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Abstract
Water-filled sinkholes known locally as cenotes, found on the Yucatán Peninsula, have remarkable biodiversity. The primary 
objective of this study was to explore the biotechnological potential of Gram-positive cultivable bacteria obtained from 
sediment samples collected at the coastal cenote Pol-Ac in Yucatán, Mexico. Specifically, the investigation aimed to assess 
production of hydrolytic enzymes and antimicrobial compounds. 16 S rRNA gene sequencing led to the identification of 
49 Gram-positive bacterial isolates belonging to the phyla Bacillota (n = 29) and Actinomycetota (n = 20) divided into the 
common genera Bacillus and Streptomyces, as well as the genera Virgibacillus, Halobacillus, Metabacillus, Solibacillus, 
Neobacillus, Rossellomorea, Nocardiopsis and Corynebacterium. With growth at 55ºC, 21 of the 49 strains were classified 
as moderately thermotolerant. All strains were classified as halotolerant and 24 were dependent on marine water for growth. 
Screening for six extracellular hydrolytic enzymes revealed gelatinase, amylase, lipase, cellulase, protease and chitinase 
activities in 93.9%, 67.3%, 63.3%, 59.2%, 59.2% and 38.8%, of isolated strains, respectively. The genes for polyketide syn-
thases type I, were detected in 24 of the strains. Of 18 strains that achieved > 25% inhibition of growth in the bacterial patho-
gen Staphylococcus aureus ATCC 6538, 4 also inhibited growth in Escherichia coli ATCC 35,218. Isolates Streptomyces 
sp. NCA_378 and Bacillus sp. NCA_374 demonstrated 50–75% growth inhibition against at least one of the two pathogens 
tested, along with significant enzymatic activity across all six extracellular enzymes. This is the first comprehensive report 
on the biotechnological potential of Gram-positive bacteria isolated from sediments in the cenotes of the Yucatán Peninsula.
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Introduction

The Yucatán Peninsula in the Gulf of Mexico is a karst land-
scape with many natural flooded sinkholes, formed by the col-
lapse of limestone bedrock and known locally as cenotes [1]. 

These cenotes are of profound cultural significance as they 
served as vital water sources for the ancient Maya civiliza-
tion and were revered as sacred sites for their ritual activities 
[2]. Their unexploited biotechnological potential now requires 
urgent investigation [3], for example as source of novel halotol-
erant bacteria possessing antimicrobial properties [4].

Cenotes close to the coast show a saltwater intrusion 
beneath the freshwater surface, and this creates a marked 
shallow halocline [5]. Low concentrations of oxygen, high 
concentrations of sulfate and other nutrients, and stable 
water temperature, make them ideal habitats for the growth 
of distinctive and diverse species of bacteria [5, 6]. Their 
bacterial communities not only help in the decomposition 
of organic matter, but are also crucial in biogeochemical 
cycling, nutrient recycling, and the delicate ecosystem 
equilibrium [7, 8]. Therefore, they may produce a range of 
enzymes with biotechnological potential, such as extracel-
lular carbohydrases, lipases and proteases [9, 10].
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Since extracellular enzymes can break down complex 
molecules into simpler ones, they are of high commercial 
value in industrial biotechnology [11, 12], with applications 
such as food and beverage production, biofuel generation, 
and waste treatment. Carbohydrases, such as amylases, cel-
lulases and chitinases, hold a significant share in the global 
industrial enzymes market, which was worth 6.0 billion US$ 
in 2021 [13]. For example, amylases are used to hydrolyze 
starch into polymers composed of glucose units, which can 
then be fermented to produce bioethanol [14]. Cellulases 
can break down plant biomass such as cellulose into simple 
sugars, which can be further processed into biofuels [15] 
Lipases are used in the production of detergents, cosmetics, 
and pharmaceuticals [16], and proteases are used for protein 
hydrolysis in food technology [17]. Chitinases have potential 
particularly in the agro-industry, but also in wastewater treat-
ment, the food industry, cosmetics, and medicine [18]. The 
unexplored microbial biodiversity found in cenotes offers 
the potential discovery of novel enzymes with applications 
in these industries. Bacteria from coastal cenote sediments 
are influenced by marine-like conditions; they produce halo-
tolerant extracellular enzymes, which are in high demand in 
the biotechnological industry [19].

Another application of bacteria from this ecological 
niche is the production of antibiotics. Bacteria from cenotes 
produce antimicrobial compounds with potential medical 
applications [3, 4]. Some members of the phyla Actinomy-
cetota and Bacillota have emerged as prominent sources 
of antimicrobial compounds [20] accounting for > 50% of 
all antimicrobial activities reported in recent decades, and 
they merit further exploration in unusual habitats such as 
cenotes. Actinomycetota produce many substances relevant 
to biotechnology, agriculture and medicine, including the 
majority of currently employed antibiotics [21]. Indeed, > 75 
antibiotics isolated from Actinomycetota are used in human 
therapy [22]. Due to the increasing resistance of clinically 
important microorganisms to therapeutic drugs [23], and the 
steady decline in the discovery of new antibiotics [24], the 
need for novel antibiotics rises steadily. Polyketides such as 
the glycopeptide vancomycin, the lipopeptide daptomycin 
and the macrolide erythromycin have important antibiotic 
effects [25], notably against Gram-positive bacteria, and 
can also have antitumor and immunosuppressive proper-
ties [26]. The biosynthesis of polyketides is catalyzed by 
complex multicomponent enzyme systems, the polyketide 
synthases (PKS), classed as type I, type II and type III [27]. 
From these, modular type I PKS complexes offer attractive 
prospects for producing novel metabolites through genetic 
engineering and combinatorial biosynthesis [28].

Despite exploration of bacterial communities from the 
underground river in Yucatán and its cenotes [29–31], there 
is little information on their biotechnological potential. By 
2020, only 18 of the > 7000 mapped cenotes [1] had been 

assessed for their cultivable microbial diversity [3], and 
microorganisms from only six had been assessed for their 
biotechnological potential [3]; most studies have focused on 
inland cenotes, whereas the present study concerns a coastal 
cenote, Pol-Ac, with the aim of characterizing 49 Gram-
positive bacteria isolated from sediment samples. This work 
provides insights into the diversity, enzymatic activity, and 
antimicrobial potential of bacteria inhabiting these unex-
plored habitats.

Materials and Methods

Materials

Chemicals, product standards, and solvents were obtained at the 
highest purity available from Sigma-Aldrich (St. Louis, US).

Sampling Site

Pol-Ac is an open coastal cenote within a mangrove envi-
ronment in the El Palmar State Reserve in Yucatán, Mexico 
(21.0816118, -90.2029322), ~ 780 m east of the Gulf of 
Mexico (Fig. S1). It is cylindrical, with a cave opening of 
4000 m2, and reaches a depth of 63 m at its lowest point. 
Water temperature, salinity, dissolved oxygen, and pH were 
determined continuously every 2 s to a depth of 53.5 m 
with a multiparameter EXO1 water probe (Xylem Analyt-
ics, Norway).

Microorganism Isolation

Marine sediment samples were collected in April 2021 
under three different depths; a low depth at 14 m which is 
exposed to high solar radiation, a medium depth at 24 m 
which is exposed to low solar radiation and a deep depth at 
54 m which is exposed to no solar radiation. Three replicates 
were collected from each sampled point in sterile hermetic 
seabags. Samples were cooled immediately on ice and stored 
at 4 °C until further processing. Additionally, 40 L of water 
from the surface was collected, stored at 4 °C, and later 
sterilized in an autoclave to be used in preparing the media.

All subsequent steps were performed under sterile condi-
tions. Sediment samples were resuspended 1:10 in sterilized 
water from Pol-Ac. Thereafter, serial dilutions up to 10‑7 
were prepared and streaked onto four different agar plate 
media. The first employed A1 media (10 g L−1 starch, 4 g 
L−1 yeast extract, 2 g L−1 peptone, 16 g L−1 agar) [32] with 
surface water from Pol-Ac (to ensure the exact composi-
tion of salts and nutrients), the second one A1 media with 
marine sea water from the coast of Sisal (A1m agar plates), 
the third one Brain Heart Infusion agar (8 g L−1 Brain and 
Heart Infusion, 5 g L−1 peptic digest of animal tissue, 16 g 
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L−1 pancreatic digest of casein, 5 g L−1 sodium chloride, 
2 g L−1 glucose, 2.4 g L−1 disodium hydrogen phosphate 
and 13.5 g L−1 agar) prepared with ddH2O to target more 
generalist bacteria, and the fourth one only agar (16 g L−1) 
with surface water from Pol-Ac. All plates were incubated 
at 27 °C for 1 to 2 weeks. Single colonies, selected on the 
basis of their morphology, pigmentation and the formation 
of a halo around the colony [33], were subcultured on A1m 
agar until axenic cultures were obtained.

Gram-positive strains, determined via the nonstaining 
KOH method [34], were inoculated in 50 mL of A1m liquid 
medium and incubated for four days at 27 °C. These liquid 
cultures were homogenized, mixed 1:1 with 70% glycerol 
and stored as glycerol stocks at -80 °C until further use. In 
total, 49 strains were preserved in glycerol stocks.

DNA Extraction and 16 S Sequencing

Genomic DNA extraction used the Quick-DNA Fungal/
Bacterial Microprep Kit (Zymo Research, Irvine, US) and 
followed the manufacturer’s instructions. DNA concentra-
tions were quantified with a Nanodrop One spectrophotom-
eter (Thermo Scientific, Waltham, US), and DNA integrity 
was assessed on agarose gel (1%). Amplification of the 16 S 
rDNA gene used the universal primer pair 27 F (5′-AGA​
GTT​TGA​TCC​TGG​CTC​AG-3′) and 1492R (5′-TAC​GGY​
TAC​CTT​GTT​ACG​ACTT-3′) [35]. The PCR was performed 
on a CFX96 Real-Time System thermal cycler (Bio-Rad, 
Hercules, US) using the following protocol: Initial dena-
turation for 5 min at 95 °C, followed by 30 cycles of 40 s at 
95 °C for denaturation, 50 s at 60 °C for annealing, 40 s at 
72 °C for extension, and 10 min at 72 °C for a final exten-
sion. The amplified products were visualized by electropho-
resis on agarose gel (1%) using the Biorad Molecular Imager 
Gel Doc XR + System (Bio-Rad, Hercules, US) (Fig. S2). 
The amplicons were sequenced by the Sanger technique at 
the Institute of Biotechnology of the National Autonomous 
University of Mexico (UNAM, Mexico City).

Phylogenetic Analysis

The partial 16 S DNA sequences obtained (503–970 bp) 
were trimmed with SnapGene v6.2.1 software (GSL Bio-
tech, US) and were compared against the NCBI database 
via a BLAST search. Based on sequence identity the near-
est neighbors and nearest type strains to those neighbors 
were selected to accurately classify the genera of the strains 
(Table S2). A phylogenetic tree was generated with the 
default mode of the online tool phylogeny.fr, which uses 
MUSCLE (v. 3.8.31) for multiple sequence alignment, 
Gblocks (v. 0.91b) for alignment refinement, PhyML (v. 
3.1/3.0 aLRT) for phylogeny and finally TreeDyn (v. 198.3) 
for tree drawing [36].

Determination of Thermotolerant Strains

The influence of increasing temperatures on bacterial growth 
was assessed on strains growing on agar plates. Therefore, 
test tubes with liquid A1m media were inoculated with glyc-
erol stocks of the strains and grown at 27 °C for five days. 2 
µL of these cultures were drop spotted onto one square agar 
plate containing A1m agar (Fig. S3) in biological duplicates. 
After incubation for 5 days at 25 °C, 35 °C, 45 °C, 55–65 °C, 
the plates were examined for bacterial growth.

Marine Water Requirement for Growth

The reliance of the bacterial strains on marine water for growth 
was investigated in an agar plate assay. Test tubes with liquid 
A1m media were inoculated with glycerol stocks of the strains 
and grown at 27 °C for five days. 2 µL of these cultures were 
drop spotted in biological duplicates onto one square agar plate 
containing either A1m agar or A1 agar prepared with bidistilled 
water, ddH2O (A1ddH2O agar plates). After incubation for 5 days 
at 27 °C, the plates were examined for bacterial growth.

Agar Plate Screening of Extracellular Hydrolytic 
Enzymes

To evaluate extracellular enzymatic activity of the isolated 
strains, agar plate assays were conducted with the respective 
substrates, employing drop spots. The composition of each cul-
ture medium for the assays is described below. In contrast to the 
commonly used formulation with ddH2O, all agar plates were 
prepared with filtered marine water to support the halophilic 
nature of the bacterial strains. Media were autoclaved for 20 min 
at 121 °C and plates stored at 4 °C until further use. Test tubes 
with liquid A1m media were inoculated with glycerol stocks of 
the strains and grown at 27 °C for five days. On each agar plate, 
six different strains were spotted by adding 5 µL of the corre-
sponding culture and incubating at 27 °C for five days, unless 
stated otherwise. All assays were performed in biological dupli-
cates. The hydrolytic activities of the corresponding strains were 
expressed as level of enzymatic activity (LEA), as described pre-
viously [37, 38], by dividing the diameter of the clearance zone 
by the diameter of the colony in millimeters. For all agar plate 
assays, Escherichia coli XL1-blue was the negative control since 
E. coli is not only a poor secretor of enzymes [39], but also tests 
negative for extracellular amylase [40], cellulase [41], chitinase 
[42], lipase [43], gelatinase [44] and protease [45].

Amylase Activity

A1m agar plates were used to determine the level of amyl-
ase activity. After incubation for five days, the plates were 
flooded with Lugol’s iodine solution (Materiales y Abastos 
Especializados S.A. de C.V., Mexico City, MX) for 1 min. A 



	 J. L. Wissner et al.   77   Page 4 of 12

clear halo around a colony would indicate starch hydrolysis, 
thereby confirming amylase activity [37].

Cellulase Activity

Cellulase activity was determined on carboxymethylcellulose 
(CMC)-based agar plates [38] containing CMC (5 g L−1), 
NaNO3 (2 g L−1), K2HPO4 (1 g L−1), MgSO4 (0.5 g L−1), 
KCl (0.5 g L−1), peptone (0.2 g L−1) and agar (18 g L−1). After 
autoclaving, CMC precipitates partially in marine water. Thus, 
the CMC degradation can be monitored without the need of 
a staining solution. After incubation for five days, the plates 
were examined. A clear halo around a colony would indicate 
CMC hydrolysis, thereby confirming cellulase activity.

Chitinase Activity

Chitinase activity was determined on chitin agar plates [46] 
with a simplified formula: colloidal chitin (100 g L−1, equal to 
5 g dried chitin L−1), yeast extract (0.4 g L−1), peptone (0.2 g 
L−1) and agar (16 g L−1). Colloidal chitin was prepared accord-
ing to Hsu and colleagues [47]. The degree of chemical modifi-
cation of chitin is higher than that of cellulose and starch, so a 
ten-day incubation period was chosen for examination. A clear 
halo around a colony would indicate chitin hydrolysis, thereby 
confirming chitinase activity.

Lipase Activity

Olive oil agar plates [48] were used to determine lipase activ-
ity. Plates were prepared with olive oil (10 mL L−1), CaCl2 
(1 g L−1), phenol red (0.1 g L−1) and agar (20 g L−1) and the 
pH was adjusted with NaOH to 7.3–7.4. Following a five-day 
incubation period, the plates were examined. The principle of 
the lipase agar plate assay hinges on a pH decrease from 7.3, 
representing the endpoint of the phenol red dye, to a slightly 
more acidic pH, inducing a distinctive color transition from 
red to yellow. This decrease in pH, attributed to the release of 
fatty acids formed by the lipase-catalyzed breakdown of olive 
oil, serves as the indicator of lipase activity. Thus, a discern-
ible yellow halo encircling a colony would indicate olive oil 
hydrolysis, thereby confirming lipase activity.

Gelatinase Activity

Gelatinase activity was assessed on gelatin agar plates [44]: gela-
tin (12 g L−1), yeast extract (1 g L−1), peptone (4 g L−1), and agar 
(18 g L−1). After incubation for five days, the plates were treated 
with a saturated (NH4)2SO4 solution, causing the precipitation of 
unhydrolyzed gelatin and thereby obscuring the corresponding 

agar plate areas. Subsequently, the plates were checked after five 
minutes, with a clear halo around a colony indicating gelatin 
hydrolysis, thereby confirming gelatinase activity.

Protease Activity

Protease activity was determined on skimmed milk agar 
plates as prepared by Menasria and collaborators (Menasria 
et al. (2018): skimmed milk (10 g L−1), yeast extract (1 g 
L−1) and agar (20 g L−1). After incubation for five days, the 
plates were examined. A clear halo around a colony would 
indicate protein hydrolysis, confirming protease activity.

Determination of Polyketide Synthases

To show the presence of polyketide synthase genes encoding 
for type I PKS enzymes, genomic DNA from each of the 49 
cultivated strains was amplified via PCR using the two degen-
erate oligonucleotide primer pairs 5LL/4UU and KPF/KPR: 
5LL (5’-GGRTCNCCIARYTGIGTICCIGTICCRTGIGC-3’) 
with 4UU (5’-MGIGARGCIYTICAR​ATG​GAYCCICAR​
CAR​MG-3’) [49]; and DKF (5’-GTG​CCG​GTNCCRT-
GNGYYTC-3’) with DKR (5’-GCG​ATG​GAYCCNCAR​CAR​
YG-3’) [50]. Following amplification, presence of products 
was determined by visualizing in a 1% agarose gel. The antici-
pated amplicon products for both primer pairs were expected 
to be approximately 700 base pairs in length.

Antimicrobial Activity Assessment

Extracts of all 49 strains were examined to assess their antimicro-
bial activity against the Gram-negative bacterium E. coli ATCC 
35,218 and the Gram-positive bacterium Staphylococcus aureus 
(S. aureus) ATCC 6538. Antibiotic activities of all extracts and 
reference antibiotics (kanamycin and gentamycin) were tested 
with the broth dilution method based on the Clinical and Labora-
tory Standards Institute (CLSI) recommendations [51].

For the preparation of the extracts, the strains were reacti-
vated from cryopreserved glycerol stocks on A1m agar plates 
and a single colony was transferred to a 250 mL Erlenmeyer 
flask containing 50 mL of A1m broth. Cultures were grown for 
7 days, harvested and centrifuged at 4000 rpm. The supernatants 
were recovered, filtered through syringe filters of 0.8 μm, and 
lyophilized to generate dry powders, which were stored at 4ºC 
until further processing. Before performing the antimicrobial 
evaluation, 100 mg of each lyophilized powder were solubi-
lized in ultrapur water by vigorous vortexing and then desalted 
by addition of ethanol, precipitating the solid salt. To remove 
salts, salted-out samples were centrifuged at maximum speed 
for 2 min. The supernatants were recovered in 2 mL Eppen-
dorf tubes and dried under vacuo (Eppendorf® Concentrator 
Plus™ for microtubes). The obtained desalted samples were 
then employed to evaluate the antimicrobial activity. To perform 
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the antibiotic experiments, 10 mg of each desalted sample were 
resuspended in 1 mL of 70% ethanol for use as a stock solution.

The activity assay used Mueller–Hinton broth medium 
with incubation at 150 rpm and 37ºC for the duration of the 
experiment. To perform the test, 5 µL of stock solution of 
an extract were added to 195 µL of pathogenic bacterial cul-
ture (final concentration 250 µg mL−1) at the beginning of 
the exponential growth phase (108 CFU mL−1). Reference 
antibiotics were solubilized in water and added at a final 
concentration of 25 µg mL−1. Optical density at 600 nm was 
determined at the initial and final times of the experiment. 
The growth inhibition (%) of the bacterial pathogen strains 
was assessed by use of negative controls grown with the addi-
tion of 5 µL ethanol (70%) instead of bacterial extract stock 
solution. All the experiments were performed in triplicate 
and at least three independent experiments were recorded.

Results

Physicochemical Characteristics of Water in Pol‑Ac

Salinity at the surface of the water column in Pol-Ac was 
20.9 psu (Fig. 1a). As depth increased, salinity rose rap-
idly to 36.0 psu at a depth of 2.5 m, and then continued to 

increase gradually to 39.5 psu at a depth of 53.5 m. Thus, 
Pol-Ac can be considered a thalassic environment. pH val-
ues decreased with depth (Fig. 1b): 7.59 at the surface and 
7.1 within the saltwater layer at 2.5 m. Beyond this depth, a 
further decrease gradually reached 6.95 at a depth of 53.5 m.

The water temperature is 27.4 °C at the surface, decreases 
to 26.0 °C at 2.5 m, and gradually increases to 26.8 °C at a 
depth of 30.0 m, after which it remains constant (Fig. 1c). 
Dissolved oxygen concentrations ranged from a minimum 
of 0.03 mg L−1 to a maximum of 0.06 mg L−1 with a mean 
value of 0.04 ± 0.01 mg L−1, indicative of a hypoxic environ-
ment (Fig. 1d).

Microbial Diversity of Pol‑Ac

In total, 49 Gram-positive strains were isolated from the 
sediment of the cenote, whereby 44 strains were isolated 
from sediment collected at a depth of 14 m, four at a depth 
of 24 m and one from 54 m. Due to the limited number of 
strains isolated at medium and deep depths, a significant 
correlation between the depth of sample collection and strain 
affiliation, as well as enzymatic or antimicrobial activity 
was not possible. Further, of the 49 isolated strains, 39 were 
isolated from A1m agar plates and 10 from A1 agar plates 

Fig. 1   Physicochemical characteristics of water at different depths in Pol-Ac. a Salinity; b pH; c Temperature; d Dissolved oxygen (optical sen-
sor)
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prepared with surface water from Pol-Ac. No Gram-positive 
bacteria could be isolated from either Brain Heart Infusion 
agar or plates containing only agar and surface water of 
Pol-Ac. The BLAST search showed identities between the 
partial gene sequences and the nearest neighbor that ranged 
from 98.1 to 100%. Of the 49 strains, 29 represented seven 
genera of the Bacillota: Bacillus (17 strains), Virgibacil-
lus (4), Halobacillus (3), Metabacillus (2), Solibacillus (1) 
Neobacillus (1) and Rossellomorea (1). The other 20 strains 
represented three genera of the Actinomycetota: Streptomy-
ces (18 strains), Nocardiopsis (1) and Corynebacterium (1) 
(Fig. 2, Fig. S4 and Fig. S5). All sequences were deposited 
in the NCBI GenBank database with the accession numbers 
OR844320-OR844368 (Table S2).

Determination of thermo‑ and Halotolerant Strains

At the lower incubation temperatures (25 °C and 35 °C) all 49 
strains grew robustly, in accordance with the measured water 
temperature range in Pol-Ac (26.0–27.4 °C); at 45 °C, the lower 
threshold for thermotolerance [52], 45 (91.8%) had substantial 
growth; at 55 °C, growth of 21 strains (42.9%) was charac-
terized by reduced colony diameters ranging from 0.3 mm to 
2 mm; and at 65 °C none grew. Therefore 21 of the strains 
isolated from Pol-Ac can be considered as moderately ther-
motolerant and 28 as mesophilic. Of the 21 moderately ther-
motolerant strains, 18 belonged to the Bacillota and 3 to the 
Actinomycetota.

All strains grew on the A1m agar plates, with a salt con-
centration of 3.5%, classifying them as slightly halotolerant 
[53]. Of the 49 strains, 24 were not capable of growing on 
A1ddH2O agar plates, indicating that these have a specific 
requirement for marine water and are likely halophiles [19]; 
19 belonged to the Bacillota (six genera) and 5 to the Actino-
mycetota (to one genus).

Extracellular Hydrolytic Enzymes

Screening of bacterial isolates for extracellular hydrolytic 
enzymes (Fig. 3) showed that each of the 49 strains could 
produce at least one of these enzymes (Fig. 4); 47 could 
produce at least two extracellular enzymes; 41 at least 
three; 33 at least four; 15 at least five; and 2 could produce 
all six extracellular enzymes. Gelatinase activity was the 
most prevalent, seen in 46 of the isolates; amylase activity 
in 33; lipase activity in 31; cellulase and protease activity 
each in 29 of the strains; and chitinase activity in only 19.

Since marine water was used for all six agar plate 
assays, all detected enzymes and their corresponding 
activities are halotolerant. Actinomycetota, on average, 
showed a higher cumulative enzyme activity rate (70.0%) 
than that observed in Bacillota (59.2%). In addition to 

being the most frequently isolated genus (n = 18), all 
Streptomyces strains exhibited enzymatic activity in the 
forms of amylase, lipase, and gelatinase; 11 of the Strep-
tomyces strains showed chitinase activity; 10 showed 
cellulase activity; and 4 showed protease activity. From 

Fig. 2   Phylogenetic tree of Gram-positive bacteria isolated from Pol-
Ac (blue) with nearest BLAST neighbors (black) and an outgroup 
(Mycobacterium attenuatum strain MK41)



Diversity and Bioprospection of Gram‑positive Bacteria Derived from a Mayan Sinkhole﻿	 Page 7 of 12     77 

Pol-Ac, Streptomyces NCA_378 showed activities of all 
six extracellular enzymes: high for amylase and gelatinase; 
medium for lipase; and low for cellulase, chitinase and 
protease. Hence, this strain merits further study.

In contrast, Bacillus, the second most commonly isolated 
genus (n = 17), displayed a more varied distribution of enzy-
matic capabilities: 16 of the Bacillus strains exhibited gelati-
nase activity; 15 showed protease activity; 11 showed cellulose; 
7 amylase; 6 chitinase; and 4 lipase. From Pol-Ac, Bacillus 
NCA_374 displayed high biotechnological potential across all 
six extracellular enzymes, with high cellulase activity, medium 
gelatinase activity, and low activity levels for amylase, chi-
tinase, lipase, and protease. In addition, strain Halobacillus 
NCA_393 showed high activity of cellulase, gelatinase, and 
protease activities, and Bacillus NCA_375 showed high activity 
in cellulase, chitinase, and gelatinase. Hence, these two Bacillus 
strains, too, merit further biotechnological study.

Detection of Type I PKS Genes

In the current study, putative type I polyketide synthase 
(PKS) genes were identified in 24 of the isolated strains; 22 
of these showed a PCR product with the KPF/KPR primer 
pair, and 10 with the 5LL/4UU primer pair. Of the 20 Actin-
omycetota strains, 14 (70.0%) showed a PCR product with 
the PKS primers, whereas of the 29 Bacillota strains only 10 
(34.5%) showed a product.

Determination of Antimicrobial Activity

Four strains (8.2%) slightly inhibited the growth of E. coli 
ATCC 35,218 (25–50% inhibition in comparison to negative 

control) (Fig. 4). All four strains that slightly inhibited E. coli 
ATCC 35,218 were also active against S. aureus ATCC 6538. 
In contrast to the low number of strains inhibiting E. coli, 18 
(36.7%) inhibited growth of S. aureus ATCC 6538, 10 (20.4%) 
of these showing medium inhibition (50–75%). Two strains, 
Streptomyces NCA_366 and Streptomyces NCA_387, achieved 
high levels of inhibition (75–100%; Fig. 4) and merit further 
study. Higher percentages of Actinomycetota (50%) than 
Bacillota (27.6%) showed inhibition against one of the two 
tested pathogens. These findings are promising and suggest 
that bacteria isolated from cenotes such as Pol-Ac have the 
potential to produce antimicrobial compounds with activity 
against Gram-positive bacteria such as S. aureus and should 
therefore be further investigated for secondary metabolites.

Discussion

This study focused on the bioprospection of cultivable 
Gram-positive bacteria isolated from sediment samples of 
the cenote Pol-Ac. In contrast to other coastal cenotes, Pol-
Ac lacks a freshwater layer on its surface due to a surface 
salinity of 20.9 psu and a halocline at a shallow depth of 
only 0.4 m. For instance, the coastal cenotes Tábano [54] 
and Na’ach Wennen Ha [55], both within 1 km of the Carib-
bean Sea, have surface salinities of 2 psu and 0.5 psu, and 
much deeper haloclines at 11 m and 5 m, respectively. With 
an average water temperature of 26.4 °C, Pol-Ac follows the 
trend of other coastal cenotes like Tabano and Odyssey [54] 
during this time of the year [5, 56].

However, the dissolved oxygen concentrations along the 
whole water column were remarkably low, with a maximum 

Fig. 3   Representative agar plate 
assays for the detection of extra-
cellular hydrolytic enzymes. 
All plates used an uninoculated 
empty control (1), E. coli XL1-
blue as a negative control (2), 
and Streptomyces sp. NCA_378 
(3), which exhibited activity 
for all six assays. Colonies 4–9 
represent strains with very high 
activities. a Amylase assay with 
Solibacillus sp. NCA_420 (4); 
b Cellulase assay with Haloba-
cillus sp. NCA_370 (5); c Chi-
tinase assay with Bacillus sp. 
NCA_375 (6); d Lipase assay 
with Bacillus sp. NCA_353 
(7); e Gelatinase assay with 
Bacillus sp. NCA_358 (8); 
f Protease assay with Bacillus 
sp. NCA_419 (9)
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of only 0.06 mg L−1. A study involving 30 coastal cenotes of 
the Yucatán Peninsula reported minimum oxygen concentra-
tions to be more than 10 times higher than Pol-Acs [5]. Thus, 
the low oxygen levels correlated with the high salinity levels 
and with the eutrophication conditions [57]. The scarcity 
of macroscopic organisms in this cenote can be attributed 
to these low oxygen concentrations, as has been shown for 
hypoxic costal ecosystems [58]. These parameters suggest 
that Pol-Ac may host a unique microbial community that has 
adapted to these extreme conditions.

Previous studies of bacterial diversity in cenotes have 
reported a majority of Gram-negative isolates (80–90%) [4, 
29]. However, among Gram-positive bacteria, the two most 
abundant phyla found by Escobar-Zepeda [29] were Bacillota 

and Actinomycetota, in the water and plant roots of a coastal 
cenote, similar than in our findings from Pol-Ac sediments. 
Indeed, Bacillota and Actinomycetota, found ubiquitously in 
soil and water ecosystems, actively contribute to the main-
tenance of ecological balance by efficiently degrading both 
organic and inorganic matter in their surroundings [59–61]. 
Further, the presence of Virgibacillus and Halobacillus, fre-
quently found in saline environments [62, 63], is consistent 
with the marine-like nature of the sampling site.

The unexplored microbial biodiversity found in cenotes 
offers the potential for the discovery of novel enzymes 
that could have various applications in industries. Thus, 
one of the aims of this study was the exploration of extra-
cellular hydrolytic enzymes secreted by the 49 isolated 

Fig. 4   Activity profile of the 
49 bacteria isolated from the 
cenote Pol-Ac. From left to 
right: T: thermotolerance (light 
green to dark green); M: Marine 
water dependent for growth 
(grey), LEA: level of enzyme 
activity (light blue to dark blue); 
PKS: assessment of type I PKS 
genes (purple); AA: antimi-
crobial activity (light yellow 
to brown); taxonomic designa-
tion and internal strain number 
(NCA)
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Gram-positive bacteria. Indeed, all the isolated strains were 
capable to produce at least one out of six of the screened 
enzymes. The present findings align with previous stud-
ies that reported the production of extracellular hydrolytic 
enzymes, including amylase, cellulase, chitinase, protease, 
gelatinase, and lipase, by marine coastal Streptomyces [38, 
64] and marine Bacillus strains [65–67], which collectively 
accounted for 71.4% of the isolated strains in this study.

Another aim of the current work was the detection of 
PKS I genes of the isolated strains as well as the deter-
mination of their antimicrobial activity against the two 
model pathogen strains E. coli ATCC 35,218 and S. aureus 
ATCC 6538. PKS I amplicons were more abundant in 
the Actinomycetota group (70.0%) in comparison to the 
Bacillota one (34.5%). These results agree with reports 
of Actinomycetota, particularly Streptomyces species, as 
important producers of secondary metabolites, including 
pharmaceutically relevant polyketides [26, 68]. Neverthe-
less, PKS genes and their associated metabolites have also 
been found in Bacillota, such as species of Bacillus [69]. 
Further, 8.2% of the strains inhibited the growth of the 
pathogen E. coli ATCC 35,218 and 36.7% inhibited the 
growth of the Gram-positive pathogen S. aureus ATCC 
6538. Low numbers of strains with activity against E. coli 
are expected, given the inherent resistance of Gram-neg-
ative bacteria to many antibiotics due to the presence of 
an outer membrane that restricts the penetration of many 
molecules into the cell [70]. Considering the remarkable 
capacity of Actinomycetota, especially Streptomyces, to 
produce abundant antimicrobial compounds, it is unsur-
prising to observe a higher percentage of antimicrobial 
activity in Actinomycetota (50.0%) compared to Bacil-
lota (27.6%) [71–74]. Of the 49 strains, 24 showed a PCR 
product with the PKS I primers used for amplification, and 
18 strains showed antimicrobial activity. However, only 
11 strains showed both PKS I gene product amplification 
and antimicrobial activity. There was no significant cor-
relation (chi-square 1.676; p = 0.196) between type I PKS 
gene product amplification and antimicrobial activity. This 
suggests that factors other than type I PKS genes, such as 
type II or type III PKS, non-ribosomal peptide synthetase 
genes [75] or other secondary-metabolite biosynthetic 
pathways, may contribute to the observed inhibition of 
these pathogens. Moreover, strains displaying amplicons 
for type I PKS genes, yet lacking antimicrobial activity 
against the two tested pathogens, may potentially yield 
polyketides that are active against pathogens not examined 
in the course of this study.

The present study emphasizes the potential of the 
microbial communities in cenote sediments of the Yuca-
tán Peninsula to be a novel source of biotechnologically 
important bacteria. It demonstrates that the characteristics 
of the coastal cenote Pol-Ac form an environment that is 

ideal for further studies regarding the cultivation of halo-
tolerant bacteria with hydrolytic enzymes of industrial 
value and potent antimicrobial compounds against known 
bacterial pathogens. Additionally, this study is the first 
report on the bioprospection of Gram-positive bacteria iso-
lated from sediments in a cenote of the Yucatán Peninsula.
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