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Abstract 

The healthcare referral system affects all points of the healthcare ecosystem – access to 

care, patient satisfaction, physician utilization and healthcare costs. The state of these variables 

plays a critical role in determining healthcare efficiency. In this paper we dissect the medical 

referrals from primary to secondary care in Florida in 2015 and tackle them from three 

perspectives – influence of physician experience in referral choice, relationship between 

physician referral choice and Medicare spending, and pattern detection given different referral 

windows. To accomplish our goal of identifying patterns in primary to secondary referral 

mechanisms, we use Graph Neural Networks (GNN) unsupervised model to learn the vectoral 

representation of our physician nodes and their properties in the network. This work provides 

new discoveries on factors that influence the referral patterns and can be used to make better 

decisions when aiming to improve the efficiency of referrals.  
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1. Introduction 

For as long as humankind exists, people have been highly focused on enhancing the quality 

of life and increasing life expectancy by improving the quality of healthcare services, meaning 

“any services provided by a healthcare professional, or by any individual working under the 

supervision of a health care professional, that relate to— (A) the diagnosis, prevention, or 

treatment of any human disease or impairment; or (B) the assessment or care of the health of 

human beings.” (Legal Information Institute n.d.). 

According to the World Health Organization (hereafter, WHO), to attain quality healthcare, 

the services must “reduce waiting times and harmful delays”, “provide care that does not vary 

in geographic location”, and “maximize the benefits of available resources and avoid waste” 

(WHO n.d.). Thus, the referral system is one of the most important pillars in the healthcare 

service chain that determines whether these aspects are implemented. 

The healthcare system is built in a way to encourage beneficiaries to first reach out to 

primary care providers and then, if needed, seek out specialist care, in this way maintaining 

lower costs for the patients. The conventional paper-based referral systems are designed to 

optimize the doctor's workload, maintain enough time to address patient problems, and connect 

the patient to a specialist that is best equipped to approach his needs on time. Through GNN 

and clustering, our results showed that lower submitted charges are related to a higher number 

of interactions with different physicians, thus with a wider network. Furthermore, the region 

that was more representative of this cluster showed lower healthcare spending and higher care 

quality measures. In conclusion, it appears that higher quality, lower submitted charges and 

lower healthcare spending are related to having a wider network.  

Regretfully, the real-world referral system bypasses the optimal scenario, with certain 

physicians being overthrown by too many patients, and having little time to address their needs, 

resulting in untimely and inefficient care. A crucial aspect in the referral system and for primary 
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care providers is the possibility that they disregard the staff’s availability and, instead, refer the 

patient to a specialist that they are familiar with. We believe manual-based referrals may be 

prone to biases, and through this work project we will analyze this hypothesis by considering 

the healthcare outcomes and physicians’ referrals. Given that physicians seem to make more 

referrals to physicians of similar experience level, the experience seems to influence physician 

referral choice. Nevertheless, the extent to which experience has an impact is unclear, because, 

given information of experience, the extracted embeddings do not seem to have a clear 

structure. 

Physician cooperation is the practice of doctors working together to offer the best possible 

treatment for their patients. This can take numerous forms, such as consulting with other doctors 

on a case, exchanging information and skills, or collaborating on research. Collaboration is an 

important component of the medical sector because it allows doctors to combine their talents 

and knowledge to deliver the best possible treatment for their patients. This physician 

collaboration can take place both in the short and long term. In the short term, doctors may 

collaborate on a specific case or patient, working together to diagnose and treat a particular 

medical condition, thus it is important. Our results depict the existence of pattern differences 

when comparing 30-day referrals and 90-day referrals. 

This work project is structured as follows: Section 2 consists of a literature review regarding 

previous studies on the topic. Section 3 will provide details on the data considered for this 

research. Section 4 will specify the methodology followed by this study. The following sections 

focus on addressing business questions. Section 5 will compare the patterns between different 

referrals windows given physician specialties. Section 6 will attempt to explain the relationship 

between Medicare spending, primary care quality and physician referrals. Section 7 will aim to 

infer the experience significance in primary care physician referral choice. Finally, sections 8 

and 9 will provide final remarks, conclusion and discussion.  
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2. Literature Review  

2.1 Previous work on healthcare referrals 

According to Md Abu Bashar et al. (2019), referrals in healthcare is an ever-changing 

process in which a healthcare representative, driven by a lack of resources such as skills, passes 

on the management of a certain clinical condition to a better-equipped healthcare worker. The 

mentioned referral process, oftentimes held as a measure to determine the performance of the 

health system, is deemed effective when it is constructed to ensure that individuals receive the 

best possible care and that all levels of health care maintain a close relationship (Prof. Ali 

Akbari-Sari 2021).   

Beyond theoretical definitions of how a sound healthcare system is supposed to function, 

society is struck with grim health statistics. According to 2020 Health OECD data, the United 

States had 238 deaths per 100,000 thousand population that could have been avoided if the 

patient had received proper care. Behind these numbers lie overworked and exhausted doctors 

and patients experiencing long waits resulting in curable diseases becoming untreatable. All 

these factors are a result of a faulty functioning referral system and can be tuned to best serve 

the giving and receiving ends of healthcare services.   

The basis of this work is to understand the driving forces of the referral system by examining 

previous research, conducting novel analysis to obtain insights, and be able to provide 

competent recommendations on how this imperative process could be improved to optimize 

healthcare operations.  

A handful of research has been conducted to examine the United States referral system and 

the components that influence it. Chuankai An et al. (2017) in their work emphasize the 

importance of a well-designed referral system for resources to flow efficiently in the healthcare 

ecosystem. The author highlights three causes driving primary care doctors to refer a patient to 

a specialist, which, sub sequentially, determine the quality and price of care: “(1) seeking advice 
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on a diagnosis or treatment (52.1%), (2) requesting surgical management (37.8%), and (3) 

asking the specialist to directly manage the patient (25.1%)” (Chuankai An et al. 2017, 2). 

Employing the 2009 – 2015 data from Medicare, the authors measure their network structure 

by comparing it to three traditional baseline models: Erdos-Renyi (ER) random network (the 

null model),  small-world network characterized by a higher clustering coefficient and network 

homophily,  and core-periphery structure (measured using the Gini coefficient) that contains a 

“core” of closely connected nodes and a “periphery”, which includes vertices linked loosely to 

the core and one another. The authors found that the physician’s networks exhibit both, core-

periphery and small network structures; the latter suggests that doctor networks are suitable for 

spreading innovations and passing on knowledge and information.  

Conventionally social networks unveil the so-called friendship paradox, which implies that 

people are more likely to form friendships with individuals that are already friends with more 

people. These networks seem to follow a power-degree distribution, which means that some 

individuals are “hubs” of the network and have a vast number of connections, while most 

individuals in the network have very few connections. Intuitively, the doctor’s network could 

adhere to a similar structure, as there might be physicians that are in a sense more “popular” 

and, hence, receive and make more referrals. Chuankai An et al. (2017) found that indeed the 

doctor’s network follows a power law, with an outdegree distribution having a more robust 

inclination than the indegree, meaning that certain doctors conduct more referrals than others.   

The inclination of some doctors to conduct more referrals is a key factor to understand. A 

study by Peter Franks et al. (2000) of United Stated and United Kingdom found that family care 

to specialist referral rates ranged from 5% to 60% per year, which affects patient access to 

specialists. They examined the deviations of primary care to specialist’s referral rates and 

factors that affect it using 1995 claims data that indicated whether a patient was referred or not. 

Although factors, such as reimbursement, time pressure, and clinical problems were found to 
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account for minor variations, physicians with a bigger fear of malpractice or higher 

specialization were more likely to refer their patients.  

Extending beyond the decision of whether to refer a patient, Kraig S. Kinchen et al. (2004) 

studied how PC doctors choose the specialist. By running a cross-sectional survey, the authors 

report that respondents find medical skill, previous experience with the specialist, and patient’s 

insurance coverage to be of high relevancy. The latter often leads to family doctors having little 

information on whether the specialist would provide the best care for the patient.  

“Birds of a feather flock together” - an idiom used to express the nature of social networks 

where beings tend to form connections with others of similar type and personality represents 

an idea that might resemble the physician network. This is what is known under Network 

Analysis as homophily. Although ideally, physicians build ties with other physicians for patient 

referrals and clinical advice (Michael L Barnett et al. 2011), associations between doctors tend 

to be affected by other aspects as well (Bruce E. Landon et al. 2012).  

Bruce E. Landon et al. (2012) in their work employs U.S. Medicare data (2006) on shared 

patients among physicians and draw attention to doctor traits, such as sex, age, location of 

practice, the intensity of care (using Episode Treatment Group (ETG) software), and overall 

differences in network features across 51 hospital referral regions (HRRs). After employing a 

multivariable regression model, the authors’ findings suggest that doctors are used to share 

patients with other providers with similar personal traits; for instance, more than 65% of pairs 

between doctors were male-male, the average difference in age between those with ties (11.5 

years) was smaller than those without (12.5 years), and 96% of unconnected physician pairs did 

not work in the same hospital (c. 31% of connected physician pairs were from the same 

hospitals). Additionally, physicians with ties had closer geographic proximity (mean of 13.2 

miles for connected pairs versus 24.2 miles for unconnected pairs) and alike practice intensity 
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estimated by ETGs. Similar patient characteristics were also shared between connected 

physicians, including patient age, race, and complexity of the clinical issues.  

Previous work in the field of network analysis has been developed for the healthcare 

industry, leading to successful applications to investigate physician referral networks, “advice 

networks, and the diffusion of information among physicians” (Barnett et al. 2011). The further 

motivation behind previous work in this area has been focused on healthcare efficiency, 

including hospital costs, treatment quality, and patient needs. By analyzing the network, these 

studies extracted information about possible gaps in the system's efficacy. For example, Barnett 

et al (2011) evaluated how the patient-sharing networks of doctors contributed to the expenses 

and intensity of care delivered by United States hospitals by studying physician-based 

networks. They concluded that the network structure was strongly associated with Medicare 

spending and care patterns. Another finding was that hospitals with doctors who have a higher 

number of connections have also higher costs and more intensive care; hospitals with primary 

care-centered networks have lower costs and care intensity.   

An et al. (2018) decided to carry out an in-depth study of the United States network by 

considering only patients with cardiological conditions. Through the analysis of metrics such 

as local clustering coefficient, betweenness, closeness, eigenvector, and PageRank centralities 

and the core-periphery score, as well as node embeddings features such as their position in the 

network, they concluded that physicians send patients to other physicians that have many 

“common connected neighbors in the national referral network” (An et al. 2018, 22). This 

supports the hypothesis that physician position within the network influences their level of 

popularity, being that those with more common neighbors would be reached out more often. 

Through their research, An et al. (2018) considered that it would be beneficial for hospitals to 

grasp the discoveries for several reasons. First, whenever a new treatment is approved, if 

hospitals are aware of the first physicians and hospitals that adopt it, they could extract key 
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metrics from their network that could possibly contribute to a similar level of success and 

popularity. Moreover, by implementing Machine Learning algorithms on their data, they were 

able to isolate the key factors in predicting referral paths characteristics, “such as the time gap 

between two visits on the referral path and the total RVUs of all physicians’ endeavors.” (An 

et al. 2018, 22).   

Yet, other studies give more emphasis on the patient’s development to understand 

physicians’ social networks. Herrin et al. (2019) focused on claim data from breast cancer 

patients to “develop an empiric approach for evaluating the performance of physician peer 

groups” (Herrin 2019). This approach was based on social network analyses to understand the 

existing relationships between physicians and how that could impact the patient’s health.   

“Physician-to-physician referrals are the currency of day-to-day transactions in medicine” 

(New York Times 2009). Although instinctively we think of referrals as a process driven to best 

serve the patient’s need or influenced by the doctor's skills, studies show that referrals are often 

made based on friendships. This work will extend the existing research by incorporating 

physician features such as location and specialty whilst studying the latest (2015) Medicare data 

available with the aim of understanding the physicians’ network structure and how could it be 

shaped to best serve the healthcare system.  

2.2. Graph Embeddings and Graph Neural Networks 

Regarding the Artificial Intelligence area, some advances have been made in the field of 

graphs and Machine Learning. Neural networks have been one of the most efficient types of 

models for prediction and classification tasks. Similarly, GNN can repeat these tasks on nodes 

and edges as primary subjects. Especially in the healthcare field, GNNs would allow us to 

deeply understand the physician referral network, extract network metrics and predict links, 

classify nodes, or determine the efficiency of the network within the healthcare system. This is 

done with the generation of graph embeddings. The methodology of graph embeddings has 
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been explored by previous studies (Grover and Leskovec 2016; Perozzi et al. 2014; Ribeiro et 

al. 2017; Tang et al. 2015), where they aimed to extract each node’s information and position 

within the network as a low-dimensional vector. Thus, they proposed embedding mechanisms 

where this information gets transformed and used afterward as input features for other Machine 

Learning models – logistic regression, and decision trees, among others.  

As expected, different graph embedding mechanisms have been proposed. Random-walk 

based methods were proposed with the goal of generating random node paths and, with such, 

learning more about the node’s position regarding the overall network. (Yue et al. 2020). More 

specifically, given a starting node, this mechanism will move from the starting point to a 

random neighbor, and then repeat the process until it has a node sequence. One of the first 

algorithms proposed for this operation was DeepWalk (Perozzi et al. 2014), which provides 

information regarding the local structure by truncating the random walks. Node2vec (Grover 

and Leskovec 2016) accommodates a biased random walk that is considered more flexible 

because it incorporates several types of samplings to generate the node sequences. Moreover, 

Struc2vec (Ribeiro, Savarese, and Figueiredo 2017) is another framework proposed that differs 

from the Node2vec regarding the meaning of the produced representations. While Node2vec 

tries to represent nearby nodes in a similar way, Struc2vec focuses on the role that each node 

plays within a network. As a result, nodes that are far apart may have similar representations. 

This is done by applying DeepWalk to a multi-layer weighted graph, where layer k is 

parameterized considering the k-hop neighborhoods of the nodes. Attri2vec (Zhang et al. 2019) 

implements DeepWalk and Struc2vec to learn node representations, with the difference that it 

performs either linear or non-linear mapping on the nodes’ attributes.   

Hamilton, Ying, and Leskovec (2017) introduced the GraphSAGE framework, where they 

developed a function to extract node attributes - node degrees, features - by sampling a 

neighborhood and then aggregating feature information from neighbors. This methodology 
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primarily considers the local node neighborhood information, besides the node features, and 

transforms it into a new, lower-level space. The main difference of this framework from the 

rest is that it is inductive, which means that it has a higher probability to be generalizable and 

achieve better performance on previously unseen data.   

2.3.Applied GNN in Healthcare 

Some studies have included GNN-based methodologies to apply solutions to the healthcare 

sector. Liu et al. (2020) implemented GNN algorithms to predict patients’ prescriptions for the 

next period. Because this was considered both a temporary and spatial problem, they 

implemented a novel hybrid method of GNN and Recurrent Neural Networks (RNN), where 

the RNN considers the patient sequence representation, and the GNN the graph that matches 

different medical events to their according prescriptions.  

Other studies have considered the GCN for the medical domain. Choi et al. (2017) proposed 

a Graph-based Attention Model (GRAM), where they used electronic health records (EHR) to 

predict sequential diagnoses. When compared to RNN, GRAM outperformed accuracy by 10% 

in the task of predicting rarely observed diseases, helping the medical community to extract 

“medical concept representations from the graph of medical ontology knowledge” (Choi et al. 

2017). Ma et al. (2018) classified the drug-drug interaction (DDI) problem as a graph task, 

where they were able to classify each graph using GCN.   

GNNs have the potential to not only state that the current healthcare system is not efficient, 

but to model what links might be best to improve either the patient’s medical services quality 

or healthcare efficiency, reducing costs. However, this area of research is still relatively recent 

and has not been deeply explored. Thus, little research has been focused on physician referral 

patterns represented through GNNs. To improve healthcare efficiency, mostly network analyses 

considering social network theory have been considered. Hence, our goal is to extract the 
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benefits of GNNs for their implementation in this field and provide insights at the patient, 

physician, and hospital levels.   

3. Data   

3.1.Data Collection and Understanding 

In this paper, we study the components that form the network links between physicians and 

depict the rationale behind medical referrals in the US healthcare system by employing the 

Centers for Medicare & Medicaid Services (hereafter, CMS) patient referral dataset. This 

Medicare data includes information on when the same patient is reported as receiving care from 

two distinct doctors within a specific timeframe, between the years 2009 and 2015, spaced out 

across 30-, 60-, 90-, and 180-day periods. This project utilizes the latest data available (2015) 

for the 30-day period, which has about 34 million record count (CMS 2021).  

According to the data dictionary provided by the CMS, the National Provider Identifier 

(NPI) is "a unique identification number for covered health care providers" (Centers for 

Medicare & Medicaid Services n.d.). The data contains two columns of NPIs, the first of which 

is labeled as the “Initial Physician NPI” (NPI 1) and the second as the “Secondary Physician 

NPI” (NPI 2). The referral dataset does not assure that doctor A referred to doctor B, meaning 

that for each pairing of NPI 1 and NPI 2, the same patient visited both doctors in that order 

within the 30-day period. For the analysis, we selected the referrals from primary care (NPI 1) 

(family practice, internal medicine, pediatric medicine, geriatric medicine, general practice, 

obstetrics/gynecology, and preventive medicine) to specialists (NPI 2) because patients usually 

go through primary care provider as their first option, and as such this person might determine 

how fast the patients reach their final specialist required for their diagnosis. Furthermore, 

constructing a GNN with fewer connections will allow an easier extraction of information from 

the nodes and the reduction of noise and edges. The data also includes a shared count of the 

patients for each pair, allowing for a deeper understanding of the providers with the greatest 
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number of connections. This relationship is extracted from all the Medicare claims filed 

between each of the periods. For instance, if a patient is listed under two claims from different 

physicians within each of the periods mentioned, these physicians will have an additional 

patient summed to the shared count in the referral dataset.  

Besides this data set, we extracted additional data that contains physicians’ features from 

the 2015 Medicare Physician & Other Practitioners - by Provider report from the Centers for 

Medicare & Medicaid Service (Centers for Medicare & Medicaid Services Data). This way, we 

would be able to study the factors that affect referrals. The NPI column, which serves as the 

connection between the two data sources, is included in this dataset along with numerous doctor 

profiling features – making a total of 73 columns in the data set –, including first and last name, 

gender, city, specialty, and others, as well as the characteristics of their beneficiaries (e.g., 

average age, the proportion of men and women, number of distinct races, etc.).  

3.2. Data Curation 

Regarding the subset of the data that we chose, we considered only those physicians with 

practice locations set in Florida. This way, we will only study intra-state referrals. Moreover, 

we considered only those referrals who shared over 100 patients within that month to enable 

the measurement of the shared patients among healthcare providers by focusing on the group 

that interacts most frequently. The two main reasons why we chose Florida as our study set is: 

1. Medicare data include patients that are 65+ and “Florida had the highest percentage of 

its population age 65 and over among states in 2015 (19.4 percent)” (United States 

Census Bureau 2016).  

2. Geographically, Florida is a unique state given that is only contiguous to Georgia and 

Alabama in the north, thus we would be able to minimize the interactions of patients 

from out-of-state, those being more common in areas such as the Midwest.  
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After considering this subset, we disregarded features that are not relevant or whose data 

was missing. There is a difference in the number of distinct healthcare providers, where the 

features’ dataset as 15,448 unique NPIs and the referral dataset 15,439 unique NPIs. Only those 

physicians that are present in both datasets (15,439) will be used. This resulted in a directed 

referral network where each node will be represented by a healthcare expert and the edges will 

be their referrals, hence there will be 15,439 nodes and 67,480 edges.  

Depending on the business question that each study described before aims to answer, 

different features will be curated and explained accordingly. To illustrate the output of the 

model, we will use gender as the input feature and visualize the embeddings considering this 

attribute. Therefore, to satisfy the requirement for the algorithm to have a numerical input, we 

transformed the gender feature Rndrng_Prvdr_Gndr into a binary column. 

3.3.Exploratory Data Analysis 

3.3.1. Overview of physician’s attributes 

Some further analysis was done to help interpret the data, such as calculating the proportion 

of male and female users per amount of service. The results revealed that male doctors 

outnumbered female doctors by a difference of 75% to 25%. To obtain a general overview of 

the doctor's attributes, in the following part we analyzed:  

1. Frequency of specialties per primary and secondary care; 

2. The secondary care specialties that provided the highest average of services 

3. Average services provided by specialty and gender; 

4. Number of beneficiaries per specialty;  

5. Total submitted charges and total Medicare paid amount by specialty. 

Family practice, internal medicine, and general practice are the most frequent primary care 

physician in the data set, whereas cardiology, nurse practitioner, and diagnostic radiology are 

the specialties with the highest number of appearances. The secondary care specialties with the 
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highest average services provided are hematology/oncology followed by medical oncology 

(Figure 3.1). 

 

 

 

 

 

Figure 3-1. Top 10 specialties ordered by average services provided by secondary care  

By observing the top 10 specialties with highest average of services provided by specialty 

and gender (Figure 3.2) we can see that females seem to, on average, provide a wider amount 

of services. However, we might need to interpret this result cautiously given that the number of 

female physicians per specialties is frequently lower, making the average higher. 

 

 

 

 

 

Figure 3-2. Average services provided by specialty and gender 
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When filtering specialties by the total number of beneficiaries, there seems to be a stronger 

demand for diagnostic radiology, cardiology, and pulmonary disease (Figure 3.3).  

Figure 3-3. Number of Beneficiaries per Specialty 

Looking closer at the specialties and the finance variables, the top 3 specialties that had the 

highest submitted charges, as well as the highest Medicare paid amount were 

hematology/oncology, medical oncology and radiation oncology.  

3.3.2. Referral Analysis 

The referral dataset from 2015 contains the National Provider Identifier (NPI) of the 

physician that refers and the physician that receives those referrals. However, to represent the 

number of times that this instance occurs between two distinct physicians, the “Shared Count” 

column is provided. We calculated that 75% of these connections between physicians have no 

more than 248 referrals within the timeframe under study (30 days). The pair of physicians with 

the most shared count referrals have 11,085, where the primary care provider is a general 

practice physician, and the specialist is a psychiatrist. The second pair had 9,998 referrals shared 

from internal medicine to nephrology, and the third pair had 9,863 referrals shared from internal 

medicine to pathology. Yet, to look from a more general perspective, we grouped physicians 

by specialty, and calculated the average referral count. Some findings include that geriatric 

medicine, pediatric medicine, and preventive medicine are among the specialties that make 

more referrals. Occupational therapists, hematology, and nurse practitioners are among the 
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specialties that receive the most referrals on average. However, given the way that we subset 

our dataset, it is important to note that referrals made from Secondary care specialties were not 

considered, as well as those made to primary care providers. Lastly, the primary care provider's 

gender with the highest referral count was male. On the contrary, the secondary care physician's 

gender with most referrals, on average, was female. 

3.3.3. Network Analysis 

3.3.3.1. Centrality Measures 

The centrality measures are also referred to as social network analysis since they are 

fundamental in depicting how the graphs work by evaluating the importance of the physicians 

on the overall network. Thus, this paper will use degree and eigenvector centralities to study 

the doctors’ influence on the rest of the community. Because our network only consists of 

primary care referrals to specialists, and all the referrals within secondary care specialists were 

excluded, we will not analyze the closeness or betweenness centralities.  

Closeness centrality aims to measure how close the nodes are to one another. A node is 

deemed key in this scenario if its distances from other nodes are shorter, which means that 

doctors may more eagerly refer patients to these nearby nodes than to the ones further away. 

However, because we have a directed graph, the only paths that exist contain two nodes – the 

primary care provider and the specialist. As a result, there are no distances longer than one 

referral in our graph. This impacts directly the insights that we could obtain from the closeness 

centralities; thus, we will not consider it. 

The betweenness centrality is another well-known centrality metric. This metric, rather than 

just counting the number of edges a particular node has, measures how many times a node 

appears in the shortest path since a node would only be deemed important in this scenario. This 

measure is used to determine who affects the network's flow the most, showing which nodes 
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are acting as "bridges" in the process. As mentioned before, because there are no differences 

between our shortest paths, this measure would be irrelevant to our network analysis.  

For the rest of the analysis, we used networkx library with the following functions: 

in_degree_centrality, out_degree_centrality, and eigenvector_centrality. 

One of the social network metrics investigated in this research is degree centrality, which 

is used to identify the most popular nodes. This centrality purely considers the number of 

referrals held by each physician and assigns a significance score to them. Because we are 

utilizing a directed graph in this case, it is vital to distinguish between in-degree and out-

degree, and as the names imply, they assess the number of recommendations received by or 

supplied by a doctor, respectively. These scores will then translate how many ties there are from 

node to node, with higher values corresponding to doctors who have more connections than the 

norm. This measure is typically used to detect highly connected nodes as well as the most 

popular ones – “individuals who are likely to hold most information or individuals who can 

quickly connect with the wider network” (Disney 2022).  

Figure 3.4 shows the 97.5th quantile of the top 50 scorers' nodes and edges - this constraint 

in the data will be present in the following figures concerning the centrality measures. This 

allows us to detect a denser presence of nodes in the center of the plots, most likely the primary 

care physicians, and dispersed nodes around, that might represent the secondary care 

Figure 3-4. Nodes and edges from the 97.5th quantile of the top 50 In-Degree Scores (right) 

and Out-Degree Scores (left) 
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physicians. We noticed that the in-degree and out-degree bulk of red dots (top physicians' 

scorers) are different, meaning that the physicians with the highest in-degree score will have 0 

out-degree scores, and vice-versa. Since the secondary care physicians are the ones that receive 

the referral, it would only make sense for them to have the highest in-degree scores; so when 

we look at the specialties scorers, we see that the prevalent ones are diagnostic radiology, 

cardiology, and pulmonary disease. On the other hand, internal medicine, and family practice 

show a clearer commonality on the out-degree top scorers. Finally, most of the greater out-

degree scorers are located in either Orlando, or Winter Park, whereas the in-degree scorers, are 

most common in Fort Myers, Panama City, and Tampa. 

The eigenvector measure shows the significance of a particular node given its links to other 

significant nodes. As a result, it takes into account how many connections a node has overall in 

the network as well as how highly rated its neighbors are (meaning, how many connections its 

connections have). Therefore, it is clear that doctors with higher eigen scores contribute more 

to the network as a whole and have a greater influence on the referral system, and that their 

connections likewise have higher scores (since the main high-degree node has a strong 

influence on them). Furthermore, this social network measure is excellent for depicting 

distances between nodes depending on their similarity, allowing for greater flexibility over how 

much effect the features will have when assigning weights. As a result, we used the number of 

referrals between each physician pairing as the weights to determine their relationships and 

contributions. 

 

 

 

 

Figure 3-5. Nodes and edges from the 97.5th quantile of the Eigenvector Scores 
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The doctors with higher scores are dispersed in the graph, as we can observe from the 

representation in Figure 3.5 above. The specialties shown in red are the ones that have a bigger 

impact on the network and are similar to the in-degree centrality top scorers – diagnostic 

radiology, pulmonary disease, and infectious disease, however, the highest scorer is a 

nephrologist. In this case, the new NPIs with better ratings have an overall greater number of 

female beneficiaries than male beneficiaries. Furthermore, as expected, these specialties with 

higher eigenvector scores would have a 0 out-degree score and a higher in-degree score. 

3.3.3.2. Shortest Path 

For our network analysis, some of the relevant features to calculate will be the average path 

length and number of connected components. This allow us to study the graph structure before 

we apply our GNN model. The shortest path from node A to node B is defined as the path of 

minimal length between these two nodes. Because of our graph structure, we decided to make 

our graph undirected for the following part of the analysis since this could provide information 

regarding how long the chain of connections is between primary care providers and specialists. 

To calculate the shortest paths of a graph, different algorithms may be implemented. We 

used the networkx library shortest_path function, along with its default method, which 

implements Dijkstra’s algorithm (Dijkstra 1959). Similarly, a network's average path length is 

the average shortest distance between two nodes of the graph. In other words, the average path 

length is the average of the previously mentioned shortest paths of the graph. This algorithm 

will consider every node of the graph as a source node. However, because our graph contains 

more than one connected component, which will be reviewed in the Connected Components 

and Connectivity section, the distance between two nodes from different components will be 

infinite and will not be defined. As a result, we calculated the average path length on the largest 

connected component. The distance found was 7.58 as the average shortest path length. 



Mora Labarca, Isabel 

 26 

According to Perez and Germon (2016), a low average path length l is where l ∼ ln n. In 

our graph, ln n = 9.64. Thus, our average path length is low. This metric is considered a metric 

of efficiency regarding how information flows through the network, where a low average path 

length indicates information is not spread throughout the network, and a high one represents 

that even “outliers” receive information. However, our graph provides more information about 

the possibility of physicians knowing one another based on referrals. Another metric used to 

evaluate distances in the graph is the diameter, defined as the maximum eccentricity. The 

eccentricity is the maximum distance from source node A to all other target nodes B. The 

diameter of our network, undirected, is 19. This indicates that there is one chain of connections 

where node A and node B have, at least, 18 other physicians that they could potentially reach 

in social circumstances. This shows how long the connection is between specialists referred by 

the same primary care provider or between those that have referred their patients to the same 

specialist. Thus, specialists that share the same primary care providers would be connected by 

the primary care provider, and primary care providers that have been referred to the same 

specialist would also be connected between them.  

3.3.3.3 Connected Components and Connectivity 

In a directed graph, we can find either weakly and/or strongly connected components. A 

weakly connected component is a subgraph where each node can be reached by another in any 

direction, that is, the source node A can reach the target node B, or vice versa, but not 

necessarily source node B could reach source node A, or vice versa. Thus, as long as the nodes 

are part of a component in any direction, they are part of a weakly connected component of the 

graph.  

Intuitively, a strongly connected component is a subgraph where every source node A can 

reach target node B, but also every source node B can reach target node A. Thus, they are 

connected in both directions. It is unlikely, but possible, that a direct graph itself is strongly 
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connected - meaning the graph has one strongly connected component, conformed by all nodes. 

In direct acyclic graphs, there are no strongly connected components, given the nature of their 

cycle. Because our data does not contain any edge where a specialist would refer patients to 

any physician, our graph would not contain any strongly connected component. 

In an undirected graph, a connected component is a subgraph where each node can be 

reached by another - they are connected. Hence, a graph where this structure is presented has 

only one connected component. However, if there are cases where a pair of connected nodes 

cannot be reached by another, then there is more than one connected component within the 

network. In real-life networks, it is common to find one considerably big, connected 

component, and many other small ones. In our network, we have a total of 188 connected 

components, with the largest one having a size of 14,987 nodes - approximately 97% of the 

total nodes in the network.  

3.3.3.4.Type of Network  

3.3.3.4.1. Erdős–Rényi 

Comparing the physician’s network to other baseline graph models allows us to infer the 

properties of the studied network. We begin by comparing our network to Erdos-Renyi (ER) 

random graph model, which possesses properties such as binomial degree distribution, low 

variation in node degrees, and low clustering coefficient. The main idea behind the ER model 

is that each connection, i.e., edge, is equally likely to be present or absent, regardless of other 

Figure 3-6. The degree distribution of nodes. Degree distribution of physicians’ network 

(x axis limited to 70) (left) and degree distribution of ER random network (right) 
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edges (Fienberg, Stephen E. 2012). Nevertheless, real-work networks rarely form at random 

and usually, the presence or absence of one connection does impact the state of the other. 

First, when observing the network degree distribution plot, the shape of the histogram 

resembles the power law distribution with an average degree of 9, in contrast to ER graph that 

follows a binomial distribution (Figure 3.6). This implies that a small number of doctors give 

and receive many more referrals, while the majority of doctors have fewer connections (Figure 

3.6). Nevertheless, degrees might follow different types of distribution, which we will test in 

the following parts of the paper.  

Second, the physician network node degree variance is c. 1.4, which is a low variation of 

node degrees. Last, the average clustering coefficient of the physician network is 0; a clustering 

coefficient of 1 would mean that all doctors and their neighbors know each other, however, 

since our study comprises primary to secondary care referrals, there are no physician 

connections that form “triangles”, i.e. physician’s neighbors are connected. 

The physician network structure seems to follow the properties of the Erdos Renyi graph 

and therefore, it has a random network structure. The power-law degree distribution is a 

characteristic of a scale-free structure.  

3.3.3.4.2. Scale Free Network Analysis 

Scale-free networks are characterized by having a node degree distribution that follows a 

power law. That is, networks with a power-law degree distribution will be composed of a 

majority of nodes with very few connections (degree), and with only a few nodes that have a 

high number of connections - known as hubs. These types of networks have been studied and 

real-life examples include the World Wide Web (hereafter, WWW) and the research citation 

network. Other social networks are considered to be scale-free as well, but there has been some 

debate regarding whether they are truly scale-free (Broido, A. D., & Clauset, A. 2019). 
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Barabási and Albert (1999) studied for the first time the power-law degree distribution in 

networks. They argue that the scale-free structure of real-life networks was based on two 

distinct characteristics that were being missed by other studies on random networks. These 

networks were always considering a fixed number of nodes N for the random graph generator. 

As we know, the WWW or the citation network are graphs that grow constantly, a condition of 

these types of networks that had not been included within network science studies beforehand.  

As mentioned earlier, random graph models assumed that the probability of a node 

connecting to another node was independent of the node degree for the graph to be "random". 

However, Barabási and Albert argue that most networks display what is known as preferential 

attachment - the phenomenon where nodes would have a higher probability to connect to other 

nodes based on their degree. For example, it is common in the research citation network that 

papers cite already known and popular papers, usually cited already by many others, rather than 

those that are barely known and/or recently published. Similarly, on the WWW, a blog is more 

likely to contain hyperlinks to well-known websites rather than less popular ones.   

 

 

These two distinct characteristics are known as growth and preferential attachment, and the 

Barabási-Albert model displays a scale-free network containing these two characteristics.   

  For the purposes of our study, we plotted a histogram with the node degree distribution, 

along with a log-log plot of the number of nodes by their degree to evaluate whether it follows 

Figure 3-7. Distribution of Node Linkages. Log-log plot of Physician referral network (right) 

and random network (left) 
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a power-law distribution based on the linearity of the plot. This intuition is based on the idea 

that, if the probability P that a node will connect to another one depending on the degree k; 

hence Pk, follows a power law, by plotting Pk as a function of degree k on a log-log scale, a 

straight line of slope −α should be seen on the plot. While the node degree histogram seems to 

follow a power-law distribution, the log-log plot does not, given that there is no straight line as 

expected. However, because of the imprecise nature of estimating by visualization, we decided 

to implement the python package power law to statistically evaluate whether our distribution 

falls under a power law. We compared a random scale-free generated graph by networkx’s 

scale_free_graph function with our graph to test if it was considered a power law or exponential 

distribution. For this test, the log-likelihood ratio of the two distributions’ fit to the data is 

considered. While our graph showed more similarity to a power law distribution, the 

significance of this test was not high enough, with a p-value of 0.07. In contrast, the random 

scale-free graph showed a significance value of 0.001.   

In conclusion, there is debate on whether social networks are truly scale-free, and that might 

be the case in ours. This means that while there are very few nodes with many connections and 

most nodes with very few connections, our node degree distribution might not be all explained 

by a power-law distribution. In other words, the physician referral pattern is not entirely scale-

free.  

3.3.3.4.3 Small world 

Small-world networks were first designed to address and construct networks akin to real-

world networks. This form of the graph allows non-related physicians to be linked in a social 

world setting since the majority of nodes in its graphs are not neighbors but are easily reachable 

by a minimal number of hops. The Watts-Strogatz mechanism is the primary process for 

constructing small-world networks. The clustering coefficient and the average shortest path 

length are the two structural properties considered in this sort of network, with Watts-Strogatz 
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arguing that the model should have a high coefficient as well as a short average path. Thus, if 

we take one physician as an example, a high average of the clustering coefficient indicates that 

its neighbors are connected, implying that its contacts are acquainted with each other.  

Chuankai An et al. (2017) in their work emphasize that the small world network "is defined 

as a network with greater than expected local connectivity and average path length smaller than 

expected in a comparable ER random network". To determine whether this referral system is a 

small world network, we can compare the clustering coefficient and the shortest path length of 

the data being used with a random Erdos-Renyi graph. To generate the random graph the same 

number of nodes as the current network (15,439) and a probability of 0.0006 are used. If we 

consider μ as the average degree of the physicians in the network and n as the number of nodes, 

we can calculate the probability as follows: 

𝑝 =
𝜇

𝑛 − 1
 

After computing both graphs, we notice a significant difference in the clustering coefficient, 

with the random graph one being about 0.006 and the referrals network one being 0. The results 

found for the shortest path were 7.58 for the random Erdos-Renyi and 2.56 for the patient 

referral. Hence, it is possible to say that the network explored in this paper does not present 

characteristics of a small world network. 

4. Methodology  

Given that our goal is to extract the network structure and to explore whether any feature 

shows relevance over one another when it comes to patient referrals, we decided to implement 

a Graph Neural Network (GNN) unsupervised method to extract node embeddings. In short, a 

GNN follows the same steps as a Neural Network, with the exception that each layer uses a 

multilayer perceptron (MLP) on each one of the components of a graph. The goal of this process 

is to retrieve a learned node vector, known as node embeddings. Thus, for each node, we have 
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a vector with its representation. These layers are then stacked together, following the same 

Neural Network structure.   

In terms of GNN predictive power, there are three distinct tasks that it can accomplish: node 

classification, link prediction, and graph classification. As a regular data classification task, if 

we wanted to predict a node label from a graph, this could be accomplished through a GNN. If 

needed for the problem, a regression task could also be used by adjusting properly the activation 

functions used.   

Given that we want to extract meaningful insights that explain the referral patterns from 

Medicare patients in the US, we decided to implement a GNN unsupervised algorithm - 

GraphSAGE. We are implementing an unsupervised method because we are investigating 

whether there are clearly defined physician clusters that might affect the healthcare system's 

efficiency.  This hypothesis would be confirmed if, after feeding the model, physicians that 

have similar embeddings with each other also have similar features. 

Thus, we followed some steps to best achieve this project's purpose results. Firstly, we will 

define the features that would be used to answer the proposed business question in each specific 

question. After understanding the hypothesis and the features choices, we train an unsupervised 

GraphSAGE network as a way of obtaining the physicians' network simply through their 

features. Afterwards, we train a model to extract node embeddings as a method of capturing 

network topology, implying that doctors may be encoded as vectors using similarity. 

Furthermore, we reduce node embeddings dimensionality through t-SNE and UMAP to 

facilitate the 2D visualization of the patterns on the doctors’ characteristics. The following steps 

included finetuning the model to get a perception of the best hyperparameters for it. Finally, 

with the k-means algorithm from the sci-kit learn library we defined clusters to extract insight 

results for the hypothesis.  
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4.1. Feature Selection 

As referred above, the paper uses Medicare Physician & Other Practitioners - by Provider 

(2015) dataset that contains 73 different physician features to infer any patterns among 

connected doctors. Each section dedicated to solving a certain business question employs 

features that are suitable to approach the problem. Some of these features in subsequence 

sections are not included in the physicians features data set and are obtained from additional 

sources which will more deeply explained in the respective sections. 

Besides the 30-day referral dataset, section 5, will also make use of the 90-day referrals 

time window dataset from the Medicare data, as a resource for the pattern comparison. Features 

such as the physician’s specialties and percentages per disease will be key assets to answer this 

hypothesis. Section 6 will consider the total charges that the provider submitted for all services, 

the Medicare allowed amount for all provider services, and the total amount that Medicare paid 

after deductible and coinsurance amounts have been deducted for all the provider's line-item 

services (Centers for Medicare & Medicaid Services Data 2020). Moreover, it will factor into 

the analysis the average submitted charges per beneficiary, average Medicare paid amount after 

deductions, per beneficiary, and average submitted charges per service provided. 

The primary goal of Section 7 is to infer how referral patterns are impacted by physician 

experience. Thus, it also includes physician experience, which is represented by Provider 

Enumeration Date from CMS NPI Files (NPI files) 

4.2.GraphSAGE and Node Embeddings 

The GraphSAGE algorithm was introduced by Hamilton, Ying, and Leskovec (2017), and 

is considered a distinctive algorithm from the rest of deep-walk-based algorithms because it is 

an inductive framework. In other words, it does not only consider the graph structure but is also 

capable of learning from rich attribute networks. GraphSAGE generates low-dimensional 

representations for each node of the graph, and after training, it can also generate these 
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embeddings on not seen data (Leskovec n.d.). As mentioned in the StellarGraph documentation, 

GraphSAGE's objective is: "Given a graph, learn embeddings of the nodes using only the graph 

structure and the node features, without using any known node class labels" (Node 

representation learning with GraphSAGE and UnsupervisedSampler). For the unsupervised 

GraphSAGE model, both types of nodes are generated, "positive" and "negative." These are 

generated based on the random walks that are considered by the algorithm and adjusted by the 

user. The two main aspects that would define these random walks are the number of random 

walks that the model would learn from each node, and the length of the walk, hence, the number 

of "hops" from the root node. Thus, the "positive" nodes are those that co-occur in the same 

random walk of the graph, and the "negative" ones are randomly selected from the graph. As a 

result, whenever a randomly selected node co-occurs within the same random walk, it is labeled 

as positive. This way, the model learns the nodes' information of its attributes and local 

neighborhood, retrieving a vector representation of the node characteristics within the graph. 

The hyperparameters of the algorithm that we considered for analysis were the number of 

random walks, the walk length, the minibatch size, the layer size, and the number of samples 

considered for each layer. The extracted embeddings are then plotted with different 

visualization techniques discussed in the next subsection.  

After training and fitting the model, we generate the mapping of the nodes pairing, meaning 

that each physician node was turned into a low-dimensional space, allowing us (when 

visualizing) to extract meaningful insights based on their similarities.   

4.3. Dimensionality Reduction 

Regarding visualizations, before plotting the networks we used both t-SNE and UMAP to 

help with the high dimensionality of the data set and to reduce the number of random features 

to a 2D array of main variables. The dimensionality reduction is regularly used to better 

understand and interpret the data by simplifying it, and given that the data used is multi-
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dimensional, it is wiser to reduce it to a lower dimension, to make possible the visualization 

and insights extraction.   

The t-SNE algorithm allows to separate data that is nonlinear – cannot be separated by a 

straight line – and so it “models the probability distribution of neighbors around each point.” 

(Hoare,  How t-SNE works and Dimensionality Reduction). As a result, it is an effective tool 

for interpreting high-dimensional sets such as this one. This study, on the other hand, leverages 

the UMAP technique, which uses the same ideas as t-SNE and is a powerful tool for visualizing 

large data sets. They both compute the distances between nodes and their neighbors and ensure 

that these distances are similar when the data is changed into a 2D space. In contrast, t-SNE 

converts a high-dimensional graph to low-dimensional space, whereas UMAP condenses the 

graph, which means that the UMAP tool rather than measuring it point by point, does not make 

a thorough estimation of the graph. This is valuable given that it will translate into a more 

accurate exhibition of the overall network.  

In the end, when plotting both of the tools previously explained, the nodes of the same color 

will be expectantly clustered together, indicating a higher similarity of the embeddings. 

4.4.Model iteration and Fine Tuning 

Even though this research relies on the Unsupervised Sampler for modeling, finetuning its 

hyperparameters is still indispensable due to the lack of a target variable. As a consequence, 

based on the findings of the first model, the hyperparameters will be manually adjusted to 

improve accuracy and reduce loss. Several iterations must be tried and minor adjustments need 

to be made to some parameters to better understand their impact on the overall referral network. 

However, it is crucial to note that the learning rate will be constant - Adam rate of 1e-3 - as well 

as the regularization - L2, and always including a bias term. This L2 regularization is chosen 

over L1 regularization because, in this situation, we require a parameter that works with 

codependent features rather than performing feature selection.  
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The Sigmoid function entails exponential computing, implying that it is more advantageous 

for large networks, and because accuracy is the measure of predictions when the true value 

equals the predicted, it is expected to be consistently high. The loss function, which accounts 

for the sum of all errors produced for each sample, is also supposed to decrease as the binary 

accuracy increases. ReLU differs from Sigmoid in that it does not activate all of its neurons at 

the same time, making this function less time-demanding and computationally easier.  

4.5.Clustering methods 

The K-Means was first mentioned by Hugo Steinhaus (1950), which evolved into an 

iterative process that is made up of “partitioning a set of n objects into K ≥ 2 clusters, such that 

the objects in a cluster are similar to each other and are different from those in other clusters” 

(Ortega et al 2019).  The steps for the k-means algorithm can be found in Figure 4.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1. K-Means algorithm explained1 

 
1 R, Arif. 2020. K-means Clustering Overview. Image. October 4, 2020. Medium. https://medium.com/data-folks-

indonesia/step-by-step-to-understanding-k-means-clustering-and-implementation-with-sklearn-b55803f519d6 
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This clustering approach is based on a centroid-based algorithm, where the purpose is to 

discover data points that are closer together, in this case, to better classify and understand 

physicians. Thus, rather than pre-defined categories, K-Means classifies unlabeled data based 

on their features.  It is crucial to understand what is the ideal number of clusters given the 

business problem. This number can be found using the elbow method, which works "as a cutoff 

point in mathematical optimization to decide at which point the diminishing returns are no 

longer worth the additional cost" (Sharma 2022). Thus, the number of clusters where the elbow 

bends is the optimal K. On another note, we can use the silhouette score that accounts for both 

inter and intra-cluster distances to evaluate the quality of the clusters created. This score ranges 

between -1 and 1, where 1 is the best value, representing that the data points within the cluster 

are close to one another and distant from the other clusters, and 0 indicates that there is an 

overlap of the clusters.   

Two of the main disadvantages of K-Means clustering are that it is not robust against 

outliers given that it is based on the average, a metric highly affected when data contains too 

much noise and outliers; and that the center of the cluster does not necessarily represent a real 

data point from the dataset. As will be seen in the individual sections, some distributions of the 

data used as the input for the model follow right-skewed distribution, where many data points 

are closer to 0 and few data points contain high values. This difference is reflected when looking 

at the averages vs. the medians of each of the variables in consideration.  

As such, some business questions would need to implement a different clustering algorithm 

that is more robust to outliers so that the output results are more precise. For this, an option is 

the K-Medoids clustering algorithm. This name was first given by Leonard Kaufman and Peter 

Rousseeuw through the Partitioning Around Medoids algorithm (Kaufman and Rousseeuw 

1990). We will implement K-Medoids by using the sci-kit learn extra cluster library. As 

explained in sci-kit learn documentation, “KMedoids tries to minimize the sum of distances 
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between each point and the medoid of its cluster. The medoid is a data point (unlike the 

centroid) which has the least total distance to the other members of its cluster” (“Clustering 

with K-Medoids and Common-Nearest-Neighbors"). Thus, K-Medoids selects a real data point 

as the cluster center from the cluster based on who is the closest to the other members of the 

shared cluster. This is a particularly useful feature since, in practical terms, this data point 

represents the leading characteristics of this cluster and is worth considering for further 

investigation.    

In terms of the algorithm used to determine cluster assignment, we will consider the default 

method from sci-kit learn, the "Alternate Method" (“Clustering with K-Medoids and Common-

Nearest-Neighbors"). The alternate method works as follows. It will initialize with a K number 

of medoids, a method that depends on the approach selected in the init parameter (heuristic, 

random, or kmedoids++). Then, it will assign each data point to the closest medoid. This is 

followed by the update step, where it is reconsidered the medoid of the cluster and selected a 

new one. Lastly, this process iterates until there are no more changes regarding what data points 

are the medoids or until a user-specified maximum number of iterations is attained.  

4.6.Example of Model Output 

To get a glimpse of the output achieved through node embedding extraction, purely for the 

sake of illustration, we fitted the model with the feature that classified whether the physician 

was male or female (model loss: 0.6958, binary accuracy: 0.5593). Reducing the dimensionality 

using t-SNE and UMAP allowed us to obtain a visualization of our node embeddings (Figure 

4.2). As depicted in Figure 4.2, the red embeddings represent female physicians, and the blue 

embedding represents male physicians. At first glance it seems uncomplicated to conclude that 

red embeddings cluster on the top left and are closer to each other, indicating that females are 

either close to each other within the network or represent similar roles regarding overall graph 

structure. To be precise, representing a similar role within the graph structure can be explained 



Mora Labarca, Isabel 

 39 

with a similar example: if doctor A has made a total of 10 referrals, the referrals were made to 

5 different doctors, resulting in an average number of referrals per patient of 2, and doctor B 

has the same average referral per patient count, then these doctors are said to represent a similar 

role within the graph structure. Similarly, blue embeddings cluster together that forces the same 

inference about male physicians.   

Nevertheless, it is difficult to infer any actual clusters from the node embeddings, therefore, 

we use a K-means clustering method that groups or divides the features into clusters and 

minimizes cluster variance. With a silhouette score of 0.5, we obtain that our optimal number 

of clusters is 2. The proportion of male-to-female physicians was higher in cluster 0 - 90% male 

and 10% female. Cluster 1 comprised 52% male and 48% female physicians. Cluster 0 hints 

that male physicians in that cluster prefer to refer to male physicians.   

 

 

 

 

 

 

Figure 4-2. TSNE visualization of GraphSAGE embeddings. Dimensionality reduced using 

TSNE (left) and UMAP (right) methods 
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5. Exploring the Relationship Between Physician Referral Patterns Primary Care Access 

and Healthcare Spending 

This section will explore the relationship that exists, if any, between the physicians' referral 

network and the CMS corresponding financial data available for 2015. Specifically, we will study the 

significance that the referral network embeddings provide us about financial variables between 

physicians. Our goal is to understand whether the referral network affects Medicare spending for a 

physician's sub-network. Our analysis will consider the total charges submitted by providers for all 

services, the Medicare allowed amount for all services, and the total amount that Medicare paid after 

deductible and coinsurance amounts have been deducted for all provider's line item services. (Centers 

for Medicare & Medicaid Services Data 2020). Moreover, we aggregated some of these features to 

provide richer information to our model: average submitted charges and average Medicare paid 

amount, per beneficiary; and  average submitted charges per service provided. 

Furthermore, after extracting the node embeddings from the model, we will use a clustering 

technique to analyze features based on each cluster produced. To account for geographic-based price 

variations, we will explore the physicians’ Hospital Referral Regions’ (HRRs) spending rates, rural-

urban commuting area (RUCA) codes and healthcare quality measures at the HRR-level. In the 

United States, HRRs "represent regional health care markets for tertiary medical care. Each HRR 

contains at least one hospital that performs major cardiovascular procedures and neurosurgery" 

(Dartmouth Atlas of Health Care n.d., under "Research Methods FAQ"). RUCA codes "classify U.S. 

census tracts using measures of population density, urbanization, and daily commuting" (USDA 

Economic Research Service (ERS) 2020). All data used within this analysis is publicly available by 

the Dartmouth Atlas of Health Care (DAHC), the CMS and the USDA ERS. Only 2015-level data 

was considered for the study to guarantee consistency within the results. The HRR-level data will 

serve as a baseline comparison of our results and may provide information regarding these regions' 

delimitations and levels of healthcare quality, considering physicians’ referrals in that area. Finally, 
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we will test for statistically significant differences across these clusters’ spending and referral-based 

variables. 

Our motivation to investigate this area arises from the problem of increasing Medicare spending 

over the last few years. Medicare accounted for 3% of the federal spending in 1972, while as of now 

accounts for 13% of the total. By 2052 Medicare spending could account for 19% of the federal 

spending, ceteris paribus (Peter G. Peterson Foundation 2022). Our insights from the physicians' 

referral network may provide valuable information for future policymaking regarding Medicare. If 

referrals influence Medicare spending, solutions to optimize spending without affecting healthcare 

quality should be a priority, such as an AI-based referral system (Han 2018). 

5.1. Relevant Work 

Previous studies have examined the relationship between Medicare spending and physicians' 

referrals through different methods. Recently, Skinner et al. (2022) researched the relationship 

between rurality, healthcare spending, and quality. Using the HRRs as a unit of observation, they 

concluded that rural areas might have a lower Medicare reimbursement rate because there are fewer 

specialists than PC providers. Likewise, the more frequent use of lower-value services and a higher 

ratio of SC to PC potentially caused the higher per capita spending in HRRs.  

Some studies have explored community detection algorithms to improve healthcare services 

based on physicians, hospitals, and patients in the area (Landon et al. 2013; Wang and Wang 2020). 

Landon et al. (2013) tried to identify physician communities that could be the basis for defining 

Accountable Care Organizations (ACOs), a voluntarily formed group by doctors to attend their 

communities in a coordinated manner (CMS 2021). They showed that, for some regions, a physician-

based network would provide better outcomes than hospital-based networks.  

Jia et al. (2020) conducted a pilot study in Florida to analyze whether HRRs are still the best unit 

to consider in the health markets or if any other delimitations should be made to guarantee better 

outcomes. Fisher et al. (2009) investigated the Medicare provider's spending as their key variable to 
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increase savings in this area for the federal budget. Fisher’s study shares our motivation in uncovering 

local referral patterns that could translate to better policymaking by decreasing Medicare spending 

growth without impacting quality. Findings showed that higher-cost areas have more referrals and 

use of hospitals, even though the care quality is similar to that in lower-cost areas. Further studies 

hypothesize that physicians' decision to refer a patient to a higher-cost provider is possibly influenced 

by the physicians' employer, given the rates of vertical integration across hospitals in the U.S. (Whaley 

2021) 

5.2. Data Collection  

This section will overview the data we will use as input for our model and to enrich our analysis. 

Three datasets will integrate this part: the referrals dataset within the 30 days, the NPI attributes 

dataset, and public research data from the DAHC. For the latest, we are using Medicare 

Reimbursements (Appendix, Table 1) , and Primary Care Access and Quality Measures (Appendix, 

Table 2), each by HRR and for the year of study, 2015 (Dartmouth Atlas of Healthcare Data 2022). 

We used additional supplementary datasets for the crosswalk between the physician's zip code and 

HRR (“Dartmouth Atlas of Healthcare Data, “Supplemental Data” 2021). For the primary practice 

business location and zip code of each provider, we extracted all the NPIs from the subset of our study 

and matched them in the NPPES Data File (CMS 2021, under "Data Dissemination"). From this data, 

we included only physicians that had a matching zip code to a Florida HRR. For the referrals' dataset 

already mentioned under Section 3, we included whether each referral was within the HRR as a binary 

column. This could provide insights to evaluate the relevancy of location for referrals.   

Regarding the Medicare Reimbursements rates by HRR, we obtained the number of total 

Medicare enrollees for that year; and the spending for total, hospital % skilled nursing facility, 

physician, outpatient facility, home health agency, hospice, and durable medical equipment 

reimbursements, all per enrollee for 2015. We considered only price, age, sex & race-adjusted rates, 

given that prices of areas such as Miami may differ from other areas in the state. Because Medicare 
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spending varies across regions (Gottlieb et al 2010), using the latter would guarantee a more precise 

analysis. As referred by the DAHC, "Among the 306 hospital referral regions in the United States, 

price-adjusted Medicare reimbursements varied twofold in 2016, from about $7,400 per enrollee in 

the lowest spending region to more than $13,000 in the highest spending region." (Dartmouth Atlas 

of Health Care). This standardization factors in the price and wage variations so that any disparities 

we observe are not due to region differences. Moreover, it would help to discern if price differences 

are observed due to the volume of services requested. Further information on the standardization 

process is available in their technical report (Austin et al 2020). 

We also collected Primary Care Access and Quality measures to address quality against the 

spending of a specific region and cluster of physicians. This would enrich our analysis when 

investigating the reason behind higher Medicare spending in certain areas. These metrics include the 

number of diabetic patients per region, average percentages of diabetes screening exams such as eye 

examination, hemoglobin tests, and blood lipid tests annually, leg amputations per 1,000 enrollees, 

and the average percent of female Medicare enrollees aged 67-69 having at least one mammogram 

over two years. These are considered measures to evaluate primary care quality per region, given that 

their frequency may help avoid more serious and/or chronic illnesses. Furthermore, for each HRR, 

we assigned the proportion of rural areas by total zip codes. We first extracted each RUCA code by 

zip code and matched it with the HRR. Because the RUCA codes are from 1 to 10, with 1, 2, and 3 

being urban, and the rest rural, we assigned the rural proportion based on how many zip codes from 

the total per HRR were rural (Appendix, fig.1). 

From the NPI attributes dataset, key financial attributes are total submitted charges, total Medicare 

allowed amount, and total Medicare paid amount. We will also use total beneficiaries and total 

services provided. For PC and SC providers, we calculated the average number of referrals made and 

received, respectively. We also added the number of unique physicians with whom providers had a 

referral relationship; and number of out-of-HRR referrals based on the providers' practice location.  
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5.3. Exploratory Data Analysis 

All financial variables showed a right-skewed distribution, with many data points close to smaller 

values and a tail distribution with few values with high amounts (Appendix, Figure 2). More details 

can be found in Table 5.1. For example, the average submitted charges per patient, for each physician, 

can range from $13 to $45,804, where the median does not reach $1,000.  

Table 5-1. Summary Statistics of Financial Variables 

 Descriptive Statistics 

CMS NPI Features mean std min 25% median 75% max 

Total Medicare Payment Amount 285,245 464,491 277 95,310 171,033 302,726 10,193,799 

Total Submitted Charges 874,311 1,518,662 684 261,552 497,023 924,841 31,606,718 

Total Services 10,373 40,712 12 1,419 2,890 6,130 1,572,970 

Total Beneficiaries 886 1,024 11 348 585 999 20,414 

Aggregated Features        

Avg Submitted Charges per Patient 1,213 1,841 13 509 797 1,258 45,804 

Avg Medicare Payment per Patient 406 518 6 184 290 440 11,284 

Avg Submitted Charges per Service 223 272 3 97 153 235 6426 

 

Regarding within and out-of-HRR referrals, most physicians have within-HRR referrals as 

expected. Half of the primary care providers send their patients to a range from 1 to 7 unique 

specialists within 30 days. In contrast, half of the specialists receive their patients from 1 to 3 primary 

care providers (Table 5-2). This could indicate either missing primary care physicians in the area or 

some unknown bias in the referral system.  

 

 

5.4. Research Question and Hypothesis  

Our key concern is to investigate if there is any relationship between referrals and Medicare 

spending. Can we detect if the physician referral network explains part of the price variations across 

 Descriptive Statistics 

CMS NPI Features count mean std min 25% 50% 75% max 

Unique # of specialists that PCPs send their 

patients to 
5318 13 16 1 2 7 18 188 

Unique # of PCPs that specialists receive their 

patients from 
10121 7 9 1 1 3 8 81 

Referrals within HRR 15439 7 11 0 1 3 9 182 

Referrals out of HRR 15439 2 4 0 0 0 1 81 

Table 5-2 Summary Statistics of Referral-Based Variables 
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hospital referral regions after accounting for age, sex, race, and price; with the aid of node 

embeddings? Are there any biases in the referral network that could lead to higher Medicare spending, 

avoidable otherwise? These questions could help answer trivial policymaking issues and save federal 

budget money with the aid of Artificial Intelligence. If the current manual referral decision is biased 

towards higher spending, lack of efficiency across physicians, or lesser healthcare quality, what 

impact could an AI-based automatized referral process have on the healthcare system efficiency and 

U.S. federal budget? While this question remains to be answered, it represents our motivation to 

pursue this investigation. Hence, we hypothesize that a relationship exists between the physicians' 

referral network patterns and Medicare spending. This study does not aim to exhibit what type of 

relationship, if any, that might be. Given the unsupervised nature of the algorithms we use, we will 

attempt to find patterns that could plausibly explain higher Medicare costs and evaluate whether 

physicians with certain referral patterns relate to specific levels of healthcare quality and spending.  

5.5. Model Results 

Regarding the GNN, we limited testing the walk length from 2 to 5 since a longer walk would 

probably start losing information about the local neighborhood and obtaining more from the overall 

network, which may result in more similar embeddings. We selected 2 as number of walks and 5 as 

our walk length. We used two layers with a size of 50 each, and a dropout rate of 0.1. The sigmoid 

activation function performed best for our model when compared to ReLu. As node attributes, we 

considered average submitted charges per service, total Medicare paid amount and average submitted 

charges per patient. Since we use an unsupervised algorithm, we cannot conclude whether a variable 

is dependent or independent. Hence, our goal is limited to understand what the embeddings 

communicate about the relationship between referral patterns and financial features in Florida. After 

hyperparameter tuning, we selected the parameters mentioned and obtained a GNN binary accuracy 

of 0.6242 and a binary cross-entropy loss of 0.6480 after training for 5 epochs. 
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To get a grasp of our embeddings, we visualized them by reducing dimensionality through T-

SNE and UMAP. From a vector of size 50 we reduced to size 2, and plotted the new two-dimensional 

data on a scatterplot. Additionally, we added average submitted services as color, with yellow as top 

10%, purple the lowest 10%, and green the remaining data points in between. (Figure 5-1)  

Concerning the clustering results, we selected K of 2 for the K-Medoids clustering algorithm. 

Given the skewed distribution of the financial data, we decided that K-Medoids would guarantee 

better performance because of its robustness against outliers. To decide on the number of clusters, we 

calculated the inertias and silhouette scores for K ranging from 2 to 20 given that there are 18 HRRs 

in Florida is 18, and clusters formed based on these regions was possible. Yet, based on our business 

understanding, we suspect that a K of 2 or 3 may group physicians according to high, low and medium 

Figure 5-2. Node embeddings visualization using TSNE (left) and UMAP (right),  where blue 

represents “Cluster 0” and coral represents “Cluster 1” as labeled by K-Medoids clustering.   

Figure 5-1. Node embeddings visualization using TSNE (left) and UMAP (right), where yellow 

represents the top 10% of physicians with highest average submitted charges per services. 
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charges and/or Medicare payment, with this being also suggested by the two-dimensional embeddings 

visualization (Figure 5.1) The average silhouette score of our results was 0.63 (Appendix, fig 3), with 

56 % of physicians assigned to cluster 0 and 44 % to cluster 1. We suspected that 2 clusters may 

represent those with higher submitted charges but not necessarily higher Medicare payments, against 

those with lower submitted charges but higher Medicare coverage. This might result from physicians' 

specialties and services. We also contemplated a K of 3, yet the drop in the silhouette score was 

significant enough for us to choose K of 2 instead. We believe this way our analysis would be more 

precise since clusters are better defined. Two-dimensional node embeddings were plotted again, 

coloring by  cluster label (Figure 5.2) 

5.6. Results Analysis  

We plotted distributions for the average submitted charges per service (fig. 5-3, right) and per patient 

by cluster (Appendix, fig. 5);  we conclude they are lower in cluster 0. However, the total Medicare 

payment amount median and maximum values are higher for cluster 0 (fig. 5-3, left). It seems that 

physicians in cluster 0 submit higher charges than physicians in cluster 1 even though Medicare 

payment is lower. Furthermore, by observing the distributions plotted as histograms in log-scale (fig. 

5-4; Appendix, fig 4) we can conclude that both averages submitted charges per patient and service 

from cluster 0 seem shifted to the left when compared to those distributions from cluster 1.  

Figure 5-3. Boxplot distributions of Average Submitted Charges per Service and Total 

Medicare Payment Amount  each Provider, by Cluster 

(outliers were excluded from the results) 
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However, the total Medicare payment seems shifted to the right for cluster 0 when compared to 

cluster 1. Thus, there is a higher gap between submitted charges and Medicare coverage for those 

patients seeing physicians in cluster 0 than in cluster 1. These findings may occur if primary care 

physicians were clustered in cluster 0 and specialists in cluster 1. Nonetheless, in cluster 1 we have a 

total of 38.7 % of primary care providers; in cluster 0, 31 %. Fig. 5-5 provides a distribution count.  

The top specialties in both clusters seem to have a similar proportion, making it harder to state that 

one cluster represents "more expensive" or "less urgent" specialties than the other when trying to 

discover the reasoning behind the financial differences found. Table 3 from Appendix provides the % 

of specialties per cluster, as well as Gender proportions per cluster, which are also similar.  

Other main factor that may explain this discrepancy is rurality. Possibly, Medicare expenses are 

higher in urban areas. As expected, cluster 1 has 3% of physicians from rural areas, while cluster 0 

only has 0.9% (Appendix, fig. 6, 7 and 8.) Since the majority of physicians are from urban areas 

(approximately 98%), it is challenging to state if this is a significant difference. Hence, we need to 

carefully interpret the results, given that other variables that are not being held equal may interfere. 

Additionally, we ought to look at patients and services in each cluster, to determine if the volume of 

these are different. Log-scale histogram shows cluster 0 shifted to the right, meaning it is the cluster 

with higher volume of services and patients (Appendix, fig. 9). This may explain why it is the cluster 

with higher total Medicare payment amount. 

Figure 5-4. Log-scale histograms for Total Medicare Payment Amount and Average 

Submitted Charges per Service provided, by cluster. 
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Given that the only available data at the geographic level was by HRR, we will analyze whether 

there is any relationship between each HRR Medicare reimbursement rate, primary care access, and 

quality measures, considering the clusters found and the HRR where these physicians work. After 

calculating the clusters' proportions within each HRR, the two most significant regions were Miami, 

with 95.2% of physicians found in cluster 1; and Ocala, with 89.2% of physicians found in cluster 0 

(fig. 5-6). Concerning total Medicare reimbursements per enrollee, adjusted as explained under 

Section 5.2, Miami receives close to $13,000 while Ocala receives around $10,000. However, 

physician reimbursements per enrollee are not very different between these regions. (Table 5-3) 

Table 5-3. Price, age, sex & race-adjusted Medicare reimbursement rates 2015 Miami & 

Ocala 

Related to the quality measures, it appears thar Ocala performs better overall, with higher 

percentages of diabetes-related tests, less percentage of leg amputations and higher percentage of 

older females having at least one mammogram every 2 years (Table 5-4). Hence, even though Miami 

has a higher total Medicare reimbursement per enrollee, this does not seem to translate into higher 

healthcare quality. Miami contains 95% of physicians from cluster 1. On average, per service and 

 HRR City 

Medicare Reimbursement Rates 2015 (Price, age, sex & race-adjusted) Miami Ocala 

Medicare enrollees 145,033 104,695 

Total Medicare reimbursements per enrollee (Parts A and B)  13,109.2 10,236.6 

Hospital & skilled nursing facility reimbursements per enrollee  5,191.65 3,993.02 

Physician reimbursements per enrollee 3,701.58 3,915.66 

Outpatient facility reimbursements per enrollee  1,556.16 1,118.49 

Home health agency reimbursements per enrollee 1,593.65 615.65 

Hospice reimbursements per enrollee 568.85 366.82 

Durable medical equipment reimbursements per enrollee 211.54 208.39 

Figure 5-5. Count of Primary Care providers and 

specialists, by cluster 

Figure 5-6. Percentage of Physicians for that region 

that were assigned to cluster 1 



Mora Labarca, Isabel 

 50 

patient, those physicians submit higher amounts of charges, but total Medicare payment is lower. Yet, 

the average Medicare payment per patient has the same median for these two clusters. If physicians 

are not reimbursed more in one region, Miami has a higher reimbursement rate, physicians that charge 

more, and apparent lower quality care, what explains either the lower quality or the higher submitted 

charges in Miami against Ocala? In contrast, Ocala contains a majority of physicians from cluster 0, 

those that submit fewer charges. Even though Ocala receives fewer Medicare reimbursements per 

enrollee than when compared to Miami, our analysis suggests that it performs better in terms of 

primary care access and quality. Even more intriguing, Miami has a total of 4.2 primary care providers 

per 1,000 enrollees; Ocala only has 1.6. 

Table 5-4. Primary Care Access and Quality Measures for Medicare Enrollees, 2015 (Miami 

& Ocala) 

Table 5-5. Referral Measures by Cluster 

 

For referral-related patterns found in each cluster, the unique number of physicians that each 

cluster member sent/received their patients to/from within 30 days, on average, is higher in cluster 0. 

Within this cluster, PCPs send patients to 15.4 unique specialists, and specialists receive referred 

patients from 7.5 different PCPs, on average (Table 5-5). Thus, it appears that cluster 0 interacts in a  

 HRR name 

Primary Care Access and Quality Measures Miami Ocala 

Average annual % of diabetic Medicare enrollees age 65-75 having hemoglobin A1c test 85.91 88.9 

Average annual % of diabetic Medicare enrollees age 65-75 having eye examination 64.27 72.55 

Average annual % of diabetic Medicare enrollees age 65-75 having blood lipids (LDL-C) test 86.04 89.37 

Average % of female Medicare enrollees age 67-69 having at least one mammogram over a two-

year period 
56.75 75.22 

Leg amputations per 1,000 Medicare enrollees 0.69 0.46 

Total Mortality: ASR-adjusted % of deaths among Medicare enrollees 3.5 4.06 

Primary care providers by 1,000 Medicare enrollees 4.25 1.64 

Female Medicare enrollees % aged 67-69 7.7 8.9 

Diabetic Medicare enrollees % aged 65-75 10.56 11.19 

Rural zip codes %  7.36 6.06 

 Cluster Label 
 Cluster 0 Cluster 1 

Referral-Based Metrics 
mea

n 
50% 75% max 

mea

n 
50% 75% max 

Unique # of specialists that PCPs send their 

patients to 
15.4 9 22 188 9.94 5 14 114 

Unique # of PCPs that specialists receive 

their patients from 
7.53 4 10 81 5.43 2 6 66 

Referrals within HRR 8.25 3 11 182 5.87 2 7 104 

Referrals out of HRR 1.73 0 1 81 1.31 0 1 59 
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more widespread manner than cluster 1.  

To conclude, the implementation of Graph Neural Networks and K-Medoids clustering led us to 

discern differences between healthcare providers and analyze their relationship with other 

demographic measures. Cluster 0 physicians showed lower submitted charges per patient/service, and 

fewer referrals overall and out of HRR. Yet, they interacted with more physicians; thus, their network 

was wider. In contrast, cluster 1 physicians showed higher submitted charges per patient/service, and 

more referrals overall and out-of-HRR, yet they interact with a smaller range of physicians; thus, their 

physician network was narrower. The most representative region of Cluster 0 was Ocala; and of 

Cluster 1, was Miami. Ocala's total reimbursements and most of the reimbursements' subcategories 

were lower than those in Miami; however, healthcare quality metrics considered for our study were 

overall lower for Miami – the HRR with 95 % of its physicians from cluster 1. Based on our analysis, 

we conclude that cluster 1 physicians seem less efficient than those from cluster 0, and one of the 

reasons could be that their network is smaller. Table 5-6 shows a summary of the results found and 

their statistical significance. Given the absence of normality in our data, we implemented the Mann-

Whitney U test in each of the variables of the table to compare across clusters. Many variables may 

interact with these results that were not considered for this analysis, such as total population, economy, 

and education rates per region; physicians' employees; hospitals' management; among others. Hence, 

results should be interpreted cautiously. 

Variable Cluster 0 Cluster 1 

Average submitted charges per service 
Lower a Higher a 

Average submitted charges per patient 

Total Medicare payment amount Higher a Lower a 

Primary Care Providers  31 % 38.7 % 

Physicians from rural areas 0.9% 3% 

HRR with most physicians from this cluster Ocala (89.2%) Miami (95.2%) 

Unique physicians interacted with Higher a Lower a 

Patient referrals Lower a Higher a 

Proportion of referrals out of HRR Lower a Higher a 

Average Medicare payment amount per patient Not different b 

aThe results are significant at a significance level of 0.01 determined by Mann-Whitney U Test 
bEven though the Total Medicare Payment Amount was found to be significant, after accounting for total patients and considering the 

average, difference was not statistically significant (p-value = 0.08) 

Table 5-6. Results and Statistical Significance 

Summary 
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6. Discussion   

Given that referral is a human-based decision, our work is motivated by exploring if there 

are any biases affecting them. Physician referrals that are unnecessarily burdensome affect the 

efficiency and cost of the healthcare system. Our research analyzes these overlooked problems. 

In this study we dissected the physician referral network for 2015 from Florida. In Section 

5, we analyze different referral periods to uncover whether there are any significant differences 

when considering specialties. Our belief is that there might be differences in specialists 

collaboration in different timeframes, since there might be changes in the healthcare system 

that our data cannot control for. Yet, it is also possible that healthcare specialists have different 

patterns of collaboration based on their area of expertise explaining specialty-based findings. 

Additionally, chronic diseases may affect physician collaboration, since long-term medical 

conditions require constant check-ups. Thus, various healthcare specialists may require to 

cooperate in a way that is unique for patients with these type of diseases. For Section 6 we 

considered multiple financial variables from the physicians, such as submitted charges per 

patient and Medicare payments. Besides, we factored into this analysis the Medicare 

reimbursement rates, as well as PC access and quality measures for each HRR, considering that 

demographic factors are likely to intervene. The motivation was to uncover if any relationship 

exists between physician referrals and Medicare spending. Findings showed that physician 

submitted charges and their referral patterns are related to Medicare spending, PC access and 

quality measures of the region. However, given the unsupervised nature of our study, we are 

not able to conclude in what way variables affect one another. For Section 7, we explore the 

relationship between experience and physician referral patterns. Understanding this relationship 

is useful in identifying barriers to establish effective referrals and collaboration between 

physicians. Experienced physicians are responsible for passing information and practice 

experience to their younger counterparts, however, they might prefer to refer to an experienced 
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specialist because the latter may have more experienced or an established relationship that eases 

collaboration. Policymakers, educators, and healthcare organizations may find this information 

to be useful in developing plans and solutions to help doctors raise the standard of care and 

identify possible disparities in the healthcare system. 

Concerning limitations, our work was based on the referral dataset from 2015 based on 

Medicare claims. As a result, physicians that were involved in the study were Medicare 

participants with claims from Medicare enrollees, and do not represent the overall population. 

Additionally, we acknowledge that each state may behave differently and results may not be 

applicable to a national level. Moreover, the number of referrals considered for the analysis 

were based on the assumption that if a patient visits two providers within our period of study, 

it would count as referral. This issue arises from the inability to disclaim patient records. 

Moreover, HRR-level rates may be too broad of a metric to understand primary care access and 

healthcare quality, with the possibility that more local metrics would add precision to our 

analysis. Similarly, factors such as education, race, population levels and income specific to the 

area of study have not been included.    

Since we were limited regarding computing processing power, future work with appropriate 

equipment should explore the algorithms considered and reach a solution close to optimal. 

Further areas could be integrated into the study, especially states that are markedly different 

with one another. Additionally, access to patient claims data would provide more precision into 

the analysis. Regarding GNNs, a comparison of performance across other GNNs such as 

attri2vec, node2vec (etc.) would provide more insights and robustness to our findings.  

Overall, the paper provides useful insights for healthcare organizations to improve 

collaboration between physicians and develop strategies to improve patient care. By better 

understanding referral practices of primary care specialists, organizations can improve 

coordination of care.  
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Appendix 

Table 1.  Selected Medicare Reimbursement Rates by Florida HRR. Data from Dartmouth 

Atlas of Healthcare, 2015, Price, age, sex and race adjusted (“Dartmouth Atlas of Healthcare 

Data 2022”) 

HRR 

# 
HRR name 

Medicare 

enrollees 

(2015) 

Total 

Medicar

e 

reimburs

ements 

per 

enrollee 

(Parts A 

and B) 

Hospital 

& skilled 

nursing 

facility 

reimburs

ements 

per 

enrollee 

Physicia

n 

reimbur

sements 

per 

enrollee 

Outpatie

nt 

facility 

reimburs

ements 

per 

enrollee 

Home 

health 

agency 

reimburs

ements 

per 

enrollee 

Hospice 

reimbur

sements 

per 

enrollee 

Durable 

medical 

equipme

nt 

reimburs

ements 

per 

enrollee 

115 Bradenton 39,678.00 10,544.49 4,212.99 3,902.24 1,172.71 805.97 271.84 174.85 

116 Clearwater 52,103.00 11,331.01 4,575.79 3,868.90 1,337.17 976.96 342.69 217.50 

118 Fort 

Lauderdale 

270,366.00 11,515.69 4,276.00 4,269.25 1,486.57 912.36 385.76 191.12 

119 Fort Myers 192,018.00 9,980.16 3,672.06 4,002.06 1,098.89 625.67 345.11 216.44 

120 Gainesville 63,302.00 10,328.01 4,553.13 3,177.88 1,196.98 748.38 452.12 212.59 

122 Hudson 45,070.00 11,494.79 5,079.43 3,999.53 999.25 932.71 263.64 209.79 

123 Jacksonville 159,629.00 11,143.78 4,599.15 3,568.60 1,554.04 709.42 495.72 225.16 

124 Lakeland 29,141.00 11,032.98 4,831.43 3,468.60 1,193.59 889.65 425.65 211.94 

127 Miami 145,033.00 13,109.15 5,191.65 3,701.58 1,556.16 1,593.65 568.85 211.54 

129 Ocala 104,695.00 10,236.63 3,993.02 3,915.66 1,118.49 615.65 366.82 208.39 

130 Orlando 354,310.00 11,017.52 4,600.60 3,590.60 1,372.76 781.06 441.48 226.26 

131 Ormond 

Beach 

52,061.00 10,043.62 3,773.12 3,210.42 1,533.12 773.86 588.84 171.31 

133 Panama City 27,363.00 11,393.02 5,122.49 3,539.09 1,343.43 612.58 497.88 287.24 

134 Pensacola 93,551.00 10,448.59 4,313.57 2,902.79 1,809.99 716.57 485.91 231.76 

137 Sarasota 90,707.00 9,645.26 3,489.95 3,847.34 1,217.29 685.47 234.91 172.09 

139 St. 

Petersburg 

37,395.00 11,662.96 5,171.11 3,797.55 1,278.71 934.37 275.82 199.04 

140 Tallahassee 62,676.00 9,944.33 4,416.51 2,690.74 1,630.85 493.29 493.38 223.01 

141 Tampa 90,046.00 11,766.31 5,037.77 3,691.05 1,289.53 1,107.03 404.33 218.04 

 

 
Source: Dartmouth Atlas Data. “Medicare Reimbursements” By 2015, 100% Samples. 

https://data.dartmouthatlas.org/medicare-reimbursements/ 
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Table 2. Selected Primary Care Access and Quality Measures by Florida HRR. Data from 

Dartmouth Atlas of Healthcare, 2015, Price, age, sex and race adjusted (“Dartmouth Atlas of 

Healthcare Data 2022”) 

 

 
Source: Dartmouth Atlas Data. “Selected Primary Care Access and Quality Measures” for  

2015, 100% Samples. https://data.dartmouthatlas.org/primary-care/ 
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115 
FL-

Bradenton 
3641 86.18511 71.51881 81.79072 3770 69.62865 32010.8 -0.624 46.778 

116 
FL-

Clearwater 
4335 87.797 69.68858 87.56632 4229 68.40861 42957.8 -0.583 52.688 

118 
FL-Fort 

Lauderdale 
21653 87.11033 71.14026 86.09431 21357 69.37772 223113.8 0.294 49.475 

119 
FL-Fort 

Myers 
17568 87.67646 71.67008 87.10155 17416 75.06316 153701.3 0.492 42.758 

120 
FL-

Gainesville 
7573 84.68242 65.53545 78.87231 5840 62.44863 51914.3 0.685 70.686 

122 FL-Hudson 5051 87.13126 68.3429 87.48763 3764 69.20829 35858.3 -0.602 64.64 

123 
FL-

Jacksonville 
20066 84.55597 65.20482 81.40138 16386 65.50104 130293 0.574 57.867 

124 FL-Lakeland 3517 87.26187 68.89394 86.80694 2468 66.97731 23868 -0.723 70.332 

127 FL-Miami 15311 85.91209 64.26752 86.04271 11166 56.75264 125793 0.687 64.498 

129 FL-Ocala 11713 88.90122 72.55187 89.37078 9315 75.22276 81975.8 0.464 45.505 

130 FL-Orlando 40143 86.46588 67.17734 86.21927 31326 67.15508 288960.8 0.579 56.699 

131 
FL-Ormond 

Beach 
5311 87.83657 70.68349 86.66918 4756 70.94197 41910.8 -0.35 43.056 

133 
FL-Panama 

City 
3471 79.48718 66.69548 76.37568 2595 58.84393 21699 -0.726 62.098 

134 FL-Pensacola 11417 81.06333 65.73531 77.60357 9207 62.32215 74656.5 0.608 59.604 

137 FL-Sarasota 6567 86.91945 74.43277 84.11756 7664 74.43894 71592 0.337 32.573 

139 
FL-St. 

Petersburg 
3258 86.00368 67.24985 83.45611 3156 63.75158 31374 -0.604 57.236 

140 
FL-

Tallahassee 
7972 84.20723 62.20522 80.55695 5919 62.83156 51876.8 0.633 58.739 

141 FL-Tampa 10295 84.56532 64.5459 83.38028 8313 63.27439 75918.8 0.534 60.444 
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Figure 1. Rural Zip Codes % per HRR 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Exploratory Data Analysis for Section 6: Variables Distributions. All data (left), 

limited x-axis (right) 
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Figure 3.  Average Silhouette Scores (left), Silhouette Plot for K-Medoids with 2 centers (right) 
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Table 3. Gender and Top 5 Specialties Distribution, by Cluster 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Log-scale histogram of Average Submitted Charges per Patient for each cluster 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 
 
 
 
 
 

 Cluster Label 

Variable Cluster 0 Cluster 1 

Gender   

Male (%) 76.64 72.95 

Female (%) 23.36 27.05 

Top 5 Specialties   

Internal Medicine (%) 19.95 25.53 

Family Practice (%) 9.97 10.44 

Cardiology (%)  7.87 6.55 

Diagnostic Radiology (%) 6.93 5.44 

Nurse Practitioner (%) 6.01 7.3 
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Figure 5. Average Submitted Charges per patient, Boxplot distribution for each cluster without 

outliers 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figures 6 and 7. Providers’ Count for each RUCA code, by cluster (left), Providers’ Count for 

each Rural RUCA code, by cluster (right) 
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Figure 8. Providers’ Count by RUCA rurality category 
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Figure 9. Log-scale histogram for Total Services per Physician by Cluster (left) and Total 

Patients per Physician by Cluster (right) 

 
 

 
 
 
 
 
 
 
 

 

 


