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Abstract

This thesis investigates biases in Large Language Models (LLMs) by analyzing their
responses to knowledge- and reasoning-based prompts, evaluating bias evolution across
selected models. Persistent biases in knowledge-based prompts are linked to skewed data and
hallucinations, while reasoning-based prompts reveal context-dependent systemic inequities.
Larger text-to-text models often enhance accuracy but may amplify biases, whereas targeted
interventions in text-to-image models show modest bias reductions, reflecting industry efforts
to improve representation. The trade-off analysis emphasizes domain-specific LLM
deployment, balancing fairness, reliability, and utility for equitable and effective Al
applications. Focusing on trust-utility trade-offs, this study examines LLM performance
across Truthfulness, Safety, Fairness, Robustness, Privacy, and Machine Ethics. The research
uncovers synergies and conflicts among these metrics. Results identify Truthfulness as key to
utility, revealing significant trade-offs in fairness, safety, and privacy dimensions. The study
highlights the need for transparent trade-off management, offering insights to develop ethical,

reliable, and high-performing LLMs for diverse applications.
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2 Introduction

Large Language Models (LLMs) have emerged as transformative tools in artificial
intelligence, driving remarkable advancements in natural language processing and generation.
Their deployment in applications from decision support to creative content generation have
revolutionized industries and everyday life. However, as their influence grows, concerns about
their inherent biases arise. Gender, racial, and cultural biases embedded in these models can
perpetuate societal inequalities and stereotypes, challenging their fairness and raising ethical
questions about their implementation. Addressing these biases is not just a matter of technical
refinement but a pressing societal and ethical imperative.

The problem of bias in LLMs is deeply complex for several reasons. On one hand, the
biases originating from training data and algorithmic design can lead to outputs that reinforce
harmful stereotypes or marginalize perspectives, undermining fairness and inclusivity. On the
other hand, mitigating these biases often entails trade-offs that impact key characteristics of
LLMs and their utility. The intricate interplay between LLM characteristics, such as fairness,
truthfulness, safety, privacy, and model utility remain poorly understood, presenting both
theoretical and practical challenges for researchers and developers.

This research addresses these challenges through a dual focus. The first goal is the
replication and extension of previous bias studies, which builds on four investigations into
biases in LLMs. By replicating and extending these studies to include open-source models, this
research examines how biases have evolved over time and across architectures, offering a
longitudinal perspective on bias progression. The second aim builds on this foundation by
exploring the broader implications of bias presence within the context of other LLM
characteristics.

The thesis begins with a literature review, which examines foundational work on biases in

LLMs. Following this, the framework of replication and trade-off study establishes the



conceptual approach underpinning the research. The following methodology details the
analytical set up needed to be employed and discusses the models that were investigated. The
first analytical part rigorously replicates and extends prior studies on biases in LLMs. This
investigation provides the empirical groundwork for the subsequent analysis, which expands
the focus to a broader evaluation of key performance areas and their relationship with model
utility.

By linking the evolution of biases to the trade-offs inherent in dimensions such as fairness,
safety, and privacy, the thesis bridges the gap between viewing bias as an isolated issue and
understanding it as part of the broader framework of LLM trustworthiness. This integrated
approach ensures that insights into existing biases are directly linked to their implications for
overall model performance and utility, offering a cohesive perspective on the ethical and

functional development of LLMs.



3 Literature Review
This literature review explores the multifaceted issue of biases in both human contexts

and machine learning systems, with a particular focus on large language models.

3.1 Biases

Bias is a systematic inclination or prejudice for or against a person, group, idea, or
thing, often in a way that is considered unfair (Oxford University Press 2023). It is a
particularly relevant topic in research, where attention to such errors is fundamental to prevent
flawed results. Hundreds of different biases were found to influence research and personal
relationships. The research mainly focuses on the following kinds: selection Bias, perception

bias, gender bias, ageism, and racial bias (refer to Glossary for further definition).

3.1.1 Perception Bias

“Perception bias occurs when individuals' expectations, or "prior beliefs," influence
how they interpret information” (MIT News 2019). While this bias helps us process vast
amounts of information, it often leads to distorted perceptions of reality, compromising the
accuracy and reliability of research findings. For instance, participants may overestimate or
underestimate their behaviors based on perceived social norms, resulting in self-reports that

fail to reflect actual behaviors (Podsakoff et al. 2003).

3.1.2 Gender Bias

Gender bias refers to a systematic, erroneous approach in scientific and societal
contexts that misrepresents men and women as either too similar or excessively different,
rather than as equals (Mind the Graph 2023; BMJ 2007). This bias arises from deeply
ingrained cultural, institutional, and cognitive factors, and it manifests in various stages of
research and decision-making. It influences the scope, methodology, and outcomes of
scientific inquiry by shaping the questions asked, the populations studied, and the

interpretation of findings. For example, research questions may inadvertently reflect gender



stereotypes, while population sampling may underrepresent women or men, particularly in
fields like medicine or economics.

Such distortions often result in an incomplete understanding of human biology,
behavior, and health. In medical research, for instance, the historical exclusion of women
from clinical trials has led to treatments and dosages that are less effective, or even harmful,
for female patients. This underrepresentation not only limits the generalizability of findings
but also reinforces gender disparities in fields where fairness and inclusivity are critical

(Verdonk et al. 2009; Holdcroft 2007).

3.1.3 Racial Bias

Racial bias in research refers to distortions caused by systemic, institutional,
interpersonal, or individual prejudices, both explicit and implicit, against individuals or
groups based on social constructs of race or ethnicity (Catalog of Bias 2023). This bias can
affect various stages of research, including the planning, methods, interpretation, and
application of findings. For instance, the underrepresentation of racial and ethnic minorities in
clinical trials often results in findings that cannot be generalized to diverse populations (Chen
et al. 2021). Such biases undermine the fairness, accuracy, and applicability of scientific

results and perpetuate disparities in health outcomes and other fields (Murthy et al. 2004).

3.2 Machine Learning

“Machine learning (ML) is a branch of computer science that focuses on using data and
algorithms to imitate the way humans learn, gradually improving its accuracy” (TechTarget
2023). Nowadays, models are being deployed in all kinds of industries and applications, from
healthcare and academic research to dynamic pricing models, transportation, and financial
markets. The machine learning space is populated by several branches, with different scopes

and methodologies (Datascientest 2023).



Branch Type of Data Use Case

Supervised Learning Labelled Regression-Classification
Unsupervised Learning Unlabelled Clustering
Semi-Supervised Learning Labelled-Unlabelled  Web Content Classification
Reinforcement Learning Feedback Marketing-Advertising
Deep Learning Labelled Image Recognition

Table 1: Machine Learning Branches

3.3 LLMs
LLMs are advanced natural language processing systems designed to understand,
generate, and manipulate human-like text. These models have revolutionized natural language

processing and have found applications across various domains.

3.3.1 Biases in Algorithms & Machine Learning

Algorithms and machine learning models are particularly susceptible to perpetuating
and amplifying human biases, reflecting historical inequities embedded in their training data,
labeling processes, and algorithmic designs (Jain et al. 2022). These biases often emerge from
over or underrepresentation of specific groups in the training datasets, inconsistent data
labeling, or unconscious cognitive biases of developers during model creation (Kordzadeh
and Ghasemaghaei 2021). LLMs amplify this issue due to their reliance on massive, human-
generated text datasets (IBM 2023). Demographic, cultural, and linguistic biases are common,
with LLMs frequently favoring dominant cultural narratives, stereotyping certain groups, and
performing better in certain languages or dialects (University of Washington Information

School 2021). Literature suggests that while LLMs have achieved significant performance
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improvements over time, their evolution has not consistently reduced bias (Gallegos et al.

2024).

3.3.2 Biases in LLMs Over Time

While LLMs have shown impressive improvements in performance, the trade-off with
bias reduction is not always straightforward (IBM 2023). Some studies suggest that as models
become more powerful, they may amplify certain biases (Kordzadeh and Ghasemaghaei
2021). While targeted debiasing techniques have demonstrated potential in reducing biases
without drastically impacting overall performance, the growing power of LLMs introduces
increasing concerns about fairness. As LLMs become more capable, their perceived
trustworthiness and resilience in society also increase, making biases within these systems
more problematic. Recent research underscores this concern by highlighting the trade-offs
between fairness and performance. For example, Zhang et al. (2024) investigate the fairness-
accuracy trade-off in LLMs, showing that achieving a balance remains a significant challenge
as models scale in complexity and application scope. Similary, Wang et al. (2021) analyze the
fairness-accuracy discrepancy in machine learning systems, emphasizing how improved
accuracy can sometimes come at the expense of fairness. This tension between performance
and fairness underlines the need for deliberate and transparent efforts to address biases while

maintaining trust in these powerful systems.

3.3.3 Identification & Mitigation of Biases in LLMs

The identification and mitigation of biases in LLMs require systematic approaches that
span the entire lifecycle of model development. Identifying biases involves analyzing model
behavior through specialized tools and evaluation techniques (Zhang et al. 2024), while
mitigation focuses on improving fairness and reducing disparities in outputs (Wang and
Russakovsky 2023). A comprehensive approach also incorporates ethical Al principles,

stakeholder involvement, regular audits, and transparency in model development (Jain et al.
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2022; Caton and Hass, 2020). Despite these efforts, fully eliminating bias remains a complex

and evolving challenge as Al systems advance (Kordzadeh and Ghasemaghaei 2021).
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4  Framework

The primary objective of the study is to replicate four papers that investigate biases in
LLMs while furthering their reach with a trade-off analysis, studying codependences between
models’ utility and six core metrics. Beyond replication, this work introduces an additional
layer of analysis by examining biases across a diverse range of open-source models spanning
various timeframes. This temporal perspective enables an investigation of how biases evolve
with advancements in model architecture, training data, and deployment strategies. This study
evaluates whether these biases become more pronounced with the introduction of newer and
more sophisticated models, providing critical insights into the development and fairness of
models accessible to smaller organizations and academic researchers.

While the scope is constrained by limitations in time, budget, and manpower, further

explained in section 13, the study maintains an adherence to the original methodologies

wherever feasible.

4.1 Replication of 4 Papers

While each paper explores a unique domain, they share a common focus on evaluating
fairness and representational disparities in Al outputs using reproducible methodologies.

Gender Bias in LLM Factuality (LLMs for Gender Disparities in Notable Persons):
This study analyzes gender-based biases in factual accuracy, hallucination rates, and
declination rates when LLMs respond to prompts about notable individuals. The original
work focused on proprietary models like GPT-3.5 and GPT-4, revealing significant gender
disparities in responses.

Representation Bias in Generative Al (Bias in Generative Al Images): This paper

examines systematic gender and racial biases in text-to-image generative models, highlighting

disparities in representation and emotional depictions of different demographic groups.
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Implicit Bias in Financial Advice (Bias in Financial Advice in LLMs): This study
investigates implicit gender biases in financial advisory contexts, identifying differences in
tone, complexity, and regulatory focus based on gendered prompts.

Demographic Bias in Investment Preferences (Bias in Investment Preferences): The
original research evaluates whether Al-generated investment advice reflects demographic

biases, focusing on gender, income, and age.

4.2 Trade-off Analysis Framework

The trade-off analysis, as an extension to the replication of bias studies, investigates the
complex interdependencies between key characteristics of LLMs their overall utility, aiming
to uncover synergies and trade-offs that inform ethical and practical advancements in model
design. This analysis builds on a structured methodology designed to evaluate the six core
performance dimensions—fairness, truthfulness, robustness, safety, machine ethics, and

privacy—and their collective impact on a model's utility.
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5 Methodology

This chapter outlines the methodological framework employed in this study, detailing the
processes of prompt design, technical setup, model selection, and data generation. By
combining systematic prompt engineering, diverse model integration, and robust data
processing techniques, the methodology ensures a comprehensive evaluation of biases in both

text-to-text and text-to-image systems.

5.1 Prompts

Prompts act as a structured mechanism to translate human queries into actionable inputs
for pre-trained language models. They serve as the foundational link between human intent
and machine comprehension, enabling generative Al to produce specific and contextually
appropriate outputs. By doing so, prompts bridge the gap between abstract user intentions and
the structured, rule-based processes that govern Al systems.

A well-designed prompt clarifies the scope, tone, or detail of the desired response,
improving the Al's ability to generate accurate and meaningful outputs (Hwang et al. 2023).
This makes prompt design or prompt engineering a sophisticated practice that combines
technical expertise with a user-centered approach to design (Zamfirescu-Pereira et al. 2023).
However, the same characteristics that make prompts so powerful also render them
potentially dangerous. Prompts are not neutral inputs; their structure and phrasing
significantly influence the biases, reliability, and fairness of Al outputs. They can
inadvertently reflect and amplify societal stereotypes embedded in training data, raising
concerns about the ethical deployment of Al. These risks are particularly pronounced in
domains like education, healthcare and financial advisers, where biased outputs can have far
reaching consequences. For instance, studies have shown that prompts related to professions,
socioeconomic status, or gender can lead to systematic biases in responses (Zhou et al. 2024).

That is why, intersectional biases present in prompts which combine multiple categories such

15



as race, gender, and socioeconomic status, can produce discriminatory outputs, as seen in
tasks requiring descriptions of successful professionals, which frequently favor young, white
males (Fracassi and Hristova 2024). For instance, when comparing “Who is the CEO of the
company: [John, a middle-aged white man] or [Aisha, a young Black woman]?”, responses
frequently favored “John,” demonstrating biases related to race, age, and gender intersections
(Zhou et al. 2024). These findings underscore the importance of carefully designing prompts
that consider both linguistic subtleties and broader societal implications and highlight the
need for ethical prompt engineering practices that are not only aware of these risks but also
actively mitigate them.

Consequently, throughout this research, this study differentiates between two types of
prompts: “knowledge-based” prompts and “reasoning-based” prompts. This distinction arises
as different prompts are being used in order to scale and analyze the performance of models
of altering architecture and age. A models ability to output factual information is therefore
being tested by using knowledge-based prompts, which aim to derive factual truths. In
contrast, reasoning-based prompts evaluate a model's capacity to synthesize information, draw
logical inferences, and apply problem-solving skills. These outputs are not subject to factual
truths, making them relevant to analyze underlying biases.

This differentiation is critical when measuring bias, as hallucinations—instances where
the model generates false or fabricated content—tend to occur when prompting knowledge-
based prompts. These hallucinations can exacerbate biases if the model's database is not

trained to answer certain specific questions.

5.2 Technical Setup
The technical setup builds upon the methodologies established in the foundational studies

of this paper, expanding them to analyze more than ten models in parallel. This approach
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involves a systematic pipeline that progresses through prompt engineering, model integration

and execution, iteration tracking, and data post-processing:

Prompt
Engineering

Model Integration Iteration Tracking Raw Data

Data Post-

. Data Analysis Tools: Pandas, NumPy, Matplotlib Insights
Processing

Figure 1: Pipeline of Data Gathering

The pipeline, as shown in Figure 1, begins by using existing prompt structures from the
original studies. A standard base prompt might read: “I’m a 30-year-old {profession}, making
{income_level} per year. | have $150,000 available. Where would you recommend me to
invest?” (Smith et al. 2022). In this example, the placeholders " {profession}" and
“{income_level} are iterated over to produce a diverse range of prompts. These variables can
encompass attributes such as age, geographic location, or financial goals, and in some studies,
the number of variables exceeds two. This iterative process generates thousands of prompts,
ensuring comprehensive coverage of the parameter space and enabling robust analysis (Doe et
al. 2023).

Prompt generation and iteration tracking were collaboratively managed using Git for
version control and Visual Studio Code as the development environment. These tools
facilitated synchronized collaboration among team members, ensuring a consistent and
reproducible prompt engineering process. Git repositories tracked changes in how base
prompts and iterations were set up, aligning with established best practices in software

development (Loeliger and McCullough 2012).
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Once prompts were generated, the workflow transitioned to model execution using
Google Colab. To optimize resource utilization, Google Colab's free tier was utilized, which
provided access to NVIDIA T4 GPUs. These GPUs, part of the Turing architecture, offer
significant performance advantages for inference tasks and are particularly well-suited for
large language model execution (NVIDIA, n.d.). By leveraging Google Colab’s free
resources, high-throughput model interactions were conducted without incurring additional
computational costs. Each team member operated separate Colab instances, effectively
creating a distributed computational environment that maximized the utilization of available
free GPUs.

Model integration was achieved through two primary pathways: the Ollama API and
the Hugging Face API. Ollama provided a dedicated environment for querying supported
models, ensuring efficient model querying and precise version control. For models not
accessible via Ollama, the Hugging Face APl was employed, allowing access to a broader
range of proprietary and open-source models. This dual-integration strategy ensured
flexibility in model selection and compatibility within the analytical pipeline, which you can
derive from here.

To ensure efficiency, reproducibility and stability during prompt execution, an
iteration tracking system was implemented. This mechanism verified the progress of each
prompt type and minimized redundancy by systematically checking which prompts had been
completed. The tracker facilitated workflow efficiency by reducing computational overhead,
aligning with best practices in computational reproducibility (Chen et al. 2020).

Following model execution, the collected data was processed into structured datasets for
analysis. This step adhered to methodologies established in prior research, deliberately
retaining all model outputs without applying validation rules that might exclude incomplete or

seemingly invalid responses. By doing so, the dataset reflected the full spectrum of model
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behaviors, enabling a comprehensive and unbiased analysis of large language model

performance.

5.3 Model Selection & Data Generation

In selecting appropriate models for this research on bias in text-to-image and text-to-text
models, several key criteria were established to ensure both feasibility and relevance. The
primary considerations included accessibility, computational efficiency, and recency. Models
were required to be freely available, ensuring they could be utilized without licensing
restrictions or significant financial investment. Additionally, computational demands were a
crucial factor, with a preference for models that could be run on personal laptops without the
need for a dedicated GPU. The selection process was also focused on models released
between 2022 and 2024, as this period marks a significant evolution in the technology, with
text-to-image models gaining widespread adoption in popular culture around 2022, ensuring a
balanced inclusion of both older and newer models without emphasis on older or later models.
Models that fit within this timeframe were considered to capture the advancements in both
architecture and training techniques, which are essential for understanding how bias manifests
in more recent systems. Additionally, models with open-source availability were prioritized,

as they allow for transparency and the ability to replicate and evaluate results.

5.3.1 Model selection for Study Replication Text-to-Image
By considering these factors, the selected models (see Table 2 for model details) offer a
comprehensive range of capabilities that are suitable for examining both the technical and

ethical dimensions of bias in generative Al systems.

Model Name Release Date Organization Size Licensing

DALL-E2 Apr 2022 Open Al 27TM Closed Source
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Stable Diffusion 1.4 Aug 2022 Open Al 890M Open Source
Stable Diffusion 1.5 Oct 2022 Stability Al 890M Open Source
MidJourney 4 Nov 2022 Midjourney, Inc.  Undisclosed  Closed Source
Stable Diffusion 2.1 Dec 2022 Stability Al 2B Open Source
Stable Diffusion XL Jul 2023 Stability Al 3.5B Open Source
DALL-E 3 Oct 2023 Open Al 3.5B Closed Source
MidJourney 6.1 Dec 2023 Midjourney, Inc.  Undisclosed  Closed Source
Black Forest 12B Open Source
Flux.1-dev Aug 2024
Labs
Stable Diffusion 3.5 Oct 2024 Stability Al 8.1B Open Source

Table 2: Text-to-Image Models

The models selected for testing represent a range of capabilities, release periods, and

architectures, offering insight into the evolution of text-to-image generation and potential

biases. DALL-E 2, released in April 2022, prioritizes efficiency with lower memory usage

and faster load times but compromises on image quality. Stable Diffusion 1.4 and 1.5, both

released in 2022, were trained on extensive datasets and implemented techniques such as

classifier-free guidance to enhance image generation. However, these models struggle with

text rendering and exhibit biases favoring Western and white-centric imagery. MidJourney

v4, a model optimized for artistic and stylized outputs, and Stable Diffusion v2.1, which

filtered unsafe content, demonstrate a focus on refining outputs but continue to face

challenges in photorealism and compositional complexity.
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More recent models illustrate advancements in image quality and performance. Stable
Diffusion XL, released in mid-2023, incorporates a two-stage process to improve resolution
and detail, though issues with human representations and legible text persist. DALL-E 3 and
Stable Diffusion 3.5, launched in late 2023 and 2024 respectively, adopt innovative
techniques such as LoRA fine-tuning and Multimodal Diffusion Transformer architectures to
enhance detail and safety. Flux.1-dev, debuting in 2024, leverages rectified flow transformers
and guidance distillation to deliver high-quality outputs efficiently. While these newer models
demonstrate marked improvements in prompt adherence and intricate rendering, they also
reflect biases inherent in their training datasets, highlighting the persistent challenges of

addressing societal and cultural skew in generative models.

5.3.2 Model selection for Study Replication Text-to-Text

Following the goal of the study for text-to-text models, older and smaller models than
the one used in the original papers were deployed, thus focusing on identifying and
understanding bias magnitude trends across several years and different architectures. The
choice of models was not simply guided by limitations or the necessity to focus on open-
source and older models. Working with heterogeneous architecture allows for more
generalizable research, furthermore, the impact of research on the development of LLM space
was also considered. Additionally, it was decided to include models with fewer than 10 billion
parameters to explore biases in models more accessible to people using private systems
without relying on large-scale servers or incurring high costs. Given the nature of the
prompts, the initial focus was on "instructor” models, which are fine-tuned with
conversational data. However, to broaden the scope of the replications by including older and
more diverse architecture, the decision was made to include models that were not specifically

trained for instructional tasks but still produced interpretable responses. For example, Stable-
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Code and Gemma 2, as shown in Table 3, is designed primarily for code generation, yet it

successfully generated accurate answers for most of the prompts used.

Model Name Release Date Organization Size Use Case
Flan T5 XL Dec 2022 Google 2.85B Language Tasks
Falcon Jun 2023 T 7B Conversational Al
Mistral Sept 2023 Mistral Al 7B Conversational Al
Stable-Code Jan 2024 Stability Al 3B Code Generation
Gemma 2 Jul 2024 Google 2B Conversational Al
Phi 3.5 Mini Aug 2024 Microsoft 3.8B Language Tasks
Qwen 2 Aug 2024 Alibaba 1.5B Multilingual Chat
Llama 3.2 Sept 207418 3: TRAEEQ-Text Models 15 Conversational Al
Llama 3.2 Sept 2024 Meta 3B Conversational Al
Qwen 2.5 Oct 2024 Alibaba 3B Multilingual Chat

Models like Falcon and Qwen are particularly valuable for exploring biases relating to

diverse cultural or regional datasets. Falcon, developed in the UAE by the Technology

Innovation Institute (T1I), was trained on a dataset comprising 1 trillion tokens, with

significant portions representing Middle Eastern perspectives. This focus allows researchers

to study how cultural contexts influence model outputs (T1l1 2023). Qwen, developed by
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Alibaba's DAMO Academy, is designed to handle multilingual and multimodal data. It was
trained on a diverse range of datasets, enabling its use in non-Western languages and contexts
(Alibaba DAMO Academy 2023). These models provide a unique lens for examining how
regional diversity in training data shapes demographic biases.

Simpler models like Mistral, Gemma 2, and Phi 3.5 Mini serve as essential baselines
for evaluating how complexity and scale influence bias. Mistral, a 7-billion-parameter model,
was trained on a diverse dataset of 1.5 trillion tokens, demonstrating impressive efficiency
and scalability (Mistral Al 2023). Phi 3.5 Mini, a compact model developed by Microsoft,
was trained on high-quality datasets, including textbooks and synthetic data, showcasing how
smaller models can still achieve competitive performance (Microsoft Research 2023). These
models enable a closer examination of how biases manifest differently in less complex
architectures.

Advanced systems like Flan T5 XL and Llama have had a significant impact on large
language model research. Flan T5 XL, an instruction-tuned model from Google Research, is
optimized for generalization across diverse tasks and has set benchmarks in model
interpretability (Google Research 2023). Llama, developed by Meta Al, ranges from 7B to
70B parameters and was trained on a carefully curated dataset of 1.4 trillion tokens. Its high-
quality open-source training data and scalability make it a cornerstone for bias studies in LLM
research (Meta Al 2023). These advanced models provide state-of-the-art benchmarks for

comparing bias mitigation strategies across generations of language models.

5.4 Models in Trade-Off Analysis

The dataset for the trade-off analysis includes a diverse range of LLMs to examine the

interplay between trustworthiness and performance_(Appendix 13). Architecturally, most

models use decoder-only frameworks optimized for generative tasks, while models' sizes span
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from compact ones like Llama2/7B with 7 billion parameters to massive architectures such as
GPT-4, estimated at 1 trillion parameters.

The selection represents global contributions from institutions like Tsinghua University,
OpenAl, and Meta Al, reflecting a variety of cultural and methodological approaches. Models
released from 2019 to 2024, including early designs like ERNIE and advanced architectures
like Mistral, capture technological evolution over time. Both proprietary systems like GPT-4
and open-source models such as Llamaz2 are included, providing insights into the balance
between transparency, accessibility, and advanced safety features.

Finally, the dataset spans models designed for research-focused use, such as WizardLM,
and those optimized for broad commercial applications, like ChatGPT. This comprehensive
mix ensures a robust evaluation of trust metrics across different development philosophies

and application scenarios.
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6 Individual Part V - Balancing Trust and Utility in Large Language Models: A

Comprehensive Trade-Off Analysis of Key Performance Metrics

1 Introduction

Efforts to address bias in LLMs have traditionally focused on demographic biases, such
as those related to gender, race, or stereotypes (Bai et al. 2024; Fulgu 2024; Kotek 2023).
While valuable, this focus is insufficient for real-world applications, where biases must be
examined alongside performance characteristics like safety, robustness, privacy, truthfulness,
machine ethics. These metrics collectively define the trustworthiness of LLMs, determining
their suitability for high-stakes domains (Weidinger et al. 2021; Sun et al. 2024).

This research integrates bias within a broader framework of trust metrics to explore
their interconnections and collective impact on LLMs trustworthiness and utility.
Improvements in one dimension often lead to trade-offs in others, bias mitigation may reduce
robustness to adversarial inputs and enhancing privacy might limit truthfulness (Raji et al.
2020; Geirhos et al. 2020). Here, transparency is critical for assessing these trade-offs,
clarifying where LLMs can be responsibly deployed without degrading performance
(Bommasani et al. 2023).

Addressing these interdependencies is critical to meet societal expectations for ethical
responsibility and trustworthiness while being effective. This comprehensive trade-off
analysis highlights synergies and conflicts, enabling informed decisions on how trust metrics
both influence overall performance and each other (Miao et al. 2022).

The objective of this research is to provide actionable insights into balancing key
performance areas, thereby fostering the development of LLMs that are ethically responsible,

reliable, and highly utilitarian.
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2 Methodology
The following overview of methodology outlines the groundwork for a comprehensive
analysis of LLMs key performance areas, guiding the investigation into their relationships,

synergies, and trade-offs.

2.1 Description of the TRUSTLLM Dataset

The TRUSTLLM dataset provides a robust framework for evaluating the
trustworthiness of LLMSs across key dimensions: truthfulness, safety, fairness, robustness,
privacy, and machine ethics (Sun et al. 2024). Designed for real-world challenges, it enables
the assessment of LLMs in high-stakes applications, offering a holistic perspective on
trustworthiness.

The TRUSTLLM framework evaluates 21 diverse LLMs, including proprietary
models like GPT-4 and open-source alternatives such as Llama3, encompassing a wide range
of architectures, sizes, and training methodologies (Appendix 13). The evaluation employs
over 30 curated datasets, designed to assess tasks such as misinformation detection,
adversarial safety, stereotype neutrality, and privacy risk mitigation. Using 31 specific
metrics, such as factual accuracy for truthfulness, toxicity detection for safety and bias
detection in Fairness, TRUSTLLM provides a detailed analysis of each model’s strengths and
weaknesses (Appendix 1).

As a reference for overall performance, the Chatbot Arena leaderboard evaluates
LLMs by assessing their alignment with human preferences through pairwise comparisons in
a crowdsourced setting. Users interact with two anonymous models, compare their responses,
and vote for the preferred one, enabling rankings based on human judgments (Xu et al. 2023).
This approach is effective because it directly reflects user preferences and evaluates models in

real-world conversational contexts, capturing nuanced qualities that static benchmarks often
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miss (Xu et al. 2023).

2.2 Data Collection, Preparation and Cleaning

The TRUSTLLM dataset and Arena leaderboard were sourced from publicly available
repositories by Hugging Face, ensuring transparency and reproducibility. Data scraping
techniques retrieved model-specific performance metrics for 21 models evaluated across 31
trustworthiness metrics (Appendix 1 & 48). As not all metrics showed a similar direction
towards “more trust”, metrics were transformed so that higher values always indicate more
trustworthiness.

Missing values (1.7%) affected four metrics, and two handling approaches were
tested: KNN Imputation and Row-Dropping. KNN Imputation, which fills gaps based on
metric similarities, preserved the dataset's structure and proved superior. Row-Dropping
reduced the dataset by 25% and caused distortions, globally recalibrating PCA and shifting
variance distributions, notably affecting metrics without missing values such as truthfulness.
Despite this, metrics with missing values showed high correlations (above 95%) between
imputed and dropped datasets, affirming imputation’s reliability in maintaining analytical
integrity (Appendix 5).

Three models (baichuan-13b, ernie, and oasst-12b) were excluded due to inconsistent
benchmarking in the ARENA metric. To integrate ARENA scores, max-min scaling was
applied, preserving relative differences and avoiding distortions from extreme values or
varying scales. This preprocessing ensured comparability across models and maintained
analytical rigor. These steps enabled a robust foundation for exploring trust-utility trade-offs,
maintaining structural consistency while addressing missing data and scaling issues

effectively.

2.3 Analytical Approaches
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To explore relationships and patterns within the TRUSTLLM and Arena Leaderboard, a
variety of analytical methods were applied, as shown in Figure 2. A correlation analysis
examines relationships among trustworthiness metrics in the TRUSTLLM dataset, focusing
on six dimensions: truthfulness, safety, fairness, robustness, privacy, and machine ethics.
Pearson correlation coefficients quantified these relationships. A heatmap visualized
correlations, revealing potential trade-offs and synergies (Appendix 2). Key patterns were
analyzed to guide further study. PCA reduced metric dimensionality within each trust
category, consolidating variability while retaining essential information. This enabled clearer
exploration of trade-offs and synergies. Standardization ensured comparability across metrics,
preventing dominance by larger ranges.

Clustering grouped models by key performance areas with k-means algorithm. The
optimal clusters were determined via the elbow method and silhouette score. Clusters were
analyzed for performance of the LLM characteristics, revealing trade-offs among dimensions.
Regression analysis explored relationships between key performance areas and utility.
Univariate regression assessed independent contributions, while multivariate regression
evaluated combined effects. The analysis quantified trust dimensions’ utility impact,
highlighting interactions, synergies, and trade-offs. Key findings identified dimensions most

affecting performance, guiding trade-off management in development.
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This chapter delves into the analytical results, uncovering the intricate relationships
between metrics, dimensions, and trade-offs that define model performance and

trustworthiness.

3.1 Correlation Analysis

The correlation analysis provides a foundational understanding of the interactions
between various trust dimensions, uncovering key synergies and trade-offs that are essential
for optimizing model utility and alignment. This section focuses on exploring these dynamics
in detail, emphasizing how specific dimensions influence each other. For reference, the

heatmap of correlations is included in Appendix 2 due to space constraints.

3.1.1 Machine Ethics and Robustness as Supporting Drivers

Machine ethics and robustness metrics are pivotal in enhancing trustworthiness, as
they positively impact various trust dimensions. Attributes like moral reasoning and resilience
to adversarial challenges help improve overall fairness, accuracy, and reliability in models
(Appendix 2). However, achieving high scores in these areas can lead to challenges, such as
conflicts with privacy protection or ensuring unbiased outputs, that are further explored in the

sections on fairness (3.1.3) and privacy (3.1.4).

3.1.2 Truthfulness: Factual Accuracy vs. Sycophantic Behavior

Truthfulness metrics exhibit a dichotomy between those that evaluate factual accuracy
and those that measure sycophantic behavior. Metrics assessing factual accuracy like Internal-
and External Truthfulness, besides aforementioned synergies with machine ethics and
robustness, also align strongly positive with metrics measuring awareness of fairness, such as
Stereotype Recognition (r = 0.8). Increased factual accuracy moreover reduces hallucination
rates. On the other hand, metrics capturing resistance to sycophantic behavior, such as
Preference Sycophancy, characterized by excessive alignment with user inputs, reveal notable

trade-offs. These metrics exhibit negative correlations with factual accuracy (Internal
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Truthfulness, r = —0.3) and machine ethics (e.g. Social Chemistry, r = —0.7). Furthermore,
resistance to sycophantic behavior shows tradeoffs with fairness metrics (e.g. Stereotype
Recognition, r = —0.25) and robustness metrics (e.g. AdvGlue, r = —0.3). This dual nature of
truthfulness highlights a significant challenge in LLM design: improving factual accuracy often

comes at the cost of increased user alignment bias.

3.1.3 Fairness: Awareness-Based vs. Generation-based Metrics

Fairness metrics in the TRUSTLM leaderboard can be divided into awareness-based
and generation-based types. Awareness-based metrics, such as Stereotype Recognition,
evaluate a model’s ability to identify fairness-related issues, reflecting conceptual
understanding. In contrast, generation-based metrics, like Disparagement of Sex, assess biases
in generated content, which demand seamless application of fairness principles.

A notable trade-off exists between these metrics, with significant negative correlations
(e.g. Fairness Overall Agreement Rate and Disparagement of Sex: r~ —0.5). This suggests that
models being aware of fair values still struggle to produce unbiased outputs.

Awareness-based metrics show strong synergies with other performance areas like
ethical reasoning, factual accuracy and resilience to adversarial inputs. Conversely, generation-
based metrics often introduce significant trade-offs. They negatively correlate with machine
ethics (e.g. MoralChoice, r = — 0.8), safety (e.g., Jailbreak Resistance, r = —0.6), truthfulness
(e.g. Adversarial Factuality, r = —0.6), and robustness (e.g. OOD detection, r = —0.63),

indicating higher performance across those dimensions come at the cost of bias.

3.1.4 Privacy: Awareness vs. Leakage

Privacy metrics present a clear dichotomy between Privacy Awareness and Privacy
Leakage. Privacy Awareness demonstrates a positive alignment with key performance areas
such as factual truthfulness, robustness, and fairness awareness. This highlights the

interconnected nature of trust dimensions, where improvements in one area, such as ethical
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robustness or fairness, naturally reinforce privacy-aware behaviors. However, Privacy
Leakage, measuring resistance against disclosing sensitive training data, introduces
significant trade-offs. Metrics associated with privacy leakage negatively correlate with
awareness-based fairness (e.g. Stereotype Recognition, r = —0.4), machine ethics (e.g. Moral
Choice, r = —0.3), and robustness (e.g. OOD detection, r = —0.4). These findings indicate that
while raising awareness about privacy concerns can enhance trustworthiness, efforts to
mitigate the risks of disclosing sensitive training data often conflict with various inherent

characteristics of LLMs.

3.1.5 Safety: Balancing Caution and Utility

Safety metrics reveal a dual picture: they create positive synergies in some areas while
introducing trade-offs in others. Metrics measuring resistance to jailbreak and misuse
correlate strongly with performance in key dimensions, such as robustness, truthfulness,
awareness-based fairness, moral reasoning, and privacy awareness (Appendix 2). These
positive correlations highlight that models strong in these safety metrics perform better at
handling adversarial and ethical challenges while maintaining security. Remarkably, models
that exaggerate safety—such as refusing harmless prompts like "How do I kill a Windows
process"—tend to perform better in resisting jailbreaks. Despite this, models with higher
refusal rates in exaggerated safety still perform well across key LLM characteristics.

However, mechanisms designed to prevent toxic responses introduce trade-offs across
key performance dimensions of LLMs. Toxicity Avoidance - a content-based metric -
evaluates the level of toxicity (e.g. rude, disrespectful comments) in the model’s output. It
negatively correlates with awareness-based fairness metrics like Stereotype Recognition (r =
—0.4), factual accuracy (e.g. Internal Truthfulness, r = —0.3), and robustness in adversarial
instructions (e.g. AdvInstruction, r = —0.5), indicating stricter safety mechanism targeting

generated output come at the cost of performance across those areas.
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3.2 Principal Component Analysis (PCA)

The PCA results align with the correlation analysis, offering insights into trade-offs
within individual trust dimensions. The first principal component explains 41% to 52% of
variance, revealing key structural patterns (Appendix 3).

Machine ethics and robustness metrics stand out, showing consistently positive
contributions inside their Principal Component (Appendix 4). Fairness metrics, however,
reveal internal trade-offs, consistent with the correlation analysis, as awareness-based metrics
show the opposite contribution from generation-based metrics. Safety metrics display mixed
contributions, where resistance to jailbreak and misuse load positively, while avoiding
toxicity shows negative contribution. Privacy metrics underscore conflicts as Privacy Leakage
loads positively and oppositely to Privacy Awareness. Finally, the truthfulness principal
component highlights the tension between factual accuracy and behavioral biases. In
summary, the principal components paint the same interaction picture analyzed in the
correlation analysis section, showing high correlation in-between those dimensions

(Figure3l).
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Figure 3: Correlation Heatmap of Principal Components
3.3 Clustering
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The clustering analysis highlights key insights among performance areas in language
models. Two clusters were identified, determined by the elbow method and silhouette
analysis: Cluster 0 (6 observations) and Cluster 1 (15 observations) (Appendix 6 &7).
Cluster 1, dominated by proprietary and resource-intensive models including GPT-4 and
Llama variants, excels across all principal components except privacy (Figure 4). Combining
these scores with the PCA loadings, Cluster 1 reflects models aligning ethical concerns,
exhibiting strong robustness, and achieving high factual accuracy, being aware of fair values
while showing resistance to jailbreak and misuse. However, Cluster 1 shows tendencies
toward sycophantic behavior, explicit bias and the avoidance of toxic outputs. These models
show awareness but struggle with data leakage in privacy.

In contrast, Cluster O primarily open-source and smaller-scale models, such as
Baichuan-13b and Vicuna-7b, shows better protection against data leakage, less biased output,
reduced sycophantic behavior, and better prevention of toxic outputs. However, these gains
come at the cost of underperformance in machine ethics, robustness, factual accuracy, and
safety in jailbreak and misuse. This distribution highlights the varying emphases and trade-

offs in design priorities among the analyzed models.
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Figure 4: Clusters with Performance in the Principal Components

3.4 Regression Analysis
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The regression analysis provides critical insights into the relationship between key

performance areas and model utility, according to:

* *
Arena Score = BO + Bl * XFairness+ BZ * XSafety+ BS XMachineEthics + B4 * XRobustness + BS XTruthfulness

Equation 1: Regression Formula, Target: Arena Score, Predictors: Trust Dimensions

Initial regression results highlight the central role of truthfulness, which emerged as the only
significant predictor in multivariate regression, despite strong univariate contributions from
machine ethics, fairness, robustness, and safety (Appendix 8). However, multicollinearity,
particularly due to robustness (VIF = 7.5), introduced instability in coefficient estimates
(Appendix 9).

To address these concerns, robustness was excluded, resulting in lower VIF values
across the remaining predictors (Table 5). This adjustment resulted in a minor drop in model
fit (R2 = 87.3% — 84.5%, Adjusted R = 80.4%— 78%) but clarified independent effects,
indicating a minor reduction in explanatory power while improving interpretability (Appendix
12). In the revised regression, truthfulness remained the only significant predictor (Coef. =
33.5, p=0.017, Table 5).

Machine ethics, fairness, and safety showed weaker and non-significant independent
effects. These results suggest that truthfulness captures much of the shared variance among
performance areas (Figure 3). Similarly, while the removal of robustness resulted in only a
minor reduction in model fit, this suggests that robustness contributes indirectly to utility

through its high correlation with truthfulness.
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Principal

Component Coefficient Std. Error t-Statistic ~ P-value VIF
const 1048.2095 9.599 109.198 0.000 111
Machine Ethics 8.7940 12.789 0.688 0.505 3.22
Fairness 5.7260 15.428 0.371 0.717 3.87
Privacy -8.2538 5.835 -1.415 0.183 1.09
Safety 8.7868 11.924 0.737 0.475 2.02
Truthfulness 33.5370 12.070 2.779 0.017 3.95

Table 4: Multivariate Regression Results, Target Variable: ARENA Score

4 Discussion

Building on the insights from the analysis, this discussion explores the broader
implications of balancing key performance dimensions in LLMs.
4.1 Synthesis of Findings

The analysis revealed key interactions among LLM performance metrics, highlighting
synergies and trade-offs impacting trustworthiness and utility. Clustering identified two
model archetypes: those excelling in synergy dimensions but facing trade-offs like showing
more biased predictions or producing toxic outputs and those mitigating trade-offs but
underperforming in broader performance dimensions. Truthfulness emerged as the primary
utility driver and sole significant predictor in multivariate models. While machine ethics,
robustness, fairness, and safety were not independently significant, their strong correlations
with truthfulness (r = 0.6 — 0.8) indicate a supportive role. Privacy leakage mechanisms
showed a marginally negative, nonsignificant impact. These findings underscore truthfulness

as central to utility while managing trade-offs carefully.

4.2 Understanding the Role of Performance Dimensions in Shaping Utility
Interpreting the regression analysis reveals key insights into the interplay between

performance metrics, emphasizing their implications for practical applications.
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4.2.1 Factual Accuracy as Central Role

Regression analysis highlights the critical importance of factual accuracy. This
supports findings by Bommasani et al. (2021) on the centrality of factual accuracy in
enhancing Al performance. As the primary driver of utility, truthfulness ensures that outputs
align with real-world facts, making it essential for building trustworthy models that excel in
high-stakes applications like healthcare, law, and education. For developers, this underscores
the need to prioritize truthfulness metrics in training and evaluation pipelines. By focusing on
factual accuracy and resilience against misinformation and hallucinations, developers can
create models that not only enhance utility but also set a standard for reliability and
adaptability. Truthfulness, as the cornerstone of performance, should guide decision-making
in model design and optimization. However, the utility derived from truthfulness is not
without trade-offs, particularly concerning sycophantic behavior, which requires careful

management to maintain both ethical and factual integrity.

4.2.2 The Sycophantic Behaviour Trade-off

Sycophantic behavior in LLMs reflects a critical trade-off associated with model size
and adaptability (Wei et al. 2023). Larger models tend to exhibit more pronounced
sycophantic tendencies (Chen et al. 2024). With an increased parameter count, they generally
perform better across trust dimensions, including factual accuracy in truthfulness, due to their
increased capacity for understanding and contextual reasoning. While positively contributing
to utility by enhancing user satisfaction and perceived effectiveness, over-alignment
introduces biases and risks, particularly in scenarios requiring principled reasoning or
adherence to factual correctness.

Sycophantic behavior requires domain-specific strategies. Applications demanding
high factual accuracy and principled reasoning, such as healthcare or legal consultations,

should minimize sycophantic tendencies to ensure unbiased and reliable outputs (Chen et al.
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2024). Conversely, user-focused applications like customer service may benefit from a degree
of alignment to enhance engagement and satisfaction, even if objectivity is slightly

compromised.

4.2.3 Interplay Between Truthfulness and Other Performance Areas

The prioritization of truthfulness as the foundation of utility in LLMSs reveals a complex
dynamic with other performance areas. While dimensions like machine ethics, robustness,
fairness, and safety act as secondary layers that support truthfulness and indirectly enhance
utility, their alignment often comes at a cost. Developers must navigate trade-offs where the
emphasis on truthfulness can conflict with other trust metrics. The following chapters discuss

those trade-offs:

4.2.3.1 Fairness: Navigating Trade-offs in High-Utility Models

While awareness-based fairness metrics strongly align with factual accuracy in
truthfulness (r = 0.8, Figure 3), generation-based metrics like Disparagement, showed
significant tradeoffs (r ~ —0.6, Appendix 2). This disconnect underscores the challenge of
translating fairness awareness into unbiased outputs without compromising factual accuracy.
High-utility models often exhibit increased explicit bias in their outputs - likely not due to a
lack of fairness awareness but as a result of inherent tensions between optimizing for factual
accuracy and mitigating bias, favoring alleged correctness over equity (Bai et al. 2022).
Research by Zhang et al. (2024) supports this, showing that enhancing accuracy can diminish
fairness due to the competing demands of these objectives. Models relying on generalizing
across diverse inputs, can reinforce biases if training data embeds them (Wang et al. 2023). On
the other hand, neutral outputs in generation-based metrics are more likely to result from

predictive constraints rather than genuine bias mitigation (Sun et al. 2024).
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This trade-off suggests that while factual accuracy drives utility, it may come at the
cost of explicit bias. To address this, careful management of fairness trade-offs is critical,
especially in high-stakes applications, such as hiring or criminal justice, where explicit bias
could erode perpetuate systemic inequalities (Schwartz et al. 2022). Transparent reporting of

fairness metrics is essential to inform users about the biases and limitations of model outputs.

4.2.3.2 Safety’s Nuanced Impact on Utility

Safety metrics highlight both supportive synergies and challenging trade-offs, arising
from the different nature of safety mechanisms. The difference between Resistance against
Jailbreak/Misuse and Toxicity stems from the scope of their filters. Jailbreak and Misuse
filters target harmful or adversarial prompts, preserving adaptability and factual accuracy
(Appendix 2). Their impact on truthfulness is about preserving reliability under adversarial
pressure. However, findings about exaggerating in safety show, that many models rely on
shallow alignment techniques, like identifying specific keywords (e.g., "kill,” "harm"), rather
than understanding the broader context or intent behind prompts (Sun et al. 2024). Those
filters are most effective when narrowly focused (Wallace et al. 2024). In contrast, broad
toxicity avoidance filters target harmful or offensive generated content. This broad filter
mechanism restricts nuanced reasoning, creating trade-offs (Bommasani et al. 2021; OpenAl
2023). Toxicity avoidance reflects the challenge of balancing safety with adaptability, as
negatively correlating with truthfulness (r = —0.3, Appendix 2).

In high-stakes domains like healthcare, legal advice, and content moderation, strict
Toxicity Avoidance is essential to prevent harm and maintain trust (Mims 2024). Conversely,
in applications like policy analysis, education, or creative tools, some compromise is
acceptable, as overly cautious filtering can hinder engagement, nuanced reasoning, or

innovation. To address this, developers should adopt context-sensitive safety measures.

4.2.3.3 Privacy: Balancing Protection and Engagement
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Privacy metrics demonstrate a nuanced and context-dependent impact on utility,
showing a negative, though non-significant contribution in multivariate regression and a
moderate negative correlation with truthfulness (r~ — 0.3, Appendix 2). To protect privacy,
models implement strict refusal policies and filters to minimize sensitive data disclosure (Sun
et al. 2024). The results indicate that mitigating the risk of disclosure of sensitive data does
not significantly compromise utility overall. Developers have an opportunity to enhance
privacy protection measures without drastically impairing model performance, thus caution is
required. While effective in safeguarding privacy, these measures can compromise
adaptability and depth and erode model’s ability to deliver accurate outputs (Bai et al. 2022).

Preventing sensitive data disclosure in LLMs is critical across all applications, as it
directly affects user trust and compliance with data protection regulations like GDPR (Yan et
al. 2024). By adopting advanced, flexible privacy mechanisms, developers can address
Privacy Leakage comprehensively, ensuring that privacy protection supports both utility and

trustworthiness.

4.3 Clustering Insights: Model Design and Performance Trade-offs

Extending the discussion on trade-offs between trust and utility dimensions, the
clustering analysis highlights how model architecture and scale shape these dynamics. The
discussed key trade-off areas show better results for models in Cluster 0. These open-source,
smaller-scale models are more likely to excel not through advanced management but due to
their simplicity and limitations. Their constrained predictive power reduces the recall of
nuanced or sensitive information, minimizing privacy risks. Similarly, limited generalization
capabilities result in less alignment with user biases or toxic behavior, while weaker
predictability leads to less biased outputs overall. In essence, these strengths arise not from

deliberate design choices but from the limited capacity of these models to engage with
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complex or sensitive scenarios. This observation might indicate a distorted significance in the
results.

In contrast, Cluster 1 models, including proprietary and resource-intensive systems
such as GPT-4 and Llama3-70b, exhibit advanced predictive capabilities and superior
performance in dimensions like truthfulness and robustness while struggling in the discussed
trade-off areas. This implies that, as of today, the widely used high-performing models show
these weaknesses, underscoring the necessity to manage trade-offs, particularly in application-

and domain-specific contexts. Transparency becomes essential to anticipate these challenges.

4.4 Transparency as a Key Enabler

Transparency is essential for addressing the trade-offs and performance challenges in
LLMs, particularly for fostering trust in their deployment across domains (Geirhos et al.
2020). As models grow more complex, understanding and communicating how their
architecture and training influence trust metrics becomes critical. Transparent documentation
of these trade-offs helps users and developers evaluate where an LLM excels or struggles,
enabling informed decisions about its suitability for specific domains and reducing the risk
of overreliance on models in areas where their limitations might have serious consequences
(Marwala et al. 2024). A lack of transparency, particularly in proprietary systems like GPT-4,
obscures why models may fail in areas like privacy or bias mitigation, increasing the risk of
misapplication (Bomassani et al. 2021). This is especially problematic in high-stakes domains
like healthcare, law, or education, where overreliance on a model without understanding its
limitations could lead to harm, ethical violations, or misinformation. Standardized reporting
frameworks, such as model cards and dataset datasheets, combined with explainable Al
techniques, provide essential tools to demystify these trade-offs (Marwala et al. 2024).

Transparency serves as the connective tissue that binds key LLM characteristics

together, providing a framework for understanding how factual accuracy, sycophantic
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behavior, trade-offs, and model constraints interact to shape the utility of LLMs, as shown in

Figure 5.
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Figure 5: Overview of Findings

5 Conclusion

The analysis reveals the intricate balance between LLM attributes and their utility,
highlighting trade-offs and synergies that influence performance. Truthfulness is identified as
the cornerstone of utility, emphasizing the importance of factual accuracy. However,
sycophantic behavior - over-aligning with user inputs to enhance satisfaction—poses
challenges by introducing biases and undermining principled reasoning.

Explicit bias in sex and race and broad toxicity filters, though not directly impacting
utility in regression models, affect truthfulness. Bias shows tensions with factual accuracy
while overactive toxicity filters hinder nuanced reasoning. Larger models, while improving
user satisfaction through alignment, risk objectivity. Privacy leakage constraints, essential for
trust, may also limit the model’s ability to provide detailed, accurate responses. Smaller
models may perform better in certain trade-off areas due to their inherent prediction
limitations, but this could signal a risk of distorted significance in the results.

Transparency is critical in managing these trade-offs. For developers, tools like model
cards and explainable Al illuminate performance challenges, enabling targeted solutions. For

users, transparency fosters trust by clearly communicating strengths and limitations,
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mitigating overreliance and ensuring appropriate application. In high-stakes domains,
transparency and balanced trade-off management are foundational to developing high-
performing LLMs that meet societal and ethical expectations, achieving utility while

navigating the complex interplay of attributes such as truthfulness and fairness.

6 Limitations

The Trade-Off Analysis faced several constraints. First, Arena Scores, while
comprehensive, do not account for domain-specific requirements, limiting findings’
applicability to specialized contexts. Second, PCA-derived metrics capture only 40-50% of
variance, meaning some aspects of the original metrics remain unexplored. Third, interaction
terms were excluded to avoid interpretive complexity with PCA components, limiting
understanding of how trust metrics jointly influence utility. Finally, model characteristics
such as model size, training data or fine-tuning efforts were not consistently controlled,
potentially conflating model-specific traits with trustworthiness trends. Addressing these
limitations in future work, including expanded datasets, interaction modeling, and refined
metrics, would further improve understanding of trustworthiness - performance dynamics in

LLMs.
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7 Main Discussion

The following discussion synthesizes the findings from all four replication studies along-side
insights from the trade-off analysis, aiming to provide a comprehensive understanding of how
biases manifest and evolve in LLMs.

By integrating these perspectives, this section highlights the interplay between model
de-sign, prompt types, and trust metrics in shaping biases and their mitigation. It is crucial to
recognize that text-to-image and text-to-text models operate under fundamentally different
mechanisms, leading to divergent manifestations of bias. Moreover, the trade-off analysis
conducted in this study was limited exclusively to text-to-text models, making a full synthesis
across modalities challenging. This underscores the need for a distinct approach to discuss
findings across different modalities. Furthermore, separating knowledgebase — from
reasoning-based prompt types help to better differ the nature of the task and its bias

implications context-dependently.

7.1 Discussion on Reasoning-Based Prompts for Text-to-Image Models

Given the slight improvement in the reduced bias towards women and non-white
individuals in text-to-image models, further investigation was conducted to understand why
these models have shown progress in reducing bias while text-to-text models continue to
exhibit persistent biases. Recent research shows that text-to-image models might have the
ability to reduce bias over time because visual biases are easier to detect, measure, and
address (Espositio et al. 2023). In addition, the industry has prioritized fixing overt
representation issues due to public scrutiny. In contrast, text-to-text models deal with more
nuanced, systemic biases that are harder to measure and mitigate effectively without risking
linguistic generalization or model performance (Wan et al. 2024; Wu et al. 2024).

A recent paper (Esposito et al. 2023) emphasizes the concerted efforts by companies

like Google, Runway ML and Stability Al to improve representation in their text-to-image
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models. In 2023, Runway was able to improve group fairness metrics by over 150% in
perceived skin tone and 97.7% for perceived gender (Espositio et al. 2023). Runway achieved
this by fine tuning text-to-image models on synthetic data with increased variations in skin
tones and genders constructed from diverse text prompts (Espositio et al. 2023). And
compared to baseline models, this allowed for these models to generate more people with
perceived darker skin tone and more women. During the release of their latest text-to-image
model, Stable Diffusion 3.5 (October 2024), Stability Al boasted the model’s advancements
in fairness, emphasizing its ability to more accurately depict women and individuals from
non-white backgrounds (Stability Al 2024). Unsurprisingly, Stable Diffusion 3.5 displayed
the least bias in racial representation among occupational images and ranked second only to
Flux.1-dev in addressing gender bias. Producing of white individuals at 51.11% rate, the
lowest across all models. And conversely, representing women at a rate of 29.6%, a notable
improvement from the 11.4% representation in the earliest model of DALL-E 2.

Similarly, in 2022, Google began implementing the Monk Skin Tone (MST) Scale, a
10-shade scale that is meant to better accurately diverse people not only in their text to image
product (Gemini), but across all google products (Doshi 2023). This concerted effort by
Google to accurately depict women and diverse races led to some controversy in 2024 after
the release of Gemini in February 2024. This controversy stems from an overcorrection that
led to Gemini producing images that were heavily biased towards women and people of non-
white backgrounds. For example, the model was criticized when users discovered it was
producing historically inaccurate portrayals, such as Black vikings, an Asian woman in a
German World War I1-era military uniform and a female Pope (Figure 6) (Milmo and Hern

2024).
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Figure 6: Google’s Gemini Al illustrations of a 1943 German soldier

While text-to-image models still have progress to make in achieving real-world
representation in terms of gender and race, slight improvement in reduced bias has been
observed from the earliest model (DALL-E 2) to the latest (Stable Diffusion 3.5). These
advancements in reducing bias against women and non-white individuals are evidence of

industry-wide efforts to address and mitigate biases in these models.

7.2 Discussion on Reasoning- and Knowledge-Based Prompts for Text-to-Text
Models
The impact of biases in knowledge-based and reasoning-based prompts differs
significantly due to the nature of the tasks, evaluation methods, user expectations, real-world
applications, and optimization requirements. The following section reveals significant insights

into biases occurring in text-to-text Large Language Models.

7.2.1 Biases Across Demographics

Biases across demographics were consistently observed across all studies, underscoring
the influence of societal stereotypes on LLM outputs. The three original studies all focused on
unveiling the presence, direction, and magnitude of societal biases in GPT series models,
solely concentrating on state of art LLMSs. The proposed replications try to shift attention
towards a multitude of smaller, older and open-source models, thus, allowing for a study on
the progression over time of biases revolving around several demographics’ indicators, such

as gender (implicit or explicit), income clusters, and age.
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Gender biases were found to be particularly significant, with models frequently
shaping their outputs based on implicit or explicit gender indicators. In the financial reasoning
domain, masculine-coded prompts consistently cited riskier investment options such as
"Alternative and Speculative Investments" or “stocks” while feminine-coded prompts favored
"Retirement and Savings" or “bonds”. On the other hand, knowledge-based outputs showed
inconsistent results in the magnitude of gender biases. Larger and newer models exaggerate
the magnitude when confronted with skewed datasets, such as the Nobel Prize Winners,
amplifying female hallucinations due to stronger associations with certain subjects like
Literature and Chemistry. Contrarily, when working with balanced datasets, like
Entrepreneurs and Oskar Winners, newer models, such as the Llama 3.2 series, can reduce
hallucinations over time due to increased declination rates, showcasing better factual
accuracy.

Income-based biases were observed in both financial reasoning studies, with high-
income users receiving more complex and risk-seeking advice. For instance, above median
income individuals were often associated with “Entrepreneurship” or “stocks”. No clear
improvement can be observed throughout the years, in fact, the newest and oldest models both
show large bias magnitudes between the two clusters, also in different directions at times.

When observing differences across age clusters, newer models tend to amplify the
differences between old and young individuals when implying asset ratings, while still
showing inconsistencies between each other. For instance, Llama 3.2/3B strongly connects

young people to stocks while Q2.5 suggests the same correlation but towards bonds.

7.2.2 Biasover Time
In knowledge-based prompts, it was observed that for balanced datasets newer models
like LLama 3.2/3B demonstrated improved factuality over time by employing strategies like

declination for ambiguous queries. However, gender disparities remained, as female-

46



associated words in prompts disproportionately amplified the frequency of female names,
while male-associated industries like Venture Capital did not exhibit a similar increase in
male hallucinations. This asymmetry, observed in earlier models like Falcon and Mistral,
highlights that fine tuning existing model architectures and creating newer models alone are
insufficient to eliminate bias, as female-associated word vectors in prompts exert a
disproportionately stronger influence on outputs. For skewed datasets, fine-tuning and newer
architectures, such as Qwen 2.5, often amplified biases rather than mitigating them. Despite
being more advanced, these models showed higher DPD and lower RCS scores, indicating
that fine-tuning on skewed data can strengthen existing societal imbalances, especially when
navigating prompts with embedded gender associations.

In reasoning-based prompts, it was observed that newer models show no consistent
improvement in mitigating biases, paralleling trends observed in knowledge-based tasks. For
instance, Qwen 2.5, despite being a more advanced architecture, demonstrates societal biases
similar to those of its predecessor, Qwen 2, particularly when navigating financial reasoning
prompts. Gender imbalances remain evident in newer models, with models like Llama 3.2/3B
showing marked differences in suggesting riskier investment options to males, reflecting a
deeply ingrained bias in outputs. Some older models exhibited less extreme biases compared
to their newer counterparts. For instance, models like Flan-T5 or Falcon exhibit a lower
magnitude of bias than the more recent LLama models. This suggests that newer
architectures, while more advanced in performance, may amplify biases, particularly in

scenarios where prompts could imply underlying stereotypes.

7.2.3 The Impact of Model - Size
In reasoning-based tasks, larger models show amplified biases. As highlighted in the
Trade-Off Analysis, larger models exhibit a tendency to over-align with user perspective (Wei

et al. 2023). They show sycophantic behavior, aligning more with user inputs societal norms.
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This behavior enhances engagement and utility by making the models appear contextually
fluent and aligned with user expectations. However, it also risks overfitting to societal biases
embedded in training data, leading to outputs that reinforce stereotypes rather than challenge
them. For instance, studies on financial advice show gendered patterns, where women are
often linked to conservative investments while men are associated with entrepreneurial
ventures. This trade-off highlights the challenge of balancing domain-specific accuracy and
fairness, as larger models prioritize alignment at the cost of neutrality.

In knowledge-based tasks, larger models first show higher accuracy across tasks,
meaning a less overall biased output, as the rate of hallucinations decreases. This aligns with
the findings from the trade-off analysis, where factual accuracy shows synergies with
resistance against hallucination. In case of hallucination, similar pattern of bias amplification
compared to reasoning prompts arise, particularly when trained on skewed datasets. While
these models excel in factual accuracy, their strong alignment capabilities magnify
imbalances present in the training data. For example, the Nobel Prize dataset reveals an
underrepresentation of women in STEM fields, but female-associated prompts, particularly in
fields like Literature and Chemistry, led to overestimations of female dominance due to
higher digital traces of notable women in these areas. When datasets are balanced and
representative, larger models achieve high factual accuracy with reduced bias, demonstrating
the potential for fairness when data quality is prioritized. However, in skewed datasets, the
gains in factual precision are marginal, as biases dominate predictions. These findings
highlight a shared tension across reasoning- and knowledge-based domains: larger models’
advanced reasoning and alignment mechanisms often amplify societal biases present in the
data, highlighting the trade-off between utility and fairness, as described in the Trade-Off

Analysis.
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Moreover, smaller models, while showing more neutral output across reasoning tasks
in financial advises as well as more neutral outputs in knowledge prompts with a screwed
dataset, could be misinterpreted as “fairer”. However, this neutrality likely stems from their
limitations in prediction precision rather than an inherent fairness advantage (Sun et al. 2024).
The simplicity of smaller models in reasoning-based prompts restricts their ability to
contextualize or reason about complex inputs, leading to less alignment overall. For
knowledge-based prompts, these models rather make random guesses than showing screwed
patterns of the dataset. This neutrality does not equate to fairness; instead, it reflects
underperformance in capturing nuanced societal patterns, underscored by findings of the

clustering results in the trade-off analysis.

7.2.4 Fine-Tuning Impact: Application- and Domain-specific Deployment of LLMs

As highlighted in the Trade-Off Analysis, application- and domain specific
deployment of LLMs is crucial for enhancing the utility while managing essential trade-offs,
such as bias. The real-world impact of biases dependents on its use case.

Fine-tuning plays a vital role in improving model performance for specific domains
such as financial advice. Task-specific fine-tuning can amplify biases outside the target likely
due to a lack of diversity in datasets, as Stable-Code and Gemma 2 display potentially domain
specific biases. Similar observations derive form knowledge-based prompts, where DeepSeek
Coder amplified biases due to overrepresentation in females’ names in hallucinations for
Literature and Chemistry, reflecting stereotypical gender associations embedded in its coding-
oriented dataset. This likely results from alignment with patterns in the fine-tuning dataset,
which narrows the model's focus to domain-specific reasoning but sacrifices neutrality and
fairness. Therefore, a task-specific deployment of fine-tuned LLMs is recommendable and

should be emphasized.
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Moreover, fine-tuning strategies should consider the tension between factual accuracy

and bias occurrence, as highlighted in the trade-off analysis.

7.3 Optimization Strategies for Bias Mitigation

The strategies for mitigating biases differ significantly between reasoning- and
knowledge-based prompts. For knowledge-based prompts, reducing hallucinations and
improving data accuracy through techniques like retrieval-augmented generation or fact-
checking pipelines effectively addresses biases (Lewis et al. 2020). These methods align
model outputs with verified sources, directly tackling factual inaccuracies. In reasoning-based
prompts, optimization involves embedding ethical principles and applying fairness-aware
training strategies to promote inclusivity and address systemic and cultural biases (Hendrycks
et al. 2021). While knowledge-based prompts benefit from structured evaluation and dataset
corrections, reasoning-based prompts require more complex value-aligned optimization to

ensure unbiased outputs without sacrificing utility.

7.4 User Trust and its Role in Bias Mitigation

Biases significantly impact user trust in both reasoning- and knowledge-based
prompts. In knowledge-based tasks, users expect definitive, reliable answers. Biases or
inaccuracies in these outputs directly undermine the model's credibility, eroding trust in its
reliability as a source of factual information.

Conversely, reasoning-based tasks are often used for personalized and context-
sensitive advice, such as financial or moral reasoning. Here, biases are less overt but equally
problematic. Gendered financial recommendations, for instance, can reinforce societal
stereotypes, potentially influencing user decisions in ways that perpetuate inequities. The
subtle nature of these biases poses an additional risk: users may not recognize the bias and
might place misplaced trust in the model's recommendations. This overreliance can

exacerbate the societal impact of biases. Therefore, transparency is necessary to help users
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understand the limitations and potential biases of the model, enabling more informed

decision-making and fostering a balanced trust in its outputs.

7.5 Reflection: Should LLMs Reflect or Challenge Societal Bias?

Mitigating bias and ensuring trust in LLMs raises an important question: should these
models reflect societal norms or challenge them? This depends on the type of task and its
implications for fairness, trust, and societal alignment.

In knowledge-based tasks, minimizing societal biases is essential to maintain credibility and
trust. Models that reflect biased historical data risk perpetuating inaccuracies, undermining
their reliability. Therefore, these tasks prioritize factual accuracy over societal alignment,
ensuring that outputs are grounded in objective truths.

Reasoning-based tasks, however, involve a more nuanced trade-off. Reflecting societal
norms may enhance user trust and engagement in domains like storytelling or creative tasks,
where cultural relevance is key. Conversely, in high-stakes domains like healthcare or
financial advice, perpetuating biases risks reinforcing systemic inequities. Striking the right
balance is critical - over-sanitized models may appear detached, while overly biased models
could amplify inequalities.

The reflection emphasizes that the degree of bias in LLMs must align with their

intended use, balancing cultural alignment with fairness and ethical responsibility.

7.6 The Key Enabler: Transparency

Transparency is crucial for determining the ideal use case for an LLM, striking a balance
between maximizing performance, and building trust among stakeholders. It enables users,
developers, and policymakers to comprehend a model’s capabilities, limitations, and
associated risks. By providing clear documentation of dataset composition, fine-tuning
methodologies, and alignment strategies, transparency sheds light on the origins of biases and

the efforts made to mitigate them. As LLMs grow increasingly complex, their architecture
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and training processes significantly influence key trust areas, such as disclosing of sensitive
information, producing toxic content, showing sycophantic behavior and bias in outputs.
Detailed disclosure of these trade-offs empowers stakeholders to assess where a model excels
and where it may falter, minimizing the risk of misuse in critical applications like healthcare,

law, or education.
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8 Conclusion

The evolution of bias in Al models is deeply influenced by model architecture and prompt
design, reflecting an ongoing tension between improving utility by prioritizing factual accuracy
and addressing fairness. As models scale and evolve, achieving a balance between these
objectives remains a central challenge. Larger models, when applied to knowledge-based
prompts in text-to-text tasks, enhance factual accuracy but often amplify biases, particularly in
hallucinated outputs. This amplification frequently stems from skewed training datasets that
reinforce existing societal imbalances.

For reasoning prompts in text-to-text tasks, replication studies found that larger models
generally showed greater bias in their results, with no consistent trend to reduce bias over time,
even for models with similar architecture. Domain-specific fine-tuning, while enhancing
performance in targeted areas, can inadvertently introduce or amplify biases likely tied to the
specific context of the fine-tuning, such as gendered assumptions in coding or financial advice
outputs.

The findings from text-to-image studies provide a contrasting perspective, showcasing
modest improvements in bias reduction, particularly regarding gender and racial representation.
Advances in these models, driven by fine-tuning with diverse synthetic datasets and an industry-
wide focus on visual fairness, highlight the potential for targeted interventions to address
representational biases. However, these efforts also expose risks of overcorrection, leading to
historically inaccurate outputs that compromise credibility.

The trade-off analysis further underscores the complexities of balancing utility with
fairness. While larger models often excel in utility-focused metrics such as truthfulness and
robustness, their alignment with societal norms can exacerbate biases, particularly in high-

stakes applications. Conversely, smaller models exhibit fewer biases but lack the depth and
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contextual understanding required for nuanced tasks, reflecting limitations rather than genuine
fairness.

Transparency emerges as a critical enabler in addressing these challenges. Documenting
datasets, fine-tuning processes, and trade-offs equips stakeholders with essential tools to
evaluate a model's capabilities and limitations. As models grow more complex and widely
applied in critical domains such as healthcare and law, clear communication of trade-offs is
vital to minimize risks and ensure responsible use.

In conclusion, while substantial progress has been made in understanding biases and their
trade-offs, significant challenges remain. Task-specific strategies, combined with transparency
and ethical considerations, are crucial to advancing LLMs that can better balance utility and

fairness in diverse applications.
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9 Limitations

This chapter outlines the key constraints and challenges faced during the replication and
extension of the four foundational studies on bias in large language models and generative Al
systems. While this research has made significant contributions by adapting methodologies
and employing open-source models, several limitations arose due to constraints in model
selection, experimental setup, data generation, and resource availability. These limitations are
discussed below to contextualize the findings and to offer guidance for future research in this

area.

9.1 Model Selection

A significant limitation of this study was the inability to access proprietary models
such as GPT-4, Grok or Claude, which could have served as comparable alternatives to those
used in the original studies. Instead, this study relied on open-source models to replicate the
methodolo-gies. While these open-source models provided valuable insights into accessible
systems, differ-ences in architecture, fine-tuning, and training data may have influenced the
comparability of results with those of the original studies. At the same time, our selection was
limited to the size of all models. To ensure the execution of models on computers, this study
has been limited to models equal to or smaller than 10 billion parameters. This limitation
could impact the applica-tion to a real-world scenario since enterprises or other organizations

might not be challenged with the same limited computational power.

9.2 Task Specific Model Limitations
Certain models demonstrated task-specific constraints that reduced their utility for

particular analyses.

e Coding Models: Models like CodeGen were optimized for programming tasks

and often generated code instead of meaningful text responses. This made them
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unsuitable for tasks requiring natural language outputs, such as financial
advisory or gender bias assessments.

e Older Models: Historical models such as DialoGPT, OPT, and Google T5
struggled to respond meaningfully to prompts related to financial and gender
bias tasks, resulting in nonsensical or irrelevant outputs. Their inability to
engage with complex tasks limited their inclusion in temporal analyses of bias

evolution.

9.3 Dependence on established metrics

While the evaluation employed widely accepted metrics such as recall, hallucination
rate, and demographic parity difference (DPD), these metrics may oversimplify the
complexities of real-world applications. For instance, implicit biases, nuanced safety
concerns, or the interplay of fairness and privacy may not be fully captured, potentially

limiting the depth of the study’s findings.
9.4 Limitations of Experimental Setup & Data Generation

9.4.1 Computational Constraints

The study relied heavily on cloud-based platforms like Google Colab and Hugging
Face due to the high computational demands of larger models. However, these platforms
introduced significant challenges:

Kernel Interruptions: On Google Colab, sessions were frequently interrupted,
especially when running larger models like Falcon, which often stopped after processing
around 30 queries. These interruptions necessitated manual restarts and slowed the overall
process.

Resource Limits: The basic version of Google Colab imposed restrictions on GPU and
RAM usage, requiring researchers to use multiple accounts or purchase Pro subscriptions to

handle the workload effectively.
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Hugging Face API Constraints: Query and token limits on Hugging Face delayed tasks
that required large-scale experimentation, such as the 30,000 queries needed for the gender
bias replication. These constraints impacted the pace and scale of the analysis, particularly for

tasks with high computational demands.

9.4.2 Temperature and Configuration Settings

Temperature settings and other configuration options could not be modified for certain
models, such as those accessed via Ollama. This limited flexibility in exploring how varying
generation settings might influence bias or response variability, potentially leading to

uniformity in some model outputs.

9.4.3 External variables

Factors such as differences in training data diversity, fine-tuning methodologies, or
computational resources were not controlled for this study. These variables may introduce
performance variability and impact the comparability of results across models, particularly

when analyzing outputs from systems with significantly different training architectures.
9.5 Limitations of Data Analysis

9.5.1 Human Surveys and human annotators

Some of the original studies relied on human surveys to validate correlations between
model outputs and human perceptions. For example, in studies analyzing sentiment or word
embeddings, human annotations provided nuanced insights into trends. In this replication, the
absence of survey-based evaluation limited the interpretive depth of the results. Automated
tools were employed as alternatives, but these lacked the subjective richness that human

evaluations could provide, particularly in areas requiring contextual judgment.
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9.6 Quantifying the Effort

The replication and extension of these studies required significant time, computational
effort, and manual intervention, underscoring the challenges of executing large-scale
experiments under resource constraints. This section provides an estimate of the overall effort
involved in setting up the models, running the experiments, and managing data collection and

processing.

9.6.1 Query Volume

The gender bias replication involved over 25,000 queries, processed across different
temperature settings and iterations to ensure robustness. Financial and other text-generation
tasks required similarly large datasets, collectively exceeding 85,000 queries across 10 open-
source models. For image generation tasks, over 1,000 prompts were executed per model,
resulting in a total of approximately 10,000 queries across 10 models. In total, more than
95,000 queries were processed across all tasks, stretching the limits of available

computational resources and necessitating adaptive strategies to distribute the workload.

9.6.2 Time Investment

The process of configuring and running the models required considerable time and
effort. Initial setup for text generation models, including prompt engineering and platform
configuration, required approximately two weeks per model, with iterative refinements
extending this phase to about one month for some tasks. Image-generation models, while
quicker to set up, still required consistent monitoring during execution. Data collection
spanned roughly two to three months for text-based tasks, with laptops operating continuously
overnight to manage the substantial query volumes. In practice, running models frequently
required restarting processes due to interruptions caused by resource limitations. On Google
Colab, kernel disconnections occurred after approximately 25 minutes of inactivity,

particularly for larger models like Falcon, which often froze after 30 iterations. To mitigate
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these delays, researchers managed up to three models simultaneously using three to four

Colab accounts, maximizing the available GPU resources.

9.6.3 Resource Costs

The reliance on cloud-based platforms such as Google Colab and Hugging Face was
necessitated by the hardware demands of the models, which could not be run locally due to
GPU and RAM constraints. While the free-tier versions of these platforms allowed
experimentation, their limitations—such as restricted processing time and limited query
volumes—prompted some researchers to purchase Pro accounts to ensure smoother
execution. Additionally, cloud dependencies created inefficiencies, such as delayed processes
due to API token limits and restrictions on concurrent tasks. The image generation models,
despite requiring shorter runtime per batch, still demanded consistent overnight operations to
complete the large-scale dataset generation.

Had this study sought to replicate the original papers in their entirety without resource
constraints, it would have required significant financial investment. Proprietary models like
GPT-4 and GPT-3.5, along with access to tools such as Face++, would have added substantial
costs, compounded by the need for comprehensive human survey data and advanced
computational infrastructure capable of running large-scale models locally. For instance,
acquiring licenses for proprietary models alone would have incurred prohibitive expenses,
making the reliance on open-source systems a practical and necessary choice. These
constraints highlight the inherent trade-offs between accessibility and methodological rigor,
emphasizing the value of leveraging open-source models to conduct research within

budgetary and time limitations.
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9.7 Broader Challenges

9.7.1 Scope of Comparison

The diversity of the replicated studies posed challenges in maintaining methodological
consistency. The four studies spanned text generation, financial advisory, and image-
generation tasks, each requiring tailored prompts and metrics. While efforts were made to
standardize models across tasks, certain models performed inconsistently depending on the
task type. For example, models optimized for conversational outputs struggled with financial
prompts, highlighting the difficulty of applying uniform evaluation methods across diverse

domains.

9.7.2 Generalizability of Open-Source Models

While open-source models allow for a reproducible and accessible replication, their
performance may not fully reflect that of proprietary systems. Proprietary models often
benefit from extensive fine-tuning on diverse datasets, which can enhance their ability to
generate nuanced and contextually appropriate outputs. Open-source models, while valuable
for understanding broader trends, may lack this refinement, potentially limiting the
generalizability of findings to real world applications or commercial systems. Similarly, the
results of the trade-off analysis may be imprecise in their validity, as the reason why models
perform well on criteria such as Disparagement of Sex and Race, Privacy Leakage and
Toxicity Avoidance may be due to limitations in prediction, rather than because they are more

‘trustworthy'.

9.7.3 Domain-Specific Generalizability

The findings of this study, while robust in their general scope, may not fully generalize to
specialized domains such as healthcare, finance, or education without additional targeted
analysis. These domains often have unique requirements and constraints that may necessitate

further fine-tuning or domain-specific evaluation frameworks.
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10 Appendix

1 Glossary

Bias: A systematic inclination or prejudice, often unfair, toward or against a person, group, or
idea. Bias influences research and personal relationships, with hundreds of types identified.
Key biases in this research include selection bias, perception bias, gender bias, ageism, and

racial bias.

Ageism: Stereotypes, prejudices, and discrimination based on age, often leading to

underrepresentation of older adults in research and reduced applicability of findings.

Gender Bias: A systemic misrepresentation of men and women as either too similar or
excessively different, affecting research design, sampling, and interpretation. Examples
include underrepresentation of women in clinical trials, limiting generalizability and

reinforcing disparities.

Perception Bias: Arises when individuals’ expectations shape how they interpret

information, distorting perceptions and leading to inaccurate research findings.

Racial Bias: Distortions in research due to explicit or implicit prejudices based on race or
ethnicity. It impacts study design, sampling, and interpretation, often excluding minority

groups and perpetuating disparities.

Selection Bias: Occurs when study participants differ systematically from the target
population, leading to non-representative results. This can distort findings, reduce

generalizability, and cause confounding effects.

Information Systems: Integrated systems for collecting, storing, and processing data,

comprising hardware, software, data storage, and human processes. This research focuses on
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software components, particularly Al and machine learning, and their potential to perpetuate

biases.

Machine Learning (ML): A computer science field where data and algorithms mimic human
learning, improving over time. Types include:

e Supervised Learning: Uses labeled data for tasks like regression and classification.

e Unsupervised Learning: Identifies patterns in unlabeled data, such as clustering.

e Semi-Supervised Learning: Combines labeled and unlabeled data, often for content
classification.

o Reinforcement Learning: Learns via feedback to maximize rewards, used in
marketing.

Deep Learning: Employs neural networks for tasks like image recognition, requiring large

datasets.

LLMs (Large Language Models): Advanced systems designed to understand and generate
human-like text. They revolutionized natural language processing and are applied across

domains.

Transformer Architecture: The backbone of LLMs, comprising encoders and decoders with
components like multi-head attention and feed-forward networks, enabling tasks such as

translation and summarization.

Parameters: The numerical values within a machine learning model that are learned during
training to determine how the model processes and predicts data. In the context of LLMs,

parameters control the relationships between words and concepts.

Training Data: The dataset used to teach a machine learning model by exposing it to
examples from which it can learn patterns, relationships, and context. For LLMs, this

typically includes vast amounts of text from diverse sources.
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Bias in Information Systems: Bias in systems stems from societal, technical, or emergent
factors, appearing as data bias (from incomplete datasets), algorithm bias (flawed logic), user

bias (individual beliefs), or design bias (creator assumptions).

Bias in Algorithms and ML: Human biases embedded in data, labeling, or design often lead
to systemic disparities in ML models. These biases are amplified in LLMs, favoring dominant

narratives and underperforming in minority languages or contexts.

Bias in LLMs Over Time: As LLMs grow more complex, biases may amplify despite efforts

to reduce them, highlighting the fairness-performance trade-off.

Identifying Bias in LLMs: Tools for bias identification include benchmark datasets,
counterfactual analysis, sentiment analysis, and representation tests to detect disparities or

stereotyping.

Mitigating Bias in LLMs: Strategies include data augmentation, fine-tuning with bias-aware
datasets, adversarial debiasing, prompt engineering, and post-processing to enhance fairness

and inclusivity.
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Metric

Evaluation Type

Purpose

Machine Social Chemistry 101 Measures alignment with socially
Classification
Ethics Accuracy accepted norms and values.
Tests reasoning based on ethical
ETHICS Accuracy Classification frameworks like virtue ethics and
deontology.
Evaluates decision-making in moral
Moral Choice Accuracy Classification
dilemmas with clear outcomes.
Measures the model’s ability to avoid
Moral Choice Refusal-to-
Refusal Rate rigid or oversimplified answers in
Answer (RtA)
ambiguous dilemmas.
Tests emotional understanding and
Emotional Accuracy Classification
sensitivity in responses.
Measures ability to identify harmful
Fairness Stereotype Recognition Classification

stereotypes in input prompts.

Overall Agreement Rate

Classification

Evaluates the model's agreement with

non-biased, neutral content.

Stereotype Query Test

Refusal Rate

Evaluates refusal to engage with biased

or stereotype-based prompts.

Disparagement (Sex)

Statistical Analysis

Tests for gender-based disparaging

remarks in outputs.

Disparagement (Race)

Statistical Analysis

Tests for race-based disparagement in

responses.

Preference Refusal-to-

Answer (RtA)

Refusal Rate

Assesses neutrality in preference-based

queries.
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Safety

Jailbreak Resistance

Refusal Rate

Measures resistance to adversarial

prompts bypassing safety mechanisms.

Toxicity

Generation

Measures likelihood of generating

harmful or offensive content.

Misuse Detection

Refusal Rate

Tests ability to refuse queries asking

for harmful or illegal content.

Exaggerated Safety

Refusal Rate

Measures whether the model

incorrectly refuses benign queries.

Truthfulness

Internal Accuracy

Classification

Measures factual correctness based on

internal knowledge.

External Accuracy

Classification

Measures factual correctness

incorporating external sources.

Evaluates generation of plausible but

Hallucination Generation
false information.
Embedding Tests tendency to agree with user’s
Persona Sycophancy
Similarity stated persona, even if incorrect.

Preference Sycophancy

Percentage Change

Measures tendency to agree with user
preferences regardless of factual

correctness.

Adversarial Factuality

Percentage Change

Evaluates resilience to adversarial

factual challenges.

Robustness

Adversarial Perturbation

(AdvGlue RS)

Robustness Score

Tests performance under adversarial

inputs with noise.
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Adversarial Instruction

Perturbation

Embedding

Similarity

Measures robustness to adversarially

altered instructional inputs.

OO0D Detection

Refusal Rate

Evaluates ability to detect and refuse

out-of-distribution inputs.

OOD Generalization

Micro F1 Score

Measures adaptability to data not

present during training.

Privacy

Privacy Awareness

(Normal)

Refusal Rate

Assesses ability to avoid disclosing
sensitive information in standard

contexts.

Privacy Awareness

(Augmented)

Refusal Rate

Tests privacy compliance under

adversarial scenarios.

Privacy Leakage Refusal-

to-Answer (RtA)

Refusal Rate

Evaluates resistance to revealing

sensitive training data.

Privacy Leakage

Training Data (TD)

Leakage Rate

Measures direct leakage of sensitive

data from the training set.

Privacy Leakage
Counterfactual Data

(CD)

Leakage Rate

Tests generation of plausible but

fabricated private information.

Privacy Awareness

Correlation

Correlation Analysis

Evaluates correlation between privacy-
related refusals and user-provided

context.

Appendix 1: Metrics Description
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Correlation Matrix Heatmap of Finetuned Metrics
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F0.2

68



Truthfulness

Fairness

Robustness

Safety

Subcategories

Privacy

Machine_Ethics

| 41.47

l

|43.73%

%

45.53%

|46.84%

|ﬂ.78%

HA5%

10 20 30

Explained Variance (%)

50

Appendix 3. Explained Variance of Principal Components

- Loadings for PC

Machine_Ethics - Loadings for PC

MachineEthics_Emotional Acc

MachineEthics_MoralChaice Acc

Robustness_0OD generalization

Robustness_Advinstruction

g 2
E MachineEthics ETHICS Ace a4 i

Rabustness_AdvGiue RS

MachinsEthics_Social Chemistry 101 Acc a3
Robustness 00D detection
MachineEthics MoralCholce Rta 17 -
0.0 o1 0z 03 o4 os 0 0.1 0.2 0.3 o 05 (X3
Loading Value Loading Value
Fairness - Loadings for PC Truthfulness - Loadings for PC
L s |

Fairmess_Stereotype Recognition |

Fairness_Overall Agreement Rate

Trutnfulness_Internal

Truthfulness_IAdy Factuality

-

Privacy Awareness Normal

Safety_Exaggerated Safety |

] "
£ 1)
= Faimess_Stereotype Query Test | 17 E
:I 3
£ i rthiiness Mattucination [ b=
Faimess Disparagement Race m_
Truthfulness. tPreference Sycophancy | 0.2
ramersrsoners o [ O —— —
o o2 0o 02 o4 62 61 oo 01 02 03 o0a 05 08
Loading Value Loading Value
Privacy - Loadings for PC Safety - Loadings for PC
r— _* e _l“
e _‘9

E
2 1
2 o0

S —
Privacy Awareness c-u-lm-o.!_

Sataty_Toxicityd. 1

-0.4

oz o
Loading Value

Appendix 4 Loadings of Metrics for each Principal Component

69



0.998 0.995
1.0 0.963 0.983 0.977

08F

0.6

Absolute Correlation

0.2+

0.0

Machine_Ethics Fairness Robustness Privacy Truthfulness
Category

Appendix 5: Correlation of Imputed and Dropped PCA Components for each Category

!
- , T _
9 ‘\\ o -q\
lh' | // N
A Y
o 0.30 3 & N
E \ e N
\ e ®
]
=1 \‘ ° R
° ) N
= 0.25 \ 1
l.ﬂ \\ ;
0 [
? NS
Ay
¢ 0.20 . ,."
> Y
< ‘\ .rIF
Ay [
N
L ]
0.15
2 3 4 5 6 7 8 9 10

Number of Clusters (K)
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Appendix 7 Elbow Method Results
Principal 95% CI
Coefficient Std. Error t-Statistic P-value 95% CI Lower
Component Upper
Machine Ethics 47.8471 10.159 4,710 0.000 26.310 69.384
Fairness 54.6587 10.563 5.175 0.000 32.267 77.051
Robustness 46.2322 10.745 4.303 0.001 23.455 69.010
Privacy -12.9856 11.823 -1.098 0.288 -38.049 12.078
Truthfulness 47.7441 6.045 7.899 0.000 34.930 60.558
Safety 43.1866 14.989 2.881 0.011 11.411 74.962

Appendix 8 Univariate Regression Results
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R-squared

0.8

0.7F

0.6

0.5F

04r

0.3r

0.2r

0.1

0.0

Principal Std.

Coefficient t-Statistic  P-value VIF
Component Error
Const 1044.95 9.311 112.229 0.000 1.176
Machine

23.3751 15.28 1.52 0.15 5.15
Ethics
Fairness 10.46 1.89 0.702 0.497 4.04
Robustness -28.905 18.543 -1.559 0.147 7.499
Privacy -11.1 5.824 -1.92 0.081 1.225
Truthfulness  33.67 11.409 2.951 0.013 3.95
Safety 23.21 14.58 1.592 0.14 3.385

0.581

Appendix 9. Multivariate Regression Results
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Model Name Release Date Organization Size Architecture Type
Baichuan-13B Jun 2023 Baichuan Al 13 billion Decoder
ChatGLM2 Jul 2023 Tsinghua 130 billion Decoder
ChatGLM3 Nov 2024 Tsinghua 175 billion Decoder
ChatGPT Nov 2022 OpenAl 175 billion Decoder
ERNIE Mar 2019 Baidu 10 billion Encoder-Decoder
GLM4 Oct 2024 Tsinghua 200 billion Decoder
GPT-4 Mar 2023 OpenAl 1 trillion Decoder
Koala-13B Apr 2023 UC Berkeley 13 hillion Decoder
Llama2-13B Jul 2023 Meta Al 13 billion Decoder
Llama2-70B Jul 2023 Meta Al 70 billion Decoder
Llama2-7B Jul 2023 Meta Al 7 billion Decoder
Llama3-70B Sep 2024 Meta Al 70 billion Decoder
Llama3-8B Sep 2024 Meta Al 8 billion Decoder
Mistral-7B Oct 2023 Mistral Al 7.3 billion Decoder
Mistral Oct 2024 Mistral Al 141 billion Mixture of Experts
OASST-12B Aug 2023 Open Assistant 12 billion Decoder
PaLM 2 May 2023 Google 340 billion Decoder
Vicuna-13B Apr 2023 LMSYS 13 billion Decoder
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Vicuna-33B Apr 2023 LMSYS 33 billion Decoder

Vicuna-7B Apr 2023 LMSYS 7 billion Decoder

WizardLM-13B Jun 2023 Microsoft 13 billion Decoder

Appendix 13: Models evaluated in TRUSTLLM Paper

Arena SCOI'e - BO + Bl * XFairness+ BZ * XSafety+ BS * XMachineEthics + 84* XRobustness+ BS* XTruthfulnes

Appendix 14: Regression Formula
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