@2024 The Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.

REVIEW

Evolving Concepts in Treat-to-Target Strategies for Systemic Lupus Erythematosus

Dionysis Nikolopoulos^{1,2}, Maria Helena Lourenço^{3,4}, Roberto Depascale⁵, Konstantinos Triantafyllias^{6,7}, Ioannis Parodis^{1,2,8}

¹Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden, ²Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden, ³Department of Rheumatology, Centro Hospitalar de Lisboa Ocidental EPE, Lisbon, Portugal, ⁴Comprehensive Health Research Center (CHRC), NOVA Medical School, Universidade Nova de Lisboa, Lisbon, Portugal, ⁵Rheumatology Unit, Department of Medicine, University of Padua, Padua, Italy, ⁶Rheumatology Centre Rhineland-Palatinate, Bad Kreuznach, Germany, ⁷Department of Internal Medicine I, Division of Rheumatology and Clinical Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany, ⁸Department of Rheumatology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden

ABSTRACT

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that is characterised by a wide range of symptoms and a risk for irreversible organ damage, leading to increased morbidity and mortality. To improve long-term outcomes, innovative therapeutic goals have been explored, including attainment and maintenance of remission or low disease activity, with minimal use of glucocorticoids. Other goals encompass early diagnosis, potent yet less toxic therapies, appropriate glucocorticoid tapering, and better quality of life for the patients. Implementing a treat-to-target (T2T) approach involves treatment adjustments to achieve predefined objectives. Evidence from other chronic diseases, like hypertension and diabetes, supports the success of target-based approaches. In rheumatic diseases, the multitude of clinical features adds complexity to T2T strategies, but in rheumatoid arthritis, T2T has yielded improved outcomes. The application of T2T in SLE requires realistic therapeutic goals and practical tools for their measurement. International task forces have developed T2T recommendations for SLE, focusing on limiting disease activity, preventing organ damage, and minimising glucocorticoid use, while considering patients' quality of life. Advancements in defining clinically meaningful remission and low disease activity states, coupled with promising novel therapies, have spurred progress in the management of SLE.

Mediterr J Rheumatol 2024;35(Suppl 2):328-41 https://doi.org/10.31138/mjr.290424.eci

Article Submitted: 29 Apr 2024; Revised Form: 15 May 2024; Article Accepted: 29 May 2024; Available Online: 30 Jun 2024

Corresponding Author:

Ioannis Parodis, Associate Professor Division of Rheumatology, Department of Medicine Solna Karolinska Institutet and Karolinska University Hospital SE-171 76 Stockholm, Sweden E-mail: ioannis.parodis@ki.se Keywords: treat-to-target, systemic lupus erythematosus, remission, low disease activity, glucocorticoids

INTRODUCTION

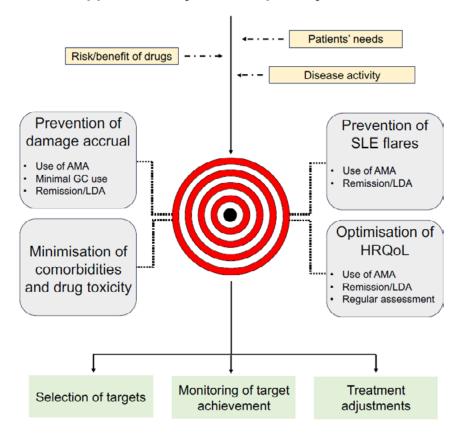
Systemic lupus erythematosus (SLE) is a chronic autoimmune condition that necessitates life-long treatment.¹ The disease gives rise to a wide range

of symptoms, which frequently serve as the primary catalysts for medical interventions. However, disease activity is not in its entirety detectable through recognisable symptoms.² Although significant progress has been achieved in the management of the disease in recent decades, SLE is still linked to gradual accumulation of irreversible organ damage, which has been demonstrated to predict subsequent damage, increased morbidity burden, and premature death.³

To enhance long-term outcomes in SLE, considerable efforts have been dedicated to defining therapeutic goals that linked to improved prognosis for the patients.4 Several studies have demonstrated that achieving and maintaining remission in SLE is associated with improved outcomes and extended survival.⁵ However, it has also been observed that even maintaining lupus low disease activity state (LLDAS), with minimal use of glucocorticoids (GCs), can enhance patients' prognosis and survival; thus, LLDAS is considered an acceptable target for treatment whenever remission cannot be achieved.6 Additionally, other important goals encompass early diagnosis, effective and less toxic therapeutic options, appropriate GC tapering, and importantly, the best possible health-related quality of life (HRQoL).7 These objectives together contribute to optimising patient outcomes and to improving the overall care of people with SLE.

In this review, we delve into the advancements made in identifying measurable and attainable treatment outcomes in SLE. We emphasise how improved outcome measures and the anticipated arrival of new effective treatments have the potential to prevent disease flares, minimise organ damage, and enhance overall quality of life in people with SLE. We anticipate that these developments will enable the routine implementation of treat-to-target (T2T) approach in the care of these patients.

RATIONALE FOR A T2T STRATEGY IN SLE


The T2T strategy involves making treatment adjustments with the purpose of attaining a clearly defined and clinically meaningful goal. Those adjustments may be considered at predefined timepoints upon commencement of a new therapy, or at timepoints tailored to the individual patient's needs. Over the last decades, the concept for management of several prevalent chronic diseases has transitioned from symptom-based to target-based strategies.8 This shift has been driven by compelling evidence indicating that target-based approaches lead to improved outcomes. An example of this shift is evident in the treatment of hypertension; by focusing on achieving suitable values for systolic or diastolic blood pressure, significant long-term reductions in the risks associated with cardiovascular diseases have been observed.9 Similarly, in the management of diabetes, targeting towards specific blood glucose values measured through haemoglobin A1c has resulted in substantial advancements in patients' prognosis.¹⁰

In rheumatic diseases, the goal for therapy differs from the aforementioned conditions in that it often requires simultaneous normalisation or improvement of multiple parameters owing to disease heterogeneity. This aspect adds complexity to T2T approaches, as the definition of the goals is not based on a single parameter but multiple clinical and laboratory features that serve as indicators of disease activity or prognosis.8 This, in turn, requires the use of composite measures which incorporate this information and transform it into a dichotomous output. Nevertheless, in the context of rheumatoid arthritis (RA), several randomised clinical trials (RCTs) and observational studies have consistently shown that T2T approaches lead to improved outcomes in terms of disease progression, long-term damage, and functional status.11-13 The first T2T RCT applied to RA was the Tight Control in RA (TICORA) trial. 13 The aim in TICORA was to reduce disease activity scores through monthly assessments and mandatory adjustments in therapy if the target was not achieved. This trial demonstrated that T2T led to improved treatment responses, higher rates of remission, and reduced radiographic damage compared to standard care. Additional studies further supported the benefit of T2T in RA by showing improvements in physical function, HRQoL, and effective prevention of radiographic damage. 14-16 This evidence has led to the development of T2T recommendations for RA, which have prompted further investigations and implementation of such approaches in routine clinical practice.¹⁷ Following the example of RA, the importance of T2T approaches has also been recognised in other rheumatic diseases such as spondylarthritis, gout, and psoriatic arthritis. 18-20 SLE is a more complex disease with multiple facets that require attention for successful management, including the control of disease activity, prevention of damage progression, minimisation of treatment-related side-effects, and enhancement of patients' quality of life.21 It is crucial to have a deep understanding of the lupus natural history, as the ultimate objective is to alter its course. Thus, attainment of the chosen targets of therapy should show ability to exert a clear benefit for the patient by modifying the disease trajectory (Figure 1).

RECOMMENDATIONS FOR T2T IN SLE

To investigate the applicability of the T2T concept in SLE management, an international task force was assembled in 2014.²² This international task force formulated recommendations for implementing a T2T approach in SLE, highlighting the need for further advancements to achieve the defined objectives (**Table 1**). Making T2T feasible in clinical practice requires the establishment of practical and achievable outcome measures, as well as the development of therapeutic options that realistically enable the attainment of these targets. The T2T task force identified specific targets, placing particular emphasis on managing disease activity and preventing irreversible organ damage, while aiming to minimise glucocorticoid use and

T2T approach in systemic lupus erythematosus

Figure 1. Treat to target strategy in systemic lupus erythematosus.

AMA: antimalarial agents; GC: glucocorticoid; HRQoL: health-related quality of life; LDA: low disease activity; SLE: systemic lupus erythematosus; T2T: treat-to-target.

facilitate their withdrawal whenever feasible. Furthermore, the recommendations underscored the importance of considering SLE patients' HRQoL as a crucial factor in treatment decisions. Over the past decade, substantial progress has been made in achieving these objectives in SLE.23 Importantly, evidence has been gathered on outcomes based on clinically meaningful disease activity states, such as the LLDAS.^{24,25} Additionally, the Definition of Remission in SLE (DORIS) task force provided a clear definition of remission as the ultimate treatment goal.²⁶ These advancements, coupled with the urgent need for more effective and safer therapies, have led to an unprecedented growth in clinical trials in SLE. Encouraging results have been observed with various novel therapies, including biologics and small-molecule agents, indicating promising avenues for future treatment options in SLE.27

TARGETS OF TREATMENT

Remission and low disease activity

Numerous interpretations of remission have come to light over the past decade (**Table 2**).^{5,28-30} In 2016, discus-

sions were initiated around definition of remission within the frame of the international definition of remission in SLE (DORIS) task force,5 which later led to a prevailing definition, published in 2021.26 Within the framework of the prevailing DORIS definition, serological activity was deliberately excluded, since no unequivocal linear correlation has been discerned between serological markers (complement and anti-dsDNA levels) and disease activity in SLE.31 Follow-up studies showed that attainment of remission bears a profound association with a marked decrease in both disease flare rates and organ damage accrual.32 Recent investigations have indicated that durability in this state matters, since prolonged remission directly influences outcomes, including enhanced mitigation of damage accrual and improved HRQoL experience among patients.32-34

According to the DORIS task force guidelines, the state of remission is solely attainable when the daily administration of prednisone is equal to or less than 5 mg, in conjunction with steady maintenance doses of immunosuppressive or biologic agents.⁵ It is widely

Table 1. Principles for treat to target in systemic lupus erythematosus.

- 1. The treatment target of SLE should be remission of systemic symptoms and organ manifestations or, when remission cannot be reached, the lowest possible disease activity, measured by a validated lupus activity index and/or by organ-specific markers.
- 2. Prevention of flares (especially severe flares) is a realistic target in SLE and should be a therapeutic goal.
- 3. It is not recommended that the treatment in clinically asymptomatic patients be escalated based solely on stable or persistent serological activity.
- 4. Since established organ damage predicts subsequent accrual of organ damage and death, prevention of organ damage accrual should be a major therapeutic goal in SLE.
- 5. Factors negatively influencing health-related quality of life (HRQoL), such as fatigue, pain, and depression should be addressed, in addition to control of disease activity and prevention of organ damage.
- 6. Early recognition and treatment of renal involvement in lupus patients is strongly recommended.
- 7. For lupus nephritis, following the initial phase of therapy for induction of remission, at least 3 years of subsequent immunosuppressive treatment is recommended to optimise outcomes.
- 8. Lupus maintenance treatment should aim for the lowest glucocorticoid dosage needed to control disease, and if possible, glucocorticoids should be withdrawn completely.
- 9. Prevention and treatment of antiphospholipid syndrome (APS)-related morbidity should be a therapeutic goal in SLE; therapeutic recommendations do not differ from those in primary APS.
- 10. Irrespective of the use of other treatments, serious consideration should be given to the use of antimalarials, which are recommended in all cases unless a contraindication exists.
- 11. Relevant therapies adjunctive to immunomodulation or immunosuppression should be considered to control comorbidities in SLE patients.

Table 2. Different definitions of remission.

	Criteria for remission		
van Vollenhoven et al.8	cSLEDAI=0 PGA <0.5 PDN dose ≤5mg/day HCQ, stable IS, biologics allowed		
Polachek et al. ⁹	cSLEDAI=0 PDN dose 0 mg/day HCQ allowed		
Ugarte-Gil et al. ¹⁰	SELENA-SLEDAI=0 PDN dose ≤5mg/day HCQ, stable IS allowed		
Zen et al. ⁷	cSLEDAI=0 PDN dose ≤5mg/day HCQ, stable IS, biologics allowed		

cSLEDAI: clinical SLE disease activity index; HCQ: Hydroxycloroquine; IS: immunosuppressants; PGA: Physician Global Assessment; PDN: prednisone; SELENA-SLEDAI: Systemic Lupus Erythematosus Disease Activity Index.

acknowledged that prolonged administration of GCs, even at reduced dosages, can be deleterious, leading to increased damage accumulation.²⁸ Hence, as a part of the T2T strategy, cessation of the glucocorticoid therapy should be undertaken as soon as it is practically achievable.³⁵

When remission cannot be achieved, low disease activity (LDA) provides a viable objective for disease management.³⁶ Among several and diverse definitions for LDA,³⁷ the criteria laid out by the Asia Pacific Lupus Collaboration group, together forming the definition of LLDAS, are the most widely used in clinical studies of SLE.²⁴ This definition allows a slightly higher daily dose of GCs compared with the DORIS remission, yet not exceeding 7.5 mg (**Table 3**).⁵

Non-attainment of LLDAS within six months from treatment initiation has been shown to be associated with organ damage accumulation.³⁸ Recent studies have divulged that attainment of LLDAS coincides with favourable short-term outcomes,^{33,39} including favourable HRQoL outcomes.⁴⁰ A recent study demonstrated that achievement of DORIS remission and/or LLDAS for more than 6 months is associated with reduced damage accrual (HR=0.58; 95% CI: 0.36–0.93 for DORIS remission and HR=0.61; 95% CI: 0.43–0.86 for LLDAS) and severe

SUPPLEMENT

Table 3. Different definitions of Low Disease Activity (LDA).

	Criteria for LDA		
Franklyn et al. ^{24,25}	SLEDAI-2K ≤4 PGA ≤1 PDN dose ≤7.5 mg/day HCQ, stable IS, biologics allowed		
Polachek et al. ³⁰	cSLEDAI≤2 PDN dose 0 mg/day HCQ allowed		
Ugarte-Gil et al. ²⁹	SELENA-SLEDAI≤4 PDN dose ≤7.5 mg/day HCQ, stable IS, biologics allowed		

cSLEDAI: clinical SLE disease activity index; HCQ: Hydroxycloroquine; IS: immunosuppressants; LDA: low disease activity; PGA: Physician Global Assessment; PDN: prednisone; SELENA-SLEDAI: Systemic Lupus Erythematosus Disease Activity Index; SLEDAI-2K: Systemic Lupus Erythematosus Disease Activity Index 2000.

flares (HR=0.14; 95% CI: 0.08–0.27 for DORIS remission and HR=0.19; 95% CI: 0.13–0.27 for LLDAS). ⁴¹ Patients who achieved LLDAS but not DORIS remission, experienced more favourable outcomes with respect to damage accrual and flares compared to patients who did not attain any of the targets. More importantly, attainment of either DORIS remission for more than 2 years or LLDAS for more than 3 years, resulted in damage-free progression of the disease. Another prospective study showed that attainment of LLDAS for at least 50% of the follow-up time yielded a reduced probability to flare or accrue organ damage accrual as well as a reduced cardiovascular risk compared. ³⁹

Prevention of flares

Prevention of flares, particularly severe flares, is important towards improved prognosis in people with SLE. Hence, stabilisation of the disease and reduction of flare hazards should be considered an independent therapeutic objective, along with aiming for remission or LDA. To date, there exists only sparce evidence concerning the effectiveness of different immunosuppressive agents in protecting against flares in SLE.⁴²

Azathioprine has been evaluated in comparison with cyclosporin A in cases of active SLE necessitating a daily prednisolone dose of ≥15 mg, yielding similar outcomes in terms of diminishing disease activity and preventing flare occurrence.⁴³ In a randomised controlled trial, individuals with quiescent disease who persisted with hydroxychloroquine (HCQ) treatment exhibited a 74%

reduced likelihood of experiencing severe flares in contrast to counterparts who ceased the medication.⁴⁴ This safeguarding influence of HCQ has also been evidenced in patients with stable lupus nephritis.⁴⁵ In cases of active moderate-to-severe lupus, the addition of belimumab alongside standard treatment resulted in a noteworthy 36% reduction in the likelihood of experiencing severe relapses over the course of one year.⁴⁶ Concerning lupus nephritis, a study involving Caucasian patients with proliferative lupus nephritis demonstrated that the persistent administration of azathioprine was comparable in effectiveness to mycophenolate mofetil for averting renal flares and the progression towards end-stage kidney disease throughout a 10-year follow-up.47 However, in the ethnically diverse Aspreva Lupus Management Study, the continuation of mycophenolate mofetil as maintenance therapy exhibited a notably lower incidence of renal relapses in comparison to azathioprine, spanning a duration of 3 years.48 Achieving an optimal strategy for tapering immunosuppressive drugs is equally important for mitigating the likelihood of SLE flares. An observational analysis in a large lupus cohort revealed that the absence of serological activity coupled with a gradual reduction of the dose of immunosuppressant served as predictive factors for a successful withdrawal of medications without experiencing relapses.⁴² Moreover, extended periods of immunosuppressive treatment and sustained renal response are associated with an enhanced probability of successful drug withdrawal in patients with lupus nephritis. In alignment with these findings, transitioning from mycophenolate to less potent agents like azathioprine or calcineurin inhibitors prior to 2 years post the attainment of renal response has been shown to be associated with an almost 2-fold elevated risk of subsequent flare occurrence. 49,50 To this end, healthcare practitioners should give particular attention to any instances of non-adherence to medication and evaluate potential underlying factors.⁵¹ Non-compliance with lupus treatment has been linked to heightened susceptibility to disease relapses and a rise in the utilisation of emergency medical services.52

Prevention of organ damage accrual

In SLE, organ damage seems to occur early during the disease course; up to 40% of patients develop damage within one year from diagnosis.⁵³ Since damage is tightly linked to mortality, prevention of damage stands for a major therapeutic goal for SLE patients. The current European League Against Rheumatism (EULAR) recommendations for the management of SLE encompass the treatment goals of preventing organ damage accrual, reducing drug-related adverse events, and reducing the dose of GCs to the lowest possible dose, or withdrawal whenever feasible.¹ Organ damage can be caused by multiple factors such as persistency of disease activity as well as

drug toxicity, especially by GCs and broad immunosuppressants.⁵⁴ Additionally, damage frequently occurs in the cardiovascular and renal systems, which have a strong deleterious impact on survival.⁵⁴ Hence, strategies for preventing organ damage should include control of disease activity and minimisation of GC therapy.4 Inability to attain low disease activity within the initial 6 months of diagnosis has been linked to early accumulation of organ damage.³⁸ In another interesting study, Ruiz-Arruza et al. compared a conventional treatment approach involving high doses of GCs with an alternative regimen comprising lower doses of GCs, the use of methylprednisolone pulses, early implementation of other immunosuppressants, and strict use of HCQ.55 The patient subgroup that was subjected to reduced GC doses exhibited markedly diminished overall damage accrual, particularly in the items related to GCs and cardiovascular disease.

The discussion below focuses on the early utilisation of HCQ and timely commencement of targeted therapies such as belimumab, including their potential capacity to alter the course of the disease and attenuate organ damage accrual.⁵⁶ However, there remains ongoing deliberation concerning the presence of a true therapeutic window during which SLE genuinely exhibits increased responsiveness to disease-modifying interventions.

CURRENT THERAPEUTIC OPTIONS FOR ACHIEVING THE TARGETS

Minimising glucocorticoid dose

GCs constitute a cornerstone treatment for SLE, being powerful inductors of remission. Unfortunately, with current management, GCs are frequently needed over long periods of time. For severe lupus, high doses (0.5-1 mg/ kg/day orally or pulses of intravenous methylprednisolone 500-1000 mg/day) are often required to control the disease during the early acute phase of a flare. However, cohort studies comparing treatment with high versus low dose of GCs in induction treatment for lupus nephritis found similar rates of renal response. 57-60 Importantly, the undesirable effects that are associated with GC use are usually dose- and time-dependant⁶¹ and may be exacerbated in patients with SLE due to the common presence of comorbidities, particularly cardiovascular disease. 62 A clear association between long-term treatment with GCs and damage accrual has been described in several studies. Apostolopoulos et al. showed that damage accrual was significantly more frequent in GC-exposed (42%) versus non-exposed (15%) SLE patients and with time-adjusted mean doses of prednisolone above 4.42 mg/day.63 Zen et al. studied 293 SLE patients during a 7-year period of follow-up and observed that damage was higher in those in clinical remission on GCs (p<0.001) compared with those who did not achieve remission and that a cumulative prednisone dose above 180 mg/ month was a predictor of damage accrual [OR=3.1; 95%

confidence interval (CI) 1.3–7.7], as was the number of flares per year (OR=8.8; 95% CI: 1.7-45.4).³²

Considering that organ damage in SLE patients is linked to early and elevated morbidity and mortality, it is advisable to implement an individualised gradual reduction plan for medications. The ultimate objective should consistently be the cessation of GCs whenever this is feasible. Nonetheless, maintaining equilibrium between the reduction of GCs to mitigate toxicity and the risk for SLE flares that accompanies this decrease in immunosuppression remains paramount and constitutes the central apprehension for healthcare practitioners. Mathian et al. suggested that prednisone 5 mg/day may be needed to prevent relapses; in this study, patients randomised to low-dose GCs as maintenance therapy exhibited significantly fewer flares compared with the withdrawal group.⁶⁴ However, an important drawback in the design of this study was the abrupt interruption of the GC therapy in the withdrawal group. In real-life patient settings, gradual tapering and discontinuation of GCs has been suggested to be safe when the disease is clinically inactive and in long-term remission or LLDAS.65-67 The rituxilup protocol that aimed to evaluate the combination of rituximab and mycophenolate mofetil without oral GCs in active lupus nephritis employed a steroid-free maintenance regimen. This involved an initial treatment with two doses of rituximab 1 g each and intravenous methylprednisolone 500 mg (with a two-week interval), followed by treatment with mycophenolate mofetil alone. Real-life data from 50 LN cases yielded complete renal remission in 52% of patients and partial renal remission in 34% of patients at one year.⁶⁸ Taking these factors into consideration, the most recent update of the EULAR recommendations for the management of SLE sets the goal at a prednisone equivalent dose ≤5 mg/day, and discontinuation whenever feasible.69.

Antimalarial agents

HCQ has been demonstrated to significantly decrease the risk of flares and organ damage accrual.⁷⁰ Akhavan et al. showed that HCQ was independently associated with less damage accrual (OR=0.34; 95% CI 0.132–0.867), as opposed to age and GC therapy which contributed to damage progression; these findings were similar to those by Petri et al., which also show protective effects induced by HCQ use, albeit less significative.^{71,72}

Regarding flares, HCQ was also shown to be associated with a lower frequency of flare occurrence (OR=0.22; 95% CI 0.07–0.73), even after the discontinuation of immunosuppressants (OR=0.243; 95% CI 0.070–0.843). In 2022, a study from the Systemic Lupus International Collaborating Clinics (SLICC) collaboration which included 1460 SLE patients corroborated these results, and concluded that the hazard ratio (HR) for a flare was higher if HCQ was reduced (HR 1.2; 95% CI 1.04–1.38)

MEDITERRANEAN JOURNAL | 35 OF RHEUMATOLOGY | 2024 | SUPPLEMENT

or discontinued (HR=1.56; 95% CI 1.31-1.86).74

Along similar lines, Costedoat-Chalumeau et al. studied the effects of HCQ blood concentration with regard to SLE exacerbations and demonstrated that SLE patients who developed a flare within a 6-month follow-up had lower blood concentrations of HCQ, with the baseline concentration of HCQ being an independent predictor of subsequent disease exacerbations (OR=0.4; 95% CI 0.18–0.85).⁷⁵

In the LUMINA cohort, an increase in survival rates for SLE patients using HCQ was observed compared with patients who did not use HCQ. Importantly, HCQ demonstrated a protective impact on survival with an odds ratio of 0.128 (95% CI 0.054–0.301). This protective effect remained significant after adjusting for factors influencing treatment decisions.⁷⁶

Furthermore, HCQ is an essential drug for pregnant women with SLE, as it has been shown to decrease the risk of flares during pregnancy, although with no proven efficacy regarding pregnancy or foetal outcomes. 77,78 In women with positive anti-SSA, HCQ has been shown to be important for reducing the risk of neonatal lupus and foetal atrial-ventricular block, resulting in its recommendation by the American College of Rheumatology and the British Society of Rheumatology in their most recent updates (2020 and 2022, respectively). 79-81

The benefits of HCQ are well studied and include aspects beyond its direct disease-related effects, such as improvement of lipid and glucose levels and an overall decrease of cardiovascular events. OR=0.86 HCQ in preventing cardiovascular events overall (OR=0.86; 95% CI 0.77–0.97) as well as venous thromboembolism in particular (OR=0.74; 95% CI 0.59–0.94). In a Danish cohort of 3036 SLE patients (1551 with cutaneous lupus), there was an inverse association between HCQ and the risk of major adverse cardiovascular events, with an adjusted HR oof 0.67 (95% CI 0.51-0.89).

The widely adopted daily dose of 5 mg/kg remains the current recommendation, and the most recent EULAR guidelines reaffirmed this dose target. Importantly, higher flare rates have been seen with lower doses.

Immunosuppressive drugs

When a favourable response to HCQ, with or without GCs, is not evident, alternative immunosuppressive approaches are recommended by the EULAR guidelines. These strategies encompass the implementation of biologics (belimumab, anifrolumab) and synthetic immunosuppressants including methotrexate, azathioprine, mycophenolate, and calcineurin inhibitors (voclosporin, tacrolimus, and cyclosporin A). However, to date, these drugs have not shown any disease-modifying properties. It is crucial to administer these medications at the lowest effective dose while carefully monitoring potential

adverse effects. Cyclophosphamide, due to its potential toxicity, is typically reserved for situations involving organ or life-threatening manifestations, particularly severe lupus nephritis and neuropsychiatric lupus.⁸⁵

Biologics

Belimumab

In 2011, belimumab was approved as the first biologic agent for SLE. Post-hoc analyses from the initial RCTs showed that belimumab is associated with protection against damage accrual in SLE patients, reduced flare occurrence, and steroid-sparing effects, and several reports from real-life cohorts confirmed these beneficial effects.86-93 Urowitz et al. compared patients under belimumab plus standard therapy versus standard therapy alone and showed that belimumab-treated patients exhibited reduction by 61% in the risk of progressing to a higher SDI score (HR=0.39; 95% CI 0.25-0.61) in a real-life cohort.86 Two real-world studies demonstrated that patients with active SLE and low damage at baseline had a higher probability of favourable outcomes if treated early with belimumab.87,93 Moreover, Gatto et al. observed a significant decrease with belimumab in exacerbation rates compared with the period before the initiation of the biologic agent.87

A German cohort that included 102 patients who received belimumab therapy, 42% showed an improvement of at least 50% in overall disease activity at the 6-month follow-up, with a decrease in SELENA-SLEDAI scores accompanied by a reduction in mean doses of GCs.88 Similarly, in an American cohort comprising 501 patients, there was an at least 50% improvement in overall clinical response in 48.7% of the patients within a 6-month follow-up along with a reduction in GC doses.89 Scheinberg et al. conducted a study with 48 Brazilian patients which corroborated these findings, with a significant decrease in SLEDAI score (12 \pm 3.0 to 2.5 \pm 2.5) and GC dose (from 30 \pm 12.5 mg to 7.5 \pm 5.0 mg). 90 Similar findings were reported by Andreoli et al. on a small cohort of 18 patients with refractory SLE, i.e., reduction in prednisone dose from 66.3 mg/week to 46.9 mg/week after 9 months, with SLEDAI-2K scores improving from 9 to 6.91 In a Greek cohort of 188 patients with active SLE, belimumab helped achieve the therapeutical goals LLDAS and DORIS remission (33.5% and 17.8% of patients at the 24-month follow-up, respectively).92 Regarding patient-reported outcomes, Parodis et al. reported consistent benefits with belimumab in pain (p < 0.0001), fatigue (p = 0.007) and general health (p < 0.0001) over a 53-month period of follow-up.93

van Vollenhoven et al. studied the BLISS trial datasets to identify predictors of treatment efficacy and found that patients with higher disease activity and serological activity are benefited more from belimumab therapy, while long-standing disease and chronic damage may have a

negative impact on its clinical efficacy. 94,95

Benefits have also been observed for patients with active LN. Furie et al. showed in a RCT comprising 448 patients that belimumab as an add-on therapy to conventional immunosuppression with intravenous cyclophosphamide or mycophenolate yielded greater complete renal response frequencies at week 104 compared with placebo (OR=1.6; 95% CI: 1.0-2.3), along with a good safety profile. Flares were also significantly decreased with belimumab versus placebo in the BLISS-LN trial (HR=0.45; 95% CI: 0.28-0.72; P = 0.0008). This led to the approval of belimumab for patients with active lupus nephritis, on top of standard therapy.97 Parodis et al. also observed in a representative sample of 1844 patients that low-dose intravenous belimumab (1 mg/kg monthly) and subcutaneous belimumab (200 mg weekly) were associated with prevention against de novo renal flares (adjusted HR=0.38; 95% CI: 0.20-0.73; P = 0.004 and 0.69; 95% CI: 0.54–0.88; P = 0.003, respectively), 98 with similar observations regarding renal relapses in another post-hoc analysis of clinical trial data by Gomez et al., especially when belimumab was administered along with concomitant administration of antimalarial agents.99 However, some cases of de novo renal SLE during belimumab therapy have been reported both in real-world^{100,101} and in clinical trial¹⁰² settings, illustrating the one-size-does-not-fit-all premise and the need for informed and personalised approaches in treatment selection.

Anifrolumab

In 2022, anifrolumab, a human IgG1 monoclonal antibody that binds to the type I interferon receptor subunit 1, received approval for the treatment of active SLE on top of standard therapy. Its mechanism impedes the signalling of all type I interferons, which are crucial components in the pathophysiology of SLE.¹⁰³ Notably, the TULIP-2 trial demonstrated that anifrolumab yielded greater frequencies of British Isles Lupus Assessment Group (BILAG)-based Composite Lupus Assessment (BICLA) response, which in turn allowed for a reduction in GC dosages.¹⁰³ In the context of lupus nephritis, while anifrolumab did not meet the primary endpoint in a phase II RCT, beneficial effects were seen with the intensified anifrolumab regimen, which was superior to placebo in inducing complete renal response.¹⁰⁴

In studies comparing belimumab versus anifrolumab, differing outcomes emerged; Bruce et al. reported a higher SLE-responder index (SRI)-4 response with anifrolumab, whereas Neupane et al. reported similar benefit from the two drugs, though with a slightly higher likelihood of response with belimumab. 105,106 These divergent findings underscore the necessity for more comprehensive head-to-head studies. Importantly, direct comparison between the RCTs of belimumab and anifrolumab is limited by the

different eras of lupus management, thus anticipated substantial differences in the background therapies given to the patients included in these studies.

Rituximab

In the context of SLE, rituximab is used off-label but is primarily reserved for cases that are refractory to standard treatments. While observational studies have suggested that rituximab may be effective in managing severe and refractory SLE, potentially allowing for a reduction in glucocorticoid usage, its performance in RCTs has not been consistent, even rather poor. In fact, in RCTs of patients with either renal or extra-renal SLE, rituximab failed to demonstrate superiority over placebo. However, owing to real-world experiences, off-label use of rituximab is recommended for refractory SLE, and the drug recently even received approval by regulatory agencies in Japan for patients who do not respond sufficiently to existing therapies. 107-110

Improving quality of life in systemic lupus erythematosus Assessment of HRQoL is often overlooked in routine clinical practice, but is gradually gaining more attention. In the case of SLE, there is frequently a lack of agreement between physicians and patients with regard to perceived disease activity and concerns.²³ The main reason for this discrepancy arises from the fact that physicians primarily focus on routine markers and typical signs of inflammation, while patients' experiences can be influenced by a wide range of physical, mental, and social factors, as well as comorbid conditions, whose impact often is difficult to distinguish from that of lupus.^{21,111}

Recent clinical trials of SLE have incorporated various patient-reported outcome measures (PROMs) of HRQoL as secondary endpoints of efficacy. Post-hoc analyses of RCTs of belimumab have shown clinically meaningful improvements in various HRQoL aspects with belimumab treatments, 112,113 which has also been seen in real-world investigations. 114 Among factors influencing HRQoL, organ damage appears to have a major impact, 115 as do comorbidities like fibromyalgia and obesity. 116,117 Patients on LLDAS or in remission may demonstrate better HRQoL outcomes, emphasising the importance of T2T management strategies for SLE also from this perspective. 118

Over the past decade, numerous studies have been conducted to evaluate the impact of LLDAS and/or remission on HRQoL aspects in patients with SLE. In two different studies, it was observed that prolonged remission exceeding 5 years was linked to improved HRQoL based on SF-36 and LupusPRO assessments. 34,119 Similarly, two observational cohort studies investigating the correlation between LLDAS and HRQoL demonstrated an association between LLDAS and enhanced HRQoL using both a generic instrument (SF-36) and a

disease-specific instrument (SLEQOL). 120,121 Another post-hoc analysis of the BLISS-52 and BLISS-76 trials of belimumab revealed that both remission and LLDAS contributed to favourable HRQoL outcomes, especially in physical aspects, in a time-dependent manner. 118 Importantly, beyond biologics, also use of antimalarial agents appears to be beneficial with regard to HRQoL experience by patients with SLE. 122,123

CONCLUSIONS

The development and validation of remission and LLDAS has offered valuable and substantiated treatment goals, facilitating the adoption of T2T strategies in SLE. However, it is important to acknowledge that observational cohort studies have inherent limitations in establishing direct causal relationships between the attainment of remission or LLDAS and enhanced disease outcomes. To address this, interventional trials implementing T2T approaches are imperative. Such trials should compare the es-

calation of treatment when LLDAS or remission is not achieved, akin to studies conducted in RA.¹³ To this end. the ongoing LUPUS-BEST trial have been designed to address the implementation of T2T strategy with respect to damage accrual and HRQoL. 124 Apart from evaluating the causal impact on patient outcomes, such trials will also assess the feasibility of implementing LLDAS or remission in clinical practice, including an evaluation of the needs for resources. 125 Moreover, the global, multi-stakeholder project "Treatment Response Measure for SLE (TRM-SLE) taskforce" is currently ongoing and aims at developing a novel clinical outcome assessment designed specifically for measuring clinically meaningful effects of interventions in patients with SLE.¹²⁶ Along with the currently existing targeted therapies for SLE, novel drugs currently undergoing clinical trials hold the potential to contribute to enhanced attainment of treatment targets (Table 4).

In conclusion, remission and LLDAS represent distinct

Table 4. Phase III randomised clinical trials for systemic lupus erythematosus (2023).

Drug in study	Mechanism of action	Main indication	Primary Outcome	Name of the study
Anifrolumab	Anti-type I interferon receptor monoclonal antibody	Lupus nephritis class	Complete renal response	IRIS
Cenerimod	Selective S1P1 receptor modulator	Active SLE (moderate to severe)	Change from baseline to month 12 in the modified SLEDAI-2K score	OPUS-2
Dapirolizumab	Anti-CD40L antibody	Active SLE (moderate to severe)	BICLA response	PHOENYCS GO
Deucravacitinib	Tyrosine kinase 2 inhibitor	Active SLE (moderate to severe)	SRI(4) response	POETYK SLE-2
lanalumab	Anti-BAFF-receptor antibody	Active SLE Lupus nephritis	SRI(4) response Complete renal response	SIRIUS-SLE 2 SIRIUS-LN
Litifilimab	Anti-BDCA2 antibody	Active SLE	SRI(4) response	TOPAZ-2
Obinutuzumab	Anti-CD20 antibody	Lupus nephritis class III/IV Active SLE	SRI(4) response	REGENCY ALLEGORIA
Telitacicept	TACI-Fc fusion protein targeting BLyS and APRIL	Active SLE (moderate to severe)	SRI(4) response	-
Upadacitinib	JAK inhibitor	Active SLE (moderate to severe)	BICLA response	SELECT-SLE

APRIL: a proliferating-inducing ligand; BAFF: B cell activating factor; BDCA2: blood dendritic cell antigen 2; BICLA: British Isles Lupus Assessment Group (BILAG) – Based Composite Lupus Assessment; BLyS: B lymphocyte stimulator; CD: Cluster of Differentiation; CD40L: Ligand of Cluster of Differentiation 40; JAK: Janus Kinase; SLE: Systemic Lupus Erythematosus; SLEDAI-2K: Systemic Lupus Erythematosus Disease Activity Index 2000; SRI-4: Systemic Lupus Erythematosus Responder Index – 4; TACI-Fc: Fusion protein comprising a recombinant transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI) receptor fused to the fragment crystallisable domain of human IgG.

and clinically relevant treatment targets that are associated with reduced adverse outcomes, including disease flares and damage accrual, along with improved HRQoL. With additional research, these endpoints have the potential to facilitate the implementation of T2T approaches in routine patient care and provide robust and discriminative outcome measures for use in clinical trials.

CONFLICT OF INTEREST

IP has received research funding and/or honoraria from Amgen, AstraZeneca, Aurinia, BMS, Elli Lilly, Gilead, GSK, Janssen, Novartis, Otsuka, and Roche. The other authors declare that they have no conflicts of interest related to this work. The funders had no role in the design of the study, the analyses or interpretation of data, or the writing of the manuscript.

FUNDING

IP has received grants from the Swedish Rheumatism Association (R-969696), King Gustaf V's 80-year Foundation (FAI-2020-0741), Swedish Society of Medicine (SLS-974449), Nyckelfonden (OLL-974804), Professor Nanna Svartz Foundation (2021-00436), Ulla and Roland Gustafsson Foundation (2021-26), Region Stockholm (FoUI-955483), and Karolinska Institutet. DN has received grants from Ulla o Roland Gustafssons Donationsfond (2024-49), Ulla och Gustaf af Ugglas stiftelse (2023-025029) and Reumatikerförbundet (2024 R-995557).

AUTHOR CONTRIBUTIONS

All authors contributed to the manuscript draft, critically reviewed all parts of the manuscript, accepted its final version prior to submission, and account for its content.

REFERENCES

- Fanouriakis A, Kostopoulou M, Alunno A, Aringer M, Bajema I, Boletis JN, et al. 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus. Ann Rheum Dis 2019 Jun;78(6):736–45.
- Tsokos GC. Systemic lupus erythematosus. N Engl J Med [Internet] 2011 Dec [cited 2023 Aug 21];365(22):2110–21.
 Available from: https://pubmed.ncbi.nlm.nih.gov/22129255/
- Moe SR, Haukeland H, Molberg Ø, Lerang K. Long-Term Outcome in Systemic Lupus Erythematosus; Knowledge from Population-Based Cohorts. J Clin Med [Internet] 2021 Oct 1 [cited 2023 Aug 21];10(19). Available from: https://pubmed.ncbi. nlm.nih.gov/34640322/
- Doria A, Gatto M, Zen M, laccarino L, Punzi L. Optimizing outcome in SLE: treating-to-target and definition of treatment goals. Autoimmun Rev [Internet] 2014 [cited 2023 Aug 21];13(7):770–7. Available from: https://pubmed.ncbi.nlm.nih.gov/24480071/
- Van Vollenhoven R, Voskuyl A, Bertsias G, Aranow C, Aringer M, Arnaud L, et al. A framework for remission in SLE: consensus findings from a large international task force on definitions of remission in SLE (DORIS). Ann Rheum Dis [Internet] 2017 Mar 1 [cited 2023 Aug 21];76(3):554–61. Available from: https:// pubmed.ncbi.nlm.nih.gov/27884822/
- Samões B, Zen M, Abelha-Aleixo J, Gatto M, Doria A. Caveats and pitfalls in defining low disease activity in systemic lupus

- erythematosus. Autoimmun Rev [Internet] 2022 Oct 1 [cited 2023 Aug 21];21(10). Available from: https://pubmed.ncbi.nlm.nih.gov/35931316/
- Fava A, Petri M. Systemic lupus erythematosus: Diagnosis and clinical management. J Autoimmun 2019 Jan;96:1–13.
- Parra Sánchez AR, Voskuyl AE, van Vollenhoven RF. Treat-totarget in systemic lupus erythematosus: advancing towards its implementation. Nat Rev Rheumatol 2022 Mar;18(3):146–57.
- Swales JD. Pharmacological treatment of hypertension. Lancet [Internet] 1994 Aug 6 [cited 2023 Aug 21];344(8919):380–5. Available from: https://pubmed.ncbi.nlm.nih.gov/7914311/
- Eastman RC, Keen H. The impact of cardiovascular disease on people with diabetes: the potential for prevention. Lancet [Internet] 1997 [cited 2023 Aug 21];350 Suppl 1(SUPPL.1):29–32. Available from: https://pubmed.ncbi.nlm.nih.gov/9250281/
- Möttönen T, Hannonen P, Leirisalo-Repo M, Nissilä M, Kautiainen H, Korpela M, et al. Comparison of combination therapy with single-drug therapy in early rheumatoid arthritis: A randomised trial. Lancet [Internet] 1999 May 8 [cited 2023 Aug 21];353(9164):1568–73. Available from: https://pubmed.ncbi. nlm.nih.gov/10334255/
- Verstappen SMM, Jacobs JWG, Van Der Veen MJ, Heurkens AHM, Schenk Y, Ter Borg EJ, et al. Intensive treatment with methotrexate in early rheumatoid arthritis: aiming for remission. Computer Assisted Management in Early Rheumatoid Arthritis (CAMERA, an open-label strategy trial). Ann Rheum Dis [Internet] 2007 Nov [cited 2023 Aug 21];66(11):1443–9. Available from: https://pubmed.ncbi.nlm.nih.gov/17519278/
- Grigor C, Capell H, Stirling A, McMahon AD, Lock P, Vallance R, et al. Effect of a treatment strategy of tight control for rheumatoid arthritis (the TICORA study): A single-blind randomised controlled trial. Lancet [Internet] 2004 Jul 17 [cited 2023 Aug 21];364(9430):263–9. Available from: https://pubmed.ncbi.nlm. nih.gov/15262104/
- Solomon DH, Lu B, Yu Z, Corrigan C, Harrold LR, Smolen JS, et al. Benefits and Sustainability of a Learning Collaborative for Implementation of Treat-to-Target in Rheumatoid Arthritis: Results of a Cluster-Randomized Controlled Phase II Clinical Trial. Arthritis Care Res (Hoboken) [Internet] 2018 Oct 1 [cited 2023 Aug 21];70(10):1551–6. Available from: https://pubmed.ncbi.nlm.nih.gov/29316341/
- Mueller RB, Spaeth M, von Restorff C, Ackermann C, Schulze-Koops H, von Kempis J. Superiority of a Treat-to-Target Strategy over Conventional Treatment with Fixed csDMARD and Corticosteroids: A Multi-Center Randomized Controlled Trial in RA Patients with an Inadequate Response to Conventional Synthetic DMARDs, and New Therapy with Certolizumab Pegol. J Clin Med [Internet] 2019 Mar 1 [cited 2023 Aug 21];8(3). Available from: https://pubmed.ncbi.nlm.nih.gov/30832414/
- Aletaha D, Alasti F, Smolen JS. Optimisation of a treat-to-target approach in rheumatoid arthritis: strategies for the 3-month time point. Ann Rheum Dis [Internet] 2016 Aug 1 [cited 2023 Aug 21];75(8):1479–85. Available from: https://pubmed.ncbi.nlm.nih. gov/26420577/
- Smolen JS, Aletaha D, Bijlsma JWJ, Breedveld FC, Boumpas D, Burmester G, et al. Treating rheumatoid arthritis to target: recommendations of an international task force. Ann Rheum Dis [Internet] 2010 [cited 2023 Aug 21];69(4):631–7. Available from: https://pubmed.ncbi.nlm.nih.gov/20215140/
- Dures E, Shepperd S, Mukherjee S, Robson J, Vlaev I, Walsh N, et al. Treat-to-target in PsA: methods and necessity. RMD Open [Internet] 2020 Feb 17 [cited 2023 Aug 21];6(1). Available from: https://pubmed.ncbi.nlm.nih.gov/32071281/
- Kiltz U, Smolen J, Bardin T, Cohen Solal A, Dalbeth N, Doherty M, et al. Treat-to-target (T2T) recommendations for gout. Ann Rheum Dis [Internet] 2017 Apr 1 [cited 2023 Aug 21];76(4):632–8. Available from: https://pubmed.ncbi.nlm.nih.gov/27658678/
- Smolen JS, Braun J, Dougados M, Emery P, FitzGerald O, Helliwell P, et al. Treating spondyloarthritis, including ankylosing

MEDITERRANEAN JOURNAL | 35 OF RHEUMATOLOGY | 202

SUPPLEMENT

- spondylitis and psoriatic arthritis, to target: recommendations of an international task force. Ann Rheum Dis [Internet] 2014 Jan [cited 2023 Aug 21];73(1):6–16. Available from: https://pubmed.ncbi.nlm.nih.gov/23749611/
- 21. Ríos-Garcés R, Espinosa G, van Vollenhoven R, Cervera R. Treat-to-target in systemic lupus erythematosus: Where are we? Eur J Intern Med [Internet] 2020 Apr 1 [cited 2023 Aug 21];74:29–34. Available from: https://pubmed.ncbi.nlm.nih.gov/32014364/
- Van Vollenhoven RF, Mosca M, Bertsias G, Isenberg D, Kuhn A, Lerstrøm K, et al. Treat-to-target in systemic lupus erythematosus: recommendations from an international task force. Ann Rheum Dis [Internet] 2014 [cited 2023 Aug 21];73(6):958–67. Available from: https://pubmed.ncbi.nlm.nih.gov/24739325/
- Parodis I, Studenic P. Patient-Reported Outcomes in Systemic Lupus Erythematosus. Can Lupus Patients Take the Driver's Seat in Their Disease Monitoring? J Clin Med [Internet] 2022 Jan 1 [cited 2023 Aug 21];11(2). Available from: https://pubmed.ncbi. nlm.nih.gov/35054036/
- Franklyn K, Lau CS, Navarra S V., Louthrenoo W, Lateef A, Hamijoyo L, et al. Definition and initial validation of a Lupus Low Disease Activity State (LLDAS). Ann Rheum Dis [Internet] 2016 Sep 1 [cited 2023 Aug 21];75(9):1615–21. Available from: https://pubmed.ncbi.nlm.nih.gov/26458737/
- 25. Golder V, Kandane-Rathnayake R, Huq M, Nim HT, Louthrenoo W, Luo SF, et al. Lupus low disease activity state as a treatment endpoint for systemic lupus erythematosus: a prospective validation study. Lancet Rheumatol 2019 Oct;1(2):e95–102.
- van Vollenhoven RF, Bertsias G, Doria A, Isenberg D, Morand E, Petri MA, et al. 2021 DORIS definition of remission in SLE: final recommendations from an international task force. Lupus Sci Med [Internet] 2021 Nov 24 [cited 2023 Aug 21];8(1). Available from: https://pubmed.ncbi.nlm.nih.gov/34819388/
- Nikolopoulos D, Parodis I. Janus kinase inhibitors in systemic lupus erythematosus: implications for tyrosine kinase 2 inhibition. Front Med (Lausanne) 2023 Jun 29;10:1217147.
- Zen M, laccarino L, Gatto M, Bettio S, Nalotto L, Ghirardello A, et al. Prolonged remission in Caucasian patients with SLE: prevalence and outcomes. Ann Rheum Dis [Internet] 2015 Dec 1 [cited 2023 Aug 21];74(12):2117–22. Available from: https://pubmed.ncbi.nlm.nih.gov/26223434/
- Ugarte-Gil MF, Wojdyla D, Pons-Estel GJ, Catoggio LJ, Drenkard C, Sarano J, et al. Remission and Low Disease Activity Status (LDAS) protect lupus patients from damage occurrence: data from a multiethnic, multinational Latin American Lupus Cohort (GLADEL). Ann Rheum Dis 2017 Dec;76(12):2071–4.
- Polachek A, Gladman DD, Su J, Urowitz MB. Defining Low Disease Activity in Systemic Lupus Erythematosus. Arthritis Care Res (Hoboken) 2017 Jul 27;69(7):997–1003.
- 31. Wilhelm TR, Magder LS, Petri M. Remission in systemic lupus erythematosus: durable remission is rare. Ann Rheum Dis 2017 Mar;76(3):547–53.
- 32. Zen M, laccarino L, Gatto M, Bettio S, Saccon F, Ghirardello A, et al. The effect of different durations of remission on damage accrual: results from a prospective monocentric cohort of Caucasian patients. Ann Rheum Dis [Internet] 2017 Mar 1 [cited 2023 Aug 21];76(3):562–5. Available from: https://pubmed.ncbi.nlm.nih.gov/27884821/
- 33. Tsang-A-Sjoe MWP, Bultink IEM, Heslinga M, Voskuyl AE. Both prolonged remission and Lupus Low Disease Activity State are associated with reduced damage accrual in systemic lupus erythematosus. Rheumatology 2017 Jan;56(1):121–8.
- 34. Mok CC, Ho LY, Tse SM, Chan KL. Prevalence of remission and its effect on damage and quality of life in Chinese patients with systemic lupus erythematosus. Ann Rheum Dis 2017 Aug;76(8):1420–5.
- 35. Ugarte A, Danza A, Ruiz-Irastorza G. Glucocorticoids and antimalarials in systemic lupus erythematosus: an update and future directions. Curr Opin Rheumatol 2018 Sep;30(5):482–9.
- 36. Zucchi D, Cardelli C, Elefante E, Tani C, Mosca M. Treat-to-Target

- in Systemic Lupus Erythematosus: Reality or Pipe Dream. J Clin Med 2023, Vol 12, Page 3348 [Internet] 2023 May 8 [cited 2023 Aug 21];12(9):3348. Available from: https://www.mdpi.com/2077-0383/12/9/3348/htm
- Tselios K, Gladman DD, Urowitz MB. How can we define low disease activity in systemic lupus erythematosus? Semin Arthritis Rheum 2019 Jun;48(6):1035–40.
- Piga M, Floris A, Cappellazzo G, Chessa E, Congia M, Mathieu A, et al. Failure to achieve lupus low disease activity state (LLDAS) six months after diagnosis is associated with early damage accrual in Caucasian patients with systemic lupus erythematosus. Arthritis Res Ther [Internet] 2017 Nov 10 [cited 2023 Aug 21];19(1). Available from: https://pubmed.ncbi.nlm.nih.gov/29126432/
- Petri M, Magder LS. Comparison of Remission and Lupus Low Disease Activity State in Damage Prevention in a United States Systemic Lupus Erythematosus Cohort. Arthritis Rheumatol [Internet] 2018 Nov 1 [cited 2023 Aug 21];70(11):1790–5. Available from: https://pubmed.ncbi.nlm.nih.gov/29806142/
- 40. Emamikia S, Oon S, Gomez A, Lindblom J, Borg A, Enman Y, et al. Impact of remission and low disease activity on health-related quality of life in patients with systemic lupus erythematosus. Rheumatology (Oxford) 2022 Nov 28;61(12):4752–62.
- 41. Pitsigavdaki S, Nikoloudaki M, Garantziotis P, Silvagni E, Repa A, Marangoni A, et al. Pragmatic targets for moderate/severe SLE and their implications for clinical care and trial design: sustained DORIS or LLDAS for at least 6 months is sufficient while their attainment for at least 24 months ensures high specificity for damage-free progression. Ann Rheum Dis 2024 Mar 12;83(4):464–74.
- Adamichou C, Bertsias G. Flares in systemic lupus erythematosus: diagnosis, risk factors and preventive strategies. Mediterr J Rheumatol. 2017 Jan 1;28(1):4–12.
- Griffiths B, Emery P, Ryan V, Isenberg D, Akil M, Thompson R, et al. The BILAG multi-centre open randomized controlled trial comparing ciclosporin vs azathioprine in patients with severe SLE. Rheumatology (Oxford) [Internet] 2010 [cited 2023 Aug 21];49(4):723–32. Available from: https://pubmed.ncbi.nlm.nih.gov/20081225/
- Tsakonas E, Joseph L, Esdaile JM, Choquette D, Senécal JL, Cividino A, et al. A long-term study of hydroxychloroquine withdrawal on exacerbations in systemic lupus erythematosus. The Canadian Hydroxychloroquine Study Group. Lupus [Internet] 1998 [cited 2023 Aug 21];7(2):80–5. Available from: https://pubmed.ncbi.nlm.nih.gov/9541091/
- 45. Moroni G, Longhi S, Giglio E, Messa P, Ponticelli C. What happens after complete withdrawal of therapy in patients with lupus nephritis. Clin Exp Rheumatol [Internet] 2013 [cited 2023 Aug 21];31(SUPPL.78). Available from: https://www.clinexprheumatol.org/abstract.asp?a=7412
- 46. Manzi S, Sánchez-Guerrero J, Merrill JT, Furie R, Gladman D, Navarra S V., et al. Effects of belimumab, a B lymphocyte stimulator-specific inhibitor, on disease activity across multiple organ domains in patients with systemic lupus erythematosus: combined results from two phase III trials. Ann Rheum Dis [Internet] 2012 Nov [cited 2023 Aug 21];71(11):1833–8. Available from: https://pubmed.ncbi.nlm.nih.gov/22550315/
- 47. Tamirou F, D'Cruz D, Sangle S, Remy P, Vasconcelos C, Fiehn C, et al. Long-term follow-up of the MAINTAIN Nephritis Trial, comparing azathioprine and mycophenolate mofetil as maintenance therapy of lupus nephritis. Ann Rheum Dis [Internet] 2016 Mar 1 [cited 2023 Aug 21];75(3):526–31. Available from: https://pubmed.ncbi.nlm.nih.gov/25757867/
- Dooley MA, Jayne D, Ginzler EM, Isenberg D, Olsen NJ, Wofsy D, et al. Mycophenolate versus azathioprine as maintenance therapy for lupus nephritis. N Engl J Med [Internet] 2011 Nov 17 [cited 2023 Aug 21];365(20):1886–95. Available from: https://pubmed.ncbi.nlm.nih.gov/22087680/
- Yap DYH, Ma MKM, Mok MMY, Tang CSO, Chan TM. Long-term data on corticosteroids and mycophenolate mofetil treatment in

- lupus nephritis. Rheumatology (Oxford) [Internet] 2013 Mar [cited 2023 Aug 21];52(3):480–6. Available from: https://pubmed.ncbi.nlm.nih.gov/23148090/
- Laskari K, Tzioufas AG, Antoniou A, Moutsopoulos HM. Longterm followup after tapering mycophenolate mofetil during maintenance treatment for proliferative lupus nephritis. J Rheumatol [Internet] 2011 Jul [cited 2023 Aug 21];38(7):1304–8. Available from: https://pubmed.ncbi.nlm.nih.gov/21498485/
- Emamikia S, Gentline C, Enman Y, Parodis I. How Can We Enhance Adherence to Medications in Patients with Systemic Lupus Erythematosus? Results from a Qualitative Study. J Clin Med 2022 Mar 27;11(7).
- Costedoat-Chalumeau N, Amoura Z, Hulot JS, Aymard G, Leroux G, Marra D, et al. Very low blood hydroxychloroquine concentration as an objective marker of poor adherence to treatment of systemic lupus erythematosus. Ann Rheum Dis [Internet] 2007 Jun [cited 2023 Aug 21];66(6):821–4. Available from: https://pubmed.ncbi.nlm.nih.gov/17324970/
- Taraborelli M, Cavazzana I, Martinazzi N, Lazzaroni MG, Fredi M, Andreoli L, et al. Organ damage accrual and distribution in systemic lupus erythematosus patients followed-up for more than 10 years. Lupus [Internet] 2017 Oct 1 [cited 2023 Aug 21];26(11):1197–204. Available from: https://pubmed.ncbi.nlm. nih.gov/28420047/
- Doria A, laccarino L, Ghirardello A, Zampieri S, Arienti S, Sarzi-Puttini P, et al. Long-term prognosis and causes of death in systemic lupus erythematosus. Am J Med [Internet] 2006 Aug [cited 2023 Aug 21];119(8):700–6. Available from: https:// pubmed.ncbi.nlm.nih.gov/16887417/
- 55. Ruiz-Arruza I, Lozano J, Cabezas-Rodriguez I, Medina JA, Ugarte A, Erdozain JG, et al. Restrictive Use of Oral Glucocorticoids in Systemic Lupus Erythematosus and Prevention of Damage Without Worsening Long-Term Disease Control: An Observational Study. Arthritis Care Res (Hoboken) 2018 Apr;70(4):582–91.
- Rua-Figueroa Fernández de Larrinoa Í, Lozano MJC, Fernández-Cid CM, Cobo Ibáñez T, Salman Monte TC, Freire González M, et al. Preventing organ damage in systemic lupus erythematosus: the impact of early biological treatment. Expert Opin Biol Ther 2022 Jul 3;22(7):821–9.
- 57. Edwards JCW, Snaith ML, Isenberg DA. A double blind controlled trial of methylprednisolone infusions in systemic lupus erythematosus using individualised outcome assessment. Ann Rheum Dis [Internet] 1987 [cited 2023 Jul 20];46(10):773–6. Available from: https://pubmed.ncbi.nlm.nih.gov/3318723/
- Fischer-Betz R, Chehab G, Sander O, Vordenbäumen S, Voiculescu A, Brinks R, et al. Renal outcome in patients with lupus nephritis using a steroid-free regimen of monthly intravenous cyclophosphamide: a prospective observational study. J Rheumatol [Internet] 2012 Nov [cited 2023 Jul 20];39(11):2111–7. Available from: https://pubmed.ncbi.nlm.nih.gov/22984276/
- 59. Ruiz-Irastorza G, Ugarte A, Saint-Pastou Terrier C, Lazaro E, Iza A, Couzi L, et al. Repeated pulses of methyl-prednisolone with reduced doses of prednisone improve the outcome of class Ill, IV and V lupus nephritis: An observational comparative study of the Lupus-Cruces and lupus-Bordeaux cohorts. Autoimmun Rev [Internet] 2017 Aug 1 [cited 2023 Jul 20];16(8):826–32. Available from: https://pubmed.ncbi.nlm.nih.gov/28564619/
- Zeher M, Doria A, Lan J, Aroca G, Jayne D, Boletis I, et al. Efficacy and safety of enteric-coated mycophenolate sodium in combination with two glucocorticoid regimens for the treatment of active lupus nephritis. Lupus [Internet] 2011 Dec [cited 2023 Jul 20];20(14):1484–93. Available from: https://pubmed.ncbi. nlm.nih.gov/21976398/
- 61. Huscher D, Thiele K, Gromnica-Ihle E, Hein G, Demary W, Dreher R, et al. Dose-related patterns of glucocorticoid-induced side effects. Ann Rheum Dis 2009 Jul 1;68(7):1119–24.
- Kostopoulou M, Nikolopoulos D, Parodis I, Bertsias G. Cardiovascular Disease in Systemic Lupus Erythematosus: Recent Data on Epidemiology, Risk Factors and Prevention. Curr

- Vasc Pharmacol. 2020;18(6):549-65.
- Apostolopoulos D, Kandane-Rathnayake R, Raghunath S, Hoi A, Nikpour M, Morand EF. Independent association of glucocorticoids with damage accrual in SLE. Lupus Sci Med. 2016 Nov 22;3(1):e000157.
- 64. Mathian A, Pha M, Haroche J, Cohen-Aubart F, Hié M, Pineton de Chambrun M, et al. Withdrawal of low-dose prednisone in SLE patients with a clinically quiescent disease for more than 1 year: a randomised clinical trial. Ann Rheum Dis 2020 Mar;79(3):339–46.
- Tselios K, Gladman DD, Su J, Urowitz MB. Gradual Glucocorticosteroid Withdrawal Is Safe in Clinically Quiescent Systemic Lupus Erythematosus. ACR Open Rheumatol 2021 Aug 10;3(8):550–7.
- 66. Nakai T, Fukui S, Ikeda Y, Suda M, Tamaki H, Okada M. Glucocorticoid discontinuation in patients with SLE with prior severe organ involvement: a single-center retrospective analysis. Lupus Sci Med 2022 Jun 2;9(1):e000682.
- 67. Tani C, Elefante E, Signorini V, Zucchi Di, Lorenzoni V, Carli L, et al. Glucocorticoid withdrawal in systemic lupus erythematosus: are remission and low disease activity reliable starting points for stopping treatment? A real-life experience. RMD Open [Internet] 2019 Jun 1 [cited 2023 Jul 21];5(2). Available from: https://pubmed.ncbi.nlm.nih.gov/31275608/
- Condon MB, Ashby D, Pepper RJ, Cook HT, Levy JB, Griffith M, et al. Prospective observational single-centre cohort study to evaluate the effectiveness of treating lupus nephritis with rituximab and mycophenolate mofetil but no oral steroids. Ann Rheum Dis 2013 Aug;72(8):1280–6.
- Fanouriakis A, Kostopoulou M, Andersen J, Aringer M, Arnaud L, Bae SC, et al. EULAR recommendations for the management of systemic lupus erythematosus: 2023 update. Ann Rheum Dis 2024 Jan;83(1):15–29.
- 70. Dima A, Jurcut C, Chasset F, Felten R, Arnaud L. Hydroxychloroquine in systemic lupus erythematosus: overview of current knowledge. Ther Adv Musculoskelet Dis 2022 Jan 14;14:1759720X2110730.
- 71. Akhavan PS, Su J, Lou W, Gladman DD, Urowitz MB, Fortin PR. The Early Protective Effect of Hydroxychloroquine on the Risk of Cumulative Damage in Patients with Systemic Lupus Ervthematosus, J Rheumatol 2013 Jun;40(6):831–41.
- 72. Petri M, Purvey S, Fang H, Magder LS. Predictors of organ damage in systemic lupus erythematosus: The Hopkins Lupus Cohort. Arthritis Rheum 2012 Dec;64(12):4021–8.
- Zen M, Saccon F, Gatto M, Montesso G, Larosa M, Benvenuti F, et al. Prevalence and predictors of flare after immunosuppressant discontinuation in patients with systemic lupus erythematosus in remission. Rheumatology 2020 Jul 1;59(7):1591–8.
- Almeida-Brasil CC, Hanly JG, Urowitz M, Clarke AE, Ruiz-Irastorza G, Gordon C, et al. Flares after hydroxychloroquine reduction or discontinuation: results from the Systemic Lupus International Collaborating Clinics (SLICC) inception cohort. Ann Rheum Dis 2022 Mar;81(3):370–8.
- Costedoat-Chalumeau N, Amoura Z, Hulot JS, Hammoud HA, Aymard G, Cacoub P, et al. Low blood concentration of hydroxychloroquine is a marker for and predictor of disease exacerbations in patients with systemic lupus erythematosus. Arthritis Rheum 2006 Oct;54(10):3284–90.
- Alarcon GS, McGwin G, Bertoli AM, Fessler BJ, Calvo-Alen J, Bastian HM, et al. Effect of hydroxychloroquine on the survival of patients with systemic lupus erythematosus: data from LUMINA, a multiethnic US cohort (LUMINA L). Ann Rheum Dis 2007 Mar 15:66(9):1168–72.
- Clowse MEB, Eudy AM, Balevic S, Sanders-Schmidler G, Kosinski A, Fischer-Betz R, et al. Hydroxychloroquine in the pregnancies of women with lupus: a meta-analysis of individual participant data. Lupus Sci Med 2022 Mar 21;9(1):e000651.
- Ntali S, Nikolopoulos D, Pantazi L, Emmanouilidou E, Papagoras C, Fanouriakis A, et al. Remission or low disease activity at pregnancy onset are linked to improved foetal outcomes in

MEDITERRANEAN JOURNAL | 35 OF RHEUMATOLOGY | 2024

SUPPLEMENT

- women with systemic lupus erythematosus: results from a prospective observational study. Clin Exp Rheumatol 2021 Aug 25;
- Sammaritano LR, Bermas BL, Chakravarty EE, Chambers C, Clowse MEB, Lockshin MD, et al. 2020 American College of Rheumatology Guideline for the Management of Reproductive Health in Rheumatic and Musculoskeletal Diseases. Arthritis Rheumatol 2020 Apr 23;72(4):529–56.
- Russell MD, Dey M, Flint J, Davie P, Allen A, Crossley A, et al. British Society for Rheumatology guideline on prescribing drugs in pregnancy and breastfeeding: immunomodulatory antirheumatic drugs and corticosteroids. Rheumatology 2023 Apr 3;62(4):e48–88.
- Izmirly PM, Costedoat-Chalumeau N, Pisoni CN, Khamashta MA, Kim MY, Saxena A, et al. Maternal Use of Hydroxychloroquine Is Associated With a Reduced Risk of Recurrent Anti-SSA/Ro-Antibody–Associated Cardiac Manifestations of Neonatal Lupus. Circulation 2012 Jul 3;126(1):76–82.
- Jorge A, Lu N, Choi H, Esdaile JM, Lacaille D, Avina-Zubieta JA. Hydroxychloroquine Use and Cardiovascular Events Among Patients With Systemic Lupus Erythematosus and Rheumatoid Arthritis. Arthritis Care Res (Hoboken) 2023 Apr;75(4):743–8.
- 83. Haugaard JH, Dreyer L, Ottosen MB, Gislason G, Kofoed K, Egeberg A. Use of hydroxychloroquine and risk of major adverse cardiovascular events in patients with lupus erythematosus: A Danish nationwide cohort study. J Am Acad Dermatol 2021 Apr;84(4):930–7.
- Crow MK, Kirou KA. Hydroxychloroquine and lupus flare: a good drug, but we need to do better. Ann Rheum Dis 2022 Mar;81(3):303–5.
- Nikolopoulos D, Fanouriakis A, Bertsias G. Treatment of neuropsychiatric systemic lupus erythematosus: clinical challenges and future perspectives. Expert Rev Clin Immunol 2021 Apr 3;17(4):317–30.
- 86. Urowitz MB, Aranow C, Asukai Y, Bass DL, Bruce IN, Chauhan D, et al. Impact of Belimumab on Organ Damage in Systemic Lupus Erythematosus. Arthritis Care Res (Hoboken) 2022 Nov 4;74(11):1822–8.
- 87. Gatto M, Saccon F, Zen M, Regola F, Fredi M, Andreoli L, et al. Early Disease and Low Baseline Damage as Predictors of Response to Belimumab in Patients With Systemic Lupus Erythematosus in a Real-Life Setting. Arthritis Rheumatol 2020 Aug 12;72(8):1314–24.
- 88. Schwarting A, Schroeder JO, Alexander T, Schmalzing M, Fiehn C, Specker C, et al. First Real-World Insights into Belimumab Use and Outcomes in Routine Clinical Care of Systemic Lupus Erythematosus in Germany: Results from the OBSErve Germany Study. Rheumatol Ther 2016 Dec 1;3(2):271–90.
- Collins CE, Dall'Era M, Kan H, Macahilig C, Molta C, Koscielny V, et al. Response to belimumab among patients with systemic lupus erythematosus in clinical practice settings: 24-month results from the OBSErve study in the USA. Lupus Sci Med. 2016 Jan 11;3(1):e000118.
- Scheinberg M, de Melo FFN, Bueno AN, Costa CM, de Azevedo Bahr MLA, Reis ER. Belimumab for the treatment of corticosteroid-dependent systemic lupus erythematosus: from clinical trials to real-life experience after 1 year of use in 48 Brazilian patients. Clin Rheumatol 2016 Jul 23;35(7):1719–23.
- 91. Andreoli L, Reggia R, Pea L, Frassi M, Zanola A, Cartella S, et al. Belimumab for the treatment of refractory systemic lupus erythematosus: real-life experience in the first year of use in 18 Italian patients. Isr Med Assoc J [Internet] 2014 Oct 1 [cited 2023 Jul 27];16(10):651–3. Available from: https://pubmed.ncbi.nlm.nih.gov/25438460/
- 92. Nikoloudaki M, Nikolopoulos D, Koutsoviti S, Flouri I, Kapsala N, Repa A, et al. Clinical response trajectories and drug persistence in systemic lupus erythematosus patients on belimumab treatment: A real-life, multicentre observational study. Front Immunol 2023 Jan 4;13.

- 93. Parodis I, Sjöwall C, Jönsen A, Ramsköld D, Zickert A, Frodlund M, et al. Smoking and pre-existing organ damage reduce the efficacy of belimumab in systemic lupus erythematosus. Autoimmun Rev 2017 Apr 1;16(4):343–51.
- van Vollenhoven RF, Petri MA, Cervera R, Roth DA, Ji BN, Kleoudis CS, et al. Belimumab in the treatment of systemic lupus erythematosus: high disease activity predictors of response. Ann Rheum Dis 2012 Aug;71(8):1343–9.
- 95. Parodis I, Gomez A, Emamikia S, Chatzidionysiou K. Established organ damage reduces belimumab efficacy in systemic lupus erythematosus. Ann Rheum Dis 2019 Jul;78(7):1006–7.
- 96. Rovin BH, Furie R, Teng YKO, Contreras G, Malvar A, Yu X, et al. A secondary analysis of the Belimumab International Study in Lupus Nephritis trial examined effects of belimumab on kidney outcomes and preservation of kidney function in patients with lupus nephritis. Kidney Int 2022 Feb;101(2):403–13.
- 97. Furie R, Rovin BH, Houssiau F, Malvar A, Teng YKO, Contreras G, et al. Two-Year, Randomized, Controlled Trial of Belimumab in Lupus Nephritis. NEJM 2020 Sep 17;383(12):1117–28.
- 98. Parodis I, Lindblom J, Cetrez N, Palazzo L, Ala H, Houssiau FA, et al. Effect of Belimumab on Preventing de novo Renal Lupus Flares. Kidney Int Rep. 2023 Jul;
- Gomez A, Jägerback S, Sjöwall C, Parodis I. Belimumab and antimalarials combined against renal flares in patients treated for extra-renal systemic lupus erythematosus: results from 4 phase III clinical trials. Rheumatology (United Kingdom). 2024 Feb 1;63(2):338–48.
- Staveri C, Karokis D, Liossis SNC. New onset of lupus nephritis in two patients with SLE shortly after initiation of treatment with belimumab. Semin Arthritis Rheum 2017 Jun 1;46(6):788–90.
- 101. Parodis I, Vital EM, Hassan SU, Jönsen A, Bengtsson AA, Eriksson P, et al. De novo lupus nephritis during treatment with belimumab. Rheumatology (United Kingdom) 2021 Sep 1;60(9):4348–54.
- 102. Parodis I, Lindblom J, Cetrez N, Palazzo L, Ala H, Houssiau FA, et al. Effect of Belimumab on Preventing de novo Renal Lupus Flares. Kidney Int Rep 2023 Sep 1;8(9):1822–30.
- 103. Morand EF, Furie R, Tanaka Y, Bruce IN, Askanase AD, Richez C, et al. Trial of Anifrolumab in Active Systemic Lupus Erythematosus. N Engl J Med [Internet] 2020 Jan 16 [cited 2023 Aug 21];382(3):211–21. Available from: https://pubmed.ncbi.nlm.nih.gov/31851795/
- 104. Jayne D, Rovin B, Mysler EF, Furie RA, Houssiau FA, Trasieva T, et al. Phase II randomised trial of type I interferon inhibitor anifrolumab in patients with active lupus nephritis. Ann Rheum Dis [Internet] 2022 [cited 2023 Aug 21];81(4). Available from: https://pubmed.ncbi.nlm.nih.gov/35144924/
- 105. Bruce IN, Golam S, Steenkamp J, Wang P, Worthington E, Desta B, et al. Indirect treatment comparison of anifrolumab efficacy versus belimumab in adults with systemic lupus erythematosus. J Comp Eff Res [Internet] 2022 Jul 1 [cited 2023 Aug 21];11(10):765–77. Available from: https://pubmed.ncbi.nlm.nih.gov/35546484/
- 106. Neupane B, Shukla P, Slim M, Martin A, Petri M, Bertsias GK, et al. Belimumab versus anifrolumab in adults with systemic lupus erythematosus: an indirect comparison of clinical response at 52 weeks. Lupus Sci Med [Internet] 2023 May 5 [cited 2023 Aug 21];10(1). Available from: https://pubmed.ncbi.nlm.nih.gov/37147022/
- 107. Lan L, Han F, Chen JH. Efficacy and safety of rituximab therapy for systemic lupus erythematosus: a systematic review and metaanalysis. J Zhejiang Univ Sci B [Internet] 2012 Sep [cited 2023 Aug 21];13(9):731. Available from: /pmc/articles/PMC3437371/
- 108. Rovin BH, Furie R, Latinis K, Looney RJ, Fervenza FC, Sanchez-Guerrero J, et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum [Internet] 2012 [cited 2023 Aug 21];64(4):1215–26. Available from: https://pubmed.ncbi.nlm.nih.gov/22231479/

- 109. Merrill JT, Neuwelt CM, Wallace DJ, Shanahan JC, Latinis KM, Oates JC, et al. Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum [Internet] 2010 Jan [cited 2023 Aug 21];62(1):222–33. Available from: https://pubmed.ncbi.nlm.nih.gov/20039413/
- 110. Tanaka Y, Nakayamada S, Yamaoka K, Ohmura K, Yasuda S. Rituximab in the real-world treatment of lupus nephritis: A retrospective cohort study in Japan. Mod Rheumatol 2023 Jan 3;33(1):145–53.
- 111. Nikolopoulos D, Cetrez N, Lindblom J, Palazzo L, Enman Y, Parodis I. Patients with neuropsychiatric involvement systemic lupus erythematosus experience poorer health-related quality of life and more fatigue than systemic lupus erythematosus patients with no neuropsychiatric involvement, irrespective of neuropsychiatric activity. Rheumatology (United Kingdom) [Internet] 2024; Available from: https://academic.oup.com/rheumatology/advance-article/doi/10.1093/rheumatology/keae216/7641537
- 112. Jolly M, Annapureddy N, Arnaud L, Devilliers H. Changes in quality of life in relation to disease activity in systemic lupus erythematosus: post-hoc analysis of the BLISS-52 Trial. Lupus [Internet] 2019 Dec 1 [cited 2023 Aug 21];28(14):1628–39. Available from: https://pubmed.ncbi.nlm.nih.gov/31674267/
- 113. Gomez A, Enman Y, Parodis I. Impact of Belimumab on Patient-Reported Outcomes in Systemic Lupus Erythematosus: Insights from Clinical Trials and Real-World Evidence. Patient Relat Outcome Meas 2023;14:1–13.
- 114. Parodis I, Lopez Benavides AH, Zickert A, Pettersson S, Möller S, Welin Henriksson E, et al. The Impact of Belimumab and Rituximab on Health-Related Quality of Life in Patients With Systemic Lupus Erythematosus. Arthritis Care Res (Hoboken) 2019 Jun;71(6):811–21.
- 115. Gomez A, Qiu V, Cederlund A, Borg A, Lindblom J, Emamikia S, et al. Adverse Health-Related Quality of Life Outcome Despite Adequate Clinical Response to Treatment in Systemic Lupus Erythematosus. Front Med (Lausanne) 2021;8:651249.
- 116. Gomez A, Hani Butrus F, Johansson P, Åkerström E, Soukka S, Emamikia S, et al. Impact of overweight and obesity on patient-reported health-related quality of life in systemic lupus erythematosus. Rheumatology (Oxford) [Internet] 2021 Mar 1 [cited 2023 Aug 21];60(3):1260–72. Available from: https://pubmed.ncbi.nlm.nih.gov/32918459/
- 117. Legge A, Doucette S, Hanly JG. Predictors of Organ Damage Progression and Effect on Health-related Quality of Life in Systemic Lupus Erythematosus. J Rheumatol [Internet] 2016 Jun 1 [cited 2023 Aug 21];43(6):1050–6. Available from: https://pubmed.ncbi.nlm.nih.gov/27084911/
- 118. Emamikia S, Oon S, Gomez A, Lindblom J, Borg A, Enman Y, et al. Impact of remission and low disease activity on health-related quality of life in patients with systemic lupus erythematosus. Rheumatology (Oxford) [Internet] 2022 Dec 1 [cited 2023 Aug 21];61(12):4752–62. Available from: https://pubmed.ncbi.nlm.nih.gov/35302581/
- 119. Tsang-A-Sjoe MWP, Bultink IEM, Heslinga M, Van Tuyl LH, Van Vollenhoven RF, Voskuyl AE. The relationship between remission and health-related quality of life in a cohort of SLE patients. Rheumatology (Oxford) [Internet] 2019 Apr 1 [cited 2023 Aug 21];58(4):628–35. Available from: https://pubmed.ncbi.nlm.nih.gov/30517706/
- 120. Louthrenoo W, Kasitanon N, Morand E, Kandane-Rathnayake R. Comparison of performance of specific (SLEQOL) and generic (SF36) health-related quality of life questionnaires and their associations with disease status of systemic lupus erythematosus: a longitudinal study. Arthritis Res Ther [Internet] 2020 Jan 10 [cited 2023 Aug 21];22(1). Available from: https://pubmed.ncbi.nlm.nih.gov/31924267/
- 121. Golder V, Kandane-Rathnayake R, Hoi AYB, Hug M, Louthrenoo

- W, An Y, et al. Association of the lupus low disease activity state (LLDAS) with health-related quality of life in a multinational prospective study. Arthritis Res Ther [Internet] 2017 Mar 20 [cited 2023 Aug 21];19(1). Available from: https://pubmed.ncbi.nlm.nih.gov/28320433/
- 122. Gomez A, Parodis I. Do biological agents improve health-related quality of life in patients with systemic lupus erythematosus? Results from a systematic search of the literature. Autoimmun Rev [Internet] 2022 Nov 1 [cited 2023 Aug 21];21(11). Available from: https://pubmed.ncbi.nlm.nih.gov/36089249/
- 123. Gomez A, Soukka S, Johansson P, Åkerström E, Emamikia S, Enman Y, et al. Use of Antimalarial Agents is Associated with Favourable Physical Functioning in Patients with Systemic Lupus Erythematosus. J Clin Med [Internet] 2020 Jun 1 [cited 2023 Aug 21];9(6):1–16. Available from: https://pubmed.ncbi.nlm.nih.gov/32532059/
- 124. Mucke J, Kuss O, Brinks R, Schanze S, Schneider M. LUPUS-BEST-treat-to-target in systemic lupus erythematosus: study protocol for a three-armed cluster-randomised trial. Lupus Sci Med 2021 Jul;8(1).
- 125. Golder V, Tsang-A-Sjoe MWP. Treatment targets in SLE: remission and low disease activity state. Rheumatology (Oxford) [Internet] 2020 Dec 1 [cited 2023 Aug 21];59(Suppl5):V19–28. Available from: https://pubmed.ncbi.nlm.nih.gov/33280016/
- 126. Connelly K, Eades LE, Koelmeyer R, Ayton D, Golder V, Kandane-Rathnayake R, et al. Towards a novel clinical outcome assessment for systemic lupus erythematosus: first outcomes of an international taskforce. Nat Rev Rheumatol 2023 Sep 1;19(9):592–602.