

FRANCISCO PINTO VAN WYNSBERGHE

BSc in Business Engineering

SMALL-SCALE ANAEROBIC DIGESTION PLANTS IN DAIRY FARMS

A MARKET RESEARCH IN PORTUGAL AND EASTERN USA

MASTER IN RENEWABLE ENERGY ENGINEERING NOVA University Lisbon February, 2024

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

SMALL-SCALE ANAEROBIC DIGESTION PLANTS IN DAIRY FARMS

A MARKET RESEARCH IN PORTUGAL AND EASTERN USA

FRANCISCO PINTO VAN WYNSBERGHE

BSc in Business Engineering

Advisers: João Murta Pina

Auxiliar Professor, NOVA University Lisbon

Elizabeth da Costa Neves Fernandes de Almeida Duarte

Retired Professor, University of Lisbon

Examination Committee

Chair: Pedro Miguel Ribeiro Pereira

Auxiliar Professor, FCT-NOVA

Rapporteur: Patrícia de Carvalho Baptista

Auxiliar Professor, IST-UL

Members: João Murta Pina

Auxiliar Professor, FCT-NOVA

Elizabeth da Costa Neves Fernandes de Almeida Duarte

Retired Professor, ISA-UL

Small-Scale Anaerobic Digestion plants in dairy farms A Market Research in Portugal and Eastern USA

Copyright © Francisco Pinto Van Wynsberghe, NOVA School of Science and Technology, NOVA University Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon have the right, perpetual and without geographical boundaries, to file and publish this dissertation through printed copies reproduced on paper or on digital form, or by any other means known or that may be invented, and to disseminate through scientific repositories and admit its copying and distribution for non-commercial, educational or research purposes, as long as credit is given to the author and editor.

This document was created with the (pdf/Xe/Lua)IATEX processor and the NOVAthesis template (v6.10.18) (Lourenço, 2021).

ACKNOWLEDGEMENTS

To both my advisers, Professor Elizabeth Duarte and Professor João Murta Pina, for their unconditional support, time, and for all the knowledge shared. You believed in the importance of this thesis both for the agricultural world and for me. Without your support, this wouldn't have been possible.

To the Faculty of Science and Technology of Nova University Lisbon and all its Professors in the Master of Renewable Energy Engineering. The knowledge and field experience acquired during the years has truly allowed me to step up intellectually, and prepared me in the best way possible to confidently tackle future challenges.

To Biolectric, and in particular, to Michelle Spiessens and Klaas Vanhee, who believed in this thesis from the first day. Your support and ambition were crucial in this thesis, I hope our career path can cross again in the future.

To Agro ABA, and in particular, to Mr. Telmo Rodrigo, who accepted to share so much knowledge, time and experience, improving the quality of this thesis. Mr. Telmo Rodrigo not only welcomed us at his farm, he made sure we visited other dairy farms that were not described in this thesis. Mr. Telmo should be recognized as an example in Portugal, as he motivates young students to reach their full potential. Thank you Mr. Telmo, I hope our career path can cross again in the future.

To all the friends that were part of my academic journey, and particularly to my DS, those with whom we spent months of long days at the library in Brussels, my Erasmus family at Red Palace in Coimbra, the friends I made during the Master at Nova. All of you participated in thesis in one way or another.

To Júlia, for believing in all my ideas, supporting me to develop all of them, providing me with everything I needed for everything I did. Thank you Júlia for being part of the success of everyone around you.

To my family, and particularly to my parents, for allowing me to explore, experience, meet, fail, travel, the way I intended to.

To all of you, this thesis is ours, thank you.

ABSTRACT

Anaerobic Digestion (AD) plants have gained a considerable amount of interest in the past decades and are being recognized as a solution to diversify energy sources while enhancing manure management in dairy farms. The biogas produced by AD plants can be used to produce heat and electricity via Combined Heat and Power (CHP) plants, injected in national gas grids to replace natural gas after up-grading or in fuel cells to produce electricity. The economical viability of such installations still lacks overall attention, and companies like Biolectric are therefore willing to further investigate the markets.

This thesis aims to provide a well structured opinion on two markets, Portugal and the East Coast of United States of America (USA). Starting with a literature review to define all the concepts required for the research, the thesis then describes energy markets, required paperwork and applicable investment support. Additionally, two distinct case studies help estimating financial results obtained by the installation of an AD plant in both markets.

In Portugal, a case study was persued at a 879 cows dairy farm called Agro ABA located in Campelos, Torres Vedras. The case study was complemented by the measurement of the power curve at the farm, to understand the energy needs, and help choosing the most suited AD plant for the farm. In the USA, a case study was build from scratch in the state of Vermont. Overall, the Small-Scale Anaerobic Digestion (SSAD) plant by Biolectric would provide farmers with a great 5 to 13 years payback period solution, that is not much affected by neither the discount rate or the inflation rate chosen in the project. Even though both markets widely differ in sizes, Portugal benefits from higher governmental support, with a softer legislation, while the USA is trying to make renewable energy projects interesting at scale but lacks permitting simplification and suffers from much higher maintenance costs. The recommendation is therefore to consider growing in Portugal, and, for the USA, further investigate the potential of partnering up with local companies to sell Biolectric plants.

Keywords: Anaerobic Digestion, Biogas, Agro-Livestock Transition, Renewable Energy, Dairy Farms

Resumo

Instalações de Digestão Anaeróbia (DA) têm ganhado um interesse considerável nas últimas décadas, vindo a ser reconhecidas como uma solução na diversificação das fontes energéticas ao passo que valoriza a gestão de estrume em explorações leiteiras. O biogás obtido a partir da DA pode ser utilizado na produção de calor e eletricidade através de centrais de cogeração, nas células de combustível para a produção de eletricidade ou injetado na rede de gás nacional, substituindo o gás natural. A viabilidade económica destas instalações ainda carece de atenção global, e empresas como a Biolectric estão dispostas a investigar melhor estes mercados.

Essa tese tem o objetivo de fornecer um estudo estruturado do potêncial dessas instalações em dois mercados: Portugal e a Costa Leste dos USA. Iniciando com uma revisão da literatura para definir os conceitos utilizados, o estudo descreve os mercados de energia, a documentação necessária e apoio a investimentos aplicáveis para cada uma das regiões estudadas. Além disso, dois casos de estudo foram realizados de forma a serem obtidos valores reais de resultados financeiros para potenciais instalações.

Em Portugal, um caso de estudo foi conduzido na Agro ABA, uma vacaria leiteira com 879 vacas, localizada nos Campelos, Torres Vedras. Mediu-se, ainda, a curva de potência da vacaria, de forma a caracterizar as necessidades energéticas e ajudar na escolha da instalação mais adequada. Nos USA, um caso de estudo fictício foi desenvolvido para o estado de Vermont. Em geral, a instalação SSAD da Biolectric proporcionaria aos agricultores um período de retorno de investimento de 5 a 13 anos, o qual não é fortemente afetado pela taxa de desconto ou pela taxa de inflação escolhida. Apesar da diferença de dimensão dos mercados, Portugal beneficia de um maior apoio governamental, com uma legislação mais flexível, enquanto os USA estão a tornar os projetos de energia renovável interessantes em escala, mas carecem de simplificação no licenciamento e sofrem com custos de manutenção mais elevados. A recomendação, portanto, é considerar a expansão para Portugal e, nos USA, deve ser investigado cuidadosamente a possibilidade de crescimento de parcerias entre empresas locais e a Biolectric.

Palavras-chave: Biogás, Digestão Anaeróbia, Transição agro-pecuária, Vacarias leiteiras

Contents

L1	St OI	Figures		Х
Li	st of '	Tables		xii
A	crony	ms		xiv
Sy	mbo	ls		xvii
1	Intr	oductio	on	1
	1.1	Backg	ground	1
	1.2	Motiv	ration	2
	1.3	Appro	oach	2
	1.4	Goals		3
	1.5	Disser	rtation organization	3
2	Lite	rature l	Review	4
	2.1	AD Pl	lants: The General Concern	4
		2.1.1	Anaerobic Digestion	4
		2.1.2	AD plants Technologies	5
		2.1.3	AD Monitoring	7
		2.1.4	Factors affecting AD	8
		2.1.5	AD Plants in Portugal	9
		2.1.6	AD Plants in the USA	10
	2.2	Diges	tate Management	10
		2.2.1	Regulations	10
		2.2.2	Solid-Liquid Separation	11
		2.2.3	Cow Bedding	12
		2.2.4	Pellets	12
		2.2.5	Organic Fertilizers	12
	2.3	The S	SAD Plant by Biolectric	13

		2.3.1 Mo	odels	13
		2.3.2 Te	chnology Description	13
		2.3.3 Op	peration Description	15
	2.4	Financial	Tools	18
		2.4.1 Ne	et Present Value	18
		2.4.2 In	ternal Rate of Return	18
		2.4.3 Pa	yback Period	18
			velized Cost of Energy	18
	2.5	Project Fin	nancial Rates	19
		2.5.1 Di	scount Rate	19
		2.5.2 In	flation Rate	20
3	Bus	iness Case	: Portugal	21
	3.1	Portugues	se Energy Market	21
		3.1.1 Ele	ectrical Energy Mix	21
		3.1.2 Re	newable Energy Potential	22
	3.2	Biolectric	Market Description & Sizing	23
		3.2.1 Nu	umber of Dairy Cows	23
		3.2.2 Nu	umber of Dairy Farms	23
		3.2.3 M	ilk Prices and Milk Yields	24
	3.3	Predicted	Evolution of the Dairy Sector	24
	3.4	Required	Paperwork	25
		3.4.1 Lie	censing of the Livestock Effluent Management Plan	25
		3.4.2 M	unicipal Licensing	25
		3.4.3 Pr	oduction Unit Registration & Environmental Impact Assessment	
		(E)	[A]	25
		3.4.4 Lie	censing of Private Works	26
	3.5	Investmer	nt Support	26
		3.5.1 En	vironmental Fund	26
		3.5.2 Vo	luntary Carbon Market in Portugal	26
	3.6	Competito	ors & Strategic Partners	27
		3.6.1 So	tecnisol	27
		3.6.2 Ge	enia Global Energy	27
		3.6.3 Eq	uiporave	27
	3.7	Practical (Case Study: Sociedade Agro-Pecuária Agro ABA	27
		3.7.1 Co	ows	28
		3.7.2 Ele	ectricity Bills	29
		3.7.3 Ele	ectricity Measurements	29
		3.7.4 Wa	ater	30
		3.7.5 Ne	ecessary Barn Adaptations	31
	3.8	Financial	Simulations: Case Study at Agro ABA	31

		3.8.1	Project Costs	
		3.8.2	Investment Support	
		3.8.3	SSAD Raw Model	
		3.8.4	SSAD Co-Funded Model	
		3.8.5	SSAD Size Choice	
	3.9	Sensiti	vity Analysis of Financial Simulations	
		3.9.1	Inflation Rate Previsions	
		3.9.2	Discount Rate Previsions	
		3.9.3	Sensitivity Summary	
	3.10	Marke	t Overview: SWOT Matrix	
4	Busi	ness C	ase: East Coast USA 38	
	4.1	USA E	nergy Market	
		4.1.1	Energy Mix	
		4.1.2	Renewable Energy Potential	
		4.1.3	Electricity Prices	
	4.2	Biolect	tric Market Description & Sizing	
		4.2.1	Number of Dairy Cows and Farms	
		4.2.2	Milk Prices and Milk Yields	
	4.3	Predic	ted Evolution of the Dairy Sector	
	4.4	Requir	red Paperwork	
		4.4.1	Air Quality	
		4.4.2	Water Quality	
		4.4.3	Water Supply	
		4.4.4	Solid Waste	
		4.4.5	Land Use	
		4.4.6	Co-Digestion Feedstock	
		4.4.7	Additional Permitting	
	4.5	Invest	ment Support	
		4.5.1	Electricity Production Tax Credit	
		4.5.2	Investment Tax Credit	
		4.5.3	Renewable Energy Certificates	
		4.5.4	Carbon Offset Credits	
	4.6	Comp	etitors & Strategic Partners	
		4.6.1	Ben & Jerry's	
		4.6.2	Martin Energy Group	
		4.6.3	California Bioenergy	
		4.6.4	Vanguard Renewables	
		4.6.5	CH-Four Biogas	
	4.7	Practic	cal Case Study: A dairy farm in Vermont	
		4.7.1	Permitting Summary	

		4.7.2	Project Costs	50					
		4.7.3	Investment Support	51					
		4.7.4	Financial Simulation: A typical Vermont dairy farm	52					
	4.8	Sensit	ivity Analysis of Financial Simulations	52					
		4.8.1	Inflation Rate Previsions	52					
		4.8.2	Discount Rate Previsions	53					
		4.8.3	Sensitivity Summary	54					
	4.9	Marke	et Overview: SWOT Matrix	55					
5	Gen	eral Co	onclusion and Future Works	56					
	5.1	Gener	al Conclusion	56					
	5.2	Future	e Works	58					
Bibliography									
Aj	pen	dices							
Aı	nnexe	es							
I	Data	a Sheet		70					
II	Fina	ncial S	Simulations: Agro ABA	71					
Ш	Fina	ncial S	Simulations: Vermont	84					

List of Figures

2.1	Single Stage AD Plant. Adapted from (Lapa, 2023).	6
2.2	Multi-stage AD Plant. Retrieved from (Van et al., 2020).	6
2.3	Biolectric SSAD Plant	14
2.4	Manure Robot Scraper	15
2.5	Slatted Floor	15
2.6	Manure Cellar Pump	16
2.7	Manure and Digestate Cellar (taken from (Manuel d'utilisation et d'entretien	
	Installation biogaz Biolectric, 2020))	17
2.8	Digestate Storage	17
3.1	Portuguese 2022 Electrical Energy Mix. Adapted from (REN, 2022)	21
3.2	Number of Dairy Cows (EU) (Eurostat, 2022a)	23
3.3	Manual Milking	28
3.4	A) Stables at Agro ABA; B) Cows mixed nutrition	28
3.5	A) Three Phase Power Quality Analyzer; B) Current and Voltage Connectors 2	29
3.6	Daily Power Curve	30
3.7	Weekly Power Curve	30
4.1	USA Business Case Map. Adapted from ("MapChart - USA", 2023)	38
4.2	USA 2022 Energy Mix. Adapted from (U.S. EIA, 2022b)	39
4.3	Number of Dairy Cows in the East Coast USA International Comparison 4	1 1
5.1	Biolectric Market Sizing Matrix	58
I.1	Biolectric Data Sheet	70
II.1	11 kW Raw	72
II.2	11 kW Co-Funded	73
II.3	22 kW Raw	74
II.4	22 kW Co-Funded	75
II.5	33 kW Raw	76

II.6	33 kW	Co-Funded	1.	 													77
II.7	44 kW	Raw		 		•											78
II.8	44 kW	Co-Funded	1.	 		•											79
II.9	60 kW	Raw		 													80
II.10	60 kW	Co-Funded	1.	 													81
II.11	74 kW	Raw		 													82
II.12	74 kW	Co-Funded	1.	 		•											83
III.1	11 kW	Vermont		 													85
III.2	22 kW	Vermont		 													86
III.3	33 kW	Vermont		 		•											87
III.4	44 kW	Vermont		 													88
III.5	60 kW	Vermont		 													89
III 6	74 kW	Vermont															90

List of Tables

2.1	AD plants classification by output power;
	O'Connor et al., 2021
2.2	Biolectric SSAD plants (From Manuel d'utilisation et d'entretien Installation biogaz
	<i>Biolectric</i> , 2020)
3.1	Portuguese Renewable Electricity Guaranteed Purchasing Price (ERSE, 2023).
3.2	Size Distribution of Dairy Farms in Portugal (INE, 2019)
3.3	SSAD Installation Costs in Portugal.
3.4	SSAD Raw Financial Simulation at Agro ABA.
3.5	SSAD Co-Funded Financial Simulation at Agro ABA.
3.6	SSAD Sizing Choice Matrix
3.7	Raw Financial Simulation at 1% Inflation Rate.
3.8	Co-Funded Financial Simulation at 1% Inflation Rate.
3.9	Raw Financial Simulation at 3% Inflation Rate.
3.10	Co-Funded Financial Simulation at 3% Inflation Rate.
3.11	Raw Financial Simulation at 5,1% Discount Rate.
3.12	Co-Funded Financial Simulation at 5,1% Discount Rate
3.13	Raw Financial Simulation at 7,1% Discount Rate
3.14	Co-Funded Financial Simulation at 7,1% Discount Rate
3.15	Raw Financial Simulation at 1% Inflation Rate and 7,1% Discount Rate
4.1	Number of Dairy Cows per State (USDA, 2022)
4.2	Average Electricity Buying Prices (U.S. EIA, 2022a)
4.3	Size Distribution of Dairy Farms on the East Coast of USA (USDA, 2017)
4.4	Vermont Specific Permitting (Vermont Tech, 2016)
4.5	SSAD Installation Costs in Vermont.
4.6	SSAD Financial Simulation in Vermont.
4.7	Financial Simulation at 1% Inflation Rate in Vermont.
4.8	Financial Simulation at 3% Inflation Rate in Vermont.
4.9	Financial Simulation at 5,19% Discount Rate in Vermont.

4.10	Financial Simulation at 7,19% Discount Rate in Vermont	54
4.11	Financial Simulation at 1% Inflation Rate and 7.19% Discount Rate in Vermont.	54

ACRONYMS

```
AD
            Anaerobic Digestion (pp. iv, vi, x, 2–14, 16, 17, 21, 25–27, 31–33, 40, 42–44, 46–52, 54,
APA
           Agência Portuguesa do Ambiente (pp. 25, 26)
BMP
           Biochemical Methane Potential (p. 9)
CARB
           California Air Resources Board (p. 47)
CHP
           Combined Heat and Power (pp. iv, 2, 13, 48, 52)
CNMP
           Comprehensive Nutrient Management Plan (p. 43)
           Carbon Offsetting and Reduction Scheme for International Aviation (pp. 46, 48)
CORSIA
CPI
           Consumer Price Index (pp. 43, 50)
DGEG
           Direção-Geral de Energia e Geologia (p. 25)
DRAP
           Direção Regional de Agricultura e Pescas (p. 25)
EIA
           Environmental Impact Assessment (pp. 25, 26)
EPA
            Environmental Protection Agency (p. 10)
ETS
           Emission Trading System (pp. 26, 48)
EU
           European Union (pp. 2, 22, 23, 26)
FIT
           Feed-In-Tariff (pp. 31–33, 40, 51, 52, 57, 58)
GHG
           Greenhouse Gas (pp. 2, 4, 10, 14, 22, 26, 46, 47, 56)
GPR
           Biogas Production Rate (p. 8)
HHV
           Higher Heating Value (p. 12)
HRT
           Hydraulic Retention Time (pp. 6–8)
IRA
           Inflation Reduction Act (pp. 40, 52, 57)
```

```
IRR
           Internal Rate of Return (pp. 18, 32–36, 52–54)
ITC
           Investment Tax Credit (pp. 40, 44, 45, 51, 52, 57)
LCFS
           Low Carbon Fuel Standard (p. 47)
LCOE
           Levelized Cost of Energy (pp. 18, 19, 32–36, 52–54, 57, 58)
MCP
           Mera Comunicação Prévia (p. 25)
           Million Metric Ton (p. 46)
MMt
Mt
           Metric Ton (p. 46)
           National Ambient Air Quality Standards (p. 43)
NAAOS
NG
           Natural Gas (p. 39)
NLI
           Nitrate Leaching Index (p. 11)
NLV
           Nominal Liquid Volume (p. 13)
           National Pollutant Discharge Elimination System (p. 43)
NPDES
NPV
           Net Present Value (pp. 18, 19, 32–36, 52–54, 57)
NRCS
           Natural Resources Conservation Service (p. 10)
NSR
           New Source Review (pp. 42, 43, 50)
           Organization for Economic Cooperation and Development (p. 20)
OECD
OLR
           Organic Load Rate (pp. 7, 8)
P-Index
           Phosphorus Runoff Index (p. 11)
           Plano Diretor Municipal (p. 25)
PDM
POP
           Persistent Organic Pollutants (p. 1)
PTC
           Electricity Production Tax Credit (pp. 44, 51, 52, 57)
RCRA
           Resource Conservation and Recovery Act (p. 44)
           Renewable Energy Communities (pp. 22, 26, 33, 56, 58, 59)
REC
RECs
           Renewable Energy Certificates (pp. 45, 46, 51, 52, 57)
RED
           Renewable Energy Directive (p. 22)
RGGI
           Regional Greenhouse Gas Initiative (pp. 46, 48)
RPS
           Renewable Portfolio Standards (pp. 45, 46)
SGP
           Specific Biogas Production (p. 8)
           Specific Organic Load Rate (p. 7)
SOLR
           Substrate Removal Efficiency (pp. 7, 8)
SRE
SRT
           Sludge Retention Time (p. 7)
SSAD
           Small-Scale Anaerobic Digestion (pp. iv-vi, viii, 2-4, 13-15, 17, 21, 23, 24, 26, 27,
```

31–36, 38, 42, 43, 48–54, 56)

SWOT Strength Weaknesses Opportunities Threats (pp. 2, 37, 55)

TS Total Solids (pp. 5, 7)

UAA Utilized Agricultural Area (p. 6)

UPAC Unidade de Produção para Autoconsumo (pp. 25, 26)

USA United States of America (pp. iv-vi, viii, 1-4, 10, 19, 20, 31, 38, 40-42, 44-46, 48-50,

52–59)

VAT Value Added Tax (p. 24)

VDACS Virginia Department of Agriculture and Consumer Services (pp. 43, 50, 59)

VFA Volatile Fatty Acids (p. 5) VS Volatile Solids (pp. 7, 8)

WACC Weighted Average Cost of Capital (pp. 19, 53)

Symbols

C	Carbon (pp. 6, 9)
$C_6H_{10}O_5$	Cellulose (p. 5)
$C_6H_{12}O_6$	Glucose (p. 5)
CF_n	Cash-Flow in Year <i>n</i> (p. 18)
CH ₃ COO ⁻	Acetate (p. 5)
CH_4	Methane (pp. 5, 14, 40, 46, 47)
CO	Carbon Monoxyde (p. 43)
CO_2	Carbon Dioxide (pp. 1, 5, 14)
CO_2e	Carbon Dioxide Equivalents (pp. 26, 46, 48, 51)
D_t	Operation
Maintenance Costs (pp. 18, 19)	
E_n	Energy Produced in Year n (pp. 18, 19)
F	Total Influent Flow to Reactor, in m ³ /day (pp. 7, 8)
F_{biogas}	Biogas Flow, in m^3/day (p. 8)
H_2	Dihydrogen (p. 5)
H_2O	Water (pp. 5, 14)
H_2S	Hydrogen Sulphide (pp. 14, 17, 42)
i	Inflation Rate (p. 19)
I_0	Initial Investment (pp. 18, 19)
K	Potassium (pp. 10–12)
N	Nitrogen (pp. 6, 9–12)
n	Year (pp. xvii, 18, 19)

```
NH_3
                                  Ammonia (pp. 9, 11)
NO_x
                                  Nitrogen Oxides (pp. 42, 43)
N_P
                                  Total Project Duration, in years (pp. 18, 19)
                                  Ozone (p. 43)
O_3
                                  Dioxygen (p. 14)
O_2
Р
                                  Phosphorus (pp. 10–12)
                                  Discount Rate (pp. 18, 19)
                                  Nominal Discount Rate (p. 19)
r_N
                                  Real Discount Rate (p. 19)
r_R
                                 Substrate Concentration in the Influent, in kg/m³ (pp. 7,
S_{in}
                                  8)
                                 Substrate Concentration in the Efluent, in kg/m³ (p. 8)
S_{out}
SO_x
                                  Sulfur Oxides (pp. 42, 43)
V
                                  Working Volume, in m<sup>3</sup> (pp. 7, 8)
                                  Biomass Concentration Inside the Reactor, in kg/m³ (p. 7)
X
                                  Biomass Concentration in the Effluent, in kg/m³ (p. 7)
X_{out}
                                  Biogas Yield (p. 8)
Y_{biogas}
```

Introduction

The following chapter defines the background (Section 1.1) and motivation (Section 1.2) of the thesis through some historical milestones and current challenges. The structure of the thesis is then described through a description of the approach (Section 1.3), goals (Section 1.4), and dissertation organization (Section 1.5).

1.1 Background

Bioenergy provided by plants and their refined products has been widely used by the human kind since pre-recorded history. Biofuels used to produce bioenergy can be found in solid, liquid and gaseous forms. Wood, as solid biofuel, was firstly used to warm shelters, cook meat and produce light, thus, greatly contributing to human kind development (Guo et al., 2015). In the 1760's, with the Industrial Revolution starting in the United Kingdom, the use of coal allowed mass population development and became the most widely used source of energy (Fernihough & O'Rourke, 2014). In the 19th century, internal combustion engines using petrol derivatives were developed, providing more efficiency than steam engines, and were then massively used in the automobile industry (Wang et al., 2020). With the widely spread use of fossil fuels in the 20th century, the first environmental impacts started to be noticed, and rising levels of CO_2 were firstly observed in the 1960's (Carey, 2012). In 1968, scientists, economists and industry leaders held a first reunion named "The Club of Rome", where they exposed the environmental problems caused by consumerism and decreasing non renewable resources in a report called "The limits to growth" (Colombo, 2001). Following the three petrol crisis in 1973, 1979 and 1991, in a period where the concept of "Corporate Social Responsibility" was being developed (Madrakhimova, 2013), cleaner energy supplies were needed to fight climate change and find a sustainable alternative to fossil fuels (Pereira, 2008). With a focus on Persistent Organic Pollutants (POP), and being particularly important in the role of the USA in environmental protection, the Stockholm Convention signed in 2001 is a milestone in ensuring cleaner business activities. In 2015, the Paris Agreement set new European targets to prevent drastic climate changes by defining a well below 2°C

temperature rise until 2050 compared to pre-industrialized temperature levels (Savaresi, 2016). More recently, the Russian invasion over Ukraine pushed the European Union (EU) to work on their energetic independence through RePowerEu. The plan aims to build a European framework to enhance energy savings, produce clean energy and diversify production methods (European Commission, 2022).

1.2 Motivation

The increasing need to tackle Greenhouse Gas (GHG) emissions both in the EU and in the USA via respectively the Paris Agreement (Savaresi, 2016) and the IRA (von Loesecke & Chermak, 2023), raises global interest over the most GHG emitting sectors. AD plants constitute a solution to reduce GHG emissions both in the energy production sector, responsible for 24,9% of GHG EU emissions and in the agriculture, responsible for 9,9% of the EU GHG emissions (O'Connor et al., 2021). With the continuous specialisation of farms, and increasing volumes of manure to deal with, AD plants provide farmers with a manure management solution that mitigates previous costs linked to manure disposal and produces energy (Petersen et al., 2013). The biogas produced by AD plants can be used to produce heat and electricity via CHP plants, injected in national gas grids to replace natural gas after up-grading or in fuel cells to produce electricity. All in all, AD plants provide their users with a wide variety of energy applications, powered by a high energy content biogas of circa 22,5 MJ.m⁻³ (Lapa, 2023). In the SSAD plant market, Biolectric positions itself as a young, dynamic and adaptative company seeking to become a major leader in dairy farms SSAD plants and awarded "Most Sustainable Company" by the 2022 Trends Impact Awards (Biolectric, 2022).

1.3 Approach

The thesis is composed of two distinct business cases conducted for a Belgian company called Biolectric: Portugal (Chapter 3) and Eastern USA (Chapter 4). The Portuguese market is the first analyzed market and is complemented by a practical case study in a dairy farm called Agro ABA, located in Campelos (Portugal). The USA market analysis will be complemented by a conceptual case study in the state of Vermont. In both case studies, the markets are described through the study of the energy mix, energy price and renewable energy potential. Furthermore, the researches include strategic information about the number of cows, the number of farms, the number of cows per farm and their geographical distribution in the analyzed country. The researches end with an economical and financial description of the markets, where competitors are identified, milk prices are described, a financial simulation of SSAD plants in each market is conducted and the information is gathered into Strength Weaknesses Opportunities Threats (SWOT) matrixes. The structure of both researches enables the comparison of both markets in size, and provide a perception of their attractiveness for Biolectric.

1.4 Goals

With the production of their first Belgian SSAD plant in 2011 and having already expanded to a wide range of countries both inside and outside European borders, Biolectric seeks to continue growing and expand its horizons. The analyzed markets have been identified as potentially interesting by Biolectric and therefore require further analysis. The aim of this thesis is to draw a description of both Portuguese and Eastern USA markets and understand whether Biolectric should or shouldn't consider to grow in those countries. Furthermore, beyond Biolectric's eagerness to obtain insights over these markets, this thesis aims to provide a well structured opinion on the potential of dairy farms AD plants in both countries.

1.5 Dissertation organization

The dissertation of this thesis is composed of five main chapters. The first chapter (Chapter 1) introduces the thesis by defining the background, the motivation, the approach used in the elaboration of the document, the goals of the thesis and the dissertation organization. The second chapter (Chapter 2) is dedicated to a literature review, to define and explore current AD technologies, digestate management solutions, and the financial rates used to perform the market research. The third chapter (Chapter 3), is dedicated to analyzing the Portuguese market, and understanding its potential for Biolectric. The fourth Chapter (chapter 4) is dedicated to analyzing the USA market and understanding its potential for Biolectric. The fifth and last chapter of the thesis, (Chapter 5), is dedicated to concluding on our business cases, summing up all the key points elaborated throughout the thesis and build an opinion on whether Biolectric should or shouldn't consider to grow in those countries.

LITERATURE REVIEW

The literature review aims to provide the reader with all the key knowledge for the further conducted market researches. This chapter defines the principles of AD, current technologies, factors affecting its performance and digestate management solutions. Additionally, thanks to a visit at Biolectric headquarters in Temse (Belgium), a presentation of the SSAD plant by Biolectric will help develop precise business cases in the market researches. To end with, a detailed description of all financial tools required for the market research will help decision makers decide whether the results meet their needs.

2.1 AD Plants: The General Concern

For over 2 000 years, Indian and Chinese populations have been using biogas produced by the AD of sewage, slurry, food wastes and biowastes to produce energy. The first recorded AD plant was build in Bombay (India) in 1859. In 1895, England started using biogas produced by sewage treatment plants to light up streets in Exeter. In the 1950's, China build 3,5 million AD plants to supply biogas for cooking and lighting purposes in rural areas. AD plants started to be used in USA farms in the 1970's thanks to governmental incentives (Guo et al., 2015). Nowadays, with the increasing needs to build an energy independence in Europe through RePowerEU and being considered as key to decrease GHG emissions in the IRA signed by President Joe Biden in the USA (von Loesecke & Chermak, 2023), AD plants have not only gained interest, they are considered a key solution producing waste based energy. AD plants found on the market widely vary in their output power and can therefore be classified as shown in Table 2.1, in terms of electricity output power.

2.1.1 Anaerobic Digestion

AD is the process of organic material degradation by microbial organisms in absence of oxygen. AD provides a solution to reduce environmental impacts of agricultural and industrial wastes, offsetting emissions caused by fossil fuel based activities (Chen et al., 2008). AD has been widely used in wastewater treatment and is gaining popularity

From O'Connor et al., 2021.

Designation Output Power Range Units

Table 2.1: AD plants classification by output power;

Designation	Output Power Range	Units
Micro-scale AD	<15	kW
Small-scale AD	[15-99]	kW
Medium-scale AD	[100-299]	kW
Large-scale AD	>300	kW

in animal manure and agricultural residues processing (Nizami et al., 2013). AD can be conducted at three temperature ranges depending on the feedstock: psychrophilic conditions (<20°C), mesophilic conditions (20°C–43°C), or thermophilic conditions (50°C–60°C). The AD process is a four step process composed of Hydrolisis, Acidogenesis, Acetogenesis and Methanogenesis (Nie et al., 2021).

• Hydrolisis

Hydrolisis is the first step of the anaerobic digestion process. Depending on the feedstock biodegradability, it can be the most time consuming step of the process. This step, as shown in Equation (2.1), consists in the production of glucose from cellulose (in the case of solid biomass), where water enables the hydrolysis and organic soluble matter is produced (Anukam et al., 2019).

$$(C_6H_{10}O_5)n + n(H_2O) \longrightarrow n(C_6H_{12}O_6) + n(H_2)$$
 (2.1)

Acidogenesis and Acetogenesis

The acidogenesis and acetogenesis steps produce, among other products, Volatile Fatty Acids (VFA), H_2 and CO_2 . Homoacetogenic bacterias will further use H_2 and CO_2 to produce CH_3COO^- (Feng et al., 2022) while acetogenic bacterias will degrade VFA to produce CH_3COO^- (Franke-Whittle et al., 2014).

• Methanogenesis

During methanogenesis, CH_4 and CO_2 are produced from CH_3COO^- and H_2 in an oxygen sensitive process by methanogens (Anukam et al., 2019). This last step of the anaerobic digestion can be greatly inhibited by the presence of antibiotics, resulting in a poorer methane production (Wu et al., 2022).

2.1.2 AD plants Technologies

AD plants design vary widely depending on the feedstock. Plants can perform wet AD, if the amount of Total Solids (TS) doesn't exceed 16%, semi-dry AD for values between 16% and 22% or dry AD for TS values between 22% and 40%. Dry AD is typically used to process municipal solid waste, whereas wet AD is widely used for manure. AD processes have different optimum conditions, some plants therefore separate the processes to maximize methane yields (Ward et al., 2008).

2.1.2.1 Single Stage Reactors

Single stage reactors, as seen in Figure 2.1, where all four steps of AD take place in the same reactor, can be used in a wide variety of AD applications and are easier to develop (Van et al., 2020). Nevertheless, these can suffer from a "short-circuit" effect where the Hydraulic Retention Time (HRT) time is not optimal and which results in lower methane yields (Ward et al., 2008). In a single stage reactor, conditions should be optimized for methanogens as they are the most sensitive microorganisms of the process. Reactor conditions should therefore present a substrate C/N ratio ranging from 15 to 30, a pH from 6.8 to 7.4, and depending on whether the AD is proceeded at mesophilic, thermophilic, or psychrophilic conditions, a HRT of respectively 30, 20 or 50 days. The use of single stage reactors would be more suited for uniform feedstocks, generally require a smaller capital and less Utilized Agricultural Area (UAA). (Van et al., 2020).

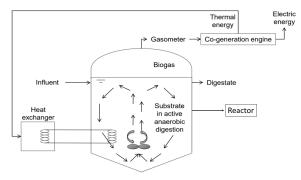


Figure 2.1: Single Stage AD Plant. Adapted from (Lapa, 2023).

2.1.2.2 Multi-stage Reactors

Multi-stage reactors are used to maximize methane yields by separating hydrolisis and acidogenesis from acetogenesis and methanogenesis, because of their different optimal environmental settings. (Ward et al., 2008). Between both reactors, as shown in Figure 2.2, a buffer is typically incoporated to control the pH, remove any material that wouldn't be hydrolyzed, and adjust the C/N ratio. These plants can be used in the AD of all types of feedstocks and have lower HRT ranging from 1 to 12 days. They generally require wider UAA, are more complex to build and more expensive (Van et al., 2020).

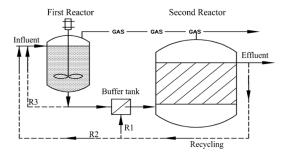


Figure 2.2: Multi-stage AD Plant. Retrieved from (Van et al., 2020).

2.1.3 AD Monitoring

The performance of AD plants can be monitored through some key indicators presented in the following section (Lapa, 2023).

• HRT: The HRT measures the medium time the substrate stays in the reactor. As shown in Equation (2.2), HRT is the ratio between the reactor volume V measured in m^3 , and the total influent flow F into the reactor measured in m^3 /day. A low HRT results in poor methane yields and can be the cause of an unhealthy microorganism decrease. On the opposite, a high HRT will require a bigger reactor volume and therefore affect the financial performance of the plant (Zhang et al., 2006).

$$HRT = \frac{V}{F} \tag{2.2}$$

• Sludge Retention Time (SRT): SRT is a measure of how much time partially digested solid matter stays inside the reactor. This measure is important as an excessive accumulation of sludge could perturb AD and affect methane yields. SRT, as shown in Equation (2.3), is a ratio between HRT in days, times the biomass concentration inside the reactor X in kg/m³ and X_{out} , the biomass concentration in the effluent measured in kg/m³. Note that the mass calculation in both X and X_{out} is in terms of TS. TS are what is left of a sampling after evaporation in a bain-marie and posterior drying at circa 104° C (Lapa, 2023).

$$SRT = \frac{V \times X}{F \times X_{out}} = \frac{HRT \times X}{X_{out}}$$
 (2.3)

• Organic Load Rate (OLR): OLR, described by Equation (2.4), is a measure of the substrate concentration entering in the reactor, S_{in} in kg/m³, divided by the days of HRT. OLR is an important indicator that gives insights about the reactors kinetics, its stability, and overall efficiency (Nkuna et al., 2022). In this case, S_{in} is defined in terms of Volatile Solids (VS).VS of a sample are the ones that evaporate in a furnace at around 550°C (Lapa, 2023).

$$OLR = \frac{S_{in} \times F}{V} = \frac{S_{in}}{HRT} \tag{2.4}$$

• Specific Organic Load Rate (SOLR): The SOLR is similar to OLR, but represents a specific value, which is calculated in terms of TS inside the reactor and is responsible for the stability of the AD (del Pilar Anzola-Rojas et al., 2015). The SOLR, as shown in Equation (2.5), uses a ratio between VS in the influent (S_{in}) and TS in the reactor (X).

$$SOLR = \frac{S_{in} \times F}{V \times X} = \frac{S_{in}}{HRT \times X}$$
 (2.5)

• Substrate Removal Efficiency (SRE): The SRE is a dimensionless indicator that evaluates how much of the organic matter is removed from the reactor. Both *S*_{in}

and S_{out} are in kg/m³ and defined in terms of VS (Lapa, 2023). This indicator can be calculated using the following equation:

$$SRE = \frac{S_{in} - S_{out}}{S_{in}} \tag{2.6}$$

• Specific Biogas Production (SGP): The SGP, as shown in Equation (2.7), is a ratio of the rate of biogas produced (F_{biogas}) in m³/day by the daily m³ of influent (F) at a specific concentration S_{in} . The SGP therefore gives a specific estimative of the biogas produced by each unit of influent used in the AD plant (Lapa, 2023).

$$SGP = \frac{F_{biogas}}{F \times S_{in}} \tag{2.7}$$

• Biogas Production Rate (GPR): The GPR, as shown in Equation (2.8), measures the biogas production rate (F_{biogas}) in m³/day per unit of reactor working volume V in m³. The ratio gives an approximation of how big should a AD plant be for a specific biogas daily production (Lapa, 2023).

$$GPR = \frac{F_{biogas}}{V} \tag{2.8}$$

• Y_{biogas} : The Y_{biogas} , as shown in Equation (2.9), is a yield measure of how much volume biogas is produced in m³ by each kg of substrate removed from the reactor. Note that the substrate removal is defined in terms of VS, as defined in the OLR (Lapa, 2023).

$$Y_{biogas} = \frac{F_{biogas}}{OLR \times SRE \times V} \tag{2.9}$$

2.1.4 Factors affecting AD

AD is a sensitive process that requires a careful operation, the main factors affecting its performance are:

- Reactor Design: Optimizing the reactor design can play a key role in reducing HRT, reducing the reactor required volume, and guarantee an optimum organic homogeneity. A squared reactor could be easier to build, but would suffer from limited corner substrate flow and heat losses (Ward et al., 2008).
- Mixing: Although it represents a consequent cost, a mixer is often used to enhance
 the organic homogeneity, allow gas bulbs to easily escape from the substrate and
 prevent sendimentation at the bottom of the reactor. Mixing needs to be done
 carefully as excess mixing could have negative impacts on methane yields (Ward
 et al., 2008).
- Microbial Biomass: When pumping the digested out of the reactor, microbial biomass needs to stay in. In some cases, AD plants use a AD filter, where microbial

organisms attach themselves, thus preventing them to leave the reactor during pumping. These filters can be either inerts or degradable (Ward et al., 2008).

- Temperature: AD can take place at a wide range of temperatures, literature wise, optimums still vary. Nevertheless, three main temperature ranges can be identified as psychrophilic for temperatures under 20°C, mesophilic from 20°C to 43°C and thermophilic from 50°C to 60°C. Eventhough thermophilic conditions may lead to higher methane yields, more energy is required to maintain the reactor at the desired temperature (Nie et al., 2021).
- **Buffering**: The buffer, as referred before, is used to control the pH, remove non hydrolyzed materials and adjust the C/N ratio. pH optimum range is narrow, methanogens are very sensitive to any pH change (Surra et al., 2019). Optimum pH for methanogens is 7.0, whereas optimum pH for hydrolisis and acidogenesis is around 6.0, which is why some plants use a separated hydrolisis reactor (Ward et al., 2008).
- Short Chain Fatty Acids: Monitoring short chain fatty acids is important as they can inhibit methanogenesis, as well as demonstrate a high concentration of organic load. Overall, fatty acids can indicate how well a feedstock is being accepted by the microbial biomass (Ward et al., 2008).
- **Feedstock and Co-Digestion**: The performance of different feedstocks can be tricky to analyze as it is greatly influenced by environmental conditions. For comparing feedstock qualities, a laboratory test called Biochemical Methane Potential (BMP) tests the maximum methane yield possible (Ward et al., 2008). Co-digestion, by adding a different type of feedstock can often enhance AD performance. The new feedstock can increase the nutrient content of the reactor and reduce the risk of excess *NH*₃. However, co-digestion can also be the source of impurities or uncompatible feedstocks, which could result in a methane inhibition. (Chiu & Lo, 2016).
- **Pre-Treatment**: Pre-Treatment by mechanical, thermal or chemical means can be a way to enhance methane yields. These methods can, for example, reduce particules size in the substrate and facilitate AD, resulting in higher yields. Unfortunetly, these methods often use extra machinery that have important economical and logistic impacts (Hashemi et al., 2021).

2.1.5 AD Plants in Portugal

The yearly Portuguese national production of cattle manure was estimated to be 25,24 million metric tons, 55% of which can be found in the interior center region and Alentejo. Nearly 18% of the cattle manure national production can be found on Azores islands (Fernandes et al., 2023). In 2018, Portugal reported 64 biogas plants in the whole country, working for either agriculture, sewage, landfill, and others (European Biogas Association,

2018). It is difficult to evaluate how much of these are still being used today and whether they are used to process cattle manure or not. All in all it seems like the AD plant market still has a lot of room to grow in the country. Considering a manure¹ density of 1 t/m³ (University of Vermont Extension, 2018), and that the biggest Biolectric plant can process up to 50 m³ a day (Biolectric, 2023), there would be room for approximately 1383 AD plants for cattle manure in Portugal.

2.1.6 AD Plants in the USA

According to the Environmental Protection Agency (EPA), the USA had 343 AD plants processing manure across their farms in 2023, a number that has recently been increasing. The complete mix digesters, similar to Biolectric AD plants, represented 26% of total plants with 89 installations. With over 30 000 dairy farms across the USA in 2021, there should be a lot of room for new AD plants in the country (Nepveux, 2021).

2.2 Digestate Management

Digestate is the output of the reactor after microbial digestion. It is a nutrient rich substance, more liquid than manure with around 6% of total solids for dairy slurry (Lukehurst et al., 2010), that can be used in a wide range of applications. The basic nutrients N, P, and K found in digestate can also be found in traditional fertilizers (Sogn et al., 2018). The digestate composition varies widely based on feedstocks and can therefore have different applications in function of its quality. Cow manure used in AD results in a great reduction of total solids and in the formation of a nutritious organic fertilizer when cows benefit from a rich diet like corn and soybeans. Due to pathogens content, and possible rests of antibiotics, digestate from cow manure should be handled carefully and may require post-treatment (Lamolinara et al., 2022). Digestate management can be considered as the last step in forming a complete waste management cycle after AD and therefore is a crucial aspect in the sustainable transition of the agro-livestock sector (Fuchs & Drosg, 2013).

2.2.1 Regulations

It is important to understand that land application of digestate at a time where plants are not growing can result in nutrient leaching and runoff into surrounding water sources (Lukehurst et al., 2010). Digestate processing is covered by European Directives that specify an annual limit of 170 kg/ha of N spread on fields (animal manure specific). Additionally, in vulnerable zones where N land applications could be prohibited over a given period, farms must be able to store and cover² the quantity manure or digestate they would produce over that period (European Council, 1991). In the USA, the Natural Resources

¹Manure is defined as animal feces and urine, but may contain residual bedding, spilled feed, water and soil (State of Vermont, 2023).

²Covering manure and digestate is required to avoid GHG emissions.

Conservation Service (NRCS) elaborated a nutrient management directive where digestate spreading is regulated. Soils nutrients should be tested every 2 years, and tests should be analyzed in accordance with Cornell University guidance. After testing, the Nitrate Leaching Index (NLI) and Phosphorus Runoff Index (P-Index) help assessing the optimal amount of nutrients to be spread on a specific land (NRCS, 2020).

2.2.2 Solid-Liquid Separation

Digestate is a solid-liquid material in which the solid fraction is rich in K and where P and N can be found in both solid and liquid fractions. The separation of the solid and liquid fractions enables the further treatment of digestate while reducing operating costs, transportation costs and storage capacity requirements. The solid-liquid separation starts by densifying sludge, removing water, and obtaining a thicker 15% to 30% solids content material after dewatering. This first step can be performed statically, by gravity settling, or dynamically, via filtration, air flotation and centrifugation. The dewatering process can be performed mechanically (e.g. belt filter press, chamber filter press, vacuum filtration or centrifugation), by electrocoagulation, or by chemical coagulation (Monfet et al., 2018).

2.2.2.1 Post-Treatment of Liquid and Solid Fractions

Different processing methods can be used for further treatment of the liquid and solid fractions. The liquid fraction can typically be further processed by wastewater treatment plants to recover N and P before being rejected in bigger waterways. The nutrient and fiber rich solid fraction post-treatment is attractive for agricultural purposes, energy valorization or chemical byproducts. The first steps in the post-treatment of the solid fraction is chemical or thermal stabilization (see Section 2.2.2.2). Chemical stabilization is performed by adding acid to reduce NH_3 rejection for storage and field spreading activities, or lime to increase the pH, kill pathogens and reduce odors (Monfet et al., 2018).

2.2.2.2 Thermal Drying

A thermal drying process can be used to vaporize remaining water in the thicker solid content, and obtain around 99% of dry solids. The dried digestate will then be pasteurized³ to eliminate odors and NH_3 which will simplify handling and further utilization. The process of thermal drying requires a lot of energy, therefore, it is usually advised to optimize dewatering to minimize the water content before performing thermal drying. AD plants can use the heat produced to perform thermal drying (Monfet et al., 2018), thus, providing farmers that usually wouldn't have interest in direct heat with a great added value solution.

³Pasteurization is a thermal heating process at around 70°C (Nordell et al., 2022).

2.2.3 Cow Bedding

Bedding materials are an important factor in the production performance of dairy cows, they should therefore be thoroughly chosen. Dried digestate, as described in Section 2.2.2.2, has been previously recognized as one of the most valuable bedding for dairy cows regarding comfort (Jaďuďová et al., 2023). The importance in choosing the right bedding reflects itself on the overall comfort of cows, may be key in controlling diseases and maintaining animal hygiene. Farm dried digestate should be carefully used and monitored due to risks related to mastisis⁴ (Blowey et al., 2013), and should be avoided in calves bedding (Leach et al., 2015). The comfort of cows may be increased when choosing an adapted thermally comfortable material, that is not too slippery, and that offers a soft and dry bedding. Two main types of materials are typically used for cow bedding, organic or mineral. Organic bedding refers to materials such as straw, composted manure, wood shavings and sawdust while mineral bedding refers to materials such as sand, rubber mattresses, cement or gypsum.

2.2.4 Pellets

Dried digestate can be transformed into pellets, that will serve in combustion for heating purposes. The pellets produced from AD can benefit from a Higher Heating Value (HHV) of circa 14 MJ/kg (Leach et al., 2015), comparable to HHV found in wood pellets (Telmo & Lousada, 2011). The production of pellets usually involves a three steps process composed of drying, grinding and pressing. For optimum pellet formation, the substrate used should present a moisture content between 8% and 20%. Values over 20% reduce the overall process efficiency, water can't be compressed, while values under 8% compromise the pellet formation and result in a material that desintegrates easily (Czekała, 2021). The separated thickened solid fraction defined in Section 2.2.2 would therefore require less drying than the dried digestate defined in Section 2.2.2.2 if it was to be used for pellets production.

2.2.5 Organic Fertilizers

Digestate can be processed to provide organic fertilizers, and organic pesticides (Kaur et al., 2020). Previous researches have demonstrated that 55% to 95% of N found in animals nutrition was excreted and could be recovered in the feaces and urine together with high levels of K and P (Lukehurst et al., 2010). Traditional fertilizers can cause problems linked with biodiversity, soil erosion, water contamination and pesticide poisoning. Organic fertilizers have the capacity to work better with soil microorganisms, enhance nutrient uptake and be less harmful to the soil's natural fertility (Suhag, 2016).

⁴Mastisis refers to an inflammation of the breast tissues.

2.3 The SSAD Plant by Biolectric

The following section describes the SSAD plant (find datasheet in Annex I) developed by Biolectric, a Belgian, Temse based company. All the information has been gathered during a visit at the Temse Biolectric fabric in February of 2023. The visit was organized by Mr. Klaas Vanhee, Comercial Director at Biolectric and Mrs. Michelle Spiessens, Human Resource Officer. The visit was split in three parts, starting by a tour of the fabric where all AD plants are build, continuing with the visit of a functional AD plant at a client close to the company, and ending with a question and answer session with Mr. Klaas Vanhee at Biolectric.

2.3.1 Models

The eleven models of Biolectric SSAD plants, shown in Table 2.2, range from 9,7 to 74 kW of electrical power output. These plants are all prepared to work as CHP, and can respectively generate a heat power that ranges from 33,6 to 143,6 kW. The plants are composed of a reactor, with a Nominal Liquid Volume (NLV) ranging from 89 to 1 260 m³, and a shipping container where engines and technical components are stored.

Table 2.2: Biolectric SSAD plants (From Manuel d'utilisation et d'entretien Installation biogaz Biolectric, 2020).

												Units
Engine Type	10	11	20-2	22-1	22-2	33	33-2	40	44	60	74	
N° of Engines	1	1	2	1	2	2	2	2	2	2	2	
Electric Power	9,7	11	9,7	22	11	11 or 22	16,5	20	22	30	37	kW
Electric Power	10	11,3	10	22,6	11,3	11,3 or 22,6	17	20,6	22,6	30,9	38,1	kVA
Heat Power	33,6	25,9	33,6	45	25,9	25,9 or 45	33,8	40,9	45	58,2	71,8	kW
Reactor Type	S1	S1-H	S2	S2-H	S3	S3-H	S4	S4-H	S6-H	S8-H		
NLV	89	145	176	287	261	425	362	590	924	1260		m ³
Total Height	5,71	6,93	7	8,22	7,47	8,69	7,47	8,69	9,80	10,70		m

In Figure 2.3, the reactor on the right, composed of a heating system and a mixer, is where the anaerobic digestion process occurs. The shipping container on the left is where the biogas engine, the digestate pump and auxiliary equipment, are stored.

2.3.2 Technology Description

Depending on how the farm is organized, various types of floors can be found. The type of floor will influence the type of manure collection, its quality, and the type of storage. In a farm with slatted floors and underground manure cellar, the organic matter is pumped from the storage compartment to the reactor by the storage compartment pump. The process of bacterial degradation can then start in the reactor, with an average retention time of 30 days. The biogas produced will then be treated to meet the engines requirements. The plant allows all pumpable liquids as long as they contain less than 10% of dry matter and more than 7% of organic dry matter (Biolectric, 2023). The bacterial fermentation in the reactor occurs under mesophilic conditions which range between 32°C

Figure 2.3: Biolectric SSAD Plant.

and 42°C (*Manuel d'utilisation et d'entretien Installation biogaz Biolectric*, 2020). The process of anaerobic digestion under mesophilic conditions, as described in Section 2.1.1, is a four steps process composed of: hydrolisis, acidogenesis, acetogenesis and methanogenesis (Anukam et al., 2019).

2.3.2.1 Biogas Treatment

In ideal conditions, the biogas produced by the AD process is composed of 60% of CH_4 , 39% of CO_2 and 1% of other gases such as H_2S . Before being used for combustion in the engines that produce heat and electricity, the biogas needs to be filtered by active carbon filters to remove H_2S and enhance the lifespan of the engine(s) (Lapa et al., 2017).

2.3.2.2 Biogas Combustion, Engine Cooling and Reactor Heating

The biogas produced and treated can be mixed with flitered air and be used for combustion in the engine(s) of the AD plant. The simplified equation of the methane combustion can be written as follows (Lee & Trimm, 1995):

$$CH_{4(g)} + 2O_{2(g)} \longrightarrow CO_{2(g)} + H_2O_{(l)}$$
 (2.10)

The combustion of CH_4 oxidizes CH_4 , that would traditionally be rejected into the atmosphere in farms that don't use AD plants, into CO_2 . Being that the GHG effect of CH_4 is 25 times higher than the one of CO_2 (Brander & Davis, 2012), the combustion of CH_4 not only produces electricity and heat, it also plays a crucial role in turning dairy farms more environment friendly. In the SSAD plant by Biolectric, the engine(s) power(s) a generator to produce electricity, and the heat is used to maintain the reactor at its working temperature via heat exchangers. If required by the client, part of the heat in the cooling

system can be used to heat water for his own purposes. For energy counting purposes, an optional heat meter can be installed. If ever the temperature of the reactor was to drop below the optimal working temperature, the client can chose to activate the heating of the reactor via electrical resistors. Due to their considerable consumption (6 kW/resistor) the resistors can only be activated if the engine(s) is(are) not operational (*Manuel d'utilisation et d'entretien Installation biogaz Biolectric*, 2020).

2.3.3 Operation Description

2.3.3.1 Manure Collection

Manure collection techniques can typically be separated into either scraping techniques, or flushing systems. In the case of a Biolectric SSAD plant, in order to ensure a sufficient manure quality, scraping collection methods would be recommended (Wilkie, 2005). Manure produced in dairy farms can be collected by scrapers, automatic or manual (El Mashad et al., 2023).

Scraping can be done by a scraper robot as seen in Figure 2.4 and combined with slatted floors as seen in Figure 2.5, storing the manure in an underground manure cellar.

Figure 2.4: Manure Robot Scraper.

Figure 2.5: Slatted Floor.

This setup, with a manure cellar pump as seen in Figure 2.6 ensures an automated manure collection. In other cases, in absence of a robot scraper, manual scraping can be done with a tractor for instance. In this case, the manure will have to be transported to a storage compartment where it can sit until being used in the AD.

Figure 2.6: Manure Cellar Pump.

2.3.3.2 Manure and Digestate Storage

Depending on how the farm is build, or on the willingness of the farmer to upgrade his farm, manure can be stored in an underground cellar. This manure cellar, as seen in Figure 2.7, can be either entirely used for manure (Figure 2.7-A) or divided in two (Figure 2.7-B) in order to stock both manure and digestate underground. Case B of Figure 2.7 can be a better solution as it reduces the required volume of manure for the manure cellar pump to be able to pump. As a consequence, manure sits for less time in the cellar and therefore the manure quality pumped to the digester is of better quality. In cases without underground cellar on the farm, the manure can be directly pumped to the reactor. In this case, the farmer will need less manure production to run the AD plant as the manure will be fresher. The digestate coming out of the reactor can be pumped back into an underground cellar as seen in Figure 2.7, or into a specific storage as seen in Figure 2.8.

2.3.3.3 Manure Supply Cycles

With an automated manure collection and pumping to the reactor, the AD plant requires a minimum of one feeding cycle a day. A pressure sensor at the bottom of the reactor allows the reactor to quantify the height of manure in the reactor. Based on the height result, the right volume of digestate will automatically be pumped out of the reactor and a complementary volume of manure will be pumped into the reactor. The volume of fresh manure used in a cycle can be determined by the user, taking into account that a big

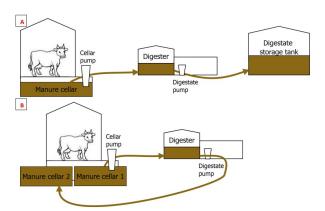


Figure 2.7: Manure and Digestate Cellar (taken from (*Manuel d'utilisation et d'entretien Installation biogaz Biolectric*, 2020)).

Figure 2.8: Digestate Storage.

amount of fresh manure might considerably reduce the temperature inside the reactor and therefore affect the effectiveness of the AD. On a daily basis, 1 to 8 feeding cycles can be executed. In some cases, because of the sensibility of microorganisms consortium, multiple small supply cycles are preferred (*Manuel d'utilisation et d'entretien Installation biogaz Biolectric*, 2020).

2.3.3.4 MyBiolectric Web Page

The operation of the AD plant can be controlled via the "MyBiolectric" tab through the web page: https://biolectric.be/. MyBiolectric lets the user control many types of variable setups such as the quantity of daily manure pumped into the digester or the cycles schedule. The user can be notified of any warnings concerning the AD plant both on "MyBiolectric" or via SMS. MyBiolectric is composed of various tabs that inform the user about the energy production efficiency, the H_2S concentrations, the gas quantities, engine running data and maintenance, the manure supply, and many other critical operating informations (*Manuel d'utilisation et d'entretien Installation biogaz Biolectric*, 2020).

2.4 Financial Tools

2.4.1 Net Present Value

The Net Present Value (NPV) is a financial tool used to evaluate the present value of future cash-flows. The value of stagnant money erodes over time, not only because it could have been used in valuable "no-risk" projects, generating safe returns, but also because of inflation. To be financially convincing, "risky" projects should at least be sufficiently attractive to overcome inflation erosion over time, and also beat the interest rate offered by "no-risk" projects. NPV is computed, as seen in Equation (2.11), by summing the discounted cash-flows of the project from year 0 to year N_P - total project duration.

$$NPV = \sum_{0}^{N_P} \frac{CF_n}{(1+r)^n}$$
 (2.11)

The discount rate, r, is chosen by the decision maker, and reflects his opinion on what the project should return considering the risks it involves. The higher the discount rate, the lower the NPV, which is less interesting for the decision maker. Once the discount rate has been chosen, all projects with positive NPV are interesting. The ones with negative NPV don't generate enough money to overcome the needs of the decision maker (Gallo, 2014).

2.4.2 Internal Rate of Return

Internal Rate of Return (IRR), as shown in Equation (2.12), is the value of the discount rate that sets the NPV equal to zero. In a wrap, decision makers should see the IRR as an upper limit to their chosen internal rate of return. Beyond the IRR, the project does not generate enough money to compensate the money spent (Hazen, 2003).

$$NPV = \sum_{0}^{N_P} \frac{CF_n}{(1 + IRR)^n} = 0 {(2.12)}$$

2.4.3 Payback Period

The payback period, measured in number of years, gives an idea of the time it takes for the total cumulated income to overcome the total cumulated costs. Decision makers should see payback as the time it takes to get their money back.

2.4.4 Levelized Cost of Energy

The Levelized Cost of Energy (LCOE) defines the cost of the produced energy considering the lifetime of the project, with discounted fluxes. This indicator is measured in ϵ /kWh, and can be computed using Equation (2.13). In this indicator, decision makers will use I_0 and D_t as an estimation of the costs, and E_n as an estimation of the energy produced in

year *n* (Ouyang & Lin, 2014).

$$LCOE = \frac{I_0 + \sum_{1}^{N_P} \frac{D_t}{(1+r)^n}}{\sum_{1}^{N_P} \frac{E_n}{(1+r)^n}}$$
(2.13)

2.5 Project Financial Rates

The financial rates used to discount or capitalize fluxes throughout the projects lifetime are key in understanding the financial project efficiency. These rates should be carefully chosen, and adapted to the decision makers expectations regarding the project performance.

2.5.1 Discount Rate

Depending on the type of project analysis, discount rates must be calculated differently. In projects where prices are considered constant, with no variations over the project lifetime, a real interest rate should be used to discount the cash-flows. This real interest rate includes an estimation of the opportunity cost of capital, as well as a risk premium. In projects where prices are considered to vary over time, inflation should be taken into account. In this case, the cash-flows are discounted at a nominal interest rate (Santos, 2023). Equation (2.14) shows how the nominal interest rate (r_N) should be computed in function of the real interest rate (r_R) (European Commission, 2014). For European renewable energy projects with a period expectancy ranging from 15 to 25 years, the European Commission suggests to use a real interest rate of 4%. Using the 2% inflation rate defined in Section 2.5.2, the nominal discount rate for the Portuguese market is therefore settled at 6,1%. For the USA market, a 6,19% estimated Weighted Average Cost of Capital (WACC) of USA agricultural industry will be used as a discount rate (Uter, 2023). However, in order to help the decision maker decide whether these estimations are safe or not, a sensitivity analysis is conducted in Section 3.9 for Portugal and Section 4.8 for USA.

$$(1+r_N) = (1+r_R) * (1+i)$$
(2.14)

Using WACC as a discount rate to compute the NPV gives the investor an idea about how the investment compares to the opportunity cost of his capital (Santos, 2023). In practical terms, firms can typically use either equity or debt to source the money they need for projects. Equity is money the company owns to its investors with no return guarantee, whereas debt is borrowed money the company needs to reimburse. In both cases, the company is expected to return the money with an extra interest rate. WACC is an estimation of how much interest rate the company pays for money coming from both equity and debt. For this reason, it can be considered as the minimum discount rate a project should return. If the project expects to return less than the firm's WACC, it is usually not profitable for the firm because the money it uses in the project costs more than the project can return (Husmann & Schmidt, 2008).

2.5.2 Inflation Rate

An inflation rate can be used to capitalize costs throughout project lifetime. In this way, the financial simulation will take price rises over time into account. Literature wise, the rate used to estimate inflation over time varies a lot. In some cases, inflation estimations are made custom in function of the specific resources used in the project, which requires a lot of time. In the financial simulations conducted in this thesis, a 2% inflation rate will be used for both the Portuguese and USA market. The choice for this 2% rate is based on a prevision converging towards 2% until 2027 by the *Ministério das Finanças* for Portugal (Ministério das Finanças, 2023) and by the Organization for Economic Cooperation and Development (OECD) for USA (OECD, 2023). However, in order to help the decision maker decide whether this estimation is safe or not, a sensitivity analysis is conducted in Section 3.9 for Portugal and Section 4.8 for USA.

Business Case: Portugal

The following chapter is dedicated to evaluating the potential of Portugal for the implementation of SSAD plants by Biolectric in dairy farms. After describing the market, a case study is performed at Agro ABA, to define local dairy farmers needs and choose the most suited AD plant for the farm.

3.1 Portuguese Energy Market

3.1.1 Electrical Energy Mix

The 2022 Portuguese national electrical energy consumption, as shown in Figure 3.1, was composed of 49% of renewable energy, 33% of non renewable energy and 18% of energy balance imports. That same year, the total electrical energy consumption reached 50,4 TWh. The 49% of renewable energy were composed of 5% of solar energy, 25% of wind energy, 13% of hydro energy and 6% of biomass. Natural gas accounted for the 33% of total non renewable energy consumption. Portugal has been eliminating coal from its national energy supplies since 2017, which results in a significant increase in electrical energy import balance from 2020 to 2022 (REN, 2022).

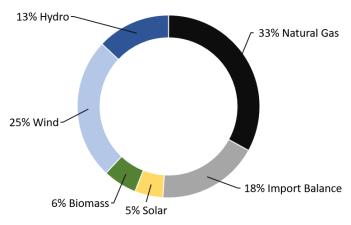


Figure 3.1: Portuguese 2022 Electrical Energy Mix. Adapted from (REN, 2022).

3.1.2 Renewable Energy Potential

With the adoption of Renewable Energy Directive (RED) II in 2018 and its following revision in the "Fit for 55" plan under the European Green Deal, renewable energy has gained a lot of interest in the EU. The plan aims to develop new energy entities on the renewable energy market, to promote the use of renewable energy sources at scale. Renewable Energy Communities (REC), as defined in Section 3.1.2.1, have been recognized to increase energy efficiency, attract private investment in the clean energy sector, increase public acceptance of renewable energy projects and lower electricity bills (Parliament, 2023). In Portugal, as described in Section 3.1.2.2, based on Decreto-Lei n.º 76/2019, 2019, electricity produced by renewable sources can be sold at a fixed tariff, defined by the guaranteed remuneration, or at a general tariff fixed by the market.

3.1.2.1 Renewable Energy Communities

REC can be defined as a group of investors, consumers and producers of renewable energy that organize themselves for the sale, distribution and consumption of that same energy. These communities not only help reducing GHG emissions by producing renewable energy, they also play a key role in diversifying energy sources (Soeiro & Dias, 2020). REC are described in the EU Directive 2019/944, 2019 as a legal entity based on the social participation of private individuals, local authorities, municipalities and small firms. The main purpose of the REC is defined as creating environmental, economical and social benefit to community members. Additionally, the guideline defines authorized activities as distribution, selling, consuming, aggregation, storage, providing energy efficiency services, providing charging stations for electric cars, or other energy related services to community members (DGEG, 2019).

3.1.2.2 Price Valuation of Renewable Electricity

Renewable energy projects, such as the creation of a REC, have the potential to create value in different ways. These projects can mitigate the risk of an electricity interruption, reduce electricity bills, improve environmental quality, help reducing the dependence to fossil fuels, etc (Soeiro & Dias, 2020). However, the eagerness of private investors to develop such projects, will, most often, be driven by the financial performance of these projects. In that sense, the price, payed by the consumers, for every kWh of renewable energy produced is very important. In Portugal, with regard to Decreto-Lei n.º 90/2006, 2006, the guaranteed purchasing price of renewable electricity per type of energy source, as found in Table 3.1, is quite interesting. In the case of biogas, the electricity produced can be sold at a guaranteed 0,1217 €/kWh.

Table 3.1: Portuguese Renewable Electricity Guaranteed Purchasing Price (ERSE, 2023).

Energy Source	Wind	Hydro	Biogas	Biomass	Photovoltaic	Offshore Wind	Waves	Municipal Solid Waste
Price (€/kWh)	0,087	0,1014	0,1217	0,1258	0,2885	0,1506	0,0	0,1705

3.2 Biolectric Market Description & Sizing

3.2.1 Number of Dairy Cows

The dairy sector in Portugal was composed of 221 540 dairy cows in 2022, which represented half of Belgium's dairy cow population and one seventh of Holland's cow population. The population of dairy cows in Portugal decreased 9% from 2015 to 2022. A significant part of the dairy cow population in Portugal is on Azores Islands, they represented 39% of the total Portuguese cow population in 2019. Additionally, in 2019, 83 330 cows could be found in farms that had more than 100 cows on the Portuguese mainland, and 24 234 in Azores. In 2019, as seen in Table 3.2, farms ranging from 50 to 99 cows accounted for 55 279 cows on the mainland and 53 169 in Azores. On a EU scale, Portuguese dairy cows represent 1,1% of the total EU dairy cows population. According to Figure 3.2, Portugal is the 17th country in terms of EU dairy cows population (Eurostat, 2022a). The total cow population in Portugal mainland in farms with more than 50 cows is of 122 626.

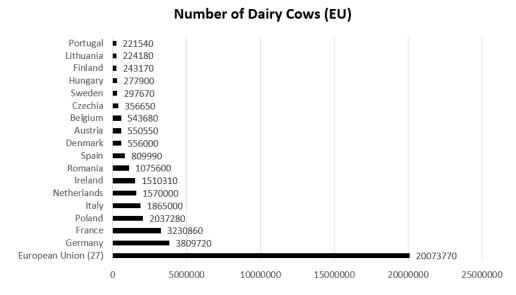


Figure 3.2: Number of Dairy Cows (EU) (Eurostat, 2022a).

3.2.2 Number of Dairy Farms

As shown in Table 3.2, in 2019, most dairy farms in Portugal were composed of 60 to 99 cows, and most cows could be found in the 100 to 199 cows category. On the mainland, 72% of exploitations were found in the North, and they accounted for 55% of the mainland dairy cow population. All in all, the Portuguese dairy sector was composed of 1 587 dairy farms in 2019, from which 40% were on Azores Islands.¹ Portugal mainland is home to 959 dairy farms composed of 50 cows or more, 43% of which in the 60 to 99 cows range.

¹The only dairy farms considered in these statistics are the ones with a minimum of 50 cows, the minimum required amount of cows to run a SSAD plant by Biolectric.

Size Categories		Portugal	Mainland	North	Center	Lisbon	Alentejo	Algarve	Azores	Madeira
50 to 59	N° Exploitations	324	164	128	27	2	7	0	159	1
	N° Cows	17 167	8 619	6744	1 407	109	359	0	8 498	50
60 to 99	N° Exploitations	712	416	328	77	3	8	0	296	0
	N° Cows	52 605	30 677	23 897	5 961	218	601	0	21 928	0
100 to 199	N° Exploitations	413	263	201	42	7	13	0	150	0
	N° Cows	53 227	34 374	26 015	5 692	913	1 754	0	18 853	0
200 to 299	N° Exploitations	75	58	28	14	2	14	0	17	0
	N° Cows	17 203	13 556	6 518	3 317	458	3 263	0	3 647	0
≥300	N° Exploitations	63	58	9	6	12	31	0	5	0
	N° Cows	37 134	35 400	$4\ 177$	2 912	10 070	18 241	0	1 734	0
Totals	N° Exploitations	1 587	959	694	166	26	73	0	627	1
	N° Cows	177 336	122 626	67 351	19 289	11 768	24 218	0	54 660	50

Table 3.2: Size Distribution of Dairy Farms in Portugal (INE, 2019)

3.2.3 Milk Prices and Milk Yields

Medium prices (Net of Value Added Tax (VAT)) paid to the farmer per 100 kg of milk in Portugal have been lower than the European medium from 2009 to 2019 (GPP AG, 2021). However, in 2022, the average milk price in Portugal increased 36% in comparison to the national 10 year price average before that. The average milk price has become 31% more expensive than the one in Belgium in 2022 although milk prices had been similar in Belgium and in Portugal for the last 10 years. (Eurostat, 2022b) This tremendous 2022 increase in milk prices is related to a sudden increase in the price of production factors such as energy, cows alimentation and fertilizers (CONFAGRI, 2023). The average price paid to individual farmers in Portugal mainland in 2023 was 0,516 €/kg (GPP, 2023). With a dairy milk production of 1 935 544 l in 2021 (INE, 2023), and a cow population at the time of 230 020 (Eurostat, 2022a), the 2021 Portuguese milk yield was 8,4 t/cow, which is higher than the European 2020 average of 7,3 t/cow (European Commission, 2023).

3.3 Predicted Evolution of the Dairy Sector

The current tendency of the Portuguese dairy sector is to decrease in the number of dairy farms, and increase the number of heads per dairy farm. From 2009 to 2019, the number of dairy farms decreased 51%, and the total amount of cows decreased 12%. Over the same period, the amount of dairy cows in farms with less than 30 cows decreased 56% and the number of cows in farms with more than 100 cows increased 46%. (GPP AG, 2021) Interestingly, the total amount of milk production in Portugal only decreased 1% from 2009 to 2019 (INE, 2023), and milk prices have stayed stable from 2011 to 2019 (Eurostat, 2022b). The Portuguese dairy sector is therefore evolving towards dairy farms with high efficiency, which reflects in high milk yields. In the future, we therefore expect to find highly specialized dairy farms, with increasing needs to reduce costs to stay competitive. SSAD plants by Biolectric might therefore play a key role in the future of Portuguese dairy farms, providing them with new manure related revenue streams and enhancing farms management.

3.4 Required Paperwork

3.4.1 Licensing of the Livestock Effluent Management Plan

The production of biogas through effluents is covered by the licensing of the livestock effluent management plan, as described in the Law Decree n.º 631/2009 of 9th June of 2009. The first step in the implementation of an AD plant is to send a request to the regional Direção Regional de Agricultura e Pescas (DRAP).

3.4.2 Municipal Licensing

The Municipal Licensing starts with a localisation feasibility request to the Municipality. The licensing of renewable energy producing units is evaluated by each Municipality. In this evaluation, the Municipality makes sure the energy producing unit is compatible with local territorial plans described in the Plano Director Municipal (PDM). In the specific case of the Municipality of Torres Vedras PDM, the installation of renewable energy producing units is permitted on rural lands.

3.4.3 Production Unit Registration & Environmental Impact Assessment (EIA)

Once the Municipal Licensing has been requested, the promoter will have to present a request for a production unit registration to the Direção-Geral de Energia e Geologia (DGEG) and, eventually, a Environmental Impact Assessment (EIA) to the Agência Portuguesa do Ambiente (APA).

3.4.3.1 Energy Production Unit Registration

The DGEG regulates energy production units and requires them to be registered. Energy production units under 350 W don't need any type of control or registration. For units between 350 W and 30 kW, producers should only notify the DGEG of their existence through their portal, indicating "Nova Mera Comunicação Prévia (MCP)". Units with installed power above 30 kW and under 1 MW should firstly be registered on the DGEG portal indicating "Nova Unidade de Produção para Autoconsumo (UPAC)"and receive an operating license as described in Law Decree n.º 172/2006 of 23rd of August of 2006. Following the Ordonnance n.º 15/2020 of the 23rd of January of 2020, the fees related to the production of electricity from renewable sources are described in Table II of the Law Decree n.º 172/2006 of the 23rd of August of 2006 (Portaria n.º 15/2020, 2020). Applicable fees for installed powers up to 250 kW include a pre-production registration cost of 400 €, an issuing of operating certificate cost of 80 € and a DGEG inspection cost of 480 € (Decreto-Lei n.º 162/2019, 2019).

3.4.3.2 **EIA**

The need to establish an EIA is referred to in Annex II of the Law Decree n.º 152-B/2017 and concerns all industrial energy producing units, not referred in Annex I, above 20 MW. AD plants are not referred to in Annex I of the Law Decree n.º 152-B/2017. SSAD plants maximum electrical power output is 99 kW. Therefore, SSAD plants don't require EIA in Portugal, provided they are not built on sensitive areas (Decreto-Lei n.º 152-B/2017, 2017).

3.4.4 Licensing of Private Works

Once all the previous licensing and registration is complete, a license of private works should be introduced to the Municipality. The costs linked to the following license vary from one Municipality to another. In the specific case of the Municipality of Torres Vedras, following Notice $n.^{\circ}$ 714/2016, a fee of 400 \in is due for the assessment of the request (Table 8 - Point 1), another fee of 100 \in is due for issuing the installation permit (Table 14 - Point 9) and 3,5 \in /m² are due for all associated buildings (Table 13 - Point 2) (Aviso $n.^{\circ}$ 9961/2016, 2016).

3.5 Investment Support

3.5.1 Environmental Fund

The Environmental Fund is trying to promote the creation of REC and self-consumption through financing long-term projects. Project promoters can benefit up to 200 000 € per UPAC, with a maximum of 500 000 € of benefit. Residential user installations can benefit up to 70% of co-funding whereas business and services user installations can benefit up to 50% of co-funding. Projects can include selling excess electricity with a maximum excedent of 20%. The Environmental Fund accepts applications for UPAC co-funding projects until 2025 (Fundo Ambiental, 2023).

3.5.2 Voluntary Carbon Market in Portugal

Carbon credits are meant to certify a specific installation reduces GHG emissions, and can be traded. The voluntary carbon market in Portugal is regulated by the APA, who defines the market players, the products, the eligibility of projects and their traceability (PLMJ, 2023). Carbon credits can be emitted for projects aiming for reducing or sequestration of carbon emissions, after validation by an independent third-party. The certificates can be attributed before or after the emissions reduction or sequestration (APA, 2023). The Portuguese voluntary carbon market is framed by Law Decree n. $^{\circ}$ 12401/2020 in Diário da República, 2020 and its creation was approved in November of 2023 by the Council of Ministers (Jornal de Negócios, 2023) after its presentation in March of 2023 (República Portuguesa, 2023). On the EU Emission Trading System (ETS), carbon credits have broken a price record of $100 \in /tCO_2e$ in 2023 (Financial Times, 2023).

3.6 Competitors & Strategic Partners

3.6.1 Sotecnisol

Sotecnisol is a 50 year old Portuguese company specialized in roofing & facades, energy, water treatment, engineering and coatings. They operate in Portugal, Brasil, Angola, Moçambique, Italy and Spain. Sotecnisol has conducted various renewable energy projects which includes 20 projects in energy valorization of biogas. Their website mentions they are able to install AD plants in dairy farms, however, in the conducted projects section they only mention biogas plants in water treatment plants. At the moment, Sotecnisol might not be a direct competitor to Biolectric, however, in the future, given the scope of their activity and provided AD plants gain market in Portuguese dairy farms, Sotecnisol could quickly become a major player in AD plants in the country. Sotecnisol could therefore be considered as a potential strategic partner to install Biolectric plants in Portugal (Sotecnisol, 2023).

3.6.2 Genia Global Energy

Genia Global Energy is a Spanish energy company that focuses on delivering energy solutions and energy management solutions. Genia Bioenergy, a division of Genia Global Energy, sells, among other products, SSAD plants suited for swine farms, dairy farms, poultry farms and others. Genia is able to develop a SSAD plant and provide support in the construction, paperwork, and management of the plant in Spain. With a strategic position over the Portuguese market, being a Spain based company, Genia is a direct competitor to Biolectric. (Genia Bioenergy, 2023)

3.6.3 Equiporave

Equiporave is a poultry, pig and cow equipment installer operating in Portugal since 1976. Equiporave delivers turnkey housing projects and has a set of workforce and engineers that could install SSAD plants in Portuguese farms. Additionally, Equiporave also operates in some Spanish regions as well as in Angola. After a formal conversation with the CEO at Equiporave, M. Asdrubal Neves, would be interested in presenting the SSAD plant by Biolectric to some of his clients and add the SSAD plant to his product portfolio. Equiporave can therefore be considered as a potential strategic partner for the Portuguese market.

3.7 Practical Case Study: Sociedade Agro-Pecuária Agro ABA

This section is dedicated to the study of a business case in Portugal to understand how a SSAD plant by Biolectric could adapt itslelf to local needs. The case study took place at a dairy farm called Agro ABA, located in Campelos (39°10′59.640"N; 9°13′51.155"W), in the municipality of Torres Vedras. Agro ABA is a 15 employee, 879 cows, unipessoal

company owned by Mr. Telmo Rodrigo. Agro ABA owns 120 ha of ryegrass lands and 35 ha of corn lands. The farm uses tractors to scrape stables and manually inserted pumps to milk cows, as shown in Figure 3.3. Agro ABA uses slurry² to fertilize fields and also gives some of the slurry to neighbors. The yearly temperature in the region ranges from 0°C to 30°C (IPMA, 2023).

Figure 3.3: Manual Milking

3.7.1 Cows

The farm owns 879 Holstein Frísia cows, with stables made out of cement floors and beds of either sand or straw as shown in Figure 3.4-A. The cows feed is a mix, as shown in Figure 3.4-B, composed of corn silage, corn, wheat, soya, beer batter, straw and minerals. Dry cows and youngsters, who are not producing milk, eat ryegrass silage and cereals. The farm monitors the cows through a program called "Dairy Plan"that provides real-time information over herd, reproduction, milking, and individual information over the cows. Adult cows at Agro ABA weigh circa 650 kg and have an average production of 32 1/day, which represents a very high milk yield of 11,7 t/cow.

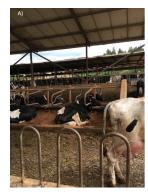


Figure 3.4: A) Stables at Agro ABA; B) Cows mixed nutrition

²Slurry refers to a liquid mix of manure and water.

3.7.2 Electricity Bills

Agro ABA has an average electricity consumption of 450 kWh/day, and currently pays an average of 2 500 €/month, which represents an average of 0,185 €/kWh. The contracted power at Agro ABA is 40 kW, to be increased in the future, and their contract is based on a tri-hours-price contract (0,10;0,17;0,25) €/kWh. The farm has 37,8 kW of photovoltaic panels installed, 108 panels of 350 W, which provides them with a 30% autonomy. The most energy consuming activities at the farm are milking and milk cooling processes. The farm currently uses 700 l/day of hot water, which is heated via heat exchangers that cool down the milk. Mr. Telmo, owner of Agro ABA, insisted on the fact that the farm has more cooling necessities than heating necessities. In the future, Agro ABA expects to pay more for each kWh bought, they are therefore looking for renewable energy projects, to decrease their electricity bills, with paybacks lower than 10 years.

3.7.3 Electricity Measurements

In order to characterize the electricity consumption at Agro ABA, a power supply curve was measured at the farm. On the 17th of October 2023 at 13h00, as shown in Figure 3.5-A and Figure 3.5-B, a Chauvin Arnoux C.A 8334B three phase power quality analyzer was connected on Agro ABA's electrical panel, measuring the grid energy supply. The device measured the current and voltage supplies over a week of time, until the 23rd of October 2023 at 13h00.

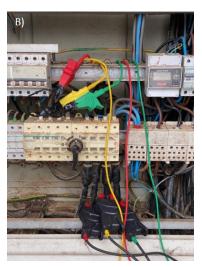


Figure 3.5: A) Three Phase Power Quality Analyzer; B) Current and Voltage Connectors

Power curves were then extracted, via an Excel file, and can be seen in Figure 3.6 and Figure 3.7. As seen in both Figure 3.6 and Figure 3.7, the power curve sometimes drops to negative values, the reason being Agro ABA produces electricity with photovoltaic panels. The peak power registered at Agro ABA is 31,5 kW, and most often occurs between 18h00 and 00h00, when photovoltaic panels don't produce energy.

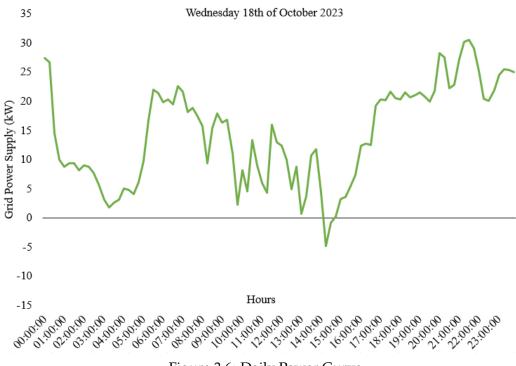


Figure 3.6: Daily Power Curve

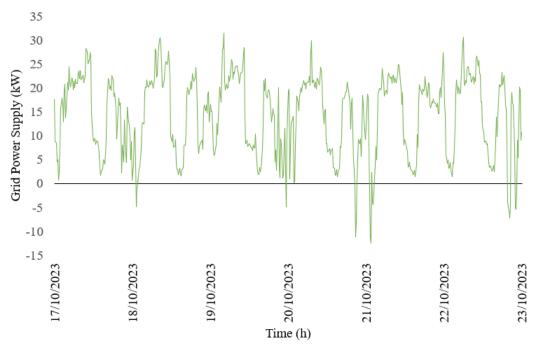


Figure 3.7: Weekly Power Curve

3.7.4 Water

Water on the farm comes from a water hole, is not treated, contains limestone but is still drinkable. In all activities, including the cleaning of the milking parlor, Agro ABA uses an average of 2 000 l/day.

3.7.5 Necessary Barn Adaptations

Inspired of his previous experiences in the USA, Mr. Telmo started developing a flushing system to collect his manure. Eventhough the SSAD plant by Biolectric could work with such a system under some water quantity restrictions, the performance of the SSAD plant would be at risk. With high water quantities, the SSAD plant will be harder to set at the desired 42°C and a larger amount of manure will have to be fed for the same energy production. Additionally, special care will be required with sand beds given their incompatibility with SSAD plants. After a formal conversation with Mr. Telmo, the cow bedding at the farm could be modified and enhanced to meet the AD plant requirements. In his opinion, cows at Agro ABA are not feeling comfortable in sand beds and they might consider other types of bedding. An extra 10% of installation costs was added to the simulations to ensure Agro ABA can modify his flushing system and adapt cow bedding.

3.8 Financial Simulations: Case Study at Agro ABA

3.8.1 Project Costs

The costs considered in the business case, as shown in Table 3.3 include the price of the AD plant, its installation, maintenance, active charcoal, insurance, grid connecting and measuring devices, permitting and barn adaptations. The AD plant cost includes the price of the AD plant and its installation, the transportation costs, the project management and the first year of maintenance. The maintenance and active charcoal prices are capitalized throughout the project at a 2% inflation rate found in Section 2.5.2. The grid connectors and measuring devices are considered to cost around 2 000 €/year. Permitting fees were estimated using the information in Section 3.4. After the three first years of maintenance by Biolectric, the maintenance costs are predicted to decrease to half their original cost, being that Agro ABA has the know-how and maintenance team required.

							Units
SSAD Type	11	22	33	44	60	74	kW
N° of cows	60	120	180	240	325	400	
AD Plant	177 931	240 206	311 379	373 655	459 061	515 999	€
Maintenance	10 000	14 000	18 000	22 000	24 000	25 000	€/year
Active Charcoal	1 000	2 000	2 000	2 500	2 800	3 000	€/year
Insurance (% of AD Plant Price)	0,5%	0,5%	0,5%	0,5%	0,5%	0,5%	€/year
Grid Conncection & Measurement	2 000	2 000	2 000	2 000	2 000	2 000	€/year
Permitting	5 000	5 000	5 000	5 000	5 000	5 000	€
Barn Adaptation	35 000	35 000	40 000	40 000	45 000	50 000	€

Table 3.3: SSAD Installation Costs in Portugal.

3.8.2 Investment Support

The investment support used in the business case includes a Feed-In-Tariff (FIT) and a capital co-funding by the Environmental Fund as described in Section 3.5.1. The simulations performed in Section 3.8.3 and Section 3.8.4 show two distinct results depending

on whether the Environmental Fund co-funds the project or not. The model without co-funding is called "raw model" and the other one is called "co-funded model".

- FIT: The FIT used in the business case is the 0,1217 €/kWh one defined in Section 3.1.2.2. The farm will make use of all the possible electricity generated by the AD plant, and sell the excess at the FIT tariff. The current buying electricity price at the farm is considered to be 0,185 €/kWh as described in Section 3.7.2.
- Environmental Fund: In the co-funded model, a 200 000 € co-funding was used as described in Section 3.5.1. Given the 50% limit on qualified investment instored by the Environmental Fund, the smaller plants actually benefited from less than 200 000 €.

3.8.3 **SSAD** Raw Model

The following comparison between SSAD plants considers them as projects and compares them as shown in Table 3.4, using NPV, IRR, payback period and LCOE indicators. All project indicators were computed raw, using no type of investment support nor financing solutions. The aim is to provide the decision maker with a conservative financial simulation, that doesn't depend on the eagerness of the Environmental Fund to co-fund the project or on the fluctuations of the interest rates.

The project simulations are conducted over a period of 20 years, the discount rate used to compute the NPV, as defined in Section 2.5.1, is settled at 6,1% and the annual inflation rate of 2% is used to capitalize some costs and electricity prices, as defined in Section 2.5.2. The SSAD engines are considered to work 8 000 h/year. Mr. Telmo showed no interest in taking advantage of heat exchangers to heat water. Agro ABA is already self-sufficient in hot water and would rather have more interest in cooling systems. The full project simulations can be found in Annex II.

							Units
SSAD Type	11	22	33	44	60	74	kW
N° of cows	60	120	180	240	325	400	
Produced Gross Electricity	88 000	176 000	264 000	352 000	480 000	592 000	kWh/Year
Initial Investment	221 821	285 407	361 936	425 023	516 156	578 579	€
NPV	-110 169	-15 585	19 213	60 759	206 104	255 833	€
IRR	-1%	5%	7%	8%	11%	11%	
Payback	>20	13	12	11	10	8	Years
LCOE	0,337	0,223	0,185	0,164	0,141	0,125	€/kWh

Table 3.4: SSAD Raw Financial Simulation at Agro ABA.

As shown in Table 3.4, the 74 kW installation appears to be the best raw model financial choice for Agro ABA, providing them with a 100% self-sufficiency, an interesting 8 year payback with a 255 833 € NPV, a 11% IRR and an interesting 0,125 €/kWh LCOE. With 879 cows at the farm, Agro ABA will produce more than enough fresh manure to feed the 74 kW SSAD plant, and will still have margin to add electrically ran cooling systems in the future.

3.8.4 SSAD Co-Funded Model

The co-funded model seen in Table 3.5 shows attractive simulations in all AD size categories above 11 kW. Overall, the 74 kW plant remains the best option for Agro ABA, with a payback period of 6 years, a NPV of 444 335 \in , an IRR of 18% and a very attractive LCOE of 0,096 \in /kWh, well under the 0,1217 \in /kWh FIT used.

							Units
SSAD Type	11	22	33	44	60	74	kW
Max. Excess Energy	20%	20%	20%	20%	20%	20%	
Initial Investment	221 821	285 407	361 936	425 023	516 156	578 579	€
Co-Funded Amount	110 910	142 704	180 968	200 000	200 000	200 000	€
NPV	-5 635	118 914	189 777	249 261	341 043	444 335	€
IRR	5%	15%	17%	17%	17%	18%	
Payback	13	7	7	7	7	6	Years
LCOE	0,227	0,152	0,124	0,114	0,104	0,096	€/kWh

Table 3.5: SSAD Co-Funded Financial Simulation at Agro ABA.

3.8.5 SSAD Size Choice

The SSAD size choice bases itself on the complexity of paperwork, the applicable investment support, the power curve adaptation, and the attractiveness of both raw and co-funded financial simulations. As referred by Mr. Telmo, interesting projects should present a payback under 10 years. The plants available to choose are therefore the 60 kW and the 74 kW for raw financial simulations, as shown in Table 3.4, and from 22 kW to 74 kW in the co-funded simulations found in Table 3.5. The 74 kW plant is the best choice in all categories. Paperwork might be more complex for plants above 22 kW, but the overall financial and operational advantages of bigger plants makes them worth the additional paperwork.

The 74 kW plant would turn Agro ABA self-sufficient by largely covering the 31,5 kW peak measured in Section 3.7.3. Given the high output power compared to the peak power measured at the farm, the plant would have to be integrated in a REC, to make sure the 20% maximum excess energy imposed by the Environmental Fund is respected.

SSAD Type (kW)	11	22	33	44	60	74
Required Paperwork Complexity	Simple	Simple	Complex	Complex	Complex	Complex
Applicable Investment Support	50%	50%	50%	Dependent	Dependent	Dependent
Power Curve Adaptation	No	No	Self-Sufficient	Self-Sufficient	Self-Sufficient	Self-Sufficient
Attractive Raw Financial Simulation	No	No	No	No	Good	Best Option
Attractive Co- Funded Financial Simulation	No	Good	Good	Good	Good	Best Option

Table 3.6: SSAD Sizing Choice Matrix.

3.9 Sensitivity Analysis of Financial Simulations

3.9.1 Inflation Rate Previsions

The inflation rate suggested in Section 2.5.2 and used in Section 3.8.3 might not be an accurate estimation of what the future inflation will be. In order to make sure the financial

simulations stay as conservative as possible, we hereby measured the sensitivity of the financial simulations to the inflation rate. Given the fact that we chose the 74 kW plant in Section 3.8.5, this analysis will focus on the 74 kW plant. Note that the recent economical conjuncture has been tricky and characterized by highly volatile markets. In 2021, inflation forecasters made errors up to nearly 3% in estimating inflation for the year (European Central Bank, 2022). This being said, for the sake of this simulation, a 1% error is considered acceptable given the 20 years of project life.

3.9.1.1 Raw Financial Simulation at 1% Inflation Rate

At 1% of inflation, as shown in Table 3.7, the raw simulation stays attractive, with a 178 420 € NPV, a payback in 8 years and a LCOE of 0,124 €/kWh. Unfortunately, the IRR is quite low at 8%, and is therefore nearly compromising the error accepted on the discount rate.

							Units
SSAD Type	11	22	33	44	60	74	kW
NPV	-123 211	-42 873	-18 304	13 559	138 404	178 420	€
IRR	-2%	4%	5%	6%	10%	8%	
Payback	>20	14	13	12	11	8	Years
LCOE	0,332	0,219	0,182	0,161	0,139	0,124	€/kWh

Table 3.7: Raw Financial Simulation at 1% Inflation Rate.

3.9.1.2 Co-Funded Financial Simulation at 1% Inflation Rate

At 1% of inflation, as shown in Table 3.8, the co-funded simulation is very attractive, with a 366 921 € NPV, a payback in 7 years, an IRR of 16% and a LCOE of 0,094 €/kWh.

Table 3.8: Co-Funded Financial Simulation at 1% Inflation Rate.

							Units
SSAD Type	11	22	33	44	60	74	kW
NPV	-18 677	91 626	152 260	202 060	277 909	366 921	€
IRR	4%	13%	15%	16%	16%	16%	
Payback	15	8	7	7	7	7	Years
LCOE	0,222	0,148	0,121	0,111	0,102	0,094	€/kWh

3.9.1.3 Raw Financial Simulation at 3% Inflation Rate

At 3% of inflation, as shown in Table 3.9, the raw simulation is very attractive, with a 342 973 € NPV, a payback in 8 years, an IRR of 12% and a LCOE of 0,128 €/kWh.

Table 3.9: Raw Financial Simulation at 3% Inflation Rate.

							Units
SSAD Type	11	22	33	44	60	74	kW
NPV	-95 416	15 195	61 517	113 975	282 336	342 973	€
IRR	0%	7%	8%	9%	13%	12%	
Payback	>20	12	11	11	9	8	Years
LCOE	0,343	0,227	0,188	0,167	0,143	0,128	€/kWh

3.9.1.4 Co-Funded Financial Simulation at 3% Inflation Rate

At 3% of inflation, as shown in Table 3.10, the co-funded simulation is very attractive, with a 531 474 € NPV, a payback in 6 years, an IRR of 19% and a LCOE of 0,098 €/kWh.

							Units
SSAD Type	11	22	33	44	60	74	kW
NPV	9 118	149 695	232 081	302 476	412 153	531 474	€
IRR	7%	16%	18%	18%	18%	19%	
Payback	12	7	7	6	6	6	Years
LCOE	0,232	0,156	0,128	0,117	0,107	0,098	€/kWh

Table 3.10: Co-Funded Financial Simulation at 3% Inflation Rate.

3.9.2 Discount Rate Previsions

The discount rate suggested in Section 2.5.1 and used in Section 3.8.3 might not be an accurate estimation of risks and capital opportunity cost. In order to make sure the financial simulations stay as conservative as possible, we hereby measured the sensitivity of the financial simulations to the discount rate. Given the fact that we chose the 74 kW plant in Section 3.8.5, this analysis will focus on the 74 kW plant. For the sake of this simulation, a 1% error in the discount rate is considered acceptable. We will therefore use 5,1% and 7,1% to characterize the sensitivity of the simulations.

3.9.2.1 Raw Financial Simulation at 5,1% Discount Rate

At 5,1% of discount rate, as shown in Table 3.11, the raw simulation is very attractive, with a 334 170 \in NPV, a payback in 8 years, an IRR of 11% and a LCOE of 0,119 \in /kWh.

							Units
SSAD Type	11	22	33	44	60	74	kW
NPV	-101 503	8 557	53 817	105 331	264 082	334 170	€
IRR	-1%	5%	7%	8%	11%	11%	
Payback	>20	13	12	11	10	8	Years
LCOE	0.320	0.212	0.175	0.155	0.134	0.119	€/kWh

Table 3.11: Raw Financial Simulation at 5,1% Discount Rate.

3.9.2.2 Co-Funded Financial Simulation at 5,1% Discount Rate

At 5,1% of discount rate, as shown in Table 3.12, the co-funded simulation is very attractive, with a 524 465 \in NPV, a payback in 6 years, an IRR of 18% and a LCOE of 0,091 \in /kWh.

Table 3.12: Co-Funded Financial Simulation at 5,1% Discount Rate.

							Units
SSAD Type	11	22	33	44	60	74	kW
NPV	4 025	144 336	226 003	295 626	404 981	524 465	€
IRR	5%	15%	17%	17%	17%	18%	
Payback	13	7	7	7	7	6	Years
LCOE	0,218	0,146	0,120	0,110	0,100	0,091	€/kWh

3.9.2.3 Raw Financial Simulation at 7,1% Discount Rate

At 7,1% of discount rate, as shown in Table 3.13, the raw simulation is still attractive, with a 188 042 € NPV, a payback in 8 years, an IRR of 11% and a LCOE of 0,132 €/kWh.

Table 3.13: Raw Financial Simulation at 7,1% Discount Rate.

							Units
SSAD Type	11	22	33	44	60	74	kW
NPV	-117 491	-36 335	10 610	22 300	155 561	188 042	€
IRR	-1%	5%	7%	8%	11%	11%	
Payback	>20	13	12	11	10	8	Years
LCOE	0,355	0,234	0,194	0,172	0,149	0,132	€/kWh

3.9.2.4 Co-Funded Financial Simulation at 7,1% Discount Rate

At 7,1% of discount rate, as shown in Table 3.14, the co-funded simulation is very attractive, with a 374 784 \in NPV, a payback in 6 years, an IRR of 18% and a LCOE of 0,100 \in /kWh.

Table 3.14: Co-Funded Financial Simulation at 7,1% Discount Rate.

							Units
SSAD Type	11	22	33	44	60	74	kW
NPV	-13 933	96 888	158 361	209 041	285 570	374 784	€
IRR	5%	15%	17%	17%	17%	18%	
Payback	13	7	7	7	7	6	Years
LCOE	0,235	0,157	0,129	0,118	0,109	0,100	€/kWh

3.9.2.5 Combining a 1% Inflation Rate and a 7,1% Discount Rate in a Raw model

At 1% inflation rate and 7,1% of discount rate, as shown in Table 3.15, the raw simulation is still attractive, with a 119 786 \in NPV, a payback in 8 years, an IRR of 10% and a LCOE of 0,131 \in /kWh. This last simulation could be considered as the most pessimistic one.

Table 3.15: Raw Financial Simulation at 1% Inflation Rate and 7,1% Discount Rate.

							Units
SSAD Type	11	22	33	44	60	74	kW
NPV	-128 997	-60 421	-43 696	-19 325	95 207	119 786	€
IRR	-2%	4%	5%	6%	10%	10%	
Payback	>20	14	13	12	11	8	Years
LCOE	0,351	0,231	0,191	0,170	0,146	0,131	€/kWh

3.9.3 Sensitivity Summary

Overall, considering the 74 kW plant, the lowest values found for the sensitivity simulations are a NPV of 119 786 €, an IRR of 8%, a payback period of 8 years and a LCOE of 0,132 €/kWh. The key takeaway of all these simulations is that the 74 kW installation wouldn't be very sensitive to a 1% change in either inflation or discount rate. The 74 kW project can therefore be considered as a safe investment for Agro ABA.

3.10 Market Overview: SWOT Matrix

The following SWOT matrix encompasses all the key aspects developed in the Portuguese market reasearch.

	Strengths	Weaknesses
	Political motivation to	Voluntary Carbon Market
	create renewable energy	still under development;
	communities;	Farmers need cooling
	Simplified and Accessible	solutions rather than heat.
	Paperwork. Attractive 8	solutions father than heat.
	years payback without	
	funding;	
Omnoutunities		W/O Strategy Amalysis
Opportunities Small number of	S/O Strategy Analysis	W/O Strategy Analysis The Environmental Fund
	With a strong interest of	
competitors;	Municipalities to develop	provides farmers with a
Environmental fund	energy communities and	very interesting 200 000 €
support up to 200 000 €;	simplified paperwork,	support for the creation
Guaranteed 0,1217 €/kWh	Biolectric could easily	of renewable energy
FIT;	take over the Portuguese	communities, which
Electricity price at Agro	market and become the	compensates the fact that
ABA (0,185 €/kWh) well	major player in the country.	they can't yet sell carbon
over LCOE (0,096 €/kWh);	959 farmers are looking for	credits on the voluntary
959 Dairy Farms on the	opportunities to diversify	market. The attractive
Mainland (50 to 300+	revenue streams, and	FIT and LCOE coupled
cows); Low milk prices	Equiporave is able to	with high electricity price
and farms getting	provide turnkey projects	of 0,185 €/kWh at the
bigger (100+ cows per	with its own workforce	farm turn the project
farm);	and engineers.	attractive even without
Local company interested	-	taking advantage of the
in presenting the SSAD		heat.
plant by Biolectric to		
local clients (Equiporave).		
Threats	S/T Strategy Analysis	W/T Strategy Analysis
Financial simulation	The strong motivation of	AD plants provide farmers
highly dependent on FIT;	the EU to turn Europe	with a great solution to
Some potential competitors	resilient energy-wise	reduce manure volumes
already well deployed	should drive FIT levels	while producing electricity
(Genia Global Energy	up.	with an interesting 8
& Sotecnisol).	Competitors are not yet	years minimum payback.
	involved in SSAD plants for	Equiporave can help
	dairy farms in Portugal,	Biolectric take over the
	the 8 years payback should	market, and FIT might
	be enough to stay	not be as important
	competitive.	if AD plants are part
	competitive.	of energy communities.
		or energy communities.

Business Case: East Coast USA

The following chapter is dedicated to evaluating the potential of the USA market for the implementation of SSAD plants by Biolectric in dairy farms. Given the size of this market, and the fact that dairy farms in the USA are generally much larger than European ones, Biolectric suggested to select five states. These five states must be located on the East Coast of the USA, where dairy farms sizes are comparable to European ones, and, if possible, the states should be as close as possible from one another. The following business case will therefore cover the states of Vermont, New York, Pennsylvania, Virginia and Ohio, as shown in green in Figure 4.1. The choice of these states was based on the number of dairy cows per state, as found in Table 4.1, this being the combination of neighboring states with the most dairy cows on the East Coast (USDA, 2022).

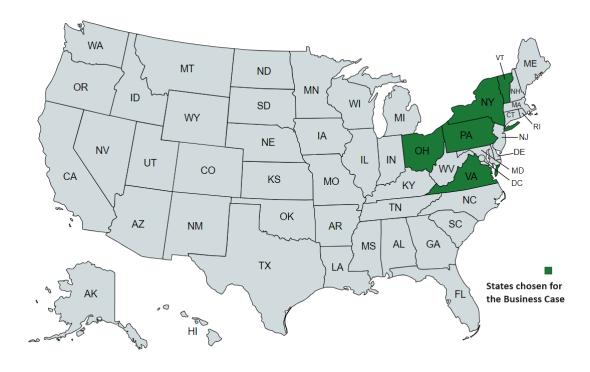


Figure 4.1: USA Business Case Map. Adapted from ("MapChart - USA", 2023).

East Coast States	Number of Dairy Cows				
New York	630 000				
Pennsylvania	465 000				
Ohio	250 000				
Vermont	118 000				
Georgia	92 000				
Florida	92 000				
Virginia	67 000				
Kentucky	45 000				
Maryland	40 000				
North Carolina	39 000				
Maine	25 000				
Connecticut	18 500				
New Hampshire	13 118				
Massachussets	9 000				
South Carolina	9 000				
West Virginia	5 000				
New Jersey	4 100				
Delaware	2 600				
Rhode Island	500				
Total	1 924 818				

Table 4.1: Number of Dairy Cows per State (USDA, 2022)

4.1 USA Energy Market

4.1.1 Energy Mix

The 2022 USA energy mix, as shown in Figure 4.2, was composed of 36% of petroleum, 33% of Natural Gas (NG), 10% of coal, 8% of nuclear, and 13% of renewable energy. In total, fossil fuels therefore accounted for 79% of USA's energy mix. Renewable energy is mainly composed of biomass, 5% and wind, 4%. Solar and hydroelectric only represent 2% each, and geothermal is negligible.

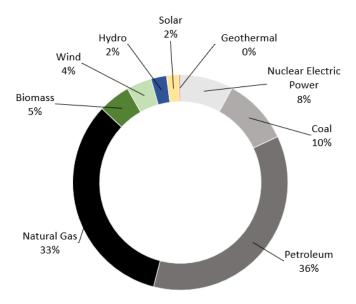


Figure 4.2: USA 2022 Energy Mix. Adapted from (U.S. EIA, 2022b).

4.1.2 Renewable Energy Potential

The Inflation Reduction Act (IRA) of 2022 signed by President Biden has the ambition to promote clean energy, enhance household energy production and address global warming (Roy et al., 2022). In practice, the USA government will fund, between others, renewable energy projects, including AD plants. In total, the amount funded by the IRA is 1 721 632 500 \$ and funds up to 50% of the projects cost share. The IRA also proposes a tax credit for clean electricity production, and allows monetization of that credit to sell it (Bistline et al., 2023).

4.1.2.1 Qualified Biogas Property

Section 48 (A)(3) of the IRA mentions biogas plants as qualifying for Investment Tax Credit (ITC). Eligible biogas plants defined under this section should convert biomass into a gas containing a minimum of 52% CH_4 in volume¹, and use this gas for sale or productive use. Additionally, Section 48 suggests that these biogas plants are eligible as "Qualified Biogas Property"until 31 of December of 2024. After that date, new biogas constructions will not qualify for ITC under that amendment (U.S. Congress, 2023b).

4.1.3 Electricity Prices

The electricity prices of both buying and selling activities play a major role in the attractiveness of the business cases. These prices not only vary from one state to another, they fluctuate through the year and are dependent of the type of sector (residential, commercial, industrial). Table 4.2 shows a 2022 per state electricity average buying price. All studied states have defined a net metering tariff, where prosumers pay for the difference between produced and consumed electricity. The net metering mechanism is enabled by an energy meter that spins in both directions and therefore counts energy fluxes both from the grid and to the grid (Poullikkas et al., 2013). In the state of Vermont, farmers who install an AD plant can opt for either a net metering mechanism or a FIT at 0,145 \$/kWh secured for 20 years.

Table 4.2: Average Electricity Buying Prices (U.S. EIA, 2022a)

States	Prices (\$/kWh)
New York	0,1833
Vermont	0,1699
Pennsylvania	0,1186
Virginia	0,1075
Ohio	0,1064

 $^{^{1}}$ In ideal conditions, the Biolectric plant would produce a biogas containing 60% of CH_{4} in volume, as referred to in Section 2.3.2.1.

297

202 099

226

287 410

8 587

1 362 511

4.2 Biolectric Market Description & Sizing

4.2.1 Number of Dairy Cows and Farms

N° Exploitations

N° Cows

N° Cows

N° Cows

Exploitations

Exploitations

500 to 999

≥1 000

Totals

In total, as shown in Table 4.1, the East Coast of the USA is composed of 1 924 818 dairy cows. The five states selected for the analysis account for 79% of the total East Coast dairy cows with 1 530 000 cows. Farms from 50 to 1 000+ cows own a total of 1 362 511 cows in the five states, divided into 8 587 farms, as shown in Table 4.3. All in all, New York is the state with the most dairy farms with a total of 2 309 farms, and the most dairy cows with a total of 504 412 heads. The most represented size category in the five states is the 50 to 99 cows category with a total of 5 078 farms and 340 867 dairy cows. On an international point view, as shown in Figure 4.3, the cow population on the five selected states is 13% lower than the one of the Netherlands, 150% higher than the one in Belgium and 690% higher than the one in Portugal².

Vermont Size Categories New York Pennsylvania Virginia Ohio Totals 50 to 99 N° Exploitations 1 295 255 2 674 189 665 5 078 17 953 N° Cows 85 167 178 982 13 652 45 113 340 867 100 to 199 N° Exploitations 453 124 956 356 2 111 122 162 29 385 47 870 N° Cows 60 673 16 861 276 951 255 200 to 499 N° Exploitations 278 86 179 875 49 757 N° Cows 84 429 26 551 7264521 802 255 184

38

26 723

21

34 381

524

122 469

62

41 622

24

39 470

3 971

454 881

15

10 078

5

508

74 917

41

25 961

34

37 131

1 275

205 832

141

97 715

142

176 428

2 309

504 412

Table 4.3: Size Distribution of Dairy Farms on the East Coast of USA (USDA, 2017)

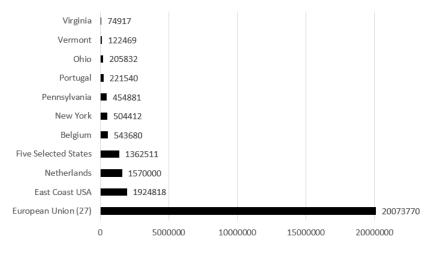


Figure 4.3: Number of Dairy Cows in the East Coast USA International Comparison.

²Note that in Figure 4.3 the cow populations considered for USA states only referred to farms with more than 50 cows, whereas the cow populations in all other countries represent the total population.

4.2.2 Milk Prices and Milk Yields

In the past decade, milk prices have fluctuated between 13.6 / cwt and 27.2 / cwt, which represents a milk price between 0.27 and 0.54 / kg 3 . Similarly to European markets, milk prices in the USA rose significantly in 2022 with a 53% increase compared to 2021, and broke the decade record at 0.54 / kg (USDA, 2024b). Milk yields observed in the USA are much higher than the ones found in Europe. In 2023, milk yields fluctuated between 10,3 and 11,6 t/year (USDA, 2024a).

4.3 Predicted Evolution of the Dairy Sector

The USA dairy sector has been evolving towards increasing milk yields and increasing levels of automation in the past 50 years. In the future, smaller farms are expected to incorporate greater levels of lateral integration to stay competitive (University of Minnesota Extension, 2019). Overall, the dairy sector tendency is similar to the one in Europe, with increasing average farm sizes, and decreasing number of farms (USDA, 2023). From 2007 to 2017, the number of dairy farms from 50 to 1 000+ cows decreased nearly 22%. In the same time frame, the national percentage of farms from 50 to 500 cows decreased 15% and the percentage of farms above 500 cows increased 2% (USDA, 2020). Overall, the USA dairy sector is evolving towards more specialized farms, with high milk yields, high automation requirements and increasing needs of farm management performance. The SSAD plant by Biolectric could therefore find its path on the USA market by providing small-scale farmers with new revenue streams based on cattle manure while optimizing manure management on the farm.

4.4 Required Paperwork

Permits and licenses are most often issued on a state to state level. Requirements may therefore vary from state to state. On an AD plant project point of view, it is advised to elect a team that will be responsible for gathering all permits, and make sure they are handed in on time. In some cases, a specialized third-party can be hired to make sure the process is smooth. The project managers should consider a time frame between 6 to 18 month to assess all permits (U.S. Environmental Protection Agency, 2020).

4.4.1 Air Quality

Air quality permit is due to ensure the biogas used in engines for combustion emits a limited quantity of NO_x , H_2S and SO_x . Choosing an engine that minimizes NO_x emissions might eliminate some permit requirements. Air quality permitting scheme is composed of a preconstruction permitting program called New Source Review (NSR) and an operating

³An exchange rate of 0,8897€/\$ computed on the 17/07/2023 was considered.

permits program called Title V (U.S. Environmental Protection Agency, 2020). After a formal conversation with Virginia Department of Agriculture and Consumer Services (VDACS) Commissioner Joseph W. Guthrie, the SSAD plant by Biolectric would fall into synthetic minor air permitting requirements in the state of Virginia, which includes a minor NSR permit with a fixed first fee of 4 018 \$ in 2024, and an annual Consumer Price Index (CPI) adjusted maintenance fee of 669 \$ (VDEQ, 2023).

4.4.1.1 New Source Review

The NSR program is a permit usually required for large industrial installations. In some states, AD plants might require to present a NSR permit to ensure pollutants regulated by the National Ambient Air Quality Standards (NAAQS) are monitored. The main pollutants targeted by the NAAQS are O_3 , CO, NO_x , SO_x , particulate matter and lead (U.S. Environmental Protection Agency, 2020).

4.4.1.2 Title V

Title V is a permit usually issued by the state. The permit is required to installations that may emit one or more of the pollutants defined by the NAAQS at a level superior or equal to 100 tonnes per year. Project managers should apply for Title V air pollutant permit in the 12 first month of the installation operation (U.S. Environmental Protection Agency, 2020).

4.4.2 Water Quality

Project constructions that impact more than 1 acre (4 047 m²) of land may require a stormwater discharge permit from the National Pollutant Discharge Elimination System (NPDES) during the construction phase. On a national point of view, no specific water-related permits are needed for AD plants. However, the addition of an AD plant to an industrial installation might require the modification of the NPDES of that installation. Each state is responsible for regulating its own water quality, therefore water-related permits for AD plants may be required in some states. In some cases, special water-related permits are required for co-digestion of manure and other feedstocks. AD plants require to update the farm's Comprehensive Nutrient Management Plan (CNMP) (U.S. Environmental Protection Agency, 2020).

4.4.3 Water Supply

Some locations may need to add water to the feedstock to dilute it and make it pumpable. In that case, water from groundsource may be needed. Some permits may be necessary in the case of drilling a well, or even just for water use. For surface water use, permits may also be required on a state to state basis (U.S. Environmental Protection Agency, 2020).

4.4.4 Solid Waste

Solid waste permits must align with Resource Conservation and Recovery Act (RCRA) regulations. In many states, AD plants operating with manure only feedstock don't require any solid waste permit. However, many states require solid waste permits in the case of co-digested feedstocks and off-site waste (U.S. Environmental Protection Agency, 2020).

4.4.5 Land Use

Land use is defined in community land use regulations and is essential in understanding whether the AD plant can or can't be installed in the studied area. Usually, farms are located on zoning and land areas where the development of AD plants is authorized (U.S. Environmental Protection Agency, 2020).

4.4.6 Co-Digestion Feedstock

The co-digestion feedstock related permits vary from one state to another and are updated over time. Some states allow a certain quantity of off-farm feedstock to be co-digested without the need of a solid waste permit, others don't (U.S. Environmental Protection Agency, 2020).

4.4.7 Additional Permitting

In some cases, additional permitting could be required. Location specific permits could include noise level control, environmental impact study, wetland delineation study and others (U.S. Environmental Protection Agency, 2020).

4.5 Investment Support

4.5.1 Electricity Production Tax Credit

The Electricity Production Tax Credit (PTC) is a tax credit provided to specific renewable electricity producers under the section 45 of USA tax code (U.S. Congress, 2022). The PTC can be sold over a period of 10 years after installation of the equipment, and currently stands at price of 0,026 \$/kWh for AD plants (U.S. Environmental Protection Agency, 2023b).

4.5.2 Investment Tax Credit

ITC is a tax credit incentive covered in Section 48 of USA tax code that can cover up to 50% of the qualified investment in the case of AD plants. The base value of the tax credit is actually 6%, and provided the project doesn't exceed 1 MW of electrical or thermal output power, it can be raised up to 30%. The project can also benefit from a 10% bonus if it uses domestic content produced in the USA and another 10% if it incorporates the

installation in an energy community, as defined in Sections 4.5.2.1 and 4.5.2.2 (DSIRE, 2023d) respectively.

4.5.2.1 Domestic Product

Qualified facilities that can certify any steel, iron or manufactured product were produced in the USA and used as components of the facility may qualify for an extra 10% in ITC (U.S. Congress, 2023a). All the above products should align with general requirements defined in title 49 of the Code of Federal Regulations (U.S. Government Publishing Office, 2023).

4.5.2.2 Energy Community

An energy community is defined as a brownfield site, a metropolitan or non-metropolitan statistical area, that from 2009, has or has had a minimum of 0,17% direct employment or a minimum of 25% local tax revenues in activities of transport or storage of coal, oil or natural gas. Additionally, the location should have a unemployment rate above national averages. To end with, a coal mine should have been closed in the location since December 1999, or a coal-fired electrical unit closed after December 2009 (U.S. Congress, 2023a).

4.5.3 Renewable Energy Certificates

Renewable Energy Certificates (RECs) are certificates that serve as economic instruments to characterize the social, environmental and other non financial benefits of renewable energy production. These RECs certify each MWh of energy injected on the grid comes from a renewable energy source (U.S. Environmental Protection Agency, 2023c). The certificates can be traded on both voluntary and compliance markets, in terms of turnover, the compliance market represents 95% of the RECs markets (SP Global Market Intelligence, 2022).

4.5.3.1 Voluntary RECs market

Electricity consumers can purchase RECs on the voluntary market and claim their personal input into energy transition and renewable energy development. These certificates are typically valued at a low price, and can change value in function of supply and demand, geography, purchasing volume, and other (U.S. Environmental Protection Agency, 2023a). In 2021, the average cost for voluntary RECs was estimated at 3 \$/certificate (SP Global Market Intelligence, 2022).

4.5.3.2 Compliance RECs market

In some cases, states define Renewable Portfolio Standards (RPS) which obligates natural gas, electricity and other utilities providers to either produce renewable energy, or buy RECs. Not all RECs meet the requirements of the compliance market, the ones who do

are typically sold at a much higher price than on voluntary markets (U.S. Environmental Protection Agency, 2023a). In 2021, the average cost for compliance RECs was estimated at 33,94 \$/certificate (SP Global Market Intelligence, 2022). Qualifying resources complying with RPS vary from state to state, but AD plants used to produce electricity are part of the RPS in New York (NYSDPS, 2023), Vermont (Vermont Legislature, 2019), Pennsylvania (DSIRE, 2023c), Virginia (DSIRE, 2023a) and Ohio (DSIRE, 2023b).

4.5.4 Carbon Offset Credits

Carbon offset credits are meant to certify a specific installation reduces GHG emissions, and can be traded. These credits represent a measurable amount of avoided GHG emissions in terms of Metric Ton (Mt) of CO_2e . After verification, a project that aims to reduce GHG emissions can receive a carbon credit and sell it on carbon markets to individuals, companies, or institutions that want to offset their carbon emissions. Because AD plants assure CH_4 is recovered, they qualify for carbon offset credits. Individuals or organizations can buy these credits as a way to compensate for their environmental impact (U.S. Environmental Protection Agency, 2020). The carbon offset credit market is composed of both compliance and voluntary markets (U.S. Department of Agriculture, 2023).

4.5.4.1 Compliance Carbon Market

The USA compliance carbon market is composed of four specific markets operating in different regions of the country. The compliance market was responsible for issuing 90% of all the carbon credits related to manure digesters which generate between 1 500 and 70 000 Mt of CO_2e per year. In California, carbon credits can be exchanged through the California's Cap-and-Trade Program. In ten years, from 2013 to 2023, the Californian program generated 9 Million Metric Ton $(MMt)CO_2e$ in carbon offsets from livestock digesters among many others.

The Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA) set a goal to achieve a 2% annual fuel efficiency improvement until 2050 and limited the amount of aviation related GHG emissions to those of 2020. The aviation sector will be able to buy carbon offset credits under the same conditions as the Cap-and-Trade, which includes livestock digesters, and will start in 2024.

The Regional Greenhouse Gas Initiative (RGGI) is a Cap-and-Trade program for the northeast states power sector. The program includes, in theory, carbon offsets from agricultural methane reductions, but, since it started, in 2009, no credits have been related to agricultural methane reductions and there are no intentions to expand the program in the future.

Washington's Cap-and-Invest program was launched in 2021 and defines rules to obligate businesses to offset their GHG emissions. The credits purchased under the Washington program could be manure related, but they should demonstrate a direct

benefit to the Washington State in terms of GHG emission reductions. In practice, the projects should be located in the state, or nearby (U.S. Department of Agriculture, 2023).

4.5.4.2 Voluntary Carbon Market

The voluntary carbon market is used to trade carbon credits within specific program protocols, to individuals or businesses that want to mitigate their carbon footprint. The programs can partner with specific agriculture corporations and differentiate themselves through integrity, marketing, trading platforms, and others. The programs may refer to their carbon credits as tokens or certificates. Programs often operate as project developers, where they ensure the installation is being developed in a way compatible with their protocols, and therefore ensure the carbon credits will be emitted. Sometimes, the programs even provide upfront financing (U.S. Department of Agriculture, 2023). Some examples of the latest programs launched are Nutrien in 2022 (Nutrien, 2023), ESMC in 2022 (Ecosystem Services Market, 2023), Bayer Carbon Program in 2022 (Bayer, 2023) and Locus Ag's CarbonNOW in 2021 (Nutrien, 2023).

4.5.4.3 Project Developers

Projects developers initiate and command projects together with project decision makers to ensure third-party verification bodies will issue carbon credits. These developers work both on the compliance and voluntary markets. In total, 150 developers were identified in the fields of agriculture, forestry and land use in the last ten years but only 20 of them originated carbon credits to more than 50% of the projects. Some developers might be specialized in a type of projects, such as manure AD plants (U.S. Department of Agriculture, 2023).

4.5.4.4 Third-Party Verification Bodies

Carbon programs may require third-party verification from an independent body before issuing a carbon credit. In some cases, the program defines specific rules to elect the verification body. In total, 16 third-parties were identified by the California Air Resources Board (CARB) in 2023 and are authorized to verify manure AD plants projects. In 2017, CARB created a dairy cow manure related credit using the same program as Cap-and-Trade, called Low Carbon Fuel Standard (LCFS) credit. The aim was to create incentives for using new types of fuel while capturing CH_4 emitted in dairy cows manure (U.S. Department of Agriculture, 2023).

4.5.4.5 Carbon Credits Prices

Carbon credits prices are difficult to evaluate, they depend on the year the project has been implemented (which is referred to as the carbon credit vintage literature wise), the sector it is affected to, the size of the project, the market it is being traded on and many other factors. In an article published by the World Bank in 2023, the carbon credits prices traded on the California ETS, Washington ETS, RGGI ETS and the Massachusetts ETS are approximated at respectively 25, 20, 10 and 8 \$/tCO₂e (World Bank Group, 2023). Note that the CORSIA ETS is not referred to by the World Bank yet, and that the Massachusetts ETS is actually part of the RGGI (Massachusetts Government, 2023).

4.6 Competitors & Strategic Partners

4.6.1 Ben & Jerry's

Ben & Jerry's is an ice-cream producer owned by Unilever that started its journey in Vermont back in 1978. Ben & Jerry's is already an official Biolectric partner. The ice-cream maker developed a series of quality development programs for dairy farms where they support animal well-being and environmental friendly practices. Farms can for instance be part of the caring dairy program where they have to respect a series of operational criteria like milking with dignity, be labeled by the Global Animal Partnership and others. Ben & Jerry's incentives farmers to work close with the University of Vermont and other local Universities to foster development (Ben & Jerry's, 2024). With a strategic implementation in the dairy sector of the state of Vermont, a state with more than 120 000 dairy cows, Ben & Jerry's is a crucial partner for Biolectric.

4.6.2 Martin Energy Group

Martin Energy Group offers a wide variety of energy solutions including CHP systems and AD plant design and construction. The group claims 30 years experience and hundreds of installations worldwide. Martin Energy group provides project backup and can help during the phases of startup, digester operation, troubleshooting, training and warranty support. Martin Energy Group was involved in several biogas projects in the USA, one of them being a complete mix digester at Rockwood dairy (Pennsylvania) in 2018. The Rockwood dairy farm was composed of 600 cows and co-digested manure with landfill food waste to power the 450 kW plant. In their product portfolio, Martin Energy Group proposes a mini digester suited for dairy farms between 50 to 240 dairy cows ranging from 10 to 44 kW (Martin Energy Group, 2024). Additionally, after a formal conversation with Biolectric's Commercial Director Klaas Vanhee, Martin Energy Group already bought one Biolectric SSAD plant in 2018 and installed it in 2020. Martin Energy Group can therefore be considered as a key partner to Biolectric, being that they are interested in the Belgian SSAD plant and they can ensure installation and maintenance.

4.6.3 California Bioenergy

California Bioenergy is a western USA operating company founded in 2006 that develops dairy digesters projects. Their website mentions three main kind of projects where they

either inject upgraded biogas into national gas grids for vehicle use, transport the upgraded biogas out of the farm for later vehicle use, or use the biogas on the farm to produce electricity via a fuel-cell or internal combustion engine. California Bioenergy works closely with a company called 4Creeks that provides them with all the permitting support they need to develop their projects. Although California Bioenergy operates in the same sector as Biolectric, they seem to focus on much larger projects for big dairy farms and operate exclusively in the west (CalBioEnergy, 2024).

4.6.4 Vanguard Renewables

Vanguard Renewables was founded in 2014 and provides, between others, farm solutions for manure and digestate management. Vanguard Renewables is part of the Farm Powered Strategic Alliance that aims to reduce food waste, increase recycling solutions, and increase renewable energy production in the USA. Interestingly, Unilever is also part of that alliance. Vanguard Renewables provides AD plants for all dairy farms sizes including small to medium farms. Their solution includes co-digestion of food and beverage waste, and is suitable for farms from 350 to 10 000+ dairy cows. The company operates in the whole country, and has already developed a manure only project on the East Coast (Georgia) that processes up to 150 000 tons of dairy manure a year (Vanguard Renewables, 2024). Vanguard Renewables can therefore be considered as a direct competitor to Biolectric. The company is already well deployed on the market, has been working on a wide variety of project sizes and could therefore easily compete with Biolectric on the SSAD plant market.

4.6.5 CH-Four Biogas

CH-Four is a leader in the North-American biogas market since it launched in 2009. The company designs and provides consulting services for AD plants. Their services include project management, engineering, otpimization, development and construction assistance in the agricultural sector and for Municipalities. The company already designed and build more than 25 AD plants for farm use in Canada, USA, Chile, Argentina and Jamaica (CHFour, 2024). In 2010, CH-Four Biogas was involved in the design of an AD plant at a 390 dairy cows farm called Wagner Farms. The plant had an output power of 100 kW and could process nearly 24 m³ of manure per day (Jennifer Pronto et al., 2014). CH-Four could be a strategic partner for Biolectric, adding the Belgian SSAD in their product portfolio, as they already operate in the same dairy farm size category and benefit from a market presence in both Canada and USA.

4.7 Practical Case Study: A dairy farm in Vermont

This section is dedicated to simulating a business case in the state of Vermont (USA) and understanding how a SSAD plant by Biolectric would adapt itslelf to the USA market. The complete financial simulations can be found in Annex III.

4.7.1 Permitting Summary

Specific permitting for the implementation of SSAD plants on dairy farms is still quite ambiguous and rather difficult to numerate in all five states of the market research. However, many AD plants projects have been conducted all over the USA in the past, and their development is often described and published through online documents. In the state of Vermont, a 370 kW AD plant was installed in 2014 and required the permitting summarized in Table 4.4. The AD plant installed was used to process manure from a dairy farm and co-digest food waste from the industry. Additionally, a digested solid fraction divider was installed to produce cow bedding for the farm. Overall, the installation is five times as powerful as the 74 kW SSAD plant by Biolectric and performs co-digestion from off-farm products, which should be a reason for extra permitting as seen in Section 4.4. After a formal conversation with VDACS Commissioner Joseph W. Guthrie, in the state of Virginia, the SSAD plant by Biolectric would fall into synthetic minor air permitting and include a NSR permit with a fixed cost of 4 018 \$ in 2024 and a CPI yearly adjusted maintenance fee of 669 \$ (VDEQ, 2023). With no other price information found, the permitting fees used in the business case in Vermont will base themselves on the information provided by Commissioner Joseph W. Guthrie. In the year of implementation, a 5 000 \$ permitting fee is used, and a 1 000 \$ yearly fee is used for the next 20 years of the project.

Table 4.4: Vermont Specific Permitting (Vermont Tech, 2016).

State	Permits	Agencies
Vermont	Certificate of Public Good	Vermont Agency of Agriculture Food and Markets
	Nutrient Management Plan	Vermont Agency of Agriculture Food and Markets
	Medium Farm Operation Certification	Vermont Agency of Agriculture Food and Markets
	National Environmental Policy Act	Department of Energy
	Public Safety Permit	Vermont Department of Public Safety
	Construction General Permit	Vermont Agency of Natural Resources
	Air Pollution Control Permit	Vermont Agency of Natural Resources
	Solid Waste Certification	Vermont Agency of Natural Resources
	Effluent Storage Certification	Natural Resource Conservation Service
	Power Interconnection Agreement	e.g Green Mountain Power

4.7.2 Project Costs

The costs considered in the business case, as shown in Table 4.5 include the price of the AD plant, its installation, maintenance, active charcoal, insurance, grid connecting and measuring devices, permitting and barn adaptations. The AD plant cost includes the price of the AD plant and its installation, the transportation costs, the project management and the first year of maintenance. The maintenance and active charcoal prices are capitalized throughout the project at a 2% inflation rate found in Section 2.5.2. The grid connectors and measuring devices are considered to have a year zero cost shown in 4.5 and an annual 2 000 \$ extra was added to ensure their maintenance. Permitting fees were estimated as described in Section 4.7.1.

							Units
SSAD Type	11	22	33	44	60	74	kW
N° of cows	60	120	180	240	325	400	
AD Plant	200 000	270 000	350 000	420 000	525 000	580 000	\$
Maintenance	15 000	20 000	25 000	28 000	32 000	40 000	\$/year
Active Charcoal	2 000	2 000	2 000	2 500	3 000	3 500	\$/year
Insurance (% of AD Plant Price)	0,5%	0,5%	0,5%	0,5%	0,5%	0,5%	\$/year
Grid Connection & Measuring	10 000	10 000	15 000	20 000	30 000	30 000	\$
Connectors Maintenance	2 000	2 000	2 000	2 000	2 000	2 000	\$/year
Fixed Permitting	5 000	5 000	5 000	5 000	5 000	5 000	\$
Annual Permitting	1 000	1 000	1 000	1 000	1 000	1 000	\$/year
Barn Adaptation	75 000	75 000	80 000	80 000	85 000	85 000	\$

Table 4.5: SSAD Installation Costs in Vermont.

4.7.3 Investment Support

The investment support used in the business case includes a FIT, a voluntary GMP, a PTC, an ITC, selling RECs and selling carbon credits.

- FIT: The state of Vermont defined a 2022 price cap of 0,208 \$/kWh for food waste AD (DSIRE, 2024). Unfortunetly, it is most likely the Biolectric AD plant won't fit the category. For the business case, a 0,145 \$/kWh FIT by the Vermont Standard Offer program is used and capitalized throughout the project at a 2% inflation rate found in Section 2.5.2 (VDEC, 2024).
- Cow Power Program: Green Mountain Power provides an extra FIT of 0,04 \$/kWh for electricity produced by cow powered AD (VDEC, 2024). As referred to in Section 4.1.3, farmers in Vermont can choose between a FIT or a net-metering count. The cow power program is not applicable in farms with net-metering, and therefore FIT at 0,145 \$/kWh is more interesting than the 0,1699 \$/kWh net-metering tariff presented in Table 4.2. The extra FIT is also capitalized throughout the project at a 2% inflation rate found in Section 2.5.2.
- PTC: The PTC of 0,026 \$/kWh found in Section 4.5.1 is used during the ten first years of the project.
- ITC: An ITC of 30% of the qualified investment is used in the year of implementation of the project as defined in Section 4.5.2.
- RECs: RECs are considered to be sold on the compliance market at a conservative value of 30 \$/MWh, as defined in Section 4.5.3.
- Carbon Credits: Carbon Credits are considered to be sold on the compliance market at a conservative price of 10 \$/tCO₂e. The annual tonnes CO₂e were computed using a yearly 2,4 tCO₂e/cow emission approximation. On average, milk cows with a milk yield of 7 t/year will emit 2,4 tCO₂e a year (FAO, 1996). The milk yield of 7 t/year is lower than the 7,2 t/year European average defined in Section 3.2.3, which could be considered conservative.

4.7.4 Financial Simulation: A typical Vermont dairy farm

The following comparison between SSAD plants considers them as projects and compares them as shown in Table 4.6, using NPV, IRR, payback period and LCOE indicators. The project simulations are conducted over a period of 20 years, the discount rate used to compute the NPV, as defined in Section 2.5.1, is settled at 6,19% and the annual inflation rate of 2% is used to capitalize some costs and electricity prices, as defined in Section 2.5.2. The SSAD engines are considered to work 8 000 h/year. The full project simulations can be found in Annex III.

							Units
SSAD Type	11	22	33	44	60	74	kW
N° of cows	60	120	180	240	325	400	
Produced Gross Electricity	88 000	176 000	264 000	352 000	480 000	592 000	kWh/Year
Initial Investment	293 000	363 350	453 750	529 600	650 625	706 400	\$
NPV	-193 380	-29 774	117 079	292 711	545 250	751 995	\$
IRR	0%	5%	10%	14%	18%	21%	
Payback	>20	13	9	7	6	5	Years
LCOE	0,556	0,347	0,284	0,244	0,213	0,197	\$/kWh

Table 4.6: SSAD Financial Simulation in Vermont.

The final simulations in Table 4.6 show similar results to the ones in Section 3.8 of the Portuguese market. The 74 kW plant is the best option with a 5 years payback, a NPV of 751 995 \$, a 21% IRR and a 0,197 \$/kWh LCOE. The 11 kW and 22 kW plants do not show interesting outcomes with negative NPV. The main driver for negative NPV on both these smaller AD plants is the maintenance cost estimation in the USA that is much higher than in Portugal for instance. The simulations in Vermont were computed using all types of investment support. The simulation might not be as conservative as possible, and may be dependent of the carbon credits and RECs prices fluctuations. With the IRA signed by President Biden in 2022, it is most likely that the estimations of the FIT, PTC and ITC can be considered conservative. Additionally, no installation was considered as CHP, meaning no financial benefit was taken from the renewable heat produced. This could have been critical in the financial performance of the AD plants, and could have driven both the 11 kW and 22 kW installations to positive NPV. However, the financial value of the heat generated by the AD is strongly dependent on the farm organization. Using electrical output only was therefore considered more conservative in this market research.

4.8 Sensitivity Analysis of Financial Simulations

4.8.1 Inflation Rate Previsions

The 2% inflation rate suggested in Section 2.5.2 and used in Section 4.7.4 might not be an accurate estimation of what the future inflation will be. In order to make sure the financial simulations stay as conservative as possible, we hereby measured the sensitivity of the financial simulations to the inflation rate. Note that the recent economical conjuncture

has been tricky and characterized by highly volatile markets. In 2021, inflation forecasters made errors up to nearly 3% in estimating inflation for the year (European Central Bank, 2022). This being said, for the sake of this simulation, a 1% error is considered acceptable given the 20 years of project life.

4.8.1.1 Financial Simulation at 1% Inflation Rate

At 1% of inflation rate, as shown in Table 4.7, the simulations stay attractive above 22 kW with paybacks under 9 years. The 33 kW plant might be a little tight though with a NPV at 80 128 \$ and a LCOE at 0,274 \$/kWh. Taking advantage of the heat would make this 33 kW plant interesting if the inflation was to drop at 1%.

SSAD Type 22 33 44 60 74 kW 11 NPV -197 134 237 564 -50 126 80 128 463 059 651 002 €. IRR 9% 13% 20% 0% 4% 17% 9 Payback >20 14 7 6 5 Years 0,274 0,235 LCOE 0.537 0.334 0,206 0,190 €/kWh

Table 4.7: Financial Simulation at 1% Inflation Rate in Vermont.

4.8.1.2 Financial Simulation at 3% Inflation Rate

At 3% of inflation rate, as shown in Table 3.9, the simulations stay attractive above 22 kW with paybacks under 8 years.

							Units
SSAD Type	11	22	33	44	60	74	kW
NPV	-189 186	-6 973	158 487	354 522	637 382	865 202	€
IRR	0%	6%	11%	15%	19%	22%	
Payback	>20	12	8	7	6	5	Years
LCOE	0,578	0,361	0,296	0,254	0,221	0,206	€/kWh

Table 4.8: Financial Simulation at 3% Inflation Rate in Vermont.

4.8.2 Discount Rate Previsions

The 6,19% discount rate suggested in Section 2.5.1 and used in Section 4.7.4 might not be an accurate estimation of the USA agricultural industry WACC. In order to make sure the financial simulations stay as conservative as possible, we hereby measured the sensitivity of the financial simulations to the discount rate. Given the fact that the 74 kW plant is the best financial choice in Table 4.6, this analysis will focus on the 74 kW plant. For the sake of this simulation, a 1% error in the discount rate is considered acceptable. We will therefore use 5,19% and 7,19% to characterize the sensitivity of the simulations.

4.8.2.1 Financial Simulation at 5,19% Discount Rate

At 5,19% of discount rate, as shown in Table 4.9, the simulations stay attractive above 22 kW with paybacks under 9 years.

Table 4.9: Financial Simulation at 5,19% Discount Rate in Vermont.

							Units
SSAD Type	11	22	33	44	60	74	kW
NPV	-193 517	-9 542	157 501	355 371	640 852	871 031	€
IRR	0%	5%	10%	14%	18%	21%	
Payback	>20	13	9	7	6	5	Years
LCOE	0,535	0,334	0,273	0,235	0,204	0,190	€/kWh

4.8.2.2 Financial Simulation at 7,19% Discount Rate

At 7,19% of discount rate, as shown in Table 4.10, the simulations stay attractive above 22 kW with paybacks under 9 years. However, the NPV of the 33 kW can be considered low at 81 865 \$, which would require giving value to the heat produced to make the simulation more attractive.

Table 4.10: Financial Simulation at 7,19% Discount Rate in Vermont.

							Units
SSAD Type	11	22	33	44	60	74	kW
NPV	-193 131	-47 342	81 865	238 057	461 807	648 034	€
IRR	0%	5%	10%	14%	18%	21%	
Payback	>20	13	9	7	6	5	Years
LCOE	0,578	0,360	0,295	0,254	0,222	0,205	€/kWh

4.8.2.3 Combining a 1% Inflation Rate and a 7,19% Discount Rate

At 1% inflation rate and 7,19% of discount rate, as shown in Table 4.11, the simulations stay attractive above 22 kW with paybacks under 9 years. However, at 49 266 \$ of NPV and 0,285 \$/kWh LCOE, the 33 kW requires to take advantage from the heat to make the simulation more attractive.

Table 4.11: Financial Simulation at 1% Inflation Rate and 7,19% Discount Rate in Vermont.

							Units
SSAD Type	11	22	33	44	60	74	kW
NPV	-196 454	-65 303	49 266	189 412	389 317	558 960	€
IRR	0%	4%	9%	13%	17%	20%	
Payback	>20	14	9	7	6	5	Years
LCOE	0,559	0,348	0,285	0,246	0,215	0,198	€/kWh

4.8.3 Sensitivity Summary

Overall, the lowest values found in plants above 22 kW are a NPV of 49 266 \$, an IRR of 9%, a payback in 9 years and a LCOE at 0,296 \$/kWh. The financial simulation in Section 4.7.4 is more positive than the worst results found in the sensitivity analysis. However, provided the farm owners use the AD plant heat, all installations above 22 kW can be considered an interesting investment. The less risky plant powers are the 44 kW, 60 kW and 74 kW ones, with simulations staying attractive with all kinds of inflation or discount rates fluctuations.

4.9 Market Overview: SWOT Matrix

The following SWOT matrix encompasses all the key aspects developed in the East Coast USA market reasearch.

Strengths

Market Size: The five states represent a market size comparable to the Netherlands; Most represented farm size category: 8 000+ farms (50 to 500 cows) own 870 000+ cows; Market concentration: New York and Pennsylvania account for nearly 1 000 000 cows (in 50 to 1 000+ heads dairy farms).

Weaknesses

Electricity prices look quite low compared to minimum LCOE (0,197 \$/kWh), therefore net-metering might not be an option. Eventual future plans of co-digestion are hard to set up due to high paperwork supplement.

Opportunities

IRA signed by President
Biden defines a
wide range of investment
support for AD plants;
Low milk prices and
farms getting bigger
will require innovation
in dairy farms;
Some key partners could
help quickly increasing
market shares (e.g. Ben
& Jerries, Martin Energy
Group, CH-Four Biogas);

S/O Strategy Analysis

Market size and market concentration can allow quicker territory deployment, thanks to key partners already well deployed on the studied market. 8 000+ farms in the right size category are looking to enhance their production performance.

W/O Strategy Analysis

Net metering might not be necessary, with IRA signed, FIT and FIT premiums make the business case more interesting. The high LCOE in the USA is a weakness, but many investment supports are already available and look easy to apply for.

Threats

Paperwork and their costs are unclear and may require an externalized team to work on; Vanguard Renewables has already developed SSAD plants and is already well installed on the market; Maintenance costs and overall service costs in the USA might be a LCOE killer; AD plants under 33 kW will struggle financially in cases where the farmer doesn't use heat.

S/T Strategy Analysis

With a market concentration in New York and Pennsylvania, Biolectric could specialize in the paperwork for those two states first and work from there for other states next. With a market size of +8 000 farms in 5 states, clients requirements might vary a lot. It should be possible to find farmers that need heat.

W/T Strategy Analysis Co-digestion isn't

Biolectric's focus at the moment, and if it was to be, key partners might be able to help on paperwork. Biolectric has a ready to work solution that needs little adaptation to clients, therefore could grow quicker than Vanguard Renewables. Also Vanguard focuses on co-digestion. With digestate usually used as bedding in the USA, why not study the development of a digestate dryer with AD heat?

General Conclusion and Future Works

5.1 General Conclusion

The general need to tackle worldwide GHG emissions, and build resilient energy systems has risen global interest over renewable energy sources. AD plants have the ability to provide dairy farmers with a solution for their manure management, while producing electricity, heat, and a nutrient rich digestate that can serve in a wide range of applications. The main goal of this thesis was to answer to the question: should the Belgian company Biolectric, selling SSAD plants for dairy farmers, consider to grow in Portgual and on the East Coast of the USA?

The answer to the question was divided into three main chapters. Section 2 defined the concept of AD, how to monitor AD, the factors that affect its performance and the number of AD plants across Portugal and USA. Additionally, Section 2 focused on defining how to add value to digestate, and provide farmers with a complete waste management solution from their manure. The Portuguese and the East Coast USA markets were then described in Sections 3 and 4 respectively, using key indicators such as the amount of dairy farms and dairy cows on each market, the paperwork required on each territory, energy mix and energy prices description, the milk prices and milk yields found on each market and their predicted evolution. Each one of the business cases was complemented by a practical case study where a financial adaptability test was conducted. In Portugal, the case study was performed at a dairy farm called Agro ABA, located in Torres Vedras. In the USA a case study was build from scratch in the state of Vermont.

Portugal has been betting on the development of renewable energy in the past decades and has reached an electrical energy mix composed of 49% of renewable electricity. Local municipalities are interested in developing REC and considerable incentives from the Environmental Fund push the market to invest in renewable energy solutions. A total of 64 AD plants have been reported in Portgual and have been used in applications such as agriculture, sewage and landfills. Although not very active in the SSAD market yet,

competitors exist and companies like Genia Global Energy and Sotecnisol might benefit from being already well established on the market. With 122 626 dairy cows on the mainland, distributed in 959 farms with a predominant size category of 100 to 199 heads, Portugal is a small market. Nevertheless, paperwork does not seem abundant at first sight, FIT is sensibly equal to the LCOE of the 74 kW plant, using no type of investment support, and without adding value to heat. Payback periods seem interesting, ranging from 8 to 13 years for the raw model, and from 6 to 7 years in the co-funded model. Additionally, the plant by Biolectric seems to fit the requirements of Agro ABA, a local 879 dairy cows farm. Being that Lisbon and Temse (Biolectric headquarters) are only separated by 2056 km, two countries, France already being a market where the company is well established, and Spain being a market with 800 000+ dairy cows, the recommendation would be to consider growing in Portgual. Once the first installation is sold, provided the customer requirements are met, and being that competitors are not yet active on the market, other farmers are expected to be willing to invest in a Biolectric plant.

Though traditionally relying on fossil fuels, USA has recently been betting on renewable energy too, with President Biden signing the IRA and defining a broad range of investment support for renewable energy projects. In some cases, projects can benefit from funding up to 50%. The East Coast of the USA is a big market, with 1 362 511 dairy cows distributed in 8 587 farms with a predominant size category of 50 to 99 cows. AD plants in the USA can benefit from a wide range of financial incentives, including PTC, ITC, RECs and Carbon Offset Credits. On a competitors point of view, some companies like Vanguard Renewables and CH-Four Biogas offer similar products, but the overall local partners already established should help growing quickly on the market. Unfortunately, electricity prices are not attractive in all states and usually lower than LCOE, with a maximum price found in New York at 0,1866 \$/kWh. Maintenance and paperwork predicted costs result in high LCOE for all installations. Paperwork is expected to be heavy and might require an external team to work on. Overall, payback periods are interesting for installations above 22 kW ranging from 5 to 13 years, but the NPV of the 22 kW installation in the case study of Vermont is not positive. Taking advantage of heat could make the smaller installation interesting, but these calculations were not performed in this thesis. The USA market is certainly moving towards making renewable energy sources interesting at scale, and has a sufficient amount of dairy cows, nevertheless, the decision to grow in the USA is complex. With higher paperwork and maintenance costs, and being that the five states territory is wide, Biolectric should further investigate workforce and paperwork costs. The market certainly has potential, and Biolectric would be able to provide farmers with an attractive financial and waste management solution, but being on the other side of the Atlantic, the recommendation would be to work with a partner abroad. Companies like CH-Four, Ben & Jerries, and Martin Energy Group already have a glimpse of how paperwork works in the USA, are already spread on the market and are interested in joining forces with Biolectric.

Portugal and USA are two very different markets, they differ in size, in financial

incentives, in the amount of paperwork, and represent different levels of difficulty to enter in. The market sizing matrix found in Figure 5.1 characterizes these differences ¹. The Portuguese market benefits from high government support, because paperwork has been simplified over the years, a legal framework for REC has been developed, and farmers can expect a significant financial support from the Environmental Fund. Additionally, the business case for the farmer is highly attractive, with LCOE values similar to FIT, resulting in payback periods between 6 to 13 years. Unfortunetly, the size of the market is small, as shown by the size of the Portuguese flag in Figure 5.1, it is estimated to represent half of Belgium's market. On the other hand, the five american states chosen, represented by the USA flag in Figure 5.1, benefit from an attractive business case for the farmer, with payback periods between 5 to 13 years, but suffer from higher paperwork. The government support in the USA is clearly positive, but the overall ambiguity around permitting and permitting fees are to be carefully analyzed. Nonetheless, the USA is a big market, with the five states chosen in the analysis representing a market size similar to the Netherlands.

Figure 5.1: Biolectric Market Sizing Matrix.

5.2 Future Works

AD plants technology has benefited from a significant amount of interest on a literature point of view, which significantly reduced the amount of research required in this thesis.

¹Belgium and Netherlands were added to Figure 5.1 to enable a size comparison, the business case attractiveness and government support in those countries wasn't studied in this thesis and were assumed high given that Biolectric already entered the markets.

Nevertheless, the results found in this thesis could be improved by the following future works:

Study the practical creation of a REC in Portugal

Further reasearch for the creation of a REC with an AD plant in Portugal could enhance the business case. During the thesis, Municipal authorities showed a real interest in developing REC. On a Municipal point of view, accepting various types or sources of feed stock in the AD could be a way to diversify revenue streams for the farmer and enhance circular economy.

Study diverse ways to use heat produced by AD

The engines used to burn biogas have an average electric efficiency of 30 %. Adding value to the heat produced makes sense not only on an environmental point of view, but also financially. In the litterature review of this thesis, we suggested the heat could be used for digestate drying. Finding a practical solution for the heat produced in cases where the farmer has no needs to heat water would turn smaller AD plants much more attractive financially and make AD plants much more interesting on a sustainability point of view.

Further investigate permitting and permitting fees in the USA

It has been difficult to estimate permitting fees in the USA. Overall, after a formal conversation with VDACS Commissioner Joseph W. Guthrie, paperwork seems accessible in the state of Virginia. Unfortunetly, the information provided doesn't fully align with a project description in Vermont (see Vermont Business Case in Section 4.7), which suggests there might be significant changes from one state to another. Carefully studying states one by one would help evaluating the potential of each state independently and provide Biolectric with a more conservative opinion of the USA market.

BIBLIOGRAPHY

- Anukam, A., Mohammadi, A., Naqvi, M., & Granström, K. (2019). A review of the chemistry of anaerobic digestion: Methods of accelerating and optimizing process efficiency. *Processes*, 7(8). https://doi.org/10.3390/pr7080504 (cit. on pp. 5, 14).
- APA. (2023). Mercado voluntário de carbono: Perspetivas e desafios. (Cit. on p. 26).
- Aviso n.º 9961/2016, Portugal (2016). https://files.diariodarepublica.pt/2s/2016/08/154 000000/2518225182.pdf (cit. on p. 26).
- Bayer. (2023). *Bayer Carbon Program: A New Revenue Stream for Farmers*. https://www.bayer.com/en/us/bayer-carbon-program-a-new-revenue-stream-for-farmers (cit. on p. 47).
- Ben & Jerry's. (2024). *Ben & jerry's about us.* https://www.benjerry.com/about-us (cit. on p. 48).
- Biolectric. (2022). *14 dec newsletter december* 2022 *trends impact awards podium*. Retrieved 2023-08-26, from https://biolectric.be/en/trends-impact-2/ (cit. on p. 2).
- Biolectric. (2023). Frequently Asked Questions can the plant also run on other feed material than manure? Retrieved 2023-04-24, from https://biolectric.be/en/frequently-asked-questions/ (cit. on pp. 10, 13).
- Bistline, J., Mehrotra, N., & Wolfram, C. (2023). *Economic implications of the climate provisions of the inflation reduction act* (tech. rep.). National Bureau of Economic Research. (Cit. on p. 40).
- Blowey, R., Wookey, J., Russell, L., & Goss, R. (2013). Dried manure solids as a bedding material for dairy cows. *The Veterinary Record*, 173(4), 99 (cit. on p. 12).
- Brander, M., & Davis, G. (2012). Greenhouse gases, co2, co2e, and carbon: What do all these terms mean. *Econometrica, White Papers* (cit. on p. 14).
- CalBioEnergy. (2024). Projects. https://calbioenergy.com/projects/ (cit. on p. 49).
- Carey, M. (2012). Climate and history: A critical review of historical climatology and climate change historiography. *Wiley Interdisciplinary Reviews: Climate Change*, *3*(3), 233–249 (cit. on p. 1).
- Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: A review. *Bioresource technology*, 99(10), 4044–4064 (cit. on p. 4).

- CHFour. (2024). CHFour Services. https://www.chfour.ca/Services.html (cit. on p. 49).
- Chiu, S. L., & Lo, I. M. (2016). Reviewing the anaerobic digestion and co-digestion process of food waste from the perspectives on biogas production performance and environmental impacts. *Environmental Science and Pollution Research*, 23, 24435–24450 (cit. on p. 9).
- Colombo, U. (2001). The club of rome and sustainable development. *Futures*, 33(1), 7–11 (cit. on p. 1).
- CONFAGRI. (2023). Preços dos produtos lácteos em Portugal refletem aumento brutal dos custos de produção. https://www.confagri.pt/precos-dos-produtos-lacteos-em-portugal-reflete-aumento-brutal-dos-custos-de-producao/ (cit. on p. 24).
- Czekała, W. (2021). Solid fraction of digestate from biogas plant as a material for pellets production. *Energies*, *14*(16), 5034 (cit. on p. 12).

Decreto-Lei n.º 152-B/2017, Portugal (2017). (Cit. on p. 26).

Decreto-Lei n.º 162/2019, Portugal (2019). (Cit. on p. 25).

Decreto-Lei n.º 76/2019, Portugal (2019). (Cit. on p. 22).

Decreto-Lei n.º 90/2006, Portugal (2006). (Cit. on p. 22).

- del Pilar Anzola-Rojas, M., da Fonseca, S. G., da Silva, C. C., de Oliveira, V. M., & Zaiat, M. (2015). The use of the carbon/nitrogen ratio and specific organic loading rate as tools for improving biohydrogen production in fixed-bed reactors. *Biotechnology Reports*, *5*, 46–54 (cit. on p. 7).
- DGEG. (2019). *Comunidades de energia* [Accessed on:13th of November 2023]. https://www.dgeg.gov.pt/pt/areas-setoriais/energia/energias-renovaveis-e-sustentabilidade/comunidades-de-energia/o-que-e-uma-comunidade-de-energia/(cit. on p. 22).
- Diário da República. (2020). Despacho no. 12401/2020. (Cit. on p. 26).
- DSIRE. (2023a). *Database of state incentives for renewables & efficiency* [Information on state-level renewable energy incentives and policies]. Database of State Incentives for Renewables & Efficiency (DSIRE). https://programs.dsireusa.org/ (cit. on p. 46).
- DSIRE. (2023b). Database of state incentives for renewables & efficiency [Information on state-level renewable energy incentives and policies]. Database of State Incentives for Renewables & Efficiency (DSIRE). https://programs.dsireusa.org/system/program/detail/2934 (cit. on p. 46).
- DSIRE. (2023c). *Oregon: Energy incentive program* [Information on the Oregon Energy Incentive Program provided by DSIRE]. Database of State Incentives for Renewables & Efficiency (DSIRE). https://programs.dsireusa.org/system/program/detail/262 (cit. on p. 46).
- DSIRE. (2023d). *Renewable electricity production tax credit (ptc)* [Information on the Renewable Electricity Production Tax Credit (PTC)]. Database of State Incentives for Renewables Efficiency (DSIRE). https://programs.dsireusa.org/system/

- program / detail / 734 / renewable-electricity-production-tax-credit-ptc (cit. on p. 45).
- DSIRE. (2024). Database of State Incentives for Renewables & Efficiency (DSIRE): Program ID 5680. (Cit. on p. 51).
- Ecosystem Services Market. (2023). *Ecosystem Services Market*. https://ecosystemservicesmarket. org/ (cit. on p. 47).
- El Mashad, H. M., Barzee, T. J., Franco, R. B., Zhang, R., Kaffka, S., & Mitloehner, F. (2023). Anaerobic digestion and alternative manure management technologies for methane emissions mitigation on californian dairies. *Atmosphere*, *14*(1). https://doi.org/10.3390/atmos14010120 (cit. on p. 15).
- ERSE. (2023). Proveitos e Ajustamentos 2023. (Cit. on pp. xii, 22).
- EU Directive 2019/944, European Union (2019). (Cit. on p. 22).
- European Biogas Association. (2018). Statistical report 2018: Abridged public version. https://www.europeanbiogas.eu/wp-content/uploads/2019/05/EBA_Statistical-Report-2018_AbridgedPublic_web.pdf (cit. on p. 9).
- European Central Bank. (2022). European central bank economic bulletin focus. https://www.ecb.europa.eu/pub/economic-bulletin/focus/2022/html/ecb.ebbox20 2203_05~6d1fb8f5b0.en.html (cit. on pp. 34, 53).
- European Commission. (2014). *Guide to cost-beneft analysis of investment projects*. Retrieved 2023-12-07, from https://ec.europa.eu/regional_policy/sources/studies/cba_guide.pdf (cit. on p. 19).
- European Commission. (2022). REPowerEU: affordable, secure and sustainable energy for Europe. (Cit. on p. 2).
- European Commission. (2023). Milk and Dairy Products. https://agriculture.ec.europa. eu/farming/animal-products/milk-and-dairy-products_en (cit. on p. 24).
- European Council. (1991). Council Directive 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources. (Cit. on p. 10).
- Eurostat. (2022a). *Eurostat number of dairy cows*. https://ec.europa.eu/eurostat/databrowser/view/tag00014/default/table?lang=en (cit. on pp. x, 23, 24).
- Eurostat. (2022b). *Selling prices of raw cow's milk*. (Cit. on p. 24).
- FAO. (1996). *Handbook on Anaerobic Fermentation of Agricultural Residues*. https://www.fao.org/3/i3461e/i3461e03.pdf (cit. on p. 51).
- Feng, S., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Liu, Y., Zhang, S., Vo, H. N. P., Bui, X. T., & Hoang, B. N. (2022). Volatile fatty acids production from waste streams by anaerobic digestion: A critical review of the roles and application of enzymes. *Bioresource Technology*, 127420 (cit. on p. 5).
- Fernandes, D. J., Ferreira, A. F., & Fernandes, E. C. (2023). Biogas and biomethane production potential via anaerobic digestion of manure: A case study of portugal. *Renewable and Sustainable Energy Reviews*, *188*, 113846 (cit. on p. 9).

- Fernihough, A., & O'Rourke, K. H. (2014). *Coal and the european industrial revolution* (tech. rep.). National bureau of economic research. (Cit. on p. 1).
- Financial Times. (2023). *Eu carbon price tops €100 a tonne for first time*. https://www.ft.com/content/7a0dd553-fa5b-4a58-81d1-e500f8ce3d2a (cit. on p. 26).
- Franke-Whittle, I. H., Walter, A., Ebner, C., & Insam, H. (2014). Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities. *Waste management*, 34(11), 2080–2089 (cit. on p. 5).
- Fuchs, W., & Drosg, B. (2013). Assessment of the state of the art of technologies for the processing of digestate residue from anaerobic digesters. *Water science and technology*, 67(9), 1984–1993 (cit. on p. 10).
- Fundo Ambiental. (2023). *Apoio à concretização de comunidades de energia renovável e autoconsumo coletivo*. Retrieved 2023-10-24, from https://www.fundoambiental.pt/ficheiros/2023/-aviso-cer-5-republicacao-do-aviso1.aspx (cit. on p. 26).
- Gallo, A. (2014). A refresher on net present value. *Harvard Business Review*, 19, 1–6 (cit. on p. 18).
- Genia Bioenergy. (2023). Genia Bioenergy Website. https://geniabioenergy.com/bioenergy/(cit. on p. 27).
- GPP. (2023). Leite e Produtos Lácteos. %5Curl%7Bhttps://regsima.gpp.pt/regsima/consulta/lacteos?la=1&ini=2023%7D (cit. on p. 24).
- GPP AG. (2021). Diagnóstico do setor do leite e laticínios: Relatório [Available at https://www.gpp.pt/images/Producao_e_Mercados/OrgProducao_CadeiaAlimentar/PARCA/PARCA_SubcomissoLeiteLcteos_RelDiagnostico__22122021.pdf]. (Cit. on p. 24).
- Guo, M., Song, W., & Buhain, J. (2015). Bioenergy and biofuels: History, status, and perspective. *Renewable and sustainable energy reviews*, 42, 712–725 (cit. on pp. 1, 4).
- Hashemi, B., Sarker, S., Lamb, J. J., & Lien, K. M. (2021). Yield improvements in anaerobic digestion of lignocellulosic feedstocks. *Journal of cleaner production*, 288, 125447 (cit. on p. 9).
- Hazen, G. B. (2003). A new perspective on multiple internal rates of return. *The engineering economist*, 48(1), 31–51 (cit. on p. 18).
- Husmann, S., & Schmidt, M. (2008). The discount rate: A note on ias 36. *Accounting in Europe*, 5(1), 49–62 (cit. on p. 19).
- INE. (2019). %5Curl%7Bhttps://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_indicadores&indOcorrCod=0003049&contexto=bd&selTab=tab2%7D (cit. on pp. xii, 24).
- INE. (2023). Ine indicators. https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_indicadores&indOcorrCod=0008609&contexto=bd&selTab=tab2 (cit. on p. 24).
- INE. (2023). Indicadores do INE. %7Bhttps://www.ine.pt/xportal/xmain?xpid=INE& xpgid=ine_indicadores&indOcorrCod=0000919&contexto=bd&selTab=tab2%7D (cit. on p. 24).

- IPMA. (2023). Normais Climatológicas 1981-2010. https://www.ipma.pt/pt/oclima/normais.clima/1981-2010/ (cit. on p. 28).
- Jaďuďová, J., Marková, I., Št'astná, M., & Giertlová, Z. (2023). The evaluation of the fire safety of the digestate as an alternative bedding material. *Processes*, 11(9), 2609 (cit. on p. 12).
- Jennifer Pronto et al. (2014). Anaerobic digestion at wagner farms: Case study. https://ecommons.cornell.edu/server/api/core/bitstreams/e0efe1e8-2da7-4b84-94 f1-60cea73fb4ac/content (cit. on p. 49).
- Jornal de Negócios. (2023). Conselho de ministros aprova criação de mercado voluntário de carbono em portugal. *Jornal de Negócios*. https://www.jornaldenegocios.pt/economia/ambiente/detalhe/conselho-de-ministros-aprova-criacao-de-mercado-voluntario-de-carbono-em-portugal (cit. on p. 26).
- Kaur, G., Wong, J. W., Kumar, R., Patria, R. D., Bhardwaj, A., Uisan, K., & Johnravindar, D. (2020). Value addition of anaerobic digestate from biowaste: Thinking beyond agriculture. *Current Sustainable/Renewable Energy Reports*, 7, 48–55 (cit. on p. 12).
- Lamolinara, B., Pérez-Martínez, A., Guardado-Yordi, E., Fiallos, C. G., Diéguez-Santana, K., & Ruiz-Mercado, G. J. (2022). Anaerobic digestate management, environmental impacts, and techno-economic challenges. *Waste Management*, 140, 14–30 (cit. on p. 10).
- Lapa, N., Surra, E., Esteves, I., Ribeiro, R., & Mota, J. (2017, October). Production of biogas and bioh2: Biochemical methods [Sem PDF.]. In M. Riazi & D. Chiaramonti (Eds.), *Biofuels production and processing technology* (pp. 415–460). CRC Press | Taylor Francis. (Cit. on p. 14).
- Lapa, N. (2023). Notes of curricular unit of bioenergy: Biological conversion for the production of biogas and bioh2. (Cit. on pp. x, 2, 6–8).
- Leach, K. A., Archer, S. C., Breen, J. E., Green, M. J., Ohnstad, I. C., Tuer, S., & Bradley, A. J. (2015). Recycling manure as cow bedding: Potential benefits and risks for uk dairy farms. *The Veterinary Journal*, 206(2), 123–130 (cit. on p. 12).
- Lee, J. H., & Trimm, D. L. (1995). Catalytic combustion of methane. *Fuel processing technology*, 42(2-3), 339–359 (cit. on p. 14).
- Lourenço, J. M. (2021). *The NOVAthesis LATEX Template User's Manual*. NOVA University Lisbon. https://github.com/joaomlourenco/novathesis/raw/main/template.pdf (cit. on p. ii).
- Lukehurst, C. T., Frost, P., & Al Seadi, T. (2010). Utilisation of digestate from biogas plants as biofertiliser. *IEA bioenergy*, 2010, 1–36 (cit. on pp. 10, 12).
- Madrakhimova, F. (2013). History of development of corporate social responsibility. *Journal of Business and Economics*, 4(6), 509–520 (cit. on p. 1).
- Manuel d'utilisation et d'entretien installation biogaz biolectric [Traduction du manuel d'utilisation original (manuel original en Néerlandais disponible sur demande)]. (2020, October). Biolectric. (Cit. on pp. x, 13–15, 17).
- Mapchart usa [Accessed: November 21, 2023]. (2023). (Cit. on pp. x, 38).

- Martin Energy Group. (2024). *Minidigester*. https://martinenergygroup.com/martinenergy/minidigester/ (cit. on p. 48).
- Massachusetts Government. (2023). *Regional greenhouse gas initiative (rggi)*. https://www.mass.gov/regional-greenhouse-gas-initiative-rggi (cit. on p. 48).
- Monfet, E., Aubry, G., & Ramirez, A. A. (2018). Nutrient removal and recovery from digestate: A review of the technology. *Biofuels*, 9(2), 247–262 (cit. on p. 11).
- Nepveux, M. (2021). Usda report: U.s. dairy farm numbers continue to decline. https://www.fb.org/market-intel/usda-report-u-s-dairy-farm-numbers-continue-to-decline (cit. on p. 10).
- Nie, E., He, P., Zhang, H., Hao, L., Shao, L., & Lü, F. (2021). How does temperature regulate anaerobic digestion? *Renewable and Sustainable Energy Reviews*, 150, 111453 (cit. on pp. 5, 9).
- Nizami, A.-S., Saville, B. A., & MacLean, H. L. (2013). Anaerobic digesters: Perspectives and challenges. *Bioenergy production by anaerobic digestion*, 139–151 (cit. on p. 5).
- Nkuna, R., Roopnarain, A., Rashama, C., & Adeleke, R. (2022). Insights into organic loading rates of anaerobic digestion for biogas production: A review. *Critical Reviews in Biotechnology*, 42(4), 487–507 (cit. on p. 7).
- Nordell, E., Björn, A., Waern, S., Yekta, S. S., Sundgren, I., & Moestedt, J. (2022). Thermal post-treatment of digestate in order to increase biogas production with simultaneous pasteurization. *Journal of Biotechnology*, *344*, 32–39 (cit. on p. 11).
- NRCS. (2020). New york conservation practice standard: Nutrient management (cps file no. 590). https://efotg.sc.egov.usda.gov/api/CPSFile/27309/590_NY_CPS_Nutrient_Management_2020 (cit. on p. 11).
- Nutrien. (2023). *Nutrien Carbon Program*. https://www.nutrien.com/sustainability/strategy/carbon-program (cit. on p. 47).
- NYSDPS. (2023). *Renewable portfolio standard* [Information on New York State's Renewable Portfolio Standard]. New York State Department of Public Service. https://dps.ny.gov/renewable-portfolio-standard (cit. on p. 46).
- O'Connor, S., Ehimen, E., Pillai, S., Black, A., Tormey, D., & Bartlett, J. (2021). Biogas production from small-scale anaerobic digestion plants on european farms. *Renewable and Sustainable Energy Reviews*, 139, 110580 (cit. on pp. 2, 5).
- OECD. (2023). Oecd inflation forecast [Accessed on: 2023-12-07]. (Cit. on p. 20).
- Ouyang, X., & Lin, B. (2014). Levelized cost of electricity (lcoe) of renewable energies and required subsidies in china. *Energy policy*, 70, 64–73 (cit. on p. 19).
- Parliament, E. (2023). *Renewable energy directive*. Retrieved 2023-11-08, from https://www.europarl.europa.eu/RegData/etudes/ATAG/2023/751443/EPRS_ATA(2023)75 1443_EN.pdf (cit. on p. 22).

- Pereira, E. M. (2008). O ouro negro petróleo e suas crises políticas, econômicas, sociais e ambientais na 2ª metade do século xx. *Outros Tempos: Pesquisa em Foco-História*, 5(6) (cit. on p. 1).
- Petersen, S. O., Blanchard, M., Chadwick, D., Del Prado, A., Edouard, N., Mosquera, J., & Sommer, S. G. (2013). Manure management for greenhouse gas mitigation. *animal*, 7(s2), 266–282. https://doi.org/10.1017/S1751731113000736 (cit. on p. 2).
- PLMJ. (2023). Mercados voluntarios de carbono: Norma internacional. (Cit. on p. 26). Portaria n.º 15/2020, Portugal (2020). (Cit. on p. 25).
- Poullikkas, A., Kourtis, G., & Hadjipaschalis, I. (2013). A review of net metering mechanism for electricity renewable energy sources. *International Journal of Energy and Environment (Print)*, 4 (cit. on p. 40).
- REN. (2022). *Datos técnicos de ren* 2022. Redes Energéticas Nacionais (REN). https://www.ren.pt/media/noho4j45/dados_te-cnicos_ren_22.pdf (cit. on pp. x, 21).
- República Portuguesa. (2023). *Apresentação do mercado voluntário de carbono em portugal*. https://www.portugal.gov.pt/pt/gc23/comunicacao/multimedia?m=v&i=apresentacao-do-mercado-voluntario-de-carbono-em-portugal (cit. on p. 26).
- Roy, N., Domeshek, M., Burtraw, D., Palmer, K., Rennert, K., Shih, J.-S., & Villanueva, S. (2022). Beyond clean energy: The financial incidence and health effects of the ira. *Resources for the Future* (cit. on p. 40).
- Santos, R. (2023). Notes of curricular unit of economics of renewable energies: Cost-benefit analysis of investment projects. (Cit. on p. 19).
- Savaresi, A. (2016). The paris agreement: A new beginning? *Journal of Energy & Natural Resources Law*, 34(1), 16–26 (cit. on p. 2).
- Soeiro, S., & Dias, M. F. (2020). Motivations for integrating a renewable energy community: Evidence for spain and portugal. 2020 17th International Conference on the European Energy Market (EEM), 1–6 (cit. on p. 22).
- Sogn, T. A., Dragicevic, I., Linjordet, R., Krogstad, T., Eijsink, V. G., & Eich-Greatorex, S. (2018). Recycling of biogas digestates in plant production: Npk fertilizer value and risk of leaching. *International Journal of Recycling of Organic Waste in Agriculture*, 7, 49–58 (cit. on p. 10).
- Sotecnisol. (2023). Portefólio. https://www.sotecnisol.pt/projeto/portefolio/ (cit. on p. 27).
- SP Global Market Intelligence. (2022). *Us renewable energy credit market size to double to* 26billionby2030 [Report on the projected growth of the US renewable energy credit market]. SP Global Market Intelligence. https://www.spglobal.com/marketintelligence/en/news-insights/research/us-renewable-energy-credit-market-size-to-double-to-26-billion-by-2030 (cit. on pp. 45, 46).
- State of Vermont. (2023). Vermont general assembly. (Cit. on p. 10).
- Suhag, M. (2016). Potential of biofertilizers to replace chemical fertilizers. *Int. Adv. Res. J. Sci. Eng. Technol*, 3(5), 163–167 (cit. on p. 12).

- Surra, E., Bernardo, M., Lapa, N., Esteves, I. A., Fonseca, I., & Mota, J. P. (2019). Biomethane production through anaerobic co-digestion with maize cob waste based on a biorefinery concept: A review. *Journal of environmental management*, 249, 109351 (cit. on p. 9).
- Telmo, C., & Lousada, J. (2011). Heating values of wood pellets from different species. *Biomass and bioenergy*, 35(7), 2634–2639 (cit. on p. 12).
- University of Minnesota Extension. (2019). University of minnesota extension. (Cit. on p. 42).
- University of Vermont Extension. (2018). Manure calibration [Accessed: 27/12/2023]. (Cit. on p. 10).
- U.S. Congress. (2022). 26 u.s. code § 45 electricity produced from certain renewable resources, etc. [Internal Revenue Code section relating to the Renewable Electricity Production Credit]. https://www.govinfo.gov/app/details/USCODE-2022-title26/USCODE-2022-title26-subtitleA-chap1-subchapA-partIV-subpartD-sec4 5 (cit. on p. 44).
- U.S. Congress. (2023a). 26 u.s. code § 45 electricity produced from certain renewable resources, etc. [Section of the U.S. Code regarding tax credits for renewable energy production]. U.S. Congress. https://www.law.cornell.edu/uscode/text/26/45 (cit. on p. 45).
- U.S. Congress. (2023b). 26 u.s. code § 48 energy credit [Section of the U.S. Code relating to the Energy Credit (Investment Tax Credit)]. U.S. Congress. https://uscode.house.gov/view.xhtml?req=(title:26%5C%20section:48%5C%20edition:prelim) (cit. on p. 40).
- U.S. Department of Agriculture. (2023). *General assessment of the role of agriculture and forestry in us carbon markets* [Report by the USDA on the role of agriculture and forestry in US carbon markets]. U.S. Department of Agriculture. https://www.usda.gov/sites/default/files/documents/USDA-General-Assessment-of-the-Role-of-Agriculture-and-Forestry-in-US-Carbon-Markets.pdf (cit. on pp. 46, 47).
- U.S. EIA. (2022a). Electricity data browser. (Cit. on pp. xii, 40).
- U.S. EIA. (2022b). *U.s. primary energy consumption by energy source* [Accessed: November 22, 2023]. https://www.eia.gov/energyexplained/us-energy-facts/ (cit. on pp. x, 39).
- U.S. Environmental Protection Agency. (2020). *Agstar project development handbook* [Handbook on developing anaerobic digestion projects for agricultural operations]. U.S. Environmental Protection Agency. https://www.epa.gov/agstar/agstar-project-development-handbook (cit. on pp. 42–44, 46).
- U.S. Environmental Protection Agency. (2023a). *Green power pricing* [Information provided by the EPA on Green Power Pricing]. U.S. Environmental Protection Agency. https://www.epa.gov/green-power-markets/green-power-pricing#one (cit. on pp. 45, 46).

- U.S. Environmental Protection Agency. (2023b). *Renewable electricity production tax credit information* [Information provided by the EPA's Landfill Methane Outreach Program (LMOP)]. U.S. Environmental Protection Agency. https://www.epa.gov/lmop/renewable-electricity-production-tax-credit-information (cit. on p. 44).
- U.S. Environmental Protection Agency. (2023c). *Renewable Energy Certificates (RECs)*. https://www.epa.gov/green-power-markets/renewable-energy-certificates-recs (cit. on p. 45).
- U.S. Government Publishing Office. (2023). 49 cfr § 661.5 definitions [Section of the Code of Federal Regulations defining terms related to transportation]. U.S. Government Publishing Office. https://www.law.cornell.edu/cfr/text/49/661.5 (cit. on p. 45).
- USDA. (2017). Milk Cow Herd Size by Inventory and Sales: 2017. https://www.nass.usda.gov/Publications/AgCensus/2017/Full_Report/Census_by_State/index.php (cit. on pp. xii, 41).
- USDA. (2020). Usda economic research service. https://www.ers.usda.gov/webdocs/publications/98901/err-274.pdf (cit. on p. 42).
- USDA. (2022). USDA NASS Quick Stats. (Cit. on pp. xii, 38, 39).
- USDA. (2023). Usda economic research service. https://www.ers.usda.gov/data-products/chart-gallery/gallery/chart-detail/?chartId=58268 (cit. on p. 42).
- USDA. (2024a). Milk: Production per cow by month and year, major states. https://www.nass.usda.gov/Charts_and_Maps/Milk_Production_and_Milk_Cows/mmlkpercow.php (cit. on p. 42).
- USDA. (2024b). Usda national agricultural statistics service. https://www.nass.usda.gov/Charts_and_Maps/Agricultural_Prices/pricemk.php (cit. on p. 42).
- Uter, Z. (2023). Economic assessment of automated milking systems in minnesota (cit. on p. 19).
- Van, D. P., Fujiwara, T., Tho, B. L., Toan, P. P. S., & Minh, G. H. (2020). A review of anaerobic digestion systems for biodegradable waste: Configurations, operating parameters, and current trends. *Environmental Engineering Research*, 25(1), 1–17 (cit. on pp. x, 6).
- Vanguard Renewables. (2024). Vanguard Renewables. (Cit. on p. 49).
- VDEC. (2024). Anaerobic Digesters Vermont Department of Environmental Conservation. (Cit. on p. 51).
- VDEQ. (2023). Fees under the air pollution control law. (Cit. on pp. 43, 50).
- Vermont Legislature. (2019). 2019 renewable programs report [Report on renewable programs by the Vermont Legislature]. Vermont Legislature. https://legislature.vermont.gov/assets/Legislative-Reports/2019-Renewable-Programs-Report-w-cover.pdf (cit. on p. 46).
- Vermont Tech. (2016). *Community anaerobic digester*. Vermont Tech. https://www.vectogether.org/wp-content/uploads/2013/11/VT-Tech_Digester-Report_FINAL_All-1.pdf (cit. on pp. xii, 50).

- von Loesecke, E., & Chermak, C. (2023). The inflation reduction act: Impacts on utilities and power producers. *Climate and Energy*, 39(7), 1–10 (cit. on pp. 2, 4).
- Wang, Z., Pan, X., Zhang, W., Zhao, Y., Li, H., & Liu, P. (2020). The development trend of internal combustion engine. *Journal of Physics: Conference Series*, 1626(1), 012139 (cit. on p. 1).
- Ward, A. J., Hobbs, P. J., Holliman, P. J., & Jones, D. L. (2008). Optimisation of the anaerobic digestion of agricultural resources. *Bioresource technology*, 99(17), 7928–7940 (cit. on pp. 5, 6, 8, 9).
- Wilkie, A. C. (2005). Anaerobic digestion of dairy manure: Design and process considerations. *Dairy Manure Management: Treatment, Handling, and Community Relations,* 301(312), 301–312 (cit. on p. 15).
- World Bank Group. (2023). *State and trends of carbon pricing* 2023. https://openknowledge. worldbank.org/entities/publication/58f2a409-9bb7-4ee6-899d-be47835c838 f/full (cit. on p. 48).
- Wu, Q., Zou, D., Zheng, X., Liu, F., Li, L., & Xiao, Z. (2022). Effects of antibiotics on anaerobic digestion of sewage sludge: Performance of anaerobic digestion and structure of the microbial community. *Science of The Total Environment*, 157384 (cit. on p. 5).
- Zhang, Z.-P., Show, K.-Y., Tay, J.-H., Liang, D. T., Lee, D.-J., & Jiang, W.-J. (2006). Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community. *Process Biochemistry*, *41*(10), 2118–2123 (cit. on p. 7).

Data Sheet

Manuel d'utilisation et d'entretien des installations biogaz Biolectric

v4.0

Tableau 1 : Fiche technique des différentes installations biogaz Biolectric

Biolectric NV Jan De Malschelaan 2 B-9140 Temse +32(0)3 68 92 92 8 info@biolectric.be www.biolectric.be

Specification Sheet

Types: 10, 11, 20-2, 22-1, 22-2, 33, 33-2, 40, 44, 60, 74 kW

Туре	10	11	20-2	22-1	22-2		33	33-2	40	44	60	74
Engine												
Sumber of engines 1					Bk	ogas						
	2	2										
	WG3800	WG3800										
Number of cylinders	DF972 DF972 DF972 DF972 WG1605 DF972 DF972 WG1605 WG1605		4									
Displacement (I)		169										
Rotation Speed (rpm)		2000										
Cycle												
Electric Power (kW)		37										
Electric Power (kVA)		38.1										
Number of engines 1 1 2 1 2 2 2 2 2 2	90,9	112,1										
	15,2	18,7										
	3	3										
Heat power (kW)	3	71,8										
Max Flue gas temperature (°C)												
Max Coolant temperature (°C)												
Voltage (V)												
Imber of lengines 1	44	54										
Cosphi	0.962 1.537 0.962 1.537 3.											
Generator	1											
Type												
Rotation Speed												
Frequency												
Voltage												
Mode						Tria	angle					

Me chanical construction
Engine and generator on rigid chassis, with belt drive. The set is placed on vibration dampers inside a sea container of 20tt.

Fuel
Biogas (= 60% CH+ + 40% CO2; 6,0 kWh/m3) thourgh airlock, gas filter, solenoid valve and carbon filter.

Exhaust

Exhaust system with water cooled exhaust collector, two stage silencer and flue gas heat exchanger, optional biogas flare.

Cooling system
Cooling system under pressure with electric circulation pump. Heat is generated at the engine, the water cooled exhaust collector and the flue gas heat exchanger. Heat delivery to reactor by stahless steel pipes and to hot water.

Electric cabinet
PCB control board with microcontroller
Interface:
Buttons
Engine start/stop, Pump Manual/Auto
LCD screen
Data/Time, Reactor Temperature, Water Temperature, Electric
Web Interface, Navin counter, Hours run - maintenance interval,
Electric Power, kWh counter, Hours run - maintenance interval,
Erros, Diagnostics

Temperature measurements
Reactor, Water, Container, Exhaust, Engine
Pressure Measurements
Reactor, Engine oil, Coolant
Flow Measurements
Blogas, Manure
Relay
Pump, Mixer, Valves, Engine start, Generator start, Solenoid
Biogas Valve

Engine start Reley
12V battery with electric charger, optional petrol pilot start Blogas Valve
13V battery with electric charger, optional petrol pilot start Blogas Valve

The values in this sheet have been obtained according to ISO 3046.1.2002. Test conditions 20°C, sea level, relative humidity 50%. Biolectric NV reserves the right to change the technical specifications without prior notice.

Figure I.1: Biolectric Data Sheet

II

FINANCIAL SIMULATIONS: AGRO ABA

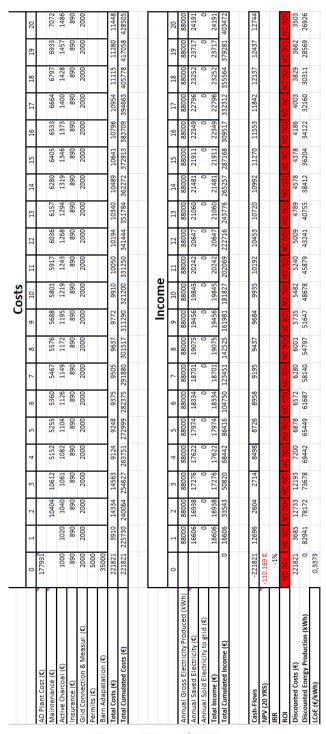


Figure II.1: 11 kW Raw

										ပိ	Costs										
	0	1	2	3	4	2	9		8	9 1	10 1	11 1	12 1	13 1	14 1	15	16 1	17 1	18	19	20
AD Plant Cost (€)	177931													_	-						
Maintenance (€)			10404	10612	5152	5255	5360	5467	5576	5688	5801 5	5917 6	96036	6157 6	6280	6405	6533	6664 (2629	6933	7072
Active Charcoal (€)	1000	1020	1040	1061	1082	1104	1126	1149	1172	1195	1219 1	1243 1	1268 1	1294	1319	1346	1373	1400	1428	1457	1486
Insurance (€)	890	890	890	890	890	890	890	890	890	890	890	890	890	890	890	890	890	890	890	890	890
Grid Connection & Measur. (€)	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
Permits (€)	2000																				
Barn Adapatation (€)	35000																				
Total Costs (€)	221821	3910	14334	14563	9124	9248	9375	9505	6837	9772	9910 10	10050 10	10194 10	10340 10	10489 10	10641	10796 10	10954 13	11115 1:	11280 1	11448
Total Cumulated Costs (€)	221821	225730	240064	254627 2	263751 2	272999 28	282375 29	291880 30	301517 31	311290 321	321200 331	331250 341	341444 351	351784 362	362272 372	372913 38	383709 394	394663 409	405778 41	417058 42	428505
										lnc	Income										
	0	1	2	en	4	2	9	7	8	9 1	10 1	11 1	12 1	13 1	14	15	16 1	17	18	19	20
Annual Gross Electricity Produced (kWh)		88000	88000	88000	88000	88000	88000 8	88000 8	88000	88000 88	88 00088	88000 88	88 00088	88 00088	88000 88	88000	88000 88	88000 88	88000 88	88000 8	88000
Co-Fund (Fundo Ambiental) (€)	110910																				
Annual Saved Electricity (€)		16606	16938	17276	17622	17974	18334 1	18701	19075	19456 19	19845 20	20242 20	20647 21	21060 21	21481 21	21911 2	22349 22	22796 23	23252 23	23717 2	24191
Annual Sold Electricity to grid (€)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Income (€)	110910	16606	16938	17276	17622	17974	18334 1	18701	19075	19456 19	19845 20	20242 20	20647 21	21060 21	21481 21	21911 2	22349 22	22796 23	23252 23	23717 2	24191
Total Cumulated Income (€)	110910	127516	144454	161730 179352	179352 1	197327 2:	215660 234361		253436 27	272892 292	292737 312979 333626	979 333	626 354	354686 376	376167 398	398078 42	420427 443	443223 466475		490192 51	514383
Cash-Flows	-110910	12696	2604	2714	8498	8726	8958	9195	9437	9684 9	9935 10	10192 10	10453 10	10720 10	10992 11	11270 1	11553 11	11842 13	12137 13	12437 1	12744
NPV (20 YRS)	-5.635 €																				
IRR	2%																				
ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI NO	NO ROI NO	NO ROI NO	NO ROI NO	NO ROI NO	NO ROI NO RO		ROI RO	ROIR	ROI	ROIR	ROIR	ROIR	ROI	ROI
Discounted Costs (€)	110910	3685	12733	12193	7200	6878	6572	6280	6001	5735 5	5482 5	5240 5	5009 4	4789 4	4578 4	4378	4186 4	4003	3829	3662	3503
Discounted Energy Production (kWh)	0	82941	78172	73678	69442	62449	61687 5	58140 5	54797 5	51647 48	48678 45	45879 43	43241 40	40755 38	38412 36	36204 3	34122 32	32160 30	30311 28	28569 2	26926
LCoE (€/kWh)	0,2266																				

Figure II.2: 11 kW Co-Funded

																					Ī
										ပိ	Costs										-
	0	1	2	8	4	2	9	7	80	6	10	11 1	12 1	13 1	14	15	16 1	17	18	19	20
AD Plant Cost (€)	240206													_		_		_	\vdash		
Maintenance (€)			14566	14857	7212	7356	7503	7653	7807	7963	8122	8284 8	8450	8619	8791	8967	9147	9329	9216	9026	9901
Active Charcoal (€)	2000	2040	2081	2122	2165	2208	2252	2297	2343	2390	2438	2487 2	2536 2	2587	2639	2692	2746	2800	2856	2914	2972
Insurance (€)	1201	1201	1201	1201	1201	1201	1201	1201	1201	1201	1201	1201	1201	1201	1201	1201	1201	1201	1201	1201	1201
Grid Connection & Measur. (€)	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
Permits (€)	2000																				
Barn Adapatation (€)	35000																				
Total Costs (€)	285407	5241	19847	20180	12578	12765	12957	13152 1	13351 1	13554 1	13761 1	13972 14	14188 14	14407 14	14631 14	14860 1	15093 15	15331	15574 1	15821	16073
Total Cumulated Costs (€)	285407	290648	310495	330676	343254	356019 3	368976 38	382128 39	395479 40	409032 42	422793 43	436765 450	450953 465	465360 479	479992 494	494852 509	509945 525	525276 54	540849 55	556670 5	572744
										lnc	Income										
	0	1	2	8	4	5	9	7	8	6	10	11 1	12 1	13 1	14	15	16 1	17	18	19	20
Annual Gross Electricity Produced (kWh)		176000	176000	176000	176000	176000 1	176000 17	176000 17	176000 17	176000 17	176000 17	176000 176	176000 176	176000 176	176000 176	176000 176	176000 176	176000 17	176000 17	176000 1	176000
Annual Saved Electricity (€)		30569	31181	31804	32440	33089	33751	34426 3	35115	35817 3	36533 3	37264 38	38009	38769 39	39545 4(40336 4:	41142 43	41965 4	42805 4	43661	44534
Annual Sold to Grid Electricity (€)		1738	1773	1808	1844	1881	1919	1957	1996	2036	2077	2118 2	2161 2	2204	2248	2293	2339	2386	2433	2482	2532
Total Income (€)	0	32307	32953	33612	34285	34970	35670	36383	37111 3	37853 3	38610 3	39382 40	40170 40	40973 41	41793 43	42629 43	43481 44	44351 4	45238 4	46143	47066
Total Cumulated Income (€)	0	32307	65261	98873	98873 133158 168128		203798 240181 277292	40181 27	77292 31	5145 35	3756 39	315145 353756 393138 433308	1308 474	474282 516	516074 558703	8703 60.	602185 646	646535 69	691773 737916	37916 7	784982
Cash-Flows (€)	-285407	27066	13106	13432	21707	22205	22713	23231 2	23760 2	24299 2	24849 2	25410 25	25983 26	26566 27	27162 2	27769 28	28388 29	29020	29664 3	30322	30992
NPV (20 YRS) (€)	-15.585 €																				
IRR	2%																				
ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI NO	NO ROI NO	NO ROI NO	NO ROI NO	NO ROI NO	NO ROI NO	ROIR	ROIR	ROIR	ROIR	ROIR	ROI R	ROI	ROI	ROI
Discounted Costs (€)	285407	4940	17631	16896	9925	9494	9082	8689	8314	2962	7612	7284 6	6971 6	6672 (6387 (6113	5852	2603	5364	5136	4918
Discounted Energy Production (kWh)	0		156344	147356	138884	130899 1	165881 156344 147356 138884 130899 123373 116280 109595 103294	16280 10	39595 10		97355 9	91758 86	86482 81	81510 76	76824 7	72407 68	68244 64	64321 6	60623 5	57137	53852
LCoE (€/kWh)	0,2229																				

Figure II.3: 22 kW Raw

										Costs	ts									
	0	1	2	8	4	2	9	7	8	9 10	0 11	1 12	2 13	14	15	16	17	18	19	20
AD Plant Cost (€)	240206																			
Maintenance (€)			14566	14857	7212	7356	7503	7653	7807	7963 8:	8122 8	8284 8	8450 86	8619 8791	11 8967	7 9147	9329	9516	9206	9901
Active Charcoal (€)	2000	2040	2081	2122	2165	2208	2252	2297	2343 2	2390 2	2438 2	2487 2	2536 25	2587 2639	39 2692	2 2746	2800	2856	2914	2972
Insurance (€)	1201	1201	1201	1201	1201	1201	1201	1201	1201	1201	1201	1201	1201	1201 1201	1201	1 1201	1201	1201	1201	1201
Grid Connection & Measur. (€)	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000 2000	2000	0 2000	2000	2000	2000	2000
Permits (€)	2000																			
Barn Adapatation (€)	35000																			
Total Costs (€)	285407	5241	19847	20180	12578	12765	12957 1	13152 13	13351 13	13554 13	13761 13	13972 14	14188 14407	14631	31 14860	0 15093	15331	15574	15821	16073
Total Cumulated Costs (€)	285407	290648	310495	330676 343254	343254 3	356019 368976 382128	58976 38		395479 409	409032 422793		436765 450	450953 465360	60 479992	32 494852	2 509945	525276	525276 540849	556670	572744
										Income	me									
	0	1	2	e	4	2	9	7	8	9 10	0 11	1 12	2 13	14	15	16	17	18	19	20
Annual Gross Electricity Produced (kWh)		176000	176000	176000 1	176000 1	176000 17	176000 17	176000 176	176000 176000	5000 176000	000 176	176000 176	176000 1760	176000 176000	00 176000	176000 176000	176000	176000	176000	176000
Co-Fund (Fundo Ambiental)	142704																			
Annual Saved Electricity (€)		30569	31181	31804	32440	33089	33751 3	34426 3	35115 35	35817 36	36533 37	37264 38	38009 38769	39545	15 40336	6 41142	41965	42805	43661	44534
Annual Sold to Grid Electricity (€)		1738	1773	1808	1844	1881	1919	1957	1996 2	2036 20	2077 2	2118 2	2161 22	2204 2248	18 2293	3 2339	2386	2433	2482	2532
Total Income (€)	142704	32307	32953	33612	34285	34970	35670 3	36383 37	37111 37	37853 386	38610 39	39382 40	40170 40973	73 41793	93 42629	9 43481	44351	45238	46143	47066
Total Cumulated Income (€)	142704	175011	207964	241577 2	275861 3	310832 34	346502 38	382885 419	419996 457	457849 496	496459 535	535842 576	576012 616985	85 658778	78 701407	7 744888	789239	834477	880620	927685
Cash-Flows (€)	-142704	27066	13106	13432	21707	22205	22713 2	23231 23	23760 24	24299 248	24849 25	25410 25	25983 26566	66 27162	52 27769	9 28388	29020	29664	30322	30992
NPV (20 YRS) (€)	118.914 €																			
IRR	15%																			
ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI	ROIR	ROI RC	ROI ROI		ROI ROI	OI ROI	I ROI	ROI	ROI	ROI	ROI	ROI	ROI
Discounted Costs (€)	142704	4940	17631	16896	9925	9494	9082	8689	8314 7	7955 70	7612 7	7284 6	6971 66	6672 6387	37 6113	3 5852	2603	5364	5136	4918
Discounted Energy Production (kWh)	0	165881	156344	147356	138884 1	30899 1.	23373 11	6280 10	0 165881 156344 147356 138884 130899 123373 116280 109595 103294		97355 91	91758 86	86482 81510	10 76824	24 72407	7 68244	64321	60623	57137	53852
LCoE (€/kWh)	0,1516																			

Figure II.4: 22 kW Co-Funded

										ပိ	Costs										
	0	1	2	3	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20
AD Plant Cost (€)	311379																				
Maintenance (€)			18727	19102	9273	9458	9647	9840	10037	10238	10442	10651	10864	11081	11303 1	11529 1	11760	11995	12235	12480	12729
Active Charcoal (€)	2000	2040	2081	2122	2165	2208	2252	2297	2343	2390	2438	2487	2536	2587	2639	2692	2746	2800	2856	2914	2972
Insurance (£)	1557	1557	1557	1557	1557	1557	1557	1557	1557	1557	1557	1557	1557	1557	1557	1557	1557	1557	1557	1557	1557
Grid Connection & Measur. (€)	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
Permits (€)	2000																				
Barn Adapatation (€)	40000																				
Total Costs (€)	361936	5597	24365	24781	14994	15223	15456	15694	15937	16185	16437	16695	16958	17226	17499 1	17778 1	18062	18352	18648	18950	19258
Total Cumulated Costs (€)	361936	367533		391898 416679	431673	446896	462352 4	478047 4	493984 510168		526606 5	543300 560258		577484 594983	4983 61	612760 63	630823 64	649175 6	667823 68	686773 7	706031
										luco	Income										
	0	1	2	3	4	2	9	7	80	6	10	11	12	13	14	15	16	17	18	19	20
Annual Gross Electricity Produced (kWh)		264000	264000	264000	264000	264000	264000 2	264000 2	264000 2	264000 2	264000 2	264000 26	264000 2	264000 26	264000 26	264000 26	264000 26	264000 26	264000 26	264000 2	264000
Annual Saved Electricity (€)		30569	31181	31804	32440	33089	33751	34426	35115	35817	36533	37264	38009	38769	39545 4	40336 4	41142	41965	42805	43661	44534
Annual Sold Electricity to grid (€)		12662	12915	13173	13437	13705	13980	14259	14544	14835	15132	15435	15743	16058	16379	16707	17041	17382	17729	18084	18446
Total Income (€)	0	43231	44096	44978	45877	46795	47731	48685	49659	50652	51665	52698	53752	54827	55924 5	57042	58183 59347		60534	61745	62980
Total Cumulated Income (€)	0	43231	87327	132304	178182	224976 272707		321392 3	371051 4	421703 4	473368 5	526067 5	579819 6	34646 69	634646 690570 747613	17613 80	805796 865143	55143 93	925677 98	987422 10	1050401
Cash-Flows	-361936	37634	19731	20197	30883	31572	32274	32991	33722	34467	35228	36004	36795	37602	38425 3	39265 4	40121 4	40995	41886 4	42795	43722
NPV (20 YRS)	19.213 €																				
IRR	7%																				
ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI	ROI	ROI	ROI	ROI	ROI	ROI	ROI	ROI	ROI
Discounted Costs (€)	361936	5275	21644	20748	11832	11322	10835	10369	9924	9499	9092	8704	8333	8262	7638	7314	7004	2029	6423	6152	5893
Discounted Energy Production (kWh)	0	248822	234516	0 248822 234516 221033 208325 196348 185060 174420 164392 154941 146033 137637 129724 122266 115236 108611 102366	208325	196348	185060 1	74420 1	64392 1	54941 1	46033 1	37637 13	29724 1	2266 1:	5236 10	8611 10		96481	90934 8	85706	80779
LCoE (€/kWh)	0,184650037																				

Figure II.5: 33 kW Raw

										O	Costs										
	0	1	2	3	4	2	9	7	8	6	10	11	12	13 14	15	16	5 17		18	19	20
AD Plant Cost (€)	311379																				
Maintenance (€)			18727	19102	9273	9458	9647	9840	10037	10238 1	10442	10651	10864	11081 11303		11529 117	11760 11	11995	12235 1	12480	12729
Active Charcoal (€)	2000	2040	2081	2122	2165	2208	2252	2297	2343	2390	2438	2487	2536	2587 26	2639 26	2692	2746 2	2800	2856	2914	2972
Insurance (€)	1557	1557	1557	1557	1557	1557	1557	1557	1557	1557	1557	1557	1557	1557 15	1557 19	1557 15	1557 1	1557	1557	1557	1557
Grid Connection & Measur. (€)	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
Permits (€)	2000																				
Barn Adapatation (€)	40000																				
Total Costs (€)	361936	5597	24365	24781	14994	15223	15456	15694	15937	16185 1	16437 1	16695	16958 1	17226 17499		17778 180	18062 18	18352 18	18648 1	18950	19258
Total Cumulated Costs (€)	361936	367533	361936 367533 391898	416679	431673	446896 4	462352 4	478047 4	493984 5	510168 526606 543300 560258 577484	6606 54	3300 56	3258 57	484 594983	83 612760	60 630823		649175 667	667823 68	686773 7	706031
										Ĕ	Income										
	0	1	2	3	4	5	9	7	8	6	10	11	12	13 14	15	16	5 17		18	19	20
Annual Gross Electricity Produced (kWh)		264000	264000	264000	264000	264000 2	264000 2	264000 2	264000 2	264000 264000 264000	4000 26	4000 26	264000 26	264000 264000	000 264000	264000		264000 264	264000 26	264000 2	264000
Co-Fund (Fundo Ambiental) (€)	180968																				
Annual Saved Electricity		89508	31181	31804	32440	33089	33751	34426	35115	35817 3	36533	37264 3	38009	38769 395	39545 408	40336 411	41142 41	41965 42	42805 4	43661	44534
Annual Sold Electricity to grid (€)		12662	12915	13173	13437	13705	13980	14259	14544	14835 1	15132 1	15435 1	15743	16058 16379	16707	17041		17382 17	17729 1	18084	18446
Total Income (€)	180968	43231	44096	44978	45877	46795	47731	48685	49659	50652 5	51665 5	52698 5	53752 5	54827 55924	24 57042	342 58183		59347 60	60534 6	61745	62980
Total Cumulated Income (€)	180968 2241	224199	268295	313272	359149	405944	453675 5	502360 5	552019 6	602671 65	654336 707035		760787 81	815614 871538	38 928581	81 986764	764 1046111		1106645 116	1168390 12	1231369
Cash-Flows	-180968	37634	19731	20197	30883	31572	32274	32991	33722	34467 3	35228	36004 3	36795	37602 38425		39265 401	40121 40	40995 41	41886 4	42795	43722
NPV (20 YRS)	189.777 €																				
IRR	17%																				
ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI NO ROI		NO ROI	ROI	ROI	ROI	ROI	ROI	ROIR	ROI ROI	I ROI	I ROI	ROI		ROIR	ROI	ROI
Discounted Costs (€)	180968	5275	21644	20748	11832	11322	10835	10369	9924	9499	9092	8704	8333	7978 76	7638 73	7314 70	7004 6	2029	6423	6152	5893
Discounted Energy Production (kWh)	0	248822	234516	221033	208325	196348	85060 1	74420 1	64392	54941 14	6033 13	7637 12	3724 12	0 248822 234516 221033 208325 196348 185060 174420 164392 154941 146033 137637 129724 122266 115236 108611 102366	36 1086	111 1023		96481 90	90934 8	85706	80779
LCoE (€/kWh)	0,1244																				

Figure II.6: 33 kW Co-Funded

											Costs										
	0	1	2	8	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20
AD Plant Cost (€)	373655																				
Maintenance (€)			22889	23347	11334	11560	11791	12027	12268	12513	12763 1	13019	13279 1	13545 1	13815 1	14092	14374	14661	14954	15253	15558
Active Charcoal (€)	2500	2550	2601	2653	2706	2760	2815	2872	2929	2988	3047	3108	3171	3234	3299	3365	3432	3501	3571	3642	3715
Insurance (€)	1868	1868	1868	1868	1868	1868	1868	1868	1868	1868	1868	1868	1868	1868	1868	1868	1868	1868	1868	1868	1868
Grid Connection & Measur. (€)	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
Permits (€)	2000																				
Barn Adapatation (€)	40000																				
Total Costs (€)	425023	6418	29358	29868	17908	18189	18475	18767	19065	19369	19679 1	19995 2	20318 2	20647 2	20982 2	21325	21674	22030	22393	22764	23142
Total Cumulated Costs (€)	425023	431442	425023 431442 460800 490667	490667	508575 526764 545239 564006 583071 602441 622120	526764	345239 5	64006 5	83071 6	02441 6.	22120 64	12115 66	12433 68	642115 662433 683080 704062 725387	4062 72		747061	769091	791484	814248	837389
										-	ncome	ø									
	0	1	2	en	4	5	9	7	80	6	10	11	12	13	14	15	16	17	18	19	20
Annual Gross Electricity Produced (kWh)		352000	352000	352000	352000	352000	352000 3	352000 3	352000 3	352000 3	8	352000 35	352000 35	352000 35	352000 35	352000 3	352000	352000	352000	352000	352000
Annual Saved Electricity		30569	31181	31804	32440	33089	33751	34426	35115	35817	36533	37264 3	38009	38769	39545 4	40336	41142	41965	42805	43661	44534
Annual Sold Electricity to grid (€)		23585	24057	24538	25029	25530	26040	26561	27092	27634	28187 2	28751 2	29326 2	29912	30510 3	31121	31743	32378	33025	33686	34360
Total Income (€)	0	54155	55238	56343	57470	58619	59791	60987	62207	63451 (64720 6	66014 6	67335 6	68681 7	70055 7	71456	72885	74343	75830	77346	78893
Total Cumulated Income (€)	0		54155 109393	165736	223205	281824 3	341615 4	402603 4	464809 5	528261 59	592981 65	658995 726330		795011 86	865066 936523		1009408 1	1083751	1159581	1236927 1	1315821
Cash-Flows	-425023	47737	25880	26475	39562	40430	41316	42220	43142	44082	45041 4	46019 4	47017 4	48035 4	49073 5	50131	51211	52313	53437	54583	55752
NPV (20 YRS)	3 657.09																				
IRR	8%																				
ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI N	NO ROI	NO ROI	ROI	ROI	ROIR	ROIF	ROI	ROI	ROI	ROI	ROI	ROI
Discounted Costs (€)	425023	6049	26079		25007 14131	13528	12951 12399 11872	12399		11368 10886		10425	9984	9562	9159	8773	8404	8051	7713	7390	7081
Discounted Energy Production (kWh)	0	0 331762		294711	312688 294711 277767 261798 246746 232560 219189 206588 194710 183516 172965 163021 153648 144814	261798	146746 2	32560 2	19189 2	06588 15	34710 18	3516 17	72965 16	3021 15	3648 14		136489	128642	121246	114275	107705
LCoE (€/kWh)	0,1638																				

Figure II.7: 44 kW Raw

											Costs	Į,									
	0	1	2	8	4	2	9	7	80	6	10	11	12	13	14	15	16	17	18	19	20
AD Plant Cost (€)	373655																				
Maintenance (€)			22889	23347	11334	11560	11791	12027	12268	12513	12763 1	13019	13279 1	13545 1	13815	14092	14374	14661	14954	15253	15558
Active Charcoal (€)	2500	2550	2601	2653	2706	2760	2815	2872	2929	2988	3047	3108	3171	3234	3299	3365	3432	3501	3571	3642	3715
Insurance (€)	1868	1868	1868	1868	1868	1868	1868	1868	1868	1868	1868	1868	1868	1868	1868	1868	1868	1868	1868	1868	1868
Grid Connection & Measur. (€)	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
Permits (€)	2000																				
Barn Adapatation (€)	40000																				
Total Costs (€)	425023	6418	29358	29868	17908	18189	18475	18767	19065	19369	19679 1	19995 2	20318 2	20647 2	20982	21325	21674	22030	22393	22764	23142
Total Cumulated Costs (€)	425023	425023 431442	460800	490667	508575 526764		545239 564006 583071	564006		602441 63	622120 64	642115 662433	2433 68	683080 70	704062 7	725387	747061	769091	791484	814248	837389
										-	Income	je je									
	0	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20
Annual Gross Electricity Produced (kWh)		352000	352000	352000	352000	352000	352000	352000	352000 3	352000 39	352000 35	352000 35	352000 35	352000 35	352000	352000	352000	352000	352000	352000	352000
Co-Fund (Fundo Ambiental) (€)	200000																				
Annual Saved Electricity (€)		30569	31181	31804	32440	33089	33751	34426	35115	35817	36533	37264 3	38009	38769	39545	40336	41142	41965	42805	43661	44534
Annual Sold Electricity to grid (€)		23585	24057	24538	25029	25530	26040	26561	27092	27634	28187 2	28751 2	29326 2	29912	30510	31121	31743	32378	33025	33686	34360
Total Income (€)	200000	54155	55238	56343	57470	58619	59791	60987	62207	63451 (64720 6	66014 6	67335 6	68681 7	70055	71456	72885	74343	75830	77346	78893
Total Cumulated Income (€)	200000	200000 254155	309393	365736	423205	481824	541615	602603	664809 728261		792981 85	858995 92	926330 99	995011 106	1065066 11	1136523 1	1209408 1	1283751	1359581	1436927 1	1515821
Cash-Flows	-225023	47737	25880	26475	39562	40430	41316	42220	43142	44082	45041 4	46019 4	47017 4	48035 4	49073	50131	51211	52313	53437	54583	55752
NPV (20 YRS)	249.261 €																				
IRR	17%																				
ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI	ROI	ROI	ROI	ROI	ROI	ROIF	ROIF	ROI	ROI	ROI	ROI	ROI	ROI	ROI
Discounted Costs (€)	225023	6049	26079	25007	14131	13528	12951	12399	11872	11368	10886 1	10425	9984	9562	9159	8773	8404	8051	7713	7390	7081
Discounted Energy Production (kWh)	0	0 331762		294711	277767	261798	246746 2	232560 2	312688 294711 277767 261798 246746 232560 219189 206588 194710 183516 172965 163021	06588 1	94710 18	33516 17	2965 16		153648 1	144814	136489	128642	121246	114275	107705
LCoE (€/kWh)	0,1138																				

Figure II.8: 44 kW Co-Funded

											Costs										
	0	1	2	3	4	2	9	7	8	6	10 1	11 1	12 1	13 1	14	15	16	17	18	19	20
AD Plant Cost (€)	459061																				
Maintenance (€)			24970	25469	12364	12611	12863	13120	13383	13650 13	13923 14	14202 14	14486 14	14776 1	15071	15372	15680	15994	16313	16640	16972
Active Charcoal (€)	2800	2856	2913	2971	3031	3091	3153	3216	3281	3346	3413	3481 3	3551	3622	3695	3768	3844	3921	3999	4079	4161
Insurance (€)	2295	2295	2295	2295	2295	2295	2295	2295	2295	2295	2295 2	2295 2	2295	2295	2295	2295	2295	2295	2295	2295	2295
Grid Connection & Measur. (€)	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
Permits (€)	2000																				
Barn Adapatation (€)	45000																				
Total Costs (€)	516156	7151	32178	32736	19690	19998	20312 2	20632	20959	21292 2:	21632 21	21979 22	22332 23	22693 2	23061	23436	23819	24209	24608	25014	25428
Total Cumulated Costs (€)	516156	516156 523308	555486 588221		607911 6	127908 6	627908 648220 668852	58852 6	39810 7.	689810 711102 732734 754713 777045	2734 754	777 8171		799738 82	822799 8	846235 8	870054	894263	918871	943885	969314
										<u> </u>	Income	e									
	0	1	2	8	4	2	9	7	8	6	10 1	11 1	12 1	13 1	14	15	16	17	18	19	20
Annual Gross Electricity Produced (kWh)		480000	480000	480000	480000	480000 4	480000 48	480000 48	480000 48	480000 48	480000 480	480000 480	480000 480	480000 48	480000 4	480000	480000	480000	480000	480000	480000
Annual Saved Electricity (€)		30569	31181	31804	32440	33089	33751	34426	35115	35817 3	36533 37	37264 38	38009	38769 3	39545	40336	41142	41965	42805	43661	44534
Annual Sold Electricity to grid (€)		39475	40264	41069	41891	42729	43583 4	44455 4	45344 4	46251 4	47176 48	48119 49	49082 50	50063	51065	52086	53128	54190	55274	56379	57507
Total Income (€)		70044	71445	72874	74331	75818	77334	78881	80459	82068 83	83709 85	85383 87	87091 88	88833	60906	92422	94270	96155	98079	100040	102041
Total Cumulated Income (€)	0	70044	141489	214363	288694 3	364512 4	441846 520727		601186 68	683253 766962		852346 939	939437 1028	1028269 111	1118879 1211300	11300 1:	305570 1	1401726	1305570 1401726 1499804 1599844	599844	1701885
Cash-Flows	-446112	64294	40696	41596	56128	57337	58569	59827 6	61109 6	62417 6	63751 65	65112 66	66501 6	67916 6	69361	70834	72336	73869	75432	77027	-25428
NPV (20 YRS)	206.104 €																				
IRR	11%																				
ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI NO	NO ROI	NO ROI	ROI RO	ROI RO	ROI RO	ROI R	ROI	ROI	ROI	ROI	ROI	ROI	ROI
Discounted Costs (€)	516156	6740	28584	27408	15537	14873 14238		13631	13051 12496		11966 11	11459 10	10974 10	10510 1	10066	9642	9536	8848	8476	8121	7781
Discounted Energy Production (kWh)	0	452403	426393	401879	378774	156997 3	36472 3:	17127 29	38895 28	0 452403 426393 401879 378774 356997 336472 317127 298895 281710 265514 250249 235861	5514 250	1249 235		222301 20	209520 1	197474	186121	175420	165335	155829	146870
LCoE (€/kWh)	0,1410																				

Figure II.9: 60 kW Raw

											Costs	"									
	0	1	2	3	4	2	9	7	8	9 1	10 1	11 1	12	13	14	15	16	17	18	19	20
AD Plant Cost (€)	459061								_												
Maintenance (€)			24970	25469	12364	12611	12863	13120	13383	13650 13	13923	14202	14486 1	14776	15071	15372	15680	15994	16313	16640	16972
Active Charcoal (€)	2800	2856	2913	2971	3031	3091	3153	3216	3281	3346	3413	3481	3551	3622	3695	3768	3844	3921	3999	4079	4161
Insurance (€)	2295	2295	2295	2295	2295	2295	2295	2295	2295	2295	2295	2295	2295	2295	2295	2295	2295	2295	2295	2295	2295
Grid Connection & Measur. (€)	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
Permits (€)	2000																				
Barn Adapatation (€)	45000																				
Total Costs (€)	516156	7151	32178	32736	19690	19998	20312	20632	20959 2	21292 23	21632 2:	21979 2	22332 2	22693	23061	23436	23819	24209	24608	25014	25428
Total Cumulated Costs (€)	516156	523308	555486	588221	607911	327908 6	48220 6	68852 68	39810 73	516156 523308 555486 588221 607911 627908 648220 668852 689810 711102 732734		754713 77	777045 79	799738 8	822799 8	846235	870054	894263	918871	943885	969314
										_	ncome	ē									
	0	1	2	3	4	5	9	7	8	9 1	10 1	11 1	12	13	14	15	16	17	18	19	20
Annual Gross Electricity Produced (kWh)		480000 480000		480000	480000 4	480000 4	480000 48	480000 48	480000 48	480000 480	480000 480	480000 48	480000 48	480000 4	480000 4	480000	480000	480000	480000	480000	480000
Co-Fund (Fundo Ambiental) (€)	200000																				
Annual Saved Electricity (€)		30569	31181	31804	32440	33089	33751	34426	35115	35817 36	36533	37264 3	38009	38769	39545	40336	41142	41965	42805	43661	44534
Annual Sold Electricity to grid (€)		39475	40264	41069	41891	42729	43583	44455 4	45344	46251 47	47176 48	48119 4	49082	50063	51065	52086	53128	54190	55274	56379	57507
Total Income (€)	200000	200000 70044	71445	72874	74331	75818	77334	78881	80459 8	82068 83	83709 8	85383 8	87091	88833	90609	92422	94270	96155	98079	100040	102041
Total Cumulated Income (€)	200000	200000 270044 341	489	414363	488694 5	564512 6	641846 73	720727 80	801186 88	883253 966	966962 1053	1052346 113	1139437 122	1228269 13	1318879 14	1411300 1	1505570 1	1601726 1	1699804 1	1799844 1	1901885
Cash-Flows	-316156	62893	39267	40138	54642	55820	57023	58249	59500	60776 62	62077 63	63405 6	64759 6	66140	67549	68985	70451	71946	73471	75026	76613
NPV (20 YRS)	341.043 €																				
IRR	17%																				
ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI	ROI	ROI	ROIR	ROI RO	ROIR	ROI	ROI	ROI	ROI	ROI	ROI	ROI	ROI	ROI
Discounted Costs (€)	316156	6740	28584	27408	15537	14873	14238	13631	13051 1	12496 11	11966 1:	11459 1	10974 1	10510	10066	9642	9536	8848	8476	8121	7781
Discounted Energy Production (kWh)	0	452403	426393	401879	378774	356997 3	36472 3.	17127 29	38895 28	0 452403 426393 401879 378774 356997 336472 317127 298895 281710 265514		250249 23	235861 22	222301 2	209520 1	197474	186121	175420	165335	155829	146870
LCoE (€/kWh)	0,1043																				

Figure II.10: 60 kW Co-Funded

											Costs	t t									
	0	1	2	3	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20
AD Plant Cost (€)	515999																				
Maintenance (€)			26010	26530	12879	13137	13399	13667	13941	14219	14504	14794	15090	15392	15699	16013	16334	16660	16994	17333	17680
Active Charcoal (€)	3000	3060	3121	3184	3247	3312	3378	3446	3515	3585	3657	3730	3805	3881	3958	4038	4118	4201	4285	4370	4458
Insurance (€)	2580	2580	2580	2580	2580	2580	2580	2580	2580	2580	2580	2580	2580	2580	2580	2580	2580	2580	2580	2580	2580
Grid Connection & Measur. (€)	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
Permits (€)	2000																				
Barn Adapatation (€)	50000																				
Total Costs(€)	578579	7640	33711	34294	20706	21029	21358	21693	22036	22385	22741	23104	23475	23852	24238	24631	25032	25441	25858	26284	26718
Total Cumulated Costs (€)	578579	578579 586219 619930	619930	654224	654224 674930 695959 717317 739010 761046 783431	636569	717317	739010 7	761046 7		806171	829275	852750	876602	900840	925471	950503	975944	975944 1001803 1028087 1054805	028087	054805
											Income	ne									
	0	1	2	8	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20
Annual Gross Electricity Produced (kWh)		592000	592000 592000	592000	592000	592000	592000	592000 5	592000 5	592000	592000	592000	592000	592000	592000	592000	592000	592000	592000	592000	592000
Annual Saved Electricity (€)		30569	31181	31804	32440	33089	33751	34426	35115	35817	36533	37264	38009	38769	39545	40336	41142	41965	42805	43661	44534
Annual Sold to Grid Electricity (€)		53378	54445	55534	56645	57778	58933	60112	61314	62540	63791	65067	66368	96929	69050	70431	71839	73276	74742	76236	77761
Total Income (€)		83947	85626	87338	89085	90867	92684	94538	96429	98357	100324	102331	104378	106465	108594	110766	112982	115241	117546	119897	122295
Total Cumulated Income (€)	83947	167894	253520	340858	429944	520811	613495	708033 8	304462 9	02819 10	003143 1	105474 1	209852 1	1316317	83947 167894 253520 340858 429944 520811 613495 708033 804462 902819 1003143 1105474 1209852 1316317 1424912 1535678 1648659 1763901 1881447 2001344 2123639	1535678	648659	1763901	1881447	001344 2	123639
Cash-Flows (€)	-578579	76307	51915	53045	68379	69838	71326	72845	74393	75973	77584	79227	80903	82613	84357	86135	87950	89800	91688	93613	95577
NPV (20 YRS) (€)	255.833 €																				
IRR	11%																				
ROI	NO ROI	NO ROI NO R	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI	ROI	ROI	ROI	ROI	ROI	ROI	ROI	ROI	ROI	ROI	ROI	ROI	ROI
Discounted Costs (€)	578579	7201	29946	28712	16340	15640	14971	14332	13722	13138	12579	12045	11535	11047	10580	10133	9206	9538	8907	8533	8175
Discounted Energy Production (kWh)	0	557964	525885	495651	0 557964 525885 495651 467154 440296 414982 391124 368637 347443	440296	414982	391124	368637 3		327467	308640	290896	274171	258408	243552	229549	216352	203913	192189	181140
LCoE (€/kWh)	0,1255																				

Figure II.11: 74 kW Raw

											Costs										
	0	1	2	3	4	2	9	7	8	6	10	11	12	13 1	14	15	16	17	18	19	20
AD Plant Cost (€)	515999																				
Maintenance (€)			26010	26530	12879	13137	13399	13667	13941	14219	14504	14794	15090	15392 1	15699	16013	16334	16660	16994	17333	17680
Active Charcoal (€)	3000	3060	3121	3184	3247	3312	3378	3446	3515	3585	3657	3730	3805	3881	3958	4038	4118	4201	4285	4370	4458
Insurance (€)	2580	2580		2580	2580	2580	2580	2580	2580	2580	2580	2580	2580	2580	2580	2580	2580	2580	2580	2580	2580
Grid Connection & Measur. (€)	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
Permits (€)	2000																				
Barn Adapatation (€)	50000																				
Total Costs(€)	578579	7640	33711	34294	20706	21029	21358	21693	22036	22385	22741 2	23104 2	23475 2	23852 2	24238 2	24631	25032	25441	25858	26284	26718
Total Cumulated Costs (€)	578579	586219	619930	578579 586219 619930 654224 674930		636369	695959 717317 739010 761046	39010 7		783431 8	806171 82	829275 85	852750 87	876602 90	900840 92	925471 9	950503	975944	1001803 1	1028087	1054805
											Income	ē									
	0	1	2	3	4	2	9	7	80	6	10	11	12	13 1	14	15	16	17	18	19	20
Annual Gross Electricity Produced (kWh)		592000	592000	592000	592000	592000	592000 5	592000 59	592000 5	592000 5	592000 59	592000 59	592000 59	592000 59	592000 59	592000 5	592000	592000	592000	592000	592000
Co-Fund (Fundo Ambiental)	200000																				
Annual Saved Electricity (€)		30569	31181	31804	32440	33089	33751	34426	35115	35817	36533	37264	38009	38769	39545	40336	41142	41965	42805	43661	44534
Annual Sold to Grid Electricity (€)		53378	54445	55534	56645	57778	58933	60112	61314	62540	63791	65067	9 89899	96929	69050	70431	71839	73276	74742	76236	77761
Total Income (€)	200000		83947 85626	87338	89085	90867	92684	94538	96429	98357 10	100324 10	102331 10	104378 10	106465 10	108594 11	110766 1	112982	115241	117546	119897	122295
Total Cumulated Income (€)	200000	200000 283947 36957	369573	456911	545997	636864 7	729548 8	824086 92	920515 10	1018872 11	1119196 122	1221527 132	1325905 143	1432370 1540965		1651731 17	1764712 18	1879954 1	1997500 2	2117397 2	2239692
Cash-Flows (€)	-378579	76307	51915	53045	68379	69838	71326	72845 7	74393	75973	77584 7	79227	80608	82613 8	84357 8	86135	87950	89800	91688	93613	95577
NPV (20 YRS) (€)	444.335 €																				
IRR	18%																				
ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI	ROI	ROI	ROI	ROI	ROI	ROIF	ROIR	ROI R	ROIF	ROI	ROI	ROI	ROI	ROI	ROI
Discounted Costs (€)	378579	7201	29946	28712	16340	15640	14971	14332	13722	13138	12579 1	12045 1	11535 1	11047 1	10580	10133	9026	9538	8907	8533	8175
Discounted Energy Production (kWh)	0	557964	525885	495651	0 557964 525885 495651 467154 440296 414982 391124 368637	440296	414982 3	91124 30		347443 3.	327467 30	308640 29	290896 27	274171 25	258408 24	243552 2	229549	216352	203913	192189	181140
LCoE (€/kWh)	0,0958																				

Figure II.12: 74 kW Co-Funded

III

Financial Simulations: Vermont

										Costs	sts									
	0	1	2	3	4	2	9	7	80	6	10	11 1	12 13	3 14	15	16	17	18	19	20
AD Plant Cost (\$)	200000																			
Maintenance (\$)			15606	15918	16236	16561	16892	17230	17575	17926	18285 1	18651 19	19024	19404 197	19792 20188	88 20592		21004 21424	24 21852	2 22289
Active Charcoal (\$)	2000	2040	2081	2122	2165	2208	2252	2297	2343	2390	2438	2487	2536 2	2587 26	2639 26	2692	2746 28	2800 2856	56 2914	4 2972
Insurance (5)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000		1000	1000			1000 1000	1000	1000
Grid Connection & Measur. (5)	10000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000 20	2000	2000	2000 2000	2000	0 2000
Permits (5)	2000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000 1000	1000	1000
Barn Adapatation (\$)	75000																			
Total Costs (\$)	293000	6040	21687	22041	22401	22769	23145	23528	23918	24317 2	24723 2	25137 25	25560 25	25991 264	26431 26880	80 27337		27804 28280	30 28766	6 29261
Total Cumulated Costs (\$)	293000	299040	320727	342767	365169	387938 4	411083 4	434610 4	458529 4	482845 50	507568 53	532706 558	558266 584	584257 610688	588 637568	68 664905	105 692709	720989	39 749755	5 779016
										Income	me									
	0	1	2	3	4	2	9	7	00	6	10	11 1	12 13	3 14	15	16	17	18	19	20
Annual Gross Electricity Produced (kWh)		88000	88000	88000	88000	88000	88000	88000	88000	88000	88000 8	88000 88	88000 88	88000 880	88000 88000	00088 000	00088 000	00088 000	00088 00	0 88000
Feed In Tariff (5)	0	13015	13276	13541	13812	14088	14370	14657	14950	15249	15554 1	15865 16	16183 16	16506 16837	337 17173	73 17517	17867	18224	18589	18961
Voluntary GMP (5)	0	3590	3662	3735	3810	3886	3964	4043	4124	4207	4291	4377	4464 4	4553 46	4645 4737		4832 49	4929 5027	27 5128	8 5231
Production Tax Credit (\$)	0	2288	2288	2288	2288	2288	2288	2288	2288	2288	2288									
Investment Tax Credit (5)		60000																		
RECs (\$)		2693	2747	2802	2858	2915	2973	3033	3093	3155	3218	3283	3348	3415 34	3483 35	3553 36	3624 36	3697 3771	71 3846	3923
Carbon Credits (5)		1469	1498	1528	1559	1590	1622	1654	1687	1721	1755	1790	1826 1	1863 19	1900	1938 19	1977 20	2016 2057	57 2098	8 2140
Total Income (\$)		83055	23471	23894	24326	24767	25217	25675	26143	26620	27107 2	25315 25	25821 26	26338 268	26865 27402	02 27950	50 28509	29079	79 29661	1 30254
Total Cumulated Income (\$)	0	83055	106526	130420	154746	179513 2	204730 2	230405 2	256548 2	283168 31	310275 33	335590 361	361412 387	387749 414614	514 442016	16 469966	166 498475	175 527554	54 557214	4 587468
Cash-Flows	-293000	77015	1784	1854	1925	1998	2072	2148	2225	2304	2384	178	261	347 4	433 5.	522 6	613	705 7	799 895	5 993
NPV (20 YRS)	-193,380 €																			
IRR																				
ROI	NO ROI	NO ROI	NO ROI	NO ROI	NO ROI	IO ROI	O ROI N	O ROI N	O ROI N	O ROI N	ROI NO	ROI NO	ROI NO	ROI NO F	NO R	OI NO R	OI NO F	OI NO RO	OI NO RC	I NO RO
Discounted Costs (\$)	293000	2688		18407	17617	16863	16142	15452	14793		13560 1	12984 12	12433 11	11905 114	11401 10919	19 10457		10016 9594	94 9189	8803
Discounted Energy Production (KWh)	0	82870	78040	73491	69207	65173	61374	27796	54427	51254 4	48267 4	45453 42	42803 40	40308 379	37959 35746	46 33662		31700 29852	52 28112	2 26473
LCoE (\$/kWh)	0,5560																			

Figure III.1: 11 kW Vermont

										Costs	ts									
	0	1	2	3	4	2	9	7 1	8	10	11	12	13	14	15	16	17	18	19	20
AD Plant Cost (\$)	270000					-		\vdash			L									
Maintenance (5)			20808	21224	21649	22082	22523	22974 23	23433 23	23902 24380	80 24867	7 25365	25872	26390	26917	27456	28005	28565	29136	29719
Active Charcoal (5)	2000	2040	2081	2122	2165	2208	2252	2297	2343 2	2390 2438	38 2487	7 2536	2587	2639	2692	2746	2800	2856	2914	2972
Insurance (\$)	1350	1350	1350	1350	1350	1350	1350	1350	1350 1	1350 13	1350 1350	0 1350	1350	1350	1350	1350	1350	1350	1350	1350
Grid Connection & Measur. (5)	10000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000 2000	0 2000	2000	2000	2000	2000	2000	2000	2000	2000
Permits (\$)	2000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000 1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Barn Adapatation (5)	75000																			
Total Costs (\$)	363350	6390	27239	27697	28164	28640	29126 2	29621 30	30127 30	30642 31168	68 31704	4 32251	32809	33379	33959	34551	35155	35771	36400	37041
Total Cumulated Costs (\$)	363350	369740	396979	424675 4	452839 4	481479 5	510604 54	540225 570	570352 600	600994 632162	62 663866	6 696117	728927	762305	796264	830816	865971	901742	938142	975183
										Income	me									
	0	1	2	3	4	5	9	7	8 9	10	11	12	13	14	15	16	17	18	19	20
Annual Gross Electricity Produced (kWh)		176000	176000	176000	176000 1	176000 1	176000 17	176000 176	176000 176000	000 176000	00 176000	0 176000	176000	176000	176000	176000	176000	176000	176000	176000
Feed in Tariff (5)	0	26030	26551	27082	27624	28176	28740 2	29314 29	29901 30	30499 31109	18718 60	32366	33013	33673	34347	35033	35734	36449	37178	37921
Voluntary GMP (\$)	0	7181	7324	7471	7620	7773	7928	8087	8248	8413 8582	82 8753	3 8928	9107	9289	9475	9664	9858	10055	10256	10461
Production Tax Credit (\$)	0	4576	4576	4576	4576	4576	4576	4576 4	4576 4	4576 45	4576									
Investment Tax Credit (5)		81000																		
RECs (\$)		5386	5493	5603	5715	5830	5946	9092	6186 6	6310 64	6436 6565	9699	6830	2969	7106	7248	7393	7541	7692	7846
Carbon Credits (\$)		2938	2996	3056	3117	3180	3243	3308	3374 3	3442 3511	11 3581	1 3653	3726	3800	3876	3954	4033	4113	4196	4280
Total Income (\$)		127110	46941	47788	48653	49534	50433 5	51350 52	52286 53	53240 54213	13 50630	0 51643	52676	53729	54804	55900	57018	58158	59321	60508
Total Cumulated Income (\$)	0	127110	174051	221840 2	270493 3	320027 3	370460 42	421810 474	474096 527337	337 581550	50 632180	0 683823	736499	790228	845032	900932	957949	957949 1016108 1075429	1075429	1135937
Cash-Flows	-363350	120720	19702	20092	20489	20894	21308 2	21729 22	22159 22	22598 23046	46 18926	6 19391	19866	20351	20845	21349	21863	22387	22922	23467
NPV (20 YRS)	-29.774 €																			
IRR	2%																			
ROI	NO ROI	NO ROI	NO ROI	NO ROI N	NO ROI	NO ROI NO	NO ROI NO	NO ROI NO RO	ROI NO RO	ROI NO RO	OI NO RO	I NO ROI	ROI	ROI	ROI	ROI	ROI	ROI	ROI	ROI
Discounted Costs (\$)	363350	6018	24156	23130	22149 21211	21211	20313 19454	9454 18	18633 17847	847 17095	95 16376	6 15687	15028	14398			12664	12135	11628	11143
Discounted Energy Production (kWh)	0	165741	156079	146981	138413 1	30345 1	22747 11	156079 146981 138413 130345 122747 115592 108854 102509	8854 102	509 96533	33 90906	85607	80617	75918	71492	67325	63400	59705	56224	52947
LCoE (\$/kWh)	0,3468																			

Figure III.2: 22 kW Vermont

										3	Costs									
	0	1	2	3	4	2	. 9	3 2	8	10	11	12	13	14	15	16	17	18	19	20
AD Plant Cost (\$)	350000				_	_	L	L												
Maintenance (\$)			26010	26530	27061	27602	28154 28	28717 29	29291 29	29877 30475	75 31084	31706	32340	32987	33647	34320	35006	35706	36420	37149
Active Charcoal (5)	2000	2040	2081	2122	2165	2208	2222	2297	2343 2	2390 2438	38 2487	17 2536	2587	2639		2746	2800	2856	2914	2972
Insurance (\$)	1750	1750	1750	1750	1750	1750		1750		1750 1750	50 1750	0 1750	1750		1750	1750	1750	1750	1750	1750
Grid Connection & Measur. (\$)	15000	2000	2000	2000	2000	2000	2000	2000	2000	2000 2000		2000	2000	2000		2000	2000	2000	2000	2000
Permits (\$)	2000	1000	1000	1000	1000	1000	1000	1000	1000	1000 1000		1000	1000		1000	1000	1000	1000	1000	1000
Barn Adapatation (\$)	80000																			
Total Costs (\$)	453750	06/9	32841	33403	33976	34560 3	35156 39	35765 36	36385 37	37017 37663	63 38321	38993	39677	40376	41088	41815	42557	43313	44084	44871
Total Cumulated Costs (\$)	453750	4	493381	526783 5	560759 5	595319 63	630476 66	666240 702	702625 739	739642 777305	05 815626	854619	894296	934672	975761	1017576	1060132	1103445	1147529	1192400
										lnc	Income									-
	0	1	2	3	4	2	9	7	8	10	11	12	13	14	15	16	17	18	19	20
Annual Gross Electricity Produced (kWh)		264000	264000	264000	264000 2	264000 26	264000 26	264000 264	90	264000 264000	2	2	2	2	2	264000	264000	264000	264000	264000
Feed in Tariff (5)	0	39046	39827	40623	41436	42264 4	43109 4	43972 44	44851 45	45748 46663	63 47596	48548	49519	50510	51520	52550	53601	54673	25767	56882
Voluntary GMP (\$)	0	10771	10987	11206	11430	11659	11892	12130 12	12373 12	12620 12873	73 13130	13393	13660	13934	14212	14497	14787	15082	15384	15692
Production Tax Credit (\$)	0	6864	6864	6864	6864	6864	6864	6864	6864 6	6864 6864	7.									
Investment Tax Credit (5)		105000																		
RECs (5)		8078	8240	8405	8573	8744	8919	8606	9280	9465 9654	54 9848	10044	10245	10450	10659	10872	11090	11312	11538	11769
Carbon Credits (5)		4406	4495	4584	4676	4770	4865	4962	5062 5	5163 5266	66 5371	1 5479	5588	5700	5814	5930	6049	6170	6293	6419
Total Income (\$)		174166	70412	71683	72979	74301	75650 7	77026 78	78429 79	79860 81320	20 75945	77464	79013	80594	82206	83850	85527	87237	88982	90762
Total Cumulated Income (\$)	0	174166	244577	316260	389239 4	463540 53	539190 61	616216 694	694645 774	774505 855825	25 931770	1009235	1088248	1168842	1251048	1334897	1420424	1507661	1596643	1687405
Cash-Flows	-453750	167376	37571	38280	39003	39741 4	40494 4:	41261 42	42044 42	42843 43657	57 37624	38472	39336	40218	41117	42035	42970	43925	44898	45891
NPV (20 YRS)	117.079 €																			
IRR	10%																			
ROI	NO ROI	NO ROI	NO ROI	IO ROI	O ROI N	D ROI NG	ROI NO	ROI NO	ROI ROI	OI ROI	ROI	ROI	ROI	ROI	ROI	ROI	ROI	ROI	ROI	ROI
Discounted Costs (\$)	453750			27895	26720	25595 2		23489 22	22504 21	21560 20657	57 19793		18174	17416	16690	15995	15330	14693	14083	13499
Discounted Energy Production (kWh)	0	248611	234119	220472 2	207620	195518 18	184121 17	173388 163	163281 153	153763 144800	00 136359	9 128410	120925	113876	107238	100987	95100	89557	84336	79420
LCoE (\$/kWh)	0,2840																			

Figure III.3: 33 kW Vermont

										Š	Costs									
	0	1	2	3	4	2	. 9	7 8	9	10	11	12	13	14	15	16	17	18	19	20
AD Plant Cost (\$)	420000							L												
Maintenance (\$)			29131	29714	30308	30914	31533 32	32163 32	32806 33463	63 34132	34814	35511	36221	36945	37684	38438	39207	39991	40791	41607
Active Charcoal (5)	2500	2550	2601	2653	2706	2760	2815	2872 2	2929 29	2988 3047	3108	3171	3234	3299	3365	3432	3501	3571	3642	3715
Insurance (5)	2100	2100	2100	2100	2100	2100	2100	2100 2	2100 21	2100 2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100
Grid Connection & Measur. (\$)	20000	2000	2000	2000	2000	2000	2000	2000	2000 20	2000 2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
Permits (5)	2000	1000	1000	1000	1000	1000	1000	1000	1000	1000 1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Barn Adapatation (\$)	80000																			
Total Costs (\$)	529600	7650	36832	37467	38114	38774 3	39448 40	40135 40	40836 41550	50 42279	9 43023	3 43781	44555	45344	46149	46970	47807	48662	49533	50421
Total Cumulated Costs (\$)	529600	537250	574082	611549 6	649663 68	688438 727886		768021 808856	856 850406	06 892686	935709		1024045	1069389	979490 1024045 1069389 1115538 1162508 1210316 1258977 1308510 1358931	1162508	1210316	1258977	1308510	1358931
										Inco	Income									
	0	1	2	3	4	2	9	7 8	9	10	11	12	13	14	15	16	17	18	19	20
Annual Gross Electricity Produced (kWh)		352000	352000	352000	352000 3	352000 35	352000 352	352000 352000	352000	00 352000	352000	352000	352000	352000	352000	352000	352000	352000	352000	352000
Feed in Tariff (\$)	0	52061	53102	54164	55247	56352 5	57479 58	58629 59	59801 60998	98 62217	.7 63462	2 64731	66026	67346	68693	29007	71468	72898	74356	75843
Voluntary GMP (\$)	0	14362	14649	14942	15241	15545 1	15856 16	16173 16	16497 16827	27 17163	3 17507	7 17857	18214	18578	18950	19329	19715	20110	20512	20922
Production Tax Credit (5)	0	9152	9152	9152	9152	9152	9152	9152 9	9152 91	9152 9152	.5									
Investment Tax Credit (\$)		126000																		
RECs (\$)		10771	10987	11206	11430	11659 1	11892	12130 12	12373 12620	20 12873	3 13130	13393	13660	13934	14212	14497	14787	15082	15384	15692
Carbon Credits (5)		5875	5993	6113	6235	6360	6487	9 9199	6749 68	6884 7021	7162	7305	7451	7600	7752	7907	8065	8227	8391	8559
Total Income (\$)		218221	93882	95577	97305	99068 10	100867 102	102701 104572	572 106480	80 108427	7 101260	103286	105351	107458	109608	111800	114036	116316	118643	121016
Total Cumulated Income (\$)	0	218221	312103	407680 5	504985 60	604053 704920	4920 80.	7621 912	807621 912193 1018673 1127100 1228361 1331646 1436998 1544456 1654063 1765863 1879899 1996215 2114858 2235873	73 112710	0 122836.	1 1331646	1436998	1544456	1654063	1765863	1879899	1996215	2114858	235873
Cash-Flows	-529600	210571	57050	58110	59191	60294 6	61419 62	62566 63	63736 64930	30 66148	8 58237	7 59504	96209	62114	63459	64830	66228	67655	69110	70594
NPV (20 YRS)	292.711 €																			
IRR	14%																			
ROI	NO ROI	NO ROI	NO ROI	NO ROI	IO ROI	NO ROI NO	ROIR	ROI RC	ROI ROI	ROI	ROI	ROI	ROI	ROI	ROI	ROI	ROI	ROI	ROI	ROI
Discounted Costs (\$)	529600	7204	32663	31289	29975	28716 2	27512 26	26359 25	25256 24200	00 23190	0 22222	2 21295	20408	19559	18746	17967	17222	16507	15824	15168
Discounted Energy Production (KWh)	0		331481 312159 293962 276827 260690 245494 231184 217708	293962	276827 2	50690 24	5494 23.	1184 217	708 205017	17 193066	6 181812	2 171214	161234	151835	142984	134649	126801	119409	112449	105894
LCoE (\$/kWh)	0,2442																			

Figure III.4: 44 kW Vermont

										8	Costs									
	0	1	2	3	4	2	9	Ľ	8	9 10	11	12	13	14	15	16	17	18	19	20
AD Plant Cost (5)	525000				\vdash	_			_											
Maintenance (\$)			33293	33959	34638	35331 36	36037 36	36758 37	37493 38	38243 390	39008 39788	88 40584	4 41395	42223	43068	43929	44808	45704	46618	47550
Active Charcoal (\$)	3000	3060	3121	3184	3247	3312 3	3378	3446	3515 3	3585 36	3657 3730	30 3805	5 3881	3958	4038	4118	4201	4285	4370	4458
Insurance (\$)	2625	2625	2625	2625	2625	2625 2	2625		2625 2	2625 26	2625 2625	25 2625	5 2625	2625	2625	2625	2625	2625	2625	2625
Grid Connection & Measur. (5)	30000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000 2000	00 2000	0 2000	2000		2000	2000	2000	2000	2000
Permits (\$)	2000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000 1000	1000	1000	1000	1000		1000	1000	1000
Barn Adapatation (5)	85000																			
Total Costs (\$)	650625	8685	42039	42767	43510 4	44268 45	45041 45	45829 46	46633 47	47453 482	48290 49143	43 50013	3 50901	51807	52730	53672	54633	55614	56613	57633
Total Cumulated Costs (\$)	650625	659310	701349 7	744116 7	787626 83	831894 876	876935 922	922764 969	969397 1016	1016850 10651	1065140 1114283	83 1164297	7 1215198		1267005 1319735	1373407 1428041		1483655	1540268	1597901
										<u>n</u>	Income									
	0	1	2	3	4	2	6 7	Ľ	8	9 10	11	12	13	14	15	16	17	18	19	20
Annual Gross Electricity Produced (kWh)		480000	480000	480000 4	480000 48	480000 480	480000 480	480000 480	480000 480	480000 480000	000 480000	00 480000	0 480000	480000	480000	480000	480000	480000	480000	480000
Feed in Tariff (5)	0	70992	72412	73860	75337	76844 78	78381 79	79949 81	81547 83	83178 848	84842 86539	39 88270	0 90035	91836	93672	95546	97457	99406	101394	103422
Voluntary GMP (\$)	0	19584	19976	20375	20783 2	21198 21	21622 22	22055 22	22496 22	22946 234	23405 23873	73 24350	0 24837	25334	25841	26357	26885	27422	27971	28530
Production Tax Credit (\$)	0	12480	12480	12480	12480	12480 12	12480 12	12480 12	12480 12	12480 124	12480									
Investment Tax Credit (5)		157500																		
RECs (\$)	0	14688	14982	15281	15587	15899 16	16217 16	16541 16	16872 17	17209 175	17554 17905	05 18263	3 18628	19000	19381	19768	20163	20567	20978	21398
Carbon Credits (\$)		7956	8115	8277	8443	8612 8	8784	8960	9139	9322 95	9508 9698	98 9892	2 10090	10292	10498	10708	10922	11140	11363	11590
Total Income (\$)	0	283200	127964	130274	132630 13	135033 137	137484 139	139984 142	142534 145	145135 147788	788 138015	15 140775	5 143590	146462	149391	152379	155427	158535	161706	164940
Total Cumulated Income (\$)	0	283200	411164	541438 6	674068 80	809101 946	946585 1086	1086570 1229104	9104 1374	1374239 1522027	027 1660042	42 1800817	7 1944407	2090869	2240261	2392640	2548067	2706602	2868308	3033248
Cash-Flows	-650625	274515	85925	87507	89120	90765 92	92443 94	94155 95	95901 97	97682 994	99499 88871	71 90761	1 92689	94655	96661	98707	100793	102922	105093	107307
NPV (20 YRS)	545.250 €																			
IRR	18%																			
ROI	NO ROI	NO ROI	NO ROI	IO ROI	NO ROI NO	NO ROI R	ROI RO	ROI RO	ROI RC	ROI ROI	ROI	ROI	ROI	ROI	ROI	ROI	ROI	ROI	ROI	ROI
Discounted Costs (\$)	650625	8179	37281	35716	34218 3	32785 31	31413 30	30099 28	28842 27	27638 264	26486 25383	83 24327	7 23315	22347	21419	20531	19681	18866	18085	17338
Discounted Energy Production (KWh)	0		452020 425671 400858 377491 355487 334765	100858 3	77491 35	55487 334		315251 296	296874 279	279569 263272	272 247926	26 233474	4 219864	207048	194979	183613	172910	162831	153339	144401
LCoE (\$/kWh)	0,2130																			

Figure III.5: 60 kW Vermont

											رمديد										
			ļ	ļ	}	}	}	}	}	ŀ	- 1	ŀ	}	}	ŀ	}	}	ŀ	ŀ	ļ	
	0	1	2	3	4	2	9	7	00	9	10	11	12	13	14	15	16	17	18	19	20
AD Plant Cost (\$)	580000					_															
Maintenance (\$)			41616	42448	43297 4	44163 4	45046 4	45947	46866	47804 4	48760	49735	50730	51744	52779	53835	54911	56010	57130	58272	59438
Active Charcoal (\$)	3500	3570	3641	3714	3789	3864	3942	4020	4101	4183	4266	4352	4439	4528	4618	4711	4805	4901	4999	5099	5201
Insurance (S)	2900	2900	2900	2900	2900	2900	2900	2900	2900	2900	2900	2900	2900	2900	2900	2900	2900	2900	2900	2900	2900
Grid Connection & Measur. (5)	30000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
Permits (5)	2000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Barn Adapatation (5)	85000																				
Total Costs (\$)	706400	9470	51157	52063	52986 5	53928 5	54888 5	55868	26867	57887	58926	28665	61069	62172	63297	64445	65616	66811	68029	69271	70539
Total Cumulated Costs (\$)	706400	706400 715870	767027	819090 8	872076 926003		10891 105	36759 10	93626 11	980891 1036759 1093626 1151513 1210439 1270426 1331494 1393666 1456964 1521409 1587025 1653836 1721864 1791136 1861674	0439 12	70426 13:	31494 13	93666 14	56964 15.	21409 15	87025 16	53836 17	721864 17	791136 1	861674
										ĭ	Income										
	0	1	2	3	4	5	9	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Annual Gross Electricity Produced (kWh)		592000	592000	592000	592000 59	592000 59	592000 59	592000 59	592000 59	592000 59	592000 59	592000 59	592000 5	592000 5	592000 59	592000 5	592000	592000 5	592000	592000	592000
Feed in Tariff (5)	0	87557	80268	91094	92916 9	94774	96670	98603 10	100575 10	102587 10	104638 10	106731	108866 1	111043 1	113264 1:	115529 1:	117840 1	120197	122601	125053	127554
Voluntary GMP (5)	0	24154	24637	25129	25632	26145	26668 2	27201	27745	28300 2	28866	29443	30032	30633	31245	31870	32508	33158	33821	34497	35187
Production Tax Credit (5)	0	15392	15392	15392	15392	15392	15392	15392	15392	15392 1	15392										
Investment Tax Credit (\$)		174000																			
RECs (\$)	0	18115	18478	18847	19224	19608	20001 2	20401	20809	21225 2	21649	22082	22524	22974	23434	23903	24381	24868	25366	25873	26390
Carbon Credits (\$)		9792	8866	10188	10391	10599	10811	11027	11248	11473 1	11702	11936	12175	12419	12667	12920	13179	13442	13711	13985	14265
Total Income (\$)	0	329010	157802	160650	163555 16	166519 16	169541 17	172624	175769 17	178976 18	182248	170193	173597 1	177069	180610	184222 10	187907	191665	195498	199408	203396
Total Cumulated Income (\$)	0	329010	486812	647462 8	811017 97	7536 114	17077	19701 14	95470 16.	811017 977536 1147077 1319701 1495470 1674446 1856694 2026887 2200484 2377553 2558163 2742385 2930292 3121957 3317456 3516864 3720260	6694 20.	26887 22	00484 23	77553 25	58163 27	42385 29	30292 31	21957 33	317456 33	516864 3	720260
Cash-Flows	-706400 319540	319540	106645	108588	110570 11	112591 11	114653 11	116756 13	118902 12	121090 12	123322 13	110206 11	112528 1	114897 1	117313 1:	119777 1	122291 1	124855 1	127470	130137	132858
NPV (20 YRS)	3 566:152																				
IRR	21%																				
ROI	NO ROI	NO ROI	NO ROI	NO ROI	IO ROI	ROI	ROIR	ROI	ROIF	ROIR	ROIF	ROIF	ROI	ROI	ROI	ROI	ROI	ROI	ROI	ROI	ROI
Discounted Costs (\$)	706400	8918	45367	43479 41670		39939	38280 3	36692	35172	33715 3	32320		29704	28478	27303	26178	25100	24067	23077	22129	21220
Discounted Energy Production (kWh)	0	557491	524994	494391	0 557491 524994 494391 465572 438433		412876 38	388809 36	366145 34	344801 32	324702 30	305775 28	287951 2	271166 2	255359 24	240474 2	226456 2	213255 2	200824	189118	178094
LCoE (\$/kWh)	0,1974																				

Figure III.6: 74 kW Vermont

