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Abstract 

This thesis investigates biases in Large Language Models (LLMs) by analyzing their 

responses to knowledge- and reasoning-based prompts, evaluating bias evolution across 

selected models. Persistent biases in knowledge-based prompts are linked to skewed data and 

hallucinations, while reasoning-based prompts reveal context-dependent systemic inequities. 

Larger text-to-text models often enhance accuracy but may amplify biases, whereas targeted 

interventions in text-to-image models show modest bias reductions, reflecting industry efforts 

to improve representation. The trade-off analysis emphasizes domain-specific LLM 

deployment, balancing fairness, reliability, and utility for equitable and effective AI 

applications. Focusing on trust-utility trade-offs, this study examines LLM performance 

across Truthfulness, Safety, Fairness, Robustness, Privacy, and Machine Ethics. The research 

uncovers synergies and conflicts among these metrics. Results identify Truthfulness as key to 

utility, revealing significant trade-offs in fairness, safety, and privacy dimensions. The study 

highlights the need for transparent trade-off management, offering insights to develop ethical, 

reliable, and high-performing LLMs for diverse applications. 
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2 Introduction 

Large Language Models (LLMs) have emerged as transformative tools in artificial 

intelligence, driving remarkable advancements in natural language processing and generation. 

Their deployment in applications from decision support to creative content generation have 

revolutionized industries and everyday life. However, as their influence grows, concerns about 

their inherent biases arise. Gender, racial, and cultural biases embedded in these models can 

perpetuate societal inequalities and stereotypes, challenging their fairness and raising ethical 

questions about their implementation. Addressing these biases is not just a matter of technical 

refinement but a pressing societal and ethical imperative. 

The problem of bias in LLMs is deeply complex for several reasons. On one hand, the 

biases originating from training data and algorithmic design can lead to outputs that reinforce 

harmful stereotypes or marginalize perspectives, undermining fairness and inclusivity. On the 

other hand, mitigating these biases often entails trade-offs that impact key characteristics of 

LLMs and their utility. The intricate interplay between LLM characteristics, such as fairness, 

truthfulness, safety, privacy, and model utility remain poorly understood, presenting both 

theoretical and practical challenges for researchers and developers. 

This research addresses these challenges through a dual focus. The first goal is the 

replication and extension of previous bias studies, which builds on four investigations into 

biases in LLMs. By replicating and extending these studies to include open-source models, this 

research examines how biases have evolved over time and across architectures, offering a 

longitudinal perspective on bias progression. The second aim builds on this foundation by 

exploring the broader implications of bias presence within the context of other LLM 

characteristics.  

The thesis begins with a literature review, which examines foundational work on biases in 

LLMs. Following this, the framework of replication and trade-off study establishes the 
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conceptual approach underpinning the research. The following methodology details the 

analytical set up needed to be employed and discusses the models that were investigated. The 

first analytical part rigorously replicates and extends prior studies on biases in LLMs. This 

investigation provides the empirical groundwork for the subsequent analysis, which expands 

the focus to a broader evaluation of key performance areas and their relationship with model 

utility. 

By linking the evolution of biases to the trade-offs inherent in dimensions such as fairness, 

safety, and privacy, the thesis bridges the gap between viewing bias as an isolated issue and 

understanding it as part of the broader framework of LLM trustworthiness. This integrated 

approach ensures that insights into existing biases are directly linked to their implications for 

overall model performance and utility, offering a cohesive perspective on the ethical and 

functional development of LLMs.  
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3 Literature Review 

This literature review explores the multifaceted issue of biases in both human contexts 

and machine learning systems, with a particular focus on large language models. 

3.1 Biases 

Bias is a systematic inclination or prejudice for or against a person, group, idea, or 

thing, often in a way that is considered unfair (Oxford University Press 2023). It is a 

particularly relevant topic in research, where attention to such errors is fundamental to prevent 

flawed results. Hundreds of different biases were found to influence research and personal 

relationships. The research mainly focuses on the following kinds: selection Bias, perception 

bias, gender bias, ageism, and racial bias (refer to Glossary for further definition). 

3.1.1 Perception Bias 

“Perception bias occurs when individuals' expectations, or "prior beliefs," influence 

how they interpret information” (MIT News 2019). While this bias helps us process vast 

amounts of information, it often leads to distorted perceptions of reality, compromising the 

accuracy and reliability of research findings. For instance, participants may overestimate or 

underestimate their behaviors based on perceived social norms, resulting in self-reports that 

fail to reflect actual behaviors (Podsakoff et al. 2003). 

3.1.2 Gender Bias 

Gender bias refers to a systematic, erroneous approach in scientific and societal 

contexts that misrepresents men and women as either too similar or excessively different, 

rather than as equals (Mind the Graph 2023; BMJ 2007). This bias arises from deeply 

ingrained cultural, institutional, and cognitive factors, and it manifests in various stages of 

research and decision-making. It influences the scope, methodology, and outcomes of 

scientific inquiry by shaping the questions asked, the populations studied, and the 

interpretation of findings. For example, research questions may inadvertently reflect gender 
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stereotypes, while population sampling may underrepresent women or men, particularly in 

fields like medicine or economics. 

Such distortions often result in an incomplete understanding of human biology, 

behavior, and health. In medical research, for instance, the historical exclusion of women 

from clinical trials has led to treatments and dosages that are less effective, or even harmful, 

for female patients. This underrepresentation not only limits the generalizability of findings 

but also reinforces gender disparities in fields where fairness and inclusivity are critical 

(Verdonk et al. 2009; Holdcroft 2007). 

3.1.3 Racial Bias 

Racial bias in research refers to distortions caused by systemic, institutional, 

interpersonal, or individual prejudices, both explicit and implicit, against individuals or 

groups based on social constructs of race or ethnicity (Catalog of Bias 2023). This bias can 

affect various stages of research, including the planning, methods, interpretation, and 

application of findings. For instance, the underrepresentation of racial and ethnic minorities in 

clinical trials often results in findings that cannot be generalized to diverse populations (Chen 

et al. 2021). Such biases undermine the fairness, accuracy, and applicability of scientific 

results and perpetuate disparities in health outcomes and other fields (Murthy et al. 2004). 

3.2 Machine Learning 

“Machine learning (ML) is a branch of computer science that focuses on using data and 

algorithms to imitate the way humans learn, gradually improving its accuracy” (TechTarget 

2023). Nowadays, models are being deployed in all kinds of industries and applications, from 

healthcare and academic research to dynamic pricing models, transportation, and financial 

markets. The machine learning space is populated by several branches, with different scopes 

and methodologies (Datascientest 2023). 
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Branch Type of Data Use Case 

Supervised Learning Labelled Regression-Classification 

Unsupervised Learning Unlabelled Clustering 

Semi-Supervised Learning Labelled-Unlabelled Web Content Classification 

Reinforcement Learning Feedback Marketing-Advertising 

Deep Learning Labelled Image Recognition 

Table 1: Machine Learning Branches 

3.3 LLMs 

LLMs are advanced natural language processing systems designed to understand, 

generate, and manipulate human-like text. These models have revolutionized natural language 

processing and have found applications across various domains. 

3.3.1 Biases in Algorithms & Machine Learning 

Algorithms and machine learning models are particularly susceptible to perpetuating 

and amplifying human biases, reflecting historical inequities embedded in their training data, 

labeling processes, and algorithmic designs (Jain et al. 2022). These biases often emerge from 

over or underrepresentation of specific groups in the training datasets, inconsistent data 

labeling, or unconscious cognitive biases of developers during model creation (Kordzadeh 

and Ghasemaghaei 2021). LLMs amplify this issue due to their reliance on massive, human-

generated text datasets (IBM 2023). Demographic, cultural, and linguistic biases are common, 

with LLMs frequently favoring dominant cultural narratives, stereotyping certain groups, and 

performing better in certain languages or dialects (University of Washington Information 

School 2021). Literature suggests that while LLMs have achieved significant performance 
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improvements over time, their evolution has not consistently reduced bias (Gallegos et al. 

2024). 

3.3.2 Biases in LLMs Over Time 

While LLMs have shown impressive improvements in performance, the trade-off with 

bias reduction is not always straightforward (IBM 2023). Some studies suggest that as models 

become more powerful, they may amplify certain biases (Kordzadeh and Ghasemaghaei 

2021). While targeted debiasing techniques have demonstrated potential in reducing biases 

without drastically impacting overall performance, the growing power of LLMs introduces 

increasing concerns about fairness. As LLMs become more capable, their perceived 

trustworthiness and resilience in society also increase, making biases within these systems 

more problematic. Recent research underscores this concern by highlighting the trade-offs 

between fairness and performance. For example, Zhang et al. (2024) investigate the fairness-

accuracy trade-off in LLMs, showing that achieving a balance remains a significant challenge 

as models scale in complexity and application scope. Similary, Wang et al. (2021) analyze the 

fairness-accuracy discrepancy in machine learning systems, emphasizing how improved 

accuracy can sometimes come at the expense of fairness. This tension between performance 

and fairness underlines the need for deliberate and transparent efforts to address biases while 

maintaining trust in these powerful systems. 

3.3.3 Identification & Mitigation of Biases in LLMs 

The identification and mitigation of biases in LLMs require systematic approaches that 

span the entire lifecycle of model development. Identifying biases involves analyzing model 

behavior through specialized tools and evaluation techniques (Zhang et al. 2024), while 

mitigation focuses on improving fairness and reducing disparities in outputs (Wang and 

Russakovsky 2023). A comprehensive approach also incorporates ethical AI principles, 

stakeholder involvement, regular audits, and transparency in model development (Jain et al. 
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2022; Caton and Hass, 2020). Despite these efforts, fully eliminating bias remains a complex 

and evolving challenge as AI systems advance (Kordzadeh and Ghasemaghaei 2021). 
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4 Framework 

The primary objective of the study is to replicate four papers that investigate biases in 

LLMs while furthering their reach with a trade-off analysis, studying codependences between 

models’ utility and six core metrics. Beyond replication, this work introduces an additional 

layer of analysis by examining biases across a diverse range of open-source models spanning 

various timeframes. This temporal perspective enables an investigation of how biases evolve 

with advancements in model architecture, training data, and deployment strategies. This study 

evaluates whether these biases become more pronounced with the introduction of newer and 

more sophisticated models, providing critical insights into the development and fairness of 

models accessible to smaller organizations and academic researchers. 

While the scope is constrained by limitations in time, budget, and manpower, further 

explained in section 13, the study maintains an adherence to the original methodologies 

wherever feasible. 

4.1 Replication of 4 Papers 

While each paper explores a unique domain, they share a common focus on evaluating 

fairness and representational disparities in AI outputs using reproducible methodologies. 

Gender Bias in LLM Factuality (LLMs for Gender Disparities in Notable Persons): 

This study analyzes gender-based biases in factual accuracy, hallucination rates, and 

declination rates when LLMs respond to prompts about notable individuals. The original 

work focused on proprietary models like GPT-3.5 and GPT-4, revealing significant gender 

disparities in responses. 

Representation Bias in Generative AI (Bias in Generative AI Images): This paper 

examines systematic gender and racial biases in text-to-image generative models, highlighting 

disparities in representation and emotional depictions of different demographic groups. 
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Implicit Bias in Financial Advice (Bias in Financial Advice in LLMs): This study 

investigates implicit gender biases in financial advisory contexts, identifying differences in 

tone, complexity, and regulatory focus based on gendered prompts. 

Demographic Bias in Investment Preferences (Bias in Investment Preferences): The 

original research evaluates whether AI-generated investment advice reflects demographic 

biases, focusing on gender, income, and age.  

4.2 Trade-off Analysis Framework 

The trade-off analysis, as an extension to the replication of bias studies, investigates the 

complex interdependencies between key characteristics of LLMs their overall utility, aiming 

to uncover synergies and trade-offs that inform ethical and practical advancements in model 

design. This analysis builds on a structured methodology designed to evaluate the six core 

performance dimensions—fairness, truthfulness, robustness, safety, machine ethics, and 

privacy—and their collective impact on a model's utility.  



 15 

5 Methodology 

This chapter outlines the methodological framework employed in this study, detailing the 

processes of prompt design, technical setup, model selection, and data generation. By 

combining systematic prompt engineering, diverse model integration, and robust data 

processing techniques, the methodology ensures a comprehensive evaluation of biases in both 

text-to-text and text-to-image systems. 

5.1 Prompts 

Prompts act as a structured mechanism to translate human queries into actionable inputs 

for pre-trained language models. They serve as the foundational link between human intent 

and machine comprehension, enabling generative AI to produce specific and contextually 

appropriate outputs. By doing so, prompts bridge the gap between abstract user intentions and 

the structured, rule-based processes that govern AI systems. 

A well-designed prompt clarifies the scope, tone, or detail of the desired response, 

improving the AI's ability to generate accurate and meaningful outputs (Hwang et al. 2023). 

This makes prompt design or prompt engineering a sophisticated practice that combines 

technical expertise with a user-centered approach to design (Zamfirescu-Pereira et al. 2023).  

However, the same characteristics that make prompts so powerful also render them 

potentially dangerous. Prompts are not neutral inputs; their structure and phrasing 

significantly influence the biases, reliability, and fairness of AI outputs. They can 

inadvertently reflect and amplify societal stereotypes embedded in training data, raising 

concerns about the ethical deployment of AI. These risks are particularly pronounced in 

domains like education, healthcare and financial advisers, where biased outputs can have far 

reaching consequences. For instance, studies have shown that prompts related to professions, 

socioeconomic status, or gender can lead to systematic biases in responses (Zhou et al. 2024). 

That is why, intersectional biases present in prompts which combine multiple categories such 
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as race, gender, and socioeconomic status, can produce discriminatory outputs, as seen in 

tasks requiring descriptions of successful professionals, which frequently favor young, white 

males (Fracassi and Hristova 2024). For instance, when comparing “Who is the CEO of the 

company: [John, a middle-aged white man] or [Aisha, a young Black woman]?”, responses 

frequently favored “John,” demonstrating biases related to race, age, and gender intersections 

(Zhou et al. 2024). These findings underscore the importance of carefully designing prompts 

that consider both linguistic subtleties and broader societal implications and highlight the 

need for ethical prompt engineering practices that are not only aware of these risks but also 

actively mitigate them.  

Consequently, throughout this research, this study differentiates between two types of 

prompts: “knowledge-based” prompts and “reasoning-based” prompts. This distinction arises 

as different prompts are being used in order to scale and analyze the performance of models 

of altering architecture and age. A models ability to output factual information is therefore 

being tested by using knowledge-based prompts, which aim to derive factual truths.  In 

contrast, reasoning-based prompts evaluate a model's capacity to synthesize information, draw 

logical inferences, and apply problem-solving skills. These outputs are not subject to factual 

truths, making them relevant to analyze underlying biases.  

This differentiation is critical when measuring bias, as hallucinations—instances where 

the model generates false or fabricated content—tend to occur when prompting knowledge-

based prompts. These hallucinations can exacerbate biases if the model's database is not 

trained to answer certain specific questions. 

5.2 Technical Setup 

The technical setup builds upon the methodologies established in the foundational studies 

of this paper, expanding them to analyze more than ten models in parallel. This approach 
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involves a systematic pipeline that progresses through prompt engineering, model integration 

and execution, iteration tracking, and data post-processing: 

 

Figure 1: Pipeline of Data Gathering 

The pipeline, as shown in Figure 1, begins by using existing prompt structures from the 

original studies. A standard base prompt might read: “I’m a 30-year-old {profession}, making 

{income_level} per year. I have $150,000 available. Where would you recommend me to 

invest?” (Smith et al. 2022). In this example, the placeholders `{profession}` and 

`{income_level}` are iterated over to produce a diverse range of prompts. These variables can 

encompass attributes such as age, geographic location, or financial goals, and in some studies, 

the number of variables exceeds two. This iterative process generates thousands of prompts, 

ensuring comprehensive coverage of the parameter space and enabling robust analysis (Doe et 

al. 2023). 

Prompt generation and iteration tracking were collaboratively managed using Git for 

version control and Visual Studio Code as the development environment. These tools 

facilitated synchronized collaboration among team members, ensuring a consistent and 

reproducible prompt engineering process. Git repositories tracked changes in how base 

prompts and iterations were set up, aligning with established best practices in software 

development (Loeliger and McCullough 2012). 
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Once prompts were generated, the workflow transitioned to model execution using 

Google Colab. To optimize resource utilization, Google Colab's free tier was utilized, which 

provided access to NVIDIA T4 GPUs. These GPUs, part of the Turing architecture, offer 

significant performance advantages for inference tasks and are particularly well-suited for 

large language model execution (NVIDIA, n.d.). By leveraging Google Colab’s free 

resources, high-throughput model interactions were conducted without incurring additional 

computational costs. Each team member operated separate Colab instances, effectively 

creating a distributed computational environment that maximized the utilization of available 

free GPUs.  

Model integration was achieved through two primary pathways: the Ollama API and 

the Hugging Face API. Ollama provided a dedicated environment for querying supported 

models, ensuring efficient model querying and precise version control. For models not 

accessible via Ollama, the Hugging Face API was employed, allowing access to a broader 

range of proprietary and open-source models. This dual-integration strategy ensured 

flexibility in model selection and compatibility within the analytical pipeline, which you can 

derive from here. 

To ensure efficiency, reproducibility and stability during prompt execution, an 

iteration tracking system was implemented. This mechanism verified the progress of each 

prompt type and minimized redundancy by systematically checking which prompts had been 

completed. The tracker facilitated workflow efficiency by reducing computational overhead, 

aligning with best practices in computational reproducibility (Chen et al. 2020). 

Following model execution, the collected data was processed into structured datasets for 

analysis. This step adhered to methodologies established in prior research, deliberately 

retaining all model outputs without applying validation rules that might exclude incomplete or 

seemingly invalid responses. By doing so, the dataset reflected the full spectrum of model 

https://colab.research.google.com/drive/1JHHr-prtwtilAGmFqKt_G1-cuBfe7pbj?usp=sharing#scrollTo=CPoN3hMx4EyA
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behaviors, enabling a comprehensive and unbiased analysis of large language model 

performance. 

5.3 Model Selection & Data Generation  

In selecting appropriate models for this research on bias in text-to-image and text-to-text 

models, several key criteria were established to ensure both feasibility and relevance. The 

primary considerations included accessibility, computational efficiency, and recency. Models 

were required to be freely available, ensuring they could be utilized without licensing 

restrictions or significant financial investment. Additionally, computational demands were a 

crucial factor, with a preference for models that could be run on personal laptops without the 

need for a dedicated GPU. The selection process was also focused on models released 

between 2022 and 2024, as this period marks a significant evolution in the technology, with 

text-to-image models gaining widespread adoption in popular culture around 2022, ensuring a 

balanced inclusion of both older and newer models without emphasis on older or later models. 

Models that fit within this timeframe were considered to capture the advancements in both 

architecture and training techniques, which are essential for understanding how bias manifests 

in more recent systems. Additionally, models with open-source availability were prioritized, 

as they allow for transparency and the ability to replicate and evaluate results. 

5.3.1 Model selection for Study Replication Text-to-Image 

By considering these factors, the selected models (see Table 2 for model details) offer a 

comprehensive range of capabilities that are suitable for examining both the technical and 

ethical dimensions of bias in generative AI systems. 

Model Name Release Date Organization Size Licensing 

DALL-E 2 Apr 2022 Open AI 27M Closed Source 
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Stable Diffusion 1.4  Aug 2022  Open AI 890M Open Source 

Stable Diffusion 1.5  Oct 2022 Stability AI 890M Open Source 

MidJourney 4  Nov 2022 Midjourney, Inc. Undisclosed Closed Source 

Stable Diffusion 2.1 Dec 2022 Stability AI 2B Open Source 

Stable Diffusion XL Jul 2023 Stability AI 3.5B Open Source 

DALL-E 3 Oct 2023 Open AI 3.5B Closed Source 

MidJourney 6.1 Dec 2023 Midjourney, Inc. Undisclosed Closed Source 

Flux.1-dev Aug 2024 

Black Forest 

Labs 

12B Open Source 

Stable Diffusion 3.5 Oct 2024 Stability AI 8.1B Open Source 

Table 2: Text-to-Image Models 

The models selected for testing represent a range of capabilities, release periods, and 

architectures, offering insight into the evolution of text-to-image generation and potential 

biases. DALL-E 2, released in April 2022, prioritizes efficiency with lower memory usage 

and faster load times but compromises on image quality. Stable Diffusion 1.4 and 1.5, both 

released in 2022, were trained on extensive datasets and implemented techniques such as 

classifier-free guidance to enhance image generation. However, these models struggle with 

text rendering and exhibit biases favoring Western and white-centric imagery. MidJourney 

v4, a model optimized for artistic and stylized outputs, and Stable Diffusion v2.1, which 

filtered unsafe content, demonstrate a focus on refining outputs but continue to face 

challenges in photorealism and compositional complexity. 
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More recent models illustrate advancements in image quality and performance. Stable 

Diffusion XL, released in mid-2023, incorporates a two-stage process to improve resolution 

and detail, though issues with human representations and legible text persist. DALL-E 3 and 

Stable Diffusion 3.5, launched in late 2023 and 2024 respectively, adopt innovative 

techniques such as LoRA fine-tuning and Multimodal Diffusion Transformer architectures to 

enhance detail and safety. Flux.1-dev, debuting in 2024, leverages rectified flow transformers 

and guidance distillation to deliver high-quality outputs efficiently. While these newer models 

demonstrate marked improvements in prompt adherence and intricate rendering, they also 

reflect biases inherent in their training datasets, highlighting the persistent challenges of 

addressing societal and cultural skew in generative models. 

5.3.2 Model selection for Study Replication Text-to-Text 

Following the goal of the study for text-to-text models, older and smaller models than 

the one used in the original papers were deployed, thus focusing on identifying and 

understanding bias magnitude trends across several years and different architectures. The 

choice of models was not simply guided by limitations or the necessity to focus on open-

source and older models. Working with heterogeneous architecture allows for more 

generalizable research, furthermore, the impact of research on the development of LLM space 

was also considered. Additionally, it was decided to include models with fewer than 10 billion 

parameters to explore biases in models more accessible to people using private systems 

without relying on large-scale servers or incurring high costs. Given the nature of the 

prompts, the initial focus was on "instructor" models, which are fine-tuned with 

conversational data. However, to broaden the scope of the replications by including older and 

more diverse architecture, the decision was made to include models that were not specifically 

trained for instructional tasks but still produced interpretable responses. For example, Stable-
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Code and Gemma 2, as shown in Table 3, is designed primarily for code generation, yet it 

successfully generated accurate answers for most of the prompts used. 

 

 

Models like Falcon and Qwen are particularly valuable for exploring biases relating to 

diverse cultural or regional datasets. Falcon, developed in the UAE by the Technology 

Innovation Institute (TII), was trained on a dataset comprising 1 trillion tokens, with 

significant portions representing Middle Eastern perspectives. This focus allows researchers 

to study how cultural contexts influence model outputs (TII 2023). Qwen, developed by 

Model Name Release Date Organization Size Use Case 

Flan T5 XL Dec 2022 Google 2.85B Language Tasks 

Falcon Jun 2023 TII 7B Conversational AI 

Mistral  Sept 2023 Mistral AI 7B Conversational AI 

Stable-Code Jan 2024 Stability AI 3B Code Generation 

Gemma 2 Jul 2024 Google 2B Conversational AI 

Phi 3.5 Mini Aug 2024 Microsoft 3.8B Language Tasks 

Qwen 2 Aug 2024 Alibaba 1.5B Multilingual Chat 

Llama 3.2 Sept 2024 Meta 1B Conversational AI 

Llama 3.2 Sept 2024 Meta 3B Conversational AI 

Qwen 2.5 Oct 2024 Alibaba 3B Multilingual Chat 

Table 3: Text-to-Text Models  
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Alibaba's DAMO Academy, is designed to handle multilingual and multimodal data. It was 

trained on a diverse range of datasets, enabling its use in non-Western languages and contexts 

(Alibaba DAMO Academy 2023). These models provide a unique lens for examining how 

regional diversity in training data shapes demographic biases. 

Simpler models like Mistral, Gemma 2, and Phi 3.5 Mini serve as essential baselines 

for evaluating how complexity and scale influence bias. Mistral, a 7-billion-parameter model, 

was trained on a diverse dataset of 1.5 trillion tokens, demonstrating impressive efficiency 

and scalability (Mistral AI 2023). Phi 3.5 Mini, a compact model developed by Microsoft, 

was trained on high-quality datasets, including textbooks and synthetic data, showcasing how 

smaller models can still achieve competitive performance (Microsoft Research 2023). These 

models enable a closer examination of how biases manifest differently in less complex 

architectures. 

Advanced systems like Flan T5 XL and Llama have had a significant impact on large 

language model research. Flan T5 XL, an instruction-tuned model from Google Research, is 

optimized for generalization across diverse tasks and has set benchmarks in model 

interpretability (Google Research 2023). Llama, developed by Meta AI, ranges from 7B to 

70B parameters and was trained on a carefully curated dataset of 1.4 trillion tokens. Its high-

quality open-source training data and scalability make it a cornerstone for bias studies in LLM 

research (Meta AI 2023). These advanced models provide state-of-the-art benchmarks for 

comparing bias mitigation strategies across generations of language models. 

5.4 Models in Trade-Off Analysis  

The dataset for the trade-off analysis includes a diverse range of LLMs to examine the 

interplay between trustworthiness and performance (Appendix 13). Architecturally, most 

models use decoder-only frameworks optimized for generative tasks, while models' sizes span 
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from compact ones like Llama2/7B with 7 billion parameters to massive architectures such as 

GPT-4, estimated at 1 trillion parameters. 

The selection represents global contributions from institutions like Tsinghua University, 

OpenAI, and Meta AI, reflecting a variety of cultural and methodological approaches. Models 

released from 2019 to 2024, including early designs like ERNIE and advanced architectures 

like Mistral, capture technological evolution over time. Both proprietary systems like GPT-4 

and open-source models such as Llama2 are included, providing insights into the balance 

between transparency, accessibility, and advanced safety features. 

Finally, the dataset spans models designed for research-focused use, such as WizardLM, 

and those optimized for broad commercial applications, like ChatGPT. This comprehensive 

mix ensures a robust evaluation of trust metrics across different development philosophies 

and application scenarios. 
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6 Individual Part V - Balancing Trust and Utility in Large Language Models: A 

Comprehensive Trade-Off Analysis of Key Performance Metrics 

1 Introduction 

Efforts to address bias in LLMs have traditionally focused on demographic biases, such 

as those related to gender, race, or stereotypes (Bai et al. 2024; Fulgu 2024; Kotek 2023). 

While valuable, this focus is insufficient for real-world applications, where biases must be 

examined alongside performance characteristics like safety, robustness, privacy, truthfulness, 

machine ethics. These metrics collectively define the trustworthiness of LLMs, determining 

their suitability for high-stakes domains (Weidinger et al. 2021; Sun et al. 2024). 

This research integrates bias within a broader framework of trust metrics to explore 

their interconnections and collective impact on LLMs trustworthiness and utility. 

Improvements in one dimension often lead to trade-offs in others, bias mitigation may reduce 

robustness to adversarial inputs and enhancing privacy might limit truthfulness (Raji et al. 

2020; Geirhos et al. 2020). Here, transparency is critical for assessing these trade-offs, 

clarifying where LLMs can be responsibly deployed without degrading performance 

(Bommasani et al. 2023). 

Addressing these interdependencies is critical to meet societal expectations for ethical 

responsibility and trustworthiness while being effective. This comprehensive trade-off 

analysis highlights synergies and conflicts, enabling informed decisions on how trust metrics 

both influence overall performance and each other (Miao et al. 2022). 

The objective of this research is to provide actionable insights into balancing key 

performance areas, thereby fostering the development of LLMs that are ethically responsible, 

reliable, and highly utilitarian. 
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2 Methodology 

The following overview of methodology outlines the groundwork for a comprehensive 

analysis of LLMs key performance areas, guiding the investigation into their relationships, 

synergies, and trade-offs. 

2.1 Description of the TRUSTLLM Dataset  

The TRUSTLLM dataset provides a robust framework for evaluating the 

trustworthiness of LLMs across key dimensions: truthfulness, safety, fairness, robustness, 

privacy, and machine ethics (Sun et al. 2024). Designed for real-world challenges, it enables 

the assessment of LLMs in high-stakes applications, offering a holistic perspective on 

trustworthiness. 

The TRUSTLLM framework evaluates 21 diverse LLMs, including proprietary 

models like GPT-4 and open-source alternatives such as Llama3, encompassing a wide range 

of architectures, sizes, and training methodologies (Appendix 13). The evaluation employs 

over 30 curated datasets, designed to assess tasks such as misinformation detection, 

adversarial safety, stereotype neutrality, and privacy risk mitigation. Using 31 specific 

metrics, such as factual accuracy for truthfulness, toxicity detection for safety and bias 

detection in Fairness, TRUSTLLM provides a detailed analysis of each model’s strengths and 

weaknesses (Appendix 1).  

As a reference for overall performance, the Chatbot Arena leaderboard evaluates 

LLMs by assessing their alignment with human preferences through pairwise comparisons in 

a crowdsourced setting. Users interact with two anonymous models, compare their responses, 

and vote for the preferred one, enabling rankings based on human judgments (Xu et al. 2023). 

This approach is effective because it directly reflects user preferences and evaluates models in 

real-world conversational contexts, capturing nuanced qualities that static benchmarks often 
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miss (Xu et al. 2023).   

 

2.2 Data Collection, Preparation and Cleaning 

The TRUSTLLM dataset and Arena leaderboard were sourced from publicly available 

repositories by Hugging Face, ensuring transparency and reproducibility. Data scraping 

techniques retrieved model-specific performance metrics for 21 models evaluated across 31 

trustworthiness metrics (Appendix 1 & 48). As not all metrics showed a similar direction 

towards “more trust”, metrics were transformed so that higher values always indicate more 

trustworthiness.  

Missing values (1.7%) affected four metrics, and two handling approaches were 

tested: KNN Imputation and Row-Dropping. KNN Imputation, which fills gaps based on 

metric similarities, preserved the dataset's structure and proved superior. Row-Dropping 

reduced the dataset by 25% and caused distortions, globally recalibrating PCA and shifting 

variance distributions, notably affecting metrics without missing values such as truthfulness. 

Despite this, metrics with missing values showed high correlations (above 95%) between 

imputed and dropped datasets, affirming imputation's reliability in maintaining analytical 

integrity (Appendix 5). 

Three models (baichuan-13b, ernie, and oasst-12b) were excluded due to inconsistent 

benchmarking in the ARENA metric. To integrate ARENA scores, max-min scaling was 

applied, preserving relative differences and avoiding distortions from extreme values or 

varying scales. This preprocessing ensured comparability across models and maintained 

analytical rigor. These steps enabled a robust foundation for exploring trust-utility trade-offs, 

maintaining structural consistency while addressing missing data and scaling issues 

effectively. 

2.3 Analytical Approaches 
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To explore relationships and patterns within the TRUSTLLM and Arena Leaderboard, a 

variety of analytical methods were applied, as shown in Figure 2. A correlation analysis 

examines relationships among trustworthiness metrics in the TRUSTLLM dataset, focusing 

on six dimensions: truthfulness, safety, fairness, robustness, privacy, and machine ethics. 

Pearson correlation coefficients quantified these relationships. A heatmap visualized 

correlations, revealing potential trade-offs and synergies (Appendix 2). Key patterns were 

analyzed to guide further study. PCA reduced metric dimensionality within each trust 

category, consolidating variability while retaining essential information. This enabled clearer 

exploration of trade-offs and synergies. Standardization ensured comparability across metrics, 

preventing dominance by larger ranges.  

Clustering grouped models by key performance areas with k-means algorithm. The 

optimal clusters were determined via the elbow method and silhouette score. Clusters were 

analyzed for performance of the LLM characteristics, revealing trade-offs among dimensions. 

Regression analysis explored relationships between key performance areas and utility. 

Univariate regression assessed independent contributions, while multivariate regression 

evaluated combined effects. The analysis quantified trust dimensions’ utility impact, 

highlighting interactions, synergies, and trade-offs. Key findings identified dimensions most 

affecting performance, guiding trade-off management in development. 

3 Results  

Figure 2: Analytical Process 
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This chapter delves into the analytical results, uncovering the intricate relationships 

between metrics, dimensions, and trade-offs that define model performance and 

trustworthiness.  

3.1 Correlation Analysis 

The correlation analysis provides a foundational understanding of the interactions 

between various trust dimensions, uncovering key synergies and trade-offs that are essential 

for optimizing model utility and alignment. This section focuses on exploring these dynamics 

in detail, emphasizing how specific dimensions influence each other. For reference, the 

heatmap of correlations is included in Appendix 2 due to space constraints. 

3.1.1 Machine Ethics and Robustness as Supporting Drivers 

Machine ethics and robustness metrics are pivotal in enhancing trustworthiness, as 

they positively impact various trust dimensions. Attributes like moral reasoning and resilience 

to adversarial challenges help improve overall fairness, accuracy, and reliability in models 

(Appendix 2). However, achieving high scores in these areas can lead to challenges, such as 

conflicts with privacy protection or ensuring unbiased outputs, that are further explored in the 

sections on fairness (3.1.3) and privacy (3.1.4). 

3.1.2 Truthfulness: Factual Accuracy vs. Sycophantic Behavior 

Truthfulness metrics exhibit a dichotomy between those that evaluate factual accuracy 

and those that measure sycophantic behavior. Metrics assessing factual accuracy like Internal- 

and External Truthfulness, besides aforementioned synergies with machine ethics and 

robustness, also align strongly positive with metrics measuring awareness of fairness, such as 

Stereotype Recognition (r ≈ 0.8).  Increased factual accuracy moreover reduces hallucination 

rates. On the other hand, metrics capturing resistance to sycophantic behavior, such as 

Preference Sycophancy, characterized by excessive alignment with user inputs, reveal notable 

trade-offs. These metrics exhibit negative correlations with factual accuracy (Internal 
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Truthfulness, r ≈ −0.3) and machine ethics (e.g. Social Chemistry, r ≈ −0.7). Furthermore, 

resistance to sycophantic behavior shows tradeoffs with fairness metrics (e.g. Stereotype 

Recognition, r ≈ −0.25) and robustness metrics (e.g. AdvGlue, r ≈ −0.3). This dual nature of 

truthfulness highlights a significant challenge in LLM design: improving factual accuracy often 

comes at the cost of increased user alignment bias. 

3.1.3 Fairness: Awareness-Based vs. Generation-based Metrics 

Fairness metrics in the TRUSTLM leaderboard can be divided into awareness-based 

and generation-based types. Awareness-based metrics, such as Stereotype Recognition, 

evaluate a model’s ability to identify fairness-related issues, reflecting conceptual 

understanding. In contrast, generation-based metrics, like Disparagement of Sex, assess biases 

in generated content, which demand seamless application of fairness principles.  

A notable trade-off exists between these metrics, with significant negative correlations 

(e.g. Fairness Overall Agreement Rate and Disparagement of Sex: r≈ −0.5). This suggests that 

models being aware of fair values still struggle to produce unbiased outputs.  

Awareness-based metrics show strong synergies with other performance areas like 

ethical reasoning, factual accuracy and resilience to adversarial inputs. Conversely, generation-

based metrics often introduce significant trade-offs. They negatively correlate with machine 

ethics (e.g. MoralChoice, r ≈ − 0.8), safety (e.g., Jailbreak Resistance, r ≈ −0.6), truthfulness 

(e.g. Adversarial Factuality, r ≈ −0.6), and robustness (e.g. OOD detection, r ≈ −0.63), 

indicating higher performance across those dimensions come at the cost of bias.  

3.1.4 Privacy: Awareness vs. Leakage 

Privacy metrics present a clear dichotomy between Privacy Awareness and Privacy 

Leakage. Privacy Awareness demonstrates a positive alignment with key performance areas 

such as factual truthfulness, robustness, and fairness awareness. This highlights the 

interconnected nature of trust dimensions, where improvements in one area, such as ethical 
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robustness or fairness, naturally reinforce privacy-aware behaviors. However, Privacy 

Leakage, measuring resistance against disclosing sensitive training data, introduces 

significant trade-offs. Metrics associated with privacy leakage negatively correlate with 

awareness-based fairness (e.g. Stereotype Recognition, r ≈ −0.4), machine ethics (e.g. Moral 

Choice, r ≈ −0.3), and robustness (e.g. OOD detection, r ≈ −0.4). These findings indicate that 

while raising awareness about privacy concerns can enhance trustworthiness, efforts to 

mitigate the risks of disclosing sensitive training data often conflict with various inherent 

characteristics of LLMs. 

3.1.5 Safety: Balancing Caution and Utility 

Safety metrics reveal a dual picture: they create positive synergies in some areas while 

introducing trade-offs in others. Metrics measuring resistance to jailbreak and misuse 

correlate strongly with performance in key dimensions, such as robustness, truthfulness, 

awareness-based fairness, moral reasoning, and privacy awareness (Appendix 2). These 

positive correlations highlight that models strong in these safety metrics perform better at 

handling adversarial and ethical challenges while maintaining security. Remarkably, models 

that exaggerate safety—such as refusing harmless prompts like "How do I kill a Windows 

process"—tend to perform better in resisting jailbreaks. Despite this, models with higher 

refusal rates in exaggerated safety still perform well across key LLM characteristics. 

However, mechanisms designed to prevent toxic responses introduce trade-offs across 

key performance dimensions of LLMs. Toxicity Avoidance - a content-based metric - 

evaluates the level of toxicity (e.g. rude, disrespectful comments) in the model’s output. It 

negatively correlates with awareness-based fairness metrics like Stereotype Recognition (r ≈ 

−0.4), factual accuracy (e.g. Internal Truthfulness, r ≈ −0.3), and robustness in adversarial 

instructions (e.g. AdvInstruction, r ≈ −0.5), indicating stricter safety mechanism targeting 

generated output come at the cost of performance across those areas.  
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3.2 Principal Component Analysis (PCA) 

The PCA results align with the correlation analysis, offering insights into trade-offs 

within individual trust dimensions. The first principal component explains 41% to 52% of 

variance, revealing key structural patterns (Appendix 3).  

Machine ethics and robustness metrics stand out, showing consistently positive 

contributions inside their Principal Component (Appendix 4). Fairness metrics, however, 

reveal internal trade-offs, consistent with the correlation analysis, as awareness-based metrics 

show the opposite contribution from generation-based metrics. Safety metrics display mixed 

contributions, where resistance to jailbreak and misuse load positively, while avoiding 

toxicity shows negative contribution. Privacy metrics underscore conflicts as Privacy Leakage 

loads positively and oppositely to Privacy Awareness. Finally, the truthfulness principal 

component highlights the tension between factual accuracy and behavioral biases. In 

summary, the principal components paint the same interaction picture analyzed in the 

correlation analysis section, showing high correlation in-between those dimensions 

(Figure31).   

3.3 Clustering 
Figure 3: Correlation Heatmap of Principal Components 
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The clustering analysis highlights key insights among performance areas in language 

models. Two clusters were identified, determined by the elbow method and silhouette 

analysis: Cluster 0 (6 observations) and Cluster 1 (15 observations) (Appendix 6 &7). 

Cluster 1, dominated by proprietary and resource-intensive models including GPT-4 and 

Llama variants, excels across all principal components except privacy (Figure 4). Combining 

these scores with the PCA loadings, Cluster 1 reflects models aligning ethical concerns, 

exhibiting strong robustness, and achieving high factual accuracy, being aware of fair values 

while showing resistance to jailbreak and misuse. However, Cluster 1 shows tendencies 

toward sycophantic behavior, explicit bias and the avoidance of toxic outputs. These models 

show awareness but struggle with data leakage in privacy. 

In contrast, Cluster 0 primarily open-source and smaller-scale models, such as 

Baichuan-13b and Vicuna-7b, shows better protection against data leakage, less biased output, 

reduced sycophantic behavior, and better prevention of toxic outputs. However, these gains 

come at the cost of underperformance in machine ethics, robustness, factual accuracy, and 

safety in jailbreak and misuse. This distribution highlights the varying emphases and trade-

offs in design priorities among the analyzed models. 

 

3.4 Regression Analysis 

Figure 4: Clusters with Performance in the Principal Components 
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The regression analysis provides critical insights into the relationship between key 

performance areas and model utility, according to: 

Arena Score = β0 + β1 * xFairness+ β2  * xSafety + β3 * xMachineEthics + β4 * xRobustness + β5 * xTruthfulness  

Equation 1: Regression Formula, Target: Arena Score, Predictors: Trust Dimensions 

Initial regression results highlight the central role of truthfulness, which emerged as the only 

significant predictor in multivariate regression, despite strong univariate contributions from 

machine ethics, fairness, robustness, and safety (Appendix 8). However, multicollinearity, 

particularly due to robustness (VIF = 7.5), introduced instability in coefficient estimates 

(Appendix 9). 

To address these concerns, robustness was excluded, resulting in lower VIF values 

across the remaining predictors (Table 5). This adjustment resulted in a minor drop in model 

fit (R2 = 87.3% → 84.5%, Adjusted R2 = 80.4%→ 78%) but clarified independent effects, 

indicating a minor reduction in explanatory power while improving interpretability (Appendix 

12). In the revised regression, truthfulness remained the only significant predictor (Coef. = 

33.5, p = 0.017, Table 5).  

Machine ethics, fairness, and safety showed weaker and non-significant independent 

effects. These results suggest that truthfulness captures much of the shared variance among 

performance areas (Figure 3). Similarly, while the removal of robustness resulted in only a 

minor reduction in model fit, this suggests that robustness contributes indirectly to utility 

through its high correlation with truthfulness.  
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Table 4: Multivariate Regression Results, Target Variable: ARENA Score 

4 Discussion 

Building on the insights from the analysis, this discussion explores the broader 

implications of balancing key performance dimensions in LLMs. 

4.1 Synthesis of Findings 

The analysis revealed key interactions among LLM performance metrics, highlighting 

synergies and trade-offs impacting trustworthiness and utility. Clustering identified two 

model archetypes: those excelling in synergy dimensions but facing trade-offs like showing 

more biased predictions or producing toxic outputs and those mitigating trade-offs but 

underperforming in broader performance dimensions. Truthfulness emerged as the primary 

utility driver and sole significant predictor in multivariate models. While machine ethics, 

robustness, fairness, and safety were not independently significant, their strong correlations 

with truthfulness (r ≈ 0.6 – 0.8) indicate a supportive role. Privacy leakage mechanisms 

showed a marginally negative, nonsignificant impact. These findings underscore truthfulness 

as central to utility while managing trade-offs carefully. 

4.2 Understanding the Role of Performance Dimensions in Shaping Utility 

Interpreting the regression analysis reveals key insights into the interplay between 

performance metrics, emphasizing their implications for practical applications. 

Principal       

Component 
Coefficient Std. Error t-Statistic P-value VIF 

const 1048.2095 9.599 109.198 0.000 1.11 

Machine Ethics 8.7940 12.789 0.688 0.505 3.22 

Fairness 5.7260 15.428 0.371 0.717 3.87 

Privacy -8.2538 5.835 -1.415 0.183 1.09 

Safety 8.7868 11.924 0.737 0.475 2.02 

Truthfulness 33.5370 12.070 2.779 0.017 3.95 
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4.2.1 Factual Accuracy as Central Role 

Regression analysis highlights the critical importance of factual accuracy. This 

supports findings by Bommasani et al. (2021) on the centrality of factual accuracy in 

enhancing AI performance. As the primary driver of utility, truthfulness ensures that outputs 

align with real-world facts, making it essential for building trustworthy models that excel in 

high-stakes applications like healthcare, law, and education. For developers, this underscores 

the need to prioritize truthfulness metrics in training and evaluation pipelines. By focusing on 

factual accuracy and resilience against misinformation and hallucinations, developers can 

create models that not only enhance utility but also set a standard for reliability and 

adaptability. Truthfulness, as the cornerstone of performance, should guide decision-making 

in model design and optimization. However, the utility derived from truthfulness is not 

without trade-offs, particularly concerning sycophantic behavior, which requires careful 

management to maintain both ethical and factual integrity. 

4.2.2 The Sycophantic Behaviour Trade-off 

Sycophantic behavior in LLMs reflects a critical trade-off associated with model size 

and adaptability (Wei et al. 2023). Larger models tend to exhibit more pronounced 

sycophantic tendencies (Chen et al. 2024). With an increased parameter count, they generally 

perform better across trust dimensions, including factual accuracy in truthfulness, due to their 

increased capacity for understanding and contextual reasoning. While positively contributing 

to utility by enhancing user satisfaction and perceived effectiveness, over-alignment 

introduces biases and risks, particularly in scenarios requiring principled reasoning or 

adherence to factual correctness. 

Sycophantic behavior requires domain-specific strategies. Applications demanding 

high factual accuracy and principled reasoning, such as healthcare or legal consultations, 

should minimize sycophantic tendencies to ensure unbiased and reliable outputs (Chen et al. 
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2024). Conversely, user-focused applications like customer service may benefit from a degree 

of alignment to enhance engagement and satisfaction, even if objectivity is slightly 

compromised. 

4.2.3 Interplay Between Truthfulness and Other Performance Areas 

The prioritization of truthfulness as the foundation of utility in LLMs reveals a complex 

dynamic with other performance areas. While dimensions like machine ethics, robustness, 

fairness, and safety act as secondary layers that support truthfulness and indirectly enhance 

utility, their alignment often comes at a cost. Developers must navigate trade-offs where the 

emphasis on truthfulness can conflict with other trust metrics. The following chapters discuss 

those trade-offs: 

 

4.2.3.1 Fairness: Navigating Trade-offs in High-Utility Models 

While awareness-based fairness metrics strongly align with factual accuracy in 

truthfulness (r ≈ 0.8, Figure 3), generation-based metrics like Disparagement, showed 

significant tradeoffs (r ≈ −0.6, Appendix 2). This disconnect underscores the challenge of 

translating fairness awareness into unbiased outputs without compromising factual accuracy. 

High-utility models often exhibit increased explicit bias in their outputs - likely not due to a 

lack of fairness awareness but as a result of inherent tensions between optimizing for factual 

accuracy and mitigating bias, favoring alleged correctness over equity (Bai et al. 2022). 

Research by Zhang et al. (2024) supports this, showing that enhancing accuracy can diminish 

fairness due to the competing demands of these objectives. Models relying on generalizing 

across diverse inputs, can reinforce biases if training data embeds them (Wang et al. 2023). On 

the other hand, neutral outputs in generation-based metrics are more likely to result from 

predictive constraints rather than genuine bias mitigation (Sun et al. 2024). 
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This trade-off suggests that while factual accuracy drives utility, it may come at the 

cost of explicit bias. To address this, careful management of fairness trade-offs is critical, 

especially in high-stakes applications, such as hiring or criminal justice, where explicit bias 

could erode perpetuate systemic inequalities (Schwartz et al. 2022). Transparent reporting of 

fairness metrics is essential to inform users about the biases and limitations of model outputs.  

4.2.3.2 Safety’s Nuanced Impact on Utility 

Safety metrics highlight both supportive synergies and challenging trade-offs, arising 

from the different nature of safety mechanisms. The difference between Resistance against 

Jailbreak/Misuse and Toxicity stems from the scope of their filters. Jailbreak and Misuse 

filters target harmful or adversarial prompts, preserving adaptability and factual accuracy 

(Appendix 2). Their impact on truthfulness is about preserving reliability under adversarial 

pressure. However, findings about exaggerating in safety show, that many models rely on 

shallow alignment techniques, like identifying specific keywords (e.g., "kill," "harm"), rather 

than understanding the broader context or intent behind prompts (Sun et al. 2024). Those 

filters are most effective when narrowly focused (Wallace et al. 2024). In contrast, broad 

toxicity avoidance filters target harmful or offensive generated content. This broad filter 

mechanism restricts nuanced reasoning, creating trade-offs (Bommasani et al. 2021; OpenAI 

2023). Toxicity avoidance reflects the challenge of balancing safety with adaptability, as 

negatively correlating with truthfulness (r ≈ −0.3, Appendix 2).  

In high-stakes domains like healthcare, legal advice, and content moderation, strict 

Toxicity Avoidance is essential to prevent harm and maintain trust (Mims 2024). Conversely, 

in applications like policy analysis, education, or creative tools, some compromise is 

acceptable, as overly cautious filtering can hinder engagement, nuanced reasoning, or 

innovation. To address this, developers should adopt context-sensitive safety measures.  

4.2.3.3 Privacy: Balancing Protection and Engagement 
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Privacy metrics demonstrate a nuanced and context-dependent impact on utility, 

showing a negative, though non-significant contribution in multivariate regression and a 

moderate negative correlation with truthfulness (r≈ − 0.3, Appendix 2). To protect privacy, 

models implement strict refusal policies and filters to minimize sensitive data disclosure (Sun 

et al. 2024). The results indicate that mitigating the risk of disclosure of sensitive data does 

not significantly compromise utility overall. Developers have an opportunity to enhance 

privacy protection measures without drastically impairing model performance, thus caution is 

required. While effective in safeguarding privacy, these measures can compromise 

adaptability and depth and erode model’s ability to deliver accurate outputs (Bai et al. 2022).  

Preventing sensitive data disclosure in LLMs is critical across all applications, as it 

directly affects user trust and compliance with data protection regulations like GDPR (Yan et 

al.  2024). By adopting advanced, flexible privacy mechanisms, developers can address 

Privacy Leakage comprehensively, ensuring that privacy protection supports both utility and 

trustworthiness.  

4.3 Clustering Insights: Model Design and Performance Trade-offs 

Extending the discussion on trade-offs between trust and utility dimensions, the 

clustering analysis highlights how model architecture and scale shape these dynamics. The 

discussed key trade-off areas show better results for models in Cluster 0. These open-source, 

smaller-scale models are more likely to excel not through advanced management but due to 

their simplicity and limitations. Their constrained predictive power reduces the recall of 

nuanced or sensitive information, minimizing privacy risks. Similarly, limited generalization 

capabilities result in less alignment with user biases or toxic behavior, while weaker 

predictability leads to less biased outputs overall. In essence, these strengths arise not from 

deliberate design choices but from the limited capacity of these models to engage with 
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complex or sensitive scenarios. This observation might indicate a distorted significance in the 

results. 

In contrast, Cluster 1 models, including proprietary and resource-intensive systems 

such as GPT-4 and Llama3-70b, exhibit advanced predictive capabilities and superior 

performance in dimensions like truthfulness and robustness while struggling in the discussed 

trade-off areas. This implies that, as of today, the widely used high-performing models show 

these weaknesses, underscoring the necessity to manage trade-offs, particularly in application- 

and domain-specific contexts. Transparency becomes essential to anticipate these challenges. 

4.4 Transparency as a Key Enabler 

Transparency is essential for addressing the trade-offs and performance challenges in 

LLMs, particularly for fostering trust in their deployment across domains (Geirhos et al. 

2020). As models grow more complex, understanding and communicating how their 

architecture and training influence trust metrics becomes critical. Transparent documentation 

of these trade-offs helps users and developers evaluate where an LLM excels or struggles, 

enabling informed decisions about its suitability for specific domains and reducing the risk 

of overreliance on models in areas where their limitations might have serious consequences 

(Marwala et al. 2024). A lack of transparency, particularly in proprietary systems like GPT-4, 

obscures why models may fail in areas like privacy or bias mitigation, increasing the risk of 

misapplication (Bomassani et al. 2021). This is especially problematic in high-stakes domains 

like healthcare, law, or education, where overreliance on a model without understanding its 

limitations could lead to harm, ethical violations, or misinformation. Standardized reporting 

frameworks, such as model cards and dataset datasheets, combined with explainable AI 

techniques, provide essential tools to demystify these trade-offs (Marwala et al. 2024).  

Transparency serves as the connective tissue that binds key LLM characteristics 

together, providing a framework for understanding how factual accuracy, sycophantic 
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behavior, trade-offs, and model constraints interact to shape the utility of LLMs, as shown in 

Figure 5.  

 

 Figure 5: Overview of Findings 

5 Conclusion 

The analysis reveals the intricate balance between LLM attributes and their utility, 

highlighting trade-offs and synergies that influence performance. Truthfulness is identified as 

the cornerstone of utility, emphasizing the importance of factual accuracy. However, 

sycophantic behavior - over-aligning with user inputs to enhance satisfaction—poses 

challenges by introducing biases and undermining principled reasoning. 

Explicit bias in sex and race and broad toxicity filters, though not directly impacting 

utility in regression models, affect truthfulness. Bias shows tensions with factual accuracy 

while overactive toxicity filters hinder nuanced reasoning. Larger models, while improving 

user satisfaction through alignment, risk objectivity. Privacy leakage constraints, essential for 

trust, may also limit the model’s ability to provide detailed, accurate responses. Smaller 

models may perform better in certain trade-off areas due to their inherent prediction 

limitations, but this could signal a risk of distorted significance in the results. 

Transparency is critical in managing these trade-offs. For developers, tools like model 

cards and explainable AI illuminate performance challenges, enabling targeted solutions. For 

users, transparency fosters trust by clearly communicating strengths and limitations, 



 42 

mitigating overreliance and ensuring appropriate application. In high-stakes domains, 

transparency and balanced trade-off management are foundational to developing high-

performing LLMs that meet societal and ethical expectations, achieving utility while 

navigating the complex interplay of attributes such as truthfulness and fairness. 

6 Limitations  

The Trade-Off Analysis faced several constraints. First, Arena Scores, while 

comprehensive, do not account for domain-specific requirements, limiting findings’ 

applicability to specialized contexts. Second, PCA-derived metrics capture only 40–50% of 

variance, meaning some aspects of the original metrics remain unexplored. Third, interaction 

terms were excluded to avoid interpretive complexity with PCA components, limiting 

understanding of how trust metrics jointly influence utility. Finally, model characteristics 

such as model size, training data or fine-tuning efforts were not consistently controlled, 

potentially conflating model-specific traits with trustworthiness trends. Addressing these 

limitations in future work, including expanded datasets, interaction modeling, and refined 

metrics, would further improve understanding of trustworthiness - performance dynamics in 

LLMs. 
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7 Main Discussion 

The following discussion synthesizes the findings from all four replication studies along-side 

insights from the trade-off analysis, aiming to provide a comprehensive understanding of how 

biases manifest and evolve in LLMs.  

By integrating these perspectives, this section highlights the interplay between model 

de-sign, prompt types, and trust metrics in shaping biases and their mitigation. It is crucial to 

recognize that text-to-image and text-to-text models operate under fundamentally different 

mechanisms, leading to divergent manifestations of bias. Moreover, the trade-off analysis 

conducted in this study was limited exclusively to text-to-text models, making a full synthesis 

across modalities challenging. This underscores the need for a distinct approach to discuss 

findings across different modalities. Furthermore, separating knowledgebase – from 

reasoning-based prompt types help to better differ the nature of the task and its bias 

implications context-dependently.  

7.1 Discussion on Reasoning-Based Prompts for Text-to-Image Models 

Given the slight improvement in the reduced bias towards women and non-white 

individuals in text-to-image models, further investigation was conducted to understand why 

these models have shown progress in reducing bias while text-to-text models continue to 

exhibit persistent biases. Recent research shows that text-to-image models might have the 

ability to reduce bias over time because visual biases are easier to detect, measure, and 

address (Espositio et al. 2023). In addition, the industry has prioritized fixing overt 

representation issues due to public scrutiny. In contrast, text-to-text models deal with more 

nuanced, systemic biases that are harder to measure and mitigate effectively without risking 

linguistic generalization or model performance (Wan et al. 2024; Wu et al. 2024). 

A recent paper (Esposito et al. 2023) emphasizes the concerted efforts by companies 

like Google, Runway ML and Stability AI to improve representation in their text-to-image 



 44 

models. In 2023, Runway was able to improve group fairness metrics by over 150% in 

perceived skin tone and 97.7% for perceived gender (Espositio et al. 2023). Runway achieved 

this by fine tuning text-to-image models on synthetic data with increased variations in skin 

tones and genders constructed from diverse text prompts (Espositio et al. 2023). And 

compared to baseline models, this allowed for these models to generate more people with 

perceived darker skin tone and more women. During the release of their latest text-to-image 

model, Stable Diffusion 3.5 (October 2024), Stability AI boasted the model’s advancements 

in fairness, emphasizing its ability to more accurately depict women and individuals from 

non-white backgrounds (Stability AI 2024). Unsurprisingly, Stable Diffusion 3.5 displayed 

the least bias in racial representation among occupational images and ranked second only to 

Flux.1-dev in addressing gender bias. Producing of white individuals at 51.11% rate, the 

lowest across all models. And conversely, representing women at a rate of 29.6%, a notable 

improvement from the 11.4% representation in the earliest model of DALL-E 2.  

Similarly, in 2022, Google began implementing the Monk Skin Tone (MST) Scale, a 

10-shade scale that is meant to better accurately diverse people not only in their text to image 

product (Gemini), but across all google products (Doshi 2023). This concerted effort by 

Google to accurately depict women and diverse races led to some controversy in 2024 after 

the release of Gemini in February 2024. This controversy stems from an overcorrection that 

led to Gemini producing images that were heavily biased towards women and people of non-

white backgrounds. For example, the model was criticized when users discovered it was 

producing historically inaccurate portrayals, such as Black vikings, an Asian woman in a 

German World War II-era military uniform and a female Pope (Figure 6) (Milmo and Hern 

2024). 
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Figure 6: Google’s Gemini AI illustrations of a 1943 German soldier 

While text-to-image models still have progress to make in achieving real-world 

representation in terms of gender and race, slight improvement in reduced bias has been 

observed from the earliest model (DALL-E 2) to the latest (Stable Diffusion 3.5). These 

advancements in reducing bias against women and non-white individuals are evidence of 

industry-wide efforts to address and mitigate biases in these models. 

7.2 Discussion on Reasoning- and Knowledge-Based Prompts for Text-to-Text 

Models 

The impact of biases in knowledge-based and reasoning-based prompts differs 

significantly due to the nature of the tasks, evaluation methods, user expectations, real-world 

applications, and optimization requirements. The following section reveals significant insights 

into biases occurring in text-to-text Large Language Models. 

7.2.1 Biases Across Demographics 

Biases across demographics were consistently observed across all studies, underscoring 

the influence of societal stereotypes on LLM outputs. The three original studies all focused on 

unveiling the presence, direction, and magnitude of societal biases in GPT series models, 

solely concentrating on state of art LLMs. The proposed replications try to shift attention 

towards a multitude of smaller, older and open-source models, thus, allowing for a study on 

the progression over time of biases revolving around several demographics’ indicators, such 

as gender (implicit or explicit), income clusters, and age. 
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Gender biases were found to be particularly significant, with models frequently 

shaping their outputs based on implicit or explicit gender indicators. In the financial reasoning 

domain, masculine-coded prompts consistently cited riskier investment options such as 

"Alternative and Speculative Investments" or “stocks” while feminine-coded prompts favored 

"Retirement and Savings" or “bonds”. On the other hand, knowledge-based outputs showed 

inconsistent results in the magnitude of gender biases. Larger and newer models exaggerate 

the magnitude when confronted with skewed datasets, such as the Nobel Prize Winners, 

amplifying female hallucinations due to stronger associations with certain subjects like 

Literature and Chemistry. Contrarily, when working with balanced datasets, like 

Entrepreneurs and Oskar Winners, newer models, such as the Llama 3.2 series, can reduce 

hallucinations over time due to increased declination rates, showcasing better factual 

accuracy. 

Income-based biases were observed in both financial reasoning studies, with high-

income users receiving more complex and risk-seeking advice. For instance, above median 

income individuals were often associated with “Entrepreneurship” or “stocks”. No clear 

improvement can be observed throughout the years, in fact, the newest and oldest models both 

show large bias magnitudes between the two clusters, also in different directions at times. 

When observing differences across age clusters, newer models tend to amplify the 

differences between old and young individuals when implying asset ratings, while still 

showing inconsistencies between each other. For instance, Llama 3.2/3B strongly connects 

young people to stocks while Q2.5 suggests the same correlation but towards bonds. 

7.2.2 Bias over Time 

In knowledge-based prompts, it was observed that for balanced datasets newer models 

like LLama 3.2/3B demonstrated improved factuality over time by employing strategies like 

declination for ambiguous queries. However, gender disparities remained, as female-
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associated words in prompts disproportionately amplified the frequency of female names, 

while male-associated industries like Venture Capital did not exhibit a similar increase in 

male hallucinations. This asymmetry, observed in earlier models like Falcon and Mistral, 

highlights that fine tuning existing model architectures and creating newer models alone are 

insufficient to eliminate bias, as female-associated word vectors in prompts exert a 

disproportionately stronger influence on outputs. For skewed datasets, fine-tuning and newer 

architectures, such as Qwen 2.5, often amplified biases rather than mitigating them. Despite 

being more advanced, these models showed higher DPD and lower RCS scores, indicating 

that fine-tuning on skewed data can strengthen existing societal imbalances, especially when 

navigating prompts with embedded gender associations. 

In reasoning-based prompts, it was observed that newer models show no consistent 

improvement in mitigating biases, paralleling trends observed in knowledge-based tasks. For 

instance, Qwen 2.5, despite being a more advanced architecture, demonstrates societal biases 

similar to those of its predecessor, Qwen 2, particularly when navigating financial reasoning 

prompts. Gender imbalances remain evident in newer models, with models like Llama 3.2/3B 

showing marked differences in suggesting riskier investment options to males, reflecting a 

deeply ingrained bias in outputs. Some older models exhibited less extreme biases compared 

to their newer counterparts. For instance, models like Flan-T5 or Falcon exhibit a lower 

magnitude of bias than the more recent LLama models. This suggests that newer 

architectures, while more advanced in performance, may amplify biases, particularly in 

scenarios where prompts could imply underlying stereotypes.  

7.2.3 The Impact of Model – Size 

In reasoning-based tasks, larger models show amplified biases. As highlighted in the 

Trade-Off Analysis, larger models exhibit a tendency to over-align with user perspective (Wei 

et al. 2023). They show sycophantic behavior, aligning more with user inputs societal norms. 
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This behavior enhances engagement and utility by making the models appear contextually 

fluent and aligned with user expectations. However, it also risks overfitting to societal biases 

embedded in training data, leading to outputs that reinforce stereotypes rather than challenge 

them. For instance, studies on financial advice show gendered patterns, where women are 

often linked to conservative investments while men are associated with entrepreneurial 

ventures. This trade-off highlights the challenge of balancing domain-specific accuracy and 

fairness, as larger models prioritize alignment at the cost of neutrality. 

In knowledge-based tasks, larger models first show higher accuracy across tasks, 

meaning a less overall biased output, as the rate of hallucinations decreases. This aligns with 

the findings from the trade-off analysis, where factual accuracy shows synergies with 

resistance against hallucination. In case of hallucination, similar pattern of bias amplification 

compared to reasoning prompts arise, particularly when trained on skewed datasets. While 

these models excel in factual accuracy, their strong alignment capabilities magnify 

imbalances present in the training data. For example, the Nobel Prize dataset reveals an 

underrepresentation of women in STEM fields, but female-associated prompts, particularly in 

fields like Literature and Chemistry, led to overestimations of female dominance due to 

higher digital traces of notable women in these areas. When datasets are balanced and 

representative, larger models achieve high factual accuracy with reduced bias, demonstrating 

the potential for fairness when data quality is prioritized. However, in skewed datasets, the 

gains in factual precision are marginal, as biases dominate predictions. These findings 

highlight a shared tension across reasoning- and knowledge-based domains: larger models’ 

advanced reasoning and alignment mechanisms often amplify societal biases present in the 

data, highlighting the trade-off between utility and fairness, as described in the Trade-Off 

Analysis.  
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Moreover, smaller models, while showing more neutral output across reasoning tasks 

in financial advises as well as more neutral outputs in knowledge prompts with a screwed 

dataset, could be misinterpreted as “fairer”. However, this neutrality likely stems from their 

limitations in prediction precision rather than an inherent fairness advantage (Sun et al. 2024). 

The simplicity of smaller models in reasoning-based prompts restricts their ability to 

contextualize or reason about complex inputs, leading to less alignment overall. For 

knowledge-based prompts, these models rather make random guesses than showing screwed 

patterns of the dataset.  This neutrality does not equate to fairness; instead, it reflects 

underperformance in capturing nuanced societal patterns, underscored by findings of the 

clustering results in the trade-off analysis. 

7.2.4 Fine-Tuning Impact: Application- and Domain-specific Deployment of LLMs 

As highlighted in the Trade-Off Analysis, application- and domain specific 

deployment of LLMs is crucial for enhancing the utility while managing essential trade-offs, 

such as bias. The real-world impact of biases dependents on its use case.  

Fine-tuning plays a vital role in improving model performance for specific domains 

such as financial advice. Task-specific fine-tuning can amplify biases outside the target likely 

due to a lack of diversity in datasets, as Stable-Code and Gemma 2 display potentially domain 

specific biases. Similar observations derive form knowledge-based prompts, where DeepSeek 

Coder amplified biases due to overrepresentation in females’ names in hallucinations for 

Literature and Chemistry, reflecting stereotypical gender associations embedded in its coding-

oriented dataset. This likely results from alignment with patterns in the fine-tuning dataset, 

which narrows the model's focus to domain-specific reasoning but sacrifices neutrality and 

fairness. Therefore, a task-specific deployment of fine-tuned LLMs is recommendable and 

should be emphasized.  
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Moreover, fine-tuning strategies should consider the tension between factual accuracy 

and bias occurrence, as highlighted in the trade-off analysis.  

7.3 Optimization Strategies for Bias Mitigation 

The strategies for mitigating biases differ significantly between reasoning- and 

knowledge-based prompts. For knowledge-based prompts, reducing hallucinations and 

improving data accuracy through techniques like retrieval-augmented generation or fact-

checking pipelines effectively addresses biases (Lewis et al. 2020). These methods align 

model outputs with verified sources, directly tackling factual inaccuracies. In reasoning-based 

prompts, optimization involves embedding ethical principles and applying fairness-aware 

training strategies to promote inclusivity and address systemic and cultural biases (Hendrycks 

et al. 2021). While knowledge-based prompts benefit from structured evaluation and dataset 

corrections, reasoning-based prompts require more complex value-aligned optimization to 

ensure unbiased outputs without sacrificing utility. 

7.4 User Trust and its Role in Bias Mitigation 

Biases significantly impact user trust in both reasoning- and knowledge-based 

prompts. In knowledge-based tasks, users expect definitive, reliable answers. Biases or 

inaccuracies in these outputs directly undermine the model's credibility, eroding trust in its 

reliability as a source of factual information. 

Conversely, reasoning-based tasks are often used for personalized and context-

sensitive advice, such as financial or moral reasoning. Here, biases are less overt but equally 

problematic. Gendered financial recommendations, for instance, can reinforce societal 

stereotypes, potentially influencing user decisions in ways that perpetuate inequities. The 

subtle nature of these biases poses an additional risk: users may not recognize the bias and 

might place misplaced trust in the model's recommendations. This overreliance can 

exacerbate the societal impact of biases. Therefore, transparency is necessary to help users 
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understand the limitations and potential biases of the model, enabling more informed 

decision-making and fostering a balanced trust in its outputs. 

7.5 Reflection: Should LLMs Reflect or Challenge Societal Bias?  

Mitigating bias and ensuring trust in LLMs raises an important question: should these 

models reflect societal norms or challenge them? This depends on the type of task and its 

implications for fairness, trust, and societal alignment. 

In knowledge-based tasks, minimizing societal biases is essential to maintain credibility and 

trust. Models that reflect biased historical data risk perpetuating inaccuracies, undermining 

their reliability. Therefore, these tasks prioritize factual accuracy over societal alignment, 

ensuring that outputs are grounded in objective truths. 

Reasoning-based tasks, however, involve a more nuanced trade-off. Reflecting societal 

norms may enhance user trust and engagement in domains like storytelling or creative tasks, 

where cultural relevance is key. Conversely, in high-stakes domains like healthcare or 

financial advice, perpetuating biases risks reinforcing systemic inequities. Striking the right 

balance is critical - over-sanitized models may appear detached, while overly biased models 

could amplify inequalities. 

The reflection emphasizes that the degree of bias in LLMs must align with their 

intended use, balancing cultural alignment with fairness and ethical responsibility. 

7.6 The Key Enabler: Transparency 

Transparency is crucial for determining the ideal use case for an LLM, striking a balance 

between maximizing performance, and building trust among stakeholders. It enables users, 

developers, and policymakers to comprehend a model’s capabilities, limitations, and 

associated risks. By providing clear documentation of dataset composition, fine-tuning 

methodologies, and alignment strategies, transparency sheds light on the origins of biases and 

the efforts made to mitigate them. As LLMs grow increasingly complex, their architecture 
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and training processes significantly influence key trust areas, such as disclosing of sensitive 

information, producing toxic content, showing sycophantic behavior and bias in outputs. 

Detailed disclosure of these trade-offs empowers stakeholders to assess where a model excels 

and where it may falter, minimizing the risk of misuse in critical applications like healthcare, 

law, or education. 
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8 Conclusion 

The evolution of bias in AI models is deeply influenced by model architecture and prompt 

design, reflecting an ongoing tension between improving utility by prioritizing factual accuracy 

and addressing fairness. As models scale and evolve, achieving a balance between these 

objectives remains a central challenge. Larger models, when applied to knowledge-based 

prompts in text-to-text tasks, enhance factual accuracy but often amplify biases, particularly in 

hallucinated outputs. This amplification frequently stems from skewed training datasets that 

reinforce existing societal imbalances. 

For reasoning prompts in text-to-text tasks, replication studies found that larger models 

generally showed greater bias in their results, with no consistent trend to reduce bias over time, 

even for models with similar architecture. Domain-specific fine-tuning, while enhancing 

performance in targeted areas, can inadvertently introduce or amplify biases likely tied to the 

specific context of the fine-tuning, such as gendered assumptions in coding or financial advice 

outputs. 

The findings from text-to-image studies provide a contrasting perspective, showcasing 

modest improvements in bias reduction, particularly regarding gender and racial representation. 

Advances in these models, driven by fine-tuning with diverse synthetic datasets and an industry-

wide focus on visual fairness, highlight the potential for targeted interventions to address 

representational biases. However, these efforts also expose risks of overcorrection, leading to 

historically inaccurate outputs that compromise credibility. 

The trade-off analysis further underscores the complexities of balancing utility with 

fairness. While larger models often excel in utility-focused metrics such as truthfulness and 

robustness, their alignment with societal norms can exacerbate biases, particularly in high-

stakes applications. Conversely, smaller models exhibit fewer biases but lack the depth and 
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contextual understanding required for nuanced tasks, reflecting limitations rather than genuine 

fairness. 

Transparency emerges as a critical enabler in addressing these challenges. Documenting 

datasets, fine-tuning processes, and trade-offs equips stakeholders with essential tools to 

evaluate a model's capabilities and limitations. As models grow more complex and widely 

applied in critical domains such as healthcare and law, clear communication of trade-offs is 

vital to minimize risks and ensure responsible use. 

In conclusion, while substantial progress has been made in understanding biases and their 

trade-offs, significant challenges remain. Task-specific strategies, combined with transparency 

and ethical considerations, are crucial to advancing LLMs that can better balance utility and 

fairness in diverse applications. 
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9 Limitations 

This chapter outlines the key constraints and challenges faced during the replication and 

extension of the four foundational studies on bias in large language models and generative AI 

systems. While this research has made significant contributions by adapting methodologies 

and employing open-source models, several limitations arose due to constraints in model 

selection, experimental setup, data generation, and resource availability. These limitations are 

discussed below to contextualize the findings and to offer guidance for future research in this 

area.  

9.1 Model Selection 

A significant limitation of this study was the inability to access proprietary models 

such as GPT-4, Grok or Claude, which could have served as comparable alternatives to those 

used in the original studies. Instead, this study relied on open-source models to replicate the 

methodolo-gies. While these open-source models provided valuable insights into accessible 

systems, differ-ences in architecture, fine-tuning, and training data may have influenced the 

comparability of results with those of the original studies. At the same time, our selection was 

limited to the size of all models. To ensure the execution of models on computers, this study 

has been limited to models equal to or smaller than 10 billion parameters. This limitation 

could impact the applica-tion to a real-world scenario since enterprises or other organizations 

might not be challenged with the same limited computational power. 

9.2 Task Specific Model Limitations 

Certain models demonstrated task-specific constraints that reduced their utility for 

particular analyses. 

• Coding Models: Models like CodeGen were optimized for programming tasks 

and often generated code instead of meaningful text responses. This made them 
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unsuitable for tasks requiring natural language outputs, such as financial 

advisory or gender bias assessments. 

• Older Models: Historical models such as DialoGPT, OPT, and Google T5 

struggled to respond meaningfully to prompts related to financial and gender 

bias tasks, resulting in nonsensical or irrelevant outputs. Their inability to 

engage with complex tasks limited their inclusion in temporal analyses of bias 

evolution. 

9.3 Dependence on established metrics 

While the evaluation employed widely accepted metrics such as recall, hallucination 

rate, and demographic parity difference (DPD), these metrics may oversimplify the 

complexities of real-world applications. For instance, implicit biases, nuanced safety 

concerns, or the interplay of fairness and privacy may not be fully captured, potentially 

limiting the depth of the study’s findings. 

9.4 Limitations of Experimental Setup & Data Generation 

9.4.1 Computational Constraints 

The study relied heavily on cloud-based platforms like Google Colab and Hugging 

Face due to the high computational demands of larger models. However, these platforms 

introduced significant challenges: 

Kernel Interruptions: On Google Colab, sessions were frequently interrupted, 

especially when running larger models like Falcon, which often stopped after processing 

around 30 queries. These interruptions necessitated manual restarts and slowed the overall 

process. 

Resource Limits: The basic version of Google Colab imposed restrictions on GPU and 

RAM usage, requiring researchers to use multiple accounts or purchase Pro subscriptions to 

handle the workload effectively. 
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Hugging Face API Constraints: Query and token limits on Hugging Face delayed tasks 

that required large-scale experimentation, such as the 30,000 queries needed for the gender 

bias replication. These constraints impacted the pace and scale of the analysis, particularly for 

tasks with high computational demands. 

9.4.2 Temperature and Configuration Settings 

Temperature settings and other configuration options could not be modified for certain 

models, such as those accessed via Ollama. This limited flexibility in exploring how varying 

generation settings might influence bias or response variability, potentially leading to 

uniformity in some model outputs. 

9.4.3 External variables 

Factors such as differences in training data diversity, fine-tuning methodologies, or 

computational resources were not controlled for this study. These variables may introduce 

performance variability and impact the comparability of results across models, particularly 

when analyzing outputs from systems with significantly different training architectures. 

9.5 Limitations of Data Analysis 

9.5.1 Human Surveys and human annotators 

Some of the original studies relied on human surveys to validate correlations between 

model outputs and human perceptions. For example, in studies analyzing sentiment or word 

embeddings, human annotations provided nuanced insights into trends. In this replication, the 

absence of survey-based evaluation limited the interpretive depth of the results. Automated 

tools were employed as alternatives, but these lacked the subjective richness that human 

evaluations could provide, particularly in areas requiring contextual judgment. 
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9.6 Quantifying the Effort 

The replication and extension of these studies required significant time, computational 

effort, and manual intervention, underscoring the challenges of executing large-scale 

experiments under resource constraints. This section provides an estimate of the overall effort 

involved in setting up the models, running the experiments, and managing data collection and 

processing. 

9.6.1 Query Volume 

The gender bias replication involved over 25,000 queries, processed across different 

temperature settings and iterations to ensure robustness. Financial and other text-generation 

tasks required similarly large datasets, collectively exceeding 85,000 queries across 10 open-

source models. For image generation tasks, over 1,000 prompts were executed per model, 

resulting in a total of approximately 10,000 queries across 10 models. In total, more than 

95,000 queries were processed across all tasks, stretching the limits of available 

computational resources and necessitating adaptive strategies to distribute the workload. 

9.6.2 Time Investment 

The process of configuring and running the models required considerable time and 

effort. Initial setup for text generation models, including prompt engineering and platform 

configuration, required approximately two weeks per model, with iterative refinements 

extending this phase to about one month for some tasks. Image-generation models, while 

quicker to set up, still required consistent monitoring during execution. Data collection 

spanned roughly two to three months for text-based tasks, with laptops operating continuously 

overnight to manage the substantial query volumes. In practice, running models frequently 

required restarting processes due to interruptions caused by resource limitations. On Google 

Colab, kernel disconnections occurred after approximately 25 minutes of inactivity, 

particularly for larger models like Falcon, which often froze after 30 iterations. To mitigate 
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these delays, researchers managed up to three models simultaneously using three to four 

Colab accounts, maximizing the available GPU resources. 

9.6.3 Resource Costs 

The reliance on cloud-based platforms such as Google Colab and Hugging Face was 

necessitated by the hardware demands of the models, which could not be run locally due to 

GPU and RAM constraints. While the free-tier versions of these platforms allowed 

experimentation, their limitations—such as restricted processing time and limited query 

volumes—prompted some researchers to purchase Pro accounts to ensure smoother 

execution. Additionally, cloud dependencies created inefficiencies, such as delayed processes 

due to API token limits and restrictions on concurrent tasks. The image generation models, 

despite requiring shorter runtime per batch, still demanded consistent overnight operations to 

complete the large-scale dataset generation. 

Had this study sought to replicate the original papers in their entirety without resource 

constraints, it would have required significant financial investment. Proprietary models like 

GPT-4 and GPT-3.5, along with access to tools such as Face++, would have added substantial 

costs, compounded by the need for comprehensive human survey data and advanced 

computational infrastructure capable of running large-scale models locally. For instance, 

acquiring licenses for proprietary models alone would have incurred prohibitive expenses, 

making the reliance on open-source systems a practical and necessary choice. These 

constraints highlight the inherent trade-offs between accessibility and methodological rigor, 

emphasizing the value of leveraging open-source models to conduct research within 

budgetary and time limitations. 
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9.7 Broader Challenges 

9.7.1 Scope of Comparison 

The diversity of the replicated studies posed challenges in maintaining methodological 

consistency. The four studies spanned text generation, financial advisory, and image-

generation tasks, each requiring tailored prompts and metrics. While efforts were made to 

standardize models across tasks, certain models performed inconsistently depending on the 

task type. For example, models optimized for conversational outputs struggled with financial 

prompts, highlighting the difficulty of applying uniform evaluation methods across diverse 

domains.  

9.7.2 Generalizability of Open-Source Models 

While open-source models allow for a reproducible and accessible replication, their 

performance may not fully reflect that of proprietary systems. Proprietary models often 

benefit from extensive fine-tuning on diverse datasets, which can enhance their ability to 

generate nuanced and contextually appropriate outputs. Open-source models, while valuable 

for understanding broader trends, may lack this refinement, potentially limiting the 

generalizability of findings to real world applications or commercial systems. Similarly, the 

results of the trade-off analysis may be imprecise in their validity, as the reason why models 

perform well on criteria such as Disparagement of Sex and Race, Privacy Leakage and 

Toxicity Avoidance may be due to limitations in prediction, rather than because they are more 

'trustworthy'. 

9.7.3 Domain-Specific Generalizability 

The findings of this study, while robust in their general scope, may not fully generalize to 

specialized domains such as healthcare, finance, or education without additional targeted 

analysis. These domains often have unique requirements and constraints that may necessitate 

further fine-tuning or domain-specific evaluation frameworks.  
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10 Appendix 

1 Glossary  

Bias: A systematic inclination or prejudice, often unfair, toward or against a person, group, or 

idea. Bias influences research and personal relationships, with hundreds of types identified. 

Key biases in this research include selection bias, perception bias, gender bias, ageism, and 

racial bias.  

Ageism: Stereotypes, prejudices, and discrimination based on age, often leading to 

underrepresentation of older adults in research and reduced applicability of findings. 

Gender Bias: A systemic misrepresentation of men and women as either too similar or 

excessively different, affecting research design, sampling, and interpretation. Examples 

include underrepresentation of women in clinical trials, limiting generalizability and 

reinforcing disparities.  

Perception Bias: Arises when individuals’ expectations shape how they interpret 

information, distorting perceptions and leading to inaccurate research findings.  

Racial Bias: Distortions in research due to explicit or implicit prejudices based on race or 

ethnicity. It impacts study design, sampling, and interpretation, often excluding minority 

groups and perpetuating disparities.  

Selection Bias: Occurs when study participants differ systematically from the target 

population, leading to non-representative results. This can distort findings, reduce 

generalizability, and cause confounding effects.  

Information Systems: Integrated systems for collecting, storing, and processing data, 

comprising hardware, software, data storage, and human processes. This research focuses on 
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software components, particularly AI and machine learning, and their potential to perpetuate 

biases.  

Machine Learning (ML): A computer science field where data and algorithms mimic human 

learning, improving over time. Types include:  

• Supervised Learning: Uses labeled data for tasks like regression and classification.  

• Unsupervised Learning: Identifies patterns in unlabeled data, such as clustering.  

• Semi-Supervised Learning: Combines labeled and unlabeled data, often for content 

classification.  

• Reinforcement Learning: Learns via feedback to maximize rewards, used in 

marketing.  

Deep Learning: Employs neural networks for tasks like image recognition, requiring large 

datasets.  

LLMs (Large Language Models): Advanced systems designed to understand and generate 

human-like text. They revolutionized natural language processing and are applied across 

domains.  

Transformer Architecture: The backbone of LLMs, comprising encoders and decoders with 

components like multi-head attention and feed-forward networks, enabling tasks such as 

translation and summarization.  

Parameters: The numerical values within a machine learning model that are learned during 

training to determine how the model processes and predicts data. In the context of LLMs, 

parameters control the relationships between words and concepts.  

Training Data: The dataset used to teach a machine learning model by exposing it to 

examples from which it can learn patterns, relationships, and context. For LLMs, this 

typically includes vast amounts of text from diverse sources.  
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Bias in Information Systems: Bias in systems stems from societal, technical, or emergent 

factors, appearing as data bias (from incomplete datasets), algorithm bias (flawed logic), user 

bias (individual beliefs), or design bias (creator assumptions).  

Bias in Algorithms and ML: Human biases embedded in data, labeling, or design often lead 

to systemic disparities in ML models. These biases are amplified in LLMs, favoring dominant 

narratives and underperforming in minority languages or contexts.  

Bias in LLMs Over Time: As LLMs grow more complex, biases may amplify despite efforts 

to reduce them, highlighting the fairness-performance trade-off.  

Identifying Bias in LLMs: Tools for bias identification include benchmark datasets, 

counterfactual analysis, sentiment analysis, and representation tests to detect disparities or 

stereotyping.  

Mitigating Bias in LLMs: Strategies include data augmentation, fine-tuning with bias-aware 

datasets, adversarial debiasing, prompt engineering, and post-processing to enhance fairness 

and inclusivity.  
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 Metric Evaluation Type Purpose 

Machine 

Ethics 

Social Chemistry 101 

Accuracy 

Classification 

Measures alignment with socially 

accepted norms and values. 

 ETHICS Accuracy Classification 

Tests reasoning based on ethical 

frameworks like virtue ethics and 

deontology. 

 Moral Choice Accuracy Classification 

Evaluates decision-making in moral 

dilemmas with clear outcomes. 

 
Moral Choice Refusal-to-

Answer (RtA) 

Refusal Rate 

Measures the model’s ability to avoid 

rigid or oversimplified answers in 

ambiguous dilemmas. 

 Emotional Accuracy Classification 

Tests emotional understanding and 

sensitivity in responses. 

Fairness Stereotype Recognition Classification 

Measures ability to identify harmful 

stereotypes in input prompts. 

 Overall Agreement Rate Classification 

Evaluates the model's agreement with 

non-biased, neutral content. 

 Stereotype Query Test Refusal Rate 

Evaluates refusal to engage with biased 

or stereotype-based prompts. 

 Disparagement (Sex) Statistical Analysis 

Tests for gender-based disparaging 

remarks in outputs. 

 Disparagement (Race) Statistical Analysis 

Tests for race-based disparagement in 

responses. 

 
Preference Refusal-to-

Answer (RtA) 

Refusal Rate 

Assesses neutrality in preference-based 

queries. 
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Safety Jailbreak Resistance Refusal Rate 

Measures resistance to adversarial 

prompts bypassing safety mechanisms. 

 Toxicity Generation 

Measures likelihood of generating 

harmful or offensive content. 

 Misuse Detection Refusal Rate 

Tests ability to refuse queries asking 

for harmful or illegal content. 

 Exaggerated Safety Refusal Rate 

Measures whether the model 

incorrectly refuses benign queries. 

Truthfulness Internal Accuracy Classification 

Measures factual correctness based on 

internal knowledge. 

 External Accuracy Classification 

Measures factual correctness 

incorporating external sources. 

 Hallucination Generation 

Evaluates generation of plausible but 

false information. 

 Persona Sycophancy 

Embedding 

Similarity 

Tests tendency to agree with user’s 

stated persona, even if incorrect. 

 Preference Sycophancy Percentage Change 

Measures tendency to agree with user 

preferences regardless of factual 

correctness. 

 Adversarial Factuality Percentage Change 

Evaluates resilience to adversarial 

factual challenges. 

Robustness 
Adversarial Perturbation 

(AdvGlue RS) 

Robustness Score 

Tests performance under adversarial 

inputs with noise. 
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Adversarial Instruction 

Perturbation 

Embedding 

Similarity 

Measures robustness to adversarially 

altered instructional inputs. 

 OOD Detection Refusal Rate 

Evaluates ability to detect and refuse 

out-of-distribution inputs. 

 OOD Generalization Micro F1 Score 

Measures adaptability to data not 

present during training. 

Privacy 
Privacy Awareness 

(Normal) 

Refusal Rate 

Assesses ability to avoid disclosing 

sensitive information in standard 

contexts. 

 
Privacy Awareness 

(Augmented) 

Refusal Rate 

Tests privacy compliance under 

adversarial scenarios. 

 
Privacy Leakage Refusal-

to-Answer (RtA) 

Refusal Rate 

Evaluates resistance to revealing 

sensitive training data. 

 
Privacy Leakage 

Training Data (TD) 

Leakage Rate 

Measures direct leakage of sensitive 

data from the training set. 

 

Privacy Leakage 

Counterfactual Data 

(CD) 

Leakage Rate 

Tests generation of plausible but 

fabricated private information. 

 
Privacy Awareness 

Correlation 

Correlation Analysis 

Evaluates correlation between privacy-

related refusals and user-provided 

context. 

Appendix 1: Metrics Description 
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Appendix 2 Correlation Heatmap of LLM Performance Metrics 
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Appendix 3. Explained Variance of Principal Components 

Appendix 4 Loadings of Metrics for each Principal Component 
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Appendix 5: Correlation of Imputed and Dropped PCA Components for each Category 

 

Appendix 6: Silhouette Score for Clustering 
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Appendix 7 Elbow Method Results 

 

 

Principal 

Component 

Coefficient Std. Error t-Statistic P-value 95% CI Lower 

95% CI 

Upper 

Machine Ethics 47.8471 10.159 4.710 0.000 26.310 69.384 

Fairness 54.6587 10.563 5.175 0.000 32.267 77.051 

Robustness 46.2322 10.745 4.303 0.001 23.455 69.010 

Privacy -12.9856 11.823 -1.098 0.288 -38.049 12.078 

Truthfulness 47.7441 6.045 7.899 0.000 34.930 60.558 

Safety 43.1866 14.989 2.881 0.011 11.411 74.962 

Appendix 8 Univariate Regression Results 
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Appendix 10. R-Squared by PCA Component 

Principal 

Component 

Coefficient 

Std. 

Error 

t-Statistic P-value VIF 

Const 1044.95 9.311 112.229 0.000 1.176 

Machine 

Ethics 

23.3751 15.28 1.52 0.15 5.15 

Fairness 10.46 1.89 0.702 0.497 4.04 

Robustness -28.905 18.543 -1.559 0.147 7.499 

Privacy -11.1 5.824 -1.92 0.081 1.225 

Truthfulness 33.67 11.409 2.951 0.013 3.95 

Safety 23.21 14.58 1.592 0.14 3.385 

Appendix 9. Multivariate Regression Results 
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Appendix 11: VIF Scores by PCA Component 

 

 

Appendix 12: Comparison of Rsquared values 
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Model Name Release Date Organization Size Architecture Type 

Baichuan-13B Jun 2023 Baichuan AI 13 billion Decoder 

ChatGLM2 Jul 2023 Tsinghua  130 billion Decoder 

ChatGLM3 Nov 2024 Tsinghua  175 billion Decoder 

ChatGPT Nov 2022 OpenAI 175 billion Decoder 

ERNIE Mar 2019 Baidu 10 billion Encoder-Decoder 

GLM4 Oct 2024 Tsinghua 200 billion Decoder 

GPT-4 Mar 2023 OpenAI 1 trillion Decoder 

Koala-13B Apr 2023 UC Berkeley 13 billion Decoder 

Llama2-13B Jul 2023 Meta AI 13 billion Decoder 

Llama2-70B Jul 2023 Meta AI 70 billion Decoder 

Llama2-7B Jul 2023 Meta AI 7 billion Decoder 

Llama3-70B Sep 2024 Meta AI 70 billion Decoder 

Llama3-8B Sep 2024 Meta AI 8 billion Decoder 

Mistral-7B Oct 2023 Mistral AI 7.3 billion Decoder 

Mistral Oct 2024 Mistral AI 141 billion Mixture of Experts 

OASST-12B Aug 2023 Open Assistant 12 billion Decoder 

PaLM 2 May 2023 Google 340 billion Decoder 

Vicuna-13B Apr 2023 LMSYS 13 billion Decoder 
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Vicuna-33B Apr 2023 LMSYS 33 billion Decoder 

Vicuna-7B Apr 2023 LMSYS 7 billion Decoder 

WizardLM-13B Jun 2023 Microsoft 13 billion Decoder 

Appendix 13: Models evaluated in TRUSTLLM Paper 

Arena Score = β0 + β1 * xFairness+ β2  * xSafety + β3 * xMachineEthics + β4 * xRobustness + β5 * xTruthfulnes 

Appendix 14: Regression Formula 
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