
 

A Work Project, presented as part of the requirements for the Award of a Master's degree in 

Management from the Nova School of Business and Economics. 

 

 

 

 

 

HOW TO COMPARE DEVOPS, DEVSECOPS, AND SCRUM USING ENTERPRISE 

ARCHITECTURE MODELING 

 

 

 

 

JAD BCHELLY - 53379 

 

 

 

 

Work project carried out under the supervision of: 

Professor Paulo Faroleiro 

 

18/12/2023 

 

 

 



1 
 

Abstract 
 

We live in a century where publishing systems and applications have become a norm, where 

hundreds of thousands of them are produced on a daily basis. Choosing an organisation with a fast 

product development lifecycle, adapting to market changes, and complying with governmental 

laws is a must to keep companies competitive in this growing market. To better understand the 

differences and similarities between different methodologies and frameworks used by development 

companies, this paper compares DevOps, DevSecOps, and Scrum using the Enterprise Architecture 

(EA) approach using the ArchiMate modelling language.  

Keywords: DevOps. DevSecOps, Scrum, Enterprise architecture, modelling, product 

development life cycle 

 

 

 

 

 

 

 

 

 



2 
 

Table of Contents 

Abstract .................................................................................................................................................... 1 

Introduction ............................................................................................................................................. 3 

Literature review ..................................................................................................................................... 4 

Literature review on Enterprise Architecture .................................................................................. 4 

Definition of Enterprise Architecture ................................................................................................ 4 

Benefit of integrating Enterprise Architecture .................................................................................. 4 

Literature review on pre-DevOps ...................................................................................................... 5 

Literature review on DevOps ............................................................................................................. 6 

The emergence of DevOps ................................................................................................................ 6 

DevOps phases .................................................................................................................................. 7 

Literature review on DevSecOps ...................................................................................................... 10 

The emergence of DevSecOps ........................................................................................................ 10 

DevSecOps phases .......................................................................................................................... 10 

Literature review on Scrum.............................................................................................................. 12 

Scrum definition .............................................................................................................................. 12 

Scrum process and Scrum Sprint process ........................................................................................ 13 

Sprint planning ................................................................................................................................ 14 

Sprint ............................................................................................................................................... 14 

Research design ..................................................................................................................................... 16 

Problem ............................................................................................................................................... 16 

Research question ................................................................................................................................ 17 

Proposal ............................................................................................................................................... 17 

Results .................................................................................................................................................... 18 

DevOps ................................................................................................................................................ 18 

DevSecOps .......................................................................................................................................... 19 

Scrum .................................................................................................................................................. 20 

DevOps, DevSecOps, Scrum ............................................................................................................... 21 

Conclusion .............................................................................................................................................. 24 

Directions for future research .............................................................................................................. 25 

References .............................................................................................................................................. 26 

Appendix ................................................................................................................................................ 28 

 



3 
 

Introduction 

Being up-to-date, relevant, and compliant is what makes an organisation successful. (BEA 

Oghojafor, OO Olayemi, OO Oluwatula, 2012). Nowadays, people lean towards using reliable, 

functional systems and applications that bring value to their daily lives. Organisations are looking 

for well-grounded software development companies to take charge of building what is needed 

quickly, authentically, and in a stable way. That is where experienced development companies shine 

in determining the appropriate framework or methodology based on the complexity of the 

requirements, the client's expectations, and the project's timeline. (HH Olsson, J Bosch, H Alahyari, 

2013). 

This paper focuses on three famous frameworks and methodologies software development 

companies use: DevOps, DevSecOps, and Scrum. This paper aims to answer the question: "How 

to compare DevOps, DevSecOps, and Scrum using Enterprise Architecture modeling? " 

No previous attempts have been made available that include using EA modelling to compare them. 

More specifically, using ArchiMate, an open-source, independent modelling language for EA that 

helps describe, study, and visualise the interconnection among architecture domains in an evident 

way. (The Open Group, 2016). 

To help answer these questions and reach proper conclusions, the following steps were conducted. 

Starting with a "Literature review" provides a theoretical context for the research and hypotheses. 

"Research Design" is then brought up by highlighting the resources and strategies used that are 

suitable for the research. "Results" later demonstrate the research outcome and reveal the findings 

deduced. Finally, the "Conclusion" summarises the entire research and highlights discoveries. The 

identified limitations are also acknowledged and, in conclusion, potential directions for further 

research on these topics is suggested.  



4 
 

Literature review 

Literature review on Enterprise Architecture 

Definition of Enterprise Architecture 

 

Enterprise Architecture is a comprehensive framework applied by businesses from different 

industries to help them develop a structured approach to designing, planning, managing, and 

implementing their resources to support their objectives and business goals (Gama, 2013). 

In fact, there is no official definition for EA. Since the 1960s, many perspectives have come to 

light on what EA is, influenced by the type of industry, culture, organisational structure, and diverse 

stakeholder backgrounds the organisations have. It is also important to mention that EA is not a 

static framework that every organisation should abide by. It evolves with technological 

advancements and new methodologies, leading to multiple interpretations, each reflecting a 

different course and alteration. 

However, one sentence written by The Open Group in 2018 clarifies the purpose of implementing 

the EA framework at the heart of any organisation's core strategy: "Enterprise Architecture is the 

process of translating business vision and strategy into effective enterprise change by creating, 

communicating, and improving key requirements, principles, and models that describe the 

enterprise's future state and enable its evolution." (The Open Group, 2018). 

Benefits of Integrating Enterprise Architecture 

In their research paper titled "Enterprise Architecture: Enabling Integration, Agility, and Change", 

theorists and researchers Jeanne W. Ross, Peter Weill, and David C. Robertson stated, in 2006, that 

"Three core imperatives are essential for modern businesses and organisations: seamless 

integration of customer and operational processes, agility, and the ability to change". However, 

they point out that these imperatives are not satisfied, and Enterprise Architecture should be 



5 
 

integrated to link strategy development and execution. They emphasise the design and structure of 

systems rather than just their functional aspect and the execution part. In fact, integrating EA 

ensures that the organisation's systems align with the company's goals and objectives. It also 

supports agility and brings along the capacity to change and adapt to changing environments and 

shifts in business needs. In addition, EA facilitates communication between different stakeholders 

involved in developing a project from its strategy development to its execution by helping them 

understand how strategic decisions play an essential role in the overall organisational structure. 

Moreover, since it allows an understanding of the organisation's architecture, EA helps anticipate 

potential challenges, preparing the team to reduce them cautiously (Bredmeyer, E, 2004).  

Literature review on pre-DevOps 

In their Phoenix project book, written by Gene Kim, Kevin Behr, and George Spafford (2013), the 

authors mention how challenging it was to develop a system without collaboration and visibility. 

To build a system for its clients, a development company needed two separate teams: The 

development team and the operations team. Each one of them works independently and has a 

different working agenda.  

The development team's primary goal is to create and enhance the application's functionality to 

meet business requirements. The team is responsible for developing the code and integrating the 

system's functionalities and features. Their role is also to implement new features, modify 

functionalities, optimise code, and fix bugs (Mainak, 2019). 

The main focus of the operations team is to ensure the availability, performance, and stability of 

the application in the product environment, which translates to the following: Deploying the 

application on servers, configuring the necessary infrastructure, and setting up databases. This team 

plays a significant role in identifying issues derived from the application production phase, and it's 



6 
 

their responsibility to troubleshoot and resolve them. During the whole process, from starting to 

work on the project to the delivery phase, no interaction is made between the two departments as 

they have distinct roles and responsibilities (Dobra, 2021). It is essential to remember that the 

operational team will only start working once it receives the application from the development 

team. Back in the days, the typical application or system would take months or even years to be 

fully developed and operational. Some of the reasons that led to the slow pace of building 

applications and systems were the manual configuration and deployment (lack of technological 

automation), lack of collaboration and visibility between teams (lack of product lifecycle strategy), 

scalability challenges as well as maintenance disruption (Haththakage, 2023).  

Literature review on DevOps 

The emergence of DevOps 

Year after year, project after project, the complexity of systems and applications increased, and it 

became clear that traditional development and deployment methods struggled to keep pace with 

business demand. It became comprehensible that something needed to change, and closer 

collaboration between development and operations teams was demanded. (Mojtaba Shahin, and M. 

Ali Babar, 2020). It wasn't official until 2009, when a new chapter started for the world of 

technology and a conference titled "DevOpsDays" took place in Belgium (Modi, 2023). 

As Amazon Web Services (AWS, 2022) defines it: "DevOps is the combination of cultural 

philosophies, practices, and tools that increases an organisation's ability to deliver applications and 

services at high velocity: evolving and improving products at a faster pace than organisations using 

traditional software development and infrastructure management processes.” The company has 

also provided a model showing how they operate together (Appendix 1). In other words, it is better 



7 
 

practice and more efficient to keep the development and the IT operations teams more involved 

with each other to deliver better and faster performance up to the quality demanded from them.  

DevOps phases 

The DevOps culture is implemented in multiple phases with the help of several tools. (Manish 

Virmani, 2015). It al1 starts with the planning phase, where the product owner or manager puts 

down a plan keeping in mind application objectives and requirements needed to be delivered to the 

client. A Business Analyst meets with the stakeholders (clients and involved actors) to better 

understand what is required from the team to achieve success at the end of the product lifecycle. 

Once the plan is set, it is essential that the Development Engineers and CI/CD Engineers set up and 

manage the version control system correctly. In more detail, version control is an essential 

component of DevOps because it guarantees that any modification made to the program codebase 

is monitored, recorded, and available to the whole development team. That happens when the 

engineers merge and push their code changes to a shared repository accessible to the whole team 

(Atlassian, 2023). 

After the Development Engineers' tasks are fulfilled, the second phase starts and the development 

team is set to start coding. The team work on different code versions while saving them in a 

repository. To have a fast development lifecycle, meet the deadline, and work efficiently, multiple 

Developers work at the same time. Each developer has their own set of tasks to take care of. 

Once the code is written, the build phase is considered to be reached. What happens next is the 

testing phase. In the testing phase, a quality assurance team is tasked with ensuring that the code 

developed by the development team meets established quality standards. The code quality is 

verified by writing and executing proper code tests, including unit and integration tests. A crucial 



8 
 

part of this phase that brings value to the DevOps methodology is the use of continuous integration 

(CI) and continuous development (CD) (Jakob Pennington, 2019).  

The same platform where the repository is present is used for continuous integration. As described 

by IBM: "Continuous integration is a software development process where Developers integrate 

the new code they've written more frequently throughout the development cycle. Automated testing 

is done against each iteration of the build to identify integration issues earlier, when they are easier 

to fix, which also helps avoid problems at the final merge for the release." (IBM, 2022).  

Continuous Development enhances Continuous Integration by frequently integrating code changes 

into a shared repository, where automated builds and tests are triggered to ensure that new code 

changes do not break the existing functionality (Christopher Cowell, Nicholas Lotz, and Chris 

Timberlake, 2023). 

After testing, the work transitions from the development team to the operations team to manage 

the remaining phases of the DevOps methodology. The deployment phase begins. A deployment 

phase is when the code previously established in version control by Developers has been retrieved 

and made readily available to the end user. Deployment Engineers use scripts and automation tools 

to automate the deployment process. This covers operations like file copies, configuration updates, 

and service restarts. They oversee and set up the target environments, ensuring they meet the 

program's requirements to function correctly (Surabattina Sai Sravan, 2023). During the 

deployment, the operation team stays on high alert to respond to any issues that might arise and 

ensure that rollout procedures are in place to return to the previous stable version in case the 

deployment encounters critical issues due to a minor error or change. Release managers play an 

essential role by ensuring that software updates are distributed smoothly and under control. After 

that, some post-deployment measures are implemented to monitor the application's performance, 



9 
 

manage scaling and handle unexpected errors promptly. That is why Operate, Monitoring and 

Feedback come next. Professionals, including Monitoring and Development Engineers, are 

involved in this stage to guarantee peak performance, keep the system online, and quickly detect 

any potential problems. They put monitoring and alerting systems specifically built to track the 

application's performance, detect anomalies and send alerts if a pre-defined performance and 

application behaviour deviates. Once anomalies are detected, they work towards fixing them 

immediately and efficiently (Candy Pang, 2016). 

By taking advantage of the technologies created and components employed in the process, the 

goals of DevOps were achieved. The first one is to shorten the software development lifecycle 

(SDLC). In other words, this goal aims to minimise as much as possible the time it takes to move 

from the idea to the delivery of working software — it is achieved by using automation, CI and 

CD. The second one is increasing the frequency of software releases. This success is mainly 

generated because of the automation of deployment. The third is improving the Reliability of 

Software releases. Reliability is essential because when a software or application is reliable, it helps 

avoid outages. Reliability is established once monitoring is in place (Akshit Raj, Sulabh Tyagi, 

2022). 

In summary, under a DevOps model, development and operations teams are no longer isolated from 

each other. These two teams collaborate, where the engineers work across the whole application 

lifecycle — from development and testing to deployment and operations. This new way of working 

helped address issues earlier, sped up deployment cycles, and encouraged a culture of shared 

responsibility towards the application being built.   



10 
 

Literature review on DevSecOps 

 

The emergence of DevSecOps 

 

In pre-DevOps, the development team and the operations team worked independently from each 

other. After years of practice and trying to find better ways of operating, teams realised that the 

development and operations teams could form a collaboration that could lead to a faster System 

Development Life Cycle (SDLC). After cybersecurity threats emerged and regulations put pressure 

on organisations from GDPR and HIPAA that imposed strict data protection and privacy standards, 

DevSecOps was introduced as a solution to fix all these problems (Neil Macdonald, and Ian Head, 

2016). 

As IBM defines it: "DevSecOps - short for development, security, and operation - integrates 

application and infrastructure security seamlessly into Agile and DevOps processes and tools. It 

addresses security issues as they emerge when they're easier, faster, and less expensive to fix. (IBM, 

2022). In other words, DevSecOps is when all three teams collaborate to prioritise security without 

slowing down the development process. It also ensures that security is everyone's concern during 

the product development lifecycle.  

DevSecOps phases 

No significant difference exists between how DevOps and DevSecOps execute and implement its 

strategies. They follow almost the same agenda from the planning phase to the deployment and 

product release phase, adding additional security measures. During the planning phase, teams 

conduct security analysis and develop an agenda for security testing that specifies when, how, and 

in which components it will take place. Security comes before coding, enabling Developers to 

identify and address potential vulnerabilities as they write code. Doing so will reduce the risk of 

unintentionally leaving vulnerabilities and holes in the final product. In the coding phase, every 



11 
 

commit (code submitted) and merge will automatically trigger a security test or review after 

security technologies are directly integrated into the developer's repository workflow set up by a 

security engineer. Some popular security tools used are CheckStyle, PMD, and SpotBugs. Once 

the repository is filled with code, the build phase takes place where automated security analysis 

tools such as Checkmarx, Snyk, and OWASP Dependency-Check scan the code for potential 

security flaws (Agung Maulana, Herman Kabetta, 2022). It is a critical procedure because it 

minimises human error and is time-efficient as it scans the code quickly, looking for mistakes. After 

a build artifact has been successfully created and sent to staging or testing environments, the test 

phase begins. It takes a lot of time to run through an entire test suite (various individual tests 

targeting different functionalities). 

To reserve more resource-intensive and timely tests for later and optimise efficiency, the testing 

stage needs to identify errors quickly using fast testing methods. Throughout the testing process, 

dynamic application security testing (DAST) tools identify application processes, including 

authorisation, user authentication, endpoints related to APIs, and SQL injection (Havard M and 

Ricardo C, 2017). This method guarantees that resources are allocated wisely and that significant 

problems are found early in the testing process. By the time the DevSecOps cycle reaches the 

release phase, the application should have gone through extensive testing. This stage reviews 

environment configuration values, including network firewall, personal data management, and user 

access control (Tao Chen, and Haiyan Suo, 2022). The Deployment phase comes next, where the 

team should carefully examine configuration disparities between the current production 

environment and the initial development setting. 

A short example is supposing the application database connection settings were configured for 

testing purposes without considering high-security measures. During the deployment, the security 



12 
 

team ensures that the database's configuration is set at the highest level of security. That minimises 

the risk of database attacks that can leak user (client) sensitive data (Mary S, Ricardo C, 2020). 

Lastly comes Operation and Monitoring. This last phase is the cherry on top regarding ensuring 

that security measures are always ready to keep the product safe. Periodic maintenance of Zero-

day vulnerabilities is crucial to track and resolve them as quickly as possible. Vulnerabilities 

discovered should be addressed instantly to avoid attackers and black hat hackers from leveraging 

it and attacking the overall infrastructure. The security team can use Infrastructure as Code (IaC) 

to help them manage and provision infrastructure resources, making it easier to keep code versions 

and replicate the infrastructure environment (Nenad Petrovic, and Matija Cankar, 2022). A 

continuous monitoring tool can be put in place to keep track of the system's performance in real-

time that helps spot any exploits at an early stage so the security team, with the collaboration of the 

Developers, can attack and fix the vulnerabilities before they spread in the wrong person's hands 

(Vaishnavi Mohan, and Lotfi Ben Othamane, 2016). 

Overall, introducing DevSecOps as a security later to DevOps helped Increase security, speed and 

efficiency, created cost savings, and enforced continuous improvement. As technology evolves, 

intruders are always looking for new processes and techniques to hack systems, which they mostly 

get their hands on. DevSecOps integrates security during the lifetime cycle of a program by 

ensuring that all measures and new technology updates and processes are considered, which helps 

programs stay away from emerging hacking tools and reduce their risk of being compromised.  

Literature review on Scrum 

Scrum definition 

As defined by AWS: "Scrum is a management framework that teams use to self-organise and work 

towards a common goal. It describes a set of meetings, tools, and roles for efficient project delivery" 

(AWS, 2022). 



13 
 

The primary Scrum team comprises a Product Owner, a Scrum Master, and several Developers. In 

a nutshell, each one of them has the following responsibilities (Kittitouch Suteeca; Sakgasit 

Ramingwong, 2016) 

The product owner represents the stakeholder, i.e. the customer or the end user. The Scrum Master 

ensures that the scrum process runs as smoothly as possible, helps the team remove and deal with 

obstacles, and ensures that teams and processes adhere to the Scrum principles. The development 

team is responsible for building the product overall. They get their hands dirty in building the 

applications (coding) and respond to all requirements and functions to ensure a successful final 

product delivery (Ken Schwaber, 2019). 

Scrum process and Scrum Sprint process 

 

The scrum process is composed of multiple sprints, each with a specific goal to reach. Each sprint 

takes about one to three weeks to be completed. The main goal of multiple sprints is to produce a 

valuable product increment, adapt to feedback, and improve to get to a complete and valuable 

product. The more sprints we have, the more product precision and the fewer uncertainties appear. 

However, the number of sprints a team completes depends on the project's scope and complexities 

(Christoph Matthies, 2019). 

The Scrum process always starts with creating a product backlog initiated by the product owner. 

The product backlog, agile, acts as a dynamic and ongoing document that collects and arranges all 

the features, user stories, improvements, problem patches, and other things that need to be 

addressed in a product. The product backlog goes through ongoing updates based on emerging 

requirements.  



14 
 

Sprint planning  

 

To keep it organised, the Scrum team holds a Sprint planning meeting to define the work for the 

upcoming sprint. During the meeting, the product owner lists the highest priority items from the 

product backlog that they wish to see finished during the following sprint. The development team 

ensures they understand these items and the work required to achieve them. The Scrum Master's 

job is to facilitate the meeting, ensuring that the Scrum framework is followed and adapted. In 

addition, the team examined the technicalities and approaches for completing selected tasks. A 

sprint backlog is created once the sprint planning meeting is successful and decisions are drawn 

(Victor Faniran, 2017). 

Sprint  

 

The most essential part of the Sprint process is the Daily Scrums, also called Daily Standups. Daily 

Scrums is a meeting held by the Scrum Master and the Developers every day during the sprint. 

During this time-boxed meeting, which usually takes approximately 10 to 15 minutes, team 

members discuss and share what they worked on during the sprint (the previous day) and what they 

plan to work on during the next one (Rashmi Popli, and Naresh Chau, 2013). 

After the daily scrum, the development team takes action and works on developing the product 

and implementing the tasks they aligned on. Their main tasks include designing the product, writing 

the code to execute, and ensuring that everything they implement is secure and tested. Developers 

work simultaneously by implementing their code to a version control repository, which helps 

manage and track ongoing changes to the code (Jessica R, and Frand F, 2009). 

In the Scrum framework, there is no particular and separate security team. Instead, security 

responsibility is distributed across the entire Scrum team. Security practices are incorporated into 

the entire software development lifecycle. Some security practices include security code reviews 



15 
 

and integrating automation practices to secure the code implemented during the development 

process. They help mitigate security vulnerabilities at earlier stages, give room for improvement, 

and tackle code weaknesses (Imran Ghani, 2011). 

After each sprint, the product incrementally takes shape. Every sprint plays a crucial role in the 

scrum process. The team continuously looks for ways of product improvement and work based on 

feedback and evolving requirements from the sprint beforehand. At the end of each sprint, the 

product should be in a shippable state, meaning it works properly as previously planned and is free 

of flaws, which is called being at an Incremental state. 

Following that comes the most critical part: ensuring everything was well done. During this phase, 

the Scrum team hold a Sprint Review meeting where the development team demonstrate the 

product they built during the sprint to the stakeholders. After discussions and conclusions, the 

stakeholders provide feedback on the overall sprint process and can suggest changes or draw new 

requirements that the development team will take care of during the upcoming sprint (Jeff 

Sutherland, 2004). 

After the Sprint review, a Sprint Retrospective meeting takes place to reflect on the sprint's 

successes and areas of improvement to enhance efficiency and productivity during the succeeding 

sprint. The actors involved are the Scrum Master, the Product Owner, and the Development team.  

After the feedback and insights drawn from the Sprint review and the Sprint retrospective meetings, 

the team make all necessary adjustments to the product backlog. This process is called "Backlog 

refinement". The team make sure that the problems do not happen again. Once the Sprint review, 

sprint retrospective, and backlog refinement are concluded, the sprint backlog gets adjusted and 

ready for the sprint to come (Scrum Inc., 2012). 



16 
 

After all sprints take place, considering all adjusted backlogs; and the product reaches its final 

incremental stage, a final sprint review is conducted, where the product gets demonstrated in front 

of stakeholders who provide feedback for final adjustments. After that, a product release phase 

occurs, consisting of the product delivered to the client. There is no operations team to take care of 

the product release and make it available to the end user. Instead, the Product Owner is mainly 

involved with the product release amongst the Scrum Team.  

An essential part after the product release is feedback and monitoring. Some organisations assign 

this role to a Monitoring engineer; however, it is also the role of the whole Scrum team to ensure 

that performance monitoring is taken care of. Alerting tools are set up to immediately trigger 

warnings when anomalies occur to chase and fix system issues before users get affected (Fabio 

Rocha, Guillermo Rodriguez, 2022). 

Scrum has shown to be an agile methodology that places a strong emphasis on teamwork, 

flexibility, and incremental advancement.  

Research design 

Problem 

As mentioned in the literature review, DevOps, DevSecOps, and Scrum are practices that have 

evolved over the years based on project requirements, feedback, market demand, and shifts. 

Depending on the project being worked on, considering its complexity, features required, and 

timeline, software development companies choose the framework and methodology that fits the 

best to deliver a functional and impeccable project for their clients. 

In this matter, EA can be a modelling tool to help visualise, analyse, and compare different 

ideologies and frameworks within their overall structure and objectives. 



17 
 

Several pieces of literature and publications cover the ideology behind the benefits and limitations 

of using DevOps, DevSecOps, and Scrum. However, none of them draws a comparison or finds 

similarities between them using EA modelling.  

Research question 

Considering the information presented earlier, the paper explored the subsequent research query: 

Q: How can enterprise architecture modelling be used to compare DevOps, DevSecOps, and 

Scrum to find their similarities and differences?  

Proposal 

 

A qualitative and empirical approach was used to provide a comprehensive and insightful 

investigation and address the question. First, the research aimed to identify key reasons software 

development companies use DevOps, DevSecOps, and Scrum and understand how and what led 

them to evolve in the market. Second, it is crucial to understand the workflow and the role of the 

actors of the methodologies and frameworks in question. Third, to see the similarities and 

differences between DevOps, DevSecOps, and Scrum and perceive how the workflow, roles, and 

actors are interconnected in these approaches, the ArchiMate modelling language was applied 

based on the TOGAF standard, the most renowned methodology for Enterprise Architecture (The 

Open Group, 2018). The research sources were online libraries, including Google Scholar, Institute 

of Electrical and Electronics Engineers (IEEE), JSTOR, and additional books and blog content. 

Three models have been developed and decomposed into elements and relationships using Archi's 

modelling toolkit. The first model represents DevOps. The second model represents DevSecOps. 

The third and final model represents Scrum. Finally, the models were analysed and compared to 

understand their similarities and differences.  



18 
 

Results 

For the sake of brevity, Archi representations are explained in Appendix 2.  

DevOps 

As previously mentioned in the Literature Review, DevOps is a methodology in the software 

development industry. A modeling of DevOps is presented in Appendix 3. After the development 

company assigns the project to be developed using a DevOps methodology, Business Actors, such 

as the Product Owner and the Business Analyst, meet (called Business process in EA) to define the 

product backlog, represented as a business object. Development Engineers and Infrastructure 

Specialists then collaborate to set up the infrastructure that plays an essential role in the next stage: 

development and deployment. During this stage, Development Engineers and Software Developers 

have a common assignment: to develop the code (Application process) applying CI, representing 

a business process as it builds upon defining a set of product and tactical demands. The CD is 

represented as a principle and is associated with CI, as it triggers tests whenever code is merged 

into the repository. CI/CD Engineers have association and assignment relation towards CI/CD as 

they ensure they operate effectively. Quality Assurance Engineers are responsible for ensuring code 

quality and setting up security testing, both technology events, because they might change the state 

of the code developed. Actors such as Security Specialists also play a role in arranging security 

tests. CI, code quality, and security testing have a flow relation towards the code as they play a role 

in information transfer to make it more robust. 

After the code is finalised and well-secured, Deployment Engineers, with the help of Development 

Engineers, work on deploying the code and delivering it to the client. Deployment Engineers have 

a serving relation towards the final product as they provide its functionality by making it accessible 

to the client, and the Development Engineers have a flow relation towards the final product as they 



19 
 

fix issues that arise and assist Deployment Engineers in making decisions. The last role remains 

for the Monitoring Engineers, who have a flow relation towards the final product because they set 

up systems that communicate information about the continuous health of the product and ensure it 

runs as planned. 

DevSecOps  

Based on the literature review, it is clear that DevSecOps follows the same layers as DevOps but 

implements more security layers during the development lifecycle, as presented in Appendix 4. 

During the project planning, a Security Analyst joins the meeting with the Business Analyst and 

Product Owner and has an assignment relationship responsible for building a security agenda that 

will be executed during the product development. The infrastructure setup remains the same and 

is handled by the development engineer and Infrastructure Specialist. Before starting to code, a 

security engineer is assigned a business role and has a flow relation with the Software Developers 

and Development Engineers because he advises them in advance of potential security obstacles 

they might need to focus on carefully to minimise the risk of possible vulnerabilities. Security 

Engineers have an assignment relation with CI because they built in a security test that gets 

triggered whenever a code gets pushed into the version control. That makes the code more secure 

and minimises human errors. Once the code has been finalised, QA Engineers ensure that the 

quality of the code is well-formatted, free of errors and ready to be released. Security Specialists 

run tests to ensure the code is safe to release. 

Once the code is secured and finalised, Security Engineers ensure the system's settings are 

configured and ready to be deployed to prevent configuration mistakes. The configuration is 

considered a technology event as it makes necessary updates to the system to make it ready for 

delivery. Deployment Engineers then deploy the code, which is later monitored by Monitoring 



20 
 

Engineers and fixed by the development engineer in case of any trouble. In addition to Security 

Engineers making sure the configurations are correct, they also take care of the maintenance of the 

system after being deployed to ensure that vulnerabilities don't arise with the advancement of 

technologies that enable code penetration.  

Scrum 

As defined in the literature review, Scrum is an agile framework that helps teams stay organised to 

achieve efficient project delivery. Its model is presented in Appendix 5. Starting with Sprint 

Planning, the Scrum Master has a business role because of his specific responsibilities, meeting 

with the business actors, the Product Owner, and the Developers to create the sprint backlog. It's 

an assignment related to the three of them, as they are responsible for its creation and execution. 

After that, the Scrum Master and Developers meet during the daily scrum to align what to work on 

during the upcoming sprint. Meetings are usually business interactions because multiple actors 

collaborate to perform a task. Next, the Developers have an assignment relationship because they 

handle the coding and testing being accomplished during a sprint. A flow relation comes between 

the daily scrum meeting and the development of the day because Developers transfer what they 

agreed on during the meeting into a functional code. The security part of the code is represented as 

a technology event because the code gets updated if security issues are identified. After a sprint, 

the product reaches an incremental development stage, represented as a product because it 

combines multiple elements (secured code). 

Following the incremental stage, three types of meetings take place. The product is demonstrated 

before the stakeholders in a sprint review meeting. A sprint retrospective meeting is where product 

strengths and room for development are identified, and backlog refinement is where adjustments 

to the product backlog are made for the upcoming sprint. These meetings take the form of business 



21 
 

interactions. The actors involved in the Sprint review meeting are stakeholders and Developers. 

The Scrum Master is also involved, having a Business role. Actors involved in the sprint 

retrospective are the Product Owner and the Developer. The actors involved in the backlog 

refinement are the Developers, the Product owners, and the Scrum Master. The meetings are 

connected with a flow relation as they transfer knowledge and feedback from the one before. After 

the meetings, the sprint backlog gets adjusted. It has an association relation between it and the 

meetings. Hereafter, a final sprint review (Business interaction) takes place where the Developers 

conduct the final touches, and once everything is in place, the product is ready to be delivered. The 

Product Owner is primarily involved in the release phase. After release, the Scrum team monitor 

the system and the product to ensure that everything is working as expected and free from mistakes. 

The monitoring is a technology event connected to the product by a flow relation. 

DevOps, DevSecOps, Scrum 

 

Modelling the methodologies and frameworks selected showed that they are well-organised 

mechanisms that can achieve product delivery efficiently. However, some similarities and 

differences have come to light. 

Product backlog 

DevOps, DevSecOps, and Scrum, start the project with a product backlog to discuss and draw the 

steps required to attain the project goals successfully. However, DevSecOps include a Security 

Analyst to assess and prioritise security risks and identify security requirements.  

Meetings 

Another aspect recognised is that meetings play a significant role in the work organisation in the 

Scrum framework. That is not the case for DevOps or DevSecOps. In Scrum, multiple meetings 

occur daily to ensure that requirements are met, problems are resolved, and goals are achieved. 



22 
 

Meetings occur before the day's code, after the day's development, after the incremental 

development, and after all backlog adjustments occur before reaching the release phase. In DevOps 

and DevSecOps, the development team, operations team, and security team (in DevSecOps only) 

collaborate throughout the product development lifecycle. However, no formal meeting unfolds. 

Also, unlike DevOps and DevSecOps, stakeholders are involved at a certain point in the Scrum 

framework, giving product feedback to ensure the project is on the right track. Overall, meetings 

are more common and relied on in Scrum than DevOps and DevSecOps, as well as stakeholder 

feedback. 

Security 

It was very clear from the modelling that DevSecOps incorporates security measures more than 

DevOps and Scrum. The lack of prioritisation of security in DevOps, increased cyber threats, and 

pressure from legal and governmental entities have prompted organisations to demand greater 

dedication to security. That is why a security layer was added to DevOps and has the name of 

DevSecOps. The product phases between the two are strongly similar. However, after the addition 

of the security team, extra security layers were included: Before the beginning of the project, during 

CI, after the coding, and before and after the product release. In Scrum, security measures occur 

daily after each sprint, allowing the code to stay secure and up-to-date. 

Nonetheless, like DevOps, no security team is assigned to take care of the overall security of the 

project. Developers take care of security measures, making the security level less effective and 

reliable than DevSecOps. In the main, the code goes through multiple security layers in 

DevSecCops than in DevOps or Scrum. 



23 
 

Automation 

Automation tools are in use in all frameworks and methodologies in question. Using automation 

tools is vital as it helps the teams and development companies automate their software whenever 

needed. That helps reduce the human intervention requirement, leading to greater speed, efficiency, 

and credibility (Testim, 2020). In all three, CI is used so Developers can work on the project 

simultaneously and merge their code into a shared repository accessible to the whole team. 

Additionally, DevOps and DevSecOps use automation tools in CI/CD during deployment and the 

monitoring phase. 

On top of that, automation is well relied on in DevSecOps to cover security tasks such as triggering 

code tests after code is pushed during CI and throughout system configuration. Like DevSecOps, 

security measures are automated after the code is implemented and written by the Developers in 

Scrum. DevSecOps uses more automation tools than Scrum and DevOps, making it less prune to 

human error.  

Product lifecycle   

Analysis is based on the models below and the models in Appendices 3, 4, and 5. DevOps, 

DevSecOps, and Scrum embrace continuous improvement, aiming to enhance processes and 

layers to reach the goals of the project being worked on. DevOps's Product Life cycle (PLC) is 

relatively fast as the methodology stresses shortening lead times and increasing deployment 

frequency. The PLC of DevSecOps is slightly longer as it incorporates security practices 

throughout the development phases. In comparison, Scrum is an agile framework that operates in 

sprints lasting more or less two weeks. It has a structured framework focusing on delivering 

shippable products at the end of each sprint. Its PLC cannot be compared to DevOps or 



24 
 

DevSecOps as it depends on specific needs, requirements, and market changes. 

Figure 1: PLC of DevOps, DevSecOps, and Scrum using ArchiMate 

 

 

 
 

Conclusion 

 

This paper investigates the similarities and differences between software development 

methodologies and frameworks: DevOps, DevSecOps, and Scrum. A preliminary literature 

review gave a thorough description of each of these methods used by software development 

companies and showed their main focus while introducing their structure and phases 

implemented.  

To visualise the structure and envision the product development lifecycle of the methods in 

question, an Enterprise Architecture modelling language called ArchiMate was used. Three 

models were created for each of them. Modelling these frameworks and methodologies showed 

that DevSecOps and DevOps share the same foundation. However, DevSecOps extends DevOps 

by including security practices and layers throughout the development lifecycle. It also showed 

that each method has different ways of organising the product development lifecycle with its 

system and practices. Scrum has different priorities than DevOps and DevSecOps as it is an agile 

framework that aims to adapt to the changing requirements of the product and market and 

continuously improve.  



25 
 

Directions for future research 

 

The value of this study is that, for the first time, an attempt was made to model three different 

frameworks and methodologies using the EA approach. However, there are also limitations. First, 

DevOps, DevSecOps, and Scrum are dynamic and adaptive to changes in the market and 

requirements. Traditional EA models may not apprehend the evolving nature of these methods. 

Second, the methods in question are well known for the collaboration among multiple teams and 

everyday interaction on specific processes. EA models might not effectively capture 

communication patterns and team dynamics among them. To understand more how agile 

frameworks and methodologies are compared, the analysis can be carried out by comparing 

Kanban, Extreme programming, and Feature-Driven Development using EA (ArchiMate).  

  



26 
 

References 
 

AWS. 2022. "What is Scrum?" https://aws.amazon.com/what-

is/scrum/#:~:text=Scrum%20is%20a%20management%20framework,experience%2C%20and%2

0adapt%20to%20change. 

Azham, Z. Ghani, I, and Ithnin N. 2011. "Security backlog in Scrum security practices." 

Malaysian Conference in Software Engineering. Johor Bahru, Malaysia: IEEE. pp. 414-417. 

Chen, T, and Suo, H. 2022. "Design and Practice of Security Architecture via DevSecOps 

Technology."13th International Conference on Software Engineering and Service Science 

(ICSESS), Beijing, China: IEEE. 2022. pp. 310-313. 

Cowell, C, Lotz, N, and Timberlake C. 2023. "Automating DevOps with GitLab CI/CD 

Pipelines: Build efficient CI/CD pipelines to verify, secure, and deploy your code using real-life 

examples." Birmingham: Packt Publishing. 

Faniran, V. T, Badru A, and Ajayi N. 2017. "Adopting Scrum as an Agile approach in distributed 

software development: A review of literature". 1st International Conference on Next Generation 

Computing Applications (NextComp). Mauritius:IEEE. pp. 36-40. 

Hoogervorst, Jan. 2003. "Enterprise Architecture: Enabling Integration, Agility And Change." 

International Journal of Cooperative Information Systems. 13(03):213-233 

IBM. 2022. "What is DevSecOps?" https://www.ibm.com/topics/devsecops. 

Macdonald, Neil, and Head Ian. 2016. "DevSecOps: How to Seamlessly Integrate Security Into 

DevOps." Gartner Journal. 

Mary Sánchez-Gordón and Ricardo Colomo-Palacios. 2020. "Security as Culture: A Systematic 

Literature Review of DevSecOps." In Proceedings of the ACM 42nd International Conference on 

Software Engineering Workshops (ICSEW'20). Association for Computing Machinery, New 

York, NY, USA: IEEE. 266–269. 

Matthies, C. 2019. "Feedback in Scrum: Data-Informed Retrospectives." ACM 41st International 

Conference on Software Engineering: Companion Proceedings (ICSE-Companion), Montreal, 

QC, Canada: IEEE. pp. 198-201. 

Mohan, V and Othmane, L. B. 2016. "SecDevOps: Is It a Marketing Buzzword? - Mapping 

Research on Security in DevOps." 11th International Conference on Availability, Reliability and 

Security (ARES). Salzburg, Austria: IEEE. 

Myrbakken, H., Colomo-Palacios, R. 2017. DevSecOps: A Multivocal Literature Review. In: 

Mas, A., Mesquida, A., O'Connor, R., Rout, T., Dorling, A. (eds) Software Process Improvement 

and Capability Determination. SPICE 2017. Communications in Computer and Information 

Science, vol 770. 



27 
 

Oghojafor, BEA, Olayemi, O, and Oluwatula. 2012. "Attribution Theory and Strategic Decisions 

on Organizational Success Factors." Journal of Management and Strategy, Vol3, No 1:8 

Olsson H, Bosch J, and Alahryia H. 2013. "Towards R&D as Innovation Experiment Systems: A 

Framework for Moving Beyond Agile Software Development." Journal of a Scientific and 

Technical Publishing Company. 

Pennington Jakob. 2018. "The Eight Phases of a DevOps Pipeline." Texas: Medium. 

Petrović, N, Cankar, M, and Luzar, A. 2022. "Automated Approach to IaC Code Inspection Using 

Python-Based DevSecOps Tool," 2022 30th Telecommunications Forum (TELFOR), Belgrade, 

Serbia: IEEE. pp. 1-4. 

Popli R, and Chauhan, N. 2013. "A sprint-point based estimation technique in Scrum." 

International Conference on Information Systems and Computer Networks. Mathura, India: 

IEEE. pp. 98-103. 

Putra, A. M, and Kabetta H. 2022. "Implementation of DevSecOps by Integrating Static and 

Dynamic Security Testing in CI/CD Pipelines." International Conference of Computer Science 

and Information Technology (ICOSNIKOM), Laguboti, North Sumatra, Indonesia: IEEE.pp. 1-6. 

Schwaber, K. 1997. "SCRUM Development Process." London: Springer. 

Scrum. 2012. "3 Steps to an Effective Retrospective." https://www.scruminc.com/wp-

content/uploads/2014/05/Three-Steps-to-an-Effective-Retrospective.pdf . 

Shahin, Mojtaba, and Babar Ali. 2020. "ICSSP: On the Role of Software Architecture in DevOps 

Transformation: An Industrial Case Study." Republic of Korea: IEEE. 

Shah, Sandip, and O'Grady Darragh. 2020. "Adaptable Enterprise Architecture for Times of 

Rapid Change." Journal of Global Business. 

Sravan, Surabattina. 2023. "Significant Challenges to espouse DevOps Culture in Software 

Organisations By AWS: A methodical Review." Coimbatore: IEEE. 

Suteeca, K and Ramingwong, S. 2016. "A framework to apply ISO/IEC29110 on SCRUM." 

International Computer Science and Engineering Conference (ICSEC) Chiang Mai, Thailand: 

IEEE. pp. 1-5. 

Sutherland, Jeff. 2006. "The First Scrum: How Scrum provides energy, focus, clarity, and 

transparency to project teams developing complex systems." Interview with Dr. Jeff Sutherland, 

CTO of PatientKeeper, Inc. California: EWork-Out. 

The Open Group. 2016. An Introduction to the ArchiMate 3.0 Specification. https://api-

ir.unilag.edu.ng/server/api/core/bitstreams/985f6a6c-7ae4-4092-acc1-b82d6979abe1/content 

The Open Group. 2018. "The TOGAF Standard". https://www.opengroup.org/togaf 

Tyagi, S, Akshit Raj. 2022. "ICI: Lightweight Review: Challenges and Benefits of Adopting 

DevOps." Noida: IEEE. 



28 
 

Vega, Florencia & Rodríguez, Guillermo & Rocha, Fabio & dos Santos, Rodrigo. (2022). Scrum 

Watch: a tool for monitoring the performance of Scrum-based work teams. JUCS - Journal of 

Universal Computer Science. 28. 98-117. 10.3897/jucs.67593. 

Virmani Manish. 2015. "INTECH: Understanding DevOps & bridging the gap from continuous 

integration to continuous delivery." Sao Paulo: IEEE. 

 

Appendix 

 
Appendix 1 -  DevOps model  

 

 

Appendix 2 – ArchiMate Representations 

A- Business Layer Elements 

Element Description Notation 

Business actor Represents a business entity that is 

capable of performing behavior. 

 

Business role Represents the responsibility for 

performing specific behavior, to which 

an actor can be assigned, or the part an 

actor plays in a particular action or 

event. 

 

Business collaboration Represents an aggregate of two or 

more business internal active structure 

elements that work together to perform 

collective behavior. 
 



29 
 

Element Description Notation 

Business interface Represents a point of access where a 

business service is made available to 

the environment. 
 

Business process Represents a sequence of business 

behaviors that achieves a specific result 

such as a defined set of products or 

business services. 
 

Business function Represents a collection of business 

behavior based on a chosen set of 

criteria (typically required business 

resources and/or competencies), 

closely aligned to an organisation, but 

not necessarily explicitly governed by 

the organisation. 

 

Business interaction Represents a unit of collective business 

behavior performed by (a collaboration 

of) two or more business actors, 

business roles, or business 

collaborations. 

 

Business event Represents an organisational state 

change. 

 

Business service Represents explicitly defined behavior 

that a business role, business actor, or 

business collaboration exposes to its 

environment. 
 

Business object Represents a concept used within a 

particular business domain. 

 

Contract Represents a formal or informal 

specification of an agreement between 

a provider and a consumer that 

specifies the rights and obligations 

associated with a product and 

establishes functional and non-

functional parameters for interaction. 

 

Representation Represents a perceptible form of the 

information carried by a business 

object. 

 

Product Represents a coherent collection of 

services and/or passive structure 

elements, accompanied by a 

contract/set of agreements, which is 
 



30 
 

Element Description Notation 

offered as a whole to (internal or 

external) customers. 

 

 

B- Relationships 

Structural Relationships Notation Role Names 

Composition Represents that an element consists of 

one or more other concepts.  

← composed of 

→ composed in 

Aggregation Represents that an element combines 

one or more other concepts.  

← aggregates 

→ aggregated in 

Assignment Represents the allocation of 

responsibility, performance of 

behavior, storage, or execution. 
 

← assigned to 

→ has assigned 

Realisation Represents that an entity plays a 

critical role in the creation, 

achievement, sustenance, or operation 

of a more abstract entity. 

 

← realises 

→ realised by 

Dependency Relationships Notation Role Names 

Serving Represents that an element provides 

its functionality to another element. 
 

← serves 

→ served by 

Access Represents the ability of behavior and 

active structure elements to observe or 

act upon passive structure elements.  

← accesses 

→ accessed by 

Influence Represents that an element affects the 

implementation or achievement of 

some motivation element. 
 

← influences 

→ influenced by 

Association Represents an unspecified 

relationship, or one that is not 

represented by another ArchiMate 

relationship. 
 

associated with 

← associated to 

→ associated from 

Dynamic Relationships Notation Role Names 

Triggering Represents a temporal or causal 

relationship between elements.  

← triggers 

→ triggered by 

Flow Represents transfer from one element 

to another.  

← flows to 

→ flows from 

Other Relationships Notation Role Names 

Specialisation Represents that an element is a 

particular kind of another element.  

← specialises 

→ specialised by 



31 
 

Relationship Connectors Notation Role Names 

Junction Used to connect relationships of the 

same type. 

 

  

 

 

C- Application Layer Elements 

Element Definition Notation 

Application component Represents an encapsulation of application 

functionality aligned to implementation 

structure, which is modular and 

replaceable. 
 

Application collaboration Represents an aggregate of two or more 

application internal active structure 

elements that work together to perform 

collective application behavior.  

Application interface Represents a point of access where 

application services are made available to a 

user, another application component, or a 

node.  

Application function Represents automated behavior that can be 

performed by an application component. 

 

Application interaction Represents a unit of collective application 

behavior performed by (a collaboration of) 

two or more application components. 
 

Application process Represents a sequence of application 

behaviors that achieves a specific result. 

 

Application event Represents an application state change. 

 

Application service Represents an explicitly defined exposed 

application behavior. 

 

Data object Represents data structured for automated 

processing. 

 

 



32 
 

Source: https://pubs.opengroup.org/architecture/archimate31-doc/chap08.html  
 https://pubs.opengroup.org/architecture/archimate31-doc/chap09.html     
              https://pubs.opengroup.org/architecture/archimate31-doc/chap05.html  
 

Appendix 3 -  DevOps Modeling  

1       2 

 

3 

  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

https://pubs.opengroup.org/architecture/archimate31-doc/chap08.html
https://pubs.opengroup.org/architecture/archimate31-doc/chap09.html
https://pubs.opengroup.org/architecture/archimate31-doc/chap05.html


33 
 

Appendix 4 - DevSecOps Modeling  

1                2 

 

3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



34 
 

Appendix 5 - Scrum Modeling  

1 

 

 

 

 

 

 

2 

 

 

 

 

 

 

 

3 


