
DEPARTMENT OF
COMPUTER SCIENCE

PAULO CÉSAR LEITE DE MATOS

BSc in Computer Science and Engineering

FAULT-TOLERANT PUBLISH-SUBSCRIBE
SYSTEM WITH MULTIPLE DELIVERY
GUARANTEES

MASTER IN COMPUTER SCIENCE AND ENGINEERING

NOVA University Lisbon
September, 2024

DEPARTMENT OF
COMPUTER SCIENCE

FAULT-TOLERANT PUBLISH-SUBSCRIBE
SYSTEM WITH MULTIPLE DELIVERY GUARANTEES

PAULO CÉSAR LEITE DE MATOS

BSc in Computer Science and Engineering

Adviser: Hervé Miguel Cordeiro Paulino
Associate Professor, NOVA School of Science and Technology

Examination Committee

Chair: Miguel Goulão
Associate Professor, NOVA School of Science and Technology

Rapporteur: Miguel Matos
Assistant Professor, IST/UL

Member: Hervé Miguel Cordeiro Paulino
Associate Professor, NOVA School of Science and Technology

MASTER IN COMPUTER SCIENCE AND ENGINEERING

NOVA University Lisbon
September, 2024

Fault-Tolerant Publish-Subscribe System With Multiple Delivery Guarantees

Copyright © Paulo César Leite de Matos, NOVA School of Science and Technology, NOVA
University Lisbon.
The NOVA School of Science and Technology and the NOVA University Lisbon have the
right, perpetual and without geographical boundaries, to file and publish this dissertation
through printed copies reproduced on paper or on digital form, or by any other means
known or that may be invented, and to disseminate through scientific repositories and
admit its copying and distribution for non-commercial, educational or research purposes,
as long as credit is given to the author and editor.

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v7.1.5) [20].

https://github.com/joaomlourenco/novathesis

Acknowledgements

Working on this dissertation has been one of the most challenging yet rewarding
experiences of my life. Along the way, I have been fortunate to receive the support and
encouragement of many incredible people.

First and foremost, I would like to express my gratitude to my adviser, Hervé Paulino,
for giving me the opportunity to contribute to such a complex and important project.
His guidance and expertise were invaluable throughout the development of the work
presented in this dissertation.

I am also grateful to the Department of Computer Science and NOVA LINCS at NOVA
School of Science and Technology for providing me the knowledge, tools and resources that
were crucial for carrying out this work and preparing me for my future as a professional.

Afterwards, I would like to extend my thanks to all my colleagues and friends with
whom I had the pleasure of working with, and that made my university experience more
pleasant.

Finally, I wish to express my deepest gratitude to my family for the immense sacrifices
and unwavering support throughout these years. To my parents, who were my greatest
source of strength, thank you for teaching me the values of hard work, perseverance and
self-belief. Your faith in my potential allowed me to overcome the challenges that I found
in my way, even in moments when I doubted myself. Without you, this dissertation would
not have been possible.

ii

Abstract

Distributed system’s ability to scale has become a core requirement to provide services
across the globe due to the increase in worldwide connectivity prompting developers to
devise solutions able to provide high availability and performance through geo-replicated
systems. This strategy brings data closer to clients, however, with data being stored in
multiple distant locations update propagation becomes slower, hindering both availability
and performance. This is known as the trade-off between availability and data consistency,
being more noticeable in situations where not all data or operations have the same
consistency requirements. Developers started looking at approaches that support multiple
consistency models, more often called mixed consistency model. The reasoning behind
this model, is that developers are able to choose the type of consistency each operation
requires and can adapt the propagation of operations accordingly.

Ginger is a distributed middleware system that supports the existence of operations
with different consistency requirements and capable of disseminating messages according
to the total, causal and eventual orders. The current issue with Ginger, is that it does not
behave correctly under the occurrence of faults. Therefore, in this thesis, we propose to
implement, on top of the already existing dissemination protocol, fault-tolerant mecha-
nisms that ensure its correctness in circumstance where network or process faults occur,
taking into consideration current approaches presented in the literature.

In the end of this thesis, we will get an updated version of Ginger with the neces-
sary modifications to ensure the reliable delivery of messages, under the occurrence
of faults, while guaranteeing Ginger’s dissemination protocol and ordering guarantees
are preserved. The experimental results, will demonstrate if the proposed solutions are
capable of effectively tolerating faults, if they do not introduce undesired overhead when
recovering from them and what is the impact of introducing fault-tolerance in the system,
when no failures occur.

Keywords: Distributed systems, Consistency, Publish-Subscribe, Fault-tolerance, Repli-
cation, CAP Theorem

iii

Resumo

Com o aumento da conetividade e a necessidade de fornecer serviços à escala global
com alta disponibilidade e desempenho, a capacidade de escalar de sistemas distribuídos
tornou-se essencial. Para essse efeito, recorrem-se a sistemas geo-replicados, onde dados
são armazenados em vários locais distantes. No entanto, a propagação de atualizações
torna-se mais lenta, prejudicando a disponibilidade e o desempenho. Isso deve-se ao
compromisso entre a disponibilidade e a consistência dos dados, sendo mais notório
quando diferentes dados ou operações têm requisitos diferentes de consistência. Os
programadores começaram a procurar abordagens que suportem vários modelos de
consistência, conhecidos como modelo de consistência mista. Com este tipo de modelos,
estes podem escolher o tipo de consistência necessário para cada operação e adaptar a
propagação das mesmas em conformidade.

O Ginger é um sistema de middleware distribuído que suporta a execução de opera-
ções com multiplas garantias de entrega, capaz de disseminar mensagens de acordo com
as ordens total, causal e eventual. O problema atual do Ginger é não se comportar corre-
tamente perante a ocorrência de falhas. Assim, nesta tese, propomos implementar, sobre
o protocolo de disseminação já existente, mecanismos tolerantes a falhas que garantam a
sua correção em circunstâncias em que ocorram falhas na rede ou nos processos, tendo
em consideração as abordagens atuais apresentadas na literatura.

No final desta tese, obteremos uma versão atualizada do Ginger com as modificações
necessárias para assegurar a entrega fiável de mensagens, sob a ocorrência de falhas,
garantindo que o protocolo de disseminação do Ginger e as garantias de ordenação são
preservados. Os resultados experimentais demonstrarão- se as soluções propostas são
capazes de tolerar eficazmente as falhas, se não introduzem sobrecargas indesejadas na
recuperação das mesmas e qual o impacto da introdução de tolerância a falhas no sistema,
quando não ocorrem falhas.

Palavras-chave: Sistemas distribuídos, Consistência, Publicador-Subscritor, Tolerância a
falhas, Replicação, Teorema CAP

iv

Contents

List of Figures viii

List of Tables ix

List of Algorithms x

Acronyms xi

1 Introduction 1
1.1 Motivation . 1
1.2 Ginger . 2

1.2.1 Practical Example - Bank Service 4
1.3 Problem . 6
1.4 Proposal . 7
1.5 Contributions . 7
1.6 Document Structure . 8

2 Background and Related Work 9
2.1 Replication . 9

2.1.1 Total and Partial Replication . 9
2.1.2 Active and Passive Replication . 10

2.2 Consistency Models . 10
2.2.1 Data-centric consistency models 11
2.2.2 Client-centric Consistency Models 12

2.3 Publish/Subscribe Systems . 13
2.3.1 Notification Service . 13
2.3.2 Subscription schemes . 14

2.4 Reliable Publish/Subscribe Systems . 14
2.4.1 Existing Work . 16
2.4.2 Discussion . 21

v

3 Ginger’s Publish-Subscribe 23
3.1 Broker configuration and building the overlay 23
3.2 Consistency levels supported . 24
3.3 Data structures maintained by each broker 24
3.4 Message types . 25
3.5 Processing messages . 26

4 Solution Overview 29
4.1 Identifying solution requirements . 30
4.2 Overlay maintenance protocol . 30

4.2.1 Consequences of a failure . 30
4.2.2 Expanding the neighborhood . 31
4.2.3 Handling neighbor failure . 35
4.2.4 Dealing with simultaneous failures 43

4.3 Restoring communication channels and maintaining message order . . . 44
4.3.1 Holding incoming messages during reconfiguration 45
4.3.2 Detecting missed messages . 46

4.4 Ensuring causal and total order delivery 54
4.5 Summary . 55

5 Experimental Evaluation 56
5.1 Goals . 56

5.1.1 Correctness . 56
5.1.2 Performance . 57

5.2 Methodology . 57
5.3 Correctness . 62

5.3.1 Updating tree view . 62
5.3.2 Incrementing and decrementing residualDegree 63
5.3.3 Sending and1 handling ParentRequest 63
5.3.4 Ensuring total order message’s processing is completed 63
5.3.5 Executing root election algorithm 63
5.3.6 Preventing messages from being processed out of order during an

ongoing reconfiguration . 63
5.3.7 Executing multiple rounds of ParentRequest, correctly detecting

missed messages and correctly rejecting requests 63
5.4 Performance . 64

5.4.1 Reconfiguration cost . 64
5.4.2 Impact of failures in message latency, within multiple brokers’ tree

views . 65
5.4.3 Impact of key items in message latency when failures occurs . . . 67

6 Conclusions 68

vi

6.1 Future Work . 69

Bibliography 71

Annexes

I Example test configuration file 75

II Sending and handling NeighborStatus - Adding neighbor 77

III Storing ancestors in message’s path. 80

IV Incrementing and decrementing residualDegree when adding and removing
neighbors. 83

V Ensuring total order message’s processing is completed. 86

VI Executing root election algorithm 89

VIIHolding incoming messages during an ongoing reconfiguration. 93

VIIIHandling rejected ParentRequest and detecting missed messages. 96

IX Example message ordering for a specific key. 108

vii

List of Figures

1.1 Ginger architecture adapted from [22]. 3
1.2 Topic sub-trees. The orange line represents the routing tree for topic A and the

green line for topic B and blue for topic C . 5
1.3 Ordered message delivery in Ginger. 6

2.1 Publish/Subscribe architecture . 13

3.1 Middleware’s architecture. 24
3.2 Total order delivery protocol. 27

4.1 Example Ginger middleware overlay. Brokers are represented by circles and
clients by squares. 31

5.1 Grid’5000 backbone. Taken from Grid’5000’s homepage. 58
5.2 Simulated network used during experiments. The numbers over the links

correspond to the message’s latency in each of them. 59
5.3 Reconfiguration time measured in milliseconds, taking into account the number

of rounds required to establish a connection with the new parent, and receive
all missed messages. 64

5.4 Message latency in the absence of failures and in the presence of one or more
failures. 65

5.5 Message latency with varying number of faults and number of key items. . 66

viii

List of Tables

1.1 Bank service operations. 4

2.1 Process fault models based on [28]. 15
2.2 Solution properties. 22

5.1 Specification of machine utilized during evaluation. 58
5.2 Latency ranges assigned to each link category. 59
5.3 Latency ranges between Europe and other regions. 60

IX.1 Excerpt of file generated by replica 1. This table shows the delivery order of
messages for account number 162,550,483 . 109

IX.2 Excerpt of file generated by replica 2. This table shows the delivery order of
messages for account number 162,550,483 . 110

ix

List of Algorithms

1 Handling and storing path information . 33
2 Handling TreeViewUpdate . 34
3 Removing neighbor information after it failing 36
4 Handling neighbor failure . 37
5 Handling parent request . 39
6 Handling parent response . 40
7 Root election algorithm . 42
8 Handling expired timer . 43
9 Holding incoming Metadata messages during an ongoing reconfiguration. 45
10 Sending information contained in buffers to the child broker. 47
11 Handling parent buffers. 49
12 Handling a LostMessageRequest . 51
13 Algorithm to progress when a message is blocked and a broker has received

a TotalAck from all its children . 52
14 Algorithm to progress from waiting for TotalAck from children but the

childrenAcks map does not contain the list. 53

x

Acronyms

FIFO First-In-First-Out (pp. 20, 25, 26, 29, 30, 44, 46–48, 50, 54, 55, 68, 95)

CAP Consistency - Availability - Partition-Tolerance (p. 2)

DDS Data Dissemination Service (pp. 4, 23)

MDS Metadata Dissemination Service (pp. 4–6, 23, 25, 26, 29, 30, 34)

MI middleware instance (p. 26)

pub/sub publish/subscribe (pp. 4–9, 13–17, 19, 23, 24, 26, 30, 54, 56, 58, 68, 69)

xi

1

Introduction

1.1 Motivation

Worldwide connectivity has led to greatly increase the demand over systems’s re-
sources due to the increasing number of clients at different locations. Therefore, scalability
has become a crucial goal of developers in the design of distributed systems [27, Chapter
1]. A system is scalable if it is able to handle the addition of resources without suffering
a noticeable loss of performance or increase in administrative complexity [21, Chapter 9].
Scalability of a system can be evaluated in different dimensions, however we focus on two
that relate more directly to issues we face.

The first dimension relates to the system’s size, in the sense that we are able to easily
add more users and resources to the system. When a system needs to support more users
and resources, having a single server responsible for implementing a service, managing a
database and routing messages through many communication channels, highly increases
the load on the server, becoming a bottleneck as the number of users and resources
increases, and, in case failures occur, it becomes a single point of failure leading the
service, data and routing algorithm to become unavailable [27, Chapter 1].

Another dimension used to evaluate scalability is a system’s ability to scale geograph-
ically when its users and resources lie far apart. Scaling geographically poses a challenge
mainly related to the problems of having multiple centralized components in the context
of wide-area communications. This network setting inherently leads to performance and
reliability issues, due to the inability to instantly transmit messages between locations far
apart from each other, leading, for example, to periods of time where the system’s state
seen by clients in those locations may be different [27, Chapter 1].

Among the different scaling techniques that can be employed, one of the most important
is replication. Replication has become crucial in today’s distributed systems. It allows to
manage and balance the load among components, leading to better performance, but also
have replicas of the system closer to its clients, allowing for lower latency [27, Chapter 7].
However, having multiple replicas of a resource raises the problem of consistency among
them, since updating one, in the absence of synchronization protocols, leads to replicas

1

CHAPTER 1. INTRODUCTION

having different copies of the resource.
A well known and famous theorem in the world of distributed systems is known

as the Consistency - Availability - Partition-Tolerance (CAP) [4] theorem, which claims
that in a network, subject to failures, with shared data it is impossible to simultaneously
provide all of the following properties: Strong Consistency, High Availability and Partition-
Tolerance [28]. The trade-off between performance and consistency has been one of the
main challenges developers have faced, in the sense that one can achieve performance by
sacrificing consistency or achieve consistency by sacrificing performance [18]. Therefore,
developers need to carefully reason about the consistency requirements of their systems
and if they are willing to accept the consequences of using solutions that allow lower
latency and high availability orusing solutions that ensure the safety of data and operations.
Currently the most common strategy is to lower the consistency requirements in order to
achieve better performance, mainly due to the fact that clients desire to get quick responses
to operations they execute.

In scenarios where different operations do not require the same consistency guarantees,
running with a single consistency level can severely impact, the latency and availability
of operations’ results that only require weak consistency, in case the system is using
stronger guarantees, introducing unnecessary delay for operations that only require
weaker consistency guarantees, or the safety of data, otherwise. It is, therefore, important
that systems are able to provide mechanisms that support multiple levels of consistency, so
that the execution ofoperations does notviolate the requiredstrong consistency guarantees,
ensuring the safety of operations, while allowing operations that do not require the same
level of consistency, to execute and make their results available faster to clients.

1.2 Ginger

The work to be developed in this thesis focuses on Ginger [22, 9], a distributed mid-
dleware system that coordinates operations between applications and database systems
and allows application developers to register services and its operations. Ginger’s main
purpose is to provide a system that facilitates the development of applications that support
mixed consistency guarantees. Inherently, this consistency model requires a dissemination
infrastructure able to deliver messages respecting their consistency requirements while
ensuring that, in scenarios where components fail, those requirements are not violated.

Ginger follows a layered architecture (Figure 1.1) composed by the following layers:

Front-End API: provides an user-friendly library that allow developers to define trans-
actions and operations. It executes on clients and operations are translated into
messages in the middleware.

Middleware: facilitates communication between client applications and databases. This
layer is responsible of ensuring that operations execute according to the consistency
levels defined by the developer.

2

1.2. GINGER

Back-End Communication

Clients

Operations Operations

Data Service API

Middleware

Database
Server

Processed
Transaction

Processed
Transaction

Frontend Interface Frontend Interface

Database
Server

Application Application

Figure 1.1: Ginger architecture adapted from [22].

3

CHAPTER 1. INTRODUCTION

Table 1.1: Bank service operations.

Operation Description Consistency

getBalance(account) Returns the account’s current balance Eventual

deposit(account, amount) Increments the account’s balance in amount Causal

withdraw(account, amount) Withdraws amount from account’s balance Linear

Data Service API: provides an API to add service’s implementations to the system. A
service consists of a well-defined interface that specifies a set of operations acces-
sible to clients. Each implementation must define a data store and specify how the
operations interact with this store.

Backend Communication: handles interactions with data stores, enabling the commit of
operations.

Ginger’s middleware infrastructure facilitates the dissemination of operations from
applications to clients, each connected to a storage system responsible of storing applica-
tion’s data, through a Data Dissemination Service (DDS) and a Metadata Dissemination
Service (MDS), in which this thesis will mainly focus.

The MDS follows a publish/subscribe (pub/sub) architecture using a subscription
scheme based on topics, built on top of a dissemination tree and composed by several
nodes called emphbrokers, responsible by facilitating dissemination of messages from
applications to clients, and implements the necessary mechanisms to ensure that opera-
tions execute according to the defined consistency level. As the dissemination process is
based on topics, when multiple clients subscribe to a topic, those subscriptions create a
per-topic sub-tree on top of the already existing dissemination tree and is used to route
publications of the associated topic.

Ginger provides applications the ability to support operations with different consis-
tency requirements, supporting the eventual, causal and linear consistencies. The dissemi-
nation infrastructure implements delivery mechanisms to ensure messages are delivered
appropriately and, according to the consistency level associated with the operations they
carry, to every subscriber. In the Ginger’s MDS, linear consistency is guaranteed by de-
livering messages in total order to every client. To ensure causal consistency, messages
are delivered in causal order. Finally, since eventual consistency only requires messages
to eventually be delivered to all subscribers, there are no ordering requirements on these
messages (more details will be provided in section 2.2.1).

1.2.1 Practical Example - Bank Service

Let’s take a look at a simple example to highlight how systems benefit from solutions
that only route messages to specific receivers and support operations that require different
delivery guarantees, particularly from Ginger.

4

1.2. GINGER

1

3 4 5

A B C

0

2

Figure 1.2: Topic sub-trees. The orange line represents the routing tree for topic A and the
green line for topic B and blue for topic C

Consider a scenario where a bank is developing a banking service with the operations
presented in Table 1.1. The bank’s operation is supported by three data stores located at
sites A, B and C. To ensure reliability, the system administrators replicate data from each
location to one of the other two. For instance, accounts at A are also replicated at B, those
from B are replicated at C, and finally, accounts from C are replicated at A.

In this context, each location (country) corresponds to a topic, with this value easily
determined from the account’s bank identifier, such as it is from an IBAN (International
Bank Account Number). Once the location is extracted, the account number serves as
the key that uniquely identifies the account within the respective data stores. Figure 1.2
illustrates the tree configuration and the per-topic trees created after the subscriptions
have been issued.

For the MDS’ perspective, when a client connected to A wants to perform an operation
on their account, that operation is translated into a publication within the pub/sub
system, which must be delivered to all subscribers of the A topic. For instance, if the
client initiates a deposit in their account, the corresponding publication must be sent to
both A and B. Subsequently, if the client wishes to verify their account balance and
perform a withdraw based on the balance returned by the getBalance operation, both of
these associated messages must also be delivered to both locations, similar to the earlier
deposit operation.

Furthermore, besides delivering messages to all subscribers, Ginger also ensures the
order in which these operations were performed is respected. According to Table 1.1, in
the example depicted in Figure 1.3, the deposit operation must be delivered in causal order
and withdraw in total order. Delivery in causal order must respect causal dependencies
between messages (Section 2.2.1.2). Thus, since deposit does not depend on any other

5

CHAPTER 1. INTRODUCTION

1

3 4

A B C

0

2 1

3 4

A B

0

2

W

D

G

5

C

5

W

D

G

W

D

G

Figure 1.3: Ordered message delivery in Ginger.

operation, it can be delivered without any restriction. This is not the case for operation
withdraw. Since the client executed deposit and getBalance before executing withdraw,
the associated publications must be delivered to all clients in that order to satisfy total
order. Thus, messages published before and after the message, in respect to the withdraw

operation, must be delivered to all clients in the same order. Tree brokers are responsible
for guaranteeing that order is respected.

1.3 Problem

In this thesis, we aim to address the challenges associated with fault tolerance in
distributed pub/sub systems, specifically focusing on the support for multiple delivery
guarantees. Ginger’s MDS, a specific implementation of this type of system, currently
lacks fault tolerance. As a result, in the event of failures, it is highly probable that it will
be unable to maintain its functionality. Additionally, because it supports operations with
multiple delivery guarantees, there is a also the risk that these delivery guarantees may
be compromised during such failures.

In the case of distributed pub/sub systems built on top of dissemination trees, due to
the inherent decoupling between publishers and subscribers (Section 2.3), if a node of the
tree fails and becomes unavailable, the branches that derive from it and clients connected
to those branches, will become unreachable. Therefore, we need to guarantee that, despite
becoming unreachable through the overlay, clients still receive publications associated
with their subscribed topics. Additionally to messages not being delivered to all clients
in the event of failures, delivery guarantees may also be broken because client operations
will only be executed by a subset of clients, leading to inconsistent client states.

Since Ginger’s MDS also provides applications the ability to support operations that
execute with different delivery guarantees, our problem is not only to guarantee messages
are delivered to all clients subscribed to the corresponding topic, in the event of failures,
but also to ensure messages are not delivered out of order, i.e., causal and total order must

6

1.4. PROPOSAL

be upheld as if a failure never occurred, guaranteeing causal and linear consistency.
In Section 2.4.1, we will show that several existing works tackle fault tolerance with

different delivery guarantees. However, in contrast with our work, none of them address
these issues in systems supporting multiple delivery guarantees.

1.4 Proposal

The goal of this thesis is to develop a fault-tolerant protocol, on top of the already
existing dissemination mechanisms implemented by Ginger’s pub/sub, able to ensure
that when faults occur due to node or communication channel failures, operations can still
be disseminated from its source to all destinations, guaranteeing that delivery respects
the consistency level assigned to them. Therefore we propose to:

• Develop a tree maintenance protocol to ensure messages can be routed from all
publishers to all subscribers.

• Develop a protocol to guarantee messages are not lost and are correctly ordered in
the event of failures, with the goal of ensuring the multiple delivery guarantees are
respected.

• Assess the developed protocols using different test configurations.

1.5 Contributions

The work developed in this thesis contributes with the implementation of a fault-
tolerant pub/sub system with multiple delivery guarantees which, to the best of our
knowledge, there is no similar system. Our solution allows systems like Ginger, to
reliably deliver messages to clients while guaranteeing the multiple delivery guarantees
are respected.

Our work makes the following key contributions:

1. We implemented fault-tolerant mechanisms in a pub/sub system with multiple
delivery guarantees.

2. In the context of Ginger, our work contributes with the implementation of a protocol
to repair the dissemination tree only using local information. This approach mini-
mizes the number of nodes whose state changes after a topological reconfiguration
and limits the load imposed on brokers affected by failures, after the overlay is
restored.

3. Our work also contributes with a protocol to effectively restore communication
channels between brokers, ensuring messages are not lost, message ordering is
preserved and delivery guarantees are maintained.

7

CHAPTER 1. INTRODUCTION

4. Lastly, our work contributes with an evaluation methodology to assess correctness
and performance in different tree configurations and varying communication latency.

1.6 Document Structure

The remainder of the document is structured as follows:

Chapter 2 introduces the concepts related to replication, data consistency, pub/sub sys-
tems, particularly reliable pub/sub systems where we highlight some of failures
models and adopted strategies and techniques. Afterwards, we present some works
related to reliability in distributed systems, particularly in pub/sub systems.

Chapter 3 provides an overview of Ginger’s pub/sub system, highlighting how the in-
frastructure can be configured, how consistency levels translate to message ordering,
each broker’s state, existing application-level messages and, finally, how messages
are processed.

Chapter 4 details the state and algorithms, implemented during this work, utilized by
brokers to detect failures, reconnect the overlay and restore the communication
channels between brokers, while maintaining the correct message order to ensure
that client’s databases’ state converge.

Chapter 5 presents the methodology used to evaluate our system and an analysis of
the tests made, with a focus in proving our solution can guarantee the properties
provided by the pub/sub, in the presence of failures.

Chapter 6 highlights some of the conclusions we were able to take from our work and
makes some suggestions for future work to further improve the pub/sub’s function-
alities and performance.

8

2

Background and Related Work

This chapter aims at covering the necessary concepts and techniques required to
address the problem introduced in the previous chapter and present some approaches
proposed by researchers to address it. In section 2.1, we describe different replication
techniques regarding how and where data is stored and how updates to the data are
propagated. Afterwards, in section 2.2, we introduce the concept of consistency models,
highlighting the consistency guarantees provided by different models. In section 2.3 we
describe the concept of publish/subscribe (pub/sub) systems, the advantage of having
clients decoupled in multiple dimensions and the different existing subscription schemes.
In Section 2.4, we outline the different kinds of faults that can occur in distributed systems,
the requirements of reliable pub/sub and common strategies and techniques utilized to
build resilient pub/sub systems. This chapter ends in Section 2.4.1, with the presentation
of previous works with different to provide reliability guarantees in similar systems and
a table summarizing them.

2.1 Replication

Replication is one of the cornerstones in the design of reliable distributed systems. It
is a widely used technique to provide high availability, improved performance, linked
to latency, the ability to tolerate individual node losses (fault-tolerance) and improve
system’s scalability [26]. There are several replication models and techniques one can
choose when designing a replicated system. Each approach to the system design can
provide different properties to it. Next, we present these techniques.

2.1.1 Total and Partial Replication

When thinking about data location and availability, one can reason about the total and
partial replication models.

Total Replication is a model in which every instance of the database has a complete
copy of the data, meaning that every storage node contains all the data available in the

9

CHAPTER 2. BACKGROUND AND RELATED WORK

system. When a database instance fails, it can be replaced by any other [26]. With this
approach, one can achieve high data availability, since data is available in every database
instance, faster query execution, especially when clients are scattered around the world by
having multiple instances of the data closer to the clients, and improved load balancing,
since queries can be executed in any replica. On the other hand, it may introduce issues
related to data consistency and slower update process due to requiring that every database
instance has a complete copy of the data.

Partial Replication is a model in which, in contrast to total replication, each replica only
holds a subset of the database. This can be an interesting approach when storage space is
a concern because updates are propagated only towards the affected sites [26]. However,
certain sites are not able to execute certain types of transactions, which can affect the
ability to load balance.

2.1.2 Active and Passive Replication

The concepts discussed so far, are mainly focused on addressing where data is being
stored. However, it is also necessary to consider how data is replicated and how updates
are propagated among the different replicas. The active and passive replication models
provide two different methods of approaching this issue.

Active Replication is a method in which client operations are forwarded to all replicas
in a coordinated order, relying on a protocol to decide the order of execution of such oper-
ations. Afterwards, each replica executes the operations independently, reaching a result
state identical among all replicas. With this approach, to guarantee that replicas state after
executing all operations is identical, client operations are required to be deterministic [19].

Passive Replication is a method in which all client requests are sent to a primary node,
which executes the requests and sends update messages, containing the state of the master
after executing the request, to the secondary nodes in the same order as the order of the
operations executed by the master replica. Unlike active replication, client operations are
not required to be deterministic due to the fact that only the master node receives and
executes requests. On the other hand, this approach can consume a lot of bandwidth
when the result state is large. Also, the primary node might fail and, thus, this method is
required to have a replica recovery and master election protocol [19].

2.2 Consistency Models

A consistency model refers to the guarantees provided by the system about the order
in which operations appear to occur to clients. It determines how data is accessed and
updated across multiple nodes, and how these updates are made available to clients.

10

2.2. CONSISTENCY MODELS

There are several consistency models, each with its advantages and disadvantages, and
can be categorized in two categories: data-centric and client-centric [1, 5].

Data stores provide read and write operations over data items. When a process
performs a read operation, it expects the return value to be the result of the last write
operation performed on the given data item. However, in the context of distributed
systems, it is not possible to have a global clock to synchronize operations and decide
which write was performed last. Therefore, we need to provide alternatives that lead to a
range of consistency models [27, Chapter 7].

2.2.1 Data-centric consistency models

Data-centric consistency models focus mainly on the synchronization processes among
replicas and the ordering of operations, providing guarantees about the ordering of
operations performed in all data items [3]. Next, we present consistency models that fit
the data-centric consistency model, each providing different properties to the system.

2.2.1.1 Strong Consistency

Strong consistency models, guarantee that all replicas are in a consistent state immedi-
ately after an update, before the replica, who receives the request, replies to a client. They
ensure that all replicas perceive the same order of data accesses performed by different
clients [8].

Linearizability is a consistency model that provides strong consistency guarantees. In
this model, operations have associated a time, called linearization point, which corresponds
to the time a client operation takes effect [1], and is located some time between the
operation’s time of arrival and the time the process replies to the client. Furthermore,
Linearizability requires client operations to be ordered based on their linearization point [3].

Sequential Consistency is another model that provides strong consistency guarantees.
It requires that all requests are serialized by the same order in every replica and that
requests from the same client are executed in the order that they are received by the
storage system, i.e., the result of any execution is the same as if the operations by all
processes in the data store were executed in some sequential order [27, Chapter 7]. It is
weaker than Linearizability since it does not preserve real-time ordering of operations [2].

2.2.1.2 Weak Consistency

A weak consistency model is one that provides very weak or no guarantees on the
ordering of operations, i.e., it can be seen as an approach where replicas might by chance
become consistent [3].

11

CHAPTER 2. BACKGROUND AND RELATED WORK

Causal Consistency is a model where operations have a causal relationship between
them, i.e. if an operation A is dependent on the output of an operation B, then operation
B must be executed before operation A. For example, if operation B reads a resource and
operation A updates the value of the resource based on the value read by B, then A must
be executed after B because A depends on B. With this model, it is guaranteed that a client
does not read two related write operations in a wrong order and in case the client has
read the latest value, then it does not read the stale value [1].

Eventual Consistency is a form of weak consistency, thus it is not required to synchronize
replicas as soon as clients send requests, allowing for reduced latency. After a period of
time, in the absence of updates or failures in the system, eventually, replicas will converge
to a consistent state [3]. However, since updates are performed asynchronously, if other
clients read the data item from other replicas, it is not guaranteed that the operation will
return the most recent write.

2.2.2 Client-centric Consistency Models

Client-centric consistency ensures that while a client has access to a resource, it will
never see a state of the resource older than the current one. However, if multiple clients
have access to the same resource simultaneously, then consistency is not guaranteed [1].

Monotonic Reads ensures that when a client reads a version n of a data item, future read
operations on the same replica will always return a version of the data item equal or newer
than n [3]. From an application perspective data visibility might not be instantaneous but
versions become visible in chronological order.

Monotonic Writes is a consistency model in which a write operation performed by a
process on a data item k, is completed before successive write operation on k by the same
process. Therefore, a write operation on a copy of k is performed only if that copy has
been brought up to date by means of any preceding write operation, which may have
taken place on other copies of k. In case old writes have not finished, the new write must
wait for old ones to finish [27, Chapter 7].

Read Your Writes consistency is provided by data stores, if the effects of a write operation
by a process on data item k will always be seen by a successive read operation on k by the
same process [27, Chapter 7]. This condition guarantees that a write operation is always
completed before a successive read operation by the same process, no matter where that
read operation takes place.

Writes Follow Reads consistency guarantees that any successive write operation by a
process on a data item k will be performed on a copy of k that is up to date with the value
most recently [27, Chapter 7]. A data store provides write follows reads consistency, if a

12

2.3. PUBLISH/SUBSCRIBE SYSTEMS

Notification
Service / Broker

Subscriber

Subscriber

Publisher

Publisher

Publish
Notify

Subscriber

Subscribe

Unsubscribe

Figure 2.1: Publish/Subscribe architecture

write operation by a process on a data item k following a previous read operation on k by
the same process is guaranteed to take place on the same or a more recent value of k that
was read.

2.3 Publish/Subscribe Systems

A pub/sub system is one in which clients communicate asynchronously between
them by exchanging notifications, relying on a notification service that provides storage
and management of subscriptions, and efficient delivery of events [14]. In these systems,
there are two types of clients, producers and consumers, more often called publishers and
subscribers, respectively.

Producers publish events and consumers subscribe to events by issuing subscriptions.
Consumers can have multiple active subscriptions and after issuing one, the notification
service is responsible for delivering all future notifications when publishers publish an
event, subscribed by the subscriber, until the subscription gets canceled. This allows
consumers to express their interest in an event or pattern of events. Figure 2.1 shows the
architecture of pub/sub systems with a single broker.

This kind of system is a great choice for applications focused on information dissemi-
nation, such as newsletters.

2.3.1 Notification Service

The pub/sub system architecture relies on a notification service, composed by a
centralized or distributed broker server, responsible for storing publications, managing
subscriptions and efficiently delivering notifications to subscribers [14]. It acts as a middle-
man between publishers and subscribers allowing these to be decoupled from each other.
The decoupling provided can be decomposed into three dimensions [14]:

Space decoupling: publishers and subscribers are not required to know each other by
relying on the notification service to receive publications from publishers and deliver

13

CHAPTER 2. BACKGROUND AND RELATED WORK

notifications to subscribers.

Time decoupling: publishers and subscribers do not need to actively participate in the
interaction at the same time. Publishers can publish events while subscribers are
disconnected and subscribers can be notified of events while the original publisher
of the event is disconnected.

Synchronization decoupling: publishers do not get blocked while publishing events
and subscribers get notified asynchronously of an event while performing other
concurrent tasks.

2.3.2 Subscription schemes

Subscribers are often more interested in a specific set of events rather than all events.
Thus, subscriptions had to be adapted to allow subscribers to specify the set of events
they were most interested, which lead to the creation of several subscription schemes. The
most widely used subscription schemes are the following [14]:

Topic-based subscription: participants publish events and subscribe to individual topics,
identified by keywords.

Content-based subscription: consumers subscribe to events by specifying filters to event’s
content. Filters are rules that must be met by the content of a publication to be notified
by the notification service.

This thesis mainly focuses on a topic-based pub/sub system, therefore, we more
detailed insight on this type of system.

In topic-based systems, messages are associated with topics and are selectively routed
to destinations with matching interests. Topics are associated with channels, which are
queues of messages maintained by brokers, and it’s name is used to create the channel.
After creation, every channel is uniquely identified by its name, also used as an argument
for the functions publish() and subscribe(). Clients can subscribe to multiple topics and will
receive future messages published on those topics [29, Chapter 7].

As stated in [14], the concept of topics is similar to the concept of groups in the context
of group communication. In addition, subscriptions can be seen as joining a group, and
publishing a message can be seen as broadcasting that message to the members of that
group.

2.4 Reliable Publish/Subscribe Systems

Scaling a distributed system requires the addition of components to the system. How-
ever, the more components a system is composed of, the more complex it becomes and
the probability of components failing also increases. In general, a failure occurs when a
component of the system fails. According to [27, Chapter 8], failures can be classified as:

14

2.4. RELIABLE PUBLISH/SUBSCRIBE SYSTEMS

Table 2.1: Process fault models based on [28].

Model Description

Crash failure model A process permanently stops working

Omission failure model A process fails to respond to incoming requests

Timing failure model A process’ response is outside a specified time interval

Response failure model A process’ response is incorrect

Byzantine failure model A process might deviate from its behavior in an arbitrary
way

Transient: faults that occur once and then disappear.

Intermittent: faults that occur, then vanishes by itself and reappears repeatedly.

Permanent: faults that continue to exist until the faulty component is replaced.

In order to develop a reliable system, it is important to make assumptions about how
a process might fail. Therefore, it is of great importance to define fault models. Table 2.1
classify process failures that can be observed in systems, and faults that occur at the
network level.

Detecting failures can seem to be a trivial task however, when dealing with widely
scaled systems, it might present itself as a bigger challenge. Therefore, it is important to
design robust systems and algorithms that can guarantee the correct behavior of correctly
operating processes, in the presence of failures.

In the context of distributed pub/sub systems, it is often necessary to provide strong
guarantees about the reliable delivery of information. This is mainly due to the decoupling
between publishers and subscribers as mentioned in Section 2.3. Systems can rely, for
example, on overlay networks of distributed brokers or group communication and reliable
application-layer multicast, such as Scribe [6], to propagate messages between brokers
and from publishers to subscribers [14].

Moreover, we should also take into account that brokers might eventually fail and,
therefore, system’s need to implement mechanisms to detect such failures and recover
from them. According to [13], these are some of the techniques and strategies that have
been adopted by current implementations:

Planning: estimate the reliability level of several paths from a source to a destination,
and pick the one that exposes the highest reliability. This mainly aims at avoiding
faults as much as possible.

Reconfiguration: adopt topological reconfiguration to recover connectivity in the forward-
ing tree after a node or link crashes. Aims at maintaining a consistent connectivity
for the system.

15

CHAPTER 2. BACKGROUND AND RELATED WORK

Retransmissions: publishers store produced events so that subscribers can request re-
transmissions when losses are somehow detected.

Epidemic Algorithms: processes exchange at a random time its history of the received
notifications with a randomly-chosen set of processes among the ones constituting
the system. Subsequently, inconsistencies, i.e., message drops are detected by
comparison and corrected through retransmissions.

Forward Error Correction: forward redundant data instead of using retransmissions. Re-
ceivers can reconstruct the original event even if some notifications have been
dropped during delivery.

Broker Replication: replicates brokers in the notification service. Brokers’ state is repli-
cated to its neighbors so in case of a broker failure, it can be easily substituted
without losing subscription consistency.

2.4.1 Existing Work

In this section, we present some related works concerning the reliability problem of
pub/sub systems. Table 2.2 presents a summary of the solutions reviewed.

Scribe [6] is a scalable application-level multicast infrastructure built on top of Pastry [23],
a peer-to-peer location and routing substrate, which forms a robust and self-organizing
overlay network in the Internet. Pastry is also used to manage group creation and joining,
and to build a per-group multicast tree. Scribe nodes can create, send messages to, and
join groups.

In scribe, subscribing to topics leads to establishing a per-topic multicast tree, rooted
at the topic’s rendez-vous point. A topic’s rendez-vous point, is the node with nodeId closer
to topicId. Nodes subscribe to topics by using Pastry to route JOIN messages.

Regarding reliability, Scribe mostly relies on Pastry to be resilient to node failures
and uses TCP to reliably disseminate messages in the presence of unreliable links. In the
multicast tree, each parent periodically sends heartbeat messages and children suspect
their parent is faulty when they fail receiving heartbeat messages routing a JOIN message
to a different parent. Furthermore, all nodes in the system maintain a buffer of received
messages, containing the last publications published to the topic. This buffer is used by
parents to retransmit messages the new child has missed while detecting and recovering
from the old parent’s fault. Children also send period messages to parents in order to
restate their interest in a topic, otherwise their entry in the forwarding table is discarded.
To tolerate rendez-vous point’s faults, its state is replicated across the k closest nodes to the
root in the nodeId space. If it fails, the node with the closest nodeId to the topicId will become
the new root. When children detect that their parent has failed, they will be rerouted to
the new root.

16

2.4. RELIABLE PUBLISH/SUBSCRIBE SYSTEMS

Epidemic Algorithms for Reliable Content-Based Publish-Subscribe [10, 11] In [10, 11],
the authors approach reliability by relying on gossip (or epidemic) algorithms to improve
reliability in content-based pub/sub systems and propose three algorithms based on
different gossip strategies.

Unlike topic-based pub/sub where topic subscriptions define a group of receivers and
messages within a topic can be assigned a sequence number to easily detect losses, patterns
in content-based pub/sub do not have the same effect. This is mainly linked to the fact that
events can match multiple patterns resulting in routing being performed independently
and messages not getting assigned a sequence number. The authors identify the previous
problems as the main challenges that have to be addressed when applying reliability to
content-based pub/sub.

The first proposed algorithm, uses a strategy based on push gossip. At each gossip
round, the gossiper randomly picks a pattern p from its subscription table, constructs a
digest, a pair containing the source identifier and a sequence number associated top the
source, of the identifiers of all the cached events matching p, builds a gossip message
containing the digest, labels it with p and propagates the message. Afterwards, when a
dispatcher receives a message labeled with p, it checks if it is subscribed to this pattern
and if the identifiers contained in the digest correspond to events already received by it.
The identifiers of missed events are included in a request message sent to the gossiper,
which replies by sending the corresponding events.

The second and third algorithms use a strategy based on pull gossip. The former is a
subscriber-based algorithm in which, when a dispatcher detects a lost event it inserts the
corresponding information in a buffer Lost. In the next gossip round, it chooses a pattern
p among the ones associated with local subscriptions, selects the events in Lost related
with it, and inserts the corresponding information in a digest attached to a new gossip
message. The message is then labelled with p and routed similarly to the push solution.
Afterwards, when a dispatcher receives the message, it checks its cache against the events
requested by the gossiper and, if any are found, sends them back to it. The last solution is
a publisher-based algorithm. It requires that event sources also cache their published events
and that the address of each dispatcher on the path towards a subscriber is appended
to the message. It behaves similarly to the previous algorithm, but instead routes gossip
messages towards publishers instead of subscribers. The messages are distinguished
based on the event source rather than the pattern, and augmented with the information
required to route back to the publisher.

Reliable and Highly Available Distributed Publish/Subscribe Service [17] In [17], the
authors present a system that uses a topology management and subscription propagation
scheme that enables brokers to compute new forwarding paths when failures of nearby
neighbors occur.

The system relies on a tree-based overlay, in which brokers maintain a partial view of
this tree which includes all brokers within distance f+1, where f is the maximum number

17

CHAPTER 2. BACKGROUND AND RELATED WORK

of concurrent broker failures that the algorithm tolerates. Such information is stored
locally by each broker in a data structure called the topology map.

Brokers also maintain a subscription table containing entries for subscriptions inserted
into the system. Subscriptions contain a from field that points to another broker located
f+1 hops closer to the subscriber. In the event of failure of one or more neighbors, the
broker uses this information and its topology map to reconnect the network topology, and
forward publications over new paths towards matching subscribers.

Finally, the algorithm contains a recovery procedure used by failed brokers to re-enter
the system. This procedure aims at restoring a broker’s routing information according to
the current state of the network and is divided in three phases: synchronization, message

forwarding and termination of recovery.

Thicket [15] is a decentralized algorithm that builds and maintains multiple trees over
a single unstructured overlay network which, in contrast to structured overlays, are more
resilient to the dynamics of nodes joining and leaving the system, due to the minimal
restrictions imposed by the overlay. Furthermore, the overlay implements a reactive peer
sampling service responsible for notifying the Thicket layer whenever there are changes
to the node’s partial view.

The algorithm employs a gossip strategy to build T divergent spanning trees, where
T is the maximum number of trees that can be built in a single overlay, limited by the
protocol’s fanout (t), and where most nodes are interior in a single tree and leaf in all other
trees. The remaining overlay links are used to ensure that all nodes in the system are
connected to all trees, detect and recover from tree partitions when nodes fail, ensure that
tree heights remain small and ensure that forwarding load of each node is limited by a
parameter called maxLoad, which must be low enough in order to limit the forwarding
load imposed to each node, avoiding overloading.

Nodes also maintain a set of backupPeers with the identifiers of the neighbors that are
not being used to receive or forward messages in any of the T trees, a set of activePeers

with the identifiers of neighbors from whom it receives and forwards messages to, a
set of announcements that store control information, used to detect and recover from tree
partitions due to node failures or departures, received by peers in the backupPeers set and,
finally, a receivedMessages set with the identifiers of messages previously received and
forwarded by a node.

Thicket implements a tree repair mechanism with the purpose of ensuring that all
nodes eventually become connected to all existing spanning trees and recover from tree
partitions that might happen due to failure of nodes. It relies on a SUMMARY message,
containing the identifiers of messages added to the receivedMessages set, since the last
SUMMARY message. When a node receives such message, it verifies if all identifiers
are recorded in its receivedMessages set. If no messages have been missed, the message is
discarded. Otherwise, the node stores in the announcements set, a tuple containing the
message identifier and the sender of the summary. For each tree t where a message has

18

2.4. RELIABLE PUBLISH/SUBSCRIBE SYSTEMS

been detected has missing, the algorithm initiates a repair timer. When the timer expires,
if the missing messages have not been received, the node assumes that t has become
disconnected from that tree and executes a procedure to repair it. Multiple executions
of the repair mechanism may lead to configurations where several nodes are interior in
more than one tree. Therefore, Thicket implements a reconfiguration procedure in order
to undo such configuration and redistribute the load among all nodes.

P2S [7] is a topic-based and crash-tolerant Paxos-based pub/sub middleware based on
Goxos, a Paxos-based State Machine Replication framework. Paxos is a fault-tolerant
consensus protocol in which a set of replicas tries to reach agreement on a value. With this
protocol, replicas can reach agreement when at least f+1 replicas are able to communicate,
where f is the number of failures the system can tolerate.

This system leverages Paxos as a way to achieve total message ordering, while providing
a mechanism to tolerate broker failures. For that purpose, P2S relies on a set of 2f+1 brokers
between publishers and subscribers. With this design, P2S is able to provide fault-tolerance
through replication while providing total ordering through Paxos.

In this system, client messages are handled by the Goxos framework. When clients
send messages, Goxos treats them as Paxos requests, orders and delivers them to the
broker application layer, which forwards the messages to the subscribers according to the
message topic.

GEPS [24] is a content-based pub/sub system in which publishers, before publishing,
advertise their intent of publishing a message. Advertisements are flooded in the overlay
so that all brokers become aware of all advertisements in the system. When a broker
receives an advertisement, it stores the advertisement and the broker it came from, in the
subscription routing table (SRT). An advertisement contains a type and a set of predicates
defined over the attributes of the messages that the advertiser intends to publish.

When a client issues a subscription, it is propagated based on the SRT, in order to
propagate the subscription towards the advertisers. Similarly to advertisements, subscrip-
tions contain a type and a set of predicates over the attributes of the publications they are
interested in, and each broker stores the subscription and the broker it came from.

In GEPS, the overlay tree is extended by establishing additional links between brokers,
based on a broker’s position in the tree and similarity with other brokers. Similarity
between brokers quantifies the commonality of contents routed by two brokers.

Each broker maintains a partial view comprised of the brokers it is aware through the
dissemination tree and established extra links. A node’s partial view aims at maintaining
information about its sibling nodes and it serves as a mechanism to verify the availability
of view members and to discover more similar siblings. This can be accomplished by
periodically updating it.

19

CHAPTER 2. BACKGROUND AND RELATED WORK

CPTCast [12] is a protocol able to build dissemination trees inspired by the tree construc-
tion mechanisms of Plumtree protocol, that provides causal delivery guarantees. It follows
a gossip strategy, which inherently provides redundancy in the dissemination process and,
even though processes expect to receive multiple copies of a messages, the protocol has to
guarantee that each message is delivered just once by ensuring that each communication
channel only carries each message once and messages are delivered in a First-In-First-Out
(FIFO) order. This can be achieved by certifying that each node only forward messages
when they receive it for the first time, which means nodes also require to store each
message. Furthermore, when a node receives a repeated message, it acknowledges that
the message has been received and transmitted by the sender and it can discard the data
related to the message, once it acknowledges that all neighbors received the message.

Contrary to static systems with tree overlays, where guaranteeing FIFO delivery of
messages is enough to guarantee causal delivery, in dynamic systems, where nodes can
join and leave the system, leading to constant reconfiguration of neighborhoods, you
also have to guarantee that nodes are able to receive the messages when reconfiguration
happen.

The contributions made by this work, aim at developing a protocol able to provide
causal delivery of messages under the conditions of dynamic systems, by employing
techniques such as control message exchange and message buffering, to guarantee that new
unsafe links are progressively integrated in the dissemination tree without compromising
the consistency guarantees. Furthermore, to support the dissemination of messages under
the process of reconfiguration of the whole tree, the protocol uses an epidemic strategy,
dividing peers into eagerPushPeers and lazyPushPeers, separating each node’s neighbors by
communication mode. The broadcast tree is constituted by the links where eager push
gossip is employed and lazy push links are leveraged as a strategy to achieve reliability
by promoting these links to eager push when faults occur.

LoCaMu [25] is an algorithm built on top of an unstructured overlay network, modeled
by an undirected, acyclic and connected graph referred to as base graph. To tolerate failures,
the base graph is augmented with additional edges, creating an augmented graph. Even
with redundant paths, messages are routed along the paths defined by the base graph,
only using the redundant paths to propagate messages when nodes in the overlay fail.
However, in those scenarios messages might be duplicated or re-ordered. Therefore, the
algorithm maintains the required metadata to ensure the in order and reliable delivery of
messages even when faults occur.

In LoCaMu, it is assumed that nodes can fail and subsequently recover, keeping
their state in persistent memory. Faulty nodes may remain unavailable for an arbitrary
amount of time. Furthermore, each node has access to a failure detector mechanism, that
notifies nodes when neighbors become available or unavailable, allowing nodes to avoid
sending messages to unavailable nodes. The recover mechanism is only used to improve
the performance of the algorithm and avoids the periodic transmission of messages to

20

2.4. RELIABLE PUBLISH/SUBSCRIBE SYSTEMS

all nodes in its neighborhood, even to the ones that are temporarily unavailable. The
algorithm also ensures that unavailable nodes will eventually receive all messages when
they recover.

LoCaMu is a localized algorithm where nodes store metadata about the messages sent
and received by other nodes into a safety neighborhood. When a message is sent and tagged
with metadata, it only needs to be tagged with information belonging to nodes part of it’s
safety neighborhood of the recipient. Safety neighborhoods include all nodes that are at
most 2f+1 hops away in the base graph. Nodes are required to keep track of identifiers of
messages generated by neighbors in their safety neighborhood. The identifiers of messages
originated outside the neighborhood cannot be used and, thus, it is necessary to replace
it with a more local identifier. Instead of having a single identifier, messages are assigned
with multiple identifiers as they are being forwarded through the network. Each of the
identifiers is only valid in a given neighborhood.

Failure-tolerant overlay trees for large-scale dynamic Networks In [16], the authors
propose a tree overlay maintenance protocol which utilizes different strategies with the
goal of minimizing node degree after a node fails and a reconfiguration takes place
In the proposed protocol nodes store information about other nodes in different caches.
Additionally, each cache as an update mechanism theirown advantages and disadvantages,
according to the reconfiguration strategy utilized.

The different strategies proposed can either localize the reconfiguration mechanism
to nodes surrounding a failed node or take a more global approach. The main caches,
Regional and Global, store information about other nodes in the overlay and, therefore,
require up to date information.

With that information, when a node detects the failure of its parent it can identify
candidate parents and send a ParentRequest message to the one it picks. When nodes
receive a parent request they can either accept or refuse depending on their own node
degree, which is limited to a maximum threshold. If accepting a connection would exceed
such limit, then nodes can refuse and the requesting node must chose another parent. The
authors also propose strategies to soften the max degree restraint to limit scenarios where
no candidate parent would accept a parent request.

2.4.2 Discussion

In this Chapter, we introduced the necessary concepts that allow the development
of scalable distributed systems that can reliably provide services to their clients with
high availability and performance. Finally, we presented an array of existing works
that approach fault-tolerance in systems whose structure and consistency guarantees
are similar to Ginger’s. These papers served both as a support basis to identify failure
situations that compromise Ginger’s correctness and as an inspiration for the strategies we
will employ to ensure it’s correctness in such situations. We determined that to support

21

CHAPTER 2. BACKGROUND AND RELATED WORK

Table 2.2: Solution properties.
System Topology Delivery Ordering Fault-tolerance Strategy Details Requirements

Scribe [6] Tree No guarantees FIFO ✓ Reconfiguration Routing Tables Each topic has its own multicast tree rooted at a rendez-vous,
which is the node with nodeId closer to topicId

P. Costa et
al [10]/ [11]

No topology At-least-once No order ✓ Gossip Message
Buffering

Pull-based: Information related to lost events is inserted in
a buffer and a request is propagated for the missing events.
Dispatchers receive the message and verify if the requested
event is cached and, in case they have, send a message to
the requester. Push-based: Gossiper picks a pattern and
propagates a message containing the identifiers of cached
messages. Receivers verify if the identifiers correspond to
messages already received and reply with a request message.

R. S. Kazemzadeh
and H. Jacobsen [17]

Tree Exactly-once FIFO ✓ Redundant Paths Partial view Each broker maintains in its partial view all replicas within
𝛿+1 distance, where 𝛿 is the number of faults to tolerate.

Thicket [15] Tree No guarantees No order ✓ Reconfiguration Reconfiguration Nodes send periodic SUMMARY messages to it’s neighbors
to detect either if messages have been missed or neighbors
have failed. Use backup peers when peers fail. Reconfigure
tree to distribute load among nodes

P2S [7] Star No guarantees Total ✓ Paxos Replication 2f+1 replicas, where f is the number of faults to tolerate

GEPS [24] Tree Causal FIFO ✓ Redundant Paths Partial view Brokers maintain and share a sibling view, based on the level
of the tree and content subscribed by other brokers, with the
parent and child brokers. Each broker also store the sibling’s
views of the parent and children.

CPTCast [12] Tree Causal FIFO ✓ Gossip Partial view New links are marked as unsafe until every node recognizes
it as safe. Partial view of links in eager push mode and lazy
push mode. Links in lazy push mode are promoted to eager
push when faults occur.

LoCaMu [25] Tree Causal FIFO ✓ Redundant Paths Partial View Nodes maintain a "safety neighborhood" with peers that are
at most 2f+1 hops away. Nodes store metadata related to
messages sent and received by other nodes in that neighbor-
hood. Identifiers of messages originated outside a node’s
neighborhood are not valid and are required to be replaced.

D. Frey and A. L.
Murphy [16]

Tree No guarantees No order ✓ Reconfiguration Partial View Nodes maintain an Ancestors and Siblings chains. Addition-
ally, nodes contain variables used to control their degree
in order to determine which nodes might be suitable to ac-
commodate others that have become disconnected from the
remaining tree.

node failures in dissemination trees we can replicate brokers allowing any replica to
replace it in case of failure, extend the tree with extra edges by adding additional edges
between brokers not connected through the tree and use gossip strategies to guarantee the
delivery of messages. To detect broker failures, brokers can exchange periodic heartbeat
messages with its neighbors, which can be perceived as failed when a broker does not
receive the periodic message from them. Similarly to detecting broker failures, recovering
from them can also be achieved through the exchange of control messages.

The solutions we propose in Chapter 4 are mainly inspired by the approaches in [16]
and LoCaMu [25] despite being a system whose overlay is unstructured, however some
of the strategies used in this work can be applied in our work’s context.

22

3

Ginger’s Publish-Subscribe

This chapter describes the implementation of Ginger’s publish/subscribe (pub/sub)
system, detailing how the system’s initial configuration is set, each broker’s state and the
types of application-level messages used to support the multiple delivery guarantees and,
finally, how messages are processed to ensure each is correctly ordered.

Ginger uses two dissemination services to deliver messages to clients, the Data Dis-
semination Service (DDS) and the Metadata Dissemination Service (MDS), the second
being the one this thesis focuses on. The MDS follows a topic-based pub/sub architecture
built on top of a pre-existing dissemination tree of brokers. When a client executes an
operation, it is mapped into a publication in the pub/sub and is required to be delivered
to all subscribers of the topic the publication is associated with. The MDS is responsible
of ensuring publications are delivered to all subscribers according to the consistency level
associated with the operation performed by a client. Figure 3.1 illustrates the middleware’s
architecture.

3.1 Broker configuration and building the overlay

Brokers are the main component of the MDS’s dissemination tree and are responsible
for receiving, processing and propagating messages while guaranteeing they are delivered
according to the consistency level they are labeled with. Brokers utilize configuration
files to define a set of parameters required to build and maintain the overlay tree. Those
parameters are:

self: indicates the broker’s address in in the pub/sub system;

parent: indicates the broker parent’s address;

nr-actors: indicates the number of workers a broker has;

During the initialization process, additionally to initializing the variables required
to build the tree, parent and self, brokers initialize a pool of workers, whose number is
determined by the nr-actors parameter, responsible for processing messages received by

23

CHAPTER 3. GINGER’S PUBLISH-SUBSCRIBE

Figure 3.1: Middleware’s architecture.

the corresponding broker. Further details on the remaining configuration parameters will
be provided in Sections 4.2 and 4.3.

3.2 Consistency levels supported

Messages are processed and delivered according to the consistency level assigned to
the publication. Ginger supports Eventual, Causal and Linear consistency levels, which in
the context of the pub/sub are mapped into the Eventual, Causal Order and Total Order

delivery guarantees, respectively. The following list describes the guarantees associated
with each consistency level:

Eventual: brokers only need to ensure that these messages are eventually delivered to all
clients subscribed to the topic.

Causal: messages are delivered in causal order, explained in Section 2.2.1.2;

Liner: messages are delivered to all subscriber in total order, i.e., for a given message
delivered in total order to all subscribers, messages delivered before and after it are
delivered to all subscribers before and after it, respectively;

3.3 Data structures maintained by each broker

Brokers maintain a set of data structures required to process and forward publica-
tions across the dissemination tree. The structures associated with the tree overlay and

24

3.4. MESSAGE TYPES

dissemination mechanism are:

neighbors: stores the addresses of brokers who are directly connected.

parent: a reference to the parent broker’s address.

brokerManagers: for each topic, stores an object responsible by processing and ordering
incoming messages.

subscribers: addresses of subscribers per topic.

parentRef: an actor object from the Akka framework actor system that represents the
parent broker. If the parent subscribes the broker, it references the parent actor in
the system otherwise, it is null.

numberOfChildren: number of child brokers that subscribe a topic.

locked: maps key items to message identifiers; informs if a specific key item is blocked at
the broker.

linearT: maps publication identifiers to metadata messages labeled with consistency level
linear; used to store messages labeled as linear.

childrenAcks: stores acknowledgments received associated with a message identifier la-
beled as linear.

poolDown: queue that stores messages going down in the dissemination tree associated
with a topic; allows brokers to process messages in a First-In-First-Out (FIFO) order.

poolUp: similar to poolDown, but for messages going up in the tree.

keyItemsDown: maps the key items from messages being processed and are going down
the tree.

keyItemsUp: similar to keyItemsUp but for key items of messages that are going up the
tree.

3.4 Message types

In Ginger’s MDS, there are different types of messages:

Subscribe

𝑆𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒 < 𝑡𝑜𝑝𝑖𝑐, 𝑝𝑎𝑡ℎ >

25

CHAPTER 3. GINGER’S PUBLISH-SUBSCRIBE

As the MDS follows a topic-based pub/sub architecture, when a client is interested in
receiving messages related to a topic, it sends a Subscribe message, to its edge broker. When
a broker receives this type of message, it stores the sender’s address in the subscribers
set associated with the subscribed topic and forwards the subscription to its remaining
neighbors. The propagation of this message allows the establishment of sub-trees associ-
ated with each topic, used to route messages relative to it. This message also contains a
field named Path to store a set of the addresses of brokers who received and forwarded
the message to its neighbors. The path’s relevance will be explained in Section 4.2.1

Generally, messages used to propagate operations have the following structure,

𝑀𝑒𝑠𝑠𝑎𝑔𝑒 < 𝑡𝑜𝑝𝑖𝑐, 𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟 >

A message contains information regarding the topic to which it is associated and an
identifier that uniquely identifies the message. The identifier field is a tuple (clientID,

counter), where clientID identifies the client who performed the operation associated with
the message and counter is a message counter maintained by the middleware instance (MI)
who published it.

Metadata

𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎 < 𝑘𝑒𝑦𝐼𝑡𝑒𝑚𝑠, 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝐺𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒 , 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 >

Metadata messages, are used to propagate operations between service’s clients. The
keyItems field, contains the keys that uniquely identify data items or structures in a
database and is a tool to support the ordering mechanisms. The deliveryGuarantee field,
indicates the assigned delivery guarantees of the operation executed by the client and the
dissemination mechanism utilized by brokers depends on it. Finally, the processed flag
is used to indicate that a message has been processed, although it is only relevant for
messages that are delivered in total order.

3.5 Processing messages

As mentioned previously, brokers maintain message queues that allow processing
and forwarding messages in FIFO order. To deliver messages with multiple delivery
guarantees, brokers must adapt the algorithm to process a message depending on the
consistency requirements of the operation executed by the client.

Disseminating messages tagged with eventual consistency is the simpler of cases,
since brokers are only required to ensure these messages are eventually delivered to all
subscribers of the corresponding topic.

Disseminating messages tagged with causal consistency is also straightforward. Ginger
ensures these messages are delivered in causal order, by relying on the message queues
to process them in FIFO order which is enough to ensure causal order when no faults
occur [25].

26

3.5. PROCESSING MESSAGES

B

MI MI

B

MI MIMI MI

B B

MI MI MI MI

B B

MI MI

L

L L

Ack TpTp

L L

Figure 3.2: Total order delivery protocol.

These queues are also used to process messages tagged with linear consistency however,
these messages require a more complex strategy. Total order delivery requires brokers to
establish a synchronization point imposing strict ordering constraints on message ordering.
For a given message with total ordering guarantees, any prior message received by a
subscriber is guaranteed to be received before the message tagged with linear consistency
by all subscribers, and any message received after the message by a subscriber is guaranteed
to be received after the message by all subscribers. To ensure this, brokers temporarily
stop processing messages that contain the same pair (topic,keyItem) as the message tagged
with linear consistency, achieved by temporarily blocking the given pair at each broker
subscribed to the topic when the message is received. Afterwards, if a broker is not the
topic’s tree root, it propagates the message to its parent, who then propagates the message
to its children who are subscribed to the topic and waits for them to acknowledge the
message. When all brokers in the topic’s sub-tree acknowledge it, if the broker is not the
topic’s tree root, the process is repeated until it reaches the root. Afterwards, the root
propagates a message to its children indicating that the message has been successfully
processed and can be delivered to all subscribers. This process is illustrated in Figure 3.2.
To support this process, the middleware implements the following messages:

27

CHAPTER 3. GINGER’S PUBLISH-SUBSCRIBE

TotalAck

𝑇𝑜𝑡𝑎𝑙𝐴𝑐𝑘 < 𝑘𝑒𝑦𝐼𝑡𝑒𝑚𝑠 >

is used by a broker to notify its parent that every broker below it in the tree as received
the corresponding metadata message tagged with linear consistency and temporarily
stopped processing messages with the same keyItems, which refers to the keys in the
metadata message.

TotalProcessed

𝑇𝑜𝑡𝑎𝑙𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 < 𝑘𝑒𝑦𝐼𝑡𝑒𝑚𝑠 >

is a notification sent by the topic’s tree root, to notify all brokers the message associated
with the key items, has been successfully processed and can be delivered to all subscribers.
As in TotalAck messages, the keyItems field refers to the keys in the corresponding metadata
message.

28

4

Solution Overview

This chapter provides a detailed description of the work developed in this thesis, which
considers a crash failure fault model, presented in Table 2.1 and, consequently, we only
consider faults resulting from brokers failing and remaining in that state. We start by
identifying the main requirements our work needs to fulfill in Section 4.1.

In Section 4.2, we present the first key component of our work, related to Ginger’s
Metadata Dissemination Service (MDS) dissemination infrastructure. The MDS works
on top of a dissemination tree of brokers, and ensuring messages are delivered to all
destinations is crucial. In order to deliver messages to all destinations, it is necessary to
ensure that the dissemination infrastructure remains connected. Consequently, the first
key component of our work is a protocol to maintain and reconnect the overlay in the
event of failures. In Section 4.2.1, we show how a failure can compromise the connectivity
of the system and the restrictions on message ordering imposed by the multiple delivery
guarantees. From there on, until Section 4.2.4, we provide a thorough description of the
details of the implemented protocol.

Then, starting in Section 4.3 we delve into the details of how brokers restore the
communication channels between them and ensure no data is lost and message order in
preserved in that process. These communication channels utilize a First-In-First-Out (FIFO)
strategy to order messages, property that must be upheld after the overlay is repaired.
Moreover, in the event of failures some messages may remain blocked, preventing other
published messages from being delivered to all subscribers. The next sections, until
Section 9, we detail the necessary steps to detect if messages were missed, to complete
any ongoing processing of messages tagged with linear consistency, and how brokers
prevent messages from being received out of order. Finally, we highlight how our protocol
guarantees causal and total order, in Section 4.4.

During this chapter, whenever we want to refer to the broker’s state in algorithms, we
use the keyword this.

29

CHAPTER 4. SOLUTION OVERVIEW

4.1 Identifying solution requirements

As mentioned in previous chapters, the main goal of this thesis is to implement a
protocol that allows Ginger’s middleware to maintain the overlay’s connectivity and the
correct message order in the event of failures. However, before discussing the details of
this protocol, it is important to outline the MDS’s properties that must be preserved:

Eventual delivery: messages published on a topic are required to be eventually delivered
to every subscriber. For that purpose, we must ensure the paths between publishers
and subscribers remain connected in the event of failures. Therefore, we need to
ensure that the dissemination infrastructure remains continuously connected.

Causal order delivery: messages tagged with causal consistency must be delivered in
causal order. In the absence of failures, delivering messages in FIFO order by relying
in FIFO communication channels is enough to guarantee causal order [25]. However,
we may not be able to guarantee the channels remain intact when failures do occur.

Total order delivery: messages tagged with linear consistency must be delivered in total
order. Ginger ensures total order by blocking and unblocking message processing
when the necessary conditions are met. If failures occur, brokers may wait indefinitely
for such conditions to be met leading them to become unable to process further
incoming messages.

4.2 Overlay maintenance protocol

The overlay maintenance protocol implemented in this work is derived from the
maintenance strategies outlined in [16], with a particular emphasis on the Regional strategy.
This approach is selected for its ability to minimize reconfiguration costs by confining
reconfiguration to the failed broker’s children, aiming at reconfiguring the tree while
maintaining it balanced once the reconfiguration process is completed. The protocol is
designed to be localized, meaning that brokers only need to communicate with brokers
within their local tree view to reconnect the overlay. This approach is beneficial in large-
scale systems, as it reduces the number of messages exchanged and the time required to
reconfigure the overlay.

4.2.1 Consequences of a failure

In graph theory, a tree is defined as an undirected, connected and acyclic graph in
which two vertices are connected by exactly one path. Consequently, if a non-leaf vertex
is removed, the tree becomes disconnected. The same concept applies to a tree topology.
When a node is removed, the tree becomes disconnected, creating multiple sub-trees
where nodes are only able to communicate within their sub-tree. This is a relevant issue,
because, in the context of a publish/subscribe (pub/sub) system, published messages

30

4.2. OVERLAY MAINTENANCE PROTOCOL

(a) Before failure (b) After node 2 fails

Figure 4.1: Example Ginger middleware overlay. Brokers are represented by circles and
clients by squares.

might not be delivered to all of the topic’s subscribers, if the topic sub-tree becomes
disconnected.

Consider the tree from Figure 4.1 and assume every client subscribes to the same
topics. In Figure 4.1a, every broker and client is reachable through the overlay. However,
as displayed in Figure 4.1b, the tree becomes disconnected as a result of a failure. In the
example, the failure of broker 2 creates three sub-trees each rooted at its direct neighbors.
From the moment the failure occurs and onward, in the absence of a mechanism to restore
the overlay’s connectivity, messages published by clients in different sub-trees will not
reach clients in other sub-trees, violating the properties provided by multiple delivery
guarantees.

4.2.2 Expanding the neighborhood

To properly repair the tree, brokers cannot rely solely on the knowledge about direct
neighbors. To reliably reconnect it, brokers are required to expand their knowledge of the
tree, storing information about other brokers beyond their immediate neighbors in a local

tree view. The local tree view, is composed of a broker’s ancestors, siblings and neighbors. To
store brokers in the local tree view, we defined two types of relationships between brokers,
ancestor and sibling. An ancestor is defined as a broker with a lower depth in the tree and a
sibling is a broker with the same parent. Since tree views are designed to be localizable,
they only contain the addresses of brokers within a maximum distance of maxHops. This
parameter is also related to the number of faults that can be tolerated by each broker and,
since topic sub-trees need to be preserved, a broker can tolerate a maximum number of
faults equal to the number of brokers within its tree view that subscribe to at least the
same topics.

31

CHAPTER 4. SOLUTION OVERVIEW

To address this, Subscribe messages transmitted through the network include informa-
tion about brokers along the message’s path, stored in a field called path. A message’s path,
Path<pathEntries>, consists of a set of path entries, PathEntry<address, hopCount, direction>.
Each entry contains the address, the distance traveled, represented by the number of hops
the message has taken since it was added to the path and a flag (direction) to indicate if the
message was sent upward or downward at the corresponding hop. Information about the
message’s direction at each hop is relevant to determine relationships between brokers and
is explained in the next section. Additionally, each broker stores the information provided
by each entry in the path. The message’s path also contains a maxHops field to indicate the
maximum number of hops that each path entry can take before being removed from it.

Determining if a broker is a sibling. Determining if an entry corresponds to a sibling can
be illustrated by considering the tree from Figure 4.1a. Consider the sub-tree composed
by brokers 2, 5, 6. Nodes 5 and 6 are siblings because they have same parent broker.
Messages sent between broker 5 and 6 follow the paths, 5→ 2 and 6→ 2, respectively.
When messages move from 5 or 6 to broker 2, they travel from child to parent, meaning
they move upward in the tree. At broker 2, messages take a final hop to reach each other,
either 2→ 5 or 2→ 6, adding up to an hop count of 2 with the initial move being upwards.
This movement pattern and hop count allows a broker to conclude an entry correspond
to a sibling.

Determining if a broker is an ancestor. Let’s make a similar argument on how to
determine if an entry corresponds to an ancestor. Now, consider the sub-tree composed
by brokers 0, 1, 2, 3 and 4. In this tree, brokers 0 and 2 are the ancestors of brokers 3 and
4 because their depth in the tree is lower than 3 and 4. To identify if a broker’s depth in
the tree is lower than other broker, we can once again look at the movement patterns of
messages. Messages from 0 reach brokers 3 and 4 by taking two hops downward. Messages
from 2 reach brokers 3 and 4 by taking an upward hop, followed by two downward hops.
Therefore, based on the messages’ movement patterns, a broker can be identified as an
ancestor if the message was sent downwards or if the message takes one upward hop and
the message follows a downward path onward.

4.2.2.1 Storing path information

Algorithm 1 outlines how information contained in the message’s path is handled
and stored in the local tree view. It starts by calling the procedure incrementPathEntries

(line 2) that increments each entries’ hopCount (line 18). Afterwards verifies whether the
message’s sender is the broker’s parent (line 3). This verification ensures that brokers
only store information about other brokers reachable through their parent, preventing
them from attempting to connect to a broker in the event of failures. If the condition is
satisfied, the algorithm iterates over each entry in the path (lines 5-15) and, after each

32

4.2. OVERLAY MAINTENANCE PROTOCOL

Algorithm 1: Handling and storing path information
1 procedure handlePath(sender , path):

/* increment each entry’s hop count */
2 incrementPathEntries(path)
3 if sender = parent ∨ sender = ⊥ then
4 previousEntry← ⊥
5 foreach entry ∈ path.getPathEntries() do
6 broker← entry.address
7 hops← entry.hopCount
8 direction← entry.direction
9 if hops ≤ maxHops then

10 if ¬ containsSibling(entry) ∧ ¬ containsAncestor(entry) ∧ address ∉ neighbors

∧ address ≠ self then
11 if hops = 2 ∧¬ direction then is sibling
12 siblings.add(address)
13 else
14 if direction ∨ (¬ direction ∧ previousEntry ≠ ⊥∧

previousEntry.direction) then is ancestor
15 ancestors.add(address)

16 previousEntry← entry

iteration, tracks the last entry handled which may be important in the next iteration. It
starts by checking if the address is not contained in the ancestors set, nor in the siblings

set, nor in the direct neighbors set and if it is not its own address (line 9), extracting the
entry’s information if the conditions are met (lines 6-8). Then it verifies if the message
was sent upward at the corresponding hop (direction is set to false) and made two hops
in the tree (hopCount equals 2) (line 10), recognizing it as a sibling and storing it in the
appropriate set. Otherwise, if the message was sent downward (direction is set to true)
or if the message was sent upward and the previous entry contained the address of a
broker who sent the message downward, then it is recognized as an ancestor and stored
accordingly (lines 13-14). Finally, it updates the entry previously handled (line 15).

Clients must also be prepared for the possibility of the broker they are connected to
failing. To ensure connectivity is preserved, clients also store information about brokers
in a tree view. The key difference is that they are not required to organize them according
to their position and relationship in the tree however, they must order the addresses in the
view based on the number of hops contained in each path entry, prioritizing the selection
brokers closer to them. This approach simplifies the view’s management process for
clients while still ensuring they can maintain connectivity when necessary. Since clients
do not receive Subscribe messages, their tree view is updated when a

𝑇𝑟𝑒𝑒𝑉𝑖𝑒𝑤𝑈𝑝𝑑𝑎𝑡𝑒 < 𝑜𝑡ℎ𝑒𝑟, 𝑛𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛, 𝑓 𝑎𝑖𝑙𝑒𝑑, 𝑝𝑎𝑡ℎ >

message is received, as a result of a broker establishing a new connection or a broker
failing. This message contains the address of the broker who failed or the connection was

33

CHAPTER 4. SOLUTION OVERVIEW

Algorithm 2: Handling TreeViewUpdate
1 upon onTreeViewUpdate(update):
2 if update.failed then fault triggered the update
3 removeFromTreeView(address)
4 if update.sender ≠ this.parent ∧ update.sender ∈ neighbors then
5 this.neighborNumChildren[update.sender]← update.nChildren
6 update.path← handlePath(update.path)
7 if this.parent = ⊥ then
8 update.nChildren← neighbors.size
9 else

10 update.nChildren← neighbors.size - 1
11 foreach neighbor ∈ this.neighbors do
12 if neighbor ≠ update.sender ∧ neighbor ≠ this.parent then
13 send(neighbor, update)

14 procedure removeFromTreeView(address):
15 if ∃ ancestor ∈ ancestors: ancestor.address = update.other then
16 ancestors.remove(update.other)
17 else
18 if ∃ sibling ∈ siblings: sibling.address = update.other then
19 siblings.remove(update.other)

established to (other), a field indicating whether the event that triggered the update was a
failure or a new connection (failed), the sender’s number of children (nChildren) and the
message’s path, and is utilized to update local tree views. The path component includes a
PathEntry for each broker in the sender’s local tree view.

Updating the tree view is extremely important to prevent brokers and clients from
attempting to repair the tree by contacting brokers that have previously failed without them
becoming aware of it. An update is triggered whenever a broker establishes a connection
with another broker and when a broker fails. In the MDS, brokers communicate with each
other by establishing TCP channels between, which are monitored by brokers on each end
of a connection. When a fault on one end of the connection occurs, the other broker is
notified of that occurrence triggering the update mechanism.

Algorithm 2 outlines the procedure executed by a broker to process a TreeViewUpdate

message. Brokers start by verifying if the update was triggered due to a failure by checking
if the failed attribute is set to true (lines 2-3). If the update was triggered by a failure and the
failed broker was an ancestor or a sibling, the address is removed accordingly (lines 15-19).
Afterwards, if the message was sent by a child, brokers update the neighborNumChildren

map that stores the number of children of each of a broker’s children (lines 4-5). The
information about the number of children is used by brokers when one of its children fails
in order to determine how many connections a broker must expect. Generally, a broker’s
number of children is equal to the size of the neighbors set minus one, because the it
includes the parent’s address. However, if the broker is the root of the tree and does not

34

4.2. OVERLAY MAINTENANCE PROTOCOL

have a parent, its number of children is equal to the neighbors set size. Then, brokers
handle the information contained in the message’s path, update the message’s nChildren

field, to equals their number of children and forward the message to the remaining children
(lines 6-13). The message is not forwarded to its parent due to the information contained
not being relevant from the receiver’s parent perspective.

4.2.3 Handling neighbor failure

As mentioned in Section 4.2.2, faults are detected by monitoring TCP connections
established between brokers and their neighbors, when a connection fails, the broker is
notified of that event and, if the failed neighbor was its parent it must select a broker
within its local tree view to reconnect the overlay with otherwise, it must wait for the failed
neighbor’s children attempting to establish a connection.

To initiate the repair protocol, brokers begin by removing all stored information
associated with the failed neighbor (Algorithm 3), namely removing its address from the
set of neighbors, the number of children it has, if it is was a child and a broker (Algorithm 3,
lines 4-6) and from the set of subscribers of each topic subscribed by it (Algorithm 3, lines 7-
8 and 11-22). To remove the failed neighbor from a topic’s subscribers set, a broker verifies
if the neighbor was subscribed to a given topic (Algorithm 3, line 12-13). Then, if the
neighborwas a brokerand corresponds to its parent within the topic’s sub-tree, the parent’s
reference is set to an undefined broker otherwise, the number of child brokers subscribed
to the topic is decremented (Algorithm 3, lines 14-18). On the other hand, if the neighbor
was a client, it is removed from the set of clients subscribed to the topic (Algorithm 3,
lines 20-21). As mentioned in Section 4.2.2, detecting a fault triggers an update to brokers’
tree view, therefore, during this process brokers send TreeViewUpdate messages to the
remaining neighbors, allowing them to update their tree views (Algorithm 3, line 9).

The next step depends on the relationship with the failed broker. If a broker was the
failed broker’s parent it only needs to wait for the failed broker’s children to contact it
in an attempt to repair the tree by establishing a connection (Algorithm 4, lines 18-22).
To do so, the parent is required to know how many connections it must expect and how
many it can establish. The number of connections it must expect can be determined by the
number of children the failed broker had, information received when a tree view update
is triggered. The other requirement is to know how many connections it can establish. In
our protocol, brokers have an upper bound on the number of active connections that can
be maintained, corresponding to the maximum number of addresses within the neighbors

set and referred to as totalDegree. This parameter aims at avoiding the establishment
of connections from all brokers within the sub-trees rooted at a each child in case of
successive faults occurring, and maintaining a balanced tree after the tree is reconnected.
With this information, brokers are only allowed to establish new connections if the number
of active connections is less than totalDegree. In other words, new connections can be
established if the difference between totalDegree and the current number of neighbors,

35

CHAPTER 4. SOLUTION OVERVIEW

Algorithm 3: Removing neighbor information after it failing
1 function removeNeighbor(neighbor):
2 nChildren← 0
3 this.neighbors.remove(neighbor)
4 if isBroker(neighbor) then
5 nChildren← this.neighborNumChildren[neighbor]
6 this.neighborNumChildren.remove(neighbor)
7 foreach topic ∈ this.factory do
8 removeFromTopicData(neighbor, topic)
9 sendTreeViewUpdate(neighbor, true)

10 return nChildren
11 procedure removeFromTopicData(neighbor, topic):
12 failed← this.subscribers[topic][neighbor]
13 if failed ≠ ⊥ then
14 if isBroker(neighbor) then
15 if failed ≠ parentRef[topic] then
16 numberOfChildren[topic]← numberOfChildren[topic] - 1
17 else
18 parentRef[topic]← ⊥
19 else
20 if isClient(neighbor) ∧ failed ∈ clients[topic] then
21 clients[topic].remove(failed)

22 subscribers[topic].remove(failed)

23 procedure sendTreeViewUpdate(other, failed):
24 update← ⊥
25 if this.parent = ⊥ then
26 update← TreeViewUpdate(this.neighbors.size, other, failed, Path({}))
27 else
28 update← TreeViewUpdate(this.neighbors.size -1, other, failed, Path({}))
29 if failed then
30 if other = parent then
31 update.path.addPathEntry(PathEntry(this.self, 0, false))
32 foreach neigbhor ∈ this.neighbors do
33 send(neighbor, update)

34 else
35 update.path.addPathEntry(PathEntry(this.self, 0, true))
36 send(parent, update)

37 else
38 if other ≠ parent then
39 send(parent, update)

36

4.2. OVERLAY MAINTENANCE PROTOCOL

Algorithm 4: Handling neighbor failure
1 upon onNeighborDown(down):
2 failedNeighbor← down.neighbor
3 nChildren← removeNeighbor(failedNeighbor)
4 if failedNeighbor = parent then parent failed
5 if ancestors.size > 0 then
6 address← sendParentRequest()
7 setConnectionTimer(address)
8 else
9 if this.siblings.size > 0 then

10 if this.siblings.size ≥ this.residualDegree then
11 setExpectedConnections(this.siblings.size)
12 else
13 setExpectedConnections(this.residualDegree)
14 foreach sibling ∈ siblings do
15 send(sibling, RootElection(self, residualDegree, node))

/* set a connection timer for an unknown broker */
16 setConnectionTimer(⊥)

17 parent← ⊥
18 else child failed
19 if nChildren ≥ this.residualDegree then
20 setExpectedConnections(this.residualDegree)
21 else
22 setExpectedConnections(nChildren)
23 setConnectionTimer(⊥)

24 function sendParentRequest():
25 this.expectedConnections← 1
26 (broker, pr)← getReplacementParent(⊥, ParentRequest(getSubscribedTopics(), false))
27 send(broker, pr)
28 return broker
29 function getReplacementParent((broker, parentRequest)):
30 if (declinedBy = ⊥ ∨ declinedBy.size = 0) ∧ ancestors.size > 0 then
31 broker← ancestors[0]
32 else
33 if ancestors.size > 0 ∧ ancestors ⊊ declinedBy then
34 broker← {∃ ancestor ∈ ancestors: ancestor ∉ declinedBy}[0]
35 else
36 if siblings.size > 0 ∧ siblings ⊊ declinedBy then
37 broker← {∃ sibling ∈ siblings: sibling ∉ declinedBy}[0]

38 if broker = ⊥ then
39 this.declinedBy← {}
40 return getReplacementParent((broker, ParentRequest(getSubscribedTopics(),

true)))
41 return (broker, parentRequest)
42 procedure setExpectedConnections(amount):
43 if this.expectedConnections > 0 then
44 his.expectedConnections← this.expectedConnections + amount
45 else
46 this.expectedConnections← amount

37

CHAPTER 4. SOLUTION OVERVIEW

referred to as residualDegree, is greater than 0. In practice, if the failed neighbor’s number
of children is less than residualDegree, the broker can establish connections with all the
failed broker’s children. Otherwise, it can only establish a number of connections equal to
its residualDegree (Algorithm 4, lines 19-22). The number of expected connections is stored
in the expectedConnections counter and decremented each time an expected connection is
established, and is used to determine when all expected connections have been established.
To set this counter, brokers call the setExpectedConnections procedure (Algorithm 4, lines
42-46) that adds a given amount to the expectedConnections counter, if the counter is greater
than 0, otherwise, the counter is set to the given amount. Finally, the broker initializes a
timer, to brokers from waiting indefinitely for connections in scenarios where any of the
failed broker’s children fail simultaneously. Once the timer expires, the broker executes
the procedure detailed in Section 4.2.4. Timers are initialized with a reference to the
address of the broker whose connection is expected. However, since the failed broker’s
parent is waiting for multiple connections to be established, the timer is initialized with a
reference to an undefined broker, represented by the symbol ⊥.

On the other hand, if the failed broker is a broker’s parent then two scenarios can
occur (Algorithm 4, lines 4-17). In the first one, if the local tree view contains addresses in
the ancestors set, a broker selects an address within its tree view and attempts to establish
a connection with the respective broker, by executing the sendParentRequest function
(Algorithm 4 lines 24-28), where the function getReplacementParent selects an address
within the tree view (Algorithm 4 lines 29-41), and sends a

𝑃𝑎𝑟𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡 < 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑑𝑇𝑜𝑝𝑖𝑐𝑠, 𝑏𝑟𝑒𝑎𝑘𝐷𝑒𝑔𝑟𝑒𝑒 >

message, containing a set with the identifiers of the topics subscribed by the broker,
subscribedTopics, and a flag named breakDegree that when set to true forces a broker to accept
a request, to the selected broker. A topic identifier is only included in the subscribedTopics

set if the broker is not the topic’s sub-tree root and if at least a child broker subscribes that
topic. Afterwards the broker waits for a response to the request, indicating if the request
was accepted or rejected.

To select a new parent, the getReplacementParent function starts by verifying if the set
of ancestors is not empty and if a set referred to as declinedBy is empty. This set’s purpose
is to store the addresses of brokers within a broker’s tree view to which a broker has sent a
ParentRequest and rejected it. With this information, brokers only select addresses that are
not contained in this set, preventing them from attempting to connect to a broker multiple
times in succession.

If both conditions are satisfied, the function selects the first address in the set of
ancestors. Otherwise, if the ancestors set is not empty and the declinedBy set is not empty
and the ancestors set is a subset of the declinedBy set, the function selects the first address
in the ancestors set that is not contained in the declinedBy set. Finally, if the ancestors set is
empty, the function selects the first address in the siblings set that is not contained in the
declinedBy set. If the siblings set is empty or the declinedBy set contains all the addresses in

38

4.2. OVERLAY MAINTENANCE PROTOCOL

Algorithm 5: Handling parent request
1 upon onParentRequest (parentRequest):
2 mySubscribedTopics← getSubscribedTopics()/* computes the topics subscribed

by a broker */
3 allSubscribed← (∀ topic ∈ parentRequest.subscribedTopics: topic ∈

mySubscribedTopics)
4 if ((this.residualDegree > 0 ∨ isClient(parentRequest.sender)) ∧ allSubscribed) ∨

parentRequest.isBreakDegree() then
5 acceptParentRequest(parentRequest)
6 else
7 send(parentRequest.sender, ParentResponse(false))
8 checkExpectedConnections()

9 procedure acceptParentRequest(req):
10 send(req.sender, ParentResponse(true))

/* verify if the requester’s address format fits a broker address
format in the system */

11 if isBroker(req.sender) then
12 connectToBroker(req.sender)
13 removeFromTreeView(req.sender)
14 else
15 connectToClient(req.sender)
16 addNeighbor(req.sender)
17 foreach topic ∈ req.subscribedTopics do
18 addToTopicData(req.sender,topic)
19 sendLastIds(requester, req.getSubscribedTopics())
20 this.ongoingReconfiguration← this.ongoingReconfiguration + 1
21 procedure addToTopicData(neighbor,topic):
22 if neighbor ∉ this.subscribers[topic] then
23 this.subscribers[topic].add(broker)
24 if isBroker(neighbor) then
25 if neighbor = this.parent then
26 this.parentRef[topic]← neighbor
27 else
28 this.numberOfChildren[topic]← this.numberOfChildren+1

29 else
/* verify if the neighbor’s address format fits a client address
format in the system */

30 if isClient(neighbor) then
31 this.clients[topic].add(neighbor)

the siblings set, the function clears the declinedBy set and calls itself recursively with the
breakDegree flag set to true to force the next selected broker to accept the next ParentRequest

(Algorithm 4, lines 29-41). At the end of the procedure, the broker initializes a timer with
a reference to the address of the broker selected by the getReplacementParent (Algorithm 4,
line 7).

When the selected broker receives the request, it must verify whether it can accept it.
If residualDegree is greater than 0 and it subscribes at least the same topics as the requester,

39

CHAPTER 4. SOLUTION OVERVIEW

Algorithm 6: Handling parent response
1 upon onParentResponse(response):
2 if response.accepted then parent request accepted
3 this.declinedBy← ⊥
4 this.parent← response.sender
5 connectToBroker(response.sender)
6 addNeighbor(response.sender)
7 this.siblings← {}
8 removeFromTreeView(parent)
9 this.expectedConnections← this.expectedConnections-1

10 if this.expectedConnections = 0 then cancel the running timer
11 cancelTimer()

12 else parent request rejected
13 cancelTimer()
14 this.declinedBy.add(response.sender)
15 newParent← sendParentRequest()
16 setConnectionTimer(newParent)

17 procedure addNeighbor(neighbor):
18 this.neighbors.add(neighbor)
19 this.residualDegree← this.residualDegree + 1
20 if isBroker(neighbor) then
21 this.neighborNumChildren.put(neighbor, 1)
22 sendTreeViewUpdate(neighbor, false)
23 procedure checkExpectedConnections:
24 if this.expectedConnections > 0 then
25 this.expectedConnections← this.expectedConnections - 1
26 if this.expectedConnections = 0 then
27 cancelTimer()

/* cancels the running timer */

28 if this.ongoingReconfiguration = 0 then
29 foreach topic ∈ this.getSubscribedTopics() do
30 verifyPendingTotalOperations(true, topic)

the request can be accepted (Algorithm 5, lines 4-5) and it answers to the with a

𝑃𝑎𝑟𝑒𝑛𝑡𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 < 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 >

message containing a single flag named accepted, used to indicate if a ParentRequest is
accepted, if set to true, or rejected.(Algorithm 5, line 10) If the request is accepted, a new
connection can be established between both brokers (Algorithm 5, lines 11-15), and the
requester’s address is added to the neighbors set (Algorithm 6, line 16). Then the data
associated with each topic is updated to include the new subscriber (Algorithm 6, lines
17-18). Afterwards, the sendLastIds procedure is executed, to trigger a synchronization
process used to exchange information about the most recent messages that were processed
(Algorithm 6, line 19), which will be described in Section 10. Finally, the broker increments
the ongoingReconfiguration counter, used to track the number of ongoing reconfigurations
i.e. the number of synchronizations in progress (Algorithm 6, lines 20).

40

4.2. OVERLAY MAINTENANCE PROTOCOL

Upon receiving a response to the request, the requester sets the parent’s reference
and adds the new parent’s address its neighbors set and removes it from the tree view.
The siblings set is also cleared as the position in the overlay changing, and the broker’s
expectedConnections counter is decremented (Algorithm 6, lines 2-11).

If the request is rejected, a broker must restart the protocol, however it can not select a
broker within its tree view that has previously rejected a ParentRequest. For that purpose,
the ParentResponse sender’s address is added to the declinedBy set and another broker
within the tree view not contained in the declinedBy set is selected. The selection of an
ancestor is prioritized over a sibling if any is available, to avoid the broker’s depth in the
tree from increasing, leading to longer paths between publishers and subscribers and,
consequently, increasing message latency. If no ancestor is available (Algorithm 6, lines
12-23) a sibling is selected. The broker then starts a timer to wait for the new connection
to be established.

4.2.3.1 Handling edge broker failure

Edge brokers connect clients to the overlay. In the event of their failure, clients also
need to find a broker to reconnect them to it, even if the broker was not previously an
edge broker. Since a client has a child/parent relationship with their edge broker, in the
event of the edge broker failing, the client must execute the same protocol to reconnect
the overlay, just as brokers do.

4.2.3.2 Handling root failure

A particular scenario of faults is root failure, which differs from the general reconfig-
uration process due to root’s children lacking any ancestors and, therefore, must work
collectively to decide which among them will assume the root’s responsibilities. In order to
accomplish that, the root’s children run a synchronization algorithm to determine which
one takes on that role, triggered when detecting the root broker failed (Algorithm 4, lines
9-16). Each broker forwards to its siblings a RootElection message including information
about the current residualDegree and the broker’s identifier. Additionally, if the number
of siblings is greater than its residualDegree, the expectedConnections counter is set to the
broker’s residualDegree otherwise, it is set to the number of siblings (Algorithm 4, lines
10-13). Then each broker starts a timer for an unknown broker, since lacking the knowledge
of which broker will replace the root, and collect a set of these messages.

After receiving a RootElection message from all siblings, each broker can independently
determine which of them will become the next root by utilizing a deterministic protocol,
which does not required any further message exchange to select the new root. Algorithm 7
selects the next root based on the following selection criteria:

1. The broker with the highest residualDegree is chosen as the new root.

41

CHAPTER 4. SOLUTION OVERVIEW

Algorithm 7: Root election algorithm
1 procedure onRootElection (re)

2 if this.siblingSync = ⊥ then
3 this.siblingSync← {}
4 if this.siblingSync.size = this.siblings.size then
5 maxDegree← this.residualDegree
6 maxNodeID← this.node
7 foreach rootElection ∈ this.siblingSync do
8 siblingDegree← re.degree
9 siblingNodeID← re.nodeID

10 if siblingDegree > max then
11 maxDegree← siblingDegree
12 maxNodeID← siblingID
13 this.parent← re.sender
14 else
15 if siblingDegree = max ∧ siblingNodeID < nodeID then
16 maxNodeID← siblingNodeID
17 this.parent← re.sender

18 if parent = ⊥ then
19 this.siblings← {}
20 if this.siblings.size > 0 then
21 if this.residualDegree ≥ this.siblings.size then
22 this.expectedConnections← this.siblings.size
23 else
24 this.expectedConnections← this.residualDegree

25 else
/* cancels the running timer */

26 cancelTimer()

27 else
28 send(this.parent, ParentRequest(self, getSubscribedTopics(), false))
29 removeSibling(this.parent)
30 this.expectedConnections← 1
31 this.declinedBy← {}
32 this.siblingSync← ⊥
33 setConnectionTimer(this.parent)

2. If multiple siblings have residualDegree equal to the highest, the one with lower
nodeID is selected.

Each broker starts by setting maxDegree equal to their residualDegree and nodeID to their
identifier (lines 5-6). Afterwards, brokers iterate through each RootElection message to
find the broker with maxDegree and the corresponding maxNodeID (lines 7-17). For each
message, brokers start by extracting the necessary data into siblingDegree and siblingNodeID,
and check if siblingDegree is greater than the current maxDegree. If it is, siblingDegree

becomes the new maxDegree, siblingNodeID becomes the new maxNodeID and the sender’s
address becomes the new parent. Otherwise, if siblingDegree is equal to maxDegree and the
current maxNodeID is greater than siblingNodeID, the latter becomes the new siblingNodeID

42

4.2. OVERLAY MAINTENANCE PROTOCOL

and the sender’s address becomes the parent.
When the algorithm terminates, if a broker detects the parent reference has not been

set or is null (lines 18-26), it will become the root and wait for connections from all siblings
or from a subset of them, depending on its residualDegree. Other brokers upon realizing
they are not the new root proceed as in the general reconfiguration process, sending a
ParentRequest to the newly elected root, incrementing expectedConnections and initializing
the declinedBy set (lines 28-31). Finally, each starts a connection timer (line 33).

4.2.4 Dealing with simultaneous failures

Algorithm 8: Handling expired timer
1 procedure onTimerExpired (timer):
2 if timer.broker ≠ ⊥ then
3 removeFromTreeView(timer.broker)
4 this.expectedConnection← this.expectedConnections-1

/* sendParentRequest returns the address of the broker selected to
replace the parent */

5 newParent← sendParentRequest()
6 setConnectionTimer(newParent)
7 else
8 if this.siblingSync ≠ ⊥ ∧ this.siblingSync = this.siblings.size then

/* set with the addresses of siblings who sent their message to
execute the RootElection algorithm */

9 siblingsUp← {}
10 foreach rootElection ∈ this.siblingSync do
11 siblingsUp.add(rootElection.sender)
12 foreach sibling ∈ this.siblings do
13 if sibling ∉ siblingsUp then
14 sibling.remove(sibling)

/* execute RootElection algorithm */

15 else
16 this.expectedConnection← this.expectedConnections-1

/* verifies if the reconfiguration process is still ongoing or
has finished */

17 checkOngoingReconfiguration()

In Section 4.2.3, we mentioned brokers utilize a counter named expectedConnections to
determine whether whetherall expected connections have been established. This approach
has an issue because brokers might become unreachable due to brokers within the tree
view failing simultaneously and, consequently, the reconfiguration process might never
terminate, leading brokers to wait indefinitely for the remaining expected connections.
We also mentioned that when a fault is detected brokers only wait for connection during a
limited time interval, by initializing a timerwhose value is defined in broker’s configuration
file. From the failed broker’s children perspective, the timer is initialized with a reference
to the broker selected to replace the parent by the function getReplacementParent from

43

CHAPTER 4. SOLUTION OVERVIEW

Algorithm 4. From the parent’s perspective, the timer is initialized to an undefined broker,
due to the lack of knowledge about which brokers may attempt to connect to it.

When the timer expires, a broker executes the procedure outlined in Algorithm 8.
It starts by verifying if the timer contains a reference to a specific broker. In that case
(lines 3-6), it was attempting to establish a connection to another broker. Since the
selected one did not respond to the ParentRequest or it accepted the request but failed to
establish a connection, it’s address is removed from the broker’s tree view, preventing it
from attempting another connection to the same broker that may lead to another timer
expiration. Then it decrements the expectedConnections counter and attempts to connect
to another broker, by executing the procedure as if the ParentRequest was rejected by the
previous broker.

If the timer references an undefined broker, either means the broker was waiting
for a ParentRequest (lines 16-17) or was waiting for RootElection messages in order to
determine which broker is taking on the root’s responsibilities (line 9). If the broker was
waiting for a ParentRequest, it decrements the expectedConnections counter and verifies if
the reconfiguration is still in progress. On the other hand, if the broker was waiting for
the necessary messages to determine who becomes the next root, it removes from the
siblings set, all siblings from whom it did not receive a RootElection message and terminates
the election algorithm (lines 8-12). This approach is utilized due to the fact that we only
consider a crash failure fault model.

4.3 Restoring communication channels and maintaining
message order

After reconnecting the overlay, the next step is restoring the FIFO communication
channels. Additionally, it is necessary to ensure brokers do not miss messages lost due
to failures and any pending message processing can be completed. This phase also
requires brokers involved in the reconfiguration process to temporarily stop processing
and sending incoming messages to neighbors,preventing them from being processed
prior to missed messages. Otherwise, if messages were missed, there is a high likelihood
that clients will receive messages out of order, breaking message causality property and
total order delivery. To effectively stop processing messages, when the expectedConnections

and ongoingReconfiguration counters, used to know how many connections to expect and
with how many other brokers a broker is synchronizing with, respectively, or when
the missedMessages map, used to store the last identifier of missed messages a broker is
expected to receive, is not empty, new incoming messages are stored in a per-topic queue
referred to as onHold.

44

4.3. RESTORING COMMUNICATION CHANNELS AND MAINTAINING
MESSAGE ORDER

Algorithm 9: Holding incoming Metadata messages during an ongoing reconfig-
uration.
1 upon receiveMetadata (metadata, sender):
2 id←metadata.id
3 topic←metadata.topic
4 if this.missedMessages ≠ ⊥ ∧ sender = this.parent then
5 missed← this.missingMessages[topic]
6 expected← false
7 if id.clientId ∈ missed ∧ missed.messageIs ≥ id.messageId then
8 expected← true

/* queues message for processing */
9 send(brokerManagers[topic], metadata)

10 if this.missingMessages[topic][id.clientId].messageId = id.messageId then
11 this.missingMessages[topic].remove(id.clientId)

12 if this.missingMessage[topic].size = 0 then
13 this.missingMessage.remove(topic)
14 if this.missingMessages.size = 0 then
15 this.ongoingReconfiguration← 0
16 this.missingMessages← ⊥

17 if ongoingReconfiguration = 0 ∧ expectedConnections = 0 then
18 foreach topic ∈ getSubscribedTopics() do
19 verifyPendingTotalOperations(topic)
20 releaseOnHoldMessages()
21 else
22 if ¬expected then
23 onHold[topic].add((metadata))

24 else
25 if this.ongoingReconfiguration > 0 ∨ this.expectedConnections > 0 ∨ this.siblingsSync

≠ ⊥ then
26 onHold[topic].add((metadata))

27 procedure releaseOnHoldMessages():
28 foreach topic ∈ getSubscribedTopics() do
29 if onHold[topic] ≠ ⊥ ∧ onHold[topic].size > 0 then
30 foreach message ∈ onHold[topic] do
31 send(this.brokerManagers[topic], metadata)
32 onHold[topic]← {}

4.3.1 Holding incoming messages during reconfiguration

To prevent messages from being processed and delivered out of order, whenever there
is an incoming message and there is an ongoing reconfiguration (ongoingReconfiguration

or expectedConnections counters are greater than zero) or the missedMessages map is not
null, brokers stores it in the onHold queue if it is not waiting for that message.

Upon receiving a message, a broker checks if it is waiting for any missed message
and if the received one, is one that it waiting for, by verifying if the missedMessages

map is not empty and the message’s sender was the new parent (Algorithm 9, line 4).

45

CHAPTER 4. SOLUTION OVERVIEW

Otherwise, the message is put on hold (Algorithm 9, lines 24-26). In the first scenario,
it needs to verify if the received message is one that was requested to its parent or
not. For that purpose, it initializes a flag, referred to as expected, indicating if it was
waiting for the incoming message’s identifier (Algorithm 9, line 6). If missedMessages

contains an entry for the message’s clientId field and the entry’s messageID is greater
or equal to the message’s messageID, it implies the broker was waiting for the received
message. In that case, the expected flag is set to true and the message sent for processing
(Algorithm 9, line 7-9). Additionally, if the message’s messageId equals the identifier
stored in missedMessages, all messages expected related to a clientId were received and,
consequently, the entry is removed from the map and new messages related to that
client are put on hold (Algorithm 9, line 10-11). Therefore, the expected flag is set to
true and the message is queued for processing (Algorithm 9, lines 7-8). Afterwards, the
entry is removed from the missingMessages map, if the incoming message’s messageId is
equal to the one stored in the entry associated with the client’s identifier (Algorithm 9,
lines 10-11). If the entry contained in the missingMessages map related to the message’s
topic becomes empty, the entry is removed from the map, and if it becomes empty, the
ongoingReconfiguration counter is set to zero, indicating the broker is no longer waiting for
missed messages, and the map set to null, represented by the symbol ⊥ in the algorithm
(Algorithm 9, lines 12-16).

At this point, if both the ongoingReconfiguration and expectedConnections counters are
set to zero, the reconfiguration process is completed and brokers must verify if any
messages tagged with total order delivery were being processed and the fault lead them to
remain blocked, before releasing the messages being held. The algorithm to execute that
verification and complete the total order delivery algorithm is detailed in Section 4.3.2.4.
Otherwise, if expected flag is set to false, the message was not missed by the broker and
must be put on hold (Algorithm 9, line 21-23). Furthermore, to release messages on hold,
the broker iterates through each topic’s onHold queue, and, if it is not empty, queues each
message for processing, clearing it at the end (Algorithm 9, lines 27-32)

4.3.2 Detecting missed messages

To detect if messages were missed, brokers need to track the most recent processed
Metadata messages in buffers. For that purpose, each broker keeps a per-topic message
buffer (metadataBuffer) and stores all incoming Metadata messages after being processed.
Since messages are disseminated in FIFO order through the communication channels,
messages must be stored in the same order to accurately replicate the dissemination
behavior, which is crucial to ensure missed messages are retransmitted in the correct
order. As new messages arrive older ones become irrelevant and keeping them is not
necessary therefore, buffers are queues with an upper bound on its size, allowing old
messages to be removed as new ones arrive, thereby reducing memory usage as only most
recent messages are kept. Buffer size is limited by the configurable parameter bufferSize,

46

4.3. RESTORING COMMUNICATION CHANNELS AND MAINTAINING
MESSAGE ORDER

which translates to the environment variable bufferSize. Configurable buffer sizes allow to
adapt buffer’s maximum size to the systems’ and machines’ requirements and available
resources, respectively. The trade-off between small buffers and larger buffer is that, in
the event of failures, the likelihood of missed messages being lost is greater if buffers are
not big enough however, larger buffers might lead to increased memory consumption.

To detect if and which messages were missed, parents share information contained
in their metadataBuffer with new children in order to compare it with their own message
buffer and find which messages are contained in the parent’s buffer but not in their own
buffers. When comparing buffers, children simultaneously detect which messages have
been missed by both. The use of buffers aim at avoiding storing version vectors due to
requiring a version entry for each client, which is a solution that does not scale as the
number of clients increases.

4.3.2.1 Synchronizing message buffers

Algorithm 10: Sending information contained in buffers to the child broker.
1 procedure sendLastIds(destination,subscribedTopics)
2 buffer← {}
3 foreach topic ∈ subscribedTopics do
4 senderIsClient← ∃ client ∈ this.clients[topic]: client = destination

/* determines if the buffer is being sent to a client */
5 foreach metadata ∈ this.metadataBuffer[topic] do
6 if ¬ senderIsClient ∨ (senderIsClient ∧ metadata.deliveryGuarantee ≠ TOTAL ∨

(metadata.deliveryGuarantee = TOTAL ∧ metadata.processed)) then
/* put function replaces the value for the corresponding key
if the key exists in the map */

7 lastIdsPerClient.put(metadata.id.clientId, metadata.id)

8 buffer.add(topic, lastIdsPerClient)
9 send(destination, ParentBuffer(buffer))

The protocol to restore a communication channel begins after accepting a ParentRequest.
To trigger the protocol, after accepting a ParentRequest, the new parent sends to the new
child a

𝑃𝑎𝑟𝑒𝑛𝑡𝐵𝑢 𝑓 𝑓 𝑒𝑟 < 𝑚𝑎𝑝 >

message containing information about the messages contained in its buffers. The map

field contains for each topic subscribed by the new child, a mapping of the last message
identifiers received from each client. The procedure to send the ParentBuffer message is
outlined in Algorithm 10.

To map the last received identifier per topic and client, a broker iterates through
its metadataBuffer, in FIFO order, and puts an entry (clientId, messageIdentifier) in the
map, corresponding to the buffer’s topic. If it finds multiple messages with the same
clientId, it replaces the current mapped entry with a new one, containing a more recent

47

CHAPTER 4. SOLUTION OVERVIEW

messageIdentifier. This ensures the most recent received identifier per client is mapped
(Algorithm-10, line 7).

The content sent in the buffer field is also dependenton the new child’s type. For instance,
if the new child is a client, a broker cannot send the identifiers of messages, tagged with
total order delivery, that have not been processed. Otherwise, in the synchronization
protocol detailed in Section 4.3.2.2, messages may be detected as missing and might be
delivered before being completely processed, ensured by the conditional statement in line
6 of Algorithm 10. Additionally, parents only send to a child its buffers associated with the
child’s subscribed topics, guaranteed by the argument subscribedTopics, preventing them
from detecting messages from irrelevant topics as missing.

4.3.2.2 Handling parent buffer

Upon receiving the a ParentBuffer message, a broker initializes maps missed, parent-

Missed and missedMessages (Algorithm 11, lines 2-4). These store, for each topic, the
identifier of the last message received per client, a set of the messages missed by the
parent, and the identifier of last message processed by the parent per client, respectively.

First a broker adds the parent to the topic’s subscribers set (Algorithm 11, line 6). Then,
initializes an empty set in the missed and parentMissed maps for the topic being handled,
stores a copy of the parent buffer’s mappings for the current topic in missedMapping, utilized
to remove mappings in the buffer determined by the broker as received, (Algorithm 11,
lines 8-11). Afterwards, it initializes the myLastIdPerClient map, to map its last received
message identifiers per client (Algorithm 11, line 12). Lastly, it initializes a set called found

that stores the client identifier of the identifiers stored in the parent’s mapping, when
found within the broker’s buffer.

The first step is to identify the last messages received by the broker within its buffer
and messages missed by the parent, simultaneously. For that purpose, the broker iterates
through its buffer and stores the current message’s identifier in the myLastIdPerClient map
(Algorithm-11, line 16). The put function adds to the map a (key, value) entry, where the
key is the client identifier and the value is the message identifier. If there is already a
mapping for the client identifier, the put function replaces the current value with a new
one. Additionally, to identify messages missed by the parent while iterating through the
buffer, if the broker finds within the buffer a message whose identifier is contained in the
parent’s mapping, by checking if the current message’s identifier is equal to the identifier
stored in the parent’s mapping for the client identifier, it stores the client’s identifier in the
found set and removes it from missedMapping as it the broker did not miss that message
(Algorithm 11, lines 17-20). That information is then used to find messages missed by
the parent. Since messages are stored in FIFO order, messages stored at higher indexes
imply they were processed more recently therefore, if at a given iteration, if the found set
contains the current message’s client identifier, the message is deemed as missed since
it was more recently processed, and added to parentMissed (Algorithm 11, lines 21-23).

48

4.3. RESTORING COMMUNICATION CHANNELS AND MAINTAINING
MESSAGE ORDER

Algorithm 11: Handling parent buffers.
1 upon onParentBuffer(parentBuffer):

/* map from topics to a stack of message identifiers */
2 missed← {}
3 parentMissed← {}
4 this.missedMessages← {}
5 foreach (topic, mapping) ∈ parentBuffers do
6 addToTopicData(parent, topic)
7 missed[topic]← {}
8 parentMissed[topic]← {}
9 missedMapping←mapping

10 myBuffer← this.metadataBuffer[topic]
/* computes the ids of the messages in the buffer */

11 myIdBuffer← getBufferedIDs(this.metadataBuffer)
12 myLastIdPerClient← {}

/* stores the clientId of a message contained in the parent’s
mapping and found within the buffer */

13 found← {}
14 foreach metadata ∈ myBuffer do
15 id←metadata.id
16 myLastIdPerClient.put(id.clientId,id)
17 if id.clientId ∈ mapping then
18 if id = mapping[id.clientId] then
19 found.add(id.clientId)
20 missedMapping.remove(clientId)
21 else
22 if id.clientId ∈ found then
23 parentMissed[topic].add(Metadata(id, topic, this.self,

metadata.keyItems, metadata.processed,
metadata.deliveryGuarantee))

24 foreach (client,id) ∈ mapping do
25 if (clientId,id) ∉ myIdBuffer then
26 missed[topic].put(clientId, id)

27 if missedMapping ≠ {} then
28 this.missedMessages[topic]←missedMapping

29 send(parent, LostMessageRequest(parentMissed, missed))
30 if this.missedMessages ≠ {} then
31 this.missedMessage← ⊥
32 this.ongoingReconfiguration← this.ongoingReconfiguration - 1
33 if ongoingReconfiguration = 0 ∧ expectedConnections = 0 then
34 foreach topic ∈ getSubscribedTopics() do
35 verifyPendingTotalOperations(topic)
36 releaseOnHoldMessages()

49

CHAPTER 4. SOLUTION OVERVIEW

Afterwards, for each entry in the parent’s mapping, if the broker’s buffer does not contain
the mapped identifier, the identifier is added to the missed (Algorithm 11, lines 24-26).
Lastly, if missedMapping is not empty, the broker stores it within the missedMessages map
(Algorithm 11, lines 27-28).

After completing the algorithm for each topic in the parent’s buffer, both brokers
and parents need to receive the missed messages. For that purpose, brokers utilize a
pull-based strategy to request the missed messages and push-based strategy to retransmit
the messages missed by the parent. To accomplish this, brokers send a

𝐿𝑜𝑠𝑡𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑅𝑒𝑞𝑢𝑒𝑠𝑡 < 𝑚𝑖𝑠𝑠𝑒𝑑, 𝑝𝑎𝑟𝑒𝑛𝑡𝑀𝑖𝑠𝑠𝑒𝑑 >

which contains the missed map containing the identifiers of the last messages received by
the broker per client and the parentMissed map containing the messages missed by the
parent per topic (Algorithm 11, line 30).

At the end of the algorithm either the broker missed messages, which means the
missingMessages map is not empty and must wait for them, or it is empty which implies it
did not miss any messages (Algorithm 11, lines 30-36). In the second scenario, the broker
decrements the ongoingReconfiguration counter and if it becomes zero, the reconfiguration
has successfully been completed if brokers are not expecting further connections and
there is no ongoing reconfiguration (expectedConnections and ongoingReconfiguration are
equal to zero). If that condition is satisfied, before proceeding, brokers need to verify if
any Metadata message tagged with total order delivery is blocked and the processing was
interrupted due to the occurred fault. This is extremely important because that process
must be finished otherwise, conflicting messages will not be allowed to be processed.
The verification algorithm will be shown and detailed in Section 4.3.2.4. Finally, brokers
release all messages that were put on hold during this period (Algorithm 11, line 36).

4.3.2.3 Handling a message request

Upon receiving a LostMessageRequest, the receiver must find the messages requested
by the sender and retransmit them in FIFO order. For that purpose, it executes a similar
procedure as the new child when identifying missed messages. For each entry in the missed

map received in the message, the broker initializes a found set (Algorithm 12, line 3), whose
purpose is the same of the found set in the procedure to identify missed messages, which
is to store client identifiers if the buffer contains a message whose identifier is mapped.
Therefore, if the missedMapping in line 2 contains an entry of the current message’s client
identifier, that identifier is stored in found (Algorithm 12, line 8). Similarly, to the previous
procedure, if in the following iterations the current message’s client identifier is within the
found set, the message is retransmitted to the requester (Algorithm 12, lines 9-11). After
retransmitting all missed messages, messages in the parentMissed map are queued for
processing (Algorithm 12, lines 12-13). Finally, the broker verifies if the any reconfiguration
is ongoing (Algorithm 12, lines 14).

50

4.3. RESTORING COMMUNICATION CHANNELS AND MAINTAINING
MESSAGE ORDER

Algorithm 12: Handling a LostMessageRequest

1 upon onLostMessageRequest(request):
2 foreach (topic,missedMapping) ∈ request.missed do
3 found← {}
4 foreach metadata ∈ this.metadataBuffer[topic] do
5 identifier←metadata.id
6 if id.clientId ∈ missedMapping then
7 if missedMapping[id.clientId].messageId = id.messageId then
8 found.add(id.clientId)
9 else

10 if id.clientId ∈ found then
11 send(request.sender, metadata)

12 foreach (topic, messageList) ∈ request.parentMissed do
13 send(this.brokerManagers[topic], messageList)
14 checkOngoingReconfiguration()

What happens if any requested message is no longer contained in the parent’s buffer?
Although it is not yet implemented, if the parent’s buffer does not contain a requested
message, the parent raises an exception indicating to the client the operation was not
executed, allowing the client to repeat the operation and every operation dependent on
it. If the lost message required eventual delivery then, further messages from that client
can be processed. If the message is required to be delivered in causal order or total order
then, no further messages can be processed until the expected one arrives.

4.3.2.4 Finishing processing total order operations

Each broker involved in the reconfiguration process executes this algorithm once per
subscribed topic. For clarity reasons and since the algorithm depends on the current stage
of total order processing, we divided the algorithm into segments each corresponding to
a different stage. Furthermore, this algorithm may send redundant messages to ensure
processing can be completed and we will also show how brokers can detect and correctly
process redundant messages. After finding the stage in which message processing is, the
algorithms replicates the behavior of total order processing.

Processing Stage - Publication for a given pair (topic,keyItems) that is blocked and has
received TotalAck from all its children When a broker receives a Metadata message
to be delivered in total order from a neighbor, it blocks processing messages for the
pair (topic,keyItems) contained in it. To do so brokers initialize a list destined to store
TotalAck acknowledgments from its children. This list is stored in the childrenAcks map,
which stores a TotalAck list for each (topic, keyItems). Brokers use this map to track which
children have acknowledged the corresponding message to be delivered in total order.
After storing the acknowledgment in the list, the broker forwards the Metadata message

51

CHAPTER 4. SOLUTION OVERVIEW

Algorithm 13: Algorithm to progress when a message is blocked and a broker
has received a TotalAck from all its children
1 procedure verifyPendingTotalOperations(topic):
2 if this.childrenAcks[topic][id] ≠ ⊥ then
3 if this.childrenAcks[topic][id].size = this.numbreOfChildren[topic] ∨

this.numberOfChildren[topic] = 0 then
4 if this.parentRef[topic] ∉ this.subscribers[topic] then
5 this.childrenAcks[topic].remove(id)
6 msg← this.linearT[topic][id]
7 msg.processed← true
8 this.processedTotalOrderMetadataIds[topic].add(msg)
9 foreach subscriber ∈ this.subscribers[topic] do

10 if subscriber ≠ this.parentRef[topic] then
11 if subscriber ∈ this.clients[topic] then
12 send(subscriber, msg)
13 else
14 send(subscriber, TotalProcessed(id, topic, msg.sender,

msg.keyItems))

15 else
16 if metadata.sender ≠ parentRef[topic] then
17 send(parentRef[topic], metadata)
18 else
19 send(parentRef[topic], TotalAck(id, topic, metadata.keyItems))

20 else
21 this.childrenAcks[topic][id]← {}
22 foreach subscriber ∈ this.subscribers[topic] do
23 if subscriber ≠ this.parentRef[topic] ∧ subscriber ∉ this.clients[topic] then
24 send(subscriber, metadata)

to the remaining neighbors and waits for them to acknowledge the message’s reception
by sending a TotalAck. When all children acknowledge the message then, which implies
the corresponding list in the childrenAcks map contains an acknowledgment for each child,
it either sends a TotalAck message to the parent or the Metadata message, depending if
the message’s sender was the parent or a child, respectively. Afterwards, brokers wait to
receive a TotalProcessed notification from the parent in order to unblock the (topic,keyItems)

pair and process further messages.

If the failure occurs when a broker finds itself in a scenario where it has received a
TotalAck from all its children and it has not sent the corresponding Metadata or TotalAck

to its parent, it needs to either send the Metadata message to the parent, if its sender was
a child, or a TotalAck if its sender was the previous parent. To do so brokers execute
Algorithm 13. Brokers start by verifying if the childrenAck map contains the list for the
corresponding (topic,identifier) pair (line 2). If it contains that list, the broker verifies if the
number of TotalAck contained in it is equal to the number of children subscribed to the
topic, which is either zero or greater than zero (line 3). In that case, the broker needs to

52

4.3. RESTORING COMMUNICATION CHANNELS AND MAINTAINING
MESSAGE ORDER

either send an acknowledgment to the parent or the Metadata message. To do so, broker
verify if the parent subscribes to the topic (line 4). If the parent subscribes to the topic (lines
17-20), brokers check if the message’s sender was not the parent, sending the Metadata

message to it in that situation (lines 17-18). Otherwise, brokers send a TotalAck to the
parent. If the parent does not subscribe to the topic (lines 5-15), it implies the broker is the
topic’s tree root and it must notify its children the message has been processed. For that
purpose, they send TotalProcessed notifications to all children brokers (lines 14-15) and the
Metadata message to connected clients (lines 11-12), if any are connected.

Algorithm 14: Algorithm to progress from waiting for TotalAck from children but
the childrenAcks map does not contain the list.
1 procedure verifyPendingTotalOperations(topic):
2 if metadata.sender ∈ this.neighbors ∧ metadata.sender ≠ parentRef[topic] ∧

this.numberOfChildren[topic] then
3 this.childrenAcks[topic][id]← {}
4 this.childrenAcks[topic][id].add(TotalAck(id, topic, metadata.sender,

metadata.keyItems))
5 foreach subscriber ∈ this.subscribers[topic] do
6 if subscriber ≠ this.parentRef[topic] ∧ subscriber ∉ this.clients[topic] ∧ subscriber ≠

metadata.sender then
7 send(subscriber, msg)

8 else
9 if metadata.sender ∉ this.neighbors ∧ this.parentRef[topic] = ⊥ then

10 this.childrenAcks[topic][id]← {}
11 foreach subscriber ∈ this.subscribers[topic] do
12 if subscriber ≠ this.parentRef[topic] ∧ subscriber ∉ this.clients[topic] ∧

subscriber ≠ metadata.sender then
13 send(subscriber, msg)

Processing stage - Publication for a given pair (topic,keyItems) that is blocked and has
not yet received TotalAck from all its children. In this stage, there are two possible
scenarios. In the first, the broker received the Metadata message from one of its children
but the list for the pair (topic,keyItems) does not exist (Algorithm 14, lines 2-9). The other
possible scenario occurs when the broker performing this procedure becomes the topic’s
tree root due to the former failing, the message’s sender was the former root and it had
already acknowledged the message to its previous parent (lines 10-15).

A broker finds itself in the first situation by verifying if the message’s original sender
was one of its neighbors, other than its parent, and if any of its children subscribe to the topic
(Algorithm 14, line 2). If the condition is met, it initializes a list to store acknowledgments,
in the childrenAcks map, and adds a TotalAck to it (Algorithm 14, lines 3-4). In the standard
processing algorithm the original Metadata message is handled as a TotalAck sent by the
message’s sender, therefore, this aims at replicating that behavior. Finally, the Metadata

message is sent to every neighbor subscribed to the topic, with exception to the parent and

53

CHAPTER 4. SOLUTION OVERVIEW

the message’s sender. Afterwards, the broker waits for the acknowledgments allowing
the standard processing mechanism to execute (Algorithm 14, lines 7-9).

Since this message may have already been received and acknowledged by some of
the children and the corresponding (topic,keyItems) pair is already locked, when brokers
receive a Metadata message and verify that the corresponding (topic, keyItems) pair is
already blocked, they resend the acknowledgment to the parent.

If the condition for the first scenario is not met, the broker checks if the message’s
sender was not a direct neighbor, which implies the sender failed, and it either has
become the topic’s tree root or it already was (Algorithm 14, lines 11-12). To handle this
scenario, the broker sends the Metadata message to all topic’s subscribers and wait for the
acknowledgments (Algorithm 14, lines 13-15). Once again, the broker waits to receive the
necessary acknowledgments from its children and, afterwards, the standard protocol is
executed.

4.4 Ensuring causal and total order delivery

We have presented the protocols to ensure messages are delivered to every destination
and messages are not lost in the event of failures. We also detailed how our work guarantees
that messages tagged with total order delivery can be unblocked if the occurred fault does
not allow the processing to be completed. However, we haven’t clarified how causal and
total order delivery are guaranteed.

According to [25], to ensure causal order in acyclic overlays it is only required to
ensure messages are propagated in FIFO order. In the absence of faults the pub/sub
already propagates messages in that order therefore, we are only required to ensure lost
messages are delivered in the same order and the overlay reconfiguration protocol does
not create any cycles. During this Chapter, we highlighted that metadata buffers store
Metadata messages in FIFO order and, in case any are identified as missing during the
buffer synchronization phase, retransmitting them in FIFO order guarantees it is not
violated. Furthermore, we guarantee the overlay remains acyclic by preventing brokers
from connecting to any of its descendants.

And what about total order delivery? To guarantee total order delivery we do not
need any more complex mechanisms. Consider that brokers were processing a message
tagged with total order delivery for a given (topic,keyItems) pair. During that time, if a
broker receives a message containing the same pair, the middleware guarantees it is not
processed before the total order message’s processing is finished, by temporarily blocking
all messages with the same pair and storing them in queues. Only when processing
is completed can the pair be unblocked and queued messages be processed. Our work
replicates that behavior by holding messages received in a queue while a reconfiguration
is in progress and by making sure any total order messages being processed is unblocked
before releasing the messages received during that time, ensuring messages are not
delivered out of order.

54

4.5. SUMMARY

In conclusion, our protocol works side-by-side with the underlying dissemination
mechanisms previously implemented. Therefore, besides maintaining FIFO ordering, we
only need to guarantee that processing messages who require total order delivery and
whose processing has not been finished before the fault occurring, is completed before
resuming standard message dissemination.

4.5 Summary

In this Chapter, we presented the mechanisms implemented to provide Ginger with
the support to tolerate faults.

We started the Chapter by identifying the requirements of our solution. Afterwards,
we presented the first component of our work, which is a localized overlay maintenance
protocol that reliably reconnects the overlay after detecting a broker has failed. Further-
more, it guarantees the tree remains balanced and the reconfiguration costs fall on brokers
in logical proximity to the broker that failed.

Finally, we presented the second component of our work, which is a protocol that
guarantees messages are not lost and its ordering is maintained in order to deliver messages
according to the necessary delivery guarantees.

The following chapter presents the conducted experimental work.

55

5

Experimental Evaluation

5.1 Goals

Our work contributes with the development of a protocol to provide fault-tolerance
capabilities in pub/sub systems with multiple delivery guarantees. With the goal of
evaluating our protocol’s validity, we established a set of test experiments under a baseline
network configuration and varying parameters, with the purpose of simulating real-world
scenarios. Our experiments focus on two key aspects: correctness and performance.

When evaluating our protocol’s correctness, the goal is to ensure the pub/sub system
is able to deliver all messages to the corresponding topic’s subscribers according to the
respective delivery guarantees, even in the presence of failures. This involves verifying if
messages are consistently delivered according to the defined delivery guarantees and that
they are neither lost nor duplicated during a failure. Additionally, we also must ensure the
overlay reconfiguration protocol is performed correctly and broker’s acquired knowledge,
beyond the initial configuration, is correctly stored and updated.

In terms of performance, the evaluation aims at measuring the system’s efficiency at
restoring its normal functionality under different failure scenarios. These includes measur-
ing the cost of performing topological adaptations, measured as latency of reconfiguration,
in the event of failures. Topological adaptations occur from different perspectives, which
we take into account in the different scenarios. Topological changes may also have a
direct impact in the latency of messages that were already being processed before failures
occurring, mainly due to brokers involved in the reconfiguration temporarily suspend-
ing message processing and holding incoming messages until the reconfiguration as
terminated.

To carry out our experiments we defined a set of questions and metrics we want to
answer and measure, to effectively evaluate our work.

5.1.1 Correctness

To evaluate correctness, we defined the following questions :

56

5.2. METHODOLOGY

• Is the broker’s view of the tree correctly updated, on brokers joining and leaving the
overlay?

• In the presence of one or more faults, are the children’s ParentRequest correctly
handled with regard to the handler’s current residualDegree?

• If a broker’s ParentRequest is refused, is it able to find another broker to connect to?

• In the presence of one or more faults, are there any messages lost?

• Do any messages, to be delivered in total order, remain in the state they were before
the fault and their processing finished afterwards?

• Can our protocol ensure the delivery guarantees are upheld?

• When the overlay tree’s root fails, can one of its children replace it?

The metric used to assess these questions is yes or no, since our protocol either behaves
correctly or not.

5.1.2 Performance

The following questions were used to evaluate the performance of our protocol, in the
event of failures one or more failures:

• What is the cost of reconfiguration, measured in reconfiguration time, taking into
account the number of rejected ParentRequest?

• How impactful is the reconfiguration process in messages, regarding their latency?

• How impactful is the number of keys items in message latency, in the presence of
failures?

5.2 Methodology

To evaluate our work, we implemented a simple BankService, that simulates a banking
service and provides the following operations:

getBalance(account): returns the current balance of account. Is eventually delivered to
every client.

deposit(account, amount): adds amount to the account’s balance. Delivered in causal
order.

withdraw(account, amount): removes amount from the account’s balance. Delivered in
total order.

57

CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.1: Grid’5000 backbone. Taken from Grid’5000’s homepage.

Table 5.1: Specification of machine utilized during evaluation.

CPU Memory Storage Network

1x 18 Core Intel Xeon Gold 5220 96 GB 1x480GB SSD + 1x960GB SSD 2x25Gbps

transfer(account1, account2, amount): removes amount from account1’s current balance
and adds amount to account2’s current balance. Delivered in total order.

applyInterest(account): computes the account’s new balance, based on a fixed interest
rate. Delivered in total order.

In our benchmark, a topic corresponds to a BankService whose operation is supported
by multiple data stores replicated at different sites. To replicate service’s data, each site
issues a subscription in the pub/sub to the respective topic. In each service, each bank
account’s number serves as the key that uniquely identifies the account within the data
stores. This service was used to evaluate both the correctness and performance of our
work.

To carry out our experiments, we relied on the services provided by the Grid’5000
cluster1. Grid’5000 is a large scale cluster used for experiment-driven research in all areas
of computer science, with more focus on parallel and distributed computing. Among
other key features, we chose to use it due to its highly configurable environment and large
amount of resources provided. The cluster’s resources are distributed across France’s
territory linked through a high speed network. In our experiments we utilized a machine
with the specifications found in Table 5.1.

The overlay utilized to run our experiments can be found in Figure 5.2. This overlay
is composed by eight brokers, represented by circles, and five clients, represented by
squares. Links in the overlay were assigned a communication latency, in milliseconds, each
calculated with reference to a latencies table2. Moreover, to assign them, we categorized
each link in one of two categories: inter-region and intra-region. An inter-region link is one

1https://www.grid5000.fr/w/Grid5000:Home
2https://www.cloudping.co/grid/p_10/timeframe/1D

58

https://www.grid5000.fr/w/Grid5000:Home
https://www.cloudping.co/grid/p_10/timeframe/1D

5.2. METHODOLOGY

0

120ms

1

20ms

2

210ms

60ms

4

15ms

6

40ms

5

10ms

bank1

15ms

bank2

5ms

bank2

10ms

bank1

Metadata Dissemination Service

40ms

7

3

bank1

5ms

Figure 5.2: Simulated network used during experiments. The numbers over the links
correspond to the message’s latency in each of them.

Table 5.2: Latency ranges assigned to each link category.

Category Latency Range

Intra-Region 5ms-70ms

Inter-Region 70ms-300ms

whose ends are in different earth’s regions. So, for example, if one end of its ends is located
in Europe and another in North America then the link between them would belong to
this category. On the other hand, an intra-region link is one that connects any brokers in
the same region. This categorization was made with the purpose of assigning latencies
between brokers to effectively simulate a system with clients in multiple regions. Table 5.2
displays the latency ranges used to assign a latency to each link category.

In practice, we first decided to place broker 0, the tree’s root, in the European region.
Afterwards, we decided to place its children in three different regions. Broker 1 was
placed in North America, broker 2 in the same region as broker 0 and broker 3 in the
Asian continent. Then, to more accurately assign latencies between brokers 0 and 3 and
brokers 0 and 1, we decided to get more specific with the latency ranges between these
regions, according to our reference table. The region-specific latency ranges can be found
in Table 5.3. Finally, we took average values and assigned them to the links. As for the

59

CHAPTER 5. EXPERIMENTAL EVALUATION

Table 5.3: Latency ranges between Europe and other regions.

North America Asia

70ms-160ms 180ms-300ms

remaining ones, since they are all in the intra-region category, we assigned values within
the category’s latency range. These latencies were applied using the traffic control (tc)
tool, bundled in the iproute package available on Debian Linux. With this tool, we set
different network packet queuing disciplines, to apply a delay on outgoing packets to a
given destination, in order to emulate the latency between brokers.

After assigning latencies between brokers, we moved into setting up multiple test
scenarios, introducing different number of faults in the system, by killing the processes
associated to each broker, to verify if brokers behave according to their relationship with
the failed brokers and with the goal of assessing the protocol’s efficiency, taking into
consideration the failed broker’s position, its number of children and subscribed topics.
Each test configuration can be found in a configuration file, which contains the necessary
information to build the initial overlay, to define broker’s and client’s parameters, to define
the time at which a specific broker fails and test specific parameters, which include:

• n_key_items: number of key items per topic.

• n_operations: total number of operations performed by each client, which translate
to publications in the middleware.

• eventual: percentage of messages, tagged as eventual, published.

• causal: percentage of messages, tagged as causal, published.

• linear: percentage of messages, tagged as eventual, published.

• msg_interval: time, in milliseconds, between the publication of two consecutive
messages.

The broker and client parameters are the following:

• maxHops: the maximum distance a PathEntry travels in the tree. Can also be seen as
the maximum distance, measured in message hops, between a broker and others it
knows of.

• timerDuration: the maximum time a broker or client waits for a connection to be
established, after their parent failing.

• bufferSize: maximum length of per-topic buffers.

• nr-actors: number of workers per broker.

60

5.2. METHODOLOGY

• total-degree: maximum number of active connections a broker can maintain.

Among these parameters, nr-actors and total-degree are broker specific. Finally, failures
are configured by indicating the broker’s identifier and the time, after the beginning of
the run, to fail. An example configuration file can be found in Annex I.

The test scenarios, include one with no failures that served as a comparable baseline.
In each scenario we varied, the failed broker’s position in the tree, the number of topics
subscribed by the failed broker, which is dependent on the topics subscribed by its children,
and the number of failures. In terms of scenario parameters, a test can be defined by the
tuple:

𝑡𝑒𝑠𝑡 <

𝑛_𝑘𝑒𝑦_𝑖𝑡𝑒𝑚𝑠, 𝑛_𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠, 𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙, 𝑐𝑎𝑢𝑠𝑎𝑙, 𝑙𝑖𝑛𝑒𝑎𝑟, 𝑚𝑠𝑔_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, 𝑛_ 𝑓 𝑎𝑢𝑙𝑡𝑠 >

In terms of broker and client parameters, these were fixed across all experiments. The
respective parameters are highlighted in Listings 5.1 and 5.2

Listing 5.1: Parameters utilized by brokers in each scenario

1 broker_parameters{

2 nr-actors=10

3 total-degree=3

4 bufferSize=150

5 timerDuration=2

6 maxHops=3

7 }

Listing 5.2: Parameters utilized by clients in each scenario

1 mi_params{

2 maxHops=3

3 bufferSize=150

4 timerDuration=2

5 }

Concerning correctness, the methodology is to answer the questions, defined in
Section 5.1.1, for all scenarios. Concerning performance the methodology is to compute
statistics for each scenario and for groups of scenarios. Due to the lack of time, each
scenario was ran 5 times and the respective statistics were computed. The scenarios are
the following:

Broker 1 fails some time after starting: brokers 4 and 5 must connect to a new parent
and lost messages must be received by both.

Broker 2 fails some time after starting: brokers 1, 2 and 3 must execute the algorithm to
determine which of them becomes the new root.

61

CHAPTER 5. EXPERIMENTAL EVALUATION

Brokers 1 and 4 fail simultaneously: the client connected to broker 1 must find a new
broker to connect it to the middleware.

Brokers 0 and 1 fail simultaneously: brokers 2 and 3 must start the algorithm to deter-
mine the new root broker however, they are not aware of broker 1’s failure.

Broker 0’s children fail some time after starting: brokers 4, 5, 6 and 7 must find a new
parent.

5.3 Correctness

Concerning correctness of the overlay maintenance protocol, we must analyze broker’s
log files. It is correct if the following properties are observed in them:

1. Brokers send NeighborStatus messages when a neighbor’s status changes (neighbor
added or failed).

2. Brokers store addresses according to the number of hops and movement pattern of
path entries.

3. Brokers correctly remove failed brokers from their tree view, when receiving an
update.

4. Brokers increment and decrement their residualDegree when removing or adding
neighbors.

5. Brokers execute the root election protocol if the root fails.

6. Brokers reject ParentRequest if residualDegree equals zero or are not subscribed to any
of the requester’s topics.

7. Brokers prevent messages from being processed out of order, by holding incoming
messages during a reconfiguration.

8. Brokers can detect messages missed and guarantee they are delivered in the order
they are processed.

5.3.1 Updating tree view

In Section 4.2.2.1, we highlighted how important updating tree view is. In Annex II,
we provide a walkthrough of a broker’s log file showcasing tree view updates triggered
by adding neighbors to the neighbors set.

62

5.3. CORRECTNESS

5.3.2 Incrementing and decrementing residualDegree

Correctly updating residualDegree ensures brokers do not accept connections from
more brokers than they can handle. In Annex IV, we provide an example log file of a
broker changing its residualDegree, triggered by changes in its neighborhood (adding or
removing brokers).

5.3.3 Sending and1 handling ParentRequest

After a broker’s parent failing, brokers must take appropriate action at attempting to
repair the overlay. In this case, a broker must contact another in its tree view. In Annex IV,
we also provide an overview of a broker taking those appropriate steps.

5.3.4 Ensuring total order message’s processing is completed

In Section 4.3.2.4, we presented the steps brokers take to verify if a failure interrupted
the processing of total order Metadata messages and how it can be completed. Annex V
contains an example of a broker’s log file, correctly performing the steps to ensure total
order message’s processing is completed after a failure occurring.

5.3.5 Executing root election algorithm

The logs in Annex VI, correspond to excerpts of a scenario where the root fails. In this
situation root’s children must work collectively to determine which among them becomes
the new root of the overlay. The logs in the referenced annex show an example of the
correct behavior.

5.3.6 Preventing messages from being processed out of order during an
ongoing reconfiguration

In Section 4.3.1, we explained that to prevent messages from being processed and
deliveredoutoforder, during an ongoing reconfiguration, brokers hold incoming messages
and once they determine the reconfiguration has been completed, they release them.
Annex VII, contains an example log file of that behavior.

5.3.7 Executing multiple rounds of ParentRequest, correctly detecting missed
messages and correctly rejecting requests

Performing topological reconfigurations, may require multiple rounds of connection
attempts, depending on broker degree and topics subscribed by brokers selected to replace
another’s parent. Despite the multiple rounds, every time a ParentRequest is received, it
must be handled correctly taking into account the previous properties. Moreover, even if it
takes multiple rounds to find a replacement for the parent broker, a broker must correctly
detect missing messages and the new parent must retransmit them in the correct order.

63

CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.3: Reconfiguration time measured in milliseconds, taking into account the number
of rounds required to establish a connection with the new parent, and receive all missed
messages.

Annex VIII, contains an example of log showing the process is correctly performed and
is supported by a text explaining its contents. Furthermore, Annex IX, contains tables
showing the correct ordering of messages for a given key.

5.4 Performance

In this section, we provide an analysis of the performance results obtained. We ran
multiple test scenarios, in which we varied the number of faults and number of keys in
the system, to measure the cost imposed by a reconfiguration, measured in reconfiguration

time, in milliseconds, and the average message latency, in milliseconds. Since we are
working with multiple delivery guarantees, we grouped messages by delivery guarantees
and calculated the average latency for each. As mentioned in Section 5.2, these tests were
ran in a machine with a simulated environment, therefore, they may not correctly translate
to a real world scenario. Since we also ran them in a single machine, multiple other factors
may have interfered on our performance evaluation, such as scheduling and parallel tasks
performed by other users due to our access level not allowing us to utilize better machines.

5.4.1 Reconfiguration cost

The experiment displayed in this section, aims at measuring the overhead introduced
by a reconfiguration. The overhead is measured in reconfiguration time, in milliseconds,
and the results obtained are displayed in the chart from Figure 5.3.

We define reconfiguration time as the time elapsed between the moment a fault is
detected and the moment when the last missed message is received by a broker. Since the

64

5.4. PERFORMANCE

Figure 5.4: Message latency in the absence of failures and in the presence of one or more
failures.

reconfiguration is executed in rounds composed of sending a ParentRequest and receiving
the corresponding ParentResponse, it is expected that the more rounds it takes for a broker
to complete the reconfiguration, the longer it will take for the it to be completed increasing
the reconfiguration time. To conduct this experiment, we executed tests in which brokers
would have their ParentRequest rejected once or more, either by receiving a ParentResponse

informing the request was rejected or a timer expiring, which is handled as a rejection. In
this case, we induced faults in the root’s children to simulate these occurrences. The tuple
that represents these tests is

𝑡𝑒𝑠𝑡 < 100, 1000, 0.4, 0.3, 0.3, 50, 𝑓 > , 𝑓 ∈ {0, 1, 2, 3}

By analyzing the results, we were able to determine that the cost of reconfiguration
is directly linked to the number of rounds needed for a broker to successfully establish a
connection with the new parent and receive all missed messages, as the average time of
reconfiguration increases as the number of rounds increases. The chart in Figure 5.3 proves
this claim since each column’s height, which represents the reconfiguration time, increases
with the increase in rounds performed until the reconfiguration process is concluded.

5.4.2 Impact of failures in message latency, within multiple brokers’ tree
views

In Section 5.4.1, we determined that the reconfiguration process has a cost attached
to it and, therefore, we expected faults to have an additional impact on message latency.

65

CHAPTER 5. EXPERIMENTAL EVALUATION

(a) 1 key. (b) 10 keys.

(c) 100 keys. (d) 1000 keys.

Figure 5.5: Message latency with varying number of faults and number of key items.

To confirm our expectations, we executed experiments where we varied the number of
simultaneous faults occurred, within multiple brokers’ tree views, and compared the results
with a scenario where no faults occur. The tuple used for this experiment is equivalent to
the one used in the experiments from Section 5.4.1:

𝑡𝑒𝑠𝑡 < 100, 500, 0.4, 0.3, 0.3, 50, 𝑓 > , 𝑓 ∈ {0, 1, 2, 3}

The results are displayed in Figure 5.4, that shows the average message latency, in
milliseconds, for each delivery guarantee provided. The results show that, in general,
messages tagged with eventual and causal delivery guarantees are delivered faster to
clients than messages tagged with total delivery. This is due to the delivery mechanism
utilized by brokers to deliver messages in total order.

We expected message latency to be directly linked to the latencies between brokers in
the absence of faults. Moreover, since the occurrence of faults adds a reconfiguration that
imposes an overhead, it is expected that the more faults that occur the greater the impact
that each fault imposes and, consequently, the observable latencies will increase. This fact
is corroborated by the chart in Figure 5.4, which shows a correlation between the number
of faults and message latency since column’s height, which represents average latency,
increases as the number of faults also increases.

66

5.4. PERFORMANCE

5.4.3 Impact of key items in message latency when failures occurs

Now that we measured the cost of reconfiguration and how multiple failures can affect
message latency, we also wanted to determine how the number of keys in the system. The
keyItems field in Metadata messages is essential for the correct dissemination of messages
especially when messages tagged with total order delivery are in play, given that to ensure
total order, brokers temporarily block messages related by the keys contained within
keyItems. The greater the number of existing keys, the lower the likelihood of messages
being related by the keys within keyItems, consequently, decreasing the likelihood of
messages being blocked. The experiment displayed in this section aims at measuring how
impactful is the number of keys in message latency when coupled with the occurrence of
faults. This experiment corresponds to the tuple

𝑡𝑒𝑠𝑡 < 𝑘, 500, 40%, 30%, 30%, 50, 𝑓 >, 𝑘 ∈ {1, 10, 100, 1000} ∧ 𝑓 ∈ {0, 1, 2, 3}

and the results are displayed in Figure 5.5. The results display the average latency, in
milliseconds, of messages tagged with different delivery guarantees for different number
of keys and faults occurred, and show that the higher the number of keys, the lower the
average message latency, which can be explained by the number of conflicting messages
that are blocked during the time a message tagged with total order delivery is being
processed, and the associated cost of reconfiguration. A small number of keys increases
the chance of conflicting messages that are blocked, leading to an increase in message
latency since conflicting messages are only processed after delivering the total order
message. Moreover, similarly to the experiment from Section 5.4.2, the more faults that
occur, the higher the impact on message latency.

67

6

Conclusions

In this dissertation, we presented our approach at developing a protocol to provide
fault-tolerance capabilities to a pub/sub system who delivers messages from publish-
ers to subscribers according to multiple delivery guarantees. Our work resulted in the
implementation of localized overlay maintenance protocol, inspired in the overlay main-
tenance strategies presented in [16] and by LoCaMu [25], to effectively reconnect tree
overlay networks. This protocol aims at minimizing reconfiguration costs by confining the
topological adaptions to failed node’s children and at minimizing the load imposed on
nodes after the necessary topological changes occur, achieved by limiting node’s degree.
The developed protocol also ensures messages are not lost as a consequence of nodes
failing, by restoring the communication channels and message flow between nodes. When
restoring communication channels, nodes need to guarantee that any messages missed
by new neighbors are delivered in the same order received by a node, which in this case
FIFO order, since our pub/sub disseminates messages in that order. Since our systems
delivers messages according to multiple delivery guarantees, the protocol also needs to
ensure those delivery guarantees are not violated. For instance, during reconfiguration if
a node is processing a message that needs to be delivered in total order to all subscribers,
it needs to ensure no other message is processed before its processing is completed. Our
protocol ensures that by holding Metadata messages while a reconfiguration is ongoing,
preventing them from being processed out of order and, consequently, from violating
delivery guarantees.

The results analyzed in Chapter 5, prove the protocol’s correctness in terms of re-
connecting the overlay, ensuring messages are not lost and delivery does not violate the
multiple delivery guarantees as a result of node failures. The results show nodes are able
to find a node to replace their parent, after it fails. Additionally, they show nodes can
detect messages missed by neighbors and deliver them in the order they were received
and message processing can be completed before processing incoming messages after the
reconfiguration is completed. Furthermore, message latency is directly linked to com-
munication latency between nodes and our solution only has a slight impact in message
latency in the presence of failures.

68

6.1. FUTURE WORK

6.1 Future Work

During the development of our work we noticed that, although the pub/sub system
provides a great baseline to develop services that provide developers the ability to register
operations with different delivery guarantees, some aspects can still be improved.

Improvedparent selection criteria. When a fault is detected, brokers select a replacement
for their parent based on the distance, regarding the number of message hops, to brokers
within their local tree view. This might lead brokers to establish a connection with
a broker in a distant geographical location increasing the latency of communication.
Another improvement that we propose is improve the criteria used to store brokers in the
local tree view, since we are dealing with a topic-based pub/sub system and brokers are
stored in tree views based on their position in the overlay tree. These criteria can primarily
take subscribed topics into consideration since topic trees are required to be preserved
once a fault occurs.

Network partition-tolerance. As mentioned in Chapter 4, our work considers a crash
failure fault model and, therefore, only failures resulting from brokers crashing are
considered. In real world applications, the ability to tolerate network partitions is desirable
and necessary to ensure the correct behavior of the system. Therefore, we propose the
implementation of a protocol to detect and handle the occurrence of network partitions.

Concurrency control. As ofnow the middleware utilizes a very basic strategy to approach
the problem of shared data among different processes. In many situations, the lack of good
concurrency control strategies can greatly impact the system’s performance. Therefore,
as future work we propose the implementation of a more robust concurrency control
strategy in order to improve system’s performance when multiple processes are accessing
the same shared resources.

Failure recovery. During our work we developed a protocol to effectively repair the
middleware overlay, when brokers fail. However, if, for instance, a broker recovers
from a failure, the middleware does not have a mechanism to support its recovery, by
reintegrating the broker in it. The recovery protocol allows the overlay to return to the
state before a failure occurring.

Dynamic joining mechanism. As of now, the pub/sub overlay is pre-configured, in
configuration files. This puts a lot of responsibility in system’s developers when config-
uring the initial connections between brokers. If a broker is not correctly configured, it
may not connect to the expected broker which may lead to a decrease in performance and
message latency. Therefore, we propose the development of a protocol that allows brokers
to dynamically join the overlay, by contacting other brokers already in it.

69

CHAPTER 6. CONCLUSIONS

Garbage collection mechanism. In our approach, brokers store processed messages in
buffer and use them to identify missed messages if a fault is detected. In our implementa-
tion, buffers have an upper bound on their length. If buffers are not large enough there
might be a chance of a broker requesting a message and that message no longer being
contained in the buffer. On the other hand, if buffers are too large, a broker’s memory
usage may be increased unnecessarily when no faults occur. For that purpose, we propose
the implementation of a garbage collection mechanism to find a middle ground between
both the highlighted downsides of our solution.

70

Bibliography

[1] H. N. S. Aldin et al. “Consistency models in distributed systems: A survey on
definitions, disciplines, challenges and applications”. In: CoRR abs/1902.03305
(2019). arXiv: 1902.03305. url: http://arxiv.org/abs/1902.03305 (cit. on
pp. 11, 12).

[2] H. Attiya and J. L. Welch. “Sequential Consistency versus Linearizability”. In: ACM

Trans. Comput. Syst. 12.2 (1994), pp. 91–122. doi: 10.1145/176575.176576. url:
https://doi.org/10.1145/176575.176576 (cit. on p. 11).

[3] D. Bermbach and J. Kuhlenkamp. “Consistency in Distributed Storage Systems -
An Overview of Models, Metrics and Measurement Approaches”. In: Networked

Systems - First International Conference, NETYS 2013, Marrakech, Morocco, May 2-4,

2013, Revised Selected Papers. Ed. by V. Gramoli and R. Guerraoui. Vol. 7853. Lecture
Notes in Computer Science. Springer, 2013, pp. 175–189. doi: 10.1007/978-3-6
42-40148-0_13. url: https://doi.org/10.1007/978-3-642-40148-0%5C_13
(cit. on pp. 11, 12).

[4] E. A. Brewer. “Towards robust distributed systems (abstract)”. In: Proceedings of

the Nineteenth Annual ACM Symposium on Principles of Distributed Computing, July

16-19, 2000, Portland, Oregon, USA. Ed. by G. Neiger. ACM, 2000, p. 7. doi:
10.1145/343477.343502. url: https://doi.org/10.1145/343477.343502
(cit. on p. 2).

[5] S. Burckhardt. “Principles of Eventual Consistency”. In: Found. Trends Program.

Lang. 1.1-2 (2014), pp. 1–150. doi: 10.1561/2500000011. url: https://doi.org/1
0.1561/2500000011 (cit. on p. 11).

[6] M. Castro et al. “Scribe: a large-scale and decentralized application-level multicast
infrastructure”. In: IEEE J. Sel. Areas Commun. 20.8 (2002), pp. 1489–1499. doi: 10
.1109/JSAC.2002.803069. url: https://doi.org/10.1109/JSAC.2002.803069
(cit. on pp. 15, 16, 22).

71

https://arxiv.org/abs/1902.03305
http://arxiv.org/abs/1902.03305
https://doi.org/10.1145/176575.176576
https://doi.org/10.1145/176575.176576
https://doi.org/10.1007/978-3-642-40148-0_13
https://doi.org/10.1007/978-3-642-40148-0_13
https://doi.org/10.1007/978-3-642-40148-0%5C_13
https://doi.org/10.1145/343477.343502
https://doi.org/10.1145/343477.343502
https://doi.org/10.1561/2500000011
https://doi.org/10.1561/2500000011
https://doi.org/10.1561/2500000011
https://doi.org/10.1109/JSAC.2002.803069
https://doi.org/10.1109/JSAC.2002.803069
https://doi.org/10.1109/JSAC.2002.803069

BIBLIOGRAPHY

[7] T. Chang et al. “P2S: a fault-tolerant publish/subscribe infrastructure”. In: The 8th

ACM International Conference on Distributed Event-Based Systems, DEBS ’14, Mumbai,

India, May 26-29, 2014. Ed. by U. Bellur and R. Kothari. ACM, 2014, pp. 189–197. doi:
10.1145/2611286.2611305. url: https://doi.org/10.1145/2611286.2611305
(cit. on pp. 19, 22).

[8] H.-E. Chihoub et al. Consistency Management in Cloud Storage Systems. 2014 (cit. on
p. 11).

[9] L. Chula. “Disseminação de metadados com diferentes garantias de ordenação”.
Master’s thesis. Monte de Caparica, Almada: NOVA School of Science and Technol-
ogy, 2023-03 (cit. on p. 2).

[10] P. Costa et al. “Epidemic Algorithms for Reliable Content-Based Publish-Subscribe:
An Evaluation”. In: 24th International Conference on Distributed Computing Systems

(ICDCS) 2004, 24-26 March 2004, Hachioji, Tokyo, Japan. IEEE Computer Society, 2004,
pp. 552–561. doi: 10.1109/ICDCS.2004.1281622. url: https://doi.org/10.110
9/ICDCS.2004.1281622 (cit. on pp. 17, 22).

[11] P. Costa et al. “Introducing reliability in content-based publish-subscribe through
epidemic algorithms”. In: Proceedings of the 2nd International Workshop on Distributed

Event-Based Systems, DEBS 2003, Sunday, June 8th, 2003, San Diego, California, USA (in

conjunction with (SIGMOD/PODS)). Ed. by H. Jacobsen. ACM, 2003. doi: 10.1145
/966618.966629. url: https://doi.org/10.1145/966618.966629 (cit. on pp. 17,
22).

[12] P. H. B. Dias. “Tree-based Decentralized and Robust Causal Dissemination”. MA
thesis. NOVA School of Science and Technology, 2020-04 (cit. on pp. 20, 22).

[13] C. Esposito. “A tutorial on reliability in publish/subscribe services”. In: Proceedings

of the SixthACM InternationalConference on DistributedEvent-BasedSystems, DEBS 2012,

Berlin, Germany, July 16-20, 2012. Ed. by F. Bry et al. ACM, 2012, pp. 399–406. doi:
10.1145/2335484.2335537. url: https://doi.org/10.1145/2335484.2335537
(cit. on p. 15).

[14] P. T. Eugster et al. “The many faces of publish/subscribe”. In: ACM Comput. Surv.

35.2 (2003), pp. 114–131. doi: 10.1145/857076.857078. url: https://doi.org/1
0.1145/857076.857078 (cit. on pp. 13–15).

[15] M. F. S. Ferreira, J. Leitão, and L. E. T. Rodrigues. “Thicket: A Protocol for Building
and Maintaining Multiple Trees in a P2P Overlay”. In: 29th IEEE Symposium

on Reliable Distributed Systems (SRDS 2010), New Delhi, Punjab, India, October 31 -

November 3, 2010. IEEE Computer Society, 2010, pp. 293–302. doi: 10.1109/SRDS.2
010.19. url: https://doi.org/10.1109/SRDS.2010.19 (cit. on pp. 18, 22).

72

https://doi.org/10.1145/2611286.2611305
https://doi.org/10.1145/2611286.2611305
https://doi.org/10.1109/ICDCS.2004.1281622
https://doi.org/10.1109/ICDCS.2004.1281622
https://doi.org/10.1109/ICDCS.2004.1281622
https://doi.org/10.1145/966618.966629
https://doi.org/10.1145/966618.966629
https://doi.org/10.1145/966618.966629
https://doi.org/10.1145/2335484.2335537
https://doi.org/10.1145/2335484.2335537
https://doi.org/10.1145/857076.857078
https://doi.org/10.1145/857076.857078
https://doi.org/10.1145/857076.857078
https://doi.org/10.1109/SRDS.2010.19
https://doi.org/10.1109/SRDS.2010.19
https://doi.org/10.1109/SRDS.2010.19

BIBLIOGRAPHY

[16] D. Frey and A. L. Murphy. “Failure-Tolerant Overlay Trees for Large-Scale Dynamic
Networks”. In: Proceedings P2P’08, Eighth International Conference on Peer-to-Peer

Computing, 8-11 September 2008, Aachen, Germany. Ed. by K. Wehrle et al. IEEE
Computer Society, 2008, pp. 351–361. doi: 10.1109/P2P.2008.30. url: https:
//doi.org/10.1109/P2P.2008.30 (cit. on pp. 21, 22, 30, 68).

[17] R. S. Kazemzadeh and H. Jacobsen. “Reliable and Highly Available Distributed
Publish/Subscribe Service”. In: 28th IEEE Symposium on Reliable Distributed Systems

(SRDS 2009), Niagara Falls, New York, USA, September 27-30, 2009. IEEE Computer
Society, 2009, pp. 41–50. doi: 10.1109/SRDS.2009.32. url: https://doi.org/10
.1109/SRDS.2009.32 (cit. on pp. 17, 22).

[18] B. Kemme and G. Alonso. “Database Replication: a Tale of Research across Com-
munities”. In: Proc. VLDB Endow. 3.1 (2010), pp. 5–12. doi: 10.14778/1920841.1
920847. url: http://www.vldb.org/pvldb/vldb2010/pvldb%5C_vol3/TY02.pdf
(cit. on p. 2).

[19] Y. Liu and V. Vlassov. “Replication in Distributed Storage Systems: State of the
Art, Possible Directions, and Open Issues”. In: 2013 International Conference on

Cyber-Enabled Distributed Computing and Knowledge Discovery, CyberC 2013, Beĳing,

China, October 10-12, 2013. IEEE Computer Society, 2013, pp. 225–232. doi: 10.11
09/CyberC.2013.44. url: https://doi.org/10.1109/CyberC.2013.44 (cit. on
p. 10).

[20] J. M. Lourenço. The NOVAthesis LAT
E
X Template User’s Manual. NOVA University

Lisbon. 2021. url: https://github.com/joaomlourenco/novathesis/raw/main/
template.pdf (cit. on p. i).

[21] B. C. Neuman. Readings in Distributed Computing Systems. IEEE Computer Society
Press, 1994. Chap. Scale in distributed systems, p. 68 (cit. on p. 1).

[22] L. M. D. Rocha. “Ginger: A Transactional Middleware with Data and Operation
Centric Mixed Consistency”. Master’s thesis. Monte de Caparica, Almada: NOVA
School of Science and Technology, 2020-11 (cit. on pp. 2, 3).

[23] A. I. T. Rowstron and P. Druschel. “Pastry: Scalable, Decentralized Object Location,
and Routing for Large-Scale Peer-to-Peer Systems”. In: Middleware 2001, IFIP/ACM

International Conference on Distributed Systems Platforms Heidelberg, Germany, November

12-16, 2001, Proceedings. Ed. by R. Guerraoui. Vol. 2218. Lecture Notes in Computer
Science. Springer, 2001, pp. 329–350. doi: 10.1007/3-540-45518-3_18. url:
https://doi.org/10.1007/3-540-45518-3%5C_18 (cit. on p. 16).

[24] P. Salehi, C. Doblander, and H. Jacobsen. “Highly-available content-based publish/-
subscribe via gossiping”. In: Proceedings of the 10th ACM International Conference on

Distributed and Event-based Systems, DEBS ’16, Irvine, CA, USA, June 20 - 24, 2016.
Ed. by A. Gal et al. ACM, 2016, pp. 93–104. doi: 10.1145/2933267.2933303 (cit. on
pp. 19, 22).

73

https://doi.org/10.1109/P2P.2008.30
https://doi.org/10.1109/P2P.2008.30
https://doi.org/10.1109/P2P.2008.30
https://doi.org/10.1109/SRDS.2009.32
https://doi.org/10.1109/SRDS.2009.32
https://doi.org/10.1109/SRDS.2009.32
https://doi.org/10.14778/1920841.1920847
https://doi.org/10.14778/1920841.1920847
http://www.vldb.org/pvldb/vldb2010/pvldb%5C_vol3/TY02.pdf
https://doi.org/10.1109/CyberC.2013.44
https://doi.org/10.1109/CyberC.2013.44
https://doi.org/10.1109/CyberC.2013.44
https://github.com/joaomlourenco/novathesis/raw/main/template.pdf
https://github.com/joaomlourenco/novathesis/raw/main/template.pdf
https://doi.org/10.1007/3-540-45518-3_18
https://doi.org/10.1007/3-540-45518-3%5C_18
https://doi.org/10.1145/2933267.2933303

BIBLIOGRAPHY

[25] V. Santos and L. Rodrigues. “Localized Reliable Causal Multicast”. In: 18th IEEE

International Symposium on Network Computing and Applications, NCA 2019, Cambridge,

MA, USA, September 26-28, 2019. Ed. by A. Gkoulalas-Divanis, M. Marchetti, and
D. R. Avresky. IEEE, 2019, pp. 1–10. doi: 10.1109/NCA.2019.8935065. url:
https://doi.org/10.1109/NCA.2019.8935065 (cit. on pp. 20, 22, 26, 30, 54, 68).

[26] E. Spaho, L. Barolli, and F. Xhafa. “Data replication strategies in P2P systems: A
survey”. In: 2014 17th international conference on network-based information systems.
IEEE. 2014, pp. 302–309 (cit. on pp. 9, 10).

[27] A. S. Tanenbaum and M. van Steen. Distributed systems - principles and paradigms, 2nd

Edition. Pearson Education, 2007. isbn: 978-90-815406-2-9 (cit. on pp. 1, 11, 12, 14).

[28] A. S. Tanenbaum and M. van Steen. Distributed systems, 3rd Edition. Pearson
Education, 2018. isbn: 978-0-13-239227-3 (cit. on pp. 2, 15).

[29] S. Tarkoma. Publish/subscribe systems: design and principles. John Wiley & Sons, 2012
(cit. on p. 14).

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v7.1.5) [1]. 12cc90221730b8ba41bb3b1f8b517acd

[1] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021. URL: https://github.com/joaomlourenco/novathesis/raw/main/template.pdf (cit. on p. 74).

74

https://doi.org/10.1109/NCA.2019.8935065
https://doi.org/10.1109/NCA.2019.8935065
https://github.com/joaomlourenco/novathesis
https://github.com/joaomlourenco/novathesis/raw/main/template.pdf

I

Example test configuration file

Listing I.1: Example configuration type.

1 broker0{

2 nodeID=0

3 self="akka://PubSubSystem@localhost:3000/user/treeBroker"

4 parent=""

5 }

6 broker1{

7 nodeID=1

8 self="akka://PubSubSystem@localhost:3001/user/treeBroker"

9 parent="akka://PubSubSystem@localhost:3000/user/treeBroker"

10 }

11 broker2{

12 nodeID=2

13 self="akka://PubSubSystem@localhost:3002/user/treeBroker"

14 parent="akka://PubSubSystem@localhost:3000/user/treeBroker"

15 }

16 broker3{

17 nodeID=3

18 self="akka://PubSubSystem@localhost:3003/user/treeBroker"

19 parent="akka://PubSubSystem@localhost:3001/user/treeBroker"

20 }

21 broker4{

22 nodeID=4

23 self="akka://PubSubSystem@localhost:3004/user/treeBroker"

24 parent="akka://PubSubSystem@localhost:3002/user/treeBroker"

25 }

26 mi0{

27 replicaID=0

28 self="akka://middleware@localhost:2500/user/middleware"

75

ANNEX I. EXAMPLE TEST CONFIGURATION FILE

29 my-broker-data="akka://PubSubSystem@localhost:3504/user/treeBroker"

30 my-broker-metadata="akka://PubSubSystem@localhost:3004/user/treeBroker"

31 topic="topic1"

32 }

33 mi1{

34 replicaID=1

35 self="akka://middleware@localhost:2501/user/middleware"

36 my-broker-data="akka://PubSubSystem@localhost:3503/user/treeBroker"

37 my-broker-metadata="akka://PubSubSystem@localhost:3003/user/treeBroker"

38 topic="topic2"

39 }

40 broker_params{

41 nr-actors=5

42 total-degree=3

43 msg-buffer-size=10

44 connection-timer-seconds=3

45 path-entry-max-hops=3

46 }

47 mi_params{

48 path-entry-max-hops=3

49 msg-buffer-size=5

50 connection-timer-seconds=3

51 }

52 scenario_params{

53 n_key_items=100

54 n_operations=200

55 eventual=0.4

56 causal=0.3

57 linear=0.3

58 msg_interval=100

59 }

60 failure{

61 broker=2

62 time=57

63 broker=4

64 time=60

65 }

76

II

Sending and handling NeighborStatus

- Adding neighbor

Listing II.1: Broker 1 sending and handling NeighborStatus messages when neighbors are
added to neighbors set.

1 class: TreeBroker | message: adding neighbor

akka://PubSubSystem@10.16.1.107:3000/user/treeBroker. Can receive 3

connections

2 class: TreeBroker | message: sending NeighborStatus [nChidlren=0,

other=akka://PubSubSystem@10.16.1.107:3000/user/treeBroker,

failed=false, path=([])] to:

akka://PubSubSystem@10.16.1.107:3000/user/treeBroker

3 class: TreeBroker | message: connection to

akka://PubSubSystem@10.16.1.107:3000/user/treeBroker established

4 class: TreeBroker | message: received NeighborStatus [nChidlren=0,

other=akka://PubSubSystem@10.16.1.108:3001/user/treeBroker,

failed=false,

path=([(address=akka://PubSubSystem@10.16.1.107:3000/user/treeBroker,

hops=0, down=true),

(address=akka://PubSubSystem@10.16.1.108:3001/user/treeBroker,

hops=1, down=false)])] from

Actor[akka://PubSubSystem@10.16.1.107:3000/user/treeBroker#-434148671]

77

ANNEX II. SENDING AND HANDLING NEIGHBORSTATUS - ADDING
NEIGHBOR

5 class: TreeBroker | message: received NeighborStatus [nChidlren=1,

other=akka://PubSubSystem@10.16.1.111:3002/user/treeBroker,

failed=false,

path=([(address=akka://PubSubSystem@10.16.1.107:3000/user/treeBroker,

hops=0, down=true),

(address=akka://PubSubSystem@10.16.1.111:3002/user/treeBroker,

hops=1, down=false),

(address=akka://PubSubSystem@10.16.1.108:3001/user/treeBroker,

hops=1, down=false)])] from

Actor[akka://PubSubSystem@10.16.1.107:3000/user/treeBroker#-434148671]

6 class: TreeBroker | message: adding sibling

akka://PubSubSystem@10.16.1.111:3002/user/treeBroker

7 class: TreeBroker | message: received NeighborStatus [nChidlren=2,

other=akka://PubSubSystem@10.16.1.114:3003/user/treeBroker,

failed=false,

path=([(address=akka://PubSubSystem@10.16.1.107:3000/user/treeBroker,

hops=0, down=true),

(address=akka://PubSubSystem@10.16.1.114:3003/user/treeBroker,

hops=1, down=false),

(address=akka://PubSubSystem@10.16.1.111:3002/user/treeBroker,

hops=1, down=false),

(address=akka://PubSubSystem@10.16.1.108:3001/user/treeBroker,

hops=1, down=false)])] from

Actor[akka://PubSubSystem@10.16.1.107:3000/user/treeBroker#-434148671]

8 class: TreeBroker | message: adding sibling

akka://PubSubSystem@10.16.1.114:3003/user/treeBroker

In this Annex II, we show broker log files to show that, when adding a neighbor, a broker
always sends NeighborStatus messages to its neighbors and correctly adds information
about its other neighbors to the message’s path. When

akka://PubSubSystem@10.16.1.108:3000/user/treeBroker

which in the simulated network corresponds to its parent, was added to the neighbor’s
set, since no other neighbor had been added and the message was sent to its parent, the
path field is empty. Before adding brokers 4 and 5, which are its neighbors in the network,
it received from the parent two NeighborStatus messages, corresponding to when brokers
2 and 3 were added to the parent’s neighbors set, respectively. In these messages, the
message’s path contained information about all parent’s neighbors. When handling the
message’s path, it correctly handled the entries for brokers

akka://PubSubSystem@10.16.1.111:3002/user/treeBroker
akka://PubSubSystem@10.16.1.114:3003/user/treeBroker

78

who were added to the siblings set. In Section 4.2.2, we defined sibling as a broker with
the same parent and can be determined if its path entry’s hop count equals two and the
movement’s direction is upward. In the log files, down=true is equivalent to direction=true.
On reception, the message’s path contained the following entries:

(address=akka://PubSubSystem@10.16.1.108:3001/user/treeBroker, hops=1,
down=false)

(address=akka://PubSubSystem@10.16.1.111:3002/user/treeBroker, hops=1,
down=false)

After both entries’ hop count were incremented, from one to two, and since the down field,
which is the message’s direction, is set to false, then each entry corresponds to a sibling.

79

III

Storing ancestors in message’s path.

Listing III.1: Broker 4 handling path entries and storing ancestors.

1 class: TreeBroker | message: received NeighborStatus [nChidlren=1,

other=akka://PubSubSystem@10.16.1.121:3004/user/treeBroker,

failed=false,

path=([(address=akka://PubSubSystem@10.16.1.108:3001/user/treeBroker,

hops=0, down=true),

(address=akka://PubSubSystem@10.16.1.121:3004/user/treeBroker,

hops=1, down=false),

(address=akka://PubSubSystem@10.16.1.107:3000/user/treeBroker,

hops=1, down=true),

(address=akka://PubSubSystem@10.16.1.114:3003/user/treeBroker,

hops=2, down=false),

(address=akka://PubSubSystem@10.16.1.111:3002/user/treeBroker,

hops=2, down=false)])] from

Actor[akka://PubSubSystem@10.16.1.108:3001/user/treeBroker#-262011069]

2 class: TreeBroker | message: adding ancestor

akka://PubSubSystem@10.16.1.107:3000/user/treeBroker

3 class: TreeBroker | message: adding ancestor

akka://PubSubSystem@10.16.1.114:3003/user/treeBroker

80

4 class: TreeBroker | message: received NeighborStatus [nChidlren=2,

other=akka://PubSubSystem@10.16.1.26:3005/user/treeBroker,

failed=false,

path=([(address=akka://PubSubSystem@10.16.1.108:3001/user/treeBroker,

hops=0, down=true),

(address=akka://PubSubSystem@10.16.1.26:3005/user/treeBroker, hops=1,

down=false),

(address=akka://PubSubSystem@10.16.1.121:3004/user/treeBroker,

hops=1, down=false),

(address=akka://PubSubSystem@10.16.1.107:3000/user/treeBroker,

hops=1, down=true),

(address=akka://PubSubSystem@10.16.1.114:3003/user/treeBroker,

hops=2, down=false),

(address=akka://PubSubSystem@10.16.1.111:3002/user/treeBroker,

hops=2, down=false)])] from

Actor[akka://PubSubSystem@10.16.1.108:3001/user/treeBroker#-262011069]

5 class: TreeBroker | message: adding sibling

akka://PubSubSystem@10.16.1.26:3005/user/treeBroker

6 class: TreeBroker | message: received Subscribe [topic=topic2,

path=([(address=akka://PubSubSystem@10.16.1.108:3001/user/treeBroker,

hops=0, down=true),

(address=akka://PubSubSystem@10.16.1.107:3000/user/treeBroker,

hops=1, down=true),

(address=akka://PubSubSystem@10.16.1.111:3002/user/treeBroker,

hops=2, down=false),

(address=akka://PubSubSystem@10.16.1.38:3006/user/treeBroker, hops=3,

down=false)])] from

Actor[akka://PubSubSystem@10.16.1.108:3001/user/treeBroker#-262011069]

7 class: TreeBroker | message: adding ancestor

akka://PubSubSystem@10.16.1.111:3002/user/treeBroker

We now analyze if ancestors are correctly stored. In Section 4.2.2, an ancestor as any
broker whose tree depth was lower than the path’s handler depth. Annex III displays an
excerpt of broker 4’s logs (Listing III.1). In the simulated network broker 4’s ancestors are
0, 2 and 3. Therefore, when a Subscribe or NeighborStatus message contains an entry with
their addresses, their addresses must be added to the broker 4’s ancestors set. Moreover,
we stated that, when handling a message’s path, to identify an ancestor either its path
entry’s move was downward (direction is set to true) and its hop count is greater than one,
or the move is upward (direction is set to false) and the previous entry’s address belong to
an ancestor. In the log file, we can identify three ancestors were added with addresses, in
lines 2, 3 and 7.

81

ANNEX III . STORING ANCESTORS IN MESSAGE’S PATH.

Let’s analyze the corresponding entries:

(address=akka://PubSubSystem@10.16.1.107:3000/user/treeBroker,hops=1,down=true)
(address=akka://PubSubSystem@10.16.1.111:3002/user/treeBroker,hops=2,down=false)
(address=akka://PubSubSystem@10.16.1.114:3003/user/treeBroker,hops=2,down=false)

After incrementing the hop count they become:

(address=akka://PubSubSystem@10.16.1.107:3000/user/treeBroker,hops=2,down=true)
(address=akka://PubSubSystem@10.16.1.111:3002/user/treeBroker,hops=3,down=false)
(address=akka://PubSubSystem@10.16.1.114:3003/user/treeBroker,hops=3,down=false)

Broker 0 (akka://PubSubSystem@10.16.1.107:3000/user/treeBroker) is correctly identi-
fied as an ancestor due to hops=2 and down=true. As for brokers 2 ((address=akka://PubSub
System@10.16.1.111:3002/user/treeBroker,hops=3,down=false)) and 3 ((address=akka://
PubSubSystem@10.16.1.114:3003/user/treeBroker,hops=3,down=false)), their entries in-
dicate an upward movement (down=false) and, at the moment they were handled, the
previous handled entry is broker 0’s one. Since broker 0 was already stored in the ancestors

set, they are correctly identified as ancestors and added to the corresponding set.

82

IV

Incrementing and decrementing
residualDegree when adding and

removing neighbors.

Listing IV.1: Broker7 increments and decrements its residualDegree and send a ParentRequest

when it detects its parent failed.

1 class: TreeBroker | message: adding neighbor

akka://PubSubSystem@10.16.1.114:3003/user/treeBroker. Can receive 2

connections

2 class: TreeBroker | message: adding neighbor

akka://middleware@10.16.1.57:2504/user/middleware. Can receive 1

connections

3 class: ConnectionMonitor | message: lost connection to

akka://PubSubSystem@10.16.1.114:3003/user/treeBroker

4 class: TreeBroker | message: removing neighbor

akka://PubSubSystem@10.16.1.114:3003/user/treeBroker. Can receive 2

connections

5 class: TreeBroker | message: expecting connections from 1 new neighbors

6 class: TreeBroker | ERROR: parent failed, sending ParentRequest

[subscribedTopics=[topic1], breakDegree=false] to

akka://PubSubSystem@10.16.1.107:3000/user/treeBroker

7 class: TreeBroker | message: sending ParentRequest

[subscribedTopics=[topic1], breakDegree=false] to:

akka://PubSubSystem@10.16.1.107:3000/user/treeBroker

8 class: TreeBroker | message: setting a timer for expected connections

9 class: TreeBroker | message:

akka://PubSubSystem@10.16.1.107:3000/user/treeBroker accepted parent

request, connecting...

83

ANNEX IV. INCREMENTING AND DECREMENTING RESIDUALDEGREE

WHEN ADDING AND REMOVING NEIGHBORS.

10 class: TreeBroker | message: adding neighbor

akka://PubSubSystem@10.16.1.107:3000/user/treeBroker. Can receive 1

connections

11 class: TreeBroker | message: removing ancestor

akka://PubSubSystem@10.16.1.107:3000/user/treeBroker

Listing IV.2: Broker 0 receives ParentRequest and send a response.

1 class: ConnectionMonitor | message: lost connection to

akka://PubSubSystem@10.16.1.114:3003/user/treeBroker

2 class: TreeBroker | message: removing neighbor

akka://PubSubSystem@10.16.1.114:3003/user/treeBroker. Can receive 1

connections

3 class: TreeBroker | message: expecting connections from 1 new neighbors

4 class: TreeBroker | message: setting a timer for expected connections

5 class: TreeBroker | message: received ParentRequest

[subscribedTopics=[topic1], breakDegree=false] from

Actor[akka://PubSubSystem@10.16.1.4:3007/user/treeBroker#170697787]

my residual degree is 1

6 class: TreeBroker | message: sending ParentResponse [accepted=true] to:

akka://PubSubSystem@10.16.1.4:3007/user/treeBroker

7 class: TreeBroker | message:

Actor[akka://PubSubSystem@10.16.1.4:3007/user/treeBroker#170697787]

subscribed topic ’topic1’

8 class: TreeBroker | message: adding neighbor

akka://PubSubSystem@10.16.1.4:3007/user/treeBroker. Can receive 1

connections

We now analyze if broker’s residualDegree is incremented and decrement under network
dynamics. Listing IV.1 contains an excerpt of broker 7’s log file, whose parent is broker
3. Each broker’s initial totalDegree is three as displayed in Listing 5.1. Whenever broker
7 adds a neighbor (lines 1 and 2) to its neighbors set, the log indicates residualDegree is
decremented ("Can receive 2 connections"→ "Can receive 1 connections"). Then, when
it detects a connection to a neighbor was lost (line 4), we can observe it is incremented
("Can receive 1 connections"→ "Can receive 2 connections").

Now let’s take a look to brokers sending and handling ParentRequest messages. In line
3 of Listing IV.1, broker 7 detected the connection to its parent was lost. Therefore, it
must select a broker from its tree view to replace its parent. Broker 7’s tree view contains
brokers 0, 1 and 2 in the ancestors set. Line 10 of its log shows it sent a ParentRequest to
broker 0, which corresponds to the first ancestor due to it being closer, in terms of hops,
than the remaining ancestors.

84

When broker 0 detected broker 3’s failure (Listing IV.2, line 1), broker 3’s address is
removed from its neighbors set and its residualDegree is incremented (line 2). Then, in
line 3, the log states that broker 0 is expecting a ParentRequest from one broker, which
equals to the number of children broker 3 had. Upon receiving the request (line 5), it
states its residualDegree is equal to one ("my residual degree is 1"), implying it can accept a
connection. Therefore, it sends a ParentResponse to the requester with the accepted flag set
to true (line 6). It is also observable, that broker 7 is added to the topic1’s subscribers set
(line 7).

85

V

Ensuring total order message’s
processing is completed.

Listing V.1: Determining pending total order messages being processed and taking appro-
prate action. Broker 0 log.

1 class: TreeBroker | message: Verifying pending total order messages for

topic: topic1

2 class: TreeBroker | message: locked transactions [Metadata

[topic=’topic1’, id=TransactionIdentifier [replicaID=3,

messageID=224], consistency= Linear]]

3 class: TreeBroker | message: children acks: [LinearAck [topic=’topic1’,

id=TransactionIdentifier [replicaID=3, messageID=224]]]

4 class: TreeBroker | message: waiting for LinearAcks for transaction:

TransactionIdentifier [replicaID=3, messageID=224], resending

Metadata [topic=’topic1’, id=TransactionIdentifier [replicaID=3,

messageID=224], consistency= Linear] to children

5 class: TreeBroker | message: Received LinearAck id=TransactionIdentifier

[replicaID=3, messageID=224] from:

akka://PubSubSystem@10.16.1.4:3007/user/treeBroker

6 class: Broker | message: receiveLinearAck LinearAck [topic=’topic1’,

id=TransactionIdentifier [replicaID=3, messageID=224]] from

akka://PubSubSystem@10.16.1.4:3007/user/treeBroker

7 class: TreeBroker | message: Received LinearAck id=TransactionIdentifier

[replicaID=3, messageID=224] from:

akka://PubSubSystem@10.16.1.4:3007/user/treeBroker

8 class: Broker | message: receiveLinearAck LinearAck [topic=’topic1’,

id=TransactionIdentifier [replicaID=3, messageID=224]] from

akka://PubSubSystem@10.16.1.4:3007/user/treeBroker

86

9 class: TreeBroker | message: Received LinearAck id=TransactionIdentifier

[replicaID=3, messageID=224] from:

akka://PubSubSystem@10.16.1.111:3002/user/treeBroker

10 class: Broker | message: receiveLinearAck LinearAck [topic=’topic1’,

id=TransactionIdentifier [replicaID=3, messageID=224]] from

akka://PubSubSystem@10.16.1.111:3002/user/treeBroker

11 class: Broker | message: ===========linearT was ordered=========

12 class: Broker | message: sending LinearProcessed [topic=’topic1’,

id=TransactionIdentifier [replicaID=3, messageID=224]] to

Actor[akka://PubSubSystem@10.16.1.108:3001/user/treeBroker#614734481]

13 class: Broker | message: sending LinearProcessed [topic=’topic1’,

id=TransactionIdentifier [replicaID=3, messageID=224]] to

Actor[akka://PubSubSystem@10.16.1.111:3002/user/treeBroker#515967547]

14 class: Broker | message: sending LinearProcessed [topic=’topic1’,

id=TransactionIdentifier [replicaID=3, messageID=224]] to

Actor[akka://PubSubSystem@10.16.1.4:3007/user/treeBroker#171461907]

Listing V.2: Receiving and acknowledging Metadata message. Broker 7 log

1 class: TreeBroker | message: Verifying pending linear transactions for

topic: topic1

2 class: TreeBroker | message: locked transactions [Metadata

[topic=’topic1’, id=TransactionIdentifier [replicaID=3,

messageID=243], consistency= Linear], Metadata [topic=’topic1’,

id=TransactionIdentifier [replicaID=0, messageID=228], consistency=

Linear], Metadata [topic=’topic1’, id=TransactionIdentifier

[replicaID=4, messageID=220], consistency= Linear]]

3 class: TreeBroker | message: waiting for processed confirmation for

transaction with id: TransactionIdentifier [replicaID=3,

messageID=243]

4 class: TreeBroker | message: waiting for processed confirmation for

transaction with id: TransactionIdentifier [replicaID=0,

messageID=228]

5 class: TreeBroker | message: waiting for processed confirmation for

transaction with id: TransactionIdentifier [replicaID=4,

messageID=220]

6
7 class: TreeBroker | message: received LinearProcessed [topic=’topic1’,

id=TransactionIdentifier [replicaID=0, messageID=228]] from:

akka://PubSubSystem@10.16.1.107:3000/user/treeBroker

8

87

ANNEX V. ENSURING TOTAL ORDER MESSAGE’S PROCESSING IS
COMPLETED.

9 class: TreeBroker | message: received LinearProcessed [topic=’topic1’,

id=TransactionIdentifier [replicaID=4, messageID=220]] from:

akka://PubSubSystem@10.16.1.107:3000/user/treeBroker

10
11 class: TreeBroker | message: Received Metadata [topic=’topic1’,

id=TransactionIdentifier [replicaID=3, messageID=243], consistency=

Linear] from:

Actor[akka://PubSubSystem@10.16.1.107:3000/user/treeBroker#1126404846]

12 class: Broker | message: unlocking id= TransactionIdentifier

[replicaID=0, messageID=228]

13 class: Broker | message: sending Metadata [topic=’topic1’,

id=TransactionIdentifier [replicaID=0, messageID=228], consistency=

Linear] to

Actor[akka://middleware@10.16.1.57:2504/user/middleware#141630053]

14 class: Broker | message: unlocking id= TransactionIdentifier

[replicaID=4, messageID=220]

15 class: Broker | message: sending Metadata [topic=’topic1’,

id=TransactionIdentifier [replicaID=4, messageID=220], consistency=

Linear] to

Actor[akka://middleware@10.16.1.57:2504/user/middleware#141630053]

16 class: Broker | message: TransactionIdentifier [replicaID=3,

messageID=243] was already acknowledged to parent, resending ack....

17 class: Broker | message: sending LinearAck [topic=’topic1’,

id=TransactionIdentifier [replicaID=3, messageID=243]] to

Actor[akka://PubSubSystem@10.16.1.107:3000/user/treeBroker#1126404846]

In the log file, we observe broker 3 failed and broker 7 established a connection to
broker 0. Listing V.1 displays broker 0’s log, where it found that message with identifier
(3,224) was being processed when broker 3 failed. Furthermore, we can also observe the
message processing is in a stage where broker 0 is waiting for LinearAck acknowledgements
from its children. In Section 4.3.2.4, we mentioned that when a broker finds the message
processing in this stage, it needs to resend the corresponding Metadata message to its
children and wait for acknowledgements, which it does in line 4. Then, lines 5, 7 and
9 indicate broker 0 received the acknowledgements needed to complete the message’s
processing and notify its children.

88

VI

Executing root election algorithm

Listing VI.1: Broker 1 starts root election algorithm.

1 class: ConnectionMonitor | message: lost connection to

akka://PubSubSystem@10.16.1.107:3000/user/treeBroker

2 class: TreeBroker | message: removing neighbor

akka://PubSubSystem@10.16.1.107:3000/user/treeBroker. Can receive 1

connections

3 class: TreeBroker | message: expecting connections from 2 new neighbors

4 class: TreeBroker | message: sending RootElection [residualDegree=1,

nodeID=1] to: akka://PubSubSystem@10.16.1.111:3002/user/treeBroker

5 class: TreeBroker | message: sending RootElection [residualDegree=1,

nodeID=1] to: akka://PubSubSystem@10.16.1.114:3003/user/treeBroker

6 class: TreeBroker | message: executing RootElection protocol; need to

receive RootElection from 2 siblings

7 class: TreeBroker | message: setting a timer for expected connections

8 class: TreeBroker | message: received RootElection [residualDegree=2,

nodeID=2] from

Actor[akka://PubSubSystem@10.16.1.111:3002/user/treeBroker#1819788342]

9 class: TreeBroker | message: received RootElection [residualDegree=2,

nodeID=3] from

Actor[akka://PubSubSystem@10.16.1.114:3003/user/treeBroker#-135339189]

10 class: TreeBroker | message: sending ParentRequest

[subscribedTopics=[topic1, topic2], breakDegree=false] to:

akka://PubSubSystem@10.16.1.111:3002/user/treeBroker

11 class: TreeBroker | message: expecting connections from 1 new neighbors

12 class: TreeBroker | message: setting a timer for expected connections

Listing VI.2: Broker 2 starts root election algorithm.

1 class: ConnectionMonitor | message: lost connection to

akka://PubSubSystem@10.16.1.107:3000/user/treeBroker

89

ANNEX VI. EXECUTING ROOT ELECTION ALGORITHM

2 class: TreeBroker | message: removing neighbor

akka://PubSubSystem@10.16.1.107:3000/user/treeBroker. Can receive 2

connections

3 class: TreeBroker | message: expecting connections from 2 new neighbors

4 class: TreeBroker | message: sending RootElection [residualDegree=2,

nodeID=2] to: akka://PubSubSystem@10.16.1.108:3001/user/treeBroker

5 class: TreeBroker | message: sending RootElection [residualDegree=2,

nodeID=2] to: akka://PubSubSystem@10.16.1.114:3003/user/treeBroker

6 class: TreeBroker | message: executing RootElection protocol; need to

receive RootElection from 2 siblings

7 class: TreeBroker | message: setting a timer for expected connections

8 class: TreeBroker | message: received RootElection [residualDegree=2,

nodeID=3] from

Actor[akka://PubSubSystem@10.16.1.114:3003/user/treeBroker#-135339189]

9 class: TreeBroker | message: received RootElection [residualDegree=1,

nodeID=1] from

Actor[akka://PubSubSystem@10.16.1.108:3001/user/treeBroker#355261381]

10 class: TreeBroker | message: I will be the next root, can receive 2

connections

11 class: TreeBroker | message: expecting connections from 2 new neighbors

12 class: TreeBroker | message: setting a timer for expected connections

13 class: TreeBroker | message: received ParentRequest

[subscribedTopics=[topic1, topic2], breakDegree=false] from

Actor[akka://PubSubSystem@10.16.1.108:3001/user/treeBroker#355261381]

my residual degree is 2

14 class: TreeBroker | message: sending ParentResponse [accepted=true] to:

akka://PubSubSystem@10.16.1.108:3001/user/treeBroker

15 class: TreeBroker | message:

Actor[akka://PubSubSystem@10.16.1.108:3001/user/treeBroker#355261381]

subscribed topic ’topic1’

16 class: TreeBroker | message:

Actor[akka://PubSubSystem@10.16.1.108:3001/user/treeBroker#355261381]

subscribed topic ’topic2’

17 class: TreeBroker | message: adding neighbor

akka://PubSubSystem@10.16.1.108:3001/user/treeBroker. Can receive 2

connections

18 class: TreeBroker | message: received ParentRequest

[subscribedTopics=[topic1], breakDegree=false] from

Actor[akka://PubSubSystem@10.16.1.114:3003/user/treeBroker#-135339189]

my residual degree is 1

90

19 class: TreeBroker | message: sending ParentResponse [accepted=true] to:

akka://PubSubSystem@10.16.1.114:3003/user/treeBroker

20 class: TreeBroker | message:

Actor[akka://PubSubSystem@10.16.1.114:3003/user/treeBroker#-135339189]

subscribed topic ’topic1’

21 class: TreeBroker | message: adding neighbor

akka://PubSubSystem@10.16.1.114:3003/user/treeBroker. Can receive 1

connections

Listing VI.3: Broker 3 starts root election algorithm.

1 class: ConnectionMonitor | message: lost connection to

akka://PubSubSystem@10.16.1.107:3000/user/treeBroker

2 class: TreeBroker | message: removing neighbor

akka://PubSubSystem@10.16.1.107:3000/user/treeBroker. Can receive 2

connections

3 class: TreeBroker | message: expecting connections from 2 new neighbors

4 class: TreeBroker | message: sending RootElection [residualDegree=2,

nodeID=3] to: akka://PubSubSystem@10.16.1.108:3001/user/treeBroker

5 class: TreeBroker | message: sending RootElection [residualDegree=2,

nodeID=3] to: akka://PubSubSystem@10.16.1.111:3002/user/treeBroker

6 class: TreeBroker | message: executing RootElection protocol; need to

receive RootElection from 2 siblings

7 class: TreeBroker | message: setting a timer for expected connections

8 class: TreeBroker | message: received RootElection [residualDegree=2,

nodeID=2] from

Actor[akka://PubSubSystem@10.16.1.111:3002/user/treeBroker#1819788342]

9 class: TreeBroker | message: received RootElection [residualDegree=1,

nodeID=1] from

Actor[akka://PubSubSystem@10.16.1.108:3001/user/treeBroker#355261381]

10 class: TreeBroker | message: sending ParentRequest

[subscribedTopics=[topic1], breakDegree=false] to:

akka://PubSubSystem@10.16.1.111:3002/user/treeBroker

11 class: TreeBroker | message: expecting connections from 1 new neighbors

12 class: TreeBroker | message: setting a timer for expected connections

13 class: TreeBroker | message:

akka://PubSubSystem@10.16.1.111:3002/user/treeBroker accepted parent

request, connecting...

14 class: TreeBroker | message: adding neighbor

akka://PubSubSystem@10.16.1.111:3002/user/treeBroker. Can receive 2

connections

91

ANNEX VI. EXECUTING ROOT ELECTION ALGORITHM

In this situation, brokers 1 (Listing VI.1), 2 (Listing VI.2) and 3 (Listing VI.3) must
execute the root election algorithm. In the log files, line 1 shows brokers detecting the
root’s failure. Additionally, in lines 4 and 5 of these Listings, we observe each of them
send a RootElection message to each of the siblings. In this case, broker 2 becomes the new
root as stated in line 10 of its log (Listing VI.2).

92

VII

Holding incoming messages during an
ongoing reconfiguration.

Listing VII.1: Broker 0 holding incoming messages between the time it detected the
connection to broker 3 was lost, until the reconfiguration is determined to be completed

1 class: ConnectionMonitor | message: lost connection to

akka://PubSubSystem@10.16.1.114:3003/user/treeBroker

2 .

3 .

4 .

5 class: TreeBroker | message: Received Metadata [topic=’topic1’,

id=TransactionIdentifier [replicaID=0, messageID=229], consistency=

Eventual] from:

Actor[akka://PubSubSystem@10.16.1.108:3001/user/treeBroker#-450113151]

6 class: TreeBroker | message: holding Metadata [topic=’topic1’,

id=TransactionIdentifier [replicaID=0, messageID=229], consistency=

Eventual]

7
8 class: TreeBroker | message: Received Metadata [topic=’topic1’,

id=TransactionIdentifier [replicaID=0, messageID=230], consistency=

Causal] from:

Actor[akka://PubSubSystem@10.16.1.108:3001/user/treeBroker#-450113151]

9 class: TreeBroker | message: holding Metadata [topic=’topic1’,

id=TransactionIdentifier [replicaID=0, messageID=230], consistency=

Causal]

10
11 class: TreeBroker | message: Received Metadata [topic=’topic1’,

id=TransactionIdentifier [replicaID=0, messageID=231], consistency=

Causal] from:

Actor[akka://PubSubSystem@10.16.1.108:3001/user/treeBroker#-450113151]

93

ANNEX VII. HOLDING INCOMING MESSAGES DURING AN ONGOING
RECONFIGURATION.

12 class: TreeBroker | message: holding Metadata [topic=’topic1’,

id=TransactionIdentifier [replicaID=0, messageID=231], consistency=

Causal]

13
14 class: TreeBroker | message: Received Metadata [topic=’topic1’,

id=TransactionIdentifier [replicaID=0, messageID=232], consistency=

Eventual] from:

Actor[akka://PubSubSystem@10.16.1.108:3001/user/treeBroker#-450113151]

15 class: TreeBroker | message: holding Metadata [topic=’topic1’,

id=TransactionIdentifier [replicaID=0, messageID=232], consistency=

Eventual]

16
17 class: TreeBroker | message: Received Metadata [topic=’topic1’,

id=TransactionIdentifier [replicaID=0, messageID=233], consistency=

Linear] from:

Actor[akka://PubSubSystem@10.16.1.108:3001/user/treeBroker#-450113151]

18 class: TreeBroker | message: holding Metadata [topic=’topic1’,

id=TransactionIdentifier [replicaID=0, messageID=233], consistency=

Linear]

19 .

20 .

21 .

22 class: TreeBroker | message: reconfiguration completed in 91 ms

23
24 class: TreeBroker | message: releasing messages on hold for topic

’topic1’...

25 class: TreeBroker | message: releasing Metadata [topic=’topic1’,

id=TransactionIdentifier [replicaID=0, messageID=229], consistency=

Eventual]

26 class: TreeBroker | message: releasing Metadata [topic=’topic1’,

id=TransactionIdentifier [replicaID=0, messageID=230], consistency=

Causal]

27 class: TreeBroker | message: releasing Metadata [topic=’topic1’,

id=TransactionIdentifier [replicaID=0, messageID=231], consistency=

Causal]

28 class: TreeBroker | message: releasing Metadata [topic=’topic1’,

id=TransactionIdentifier [replicaID=0, messageID=232], consistency=

Eventual]

94

29 class: TreeBroker | message: releasing Metadata [topic=’topic1’,

id=TransactionIdentifier [replicaID=0, messageID=233], consistency=

Linear]

In this log, broker 7 detects broker 3 has failed (line 1). As we can observe, during
the time between detecting broker 3’s failure until it determines the reconfiguration is
completed (line 22), it received five Metadata messages which were put on hold due to an
ongoing reconfiguration. Once it determines the reconfiguration was completed (line 22),
it releases the messages in the same order FIFO order of reception.

95

VIII

Handling rejected ParentRequest and
detecting missed messages.

Listing VIII.1: Broker 5 loses connection to broker 1 and has to execute multiple rounds of
connection attempts. Then synchronizes its buffer with the new parent’s (broker 0) and
detects some messages have been missed.

1 class: TreeBroker | message: received LinearProcessed [topic=’topic2’,

id=TransactionIdentifier [replicaID=2, messageID=445]] from:

akka://PubSubSystem@10.16.1.2:3001/user/treeBroker

2 class: Broker | message: unlocking id= TransactionIdentifier

[replicaID=2, messageID=445]

3 class: Broker | message: sending Metadata [id=TransactionIdentifier

[replicaID=2, messageID=445], delivery=Linear, keyItems=[-162550485],

topic=’topic2’] to

Actor[akka://middleware@10.16.1.6:2501/user/middleware#-1438451775]

4
5 class: ConnectionMonitor | message: 08:44:17: lost connection to

akka://PubSubSystem@10.16.1.2:3001/user/treeBroker

6
7 class: TreeBroker | message: removing neighbor

akka://PubSubSystem@10.16.1.2:3001/user/treeBroker. Can receive 2

connections

8 class: TreeBroker | message: expecting connections from 1 new neighbors

9 class: TreeBroker | ERROR: parent failed, sending ParentRequest

[subscribedTopics=[topic2], breakDegree=false] to

akka://PubSubSystem@10.16.1.14:3000/user/treeBroker

10 class: TreeBroker | message: sending ParentRequest

[subscribedTopics=[topic2], breakDegree=false] to:

akka://PubSubSystem@10.16.1.14:3000/user/treeBroker

11

96

12 class: TreeBroker | message: setting a timer for expected connections

13
14 class: TreeBroker | message: Received Metadata [id=TransactionIdentifier

[replicaID=1, messageID=453], delivery=Linear, keyItems=[-162550419],

topic=’topic2’] from:

Actor[akka://middleware@10.16.1.6:2501/user/middleware#-1438451775]

15 class: TreeBroker | message: holding Metadata [id=TransactionIdentifier

[replicaID=1, messageID=453], delivery=Linear, keyItems=[-162550419],

topic=’topic2’]

16
17 class: TreeBroker | message: Received Metadata [id=TransactionIdentifier

[replicaID=1, messageID=454], delivery=Eventual,

keyItems=[-162550472], topic=’topic2’] from:

Actor[akka://middleware@10.16.1.6:2501/user/middleware#-1438451775]

18 class: TreeBroker | message: holding Metadata [id=TransactionIdentifier

[replicaID=1, messageID=454], delivery=Eventual,

keyItems=[-162550472], topic=’topic2’]

19
20 class: TreeBroker | message: Received Metadata [id=TransactionIdentifier

[replicaID=1, messageID=455], delivery=Eventual,

keyItems=[-162550402], topic=’topic2’] from:

Actor[akka://middleware@10.16.1.6:2501/user/middleware#-1438451775]

21 class: TreeBroker | message: holding Metadata [id=TransactionIdentifier

[replicaID=1, messageID=455], delivery=Eventual,

keyItems=[-162550402], topic=’topic2’]

22
23 class: TreeBroker | message:

akka://PubSubSystem@10.16.1.14:3000/user/treeBroker declined parent

request

24 class: TreeBroker | message: expecting connections from 1 new neighbors

25 class: TreeBroker | ERROR: parent failed, sending ParentRequest

[subscribedTopics=[topic2], breakDegree=false] to

akka://PubSubSystem@10.16.1.54:3004/user/treeBroker

26
27 class: TreeBroker | message: setting a timer for expected connections

28
29 class: TreeBroker | message: Received Metadata [id=TransactionIdentifier

[replicaID=1, messageID=456], delivery=Eventual,

keyItems=[-162550414], topic=’topic2’] from:

Actor[akka://middleware@10.16.1.6:2501/user/middleware#-1438451775]

97

ANNEX VIII . HANDLING REJECTED PARENTREQUEST AND DETECTING
MISSED MESSAGES.

30 class: TreeBroker | message: holding Metadata [id=TransactionIdentifier

[replicaID=1, messageID=456], delivery=Eventual,

keyItems=[-162550414], topic=’topic2’]

31
32 class: TreeBroker | message:

akka://PubSubSystem@10.16.1.54:3004/user/treeBroker declined parent

request

33 class: TreeBroker | message: expecting connections from 1 new neighbors

34 class: TreeBroker | ERROR: parent failed, sending ParentRequest

[subscribedTopics=[topic2], breakDegree=false] to

akka://PubSubSystem@10.16.1.43:3002/user/treeBroker

35 class: TreeBroker | message: sending ParentRequest

[subscribedTopics=[topic2], breakDegree=false] to:

akka://PubSubSystem@10.16.1.43:3002/user/treeBroker

36
37 class: TreeBroker | message: setting a timer for expected connections

38
39 class: TreeBroker | message: Received Metadata [id=TransactionIdentifier

[replicaID=1, messageID=457], delivery=Eventual,

keyItems=[-162550395], topic=’topic2’] from:

Actor[akka://middleware@10.16.1.6:2501/user/middleware#-1438451775]

40 class: TreeBroker | message: holding Metadata [id=TransactionIdentifier

[replicaID=1, messageID=457], delivery=Eventual,

keyItems=[-162550395], topic=’topic2’]

41
42 class: TreeBroker | message: Received Metadata [id=TransactionIdentifier

[replicaID=1, messageID=458], delivery=Linear, keyItems=[-162550461],

topic=’topic2’] from:

Actor[akka://middleware@10.16.1.6:2501/user/middleware#-1438451775]

43 class: TreeBroker | message: holding Metadata [id=TransactionIdentifier

[replicaID=1, messageID=458], delivery=Linear, keyItems=[-162550461],

topic=’topic2’]

44
45 class: TreeBroker | message: 08:44:17:

akka://PubSubSystem@10.16.1.43:3002/user/treeBroker accepted parent

request, connecting...

46 class: TreeBroker | message: adding neighbor

akka://PubSubSystem@10.16.1.43:3002/user/treeBroker. Can receive 2

connections

98

47 class: TreeBroker | message: removing ancestor

akka://PubSubSystem@10.16.1.43:3002/user/treeBroker

48
49 class: TreeBroker | message: received parent buffer

50
51 class: TreeBroker | message:

Actor[akka://PubSubSystem@10.16.1.43:3002/user/treeBroker#1644622344]

subscribed topic ’topic2’

52 class: TreeBroker | message: parent subscribes to the topic => topic2

53 class: TreeBroker | message: handling buffer for topic: topic2

54
55 class: TreeBroker | message: last received by parent:

{1=TransactionIdentifier [replicaID=1, messageID=451],

2=TransactionIdentifier [replicaID=2, messageID=455]}

56 class: TreeBroker | message: my buffer : [TransactionIdentifier

[replicaID=1, messageID=445], TransactionIdentifier [replicaID=2,

messageID=442], TransactionIdentifier [replicaID=1, messageID=446],

TransactionIdentifier [replicaID=2, messageID=443],

TransactionIdentifier [replicaID=1, messageID=447],

TransactionIdentifier [replicaID=2, messageID=444],

TransactionIdentifier [replicaID=1, messageID=448],

TransactionIdentifier [replicaID=2, messageID=445],

TransactionIdentifier [replicaID=1, messageID=449],

TransactionIdentifier [replicaID=2, messageID=446],

TransactionIdentifier [replicaID=1, messageID=450],

TransactionIdentifier [replicaID=2, messageID=447],

TransactionIdentifier [replicaID=1, messageID=451],

TransactionIdentifier [replicaID=2, messageID=448],

TransactionIdentifier [replicaID=1, messageID=452]]

57 class: TreeBroker | message: last received by me:

{1=TransactionIdentifier [replicaID=1, messageID=452],

2=TransactionIdentifier [replicaID=2, messageID=448]}

58 class: TreeBroker | message: parent missed: TransactionIdentifier

[replicaID=1, messageID=452]

59
60 class: TreeBroker | message: missed: {topic2={2=TransactionIdentifier

[replicaID=2, messageID=455]}}

99

ANNEX VIII . HANDLING REJECTED PARENTREQUEST AND DETECTING
MISSED MESSAGES.

61 class: TreeBroker | message: sending LostMessageRequest

[missed={topic2={2=TransactionIdentifier [replicaID=2,

messageID=448]}}, lastProcessedIds={topic2={1=TransactionIdentifier

[replicaID=1, messageID=447], 2=TransactionIdentifier [replicaID=2,

messageID=445]}}] to:

akka://PubSubSystem@10.16.1.43:3002/user/treeBroker

62
63 class: TreeBroker | message: parent missed [Metadata

[id=TransactionIdentifier [replicaID=1, messageID=452],

delivery=Linear, keyItems=[-162550467], topic=’topic2’]] from topic

’topic2’

64 class: TreeBroker | message: sending Metadata [id=TransactionIdentifier

[replicaID=1, messageID=452], delivery=Linear, keyItems=[-162550467],

topic=’topic2’] to:

akka://PubSubSystem@10.16.1.43:3002/user/treeBroker

65
66 class: TreeBroker | message: connection to

akka://PubSubSystem@10.16.1.43:3002/user/treeBroker established

67
68 class: TreeBroker | message: Received Metadata [id=TransactionIdentifier

[replicaID=2, messageID=449], delivery=Causal, keyItems=[-162550483],

topic=’topic2’] from:

Actor[akka://PubSubSystem@10.16.1.43:3002/user/treeBroker#1644622344]

69
70 class: TreeBroker | message: Received Metadata [id=TransactionIdentifier

[replicaID=2, messageID=450], delivery=Eventual,

keyItems=[-162550436], topic=’topic2’] from:

Actor[akka://PubSubSystem@10.16.1.43:3002/user/treeBroker#1644622344]

71 class: Broker | message: sending Metadata [id=TransactionIdentifier

[replicaID=2, messageID=449], delivery=Causal, keyItems=[-162550483],

topic=’topic2’] to

Actor[akka://middleware@10.16.1.6:2501/user/middleware#-1438451775]

72
73 class: TreeBroker | message: Received Metadata [id=TransactionIdentifier

[replicaID=2, messageID=451], delivery=Eventual,

keyItems=[-162550448], topic=’topic2’] from:

Actor[akka://PubSubSystem@10.16.1.43:3002/user/treeBroker#1644622344]

100

74 class: Broker | message: sending Metadata [id=TransactionIdentifier

[replicaID=2, messageID=450], delivery=Eventual,

keyItems=[-162550436], topic=’topic2’] to

Actor[akka://middleware@10.16.1.6:2501/user/middleware#-1438451775]

75 class: Broker | message: sending Metadata [id=TransactionIdentifier

[replicaID=2, messageID=451], delivery=Eventual,

keyItems=[-162550448], topic=’topic2’] to

Actor[akka://middleware@10.16.1.6:2501/user/middleware#-1438451775]

76
77 class: TreeBroker | message: Received Metadata [id=TransactionIdentifier

[replicaID=2, messageID=452], delivery=Eventual,

keyItems=[-162550398], topic=’topic2’] from:

Actor[akka://PubSubSystem@10.16.1.43:3002/user/treeBroker#1644622344]

78
79 class: Broker | message: sending Metadata [id=TransactionIdentifier

[replicaID=2, messageID=452], delivery=Eventual,

keyItems=[-162550398], topic=’topic2’] to

Actor[akka://middleware@10.16.1.6:2501/user/middleware#-1438451775]

80 class: TreeBroker | message: Received Metadata [id=TransactionIdentifier

[replicaID=2, messageID=453], delivery=Eventual,

keyItems=[-162550445], topic=’topic2’] from:

Actor[akka://PubSubSystem@10.16.1.43:3002/user/treeBroker#1644622344]

81 class: Broker | message: sending Metadata [id=TransactionIdentifier

[replicaID=2, messageID=453], delivery=Eventual,

keyItems=[-162550445], topic=’topic2’] to

Actor[akka://middleware@10.16.1.6:2501/user/middleware#-1438451775]

82
83 class: TreeBroker | message: Received Metadata [id=TransactionIdentifier

[replicaID=2, messageID=454], delivery=Eventual,

keyItems=[-162550446], topic=’topic2’] from:

Actor[akka://PubSubSystem@10.16.1.43:3002/user/treeBroker#1644622344]

84 class: Broker | message: sending Metadata [id=TransactionIdentifier

[replicaID=2, messageID=454], delivery=Eventual,

keyItems=[-162550446], topic=’topic2’] to

Actor[akka://middleware@10.16.1.6:2501/user/middleware#-1438451775]

85
86 class: TreeBroker | message: Received Metadata [id=TransactionIdentifier

[replicaID=2, messageID=455], delivery=Linear, keyItems=[-162550421],

topic=’topic2’] from:

Actor[akka://PubSubSystem@10.16.1.43:3002/user/treeBroker#1644622344]

101

ANNEX VIII . HANDLING REJECTED PARENTREQUEST AND DETECTING
MISSED MESSAGES.

87 class: Broker | message: sending Metadata [id=TransactionIdentifier

[replicaID=2, messageID=455], delivery=Linear, keyItems=[-162550421],

topic=’topic2’] to

Actor[akka://middleware@10.16.1.6:2501/user/middleware#-1438451775]

88
89 class: TreeBroker | message: reconfiguration completed in 579 ms

90
91 class: TreeBroker | message: Verifying pending linear transactions for

topic: topic2

92 class: TreeBroker | message: locked transactions [Metadata

[id=TransactionIdentifier [replicaID=1, messageID=449],

delivery=Linear, keyItems=[-162550437], topic=’topic2’], Metadata

[id=TransactionIdentifier [replicaID=1, messageID=450],

delivery=Linear, keyItems=[-162550462], topic=’topic2’], Metadata

[id=TransactionIdentifier [replicaID=1, messageID=452],

delivery=Linear, keyItems=[-162550467], topic=’topic2’], Metadata

[id=TransactionIdentifier [replicaID=2, messageID=448],

delivery=Linear, keyItems=[-162550480], topic=’topic2’]]

93 class: TreeBroker | message: waiting for processed confirmation for

transaction with id: TransactionIdentifier [replicaID=1,

messageID=449]

94 class: TreeBroker | message: waiting for processed confirmation for

transaction with id: TransactionIdentifier [replicaID=1,

messageID=450]

95 class: TreeBroker | message: waiting for processed confirmation for

transaction with id: TransactionIdentifier [replicaID=1,

messageID=452]

96 class: TreeBroker | message: waiting for processed confirmation for

transaction with id: TransactionIdentifier [replicaID=2,

messageID=448]

97
98 class: TreeBroker | message: releasing messages on hold for topic

’topic2’...

99 class: TreeBroker | message: releasing Metadata [id=TransactionIdentifier

[replicaID=1, messageID=453], delivery=Linear, keyItems=[-162550419],

topic=’topic2’]

100 class: TreeBroker | message: releasing Metadata [id=TransactionIdentifier

[replicaID=1, messageID=454], delivery=Eventual,

keyItems=[-162550472], topic=’topic2’]

102

101 class: TreeBroker | message: releasing Metadata [id=TransactionIdentifier

[replicaID=1, messageID=455], delivery=Eventual,

keyItems=[-162550402], topic=’topic2’]

102 class: TreeBroker | message: releasing Metadata [id=TransactionIdentifier

[replicaID=1, messageID=456], delivery=Eventual,

keyItems=[-162550414], topic=’topic2’]

103 class: TreeBroker | message: releasing Metadata [id=TransactionIdentifier

[replicaID=1, messageID=457], delivery=Eventual,

keyItems=[-162550395], topic=’topic2’]

104 class: TreeBroker | message: releasing Metadata [id=TransactionIdentifier

[replicaID=1, messageID=458], delivery=Linear, keyItems=[-162550461],

topic=’topic2’]

105
106 class: TreeBroker | message: received LinearProcessed [topic=’topic2’,

id=TransactionIdentifier [replicaID=1, messageID=449]] from:

akka://PubSubSystem@10.16.1.43:3002/user/treeBroker

107 class: Broker | message: sending Metadata [id=TransactionIdentifier

[replicaID=1, messageID=453], delivery=Linear, keyItems=[-162550419],

topic=’topic2’] to

Actor[akka://PubSubSystem@10.16.1.43:3002/user/treeBroker#1644622344]

108
109 class: TreeBroker | message: received LinearProcessed [topic=’topic2’,

id=TransactionIdentifier [replicaID=1, messageID=450]] from:

akka://PubSubSystem@10.16.1.43:3002/user/treeBroker

110 class: Broker | message: sending Metadata [id=TransactionIdentifier

[replicaID=1, messageID=454], delivery=Eventual,

keyItems=[-162550472], topic=’topic2’] to

Actor[akka://middleware@10.16.1.6:2501/user/middleware#-1438451775]

111 class: Broker | message: sending Metadata [id=TransactionIdentifier

[replicaID=1, messageID=455], delivery=Eventual,

keyItems=[-162550402], topic=’topic2’] to

Actor[akka://middleware@10.16.1.6:2501/user/middleware#-1438451775]

112
113 class: Broker | message: sending Metadata [id=TransactionIdentifier

[replicaID=1, messageID=455], delivery=Eventual,

keyItems=[-162550402], topic=’topic2’] to

Actor[akka://PubSubSystem@10.16.1.43:3002/user/treeBroker#1644622344]

103

ANNEX VIII . HANDLING REJECTED PARENTREQUEST AND DETECTING
MISSED MESSAGES.

114 class: Broker | message: sending Metadata [id=TransactionIdentifier

[replicaID=1, messageID=454], delivery=Eventual,

keyItems=[-162550472], topic=’topic2’] to

Actor[akka://PubSubSystem@10.16.1.43:3002/user/treeBroker#1644622344]

115 class: TreeBroker | message: received LinearProcessed [topic=’topic2’,

id=TransactionIdentifier [replicaID=2, messageID=448]] from:

akka://PubSubSystem@10.16.1.43:3002/user/treeBroker

116 class: Broker | message: sending Metadata [id=TransactionIdentifier

[replicaID=1, messageID=456], delivery=Eventual,

keyItems=[-162550414], topic=’topic2’] to

Actor[akka://middleware@10.16.1.6:2501/user/middleware#-1438451775]

117 class: Broker | message: unlocking id= TransactionIdentifier

[replicaID=1, messageID=449]

118 class: Broker | message: sending Metadata [id=TransactionIdentifier

[replicaID=1, messageID=457], delivery=Eventual,

keyItems=[-162550395], topic=’topic2’] to

Actor[akka://middleware@10.16.1.6:2501/user/middleware#-1438451775]

119 class: Broker | message: sending Metadata [id=TransactionIdentifier

[replicaID=1, messageID=449], delivery=Linear, keyItems=[-162550437],

topic=’topic2’] to

Actor[akka://middleware@10.16.1.6:2501/user/middleware#-1438451775]

120 class: Broker | message: unlocking id= TransactionIdentifier

[replicaID=2, messageID=448]

121 class: Broker | message: sending Metadata [id=TransactionIdentifier

[replicaID=1, messageID=456], delivery=Eventual,

keyItems=[-162550414], topic=’topic2’] to

Actor[akka://PubSubSystem@10.16.1.43:3002/user/treeBroker#1644622344]

122 class: Broker | message: sending Metadata [id=TransactionIdentifier

[replicaID=2, messageID=448], delivery=Linear, keyItems=[-162550480],

topic=’topic2’] to

Actor[akka://middleware@10.16.1.6:2501/user/middleware#-1438451775]

123 class: Broker | message: unlocking id= TransactionIdentifier

[replicaID=1, messageID=450]

124 class: Broker | message: sending Metadata [id=TransactionIdentifier

[replicaID=1, messageID=457], delivery=Eventual,

keyItems=[-162550395], topic=’topic2’] to

Actor[akka://PubSubSystem@10.16.1.43:3002/user/treeBroker#1644622344]

104

125 class: Broker | message: sending Metadata [id=TransactionIdentifier

[replicaID=1, messageID=458], delivery=Linear, keyItems=[-162550461],

topic=’topic2’] to

Actor[akka://PubSubSystem@10.16.1.43:3002/user/treeBroker#1644622344]

126 class: Broker | message: sending Metadata [id=TransactionIdentifier

[replicaID=1, messageID=450], delivery=Linear, keyItems=[-162550462],

topic=’topic2’] to

Actor[akka://middleware@10.16.1.6:2501/user/middleware#-1438451775]

127
128 class: TreeBroker | message: received LinearProcessed [topic=’topic2’,

id=TransactionIdentifier [replicaID=1, messageID=452]] from:

akka://PubSubSystem@10.16.1.43:3002/user/treeBroker

129 class: Broker | message: unlocking id= TransactionIdentifier

[replicaID=1, messageID=452]

130 class: Broker | message: sending Metadata [id=TransactionIdentifier

[replicaID=1, messageID=452], delivery=Linear, keyItems=[-162550467],

topic=’topic2’] to

Actor[akka://middleware@10.16.1.6:2501/user/middleware#-1438451775]

Listing VIII.2: Broker 0 accepts broker 4’s request and rejects broker 5’s request because
its residualDegree is zero.

1 class: ConnectionMonitor | message: 08:44:17: lost connection to

akka://PubSubSystem@10.16.1.2:3001/user/treeBroker

2 class: TreeBroker | message: removing neighbor

akka://PubSubSystem@10.16.1.2:3001/user/treeBroker. Can receive 1

connections

3 class: TreeBroker | message: expecting connections from 1 new neighbors

4 class: TreeBroker | message: setting a timer for expected connections

5 class: TreeBroker | message: 08:44:17: received ParentRequest

[subscribedTopics=[topic1], breakDegree=false] from

Actor[akka://PubSubSystem@10.16.1.54:3004/user/treeBroker#1051990613]

my residual degree is 1

6 class: TreeBroker | message: sending ParentResponse [accepted=true] to:

akka://PubSubSystem@10.16.1.54:3004/user/treeBroker

7 class: TreeBroker | message:

Actor[akka://PubSubSystem@10.16.1.54:3004/user/treeBroker#1051990613]

subscribed topic ’topic1’

105

ANNEX VIII . HANDLING REJECTED PARENTREQUEST AND DETECTING
MISSED MESSAGES.

8 class: TreeBroker | message: sending ParentBuffer

[buffer={topic1={0=TransactionIdentifier [replicaID=0,

messageID=451], 3=TransactionIdentifier [replicaID=3, messageID=454],

4=TransactionIdentifier [replicaID=4, messageID=451]}}] to:

akka://PubSubSystem@10.16.1.54:3004/user/treeBroker

9 class: TreeBroker | message: adding neighbor

akka://PubSubSystem@10.16.1.54:3004/user/treeBroker. Can receive 1

connections

10 class: TreeBroker | message: 08:44:17: received ParentRequest

[subscribedTopics=[topic2], breakDegree=false] from

Actor[akka://PubSubSystem@10.16.1.56:3005/user/treeBroker#833134505]

my residual degree is 0

11 class: TreeBroker | message: declined parent request, cannot receive

further connections

12 class: TreeBroker | message: sending ParentResponse [accepted=false] to:

akka://PubSubSystem@10.16.1.56:3005/user/treeBroker

13 class: TreeBroker | message: expected 1 connections

14 class: TreeBroker | message: still waiting for 0 connections

15 class: TreeBroker | message: canceling timer

16 class: TreeBroker | message: ongoingReconfiguration: 1

Let’s analyze the log file from Listing VIII.1 in Annex VIII, which corresponds to an
excerpt of broker 5’s log file. In this scenario, broker 5 detected its parent, broker 1, failed
(line 1) implying it must attempt to connect to a broker in its tree view, which contains
brokers 0, 4, 2 and 3. It first attempts to connect to broker 0 (line 5), which is its first
ancestor. Meanwhile it receives Metadata messages from a client, which it correctly puts
on hold. When the ParentResponse arrives (line 19), it states broker 0 declined its request.
Therefore, it must attempt to connect to another broker in its tree view. Broker 0 rejected
the request because, as can be observe in Listing VIII.2, it had already accepted broker
4’s request (line 5), which lead its residualDegree to become 0, as it stated when receiving
broker 5’s request, "my residual degree is 0" (line 10). As highlighted in Section 4.2.3,
when a ParentRequest is rejected, the address of the broker who rejected it, is added to the
declinedBy set in order to prevent brokers from attempting successive connections to the
same broker. Since broker 0’s address is now contained int it then, it will attempt to connect
to its sibling, which is this case is broker 4 (line 21). Since broker 4 is not subscribed to any
of broker 5’s subscribed topics, the request must be rejected, which we can observe it was
in line 28. Once again its address is added to the declinedBy set. Now, broker 0 will attempt
to connect to a broker in the ancestors set, whose address is not contained in declinedBy. It
selected broker 2 and sent a ParentRequest (line 31). Once again, it received messages from
a client which it correctly put on hold. When the ParentResponse arrives (line 41), it stated
that broker 2 accepted its request, adding broker 2 to the neighbors set, and must expect

106

to receive information about the last received messages in the new parent’s buffer.
When that information is received (line 45), the new parent is added to topic2’s

subscribers set (line 47-48). In the parent’s buffer, the last received messages where (1,451)

and (2,455) (line 51), corresponding to (replicaID,messageID) in the log file. Afterwards
broker 5 iterated over its buffer to map its last received messages, for each tuple (replicaID,

messageID). In this case, (1,452) and (2,448) were the last received messages (line 53).
By comparing its last received messages’ identifiers with the parent’s, it detects parent
only missed message with identifier (1,452) since parent’s last received message with
replicaID = 1 was (1,451), retransmitting it to the parent. Afterwards, it states it missed
message with identifier (2,455) (line 56), putting it in the missedMessages map implying
that reconfiguration is only completed when the message with that identifier is received.
Then, it sends a LostMessageRequest to its parent containing a mapping of the last received
identifier per replicaID and the identifiers of the last processed total order messages
contained in its buffer (line 57). In this case, the map contains an entry for replicaID=2 and
the identifier (2,448), which is the last received. When the parent receives this message, it
retransmits all messages with replicaID=2 and messageID greater than 248 contained in the
parent’s buffer. Therefore, broker 5 must receive messages (2,449), (2,450), (2,451), (2,452),
(2,453), (2,454) and (2,455), in that order. As we can observe, from line 64 to 82, these
messages were received and sent in the correct order. As identifier (2,455) was received in
line 82 then, broker 5 is able to determine the reconfiguration is completed and is allowed
to verify if any total order messages are currently being processed (lines 87-89).

In lines 89 to 92, the log states broker5 is waiting forprocessed confirmation formessage
identifier (1,449), (1,450), (1,452) and (2,448), which, in other words, means its parent is
now responsible for ensuring the corresponding LinearProcessed notifications are sent.
These notifications will be received because, when broker 5 sent the LostMessageRequest, it
indicated to its parent the identifiers of the last processed total order messages, allowing
the parent to send the ones it is waiting for. In lines 102, 105, 111 and 124, the notifications
where received and the respective messages are delivered to broker 5’s children. At this
point, we are able to conclude no messages were lost due to broker 1’s failure and brokers
correctly performed all steps to ensure they were neither lost nor processed out of order,
even when multiple ParentRequest were rejected.

Tables IX.1 and IX.2 show an excerpt of the file generated by replicas 1 and 2, with the
delivery order for operations performed in account 162,550,483.

107

IX

Example message ordering for a
specif ic key.

108

Table IX.1: Excerpt of file generated by replica 1. This table shows the delivery order of
messages for account number 162,550,483

replicaID messageID Delivery Guarantee keyItem

1 42 CAUSAL 162,550,483
2 47 CAUSAL 162,550,483
2 64 TOTAL 162,550,483
2 84 EVENTUAL 162,550,483
1 98 EVENTUAL 162,550,483
2 95 CAUSAL 162,550,483
2 102 TOTAL 162,550,483
1 131 EVENTUAL 162,550,483
2 131 EVENTUAL 162,550,483
2 133 CAUSAL 162,550,483
1 189 TOTAL 162,550,483
2 265 CAUSAL 162,550,483
2 295 TOTAL 162,550,483
2 399 EVENTUAL 162,550,483
2 449 CAUSAL 162,550,483
1 464 EVENTUAL 162,550,483
2 465 TOTAL 162,550,483
1 501 CAUSAL 162,550,483
2 519 TOTAL 162,550,483
2 545 CAUSAL 162,550,483
1 675 TOTAL 162,550,483
1 840 EVENTUAL 162,550,483
2 907 EVENTUAL 162,550,483
1 909 TOTAL 162,550,483
1 938 TOTAL 162,550,483

109

ANNEX IX. EXAMPLE MESSAGE ORDERING FOR A SPECIFIC KEY.

Table IX.2: Excerpt of file generated by replica 2. This table shows the delivery order of
messages for account number 162,550,483

replicaID messageID Delivery Guarantee keyItem

1 42 CAUSAL 162,550,483
2 47 CAUSAL 162,550,483
2 64 TOTAL 162,550,483
2 84 EVENTUAL 162,550,483
2 95 CAUSAL 162,550,483
1 98 EVENTUAL 162,550,483
2 102 TOTAL 162,550,483
2 131 EVENTUAL 162,550,483
1 131 EVENTUAL 162,550,483
2 133 CAUSAL 162,550,483
1 189 TOTAL 162,550,483
2 265 CAUSAL 162,550,483
2 295 TOTAL 162,550,483
2 399 EVENTUAL 162,550,483
2 449 CAUSAL 162,550,483
1 464 EVENTUAL 162,550,483
2 465 TOTAL 162,550,483
1 501 CAUSAL 162,550,483
2 519 TOTAL 162,550,483
2 545 CAUSAL 162,550,483
1 675 TOTAL 162,550,483
1 840 EVENTUAL 162,550,483
2 907 EVENTUAL 162,550,483
1 909 TOTAL 162,550,483
1 938 TOTAL 162,550,483

110

2024 Fault-Tolerant Publish-Subscribe System With Multiple Delivery Guarantees Paulo Matos

	Front Matter
	Cover
	Front Page
	Copyright
	Acknowledgements
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Ginger
	1.2.1 Practical Example - Bank Service

	1.3 Problem
	1.4 Proposal
	1.5 Contributions
	1.6 Document Structure

	2 Background and Related Work
	2.1 Replication
	2.1.1 Total and Partial Replication
	2.1.2 Active and Passive Replication

	2.2 Consistency Models
	2.2.1 Data-centric consistency models
	2.2.2 Client-centric Consistency Models

	2.3 Publish/Subscribe Systems
	2.3.1 Notification Service
	2.3.2 Subscription schemes

	2.4 Reliable Publish/Subscribe Systems
	2.4.1 Existing Work
	2.4.2 Discussion

	3 Ginger's Publish-Subscribe
	3.1 Broker configuration and building the overlay
	3.2 Consistency levels supported
	3.3 Data structures maintained by each broker
	3.4 Message types
	3.5 Processing messages

	4 Solution Overview
	4.1 Identifying solution requirements
	4.2 Overlay maintenance protocol
	4.2.1 Consequences of a failure
	4.2.2 Expanding the neighborhood
	4.2.3 Handling neighbor failure
	4.2.4 Dealing with simultaneous failures

	4.3 Restoring communication channels and maintaining message order
	4.3.1 Holding incoming messages during reconfiguration
	4.3.2 Detecting missed messages

	4.4 Ensuring causal and total order delivery
	4.5 Summary

	5 Experimental Evaluation
	5.1 Goals
	5.1.1 Correctness
	5.1.2 Performance

	5.2 Methodology
	5.3 Correctness
	5.3.1 Updating tree view
	5.3.2 Incrementing and decrementing residualDegree
	5.3.3 Sending and1 handling ParentRequest
	5.3.4 Ensuring total order message's processing is completed
	5.3.5 Executing root election algorithm
	5.3.6 Preventing messages from being processed out of order during an ongoing reconfiguration
	5.3.7 Executing multiple rounds of ParentRequest, correctly detecting missed messages and correctly rejecting requests

	5.4 Performance
	5.4.1 Reconfiguration cost
	5.4.2 Impact of failures in message latency, within multiple brokers' tree views
	5.4.3 Impact of key items in message latency when failures occurs

	6 Conclusions
	6.1 Future Work

	Bibliography
	I Example test configuration file
	II Sending and handling NeighborStatus - Adding neighbor
	III Storing ancestors in message's path.
	IV Incrementing and decrementing residualDegree when adding and removing neighbors.
	V Ensuring total order message's processing is completed.
	VI Executing root election algorithm
	VII Holding incoming messages during an ongoing reconfiguration.
	VIII Handling rejected ParentRequest and detecting missed messages.
	IX Example message ordering for a specific key.
	Back Matter
	Back Cover
	Spine

