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Abstract

The healthcare referral system affects all points of the healthcare ecosystem — access to
care, patient satisfaction, physician utilization and healthcare costs. The state of these variables
plays a critical role in determining healthcare efficiency. In this paper we dissect the medical
referrals from primary to secondary care in Florida in 2015 and tackle them from three
perspectives — influence of physician experience in referral choice, relationship between
physician referral choice and Medicare spending, and pattern detection given different referral
windows. To accomplish our goal of identifying patterns in primary to secondary referral
mechanisms, we use Graph Neural Networks (GNN) unsupervised model to learn the vectoral
representation of our physician nodes and their properties in the network. This work provides
new discoveries on factors that influence the referral patterns and can be used to make better

decisions when aiming to improve the efficiency of referrals.
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1. Introduction

For as long as humankind exists, people have been highly focused on enhancing the quality
of life and increasing life expectancy by improving the quality of healthcare services, meaning
“any services provided by a healthcare professional, or by any individual working under the
supervision of a health care professional, that relate to— (A) the diagnosis, prevention, or
treatment of any human disease or impairment; or (B) the assessment or care of the health of
human beings.” (Legal Information Institute n.d.).

According to the World Health Organization (hereafter, WHO), to attain quality healthcare,
the services must “reduce waiting times and harmful delays”, “provide care that does not vary
in geographic location”, and “maximize the benefits of available resources and avoid waste”
(WHO n.d.). Thus, the referral system is one of the most important pillars in the healthcare
service chain that determines whether these aspects are implemented.

The healthcare system is built in a way to encourage beneficiaries to first reach out to
primary care providers and then, if needed, seek out specialist care, in this way maintaining
lower costs for the patients. The conventional paper-based referral systems are designed to
optimize the doctor's workload, maintain enough time to address patient problems, and connect
the patient to a specialist that is best equipped to approach his needs on time. Through GNN
and clustering, our results showed that lower submitted charges are related to a higher number
of interactions with different physicians, thus with a wider network. Furthermore, the region
that was more representative of this cluster showed lower healthcare spending and higher care
quality measures. In conclusion, it appears that higher quality, lower submitted charges and
lower healthcare spending are related to having a wider network.

Regretfully, the real-world referral system bypasses the optimal scenario, with certain
physicians being overthrown by too many patients, and having little time to address their needs,

resulting in untimely and inefficient care. A crucial aspect in the referral system and for primary
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care providers is the possibility that they disregard the staff’s availability and, instead, refer the
patient to a specialist that they are familiar with. We believe manual-based referrals may be
prone to biases, and through this work project we will analyze this hypothesis by considering
the healthcare outcomes and physicians’ referrals. Given that physicians seem to make more
referrals to physicians of similar experience level, the experience seems to influence physician
referral choice. Nevertheless, the extent to which experience has an impact is unclear, because,
given information of experience, the extracted embeddings do not seem to have a clear
structure.

Physician cooperation is the practice of doctors working together to offer the best possible
treatment for their patients. This can take numerous forms, such as consulting with other doctors
on a case, exchanging information and skills, or collaborating on research. Collaboration is an
important component of the medical sector because it allows doctors to combine their talents
and knowledge to deliver the best possible treatment for their patients. This physician
collaboration can take place both in the short and long term. In the short term, doctors may
collaborate on a specific case or patient, working together to diagnose and treat a particular
medical condition, thus it is important. Our results depict the existence of pattern differences
when comparing 30-day referrals and 90-day referrals.

This work project is structured as follows: Section 2 consists of a literature review regarding
previous studies on the topic. Section 3 will provide details on the data considered for this
research. Section 4 will specify the methodology followed by this study. The following sections
focus on addressing business questions. Section 5 will compare the patterns between different
referrals windows given physician specialties. Section 6 will attempt to explain the relationship
between Medicare spending, primary care quality and physician referrals. Section 7 will aim to
infer the experience significance in primary care physician referral choice. Finally, sections 8

and 9 will provide final remarks, conclusion and discussion.
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2. Literature Review
2.1  Previous work on healthcare referrals

According to Md Abu Bashar et al. (2019), referrals in healthcare is an ever-changing
process in which a healthcare representative, driven by a lack of resources such as skills, passes
on the management of a certain clinical condition to a better-equipped healthcare worker. The
mentioned referral process, oftentimes held as a measure to determine the performance of the
health system, is deemed effective when it is constructed to ensure that individuals receive the
best possible care and that all levels of health care maintain a close relationship (Prof. Ali
Akbari-Sari 2021).

Beyond theoretical definitions of how a sound healthcare system is supposed to function,
society is struck with grim health statistics. According to 2020 Health OECD data, the United
States had 238 deaths per 100,000 thousand population that could have been avoided if the
patient had received proper care. Behind these numbers lie overworked and exhausted doctors
and patients experiencing long waits resulting in curable diseases becoming untreatable. All
these factors are a result of a faulty functioning referral system and can be tuned to best serve
the giving and receiving ends of healthcare services.

The basis of this work is to understand the driving forces of the referral system by examining
previous research, conducting novel analysis to obtain insights, and be able to provide
competent recommendations on how this imperative process could be improved to optimize
healthcare operations.

A handful of research has been conducted to examine the United States referral system and
the components that influence it. Chuankai An et al. (2017) in their work emphasize the
importance of a well-designed referral system for resources to flow efficiently in the healthcare
ecosystem. The author highlights three causes driving primary care doctors to refer a patient to

a specialist, which, sub sequentially, determine the quality and price of care: “(1) seeking advice
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on a diagnosis or treatment (52.1%), (2) requesting surgical management (37.8%), and (3)
asking the specialist to directly manage the patient (25.1%)” (Chuankai An et al. 2017, 2).
Employing the 2009 — 2015 data from Medicare, the authors measure their network structure
by comparing it to three traditional baseline models: Erdos-Renyi (ER) random network (the
null model), small-world network characterized by a higher clustering coefficient and network
homophily, and core-periphery structure (measured using the Gini coefficient) that contains a
“core” of closely connected nodes and a “periphery”, which includes vertices linked loosely to
the core and one another. The authors found that the physician’s networks exhibit both, core-
periphery and small network structures; the latter suggests that doctor networks are suitable for
spreading innovations and passing on knowledge and information.

Conventionally social networks unveil the so-called friendship paradox, which implies that
people are more likely to form friendships with individuals that are already friends with more
people. These networks seem to follow a power-degree distribution, which means that some
individuals are “hubs” of the network and have a vast number of connections, while most
individuals in the network have very few connections. Intuitively, the doctor’s network could
adhere to a similar structure, as there might be physicians that are in a sense more “popular”
and, hence, receive and make more referrals. Chuankai An et al. (2017) found that indeed the
doctor’s network follows a power law, with an outdegree distribution having a more robust
inclination than the indegree, meaning that certain doctors conduct more referrals than others.

The inclination of some doctors to conduct more referrals is a key factor to understand. A
study by Peter Franks et al. (2000) of United Stated and United Kingdom found that family care
to specialist referral rates ranged from 5% to 60% per year, which affects patient access to
specialists. They examined the deviations of primary care to specialist’s referral rates and
factors that affect it using 1995 claims data that indicated whether a patient was referred or not.

Although factors, such as reimbursement, time pressure, and clinical problems were found to

11
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account for minor variations, physicians with a bigger fear of malpractice or higher
specialization were more likely to refer their patients.

Extending beyond the decision of whether to refer a patient, Kraig S. Kinchen et al. (2004)
studied how PC doctors choose the specialist. By running a cross-sectional survey, the authors
report that respondents find medical skill, previous experience with the specialist, and patient’s
insurance coverage to be of high relevancy. The latter often leads to family doctors having little
information on whether the specialist would provide the best care for the patient.

“Birds of a feather flock together” - an idiom used to express the nature of social networks
where beings tend to form connections with others of similar type and personality represents
an idea that might resemble the physician network. This is what is known under Network
Analysis as homophily. Although ideally, physicians build ties with other physicians for patient
referrals and clinical advice (Michael L Barnett et al. 2011), associations between doctors tend
to be affected by other aspects as well (Bruce E. Landon et al. 2012).

Bruce E. Landon et al. (2012) in their work employs U.S. Medicare data (2006) on shared
patients among physicians and draw attention to doctor traits, such as sex, age, location of
practice, the intensity of care (using Episode Treatment Group (ETG) software), and overall
differences in network features across 51 hospital referral regions (HRRs). After employing a
multivariable regression model, the authors’ findings suggest that doctors are used to share
patients with other providers with similar personal traits; for instance, more than 65% of pairs
between doctors were male-male, the average difference in age between those with ties (11.5
years) was smaller than those without (12.5 years), and 96% of unconnected physician pairs did
not work in the same hospital (c. 31% of connected physician pairs were from the same
hospitals). Additionally, physicians with ties had closer geographic proximity (mean of 13.2

miles for connected pairs versus 24.2 miles for unconnected pairs) and alike practice intensity
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estimated by ETGs. Similar patient characteristics were also shared between connected
physicians, including patient age, race, and complexity of the clinical issues.

Previous work in the field of network analysis has been developed for the healthcare
industry, leading to successful applications to investigate physician referral networks, “advice
networks, and the diffusion of information among physicians” (Barnett et al. 2011). The further
motivation behind previous work in this area has been focused on healthcare efficiency,
including hospital costs, treatment quality, and patient needs. By analyzing the network, these
studies extracted information about possible gaps in the system's efficacy. For example, Barnett
et al (2011) evaluated how the patient-sharing networks of doctors contributed to the expenses
and intensity of care delivered by United States hospitals by studying physician-based
networks. They concluded that the network structure was strongly associated with Medicare
spending and care patterns. Another finding was that hospitals with doctors who have a higher
number of connections have also higher costs and more intensive care; hospitals with primary
care-centered networks have lower costs and care intensity.

An et al. (2018) decided to carry out an in-depth study of the United States network by
considering only patients with cardiological conditions. Through the analysis of metrics such
as local clustering coefficient, betweenness, closeness, eigenvector, and PageRank centralities
and the core-periphery score, as well as node embeddings features such as their position in the
network, they concluded that physicians send patients to other physicians that have many
“common connected neighbors in the national referral network” (An et al. 2018, 22). This
supports the hypothesis that physician position within the network influences their level of
popularity, being that those with more common neighbors would be reached out more often.
Through their research, An et al. (2018) considered that it would be beneficial for hospitals to
grasp the discoveries for several reasons. First, whenever a new treatment is approved, if

hospitals are aware of the first physicians and hospitals that adopt it, they could extract key
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metrics from their network that could possibly contribute to a similar level of success and
popularity. Moreover, by implementing Machine Learning algorithms on their data, they were
able to isolate the key factors in predicting referral paths characteristics, “such as the time gap
between two visits on the referral path and the total RVUs of all physicians’ endeavors.” (An
etal. 2018, 22).

Yet, other studies give more emphasis on the patient’s development to understand
physicians’ social networks. Herrin et al. (2019) focused on claim data from breast cancer
patients to “develop an empiric approach for evaluating the performance of physician peer
groups” (Herrin 2019). This approach was based on social network analyses to understand the
existing relationships between physicians and how that could impact the patient’s health.

“Physician-to-physician referrals are the currency of day-to-day transactions in medicine”
(New York Times 2009). Although instinctively we think of referrals as a process driven to best
serve the patient’s need or influenced by the doctor's skills, studies show that referrals are often
made based on friendships. This work will extend the existing research by incorporating
physician features such as location and specialty whilst studying the latest (2015) Medicare data
available with the aim of understanding the physicians’ network structure and how could it be
shaped to best serve the healthcare system.

2.2. Graph Embeddings and Graph Neural Networks

Regarding the Artificial Intelligence area, some advances have been made in the field of
graphs and Machine Learning. Neural networks have been one of the most efficient types of
models for prediction and classification tasks. Similarly, GNN can repeat these tasks on nodes
and edges as primary subjects. Especially in the healthcare field, GNNs would allow us to
deeply understand the physician referral network, extract network metrics and predict links,
classify nodes, or determine the efficiency of the network within the healthcare system. This is

done with the generation of graph embeddings. The methodology of graph embeddings has
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been explored by previous studies (Grover and Leskovec 2016; Perozzi et al. 2014; Ribeiro et
al. 2017; Tang et al. 2015), where they aimed to extract each node’s information and position
within the network as a low-dimensional vector. Thus, they proposed embedding mechanisms
where this information gets transformed and used afterward as input features for other Machine
Learning models — logistic regression, and decision trees, among others.

As expected, different graph embedding mechanisms have been proposed. Random-walk
based methods were proposed with the goal of generating random node paths and, with such,
learning more about the node’s position regarding the overall network. (Yue et al. 2020). More
specifically, given a starting node, this mechanism will move from the starting point to a
random neighbor, and then repeat the process until it has a node sequence. One of the first
algorithms proposed for this operation was DeepWalk (Perozzi et al. 2014), which provides
information regarding the local structure by truncating the random walks. Node2vec (Grover
and Leskovec 2016) accommodates a biased random walk that is considered more flexible
because it incorporates several types of samplings to generate the node sequences. Moreover,
Struc2vec (Ribeiro, Savarese, and Figueiredo 2017) is another framework proposed that differs
from the Node2vec regarding the meaning of the produced representations. While Node2vec
tries to represent nearby nodes in a similar way, Struc2vec focuses on the role that each node
plays within a network. As a result, nodes that are far apart may have similar representations.
This is done by applying DeepWalk to a multi-layer weighted graph, where layer k is
parameterized considering the k-hop neighborhoods of the nodes. Attri2vec (Zhang et al. 2019)
implements DeepWalk and Struc2vec to learn node representations, with the difference that it
performs either linear or non-linear mapping on the nodes’ attributes.

Hamilton, Ying, and Leskovec (2017) introduced the GraphSAGE framework, where they
developed a function to extract node attributes - node degrees, features - by sampling a

neighborhood and then aggregating feature information from neighbors. This methodology
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primarily considers the local node neighborhood information, besides the node features, and
transforms it into a new, lower-level space. The main difference of this framework from the
rest is that it is inductive, which means that it has a higher probability to be generalizable and
achieve better performance on previously unseen data.

2.3.Applied GNN in Healthcare

Some studies have included GNN-based methodologies to apply solutions to the healthcare
sector. Liu et al. (2020) implemented GNN algorithms to predict patients’ prescriptions for the
next period. Because this was considered both a temporary and spatial problem, they
implemented a novel hybrid method of GNN and Recurrent Neural Networks (RNN), where
the RNN considers the patient sequence representation, and the GNN the graph that matches
different medical events to their according prescriptions.

Other studies have considered the GCN for the medical domain. Choi et al. (2017) proposed
a Graph-based Attention Model (GRAM), where they used electronic health records (EHR) to
predict sequential diagnoses. When compared to RNN, GRAM outperformed accuracy by 10%
in the task of predicting rarely observed diseases, helping the medical community to extract
“medical concept representations from the graph of medical ontology knowledge” (Choi et al.
2017). Ma et al. (2018) classified the drug-drug interaction (DDI) problem as a graph task,
where they were able to classify each graph using GCN.

GNNs have the potential to not only state that the current healthcare system is not efficient,
but to model what links might be best to improve either the patient’s medical services quality
or healthcare efficiency, reducing costs. However, this area of research is still relatively recent
and has not been deeply explored. Thus, little research has been focused on physician referral
patterns represented through GNNs. To improve healthcare efficiency, mostly network analyses

considering social network theory have been considered. Hence, our goal is to extract the
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benefits of GNNs for their implementation in this field and provide insights at the patient,
physician, and hospital levels.

3. Data

3.1.Data Collection and Understanding

In this paper, we study the components that form the network links between physicians and
depict the rationale behind medical referrals in the US healthcare system by employing the
Centers for Medicare & Medicaid Services (hereafter, CMS) patient referral dataset. This
Medicare data includes information on when the same patient is reported as receiving care from
two distinct doctors within a specific timeframe, between the years 2009 and 2015, spaced out
across 30-, 60-, 90-, and 180-day periods. This project utilizes the latest data available (2015)
for the 30-day period, which has about 34 million record count (CMS 2021).

According to the data dictionary provided by the CMS, the National Provider Identifier
(NPI) is "a unique identification number for covered health care providers" (Centers for
Medicare & Medicaid Services n.d.). The data contains two columns of NPIs, the first of which
is labeled as the “Initial Physician NPI” (NPI 1) and the second as the “Secondary Physician
NPI” (NPI 2). The referral dataset does not assure that doctor A referred to doctor B, meaning
that for each pairing of NPI 1 and NPI 2, the same patient visited both doctors in that order
within the 30-day period. For the analysis, we selected the referrals from primary care (NPI 1)
(family practice, internal medicine, pediatric medicine, geriatric medicine, general practice,
obstetrics/gynecology, and preventive medicine) to specialists (NP1 2) because patients usually
go through primary care provider as their first option, and as such this person might determine
how fast the patients reach their final specialist required for their diagnosis. Furthermore,
constructing a GNN with fewer connections will allow an easier extraction of information from
the nodes and the reduction of noise and edges. The data also includes a shared count of the

patients for each pair, allowing for a deeper understanding of the providers with the greatest
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number of connections. This relationship is extracted from all the Medicare claims filed
between each of the periods. For instance, if a patient is listed under two claims from different
physicians within each of the periods mentioned, these physicians will have an additional
patient summed to the shared count in the referral dataset.

Besides this data set, we extracted additional data that contains physicians’ features from
the 2015 Medicare Physician & Other Practitioners - by Provider report from the Centers for
Medicare & Medicaid Service (Centers for Medicare & Medicaid Services Data). This way, we
would be able to study the factors that affect referrals. The NPI column, which serves as the
connection between the two data sources, is included in this dataset along with numerous doctor
profiling features — making a total of 73 columns in the data set —, including first and last name,
gender, city, specialty, and others, as well as the characteristics of their beneficiaries (e.g.,
average age, the proportion of men and women, number of distinct races, etc.).

3.2. Data Curation
Regarding the subset of the data that we chose, we considered only those physicians with
practice locations set in Florida. This way, we will only study intra-state referrals. Moreover,
we considered only those referrals who shared over 100 patients within that month to enable
the measurement of the shared patients among healthcare providers by focusing on the group
that interacts most frequently. The two main reasons why we chose Florida as our study set is:
1. Medicare data include patients that are 65+ and “Florida had the highest percentage of
its population age 65 and over among states in 2015 (19.4 percent)” (United States
Census Bureau 2016).

2. Geographically, Florida is a unique state given that is only contiguous to Georgia and
Alabama in the north, thus we would be able to minimize the interactions of patients

from out-of-state, those being more common in areas such as the Midwest.
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After considering this subset, we disregarded features that are not relevant or whose data
was missing. There is a difference in the number of distinct healthcare providers, where the
features’ dataset as 15,448 unique NPIs and the referral dataset 15,439 unique NPIs. Only those
physicians that are present in both datasets (15,439) will be used. This resulted in a directed
referral network where each node will be represented by a healthcare expert and the edges will
be their referrals, hence there will be 15,439 nodes and 67,480 edges.

Depending on the business question that each study described before aims to answer,
different features will be curated and explained accordingly. To illustrate the output of the
model, we will use gender as the input feature and visualize the embeddings considering this
attribute. Therefore, to satisfy the requirement for the algorithm to have a numerical input, we
transformed the gender feature Rndrng_Prvdr_Gndr into a binary column.
3.3.Exploratory Data Analysis
3.3.1. Overview of physician’s attributes

Some further analysis was done to help interpret the data, such as calculating the proportion
of male and female users per amount of service. The results revealed that male doctors
outnumbered female doctors by a difference of 75% to 25%. To obtain a general overview of
the doctor's attributes, in the following part we analyzed:

1. Frequency of specialties per primary and secondary care;

2. The secondary care specialties that provided the highest average of services

3. Average services provided by specialty and gender;

4. Number of beneficiaries per specialty;

5. Total submitted charges and total Medicare paid amount by specialty.

Family practice, internal medicine, and general practice are the most frequent primary care
physician in the data set, whereas cardiology, nurse practitioner, and diagnostic radiology are

the specialties with the highest number of appearances. The secondary care specialties with the
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highest average services provided are hematology/oncology followed by medical oncology

(Figure 3.1).
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Figure 3-1. Top 10 specialties ordered by average services provided by secondary care

By observing the top 10 specialties with highest average of services provided by specialty
and gender (Figure 3.2) we can see that females seem to, on average, provide a wider amount
of services. However, we might need to interpret this result cautiously given that the number of

female physicians per specialties is frequently lower, making the average higher.
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Figure 3-2. Average services provided by specialty and gender
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When filtering specialties by the total number of beneficiaries, there seems to be a stronger

demand for diagnostic radiology, cardiology, and pulmonary disease (Figure 3.3).
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Figure 3-3. Number of Beneficiaries per Specialty

Looking closer at the specialties and the finance variables, the top 3 specialties that had the
highest submitted charges, as well as the highest Medicare paid amount were
hematology/oncology, medical oncology and radiation oncology.

3.3.2. Referral Analysis

The referral dataset from 2015 contains the National Provider Identifier (NPI) of the
physician that refers and the physician that receives those referrals. However, to represent the
number of times that this instance occurs between two distinct physicians, the “Shared Count”
column is provided. We calculated that 75% of these connections between physicians have no
more than 248 referrals within the timeframe under study (30 days). The pair of physicians with
the most shared count referrals have 11,085, where the primary care provider is a general
practice physician, and the specialist is a psychiatrist. The second pair had 9,998 referrals shared
from internal medicine to nephrology, and the third pair had 9,863 referrals shared from internal
medicine to pathology. Yet, to look from a more general perspective, we grouped physicians
by specialty, and calculated the average referral count. Some findings include that geriatric
medicine, pediatric medicine, and preventive medicine are among the specialties that make

more referrals. Occupational therapists, hematology, and nurse practitioners are among the
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specialties that receive the most referrals on average. However, given the way that we subset
our dataset, it is important to note that referrals made from Secondary care specialties were not
considered, as well as those made to primary care providers. Lastly, the primary care provider's
gender with the highest referral count was male. On the contrary, the secondary care physician's
gender with most referrals, on average, was female.

3.3.3. Network Analysis

3.3.3.1. Centrality Measures

The centrality measures are also referred to as social network analysis since they are
fundamental in depicting how the graphs work by evaluating the importance of the physicians
on the overall network. Thus, this paper will use degree and eigenvector centralities to study
the doctors’ influence on the rest of the community. Because our network only consists of
primary care referrals to specialists, and all the referrals within secondary care specialists were
excluded, we will not analyze the closeness or betweenness centralities.

Closeness centrality aims to measure how close the nodes are to one another. A node is
deemed key in this scenario if its distances from other nodes are shorter, which means that
doctors may more eagerly refer patients to these nearby nodes than to the ones further away.
However, because we have a directed graph, the only paths that exist contain two nodes — the
primary care provider and the specialist. As a result, there are no distances longer than one
referral in our graph. This impacts directly the insights that we could obtain from the closeness
centralities; thus, we will not consider it.

The betweenness centrality is another well-known centrality metric. This metric, rather than
just counting the number of edges a particular node has, measures how many times a node
appears in the shortest path since a node would only be deemed important in this scenario. This

measure is used to determine who affects the network's flow the most, showing which nodes
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are acting as "bridges" in the process. As mentioned before, because there are no differences
between our shortest paths, this measure would be irrelevant to our network analysis.

For the rest of the analysis, we used networkx library with the following functions:
in_degree_centrality, out_degree_centrality, and eigenvector_centrality.

One of the social network metrics investigated in this research is degree centrality, which
is used to identify the most popular nodes. This centrality purely considers the number of
referrals held by each physician and assigns a significance score to them. Because we are
utilizing a directed graph in this case, it is vital to distinguish between in-degree and out-
degree, and as the names imply, they assess the number of recommendations received by or
supplied by a doctor, respectively. These scores will then translate how many ties there are from
node to node, with higher values corresponding to doctors who have more connections than the
norm. This measure is typically used to detect highly connected nodes as well as the most
popular ones — “individuals who are likely to hold most information or individuals who can

quickly connect with the wider network” (Disney 2022).

—
°
°

Figure 3-4. Nodes and edges from the 97.5th quantile of the top 50 In-Degree Scores (right)
and Out-Degree Scores (left)

Figure 3.4 shows the 97.5th quantile of the top 50 scorers' nodes and edges - this constraint
in the data will be present in the following figures concerning the centrality measures. This
allows us to detect a denser presence of nodes in the center of the plots, most likely the primary

care physicians, and dispersed nodes around, that might represent the secondary care
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physicians. We noticed that the in-degree and out-degree bulk of red dots (top physicians'
scorers) are different, meaning that the physicians with the highest in-degree score will have 0
out-degree scores, and vice-versa. Since the secondary care physicians are the ones that receive
the referral, it would only make sense for them to have the highest in-degree scores; so when
we look at the specialties scorers, we see that the prevalent ones are diagnostic radiology,
cardiology, and pulmonary disease. On the other hand, internal medicine, and family practice
show a clearer commonality on the out-degree top scorers. Finally, most of the greater out-
degree scorers are located in either Orlando, or Winter Park, whereas the in-degree scorers, are
most common in Fort Myers, Panama City, and Tampa.

The eigenvector measure shows the significance of a particular node given its links to other
significant nodes. As a result, it takes into account how many connections a node has overall in
the network as well as how highly rated its neighbors are (meaning, how many connections its
connections have). Therefore, it is clear that doctors with higher eigen scores contribute more
to the network as a whole and have a greater influence on the referral system, and that their
connections likewise have higher scores (since the main high-degree node has a strong
influence on them). Furthermore, this social network measure is excellent for depicting
distances between nodes depending on their similarity, allowing for greater flexibility over how
much effect the features will have when assigning weights. As a result, we used the number of
referrals between each physician pairing as the weights to determine their relationships and

contributions.

Figure 3-5. Nodes and edges from the 97.5th quantile of the Eigenvector Scores
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The doctors with higher scores are dispersed in the graph, as we can observe from the
representation in Figure 3.5 above. The specialties shown in red are the ones that have a bigger
impact on the network and are similar to the in-degree centrality top scorers — diagnostic
radiology, pulmonary disease, and infectious disease, however, the highest scorer is a
nephrologist. In this case, the new NPIs with better ratings have an overall greater number of
female beneficiaries than male beneficiaries. Furthermore, as expected, these specialties with
higher eigenvector scores would have a 0 out-degree score and a higher in-degree score.
3.3.3.2. Shortest Path

For our network analysis, some of the relevant features to calculate will be the average path
length and number of connected components. This allow us to study the graph structure before
we apply our GNN model. The shortest path from node A to node B is defined as the path of
minimal length between these two nodes. Because of our graph structure, we decided to make
our graph undirected for the following part of the analysis since this could provide information
regarding how long the chain of connections is between primary care providers and specialists.

To calculate the shortest paths of a graph, different algorithms may be implemented. We
used the networkx library shortest path function, along with its default method, which
implements Dijkstra’s algorithm (Dijkstra 1959). Similarly, a network's average path length is
the average shortest distance between two nodes of the graph. In other words, the average path
length is the average of the previously mentioned shortest paths of the graph. This algorithm
will consider every node of the graph as a source node. However, because our graph contains
more than one connected component, which will be reviewed in the Connected Components
and Connectivity section, the distance between two nodes from different components will be
infinite and will not be defined. As a result, we calculated the average path length on the largest

connected component. The distance found was 7.58 as the average shortest path length.
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According to Perez and Germon (2016), a low average path length I is where | ~ In n. In
our graph, In n = 9.64. Thus, our average path length is low. This metric is considered a metric
of efficiency regarding how information flows through the network, where a low average path
length indicates information is not spread throughout the network, and a high one represents
that even “outliers” receive information. However, our graph provides more information about
the possibility of physicians knowing one another based on referrals. Another metric used to
evaluate distances in the graph is the diameter, defined as the maximum eccentricity. The
eccentricity is the maximum distance from source node A to all other target nodes B. The
diameter of our network, undirected, is 19. This indicates that there is one chain of connections
where node A and node B have, at least, 18 other physicians that they could potentially reach
in social circumstances. This shows how long the connection is between specialists referred by
the same primary care provider or between those that have referred their patients to the same
specialist. Thus, specialists that share the same primary care providers would be connected by
the primary care provider, and primary care providers that have been referred to the same
specialist would also be connected between them.
3.3.3.3 Connected Components and Connectivity

In a directed graph, we can find either weakly and/or strongly connected components. A
weakly connected component is a subgraph where each node can be reached by another in any
direction, that is, the source node A can reach the target node B, or vice versa, but not
necessarily source node B could reach source node A, or vice versa. Thus, as long as the nodes
are part of a component in any direction, they are part of a weakly connected component of the
graph.

Intuitively, a strongly connected component is a subgraph where every source node A can
reach target node B, but also every source node B can reach target node A. Thus, they are

connected in both directions. It is unlikely, but possible, that a direct graph itself is strongly

26



Mora Labarca, Isabel

connected - meaning the graph has one strongly connected component, conformed by all nodes.
In direct acyclic graphs, there are no strongly connected components, given the nature of their
cycle. Because our data does not contain any edge where a specialist would refer patients to
any physician, our graph would not contain any strongly connected component.

In an undirected graph, a connected component is a subgraph where each node can be
reached by another - they are connected. Hence, a graph where this structure is presented has
only one connected component. However, if there are cases where a pair of connected nodes
cannot be reached by another, then there is more than one connected component within the
network. In real-life networks, it is common to find one considerably big, connected
component, and many other small ones. In our network, we have a total of 188 connected
components, with the largest one having a size of 14,987 nodes - approximately 97% of the
total nodes in the network.
3.3.3.4.Type of Network
3.3.3.4.1. Erdés—Rényi

Comparing the physician’s network to other baseline graph models allows us to infer the
properties of the studied network. We begin by comparing our network to Erdos-Renyi (ER)
random graph model, which possesses properties such as binomial degree distribution, low
variation in node degrees, and low clustering coefficient. The main idea behind the ER model

is that each connection, i.e., edge, is equally likely to be present or absent, regardless of other
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Figure 3-6. The degree distribution of nodes. Degree distribution of physicians’ network
(x axis limited to 70) (left) and degree distribution of ER random network (right)
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edges (Fienberg, Stephen E. 2012). Nevertheless, real-work networks rarely form at random
and usually, the presence or absence of one connection does impact the state of the other.

First, when observing the network degree distribution plot, the shape of the histogram
resembles the power law distribution with an average degree of 9, in contrast to ER graph that
follows a binomial distribution (Figure 3.6). This implies that a small number of doctors give
and receive many more referrals, while the majority of doctors have fewer connections (Figure
3.6). Nevertheless, degrees might follow different types of distribution, which we will test in
the following parts of the paper.

Second, the physician network node degree variance is c. 1.4, which is a low variation of
node degrees. Last, the average clustering coefficient of the physician network is 0; a clustering
coefficient of 1 would mean that all doctors and their neighbors know each other, however,
since our study comprises primary to secondary care referrals, there are no physician
connections that form “triangles”, i.e. physician’s neighbors are connected.

The physician network structure seems to follow the properties of the Erdos Renyi graph
and therefore, it has a random network structure. The power-law degree distribution is a
characteristic of a scale-free structure.
3.3.3.4.2. Scale Free Network Analysis

Scale-free networks are characterized by having a node degree distribution that follows a
power law. That is, networks with a power-law degree distribution will be composed of a
majority of nodes with very few connections (degree), and with only a few nodes that have a
high number of connections - known as hubs. These types of networks have been studied and
real-life examples include the World Wide Web (hereafter, WWW) and the research citation
network. Other social networks are considered to be scale-free as well, but there has been some

debate regarding whether they are truly scale-free (Broido, A. D., & Clauset, A. 2019).
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Barabasi and Albert (1999) studied for the first time the power-law degree distribution in
networks. They argue that the scale-free structure of real-life networks was based on two
distinct characteristics that were being missed by other studies on random networks. These
networks were always considering a fixed number of nodes N for the random graph generator.
As we know, the WWW or the citation network are graphs that grow constantly, a condition of
these types of networks that had not been included within network science studies beforehand.

As mentioned earlier, random graph models assumed that the probability of a node
connecting to another node was independent of the node degree for the graph to be "random".
However, Barabasi and Albert argue that most networks display what is known as preferential
attachment - the phenomenon where nodes would have a higher probability to connect to other
nodes based on their degree. For example, it is common in the research citation network that
papers cite already known and popular papers, usually cited already by many others, rather than
those that are barely known and/or recently published. Similarly, on the WWW, a blog is more

likely to contain hyperlinks to well-known websites rather than less popular ones.
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Figure 3-7. Distribution of Node Linkages. Log-log plot of Physician referral network (right)
and random network (left)

These two distinct characteristics are known as growth and preferential attachment, and the
Barabasi-Albert model displays a scale-free network containing these two characteristics.
For the purposes of our study, we plotted a histogram with the node degree distribution,

along with a log-log plot of the number of nodes by their degree to evaluate whether it follows
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a power-law distribution based on the linearity of the plot. This intuition is based on the idea
that, if the probability P that a node will connect to another one depending on the degree k;
hence Pk, follows a power law, by plotting Pk as a function of degree k on a log-log scale, a
straight line of slope —a should be seen on the plot. While the node degree histogram seems to
follow a power-law distribution, the log-log plot does not, given that there is no straight line as
expected. However, because of the imprecise nature of estimating by visualization, we decided
to implement the python package power law to statistically evaluate whether our distribution
falls under a power law. We compared a random scale-free generated graph by networkx’s
scale_free_graph function with our graph to test if it was considered a power law or exponential
distribution. For this test, the log-likelihood ratio of the two distributions’ fit to the data is
considered. While our graph showed more similarity to a power law distribution, the
significance of this test was not high enough, with a p-value of 0.07. In contrast, the random
scale-free graph showed a significance value of 0.001.

In conclusion, there is debate on whether social networks are truly scale-free, and that might
be the case in ours. This means that while there are very few nodes with many connections and
most nodes with very few connections, our node degree distribution might not be all explained
by a power-law distribution. In other words, the physician referral pattern is not entirely scale-
free.
3.3.3.4.3 Small world

Small-world networks were first designed to address and construct networks akin to real-
world networks. This form of the graph allows non-related physicians to be linked in a social
world setting since the majority of nodes in its graphs are not neighbors but are easily reachable
by a minimal number of hops. The Watts-Strogatz mechanism is the primary process for
constructing small-world networks. The clustering coefficient and the average shortest path

length are the two structural properties considered in this sort of network, with Watts-Strogatz
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arguing that the model should have a high coefficient as well as a short average path. Thus, if
we take one physician as an example, a high average of the clustering coefficient indicates that
its neighbors are connected, implying that its contacts are acquainted with each other.
Chuankai An et al. (2017) in their work emphasize that the small world network "is defined
as a network with greater than expected local connectivity and average path length smaller than
expected in a comparable ER random network". To determine whether this referral system is a
small world network, we can compare the clustering coefficient and the shortest path length of
the data being used with a random Erdos-Renyi graph. To generate the random graph the same
number of nodes as the current network (15,439) and a probability of 0.0006 are used. If we
consider p as the average degree of the physicians in the network and n as the number of nodes,

we can calculate the probability as follows:

After computing both graphs, we notice a significant difference in the clustering coefficient,
with the random graph one being about 0.006 and the referrals network one being 0. The results
found for the shortest path were 7.58 for the random Erdos-Renyi and 2.56 for the patient
referral. Hence, it is possible to say that the network explored in this paper does not present
characteristics of a small world network.

4. Methodology

Given that our goal is to extract the network structure and to explore whether any feature
shows relevance over one another when it comes to patient referrals, we decided to implement
a Graph Neural Network (GNN) unsupervised method to extract node embeddings. In short, a
GNN follows the same steps as a Neural Network, with the exception that each layer uses a
multilayer perceptron (MLP) on each one of the components of a graph. The goal of this process

Is to retrieve a learned node vector, known as node embeddings. Thus, for each node, we have
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a vector with its representation. These layers are then stacked together, following the same
Neural Network structure.

In terms of GNN predictive power, there are three distinct tasks that it can accomplish: node
classification, link prediction, and graph classification. As a regular data classification task, if
we wanted to predict a node label from a graph, this could be accomplished through a GNN. If
needed for the problem, a regression task could also be used by adjusting properly the activation
functions used.

Given that we want to extract meaningful insights that explain the referral patterns from
Medicare patients in the US, we decided to implement a GNN unsupervised algorithm -
GraphSAGE. We are implementing an unsupervised method because we are investigating
whether there are clearly defined physician clusters that might affect the healthcare system's
efficiency. This hypothesis would be confirmed if, after feeding the model, physicians that
have similar embeddings with each other also have similar features.

Thus, we followed some steps to best achieve this project's purpose results. Firstly, we will
define the features that would be used to answer the proposed business question in each specific
question. After understanding the hypothesis and the features choices, we train an unsupervised
GraphSAGE network as a way of obtaining the physicians' network simply through their
features. Afterwards, we train a model to extract node embeddings as a method of capturing
network topology, implying that doctors may be encoded as vectors using similarity.
Furthermore, we reduce node embeddings dimensionality through t-SNE and UMAP to
facilitate the 2D visualization of the patterns on the doctors’ characteristics. The following steps
included finetuning the model to get a perception of the best hyperparameters for it. Finally,
with the k-means algorithm from the sci-kit learn library we defined clusters to extract insight

results for the hypothesis.
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4.1. Feature Selection

As referred above, the paper uses Medicare Physician & Other Practitioners - by Provider
(2015) dataset that contains 73 different physician features to infer any patterns among
connected doctors. Each section dedicated to solving a certain business question employs
features that are suitable to approach the problem. Some of these features in subsequence
sections are not included in the physicians features data set and are obtained from additional
sources which will more deeply explained in the respective sections.

Besides the 30-day referral dataset, section 5, will also make use of the 90-day referrals
time window dataset from the Medicare data, as a resource for the pattern comparison. Features
such as the physician’s specialties and percentages per disease will be key assets to answer this
hypothesis. Section 6 will consider the total charges that the provider submitted for all services,
the Medicare allowed amount for all provider services, and the total amount that Medicare paid
after deductible and coinsurance amounts have been deducted for all the provider's line-item
services (Centers for Medicare & Medicaid Services Data 2020). Moreover, it will factor into
the analysis the average submitted charges per beneficiary, average Medicare paid amount after
deductions, per beneficiary, and average submitted charges per service provided.

The primary goal of Section 7 is to infer how referral patterns are impacted by physician
experience. Thus, it also includes physician experience, which is represented by Provider
Enumeration Date from CMS NPI Files (NP1 files)
4.2.GraphSAGE and Node Embeddings

The GraphSAGE algorithm was introduced by Hamilton, Ying, and Leskovec (2017), and
is considered a distinctive algorithm from the rest of deep-walk-based algorithms because it is
an inductive framework. In other words, it does not only consider the graph structure but is also
capable of learning from rich attribute networks. GraphSAGE generates low-dimensional

representations for each node of the graph, and after training, it can also generate these
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embeddings on not seen data (Leskovec n.d.). As mentioned in the StellarGraph documentation,
GraphSAGE's objective is: "Given a graph, learn embeddings of the nodes using only the graph
structure and the node features, without using any known node class labels” (Node
representation learning with GraphSAGE and UnsupervisedSampler). For the unsupervised
GraphSAGE model, both types of nodes are generated, "positive™ and "negative.” These are
generated based on the random walks that are considered by the algorithm and adjusted by the
user. The two main aspects that would define these random walks are the number of random
walks that the model would learn from each node, and the length of the walk, hence, the number
of "hops" from the root node. Thus, the "positive” nodes are those that co-occur in the same
random walk of the graph, and the "negative" ones are randomly selected from the graph. As a
result, whenever a randomly selected node co-occurs within the same random walk, it is labeled
as positive. This way, the model learns the nodes' information of its attributes and local
neighborhood, retrieving a vector representation of the node characteristics within the graph.
The hyperparameters of the algorithm that we considered for analysis were the number of
random walks, the walk length, the minibatch size, the layer size, and the number of samples
considered for each layer. The extracted embeddings are then plotted with different
visualization techniques discussed in the next subsection.

After training and fitting the model, we generate the mapping of the nodes pairing, meaning
that each physician node was turned into a low-dimensional space, allowing us (when
visualizing) to extract meaningful insights based on their similarities.

4.3. Dimensionality Reduction

Regarding visualizations, before plotting the networks we used both t-SNE and UMAP to
help with the high dimensionality of the data set and to reduce the number of random features
to a 2D array of main variables. The dimensionality reduction is regularly used to better

understand and interpret the data by simplifying it, and given that the data used is multi-
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dimensional, it is wiser to reduce it to a lower dimension, to make possible the visualization
and insights extraction.

The t-SNE algorithm allows to separate data that is nonlinear — cannot be separated by a
straight line — and so it “models the probability distribution of neighbors around each point.”
(Hoare, How t-SNE works and Dimensionality Reduction). As a result, it is an effective tool
for interpreting high-dimensional sets such as this one. This study, on the other hand, leverages
the UMAP technique, which uses the same ideas as t-SNE and is a powerful tool for visualizing
large data sets. They both compute the distances between nodes and their neighbors and ensure
that these distances are similar when the data is changed into a 2D space. In contrast, t-SNE
converts a high-dimensional graph to low-dimensional space, whereas UMAP condenses the
graph, which means that the UMAP tool rather than measuring it point by point, does not make
a thorough estimation of the graph. This is valuable given that it will translate into a more
accurate exhibition of the overall network.

In the end, when plotting both of the tools previously explained, the nodes of the same color
will be expectantly clustered together, indicating a higher similarity of the embeddings.
4.4.Model iteration and Fine Tuning

Even though this research relies on the Unsupervised Sampler for modeling, finetuning its
hyperparameters is still indispensable due to the lack of a target variable. As a consequence,
based on the findings of the first model, the hyperparameters will be manually adjusted to
improve accuracy and reduce loss. Several iterations must be tried and minor adjustments need
to be made to some parameters to better understand their impact on the overall referral network.
However, it is crucial to note that the learning rate will be constant - Adam rate of 1e-3 - as well
as the regularization - L2, and always including a bias term. This L2 regularization is chosen
over L1 regularization because, in this situation, we require a parameter that works with

codependent features rather than performing feature selection.
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The Sigmoid function entails exponential computing, implying that it is more advantageous
for large networks, and because accuracy is the measure of predictions when the true value
equals the predicted, it is expected to be consistently high. The loss function, which accounts
for the sum of all errors produced for each sample, is also supposed to decrease as the binary
accuracy increases. ReL U differs from Sigmoid in that it does not activate all of its neurons at
the same time, making this function less time-demanding and computationally easier.
4.5.Clustering methods

The K-Means was first mentioned by Hugo Steinhaus (1950), which evolved into an
iterative process that is made up of “partitioning a set of n objects into K > 2 clusters, such that
the objects in a cluster are similar to each other and are different from those in other clusters”

(Ortega et al 2019). The steps for the k-means algorithm can be found in Figure 4.1.
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Figure 4-1. K-Means algorithm explained*

LR, Arif. 2020. K-means Clustering Overview. Image. October 4, 2020. Medium. https://medium.com/data-folks-
indonesia/step-by-step-to-understanding-k-means-clustering-and-implementation-with-sklearn-b55803f519d6

36



Mora Labarca, Isabel

This clustering approach is based on a centroid-based algorithm, where the purpose is to
discover data points that are closer together, in this case, to better classify and understand
physicians. Thus, rather than pre-defined categories, K-Means classifies unlabeled data based
on their features. It is crucial to understand what is the ideal number of clusters given the
business problem. This number can be found using the elbow method, which works "as a cutoff
point in mathematical optimization to decide at which point the diminishing returns are no
longer worth the additional cost” (Sharma 2022). Thus, the number of clusters where the elbow
bends is the optimal K. On another note, we can use the silhouette score that accounts for both
inter and intra-cluster distances to evaluate the quality of the clusters created. This score ranges
between -1 and 1, where 1 is the best value, representing that the data points within the cluster
are close to one another and distant from the other clusters, and O indicates that there is an
overlap of the clusters.

Two of the main disadvantages of K-Means clustering are that it is not robust against
outliers given that it is based on the average, a metric highly affected when data contains too
much noise and outliers; and that the center of the cluster does not necessarily represent a real
data point from the dataset. As will be seen in the individual sections, some distributions of the
data used as the input for the model follow right-skewed distribution, where many data points
are closer to 0 and few data points contain high values. This difference is reflected when looking
at the averages vs. the medians of each of the variables in consideration.

As such, some business questions would need to implement a different clustering algorithm
that is more robust to outliers so that the output results are more precise. For this, an option is
the K-Medoids clustering algorithm. This name was first given by Leonard Kaufman and Peter
Rousseeuw through the Partitioning Around Medoids algorithm (Kaufman and Rousseeuw
1990). We will implement K-Medoids by using the sci-kit learn extra cluster library. As

explained in sci-kit learn documentation, “KMedoids tries to minimize the sum of distances
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between each point and the medoid of its cluster. The medoid is a data point (unlike the
centroid) which has the least total distance to the other members of its cluster” (“Clustering
with K-Medoids and Common-Nearest-Neighbors™). Thus, K-Medoids selects a real data point
as the cluster center from the cluster based on who is the closest to the other members of the
shared cluster. This is a particularly useful feature since, in practical terms, this data point
represents the leading characteristics of this cluster and is worth considering for further
investigation.

In terms of the algorithm used to determine cluster assignment, we will consider the default
method from sci-kit learn, the "Alternate Method" (“Clustering with K-Medoids and Common-
Nearest-Neighbors™). The alternate method works as follows. It will initialize with a K number
of medoids, a method that depends on the approach selected in the init parameter (heuristic,
random, or kmedoids++). Then, it will assign each data point to the closest medoid. This is
followed by the update step, where it is reconsidered the medoid of the cluster and selected a
new one. Lastly, this process iterates until there are no more changes regarding what data points
are the medoids or until a user-specified maximum number of iterations is attained.
4.6.Example of Model Output

To get a glimpse of the output achieved through node embedding extraction, purely for the
sake of illustration, we fitted the model with the feature that classified whether the physician
was male or female (model loss: 0.6958, binary accuracy: 0.5593). Reducing the dimensionality
using t-SNE and UMAP allowed us to obtain a visualization of our node embeddings (Figure
4.2). As depicted in Figure 4.2, the red embeddings represent female physicians, and the blue
embedding represents male physicians. At first glance it seems uncomplicated to conclude that
red embeddings cluster on the top left and are closer to each other, indicating that females are
either close to each other within the network or represent similar roles regarding overall graph

structure. To be precise, representing a similar role within the graph structure can be explained
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with a similar example: if doctor A has made a total of 10 referrals, the referrals were made to
5 different doctors, resulting in an average number of referrals per patient of 2, and doctor B
has the same average referral per patient count, then these doctors are said to represent a similar
role within the graph structure. Similarly, blue embeddings cluster together that forces the same
inference about male physicians.

Nevertheless, it is difficult to infer any actual clusters from the node embeddings, therefore,
we use a K-means clustering method that groups or divides the features into clusters and
minimizes cluster variance. With a silhouette score of 0.5, we obtain that our optimal number
of clusters is 2. The proportion of male-to-female physicians was higher in cluster 0 - 90% male
and 10% female. Cluster 1 comprised 52% male and 48% female physicians. Cluster 0 hints

that male physicians in that cluster prefer to refer to male physicians.

TSNE visualization of GraphSAGE embeddings for Physician Referrals dataset UMAP visualization of GraphSAGE embeddings for Physician Referrals dataset
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Figure 4-2. TSNE visualization of GraphSAGE embeddings. Dimensionality reduced using
TSNE (left) and UMAP (right) methods
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5. Exploring the Relationship Between Physician Referral Patterns Primary Care Access
and Healthcare Spending

This section will explore the relationship that exists, if any, between the physicians' referral
network and the CMS corresponding financial data available for 2015. Specifically, we will study the
significance that the referral network embeddings provide us about financial variables between
physicians. Our goal is to understand whether the referral network affects Medicare spending for a
physician's sub-network. Our analysis will consider the total charges submitted by providers for all
services, the Medicare allowed amount for all services, and the total amount that Medicare paid after
deductible and coinsurance amounts have been deducted for all provider's line item services. (Centers
for Medicare & Medicaid Services Data 2020). Moreover, we aggregated some of these features to
provide richer information to our model: average submitted charges and average Medicare paid
amount, per beneficiary; and average submitted charges per service provided.

Furthermore, after extracting the node embeddings from the model, we will use a clustering
technique to analyze features based on each cluster produced. To account for geographic-based price
variations, we will explore the physicians’ Hospital Referral Regions’ (HRRs) spending rates, rural-
urban commuting area (RUCA) codes and healthcare quality measures at the HRR-level. In the
United States, HRRs "represent regional health care markets for tertiary medical care. Each HRR
contains at least one hospital that performs major cardiovascular procedures and neurosurgery"
(Dartmouth Atlas of Health Care n.d., under "Research Methods FAQ"™). RUCA codes "classify U.S.
census tracts using measures of population density, urbanization, and daily commuting” (USDA
Economic Research Service (ERS) 2020). All data used within this analysis is publicly available by
the Dartmouth Atlas of Health Care (DAHC), the CMS and the USDA ERS. Only 2015-level data
was considered for the study to guarantee consistency within the results. The HRR-level data will
serve as a baseline comparison of our results and may provide information regarding these regions'

delimitations and levels of healthcare quality, considering physicians’ referrals in that area. Finally,
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we will test for statistically significant differences across these clusters’ spending and referral-based
variables.

Our motivation to investigate this area arises from the problem of increasing Medicare spending
over the last few years. Medicare accounted for 3% of the federal spending in 1972, while as of now
accounts for 13% of the total. By 2052 Medicare spending could account for 19% of the federal
spending, ceteris paribus (Peter G. Peterson Foundation 2022). Our insights from the physicians'
referral network may provide valuable information for future policymaking regarding Medicare. If
referrals influence Medicare spending, solutions to optimize spending without affecting healthcare
quality should be a priority, such as an Al-based referral system (Han 2018).

5.1. Relevant Work

Previous studies have examined the relationship between Medicare spending and physicians'
referrals through different methods. Recently, Skinner et al. (2022) researched the relationship
between rurality, healthcare spending, and quality. Using the HRRs as a unit of observation, they
concluded that rural areas might have a lower Medicare reimbursement rate because there are fewer
specialists than PC providers. Likewise, the more frequent use of lower-value services and a higher
ratio of SC to PC potentially caused the higher per capita spending in HRRs.

Some studies have explored community detection algorithms to improve healthcare services
based on physicians, hospitals, and patients in the area (Landon et al. 2013; Wang and Wang 2020).
Landon et al. (2013) tried to identify physician communities that could be the basis for defining
Accountable Care Organizations (ACOs), a voluntarily formed group by doctors to attend their
communities in a coordinated manner (CMS 2021). They showed that, for some regions, a physician-
based network would provide better outcomes than hospital-based networks.

Jia et al. (2020) conducted a pilot study in Florida to analyze whether HRRs are still the best unit
to consider in the health markets or if any other delimitations should be made to guarantee better

outcomes. Fisher et al. (2009) investigated the Medicare provider's spending as their key variable to
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increase savings in this area for the federal budget. Fisher’s study shares our motivation in uncovering
local referral patterns that could translate to better policymaking by decreasing Medicare spending
growth without impacting quality. Findings showed that higher-cost areas have more referrals and
use of hospitals, even though the care quality is similar to that in lower-cost areas. Further studies
hypothesize that physicians' decision to refer a patient to a higher-cost provider is possibly influenced
by the physicians' employer, given the rates of vertical integration across hospitals in the U.S. (Whaley
2021)

5.2. Data Collection

This section will overview the data we will use as input for our model and to enrich our analysis.
Three datasets will integrate this part: the referrals dataset within the 30 days, the NPI attributes
dataset, and public research data from the DAHC. For the latest, we are using Medicare
Reimbursements (Appendix, Table 1) , and Primary Care Access and Quality Measures (Appendix,
Table 2), each by HRR and for the year of study, 2015 (Dartmouth Atlas of Healthcare Data 2022).
We used additional supplementary datasets for the crosswalk between the physician's zip code and
HRR (“Dartmouth Atlas of Healthcare Data, “Supplemental Data” 2021). For the primary practice
business location and zip code of each provider, we extracted all the NPIs from the subset of our study
and matched them in the NPPES Data File (CMS 2021, under "Data Dissemination™). From this data,
we included only physicians that had a matching zip code to a Florida HRR. For the referrals' dataset
already mentioned under Section 3, we included whether each referral was within the HRR as a binary
column. This could provide insights to evaluate the relevancy of location for referrals.

Regarding the Medicare Reimbursements rates by HRR, we obtained the number of total
Medicare enrollees for that year; and the spending for total, hospital % skilled nursing facility,
physician, outpatient facility, home health agency, hospice, and durable medical equipment
reimbursements, all per enrollee for 2015. We considered only price, age, sex & race-adjusted rates,

given that prices of areas such as Miami may differ from other areas in the state. Because Medicare
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spending varies across regions (Gottlieb et al 2010), using the latter would guarantee a more precise
analysis. As referred by the DAHC, "Among the 306 hospital referral regions in the United States,
price-adjusted Medicare reimbursements varied twofold in 2016, from about $7,400 per enrollee in
the lowest spending region to more than $13,000 in the highest spending region." (Dartmouth Atlas
of Health Care). This standardization factors in the price and wage variations so that any disparities
we observe are not due to region differences. Moreover, it would help to discern if price differences
are observed due to the volume of services requested. Further information on the standardization
process is available in their technical report (Austin et al 2020).

We also collected Primary Care Access and Quality measures to address quality against the
spending of a specific region and cluster of physicians. This would enrich our analysis when
investigating the reason behind higher Medicare spending in certain areas. These metrics include the
number of diabetic patients per region, average percentages of diabetes screening exams such as eye
examination, hemoglobin tests, and blood lipid tests annually, leg amputations per 1,000 enrollees,
and the average percent of female Medicare enrollees aged 67-69 having at least one mammogram
over two years. These are considered measures to evaluate primary care quality per region, given that
their frequency may help avoid more serious and/or chronic illnesses. Furthermore, for each HRR,
we assigned the proportion of rural areas by total zip codes. We first extracted each RUCA code by
zip code and matched it with the HRR. Because the RUCA codes are from 1 to 10, with 1, 2, and 3
being urban, and the rest rural, we assigned the rural proportion based on how many zip codes from
the total per HRR were rural (Appendix, fig.1).

From the NPI attributes dataset, key financial attributes are total submitted charges, total Medicare
allowed amount, and total Medicare paid amount. We will also use total beneficiaries and total
services provided. For PC and SC providers, we calculated the average number of referrals made and
received, respectively. We also added the number of unique physicians with whom providers had a

referral relationship; and number of out-of-HRR referrals based on the providers' practice location.
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5.3. Exploratory Data Analysis

All financial variables showed a right-skewed distribution, with many data points close to smaller
values and a tail distribution with few values with high amounts (Appendix, Figure 2). More details
can be found in Table 5.1. For example, the average submitted charges per patient, for each physician,
can range from $13 to $45,804, where the median does not reach $1,000.

Table 5-1. Summary Statistics of Financial Variables

Descriptive Statistics

CMS NPI Features mean std min 25% median 75% max

Total Medicare Payment Amount 285,245 464,491 277 95310 171,033 302,726 10,193,799
Total Submitted Charges 874,311 1,518,662 684 261,552 497,023 924,841 31,606,718
Total Services 10,373 40,712 12 1,419 2,890 6,130 1,572,970

Total Beneficiaries 886 1,024 11 348 585 999 20,414

Aggregated Features

Avg Submitted Charges per Patient 1,213 1,841 13 509 797 1,258 45,804
Avg Medicare Payment per Patient 406 518 6 184 290 440 11,284
Avg Submitted Charges per Service 223 272 3 97 153 235 6426

Regarding within and out-of-HRR referrals, most physicians have within-HRR referrals as
expected. Half of the primary care providers send their patients to a range from 1 to 7 unique
specialists within 30 days. In contrast, half of the specialists receive their patients from 1 to 3 primary
care providers (Table 5-2). This could indicate either missing primary care physicians in the area or

some unknown bias in the referral system.

Table 5-2 Summary Statistics of Referral-Based Variables

Descriptive Statistics

CMS NPI Features count mean  std min  25% 50% 75% max
Unique # of specialists that PCPs sen_d their 5318 13 16 1 2 7 18 188
patients to
Unique # of PCPs that specialists receive their 10121 7 9 1 1 3 8 81
patients from
Referrals within HRR 15439 7 11 0 1 3 9 182
Referrals out of HRR 15439 2 4 0 0 0 1 81

5.4. Research Question and Hypothesis
Our key concern is to investigate if there is any relationship between referrals and Medicare

spending. Can we detect if the physician referral network explains part of the price variations across
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hospital referral regions after accounting for age, sex, race, and price; with the aid of node
embeddings? Are there any biases in the referral network that could lead to higher Medicare spending,
avoidable otherwise? These questions could help answer trivial policymaking issues and save federal
budget money with the aid of Artificial Intelligence. If the current manual referral decision is biased
towards higher spending, lack of efficiency across physicians, or lesser healthcare quality, what
impact could an Al-based automatized referral process have on the healthcare system efficiency and
U.S. federal budget? While this question remains to be answered, it represents our motivation to
pursue this investigation. Hence, we hypothesize that a relationship exists between the physicians'
referral network patterns and Medicare spending. This study does not aim to exhibit what type of
relationship, if any, that might be. Given the unsupervised nature of the algorithms we use, we will
attempt to find patterns that could plausibly explain higher Medicare costs and evaluate whether
physicians with certain referral patterns relate to specific levels of healthcare quality and spending.
5.5. Model Results

Regarding the GNN, we limited testing the walk length from 2 to 5 since a longer walk would
probably start losing information about the local neighborhood and obtaining more from the overall
network, which may result in more similar embeddings. We selected 2 as number of walks and 5 as
our walk length. We used two layers with a size of 50 each, and a dropout rate of 0.1. The sigmoid
activation function performed best for our model when compared to ReLu. As node attributes, we
considered average submitted charges per service, total Medicare paid amount and average submitted
charges per patient. Since we use an unsupervised algorithm, we cannot conclude whether a variable
is dependent or independent. Hence, our goal is limited to understand what the embeddings
communicate about the relationship between referral patterns and financial features in Florida. After
hyperparameter tuning, we selected the parameters mentioned and obtained a GNN binary accuracy

of 0.6242 and a binary cross-entropy loss of 0.6480 after training for 5 epochs.
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Figure 5-1. Node embeddings visualization using TSNE (left) and UMAP (right), where yellow
represents the top 10% of physicians with highest average submitted charges per services.
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Figure 5-2. Node embeddings visualization using TSNE (left) and UMAP (right), where blue
represents “Cluster 0” and coral represents “Cluster 17 as labeled by K-Medoids clustering.

To get a grasp of our embeddings, we visualized them by reducing dimensionality through T-
SNE and UMAP. From a vector of size 50 we reduced to size 2, and plotted the new two-dimensional
data on a scatterplot. Additionally, we added average submitted services as color, with yellow as top
10%, purple the lowest 10%, and green the remaining data points in between. (Figure 5-1)

Concerning the clustering results, we selected K of 2 for the K-Medoids clustering algorithm.
Given the skewed distribution of the financial data, we decided that K-Medoids would guarantee
better performance because of its robustness against outliers. To decide on the number of clusters, we
calculated the inertias and silhouette scores for K ranging from 2 to 20 given that there are 18 HRRs
in Florida is 18, and clusters formed based on these regions was possible. Yet, based on our business

understanding, we suspect that a K of 2 or 3 may group physicians according to high, low and medium
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Total Medicare Payment Amount for each Provider, by Cluster Average Submitted Charges per Service provided, by Cluster
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Figure 5-3. Boxplot distributions of Average Submitted Charges per Service and Total
Medicare Payment Amount each Provider, by Cluster
(outliers were excluded from the results)

charges and/or Medicare payment, with this being also suggested by the two-dimensional embeddings
visualization (Figure 5.1) The average silhouette score of our results was 0.63 (Appendix, fig 3), with
56 % of physicians assigned to cluster 0 and 44 % to cluster 1. We suspected that 2 clusters may
represent those with higher submitted charges but not necessarily higher Medicare payments, against
those with lower submitted charges but higher Medicare coverage. This might result from physicians'
specialties and services. We also contemplated a K of 3, yet the drop in the silhouette score was
significant enough for us to choose K of 2 instead. We believe this way our analysis would be more
precise since clusters are better defined. Two-dimensional node embeddings were plotted again,
coloring by cluster label (Figure 5.2)

5.6. Results Analysis

We plotted distributions for the average submitted charges per service (fig. 5-3, right) and per patient
by cluster (Appendix, fig. 5); we conclude they are lower in cluster 0. However, the total Medicare
payment amount median and maximum values are higher for cluster 0 (fig. 5-3, left). It seems that
physicians in cluster O submit higher charges than physicians in cluster 1 even though Medicare
payment is lower. Furthermore, by observing the distributions plotted as histograms in log-scale (fig.
5-4; Appendix, fig 4) we can conclude that both averages submitted charges per patient and service

from cluster 0 seem shifted to the left when compared to those distributions from cluster 1.
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However, the total Medicare payment seems shifted to the right for cluster 0 when compared to
cluster 1. Thus, there is a higher gap between submitted charges and Medicare coverage for those
patients seeing physicians in cluster O than in cluster 1. These findings may occur if primary care
physicians were clustered in cluster 0 and specialists in cluster 1. Nonetheless, in cluster 1 we have a
total of 38.7 % of primary care providers; in cluster 0, 31 %. Fig. 5-5 provides a distribution count.
The top specialties in both clusters seem to have a similar proportion, making it harder to state that
one cluster represents "more expensive” or "less urgent” specialties than the other when trying to
discover the reasoning behind the financial differences found. Table 3 from Appendix provides the %

of specialties per cluster, as well as Gender proportions per cluster, which are also similar.

Log-scale Histogram: Total Medicare Payment Amount, by Cluster Log-scale Histogram: Average Submitted Charges per Service Provided, by Cluster
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Figure 5-4. Log-scale histograms for Total Medicare Payment Amount and Average
Submitted Charges per Service provided, by cluster.

Other main factor that may explain this discrepancy is rurality. Possibly, Medicare expenses are
higher in urban areas. As expected, cluster 1 has 3% of physicians from rural areas, while cluster 0
only has 0.9% (Appendix, fig. 6, 7 and 8.) Since the majority of physicians are from urban areas
(approximately 98%), it is challenging to state if this is a significant difference. Hence, we need to
carefully interpret the results, given that other variables that are not being held equal may interfere.
Additionally, we ought to look at patients and services in each cluster, to determine if the volume of
these are different. Log-scale histogram shows cluster O shifted to the right, meaning it is the cluster
with higher volume of services and patients (Appendix, fig. 9). This may explain why it is the cluster

with higher total Medicare payment amount.
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Figure 5-6. Percentage of Physicians for that region
that were assigned to cluster 1

Given that the only available data at the geographic level was by HRR, we will analyze whether

there is any relationship between each HRR Medicare reimbursement rate, primary care access, and

quality measures, considering the clusters found and the HRR where these physicians work. After

calculating the clusters' proportions within each HRR, the two most significant regions were Miami,

with 95.2% of physicians found in cluster 1; and Ocala, with 89.2% of physicians found in cluster O

(fig. 5-6). Concerning total Medicare reimbursements per enrollee, adjusted as explained under

Section 5.2, Miami receives close to $13,000 while Ocala receives around $10,000. However,

physician reimbursements per enrollee are not very different between these regions. (Table 5-3)

Table 5-3. Price, age, sex & race-adjusted Medicare reimbursement rates 2015 Miami &

Ocala
HRR City

Medicare Reimbursement Rates 2015 (Price, age, sex & race-adjusted) Miami Ocala
Medicare enrollees 145,033 104,695
Total Medicare reimbursements per enrollee (Parts A and B) 13,109.2 10,236.6
Hospital & skilled nursing facility reimbursements per enrollee 5,191.65 3,993.02
Physician reimbursements per enrollee 3,701.58 3,915.66
Outpatient facility reimbursements per enrollee 1,556.16 1,118.49
Home health agency reimbursements per enrollee 1,593.65 615.65
Hospice reimbursements per enrollee 568.85 366.82
Durable medical equipment reimbursements per enrollee 211.54 208.39

Related to the quality measures, it appears thar Ocala performs better overall, with higher

percentages of diabetes-related tests, less percentage of leg amputations and higher percentage of

older females having at least one mammogram every 2 years (Table 5-4). Hence, even though Miami

has a higher total Medicare reimbursement per enrollee, this does not seem to translate into higher

healthcare quality. Miami contains 95% of physicians from cluster 1. On average, per service and
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patient, those physicians submit higher amounts of charges, but total Medicare payment is lower. Yet,
the average Medicare payment per patient has the same median for these two clusters. If physicians
are not reimbursed more in one region, Miami has a higher reimbursement rate, physicians that charge
more, and apparent lower quality care, what explains either the lower quality or the higher submitted
charges in Miami against Ocala? In contrast, Ocala contains a majority of physicians from cluster O,
those that submit fewer charges. Even though Ocala receives fewer Medicare reimbursements per
enrollee than when compared to Miami, our analysis suggests that it performs better in terms of
primary care access and quality. Even more intriguing, Miami has a total of 4.2 primary care providers
per 1,000 enrollees; Ocala only has 1.6.

Table 5-4. Primary Care Access and Quality Measures for Medicare Enrollees, 2015 (Miami

& Ocala)
HRR name
Primary Care Access and Quality Measures Miami Ocala
Average annual % of diabetic Medicare enrollees age 65-75 having hemoglobin Alc test 85.91 88.9
Average annual % of diabetic Medicare enrollees age 65-75 having eye examination 64.27 72.55
Average annual % of diabetic Medicare enrollees age 65-75 having blood lipids (LDL-C) test 86.04 89.37
Average % of female Medicare enrollees age 67-69 having at least one mammogram over a two- 56.75 75.22
year period ) )
Leg amputations per 1,000 Medicare enrollees 0.69 0.46
Total Mortality: ASR-adjusted % of deaths among Medicare enrollees 35 4.06
Primary care providers by 1,000 Medicare enrollees 4.25 1.64
Female Medicare enrollees % aged 67-69 7.7 8.9
Diabetic Medicare enrollees % aged 65-75 10.56 11.19
Rural zip codes % 7.36 6.06
Table 5-5. Referral Measures by Cluster
Cluster Label
Cluster 0 Cluster 1

Referral-Based Metrics M8 50% 75% max % 500 75%  max
Unl_que # of specialists that PCPs send their 15.4 9 29 188 994 5 14 114
patients to
Unl_que #_ of PCPs that specialists receive 753 4 10 81 543 2 6 66
their patients from
Referrals within HRR 8.25 3 11 182 5.87 2 7 104
Referrals out of HRR 1.73 0 1 81 1.31 0 1 59

For referral-related patterns found in each cluster, the unique number of physicians that each
cluster member sent/received their patients to/from within 30 days, on average, is higher in cluster O.
Within this cluster, PCPs send patients to 15.4 unique specialists, and specialists receive referred

patients from 7.5 different PCPs, on average (Table 5-5). Thus, it appears that cluster O interacts in a
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more widespread manner than cluster 1.
Table 5-6. Results and Statistical Significance

Variable Cluster 0 Cluster 1

Average submitted charges per service

Average submitted charges per patient Lower Higher *
Total Medicare payment amount Higher @ Lower?
Primary Care Providers 31 % 38.7 %
Physicians from rural areas 0.9% 3%
HRR with most physicians from this cluster Ocala (89.2%) Miami (95.2%)
Unique physicians interacted with Higher @ Lower @
Patient referrals Lower @ Higher @
Proportion of referrals out of HRR Lower @ Higher @
Average Medicare payment amount per patient Not different P

aThe results are significant at a significance level of 0.01 determined by Mann-Whitney U Test
°Even though the Total Medicare Payment Amount was found to be significant, after accounting for total patients and considering the
average, difference was not statistically significant (p-value = 0.08)

To conclude, the implementation of Graph Neural Networks and K-Medoids clustering led us to

discern differences between healthcare providers and analyze their relationship with other
demographic measures. Cluster 0 physicians showed lower submitted charges per patient/service, and
fewer referrals overall and out of HRR. Yet, they interacted with more physicians; thus, their network
was wider. In contrast, cluster 1 physicians showed higher submitted charges per patient/service, and
more referrals overall and out-of-HRR, yet they interact with a smaller range of physicians; thus, their
physician network was narrower. The most representative region of Cluster 0 was Ocala; and of
Cluster 1, was Miami. Ocala's total reimbursements and most of the reimbursements' subcategories
were lower than those in Miami; however, healthcare quality metrics considered for our study were
overall lower for Miami —the HRR with 95 % of its physicians from cluster 1. Based on our analysis,
we conclude that cluster 1 physicians seem less efficient than those from cluster 0, and one of the
reasons could be that their network is smaller. Table 5-6 shows a summary of the results found and
their statistical significance. Given the absence of normality in our data, we implemented the Mann-
Whitney U test in each of the variables of the table to compare across clusters. Many variables may
interact with these results that were not considered for this analysis, such as total population, economy,
and education rates per region; physicians' employees; hospitals' management; among others. Hence,

results should be interpreted cautiously.
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6. Discussion

Given that referral is a human-based decision, our work is motivated by exploring if there
are any biases affecting them. Physician referrals that are unnecessarily burdensome affect the
efficiency and cost of the healthcare system. Our research analyzes these overlooked problems.

In this study we dissected the physician referral network for 2015 from Florida. In Section
5, we analyze different referral periods to uncover whether there are any significant differences
when considering specialties. Our belief is that there might be differences in specialists
collaboration in different timeframes, since there might be changes in the healthcare system
that our data cannot control for. Yet, it is also possible that healthcare specialists have different
patterns of collaboration based on their area of expertise explaining specialty-based findings.
Additionally, chronic diseases may affect physician collaboration, since long-term medical
conditions require constant check-ups. Thus, various healthcare specialists may require to
cooperate in a way that is unique for patients with these type of diseases. For Section 6 we
considered multiple financial variables from the physicians, such as submitted charges per
patient and Medicare payments. Besides, we factored into this analysis the Medicare
reimbursement rates, as well as PC access and quality measures for each HRR, considering that
demographic factors are likely to intervene. The motivation was to uncover if any relationship
exists between physician referrals and Medicare spending. Findings showed that physician
submitted charges and their referral patterns are related to Medicare spending, PC access and
quality measures of the region. However, given the unsupervised nature of our study, we are
not able to conclude in what way variables affect one another. For Section 7, we explore the
relationship between experience and physician referral patterns. Understanding this relationship
is useful in identifying barriers to establish effective referrals and collaboration between
physicians. Experienced physicians are responsible for passing information and practice

experience to their younger counterparts, however, they might prefer to refer to an experienced
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specialist because the latter may have more experienced or an established relationship that eases
collaboration. Policymakers, educators, and healthcare organizations may find this information
to be useful in developing plans and solutions to help doctors raise the standard of care and
identify possible disparities in the healthcare system.

Concerning limitations, our work was based on the referral dataset from 2015 based on
Medicare claims. As a result, physicians that were involved in the study were Medicare
participants with claims from Medicare enrollees, and do not represent the overall population.
Additionally, we acknowledge that each state may behave differently and results may not be
applicable to a national level. Moreover, the number of referrals considered for the analysis
were based on the assumption that if a patient visits two providers within our period of study,
it would count as referral. This issue arises from the inability to disclaim patient records.
Moreover, HRR-level rates may be too broad of a metric to understand primary care access and
healthcare quality, with the possibility that more local metrics would add precision to our
analysis. Similarly, factors such as education, race, population levels and income specific to the
area of study have not been included.

Since we were limited regarding computing processing power, future work with appropriate
equipment should explore the algorithms considered and reach a solution close to optimal.
Further areas could be integrated into the study, especially states that are markedly different
with one another. Additionally, access to patient claims data would provide more precision into
the analysis. Regarding GNNSs, a comparison of performance across other GNNs such as
attri2vec, node2vec (etc.) would provide more insights and robustness to our findings.

Overall, the paper provides useful insights for healthcare organizations to improve
collaboration between physicians and develop strategies to improve patient care. By better
understanding referral practices of primary care specialists, organizations can improve

coordination of care.
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Appendix

Table 1. Selected Medicare Reimbursement Rates by Florida HRR. Data from Dartmouth

Atlas of Healthcare, 2015, Price, age, sex and race adjusted (“Dartmouth Atlas of Healthcare

Data 2022”)
Total .
Medicar Hospltal .. Outpatie Home Dura}ble
& skilled Physicia . medical
e nursin n nt health Hospice equipme
Medicare  reimburs Sing . facility agency  reimbur auip
HRR facility  reimbur X : nt
HRR name  enrollees ements ; reimburs reimburs sements .
# reimburs sements reimburs
(2015) per ements ements per
enrollee ements ber per per enrollee ements
per enrollee per
(Parts A enrollee  enrollee
enrollee enrollee
and B)
115 Bradenton 39,678.00 10,544.49 4,212.99 3,902.24 1,172.71 805.97 271.84 174.85
116 Clearwater 52,103.00 11,331.01 4,575.79 3,868.90 1,337.17 976.96 342.69 217.50
118 Fort 270,366.00 11,515.69 4,276.00 4,269.25 1,486.57 912.36 385.76 191.12
Lauderdale
119 Fort Myers ~ 192,018.00 9,980.16 3,672.06 4,002.06 1,098.89 625.67 345.11 216.44
120 Gainesville  63,302.00 10,328.01 4,553.13 3,177.88 1,196.98 748.38 452.12 212.59
122 Hudson 45,070.00 11,494.79 5,079.43 3,999.53  999.25 932.71 263.64 209.79
123 | Jacksonville 159,629.00 11,143.78 4,599.15 3,568.60 1,554.04 709.42 495,72 225.16
124 Lakeland 29,141.00 11,032.98 4,831.43 3,468.60 1,193.59 889.65 425.65 211.94
127 Miami 145,033.00 13,109.15 5,191.65 3,701.58 1,556.16 1,593.65 568.85 211.54
129 Ocala 104,695.00 10,236.63 3,993.02 3,915.66 1,118.49 615.65 366.82 208.39
130 Orlando 354,310.00 11,017.52 4,600.60 3,590.60 1,372.76 781.06 441.48 226.26
131 Ormond 52,061.00 10,043.62 3,773.12 3,210.42 1,533.12 773.86 588.84 171.31
Beach
133 | PanamaCity  27,363.00 11,393.02 5,122.49 3,539.09 1,343.43 612.58 497.88 287.24
134 Pensacola 93,5651.00 10,448.59 4,313.57 2,902.79 1,809.99 716.57 485.91 231.76
137 Sarasota 90,707.00 9,645.26 3,489.95 3,847.34 1,217.29 685.47 234.91 172.09
139 St. 37,395.00 11,662.96 5171.11 3,797.55 1,278.71 934.37 275.82 199.04
Petersburg
140 | Tallahassee  62,676.00 9,944.33 4,416.51 2,690.74 1,630.85 493.29 493.38 223.01
141 Tampa 90,046.00 11,766.31 5,037.77 3,691.05 1,289.53 1,107.03  404.33 218.04

Source: Dartmouth Atlas Data. “Medicare Reimbursements” By 2015, 100% Samples.
https://data.dartmouthatlas.org/medicare-reimbursements/
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Table 2. Selected Primary Care Access and Quality Measures by Florida HRR. Data from

Dartmouth Atlas of Healthcare, 2015, Price, age, sex and race adjusted (“Dartmouth Atlas of

Healthcare Data 2022”)
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115 L 3641 86.18511 71.51881 81.79072 3770 69.62865 32010.8 -0.624 46.778
Bradenton
116 FL- 4335 87.797 69.68858 87.56632 4229 68.40861 42957.8 -0.583 52.688
Clearwater
118 L R 21653 87.11033 71.14026 86.09431 21357 69.37772 223113.8 0.294 49.475
Lauderdale
119 Fh';yifs” 17568  87.67646 71.67008 87.10155 17416 7506316 1537013 0492 42758
120 GairII:eLS;/ille 7573 84.68242 65.53545 78.87231 5840 62.44863 51914.3 0.685 70.686
122 FL-Hudson 5051 87.13126 68.3429 87.48763 3764 69.20829 35858.3 -0.602 64.64
123 FL- . 20066 84.55597 65.20482 81.40138 16386 65.50104 130293 0.574 57.867
Jacksonville

124 | FL-Lakeland 3517 87.26187  68.89394  86.80694 2468 66.97731 23868 -0.723  70.332
127 FL-Miami 15311 85.91209 64.26752  86.04271 11166  56.75264 125793 0.687 64.498
129 FL-Ocala 11713  88.90122  72.55187  89.37078 9315 75.22276 81975.8 0.464 45.505
130 | FL-Orlando 40143 86.46588 67.17734  86.21927 31326 67.15508  288960.8 0.579 56.699

131 | FLOMOND 5311 g783657 7068349 8666018 4756  70.94197 419108 035 43056
133 FL‘E?tr;ama 3471  79.48718  66.69548  76.37568 2505  58.84393 21699  -0.726  62.098

134 | FL-Pensacola 11417  81.06333  65.73531  77.60357 9207 62.32215 74656.5 0.608 59.604
137 | FL-Sarasota 6567 86.91945  74.43277  84.11756 7664 74.43894 71592 0.337 32.573

139 FL-St. 3258 86.00368 67.24985  83.45611 3156 63.75158 31374 -0.604  57.236
Petersburg

140 L 7972 84.20723  62.20522  80.55695 5919 62.83156 51876.8 0.633 58.739
Tallahassee

141 FL-Tampa 10295  84.56532 64.5459 83.38028 8313 63.27439 75918.8 0.534 60.444

Source: Dartmouth Atlas Data. “Selected Primary Care Access and Quality Measures” for
2015, 100% Samples. https://data.dartmouthatlas.org/primary-care/
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Figure 1. Rural Zip Codes % per HRR
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Figure 2. Exploratory Data Analysis for Section 6: Variables Distributions. All data (left),

limited x-axis (right)
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Table 3. Gender and Top 5 Specialties Distribution, by Cluster

Cluster Label

Variable Cluster 0 Cluster 1
Gender
Male (%) 76.64 72.95
Female (%) 23.36 27.05
Top 5 Specialties
Internal Medicine (%) 19.95 25.53
Family Practice (%) 9.97 10.44
Cardiology (%) 7.87 6.55
Diagnostic Radiology (%) 6.93 5.44
Nurse Practitioner (%) 6.01 7.3

Figure 4. Log-scale histogram of Average Submitted Charges per Patient for each cluster

Log-scale Histogram: Average Submitted Charges per Patient, by Cluster
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Figure 5. Average Submitted Charges per patient, Boxplot distribution for each cluster without

outliers
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Figures 6 and 7. Providers’ Count for each RUCA code, by cluster (left), Providers’ Count for

each Rural RUCA code, by cluster (right)
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Figure 8. Providers’ Count by RUCA rurality category

Providers' Count by RUCA Overall Category and Cluster
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Figure 9. Log-scale histogram for Total Services per Physician by Cluster (left) and Total

Patients per Physician by Cluster (right)
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