Check for
Updates

SCCD Debugger: a Debugger for Statecharts and Class Diagrams

Francisco Simoes
Miguel Goulao

Vasco Amaral
fd.simoes@campus.fct.unl.pt
mgoul@fct.unl.pt
vma@fct.unl.pt
NOVA School of Science and Technology
Lisbon, Portugal

ABSTRACT

Model-driven development (MDD) is increasingly relevant in the
software development landscape. However, its adoption in the in-
dustry remains challenging. According to several studies, inade-
quate tool support, combined with insufficient expertise in the work-
force and organisational and social factors, is part of the problem.
One area for improvement in tool support is the implementation of
adequate debugging mechanisms for models and software systems
generated from those models. This paper introduces a debugger
for models specified in the SCCD (SCXML extended with class dia-
grams) formalism, which combines statecharts with class diagrams.
The debugger, a crucial tool in the context of MDD, supports debug-
ging model-generated applications at the model level rather than at
the level of the synthesized code. The debugger integrates with an
open-source modelling and simulation tool for the SCCD formalism.
Such debugging mechanisms are a stepping stone towards wider
modelling adoption.

CCS CONCEPTS

- Software and its engineering — Software testing and debug-
ging; System modeling languages; Unified Modeling Language
(UML).

KEYWORDS

statecharts, class diagrams, model-driven development, SCCD

ACM Reference Format:

Francisco Simdes, Miguel Gouldo, Vasco Amaral, Joeri Exelmans, and Hans
Vangheluwe. 2024. SCCD Debugger: a Debugger for Statecharts and Class
Diagrams. In ACM/IEEE 27th International Conference on Model Driven
Engineering Languages and Systems (MODELS Companion ’24), Septem-
ber 22-27, 2024, Linz, Austria. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3652620.3687792

1 INTRODUCTION

As the complexity of software systems continues to grow, we need
appropriate methods and tools to cope with this complexity. Adopt-
ing Model-Driven Development (MDD) offers several potential

This work is licensed under a Creative Commons Attribution International 4.0 License.

MODELS Companion '24, September 22-27, 2024, Linz, Austria
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0622-6/24/09
https://doi.org/10.1145/3652620.3687792

Joeri Exelmans

Hans Vangheluwe
Joeri.Exelmans@uantwerpen.be
Hans.Vangheluwe@uantwerpen.be
Universiteit Antwerpen and Flanders Make
Antwerpen, Belgium

development improvement opportunities, including development
automation and better systems understanding.

There are still several challenges to Model-Driven Engineering
adoption in general [3], and MDD in particular. These challenges
are of diverse kinds, including foundation, domain, tool, commu-
nity and social. In this paper, we focus on improving tool support
for MDD, more specifically by improving analysis capabilities. We
present the SCCD Debugger for the SCCD formalism [14], which
combines statecharts with class diagrams. This tool makes it easier
to assess models, by adding a previously missing debugging mech-
anism to the existing SCCD formalism tool support, moving a step
closer to the maturity exhibited by traditional IDEs and their sup-
port for debugging and contributing to the development of higher
quality models.

This paper is organised as follows: section 2 briefly introduces the
SCCD formalism. Section 3 presents the SCCD modelling environ-
ment architecture, focusing on its debugging environment. Section
4 describes the main debugger tool features we implemented. Sec-
tion 5 presents usage scenarios for the SCCD debugger. Section 6
presents a pilot evaluation of our tool. Section 7 discusses related
work. Finally, section 8 concludes the paper and outlines directions
for future work.

2 BACKGROUND

The SCCD formalism [14] combines the Statecharts and Class Dia-
grams formalisms.

Statecharts are behaviour diagrams used in the specification of
(possibly complex) reactive timed systems [6]. A reactive system
is event-driven and reacts to internal and external stimuli. The
specification of reactive systems requires an easy to understand
and precisely defined formalism in which to develop behavioural
specifications. Statecharts are an appropriate formalism with pre-
cisely defined syntax and semantics. Class diagrams are structure
diagrams. They describe invariants over the (possibly changing)
structure of a system in terms of classes with their attributes and
operations, associations, and multiplicities between them [5]. At
runtime, the structures are objects (instances of the classes) in
memory.

By combining statecharts and class diagrams, SCCD supports
modelling complex, timed, autonomous, reactive, and dynamic-
structure systems. SCCD has a syntax in an XML format based on
the W3C SCXML recommendation. Models may be synthesised into
several programming languages (currently Python, JavaScript and
C#) and several runtime platforms implemented in those languages.

https://orcid.org/0009-0008-9127-9671
https://orcid.org/0000-0002-5356-5203
https://orcid.org/0000-0003-3791-5151
https://orcid.org/0000-0002-6916-5140
https://orcid.org/0000-0003-2079-6643
https://doi.org/10.1145/3652620.3687792
https://doi.org/10.1145/3652620.3687792
https://doi.org/10.1145/3652620.3687792
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3652620.3687792&domain=pdf&date_stamp=2024-10-31

MODELS Companion "24, September 22-27, 2024, Linz, Austria

SCCD tooling does not currently come with a visual modelling
environment. It consists only of a (command line) parser and code
generator. In contrast, other tools usually include a graphical in-
terface allowing the creation of models. To model with SCCD, one
must write the model using its XML format syntax.

An SCCD model consists of several classes and associations. Each
class has an associated statechart which specifies the behaviour
of its object instances at runtime. Objects can only communicate
with each other via events. The entry point of an SCCD model is
a default class from which a single instance is created and started
when the system runs. Instances can then create, start, and delete
other instances of classes, as well as create and delete instances of
associations.

3 SCCD DEBUGGER ARCHITECTURE

B 0 o—g |

SCCD Formalism O) g Modelling Environment g Simulation Environment

Y
Neutral Action Language g Code Synthesis }(g Debugger ‘

Figure 1: Architecture of the SCCD Modelling, Simulation,
Code Synthesis and Debugging Environment

This work is part of an international collaboration between the
NOVA School of Science and Technology (Portugal) and the Uni-
versiteit Antwerpen (Belgium).

The developed tool supports the following usage flow, supported
by the components in Figure 1: a model is created in the SCCD
formalism using the Modelling Environment component, and code
is synthesized from it using the Code Synthesis component. The
generated code may then be run, resulting in a working application.
This application may be debugged using the Debugger component
(yellow-coloured in the figure since it is the focus of this work).
The debugging process is made visible at the model level while
simulating the model’s execution using the Simulation Environment
component. This makes it easier to reason about the system’s be-
haviour and to find the defects of the model and the system. In the
future, the tool will also support collaboration mechanisms via its
Collaboration component. All the interactions between the user and
the tool use the User Interface component.

This tool is an open-source project that can serve as a basis for
further research into improving MDD tools. Our implementation
and working methodology has independent tool components (such
as the debugger, the modelling environment, and so on), creat-
ing much-desired modularity, as each component may be updated
without changing the rest of the implementation.

Simaes et al.

4 IMPLEMENTED FEATURES
4.1 Play/Pause

This feature allows the user to pause a simulation and resume it at
the point it stopped.

4.2 Simulation Modes

There are three different simulation modes available:

e (Soft) Real-Time Simulation - This is the default which
executes the model specification.

o Scaled Real-Time Simulation - This mode is similar to the
Real-Time Simulation but applies a speed scale factor to
all of the time dependencies in the model. Example: If the
user gives a speed scale factor of 2 to a simulation, then the
simulation will be 2x faster. If there is a time delay of 10s
specified on a transition, it will only take 5s using a scale
factor of 2.

o As-Fast-as-Possible Simulation - This mode uses simu-
lated time (just a variable). The relationship of the simulated
time to the wall clock time is no longer linear.

The simulation mode is selected through command line argu-
ments when launching the simulation on a console.

4.3 Breakpoints
There are three different breakpoint types available:

o State Breakpoint - This type of breakpoint may be placed
on a specific state. When the simulation enters the specified
state, it is paused.

e Variable Breakpoint - This type of breakpoint sets a con-
dition regarding a variable of the model. The user can define
a value for the variable and, when the variable reaches that
value, the simulation is paused.

e Time Breakpoint - This type of breakpoint can be set to a
particular time from the start of the simulation. When this
time is reached, the simulation is paused.

The user may place breakpoints using a breakpoints file, in XML
format. This file contains an XML element called breakpointsList
which may contain several breakpoint elements. Depending on the
breakpoint type the user wishes to place, it may take one of the
following 3 attributes: state, timestamp and variable.

4.4 Steps

When using code debuggers, stepping execute chunks of code with-
out pausing during their execution. In model debuggers, steps
should allow one to execute transitions between states. There are 2
different transition types in statechart diagrams: time-based transi-
tions and event-based transitions. Time-based transitions depend
on how long it has been since the current state was entered, whereas
event-based transitions are not dependent on time. Steps are gener-
ated for time-based transitions so the user does not have to wait for
the required time to pass. Event-based transitions do not need steps
as the user simply needs to write the event name for the transition
to be performed. Both types of transitions can be made conditional
through a guard condition.

SCCD Debugger: a Debugger for Statecharts and Class Diagrams

4.5 Tracing

Tracing is a debugger feature that records all the events that oc-
curred during a model simulation in a text file. The recorded events
are the start of the simulation, the entry and exit of states and the
end of the simulation. Each recorded event has an associated times-
tamp of its occurrence, its name and a list of the values of all the
model attributes at that moment (a “snapshot”). Besides the events,
some other useful metrics are recorded, including the total time
of simulation, execution time, and debugging time. No events are
recorded after the user sends the stop event.

4.6 Help

This feature is not specifically related to a debugger or models,
however, it is an important one for tools to have. It was included
to provide a more user-friendly experience and to help new users
get used to the tool. At any point in the execution, the user may
type help on the console, sending the help event to the model. This
will display a small menu to the user with available commands and
actions that the user can perform.

5 USING THE DEBUGGER

To use the debugger, it is first necessary to compile the model to
be simulated and debugged. The model in Figure 2 specifies the
behaviour of a very simplified phone system. It is used to exemplify
a model simulation. An XML file containing this model is provided
to the compiler so it can generate code. The name of the file is passed
as an argument on the command line when running the compiler
alongside other arguments, such as the target language and a flag
to indicate whether the user wants debugging mechanisms on or
off.

After the model is compiled, the user obtains a file containing the
code to simulate the given model. The user will then run an auxiliary
file using the previously generated file to start the simulation. When
running this auxiliary file, the simulation mode and speed scale
factor can be given as arguments in the command line. If these are
not specified, the simulation will be Real-Time Simulation, and
the scale factor will be 1, by default.

We will use a Real-Time Simulation (using a speed scale factor
of 1) with no breakpoints. After starting the simulation, the screen
in Listing 1 will be shown to the user. The user can see which states
were entered and the current state. Available transitions coming out
of the current state are also shown to the user, including the name
of the transition, its type (event-based or time-based), its target
state, its timer if it is time-based and finally, the guard condition
if it has one. In this case, the user may send one of the 2 events:
press_power_button or plug_charger. In this simulation, the
user will charge their phone before turning it on.

When the charger is plugged,a new time-based transition is
available with a timer of 15s, which can be seen in Listing 2. This
timer may be skipped using the step event. When the phone has
enough battery power, the user will turn it on. A parallel region is
entered there, so it is possible to see that the current states are /pow-
ered_on/charge/not_charging and /powered_on/apps/homescreen. In
the first active state, the user may plug the phone charger as before;
in the second active state, the user may choose to use the apps
available on the phone.

MODELS Companion "24, September 22-27, 2024, Linz, Austria

Statechart

press._povier_button
§ condion seibatery >= saitmin_battery

powered_off

piug_charger

charging
not_charging
self.charge_battery(

unplug_charger
press_povier_button
condition: seif battery »= seff min_battery

after 155
condtion: seif battery < self max_battery

powered_on

charge apps

plug_charger

charging

not_charging

onentry/
self charge_battery()

unplug_charger

after 155

(The dashed line represents the division between 2 parallel regions)

Class Class Attributes Methods

Phone Attributes Phone()

+ battery: number
+min_battery: const number
+max_battery const number

self min_battery = 10

seffbattery =0 seff ma_batery = 100

-+ Phone(): void
+ charge_battery(): void

charge_battery()

self battery = self battery + 1

Figure 2: Example Model

6 PILOT EVALUATION

We performed a pilot evaluation to assess our tool with 10 computer
science Masters students. 9 were male, and 1 was female. Partic-
ipants were between 23 and 24 years old, with basic knowledge
of statecharts (8 worked with them for 6 months, 1 for 1 year, 1
for 2 years) and class diagrams (4 worked with them 1 year, 5 for
2 years, 1 for more than 2 years). They performed 5 tasks using
the debugger and then answered questions about the tasks and the
tool, including questions to evaluate the usability of the tool and
task load, using the standard questionnaires of the System Usability
Scale (SUS) [2] and NASA-TLX [7]. Each participant also answered
a set of demographic questions. Every user test session was per-
formed online. The user shared their screen with the researcher
while performing the tasks. Each session was recorded, allowing
usage precision and recall scores (with respect to gold standard
solutions developed by the first author) to be calculated. For each
task, we defined the necessary steps for its successful completion
and what steps could be considered mistakes. Some actions were
redundant for our assessment, but not considered mistakes (e.g.
consulting the help menu). Most mistakes consisted of using com-
mands that did not exist or inappropriately using the ones that
existed.

Each task exercised different features of the debugger. Some
had specific instructions to guide participants through the different
functions that can be performed using the debugger and teach them
how to use them. Others had less detailed instructions on how to
achieve general goals using the debugger.

MODELS Companion "24, September 22-27, 2024, Linz, Austria

Simaes et al.

Listing 1: Console on Simulation Start

Real -time Simulation
Scale Factor: 1.0
Type help to see the available commands.

Entered /powered_off
battery: 0

Entered /powered_off/not_charging

battery: 0

Available Transition Options:

[event-based] type press_power_button to perform the transition to
[event-based] type plug_charger to perform the
[/powered_off/not_charging] >

transition to ['/powered_off/charging ']

['/powered_on'] with the guard condition self.battery >= self.min_battery
with the guard condition None

Listing 2: Console on Charger Plugged

[/powered_off/not_charging] > plug_charger

Entered /powered_off/charging
battery: 1

Available Transition Options:
[time -based] type step to skip
self . max_battery > self.battery
[event-based] type press_power_button to perform the transition
[event-based] type unplug_charger to perform the transition
[/powered_off/charging]

the transition to
to

>

['/powered_off/charging '] which has a duration of 15 seconds and the guard condition

['/powered_on'] with the guard condition self.battery >= self.min_battery

to ['/powered_off/not_charging '] with the guard condition None

Table 1 summarises the usability and task load scores. The results
were encouraging. The tool obtained a mean SUS score of 76.5 points
(the average SUS score is 68 [9]). The mean TLX result was 24.8 out
of 100 (where 100 is the most negative score) denoting a low effort
level.

Table 1: User Test Usability and Task Load Scores

Test Mean | Std Deviation | Min | 25% | 50% | 75% | Max
SuUS 76.5 16.6 45.0 65.0 80.0 89.4 97.5
NASA-TLX 24.8 7.3 15.0 19.2 24.2 29.6 38.3

As for the precision and recall results seen in Table 2, both have
very high scores, which indicates how easy it may be to get used
to the tool. The worst precision rate was on task 3, with a mean of
88.25%. This was due to the step event being used in debug mode,
which was not allowed in the implementation of the debugger when
the user tests were made. This was suggested by the participants of
the user tests a few times as an improvement to the tool and would
surely be a very important upgrade.

Table 2: Precision and Recall Statistics per Task

Task Mean | Std Dev Min 25% 50% 75% Max
T1 Prec 97.89 4.46 88.89 100.00 | 100.00 100.00 | 100.00
T1Rec 98.89 3.51 88.89 100.00 | 100.00 100.00 | 100.00
T2 Prec 98.33 5.27 83.33 100.00 | 100.00 100.00 | 100.00
T2 Rec 100.00 0.00 100.00 100.00 | 100.00 100.00 | 100.00
T3 Prec 88.25 9.74 75.00 81.82 89.45 97.50 100.00
T3 Rec 98.89 3.51 88.89 100.00 | 100.00 100.00 | 100.00
T4 Prec 95.75 5.53 87.50 90.00 100.00 100.00 | 100.00
T4 Rec 95.56 9.39 77.78 100.00 | 100.00 100.00 | 100.00
T5 Prec 98.09 4.03 90.00 100.00 | 100.00 100.00 | 100.00
T5 Rec 99.00 3.16 90.00 100.00 | 100.00 100.00 | 100.00

7 RELATED WORK

T here are some important features that should be included in a
statechart modelling and simulation tool. We may evaluate and
compare different tools based on the following features:
Graphical User Interface. A graphical user interface can be use-
ful to create or debug a model. A prototype visual modelling and
simulation environment was developed in Sylvain Elias’ Masters
thesis [4].

Statechart Modelling and Code Generation. The SCCD com-
piler takes models in SCCDXML, a textual syntax (based on SCXML)
as input and produces code in different languages (currently Python,
Javascript and C#) for different platforms. Visual modelling envi-
ronments may export SCCDXML.

Debugging and Testing Mechanisms. Different debugging and
testing mechanisms can be added to SCCD, including variations
of mechanisms used in the classic programming IDEs, such as
breakpoints. These mechanisms were chosen based on Simon Van
Mierlo’s PhD research [11].

Collaboration Mechanisms - There are several possible ways in
which collaboration mechanisms might be used. There may exist a
shared repository where models are stored and from which they
may be pulled or pushed (the same way git repositories work), or
there might exist some live model sharing or screen sharing feature,
allowing concurrent live modelling.

State Machine Simulation. Given an SCCD model, it can be
simulated by running the generated code.

Multi State Machine Simulation. Multi-state machine refers
to multiple state machine objects that function independently of
each other but can also communicate between them to form a
more complex system. The multi-state machine system must be
able to be simulated. The advantage of having multi-state machine
interactions is that each state machine is simpler than one single,
very complex state machine.

SCCD Debugger: a Debugger for Statecharts and Class Diagrams

MODELS Companion "24, September 22-27, 2024, Linz, Austria

Table 3: Statechart modelling advanced feature

Tool Graphical | Statechart | Code Debugging Collaboration | State Machine | Multi State | Dynamic Structure
Interface | Modelling | Generation | Mechanisms | Mechanisms | Simulation Simulation | Models

Itemis X X X X X X

Sparx X X X

Umple X X X

Stateflow | X X X X X

SCCD X X X X X X

Dynamic Structure Models. Dynamic Structure Models entails
creating and deleting new objects with their associated state ma-
chines at runtime.

We compared our tool to the following alternatives:
Itemis Create. Itemis [1] is a commercial statechart tool allowing
model creation and simulation through a graphical user interface.
It can generate code for a model, and it has debugging mechanisms
that may be used during a simulation.
Sparx Enterprise Architect. Enterprise Architect [13] targets
professional corporate usage, allowing users to create and simulate
models while benefiting from high performance and effective global
collaboration mechanisms. It can also generate model code and
supports debugging for model simulations.
Umple. Umple [8] is an open-source modelling tool and program-
ming language family which enables Model-Oriented Programming.
It adds UML-derived abstractions, such as attributes and state ma-
chines, to object-oriented programming languages such as Java,
C++ or PHP. It also allows the creation of state machine diagrams
and class diagrams textually.
MATLAB Stateflow. Stateflow [10] is a modelling tool developed
by MathWorks, providing a graphical language combining mainly
state machine diagrams and flow charts. It is possible to model
systems using combinatorial and sequential decision logic that can
be simulated as a block within a Simulink (modelling and simulation
tool also developed by MathWorks) model or executed as an object
in MATLAB. It provides executing and debugging mechanisms for
the created models, and it distinguishes itself for what it can do
alongside the MATLAB language: Stateflow charts may use the
capabilities of MATLAB, and they may be used as MATLAB objects
in applications which require state machine and timing logic.

SCCD differs from the other tools in that it uses a formalism
which combines statecharts with class diagrams thus supporting
both multi-state machine simulation and dynamic structure mod-
elling. A feature comparison between SCCD and other tools can be
found in Table 3.

8 CONCLUSION

With this project, we developed a command-line interface tool
capable of model simulation, debugging, and performing multi-state
machine simulations and dynamic structure modelling. Despite
having a large room for improvement, in its current state, this tool
can be seen as a stepping stone in modelling and simulation tools
and their usability as it allows both multi-state machine simulation
and dynamic modelling and combine these features with debugging
mechanisms.

CODE REPOSITORY AND DEMO VIDEO

The code repository is available at: https://github.com/FranciscoSimao11/

sccd-debug. The code repository includes links to video tool demos
showcasing the most relevant debugger features. More detailed
documentation on the debugger can be found in [12].

ACKNOWLEDGMENTS

The authors would like to thank NOVA Laboratory for Computer
Science and Informatics with the reference UIDB/04516/2020: DOI
10.54499/UIDB/04516/2020 and UIDP/04516/2020: DOI 10.54499/
UIDP/04516/2020.

REFERENCES

[1] Itemis AG. 2018. Itemis Create. Itemis AG. https://www.itemis.com/en/products/
itemis-create/

[2] John Brooke. 1995. SUS: A quick and dirty usability scale. Usability Eval. Ind. 189
(11 1995).

[3] Antonio Bucchiarone, Jordi Cabot, Richard F Paige, and Alfonso Pierantonio.
2020. Grand challenges in model-driven engineering: an analysis of the state of
the research. Software and Systems Modeling 19 (2020), 5-13.

[4] Sylvain Elias. 2021. Model-Based Development of a Modelling and Simulation
Environment for the Statecharts and Class Diagrams (SCCD) Formalism. Master’s
thesis. Univerity of Antwerp.

[5] Object Management Group. 2017. OMG UML Specification. https://www.omg.
org/spec/UML/2.5.1/About-UML.

[6] David Harel. 1987. Statecharts: a visual formalism for complex systems. Science
of Computer Programming 8, 3 (1987), 231-274. https://doi.org/10.1016/0167-
6423(87)90035-9

[7] Sandra G. Hart and Lowell E. Staveland. 1988. Development of NASA-TLX
(Task Load Index): Results of Empirical and Theoretical Research. In Human
Mental Workload, Peter A. Hancock and Najmedin Meshkati (Eds.). Advances in
Psychology, Vol. 52. North-Holland, North-Holland, 139-183. https://doi.org/10.
1016/S0166-4115(08)62386-9

[8] Timothy C. Lethbridge, Andrew Forward, Omar Badreddin, Dusan Brestovansky,
Miguel Garzon, Hamoud Aljamaan, Sultan Eid, Ahmed Husseini Orabi, Mahmoud
Husseini Orabi, Vahdat Abdelzad, Opeyemi Adesina, Aliaa Alghamdi, Abdulaziz
Algablan, and Amid Zakariapour. 2021. Umple: Model-driven development for
open source and education. Science of Computer Programming 208 (2021), 102665.
https://doi.org/10.1016/].scic0.2021.102665

[9] James R Lewis and Jeff Sauro. 2018. Item benchmarks for the system usability
scale. Journal of Usability Studies 13, 3 (2018), 158-167.

[10] MathWorks. 2018. Stateflow. MathWorks. https://www.mathworks.com/
products/stateflow.html

[11] Simon Van Mierlo. 2018. A multi-paradigm modelling approach for engineering

model debugging environments. Ph. D. Dissertation. University of Antwerp.

Francisco Simdes. 2024. Debugging Statecharts Extended with Class Diagrams.

Master’s thesis. Faculdade de Ciéncias e Tecnologia, Universidade Nova de Lisboa.

Sparx Systems. 2021. EnterpriseArchitect. Sparx Systems. https://sparxsystems.

com/products/ea/

[14] Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, Joeri Exelmans, and Hans
Vangheluwe. 2016. SCCD: SCXML extended with class diagrams. In Proceedings
of the Workshop on Engineering Interactive Systems with SCXML. 1-6.

[12

(13

https://github.com/FranciscoSimao11/sccd-debug
https://github.com/FranciscoSimao11/sccd-debug
https://doi.org/10.54499/UIDB/04516/2020
10.54499/UIDB/04516/2020
https://doi.org/10.54499/UIDP/04516/2020
10.54499/UIDP/04516/2020
https://doi.org/10.54499/UIDP/04516/2020
10.54499/UIDP/04516/2020
https://www.itemis.com/en/products/itemis-create/
https://www.itemis.com/en/products/itemis-create/
https://www.omg.org/spec/UML/2.5.1/About-UML
https://www.omg.org/spec/UML/2.5.1/About-UML
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1016/j.scico.2021.102665
https://www.mathworks.com/products/stateflow.html
https://www.mathworks.com/products/stateflow.html
https://sparxsystems.com/products/ea/
https://sparxsystems.com/products/ea/

	Abstract
	1 Introduction
	2 Background
	3 SCCD Debugger Architecture
	4 Implemented Features
	4.1 Play/Pause
	4.2 Simulation Modes
	4.3 Breakpoints
	4.4 Steps
	4.5 Tracing
	4.6 Help

	5 Using the Debugger
	6 Pilot Evaluation
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

