Predicting bootcamp success: using regression to leverage preparatory course data for tech career transitions

Ricardo Santos¹ [0000-0003-1007-206X], Ivica Pesovski² [0000-0002-5284-4825], Roberto Henriques¹ [0000-0002-4862-8177], Vladimir Trajkovik³ [0000-0001-8103-8059]

¹NOVA Information Management School (NOVA IMS), Campus de Campolide, Universidade Nova de Lisboa, 1070-312 Lisboa, Portugal
²Brainster Next College, Macedonia
³Ss. Cyril and Methodius University, Faculty of Computer Science & Engineering, Macedonia

This is the accepted manuscript version of an article published by IATED:
PREDICTING BOOTCAMP SUCCESS: USING REGRESSION TO LEVERAGE PREPARATORY COURSE DATA FOR TECH CAREER TRANSITIONS

R. Santos, I. Pesovski, R. Henriques, Vladimir Trajkovik

1 NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, 1070-312, Lisbon (PORTUGAL)
2 Brainster Next College, Skopje (MACEDONIA)
3 Faculty of Computer Science & Engineering, Ss. Cyril and Methodius University (Macedonia)

Abstract

In our ever-evolving digital landscape, the demand for tech-savvy professionals is soaring. However, traditional education often falls short in equipping individuals with the practical skills needed by employers. Aspiring tech enthusiasts face a dilemma: they want to gain swift entry into the industry without committing to lengthy degree programs. Meanwhile, career changers seek streamlined paths to acquire relevant skills.

Programming bootcamps provide a pragmatic solution. These intensive, short-term programs prioritize hands-on learning over theoretical depth. Participants emerge with coding abilities, web application development skills, and collaborative prowess — all within months. Bootcamps attract both young learners exploring alternatives to Bachelor's degrees and professionals switching careers to tech jobs. By bridging the education-employment gap, bootcamps empower individuals for junior roles in the tech sector. However, bootcamps also pose challenges. Many participants lack formal programming training, which can impact their success. Institutions offering these programs are incentivized to create preparatory courses, ensuring fundamental skills and providing support mechanisms.

In this study, we analyze the efforts of future bootcampers in preparatory courses at a European university using leave-one-out cross-validation on a dataset of 207 bootcampers to create a predictive regression model that uses information provided upon registration and their respective attendance at the preparatory courses. Then, we used this model to predict the final score of a new cohort of 58 students and measure the model's performance by measuring the mean, squared, and root mean squared errors on the test set. In the second step, we analyzed the importance of the variables used by the predictive model by measuring the R² score and the relative tree-based feature importance for each variable.

Our results show that data collected before the start of a bootcamp can be used to predict the success of a bootcamper as our Random Forest model predicted each participant's final grade with a mean absolute error of 18.72 points (grades vary between 0 and 100). Moreover, our model explains 44% of the final grades' variability, with prior knowledge of the topic and the number of completed preparatory steps among the most relevant features. Implications for both research and practice are analyzed and discussed.

Keywords: Bootcamps, Tech Education, Predictive Modeling, Preparatory Courses, Career Transition

1 INTRODUCTION

The ever-increasing demand for digital goods and services [1] has forced companies to search for workers with the necessary digital skills or to develop them in their current workforce [2]. Despite this, employers have historically struggled to fill various roles, ranging from data scientists [3] to cybersecurity workers [4], with adequately skilled individuals. One key factor contributing to this skills gap is the discrepancy between the technical and interpersonal abilities that prospective employees are anticipated to possess and the skills they actually have upon leaving university and entering the job market [5]. With a greater emphasis on practical and hands-on coding, programming bootcamps have become popular and attractive development alternatives open to individuals with any background. Bootcamp graduates are recognized for having greater comfort in code development and, simultaneously, more developed soft skills than fresh graduates in computer science [6].
The popularity and success of programming bootcamps can be attributed to the fact that they are generally short, ranging from as little as 10 to 14 weeks to as long as a year, and focused on practical implementations, thus aligning the acquired skills with employer expectations [6, 7]. These factors make bootcamps enticing for motivated professionals looking to upskill themselves and start a career in technology [7, 8]. However, bootcamp success is far from straightforward. While most programs market themselves as zero-to-hero journeys that allow non-programmers to develop and succeed, evidence suggests that prior programming knowledge often plays a crucial role in bootcamp success [7, 9]. Thus, organizers are incentivized to provide the necessary support for prospective bootcampers to succeed [10, 11]. For example, adequate preparatory materials are a well-intentioned, albeit time-consuming, method to introduce the most important concepts and ensure all participants start their bootcamp on an even playing field [9]. While helpful, the provision of preparatory materials does not guarantee that they will either be consulted or, even if they are, fully address any insufficiencies exhibited by the participants.

Popular in the context of higher education but still underexplored for bootcamps, learning analytics may offer an elegant pathway to increase bootcamper success. Learning analytics can be defined as an area of study that aims to use data from multiple sources to understand and promote learning [11, 12]. Over the past decade, researchers and practitioners have, for example, been able to use machine learning (ML) techniques on data extracted from learning management system (LMS) logs to identify differences in the learning strategies adopted by students [13, 14], identify students at risk of failing [16-19], and to implement strategies that assist students flagged as likely to fail [20]. In a way analogous to the early warning systems developed for higher education, bootcamp schools using LMS can create a predictive model that would enable the early identification of bootcampers needing additional support. However, to the best of our knowledge, the literature does not feature any relevant studies on this topic dedicated explicitly to the bootcamp context. In this work, we aim to tackle the issue of bootcamp success by attempting to address the following research questions:

1. Can bootcamp educators predict how well a participant will perform before the start of the bootcamp?
2. What are the most significant predictors of bootcamp success?

To address these research questions, we use data from a European school promoting programming bootcamps for two distinct web development disciplines: Front-End and Full-Stack development. For each anonymized registered bootcamper, we collected the information provided in the registration form and the degree of completion of multiple preparatory courses meant to be taken before the start of the bootcamp. This data is combined to build a regression model to predict the bootcamper's expected final score at the end of the bootcamp. For this task, we focus on using models that exhibit some form of measurement of feature importance, allowing us to verify which variables contribute the most towards the final prediction.

The remainder of this paper is structured as follows: the following section presents the data and methods used in this study. The results are then presented and discussed, followed by the conclusion and recommendations for future work.

2 METHODOLOGY

This work started with collecting data from the two main sources provided by the school: registration forms and LMS logs. The sample includes 6 cohorts of bootcampers that have, over time, completed the Front-End development bootcamp and 4 cohorts that have completed the Full-Stack bootcamp. This set of heterogeneous data was transformed into a structured dataset. The last cohort for each program was separated for testing purposes, whilst the remaining data was used to train multiple regression models using leave-one-out cross-validation. A summary of the overall experimental design, explained in more detail in the subsequent subsections, is depicted in Figure 1. Unless otherwise noted, all data manipulation and analysis procedures were implemented using Python [21] and Scikit-learn [22].
2.1 Data description

The data used in this work corresponds to a sample of 260 unique bootcampers divided into 10 total groups who have attended a bootcamp at a European school. The school offers bootcamps in Full-Stack (4 groups) and Front-End (6 groups) web development. All personal identifying information was anonymized in compliance with the General Data Protection Regulation (GDPR).

Attendees of a bootcamp were required to register in the school's LMS beforehand. The form included fields of mandatory completion (e.g. name or contact) and five elective fields, which included the motivation behind the enrollment, the bootcampers prior knowledge, the current level of instruction, the industry the bootcamper comes from and, finally, the employment status at the time of registration. After registering, attendees are provided with a plethora of optional preparatory materials meant to bring their knowledge to the level required to complete the bootcamp, which attendees can consult at any time from the moment of registration until the start of the bootcamp. These lessons are common for both bootcamps and are divided into 11 modules ranging from general introductions to concepts and contents such as Getting started: Web Overview or Web development: Introduction to more practical contents such as tutorials and exercises on HTML & CSS or Javascript. After completing a lesson, registered attendees can checkmark their progress on the system.

The data from both sources was converted into a structured dataset featuring 61 candidate features. Table 1 provides a general overview of the 10 bootcamp groups featured in the sample. In total, the sample features 4 Full-Stack groups and 6 Front-End groups. Full-Stack groups tend to have a higher percentage of non-passing bootcampers than their Front-End counterparts.

Table 1. Characterization of each bootcamp group that has attended one of the web development bootcamps. The numbering convention in group names indicates sequential order.

<table>
<thead>
<tr>
<th>Training Data</th>
<th>Registered Bootcampers (n)</th>
<th>Elective fields completed on the form (average n)</th>
<th>Preparatory materials completed (average %)</th>
<th>Final Score on Bootcamp (average %)</th>
<th>Non-passing bootcampers (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-Stack_1</td>
<td>23</td>
<td>0.43</td>
<td>79.75</td>
<td>66.76</td>
<td>26.09</td>
</tr>
<tr>
<td>Full-Stack_2</td>
<td>25</td>
<td>0.20</td>
<td>31.43</td>
<td>38.48</td>
<td>60.00</td>
</tr>
<tr>
<td>Full-Stack_3</td>
<td>26</td>
<td>0.65</td>
<td>48.24</td>
<td>44.77</td>
<td>57.69</td>
</tr>
<tr>
<td>Front-End_1</td>
<td>27</td>
<td>0.18</td>
<td>50.63</td>
<td>55.60</td>
<td>44.44</td>
</tr>
<tr>
<td>Front-End_2</td>
<td>26</td>
<td>0.96</td>
<td>61.60</td>
<td>59.56</td>
<td>34.62</td>
</tr>
<tr>
<td>Front-</td>
<td>24</td>
<td>0.33</td>
<td>47.44</td>
<td>58.66</td>
<td>37.50</td>
</tr>
</tbody>
</table>
The training data (Full-Stack groups 1 to 3 and Front-End groups 1 to 5) was subdivided into training and validation sets using a leave-one-out cross-validation strategy. This strategy is beneficial for small datasets such as ours as it maximizes the use of data for training and validation. It involves using a single data point from the original dataset as the validation data and the remaining data points as the training data. This process is repeated so that each data point in the dataset is used once as validation data [23]. All subsequent steps were performed independently for each cross-validation fold to avoid data leakage [24].

2.2 Data preprocessing

The candidate categorical features were encoded using average target encoding [25]. This method replaces each category of a categorical feature with the average value of the target variable (in this case, the bootcamper's final score) for that category, thus avoiding potential problems of dimensionality that could arise from other popular encoding strategies such as one-hot encoding. As most commonly adopted techniques (e.g. standardization) often rely on the assumption of the data being normally distributed, all candidate features and the target were transformed using the Yeo-Johnson power transformation, which finds the exponent that would better convert the current distribution of a variable into a normal distribution and then applies that transformation [26]. Finally, all variables in the dataset were normalized.

2.3 Feature selection

Feature selection was performed using a vote of three distinct methods: univariate regression tests where a variable would be kept if and only if a variable’s contribution to the target was statistically significant\(^1\), having an importance greater than the expected average importance of a variable while building a model with the Extremely Randomized Trees algorithm [27], and Recursive Feature Elimination (RFE) [28] using a Linear Regression as the base estimator. The candidate features selected by at least two methods were kept for the following stages, with the remaining variables being discarded at this stage. At the end of the process, the final dataset included the 8 features presented in Table 2 in no particular order.

\(1\)Implementation of this specific method can be found here: https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html

<table>
<thead>
<tr>
<th>Source</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration</td>
<td>Number of filled items</td>
</tr>
<tr>
<td>Form</td>
<td>Number of filled items (%)</td>
</tr>
<tr>
<td></td>
<td>Purpose of enrollment</td>
</tr>
<tr>
<td></td>
<td>Level of Instruction</td>
</tr>
<tr>
<td></td>
<td>Topic Prior Knowledge</td>
</tr>
</tbody>
</table>

Table 2. Selected Features
2.4 Model Selection

At this stage, we created multiple instances of popular interpretable machine learning algorithms used in regression tasks: Linear Regression, Extremely Randomized Trees, Random Forest (RF) [29] and Histogram-Based Gradient Boosting (HistGradientBoost), which is the scikit-learn implementation of the Light Gradient Boosting Machines algorithm [30]. For each algorithm, we optimized the hyper-parameters via a grid search. Each putative model was trained on the selected features using the training data, and their respective performance was evaluated using the average Mean Squared Error (MSE) on the validation data. The MSE is a common metric for regression tasks and measures the average squared difference between the actual and predicted values. The 4 best models (algorithm and corresponding hyper-parameter combinations) were selected for further analysis of the test data.

2.5 Evaluation of Test Data

After identifying the top four models, we evaluated their performance on a separate test dataset (comprising Full-Stack Group 4 and Front-End Group 1). This dataset had not been utilized until this stage. Each chosen model generated predictions for the final scores of the bootcampers in the test dataset. These predictions were subsequently compared with the final scores using well-known regression metrics: MSE, Mean Absolute Error (MAE) and the R^2. These metrics are mathematically defined in equations (1) to (3).

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \bar{Y})^2 \quad (1)$$

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |Y_i - \bar{Y}| \quad (2)$$

$$R^2 = 1 - \frac{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}{\sum_{i=1}^{n} (Y_i - \bar{Y})^2} \quad (3)$$

In the second level of analysis, we aimed to determine how effectively our models could identify bootcampers who failed (final score < 50%). To achieve this, we transformed the final scores and corresponding predictions into a binary indicator (0-Not Failed, 1-Failed) and evaluated the performance using the widely used classification metrics Precision, Recall, and F1-Score, which are mathematically defined by the equations (4) to (6).

$$Recall = \frac{TP}{TP+FN} \quad (4)$$

$$Precision = \frac{TP}{TP+FP} \quad (5)$$

$$F1Score = \frac{2 \times Precision \times Recall}{Precision + Recall} \quad (6)$$

2.6 Analysis of Feature Importance

A key factor influencing our selection of algorithms was their capacity to elucidate the impact of each feature on the final prediction. This could be achieved through different means depending on the algorithm. For instance, in the case of Linear Regression, the coefficients assigned to each feature provide insight into their relative importance. On the other hand, for decision tree-based ensemble models, the degree to which a feature contributes to the reduction in prediction errors serves as an indicator of the significance of the predictor.

To determine the most influential features, we evaluated each feature based on its contribution to the performance of our best model and then ranked them by impact towards the outcome.
3 RESULTS

3.1 Model Selection and Performance on Test Data

Table 3 presents the best algorithms and their corresponding hyper-parameter combinations as determined by the average MSE computed from the leave-one-out cross-validation results. The table shows that RF and HistGradientBoost outperformed all combinations of Linear Regression and Extremely Randomized Trees. Some relevant similarities emerge: all selected RF algorithms share the same number of estimators and the maximum number of features to bootstrap for each decision tree. Moreover, except for Model 3, all ensemble methods presented build decision trees up to a depth of 10 levels.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm</td>
<td>RF</td>
<td>RF</td>
<td>RF</td>
<td>HistGradientBoost</td>
</tr>
<tr>
<td>Splitting Criterion</td>
<td>friedman_mse</td>
<td>absolute_error</td>
<td>friedman_mse</td>
<td>-</td>
</tr>
<tr>
<td>Max Tree Depth</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Max Features</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
<td>80%</td>
</tr>
<tr>
<td>Sample Size</td>
<td>60%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Number of Estimators</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>Loss Function</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Half-least squares loss</td>
</tr>
<tr>
<td>Learning rate</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.01</td>
</tr>
</tbody>
</table>

A separate instance of each one of these models was created and trained on the whole training dataset, which was then used to obtain predictions for the test dataset. After obtaining the predictions, we computed the corresponding MSE, MAE, and R^2. Moreover, we also computed the Precision, Recall and F1-Score, considering a classification scenario where the positive class represents a bootcamper final score below 50% (thus failing to complete the bootcamp). The results are presented in Table 4.

From the evidence available, Model 3 (RF with max_depth equal to 5 and with the friedman_mse splitting criterion) is the one that better generalizes to the test data, not only achieving the lowest absolute error on average (MAE = 18.72), but a model that is less susceptible to making smaller mistakes as it also has the smallest MSE (MSE = 574.66) and the one whose predictions are more explanatory of the variance present in the final score ($R^2=0.44$). Regarding regression metrics, this model is closely followed by Model 2 (second lowest MSE despite having a higher MAE than Model 4) and Model 4 in the third position.

Table 4. Results for all the selected models on the test data. Best model for each metric is highlighted in bold. For interpretability purposes, MSE and MAE were computed assuming the Final Score on the original scale (0 to 100).

<table>
<thead>
<tr>
<th>Target Variable</th>
<th>Performance Metric on Test Dataset</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Score</td>
<td>MSE</td>
<td>690.30</td>
<td>608.88</td>
<td>574.66</td>
<td>627.87</td>
</tr>
<tr>
<td></td>
<td>MAE</td>
<td>20.83</td>
<td>19.56</td>
<td>18.72</td>
<td>19.26</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>0.32</td>
<td>0.40</td>
<td>0.44</td>
<td>0.38</td>
</tr>
<tr>
<td>Not Failed/Failed</td>
<td>Precision</td>
<td>0.54</td>
<td>0.70</td>
<td>0.77</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>Recall</td>
<td>0.43</td>
<td>0.44</td>
<td>0.63</td>
<td>0.63</td>
</tr>
</tbody>
</table>
The results observed for regression are, however, not completely mirrored when treating the problem of predicting final scores into a binary flag for failure on the bootcamp vs not failing. Model 3 still exhibits the highest scores on the classification metrics as it correctly identified 63% of bootcampers who could not complete the bootcamp. Moreover, this recall is accompanied by a Precision score of 0.77, indicating that every three out of four bootcampers flagged as likely to fail did indeed fail in the bootcamp. Surprisingly, Model 4 exhibits precisely the same scores for classification metrics as Model 3 and, for this specific sort of problem, clearly outperforms Model 2 despite its poorer performance in predicting the exact final score. To explain this discrepancy, we looked deeper into the predictions obtained by both models and found that Model 3 tends to be more precise for most bootcampers. However, larger discrepancies between the final and predicted final scores are generated for some specific situations. These observations were consistent with Model 3’s lower MAE but considerably higher MSE. Future work could better explore this phenomenon and try to identify the characteristics of a bootcamper whose performance is more challenging to assess.

The elements above also allow us to answer Research Question 1: our results demonstrate that it is possible to use data available before the start of a bootcamp to predict how bootcampers will perform during it. Using an RF algorithm, we used data provided in the registration form and the LMS records of completion of the preparatory materials of a bootcamp school and achieved an MAE of 18.72 points (out of 100) on the test data. This performance allowed us to identify close to 2 thirds of failing bootcampers correctly. In a deployment scenario, bootcamp educators could use a model such as the one developed herein to preemptively flag bootcampers who are more likely to be unsuccessful and provide them with the additional support they need.

3.2 Analysis of Feature Importance

A RF is composed of numerous decision trees that are trained concurrently. Each tree is constructed using a unique subset of the data, and at each decision node, it selects a feature to split the data. The chosen feature is the one that best partitions the data into groups with distinct target variable values. In the context of Model 3, the MSE criterion is used at each decision node to determine which feature would result in the optimal data partition. To ascertain the most influential features among our selected eight for Model 3, we calculated each feature’s individual contribution to reducing the MSE across the various decision trees.

![Feature Importances for Tree Ensemble](image)

Figure 2. Feature Importance of each of the selected features towards constructing Model 3. The results show the percentual contribution of each feature towards the reduction in MSE at each decision node.
Figure 2 illustrates the importance of each selected feature in constructing Model 3. The results display the percentage contribution of each feature towards the reduction in MSE at each decision node. Figure 2 organizes the eight features considered for Model 3 in order of descending importance. The most influential features are the completion of preparatory materials available in the LMS, followed by the number of elective questions answered in the registration form. These findings align with our initial expectations, as both factors indicate a level of dedication to the bootcamp and potentially higher motivation levels towards its successful completion. Prior knowledge of programming is another expected relevant feature that aligns with previous findings in the literature [7, 9] and the intuitive notion that having programming foundations can provide a head start when attending the bootcamp.

Conversely, it was unexpected that the participant’s current level of education and employment status did not significantly contribute to this specific model. The rationale behind this finding could stem from several possibilities. One theoretical explanation could be that success in the bootcamp relies more on the individual's engagement and effort than on their educational or professional background. However, we are hesitant to accept this hypothesis outright, as intuitively, education and profession directly influence someone's prior programming knowledge. Another potential alternative explanation could arise from factors such as sample size and the specifics of how an RF makes decisions (i.e., finding the feature/condition that achieves the best data partition for every node of every decision tree), making the presence of these variables redundant but not irrelevant. Additional research would be needed to validate these findings and explore other potential explanations.

The elements above also allow us to answer Research Question 2: The most significant predictors of bootcamp success, as our analysis indicates, are completing preparatory materials available in the LMS, the number of elective questions answered in the registration form, and prior programming knowledge. However, further research is needed to confirm these findings and explore other potential predictors of bootcamp success. This could include factors not considered in this model, such as the participant's learning style, time management skills, or support network. These findings provide valuable insights for learners considering enrolling in a bootcamp and the organizations offering these programs, highlighting the factors most likely to contribute to a successful learning experience.

4 CONCLUSIONS

In this study, we explored the topic of bootcamp success by creating a predictive model using data collected before the commencement of bootcamps. By considering registration information and preparatory course completion records, we constructed regression models to forecast the final scores of bootcamp participants. Our results unveiled the potential to anticipate bootcampers' performance with a mean absolute error of 18.72 points, shedding light on the feasibility of preemptively identifying struggling individuals. Additionally, our investigation into classification metrics revealed the model's ability to effectively distinguish bootcampers at risk of failing, further enhancing the utility and interpretability of our predictive approach. Moreover, an analysis of the importance of each feature towards the prediction highlights that completion of preparatory materials and prior programming knowledge are the most important determinants of bootcamp success.

While our study has provided valuable insights into the predictive modelling of bootcamp success, it is essential to acknowledge certain limitations that warrant consideration. A significant aspect is that the set of features used in this study only considered data obtainable from registration forms and indicators of preparatory material completion, which might overlook other factors for whom we did not have data available but could also impact bootcamp performance. The dataset's sample size used in this study might also limit the applicability of the findings to a broader population of bootcamp participants. Moreover, the intricacy of human behavior and learning dynamics within bootcamp settings introduces inherent variability that our models might not fully encapsulate. Future studies should address these limitations by including a more diverse array of predictors and enlarging the dataset to bolster the robustness and relevance of predictive models in bootcamp education.

The insights gained also provide exciting implications for practice within tech education and bootcamp facilitation. Educators and program organizers can utilize the predictive models developed in this research to proactively identify bootcamp participants who might need additional support or intervention to boost their chances of success. By identifying individuals at risk early on based on pre-bootcamp data, educational institutions can customize their support mechanisms to meet these learners' specific needs, thereby cultivating a more supportive learning environment. Furthermore, identifying key predictors of bootcamp success, such as the completion of preparatory materials and
prior programming knowledge can guide the design of targeted interventions and curriculum enhancements to better equip participants for the challenges of the bootcamp experience. By incorporating predictive modelling into educational practices, stakeholders can optimize resource allocation, improve student outcomes, and enhance tech education initiatives' overall effectiveness and success.

REFERENCES

