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Abstract. Let (X, d, µ) be a space of homogeneous type and p(·) : X
→ [1,∞] be a variable exponent. We show that if the measure µ is Borel-
semiregular and reverse doubling, then the condition ess infx∈X p(x) > 1 is neces-
sary for the boundedness of the Hardy–Littlewood maximal operator M on the
variable Lebesgue space Lp(·)(X, d, µ).

1. Introduction and the main result

Let (X,d,µ) be a space of homogeneous type (see Section 2). For x ∈ X
and r > 0, consider the ball B(x, r) := {y ∈ X : d(x, y) < r} centered at x of
radius r. By definition, the Borel measure µ has the doubling property, that
is, for every ball B(x, r) with respect to the quasi-metric d, the relation

µ(B(x, r)) ≤ Aµ(B(x, r/2))

holds true with an absolute constant A > 1. We will assume that 0 < µ(B)
< ∞ for every ball B. If, additionally, the reverse inequality

µ(B(x, r/2)) ≤ δµ(B(x, r))
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is valid for some absolute constant 0 < δ < 1, it is said that the measure µ
is also reverse doubling (see, e.g., [5, Section 2.6]).

Given a complex-valued function f ∈ L1
loc(X, d, µ), we define its Hardy–

Littlewood maximal function Mf by

(1.1) Mf(x) := sup
B∋x

1

µ(B)

∫

B
|f(y)| dµ(y), x ∈ X,

where the supremum is taken over all balls B ⊂ X containing x ∈ X . The
Hardy–Littlewood maximal operator M is a sublinear operator acting by
the rule f 7→ Mf .

Let L0(X, d, µ) denote the set of all complex-valued measurable func-
tions on X and let P(X) denote the set of all measurable functions p( ·) : X
→ [1,∞]. The functions in P(X) are called variable exponents. Let
X∞ := {x ∈ X : p(x) = ∞}. For a function f ∈ L0(X,d,µ) and p(·) ∈ P(X),
consider the functional, which is called modular, given by

mp(·)(f) :=

∫

X\X∞

|f(x)|p(x) dµ(x) + ess sup
x∈X∞

|f(x)|.

By definition, the variable Lebesgue space Lp(·)(X, d, µ) consists of all
functions f ∈ L0(X,d,µ) such that ̺p(·)(f/λ) < ∞ for some λ > 0 depending
on f . It is a Banach space with respect to the Luxemburg–Nakano norm
given by

‖f‖p(·) := inf
{

λ > 0 : ̺p(·)(f/λ) ≤ 1
}

.

If p(·) ∈ P(X) is constant, then Lp(·)(X, d, µ) is nothing but the standard
Lebesgue space Lp(X,d,µ). Variable Lebesgue spaces are often called Naka-
no spaces. We refer to Maligranda’s paper [11] for the role of Hidegoro
Nakano in the study of variable Lebesgue spaces and to the monographs
[3,7] for the basic properties of these spaces.

Cruz-Uribe, Fiorenza and Neugebauer proved in [2, Theorem 1.7] that if
Ω ⊂ R

d is an open set and p(·) : Ω → [1,∞) is upper semi-continuous, then
the boundedness of M on Lp(·)(Ω) implies that infx∈Ω p(x) > 1 (it is sup-
posed that Ω is equipped with the Lebesgue measure and the usual Euclidean
distance). The upper semi-continuity assumption was removed by Deining
et al. [6, Theorem 6.3]. Another proof of this fact was given by Izuki, Nakai
and Sawano in [8, Proposition 3.3] and [9, Proposition 21.2]. Proofs of the
fact that the boundedness of M on Lp(·)(Rd) implies that

p−(R
d) := ess inf

x∈Rd

p(x) > 1
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are given in [7, Theorem 4.7.1] and [3, Theorem 3.19]. Note also that very re-
cently Roberts [13, Theorem 3.3] (added in proof: see also [4, Theorem 1.1])
extended the above result to the setting of the fractional maximal operator

Mαf(x) := sup
Q∋x

|Q|α/d−1

∫

Q
|f(y)| dy,

where 0 ≤ α < d and the supremum is taken over all cubes Q ⊂ R
d contain-

ing x, and proved that if Mα is bounded from Lp(·)(Rd) to Lq(·)(Rd) with
p(·) ∈ P(Rd) and q(·) defined by 1/p(·)− 1/q(·) = α/d, then p−(R

d) > 1.
In August of 2019, during the ISAAC Congress held in Aveiro, Portugal,

Stefan Samko asked the first author, under which conditions on a quasi-
metric space (X, d) and a measure µ on X , the boundedness of the Hardy–

Littlewood maximal operator M on Lp(·)(X, d, µ) implies that

p−(X) := ess inf
x∈X

p(x) > 1.

Surprisingly enough, we were not able to find any result on necessary con-
ditions for the boundedness of M on variable Lebesgue spaces beyond the
Euclidean setting. Moreover, we are not aware of a proof that M is un-
bounded on L1(X, d, µ) in the setting of spaces of homogeneous type.

The aim of this paper is to address this open problem. Our main result
is the following.

Theorem 1. Suppose (X,d,µ) is a space of homogeneous type which has

the property that the measure µ is Borel-semiregular and reverse doubling.
Given an exponent function p(·) ∈ P(X), if the Hardy–Littlewood maximal

operator M is bounded on the variable Lebesgue space Lp(·)(X, d, µ), then
p−(X) > 1.

Although the assumption that the measure µ is reverse doubling is es-
sential in our proof, we believe that Theorem 1 should be true without it.

The paper is organized as follows. In Section 2, we provide necessary
background on spaces of homogeneous type and the Lebesgue differentiation
theorem in this setting. Section 3 contains the proof of Theorem 1. We con-
clude this paper observing in Section 4 that if the variable exponent p(·) is
upper semi-continuous, then one can avoid the use of the Lebesgue differen-
tiation theorem. Hence the hypothesis of Borel-semiregularity of µ can be
dropped under this assumption on p(·).

2. Preliminaries on spaces of homogeneous type

Following [1, Section 2.1], given a nonempty set X , call a function
̺ : X ×X → [0,∞) a quasi-distance (or a quasi-metric) provided there exist
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constants C0, C1 ∈ (0,∞) such that for all x, y, z ∈ X the following axioms
hold:

(a) ̺(x, y) = 0 if and only if x = y;

(b) ̺(y, x) ≤ C0̺(x, y);

(c) ̺(x, y) ≤ C1 max{̺(x, z), ̺(z, y)}.

If X has cardinality at least 2, then necessarily C0, C1 ≥ 1. A pair (X,̺)
is called a quasi-metric space. Given r > 0 and x ∈ X , let

B̺(x, r) :=
{

y ∈ X : ̺(x, y) < r
}

be the quasi-metric ball related to ̺ of radius r and with center x. If (X, ̺)
is a quasi-metric space, then T̺, the topology on X induced by the quasi-
metric ̺ is canonically defined by declaring G ⊂ X to be open if and only if
for every x ∈ G, there exists r > 0 such that B̺(x, r) ⊂ G. The quasi-metric
balls themselves need not be open (unless ̺ is a genuine metric) even if
C0 = 1 (see, e.g., an example in [12, p. 4310]). According to a refined version
of the theorem by Maćıas and Segovia (see [10, Theorem 2]) available in [1,
Theorem 2.1], given a quasi-metric ̺, there exists a constant c ∈ (0,∞) and
a quasi-metric d on X such that for all x, y ∈ X , one has

c−1̺(x, y) ≤ d(x, y) ≤ c̺(x, y), d(x, y) = d(y, x),

and all balls Bd(x, r) with respect to d are open in the topology T̺ = Td.
From now on, we will assume that X is equipped with this equivalent

quasi-metric d with the property that all quasi-metric balls Bd(x, r) are open
in the topology Td. For simplicity, we will write B(x, r) := Bd(x, r).

Let M be a σ-algebra of subsets of X and µ : M → [0,∞] be a measure.
Following [1, Definition 2.9], a measure µ on the topological space (X,Td)
is said to be Borel if M contains all Borel subsets of X . A Borel measure µ
on X is said to be doubling if there exists a constant A ∈ (1,∞) such that

0 < µ(B(x, r)) ≤ Aµ(B(x, r/2)) < ∞

for all x ∈ X and r > 0. In this case the triple (X, d, µ) is called the space
of homogeneous type.

One says that a measurable function f on X belongs to L1
loc(X, d, µ) if

∫

B(x,r)
|f(y)| dµ(y) < ∞

for every x ∈ X and r > 0. If f ∈ L1
loc(X, d, µ), then the Hardy–Littlewood

maximal functionMf defined by (1.1) is measurable onX because the quasi-
metric balls B ⊂ X (with respect to the quasi-metric d) are open and so Mf
is lower semi-continuous. Further, if p(·) ∈ P(X) and f ∈ Lp(·)(X,d,µ), then
f ∈ L1

loc(X, d, µ). This can be proved as in the Euclidean setting (see, e.g.,
[3, Proposition 2.41]).
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A NECESSARY CONDITION FOR THE BOUNDEDNESS OF THE MAXIMAL OPERATOR 5

Following [1, Definition 3.9], a Borel measure µ on (X,Td) is said to be
Borel-semiregular if for any measurable set E of finite measure there exists
a Borel set B such that µ(E∆B) = 0, where E∆B := (E \B) ∪ (B \ E).

We will need the following sharp version of the Lebesgue differentiation
theorem (see [1, Theorem 3.14]).

Theorem 2. Let (X, d, µ) be a space of homogeneous type. Then the

measure µ is Borel-semiregular on (X,Td) if and only if for every f ∈
L1
loc(X, d, µ),

lim
r→0+

1

µ(B(x, r))

∫

B(x,r)
f(y) dµ(y) = f(x)

for µ-almost every x ∈ X .

3. Proof of the main result

Assume that p−(X) = 1. Following the general idea of the proof from [3,
Theorem 3.19], to show that the maximal operator is not bounded, we will
construct a sequence of functions {fk} such that for all k, fk ∈ Lp(·)(X,d,µ)
but the norms ‖Mfk‖p(·) can not be uniformly bounded by ‖fk‖p(·).

Since p−(X) = 1, for each k ∈ N the set

Ek =
{

x ∈ X : p(x) < 1 + 1/k
}

has positive measure. Given that µ is assumed to be Borel-semiregular, ap-
plying Theorem 2 to the function χEk

, we can choose a point xk ∈ Ek such
that

lim
r→0+

µ(Ek ∩B(xk, r))

µ(B(xk, r))
= 1,

that is, a density point of Ek. This choice implies, in particular, that for
each k, there exists a radius Rk, 0 < Rk < 1, such that if 0 < r ≤ Rk, then

(3.1)
µ(Ek ∩B(xk, r))

µ(B(xk, r))
>

1 + δ

2
,

where δ ∈ (0, 1) is the reverse doubling constant.
LetB0

k := B(xk,Rk) be a ball, sufficiently densely—in the sense of (3.1)—
filled with the points of Ek. For i ∈ N0 := {0, 1, 2, . . .}, consider the balls

Bi
k := B(xk, Rk/2

i)

and split B0
k into the disjoint union of dyadic annular regions Bi

k \B
i+1
k .

Using the doubling property of µ with the constant A > 1 and the reverse
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doubling property with the constant δ, for each i ∈ N0 we estimate before-
hand

(3.2) µ(Bi
k \B

i+1
k ) ≥ (1− δ)µ(Bi

k) ≥
1− δ

Ai
µ(B0

k).

Finally, define the sequence of functions

(3.3) fk(x) =

( ∞
∑

i=0

χBi

k
\Bi+1

k

(x)

Ai/kµ(Bi
k \B

i+1
k )

)

χEk
(x)

on X . Note that outside Ek ∩B0
k , the function fk is identically zero.

To show that fk ∈ Lp(·)(X, d, µ), we use the simple observation that

fk(x)
p(x) ≤ max{1, fk(x)}

p(x) ≤ max{1, fk(x)
1+1/k} ≤ 1 + fk(x)

1+1/k

for all x ∈ Ek, and this, together with (3.2), gives us

mp(·)(fk) =

∫

Ek∩B0
k

fk(x)
p(x) dµ(x) ≤ µ(B0

k) +

∫

B0
k

fk(x)
1+1/k dµ(x)

= µ(B0
k) +

∞
∑

i=0

µ((Bi
k \B

i+1
k ) ∩Ek)

[Ai/kµ(Bi
k \B

i+1
k )]1+1/k

≤ µ(B0
k) +

∞
∑

i=0

[µ(Bi
k \B

i+1
k )]−1/k

(A1/k+1/k2)i

≤ µ(B0
k) + [(1− δ)µ(B0

k)]
−1/k

∞
∑

i=0

Ai/k

(A1/k+1/k2

)i

= µ(B0
k) + [(1− δ)µ(B0

k)]
−1/k

∞
∑

i=0

(

A−1/k2)i
,

where the last expression is finite since A−1/k2

< 1 for each k ∈ N.
To estimate the norm of Mfk, first fix x ∈ Ek ∩B0

k . Clearly, there exists

i ∈ N0 such that x ∈ Bi
k \B

i+1
k and hence

(3.4) fk(x) =
1

Ai/kµ(Bi
k \B

i+1
k )

.

Note that no less than a certain “portion” of each annulus Bj
k \B

j+1
k is filled

with the points of Ek: more precisely, since the radius of each dyadic ball Bj
k,

j ∈ N0, does not exceed Rk, it follows from (3.1) and the reverse doubling
that

µ((Bj
k \B

j+1
k ) ∩Ek) ≥ µ(Bj

k ∩Ek)− µ(Bj+1
k )
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>
1 + δ

2
µ(Bj

k)− δµ(Bj
k) ≥

1− δ

2
µ(Bj

k \B
j+1
k ).

Then

Mfk(x) ≥
1

µ(Bi
k)

∫

Bi

k

fk(y) dµ(y) =
1

µ(Bi
k)

∞
∑

j=i

µ((Bj
k \B

j+1
k ) ∩Ek)

Aj/kµ(Bj
k \B

j+1
k )

≥
1

µ(Bi
k)

·
1− δ

2

∞
∑

j=i

(A−1/k)j =
1

µ(Bi
k)

·
1− δ

2
·

A−i/k

1− A−1/k
,

which implies, along with (3.2) and (3.4), that for x ∈ Ek ∩ B0
k ,

Mfk(x) ≥ fk(x) ·
Ai/kµ(Bi

k \B
i+1
k )

µ(Bi
k)

·
1− δ

2
·

A−i/k

1−A−1/k

≥
(1− δ)2

2(1−A−1/k)
fk(x).

Trivially, this inequality also holds if x 6∈ Ek ∩ B0
k . Hence, we have shown

that

‖Mfk‖p(·) ≥
(1− δ)2

2(1− A−1/k)
‖fk‖p(·),

but since A−1/k → 1 as k → ∞, we can not get the uniform boundedness of
the norms ‖Mfk‖p(·), and this completes the proof.

4. Final remark

If we additionally assume that p(·) ∈ P(X) is upper semi-continuous,
then the hypothesis of Borel-semiregularity of µ can be dropped because
we can avoid using the Lebesgue differentiation theorem in this case. More
precisely, we have the following.

Theorem 3. Suppose (X,d,µ) is a space of homogeneous type which has
the property that the measure µ is reverse doubling. Given an upper semi-
continuous exponent function p(·) ∈ P(X), if the Hardy–Littlewood maximal

operator M is bounded on the variable Lebesgue space Lp(·)(X, d, µ), then
p−(X) > 1.

Proof. Assume that p−(X) = 1. Since X is open and p(·) is upper
semi-continuous, for every k ∈ N, there exist xk ∈ X and Rk > 0 such that
if x ∈ B0

k := B(xk, Rk), then p(x) < 1 + 1/k. Now define fk replacing χEk

by χB0
k
in (3.3). After this the proof goes as that of Theorem 1 with minor

changes. �
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