this technique to determine the concentration of
dimethyl sulfoxide (DMSO) at low temperatures, inside and outside the
extracellular membrane of Jurkat cells, hiPSC and hiPSC-derived sen-
sory neurons. The authors demonstrated that the concentration of DMSO
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in extracellular channels relatively to DMSO in the intracellular space
(partitioning ratio) is influenced by the cooling rate, cell type, and
DMSO concentrations, with partitioning ratios closer to 1 rendering
higher post-thaw viabilities (Louwagie et al., 2023).

Low-temperature Raman spectroscopy has also been applied to study
the impact of the cooling rate in hiPSC-derived neuronal cells at
different stages of differentiation. The Raman data indicated that the D5
crest benefited from a cooling rate of —1 °C/min, contributing to
minimize the loss of membrane integrity and cell adhesion (Li et al.,
2021).

Although the current literature on Raman spectroscopy applied in
cryopreservation is limited, its potential for developing optimized
cryopreservation protocols tailored to specific cell types and differenti-
ation stages is promising. Future work employing Raman probes could
accelerate this development, providing fast and non-invasive analysis of
cell function and potency following cryopreservation, ultimately
ensuring that cell therapy products meet the stringent demands of
clinical applications.

4.3. Quality control analytics

Despite the fact that Raman spectroscopy data sets have been used to
develop generic Raman models that are independent of cell types
(Mehdizadeh et al., 2015; Webster et al., 2018), predictive models can
also be built to distinguish cell populations and monitor their differen-
tiation state during bioprocessing (Fig. 5). This could be particularly
useful if applied as a process quality control analytics to identify target
cells during the manufacturing workflow or flag the presence of unde-
sirable cell subpopulations in shorter turnaround times. As conventional
methods, such as flow cytometry, are time consuming, they are ill suited
to monitor and actively control cell differentiation. Therefore, the
capability of Raman spectroscopy to monitor cell manufacturing pro-
cesses in real-time facilitates process standardization, minimizing batch-
to-batch variabilities and identifying discrepancies early in the
manufacturing workflow.

4.3.1. Distinguishing cell types and differentiation status

In stem cell culture, whether the goal is to scale-up undifferentiated
progenies or to guide their differentiation towards mature cell pheno-
types (Abecasis et al., 2017; Correia et al., 2018; Cunha et al., 2017;
Gomes-Alves et al., 2016; Serra et al., 2018), PAT tools like Raman
spectroscopy can effectively monitor the cell pluripotency status. Early
studies demonstrated Raman’s ability to detect differentiation of first
murine (Notingher et al., 2004a, 2004b) and later human (Chan et al.,
2009; Chan and Lieu, 2009; Pascut et al., 2011) ESC into a more mature
phenotype based on the intensity of the Raman peak of nucleic acids.
Additionally, Raman spectroscopy allowed to distinguish atrial and
ventricular cardiomyocytes derived from pluripotent stem cells
(Brauchle et al., 2016) and native hESC from reprogrammed hiPSC
(Parrotta et al., 2017). Despite the overall spectral profile being very
similar, distinct Raman features were observed for both cell lines,
particularly regarding the nucleic acid content with a higher amount
being detected in hiPSC. Principal component analysis of Raman spectra
has indicated the closer resemblance between hESC and hiPSC relatively
to the differentiated progeny of hESC (Tan et al., 2012). Ghita and
colleagues have also explored the use of Raman spectroscopy to distin-
guish neural stem cells (NSC)-derived glial cells from their undifferen-
tiated progeny based on their distinct concentration of cytoplasmic
RNA. While RNA could be detected in the cytoplasm of NSC, it was
undetectable in the NSC-derived glial cells (Ghita et al., 2012).

The applicability of Raman spectroscopy in monitoring cell-state
transition in pluripotent cells was also demonstrated in ESC undergo-
ing reprogramming towards neural progenitor cells (Germond et al.,
2020) or by Konorov and colleagues who followed the developmental
trajectory of hESCs to insulin-positive cells throughout a 26-day differ-
entiation protocol (Konorov et al., 2015). The stages of differentiation
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over time were correlated with Raman signatures and characteristic
ratios of Raman bands. In another study that compared four different
label-free techniques, Raman spectroscopy rendered the highest accu-
racy (95 %) when applied to distinguish hESC from 7-day partially
differentiated and fully differentiated hepatocytes (Tsikritsis et al.,
2016). Several research groups have explored label-free Raman spec-
troscopy to identify differentiation states of hiPSC into erythropoietin
(EPO)-producing cells, neurons and cardiomyocytes (Fujita et al., 2024;
Hsu et al., 2020; Ishigaki et al., 2022; Li et al., 2021). Changes in the
pluripotency state of stem cells are frequently associated to changes in
bands of the Raman spectra for RNA and DNA markers, lipids and
glycogen (Hagedorn et al., 2023; Moura et al., 2016; Rangan et al., 2020;
Tan et al., 2012). Remarkably, single cell scRNA-Seq profiles have also
been inferred from Raman images in a mouse iPSC reprogramming
model (Kobayashi-Kirschvink et al., 2021), indicating the importance of
Raman fingerprinting for predicting transcriptome.

Besides pluripotent stem cells, Raman spectra was shown to be a
relevant tool to distinguish different cell types and differentiation status
during the regeneration of nucleus pulposus (NP) tissue, particularly to
distinguish amongst hMSC, differentiated NP cells and chondrocytes
(Ehlicke et al., 2017). Raman has also been applied to monitor MSC
differentiation towards osteogenic differentiation (Azrad et al., 2006;
McManus et al., 2011), into a glial phenotype (Bautista-Gonzdlez et al.,
2023) and to distinguish osteoblasts and adipocytes from their hAT MSC
progeny by an increase in the Raman peak at 960 cm ™ (hydroxyapatite
peak) or 2900 em! (fatty acid peak), respectively (Suhito et al., 2018).
Interestingly, the hydroxyapatite-specific Raman band, indicative of
osteogenic differentiation of AT MSC, was detectable one week earlier
than with the typical osteogenic assessment method of Alizarin Red S
staining.

Since 3D cell culture is often explored to provide an improved
microenvironment for cell differentiation, Raman spectra was evaluated
in 3D hydrogels. Distinct Raman shifts in the range 1370-1390 cm™,
previously assigned to glycosaminoglycans (GAGs) (Bonifacio et al.,
2010), were observed between hMSC and the higher GAG content
containing-chondrocytes and NP cells. Coherent anti-Stokes Raman
scattering (CARS) microscopy has also provided a method to image
mineralisation in osteoblasts and the presence of lipids in adipocytes,
therefore distinguishing both these cell types from adipose tissue-
derived stem cells (Downes et al., 2011).

Presence of fibroblastic contamination in MSC isolated from bone
marrow (BM) has been identified using Raman spectroscopy, showing a
distinctive spectral separation between both cell types when multivar-
iate analysis of the obtained Raman spectra is applied (Pudlas et al.,
2011). Phenotypic differences between human BM MSC and fibroblasts
were postulated to result in differences in their Raman spectra baselines,
attributed to their specific endogenous autofluorescence patterns.
Indeed, and although the intensity of the autofluorescence could
disguise some Raman peaks, distinct cell metabolic activity has been
correlated with the background of the Raman spectra (Lieber and Kab-
eer, 2010). Of notice, the high proliferative ability associated to stem
cells is usually accompanied by a high mitochondrial activity and,
hence, increased autofluorescence (Konig et al., 2011).

Remarkably, several studies in the immunotherapy field have also
shown that markers such as proteins, lipids, nucleic acids and caroten-
oids can be detected by Raman spectroscopy and used to distinguish T
cells from B cells (Borek-Dorosz et al., 2022; Ichimura et al., 2016), to
discriminate T cells from myeloid and epithelial cells (Guliev et al.,
2023), and to reflect the distinguished identity of chemical bonds in
CD4", CD8™ T cells, NK cells and dendritic cells (Chen et al., 2015).
Besides, Raman spectroscopy can also assume a particularly relevant
role in enabling prediction of T cell activation status (Gavgiotaki et al.,
2019; Ichimura et al., 2016) and T cell differentiation, contributing to
monitoring shifts in functional subsets of T cell populations (Pavillon
and Smith, 2023).
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4.3.2. Single cell analysis

Beyond bulk measurements, Raman spectroscopy allows quantifi-
cation of phenotypic diversity at the single cell level. For example, dif-
ferences in the cytosol and nucleus of differentiated neuroblastoma and
adipocyte mouse cell lines were captured at single cell level using
Raman spectra (Ichimura et al., 2014). This technique has also captured
differentiation stages in hepatocytes-derived progenitor like cells (Ma
et al., 2021) and assessed the status of MSC differentiation into osteo-
blasts and adipocytes using Raman mapping, where the low signal-
interference from the cell culture substrate (quartz vs slide glass, sili-
cate glass and tissue culture plate tested in the experimental design)
contributed to provide a reliable and non-destructive method for char-
acterization of stem cell differentiation (Suhito et al., 2018). Remark-
ably, while standard biological assays (colony-forming capacity,
multilineage differentiation potential, phenotype and morphology)
could not distinguish amongst five different BM MSC donors, Raman
spectroscopy identified inter-individual biochemical variations at the
single cell level, suggesting that this PAT tool could be used to differ-
entiate between donors (Kukolj et al., 2022).

Single cell Raman spectroscopy has also been successfully used to
reflect changes in immune cells, being employed to assess macrophage
activation state (Pavillon et al., 2018) and to track differentiation stages
of long-term hematopoietic stem cells (HSC) into short-term HSC ((Ilin
et al., 2015; Pastrana-Otero et al., 2020)) and the committed pop-
ulations of lymphoid (B cells) and myeloid (granulocytes) cells (Ilin
et al., 2015). Using label-free Raman spectroscopy microscale platforms
can play a critical role when working with rare cell populations (such as
the long-term HSC) as they could minimize the number of required cells
for analytical assays while successfully tracking the fate decisions of
individual cells. To this purpose, it is critical to develop Raman-
compatible substrates with minimal background interference
(Pastrana-Otero et al., 2020), as glass slides, for instance, generate a
large Raman signal overlapping with cell-derived signals (Mikoliunaite
et al., 2015).

In addition to unveiling cellular phenotypic characteristics, Raman
has also been applied to identify the formation of ice at the single cell
level during cryopreservation (Yu et al., 2021).

4.4. Raman spectroscopy applied to cell-derived products

4.4.1. Characterization of EVs secreted by distinct cell types

The therapeutic properties of cells are also largely mediated by their
paracrine function, including by secreted EVs that act as signalling
agents in intercellular communication. The capability of EVs to deliver
proteins, nucleic acids and lipids has been explored in therapeutic ap-
plications, such as cardiac regeneration (Louro et al., 2024), immuno-
therapies (Besse et al., 2016; Katakowski and Chopp, 2016) and wound
healing (Garima Sharma et al., 2023; Lu et al., 2022).

The potency of cell-derived EVs depends on the cell source, isolation
method and cell culture conditions. These parameters are vital for un-
derstanding the complexity of EV preparations and overcoming barriers
to the regulatory approval of cell-derived therapeutics. An effective EV
characterization toolbox should include analytical techniques to assess
the biochemical composition and cargo of EV batches, in addition to
quantification of total particle numbers and protein concentration.
Raman fingerprint allows biochemical information on proteins (1.650
em™! for amide D), lipids (2700-3200 cm_l), and nucleic acids
(720-820 cm 1) to be obtained. Therefore, together with characteriza-
tion of the size and concentration of EVs, quantification of specific
protein, lipid and nucleic acid markers by Raman fingerprint has been
proposed as a quality control of cell-derived conditioned medium
(Giannasi et al., 2021).

The ability of Raman spectroscopy to detect differences in protein-to-
lipid and nucleic acids-to-lipid ratio in stem cell-derived EV samples has
been demonstrated by Gualerzi and colleagues (Gualerzi et al., 2019).
Raman fingerprint revealed differences amongst distinct EV batches
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following a 5 min acquisition protocol, quickly providing insights on EV
composition, a critical parameter to help predicting EV functionality.
Higher purity of EVs, indicated by well-defined peaks and reduced
fluorescence background noise, was observed in Size Exclusion Chro-
matography (SEC)-isolated EVs in comparison to ultra centrifugation
(UC)-processed samples (Gualerzi et al., 2019). A classification model
built based on Raman data achieved 97 % accuracy in distinguishing
non-EV from EV samples. Of notice, purer EV samples, obtained through
sequential UC (2 x UC) procedures or a SEC protocol, exhibited distinct
biochemical features detectable by Raman spectroscopy. In contrast, 1 x
UC-isolated EVs displayed masked signatures due to co-isolated factors
(Gualerzi et al., 2019). Nonetheless, the same study has indicated that
not all EV preparations are likely to benefit from Raman spectroscopy
analysis. For instance, EVs isolated using commercial precipitation kits
containing polyethylene glycol (PEG) or those subjected to sucrose- or
iodixanol density gradient purification often show masked fingerprints
due to co-isolation of these compounds.

Distinct Raman fingerprints have also been attributed to EVs secreted
by BM-, AT-derived MSC and human dermal fibroblasts. Particularly, the
contribution of components of the lipid membrane (sphingomyelins,
gangliosides and phosphatidylcholines) to the Raman spectra were
identified (Gualerzi et al., 2017). Importantly, not only the composition,
but also the purity and reproducibility of MSC-derived EVs preparations
have been assessed by Raman spectroscopy (Carlomagno et al., 2021;
Giannasi et al., 2021; Gualerzi et al., 2017).

Overall, Raman spectroscopy can be useful to find EV fingerprints
and identify the presence of co-isolates while ensuring the integrity of
the samples.

4.4.2. Quantification of viral titers

Lentiviruses, commonly produced using HEK293 cells, are essential
in several cell-based therapies, particularly immunotherapies, due to
their capacity to deliver genetic information for reprogramming cells to
target specific antigens (e.g., to manufacture CAR-T cells). Accurately
determining lentiviral titers during manufacturing is key for establishing
adequate doses of effectively genetically modified cells. Although
analytical methods such as ELISA and PCR are successful in their reliable
quantification of virus titers, they are time consuming. Alternatively,
Raman spectroscopy can be used to quickly measure viral titer (Morder
et al., 2022). To enhance the Raman signal, SERS, which can also
distinguish between adenovirus, HIV and rhinovirus particles based on
their characteristic nucleic acid and amino acids fingerprints
(Shanmukh et al., 2006), successfully quantified GFP-containing virus
particles in formulation media. Raman spectroscopy has also demon-
strated its suitability to monitor the production of rabies Virus-Like
Particles (VLP) using a baculovirus/insect cell system. However,
further optimization is required as the model demonstrated better pre-
diction in fresh samples than in cryopreserved VLPs (Guardalini et al.,
2024).

5. The role of Raman spectroscopy in bioprocess scale-up and
intensification

Bioreactor-supported cultures are amenable to large-scale
manufacturing of cell therapies. Unlike static cultures, which are
limited in their ability to apply quality-driven approaches to promote
bioprocess intensification, bioreactors offer tighter control over process
parameters, thus contributing to increased process efficiency. Raman
probes can withstand harsh clean-in-place (CIP) and sterilization-in-
place (SIP) procedures and are compatible with bioreactors made of
glass, stainless steel and single-use materials. However, the choice of
Raman spectrometer and probe needs to align with the bioreactor design
as well as the physical constraints imposed by CIP/SIP protocols. The
optical interfaces and probe materials must ensure long-term durability
without signal degradation due to harsh sterilization or cleaning
chemicals.
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Potential role of Raman spectroscopy across different steps of cell therapy

manufacturing.

Bioprocess step

Role of Raman
spectroscopy in cell
therapies

Limitations &
considerations

USP and DSP - Cell
isolation, expansion
and/or enrichment

USP and DSP - Cell
activation, expansion
or differentiation

DSP - cryopreservation

Validation that cell
isolation, expansion and/
or enrichment procedures
result in cultures at the
required level of purity
(Raman activated cell
sorting (RACS) and Raman
optical tweezers could be
relevant).

Accelerate process
development,
contributing, for instance,
to identify optimal timing
to stimulate immune cells,
trigger differentiation of
iPSC into target cell
populations or initiate
distinct downstream
processing steps at key
time points.

Allow adaptation to
process variability
introduced, for instance,
by distinct donors or
culture conditions (e.g.,
minimizing differences in
raw material).

Validate the quality of
long-term stored cell
products.

Need to ensure that Raman
spectroscopy detects even
low contamination levels
of undesired cell
populations.

To constitute an added
advantage, Raman
spectroscopy needs to be
able to assess cell identity
and potency with the same
accuracy as currently
available methods.

Given the weak intensity
of spontaneous Raman
scattering, RACS low
detection speed and
sorting throughput can
limit its application to low
volume samples.
Additionally, the
application of RACS in
sterile, in-process
environments such as
bioreactors is technically
challenging and needs to
ensure that the sorting
process does not affect cell
functionality or ability to
differentiate (iPSC, MSC,
L.

The lack of standardized
protocols and limited
regulatory guidelines
hinder the validation of
cell sorting supported by
Raman tools in GMP
settings.

As the intensity of Raman
signal is dependent on cell
composition, some cell
types might be difficult to
accurately identify and/or
more prone to laser-
induced damage.

A large library of Raman
spectra might be required
to train the model,
requiring significant
investment in data
collection and analytical
tools.

Need to establish a
correlation between
donor/reagent
characteristics and quality
of the drug product.
Raman spectroscopy may
lack the clinical data
needed to gain acceptance
within regulatory bodies.
There is still a limited
number of studies using
Raman spectroscopy to

(continued on next page)
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Table 2 (continued)

Bioprocess step

Role of Raman
spectroscopy in cell
therapies

Limitations &
considerations

DSP - product
formulation

QC

Ensure that formulation of
cell or cell-derived
products do not impact
viability and function.

Accelerate batch release by
providing real-time and
non-destructive analysis of
cell and cell-derived
products.

Decrease manufacturing
costs by enabling fast and
non-destructive cell
analysis.

evaluate the quality of
cryopreserved or
formulated cell products,
correlating Raman
signatures with cell
potency after thawing.

Raman spectroscopy needs
to be sensitive enough to
detect changes of Raman
signatures caused by
product formulation.

To assess the potency of
cell and cell-derived
products, a large library of
spectral signatures might
be required to cover the
full range of potential
product variability.
Ensuring that Raman
spectroscopy provides the
same level of detailed
information of currently

implemented potency
assays would be essential
for regulatory approval.

Moreover, when integrating Raman spectrometers into bioprocess
workflows, it is essential to ensure that the optical properties of the
spectrometer, such as probe design and fiber-optic transmission (Pence
etal., 2021), are compatible with the scale of the bioreactor. In addition,
the spectrometer must provide reliable performance across various
scales, from laboratory scale systems to large scale manufacturing bio-
reactors. It should maintain signal integrity despite variations in optical
path lengths or background noise, which can change with process scale
or analyte concentration as the bioprocess intensifies.

Several studies have explored Raman spectroscopy to monitor and
optimize cell culture in dynamic platforms, being the STB the most
commonly used bioreactor type (Table 1). If coupled with Raman
spectroscopy’s ability to continuously monitor bioreactor cultures, this
PAT tool could control cell culture conditions to account for cell source
variability and the complex biological processes that guide cell expan-
sion, differentiation and secretion of cell derived products. Thus, Raman
spectroscopy has the potential to be a valuable tool for bioprocess
intensification.

Building predictive Raman models requires monitoring multiple runs
with random variations or, ideally, planning process variations within a
larger design space. Raman spectroscopy has been explored in small-
scale bioreactors, such as the ambr®15 (Rowland-Jones et al., 2021)
or the ambr®250 (Graf et al., 2022b; Sibley et al., 2020), which mimic
cell culture at manufacturing scale. These small-scale systems are cost-
effective tools for expanding the design space and developing Raman
models. However, the reduced working volume of these small-scale
bioreactors limits the number of offline measurements that can be per-
formed, a factor that must be considered when developing Raman
models.

Sibley and colleagues have described at-line integration of Raman
spectroscopy in ambr®250 bioreactors to build a glucose model with
data collected from 16 minibioreactors using a CHO cell line. Despite
demonstrating the applicability of Raman tools at laboratory scale
(Sibley et al., 2020), future efforts need to focus on demonstrating the
scalability of the ambr®250-derived Raman models to manufacturing
scale.

Raman spectroscopy has been used for real-time prediction and
control of glucose concentration in larger-scale bioreactor platforms
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(Abu-Absi et al., 2011; Berry et al., 2015; Craven et al., 2014; Kozma
etal., 2017). At the 500 L scale, Raman spectra has been correlated with
viable and total cell density (TCD) as well as several metabolites
(glucose, glutamine, glutamate, lactate, ammonium) using PLS model-
ling (Abu-Absi et al., 2011). Importantly, a study involving cell culture
in production scales spanning bench (3 L) to pilot (200L) and clinical
manufacturing (2000L) demonstrated the scalability of Raman-based
models (Berry et al., 2015). However, some limitations were observed,
such as differences in predicted concentrations of glutamate and
ammonia across scales. Webster et al., for instance, developed good
predictive models for glucose, lactate, ammonium and cell concentra-
tion across 5 L and 10 L scales but the predictive model was unable to
accurately monitor changes in glutamate and product (mAbs) concen-
tration during cell culture (Webster et al., 2018). The authors have
pointed out that incomplete datasets from earlier culture time points
used for model development could limit model transferability across
scales. This highlights the importance of building comprehensive models
with adequate design-space coverage to ensure better analyte concen-
tration predictions when using Raman datasets for large-scale bio-
processes (Fig. 4).

In addition to predictive modelling, Raman spectroscopy could be a
key player in establishing tightly controlled cell processes. Although
Raman spectroscopy has primarily been applied to suspension cell cul-
tures, future studies are expected to focus on adherent cultures sup-
ported by microcarriers. Raman spectroscopy’s capability to monitor
multiple process variables simultaneously enables more sophisticated
feedback control strategies, including optimized feeding in continuous
bioprocesses (Matthews et al., 2016), that can benefit from fine-tuning
perfusion rates, further promoting bioprocess automation and intensi-
fication in the cell therapy field.

The huge potential for integration of Raman-based tools in scalable
bioprocesses is closely related to their ability to support continuous
manufacturing, favouring process automation and, ultimately, process
intensification. Removing sample requirements and minimizing oper-
ator interventions to evaluate CQAs and guide process decisions can
streamline a predictive manufacture approach. However, since Raman
scattering is a low probability process, sensitive detection systems are
required. This, in turn, increases the chances that signals originated
outside the bioprocess (e.g., light impurities affecting typically used
transparent glass and plastic containers in distinct bioprocessing steps)
interferes with the Raman measurement. Moreover, as bioprocesses
transition to continuous manufacturing, wear of the spectrometer
components or small displacements during longer bioprocesses can
impact the collected Raman spectra, resulting in false Raman peaks.

Additionally, regulatory agencies such as the FDA or EMA require
manufacturers to demonstrate that process monitoring techniques can
detect impurities at low levels. Since analyte concentrations below mg/
mL are generally difficult to accurately detect in aqueous solutions
(unless techniques such as SERS, for instance, are applied) (Thyr and
Edvinsson, 2023), the use of Raman spectrometers as a primary moni-
toring tool is unlikely to be implemented in biomanufacturing until
sensitivity limitations are resolved. Alternative methods (e.g., ELISA,
qPCR, HPLC) may be preferred to detect low-level contaminants, slow-
ing the adoption of Raman under GMP guidelines. Integrating Raman as
a real-time PAT tool in a GMP environment is complex as it would
involve extensive testing to ensure that variability in cell cultures and
sensitivity limitations can be captured across multiple batches and
operating conditions. Importantly, Raman spectroscopy generates
complex datasets that, if Raman is applied as a real-time PAT tool to
monitor continuous bioprocesses, would require robust data manage-
ment systems to handle the large number of spectral data. Processing
such volume of data can be challenging, particularly as GMP regulations
require integrity, traceability and security to be maintained over time
and that any changes to data (e.g., data smoothing, baseline correction)
are recorded with audit trail.

Overall, and although some limitations still need to be overcome,
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Raman spectroscopy is expected to play a critical role at distinct stages
of production of next-generation cell therapies (Table 2).

6. Conclusions and future perspectives

Although Raman spectroscopy has been widely implemented in
protein production workflows, the cell therapy industry has yet to adopt
it on a routine basis. Recent studies have highlighted the advantages of
integrating Raman tools in both upstream and downstream bio-
processes, enabling the control of CPPs by automating feedback control
loops and facilitating continuous real-time batch release. Additionally,
fulfilling the need for non-destructive phenotypic cell assays, Raman
spectroscopy variants such as Raman microspectroscopy offer the
chance to capture molecular features that reflect the biological pheno-
type of distinct cell populations. Besides, the amenability of Raman
probes to be integrated in cell therapy processes at scale, allow Raman
spectroscopy to in-line monitor CQAs, therefore replacing laborious off-
line analytical techniques in a rapidly and non-invasively manner.

As the field moves from applying Raman sensors to increase process
understanding towards their use for process control, several process
shortcomings in cell therapy applications could be potentially over-
come. Controlled feed additions informed upon Raman data can increase
productivity and address challenges associated with batch-to-batch
variability, optimizing the use of raw materials and adjusting to autol-
ogous manufacturing processes. Identification earlier in culture of batch
failure, aid in selection of timings of key process decisions and circum-
venting the need for time-consuming analytical methods that are
implemented for QC and batch release are examples where Raman
spectroscopy can thrive as a key in-line PAT to control the manufacture
of advanced therapy medicinal products.
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