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ABSTRACT

Hybrid modeling combining First-Principles with Machine Learning (ML) is becoming a pivot-
al methodology for Biopharma 4.0 enactment. Combining ML with prior knowledge general-
ly improves the model predictive power and model transparency while reducing the amount
of data for process development. However, most previous studies pursued a shallow hybrid
modeling approach based on three-layered Feedforward Neural Networks (FFNNs) combined
with macroscopic material balance equations.

In this thesis, a general deep hybrid modelling framework for bioreactors, that incorporates
deep neural networks, deep learning and First Principles equations is developed and imple-
mented in the HYBrid MODdeling (HYBMOD) MATLAB® toolbox (Chapter 3). Deep learning,
namely the adaptive moment estimation method (ADAM), stochastic regularization and
depth-dependent weights initialization are evaluated in a hybrid modeling context. Modified
sensitivity equations are proposed for the computation of gradients in order to reduce CPU
time for the training of deep hybrid models. Furthermore, the encoding of hybrid models
obeying to the Systems Biology Markup Language (SBML) standard is implemented.

The general deep hybrid modeling method is evaluated in several experiments using synthet-
ic and real-world experimental data. In Chapter 4 a pilot Pichia pastoris GS115 MUT+ process
development case study is addressed. In Chapter 5 an industrial CHO-K1 process develop-
ment campaign is addressed. The results point to the conclusion that there is a clear ad-
vantage of deep hybrid modeling both in terms of predictive power and in terms of compu-
tational cost in relation to the shallow hybrid case. Furthermore, the SBML compatibility fa-

cilitates the dissemination of hybrid models in the Systems Biology community.

Keywords: Hybrid modeling, FFNNs, Deep learning, ADAM, SBML, Bioreactors, Pichia
pastoris, CHO-K1, Biopharma 4.0.
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RESUMO

Modelacdo hibrida que combina Primeiros-Principios com Aprendizagem de Maquinas (ML)
estad a tornar-se numa metodologia fundamental da Biopharma 4.0. Como vantagens apon-
ta-se a melhoria do poder preditivo do modelo bem como a sua transparéncia, reduzindo
ainda a quantidade de dados para o seu desenvolvimento. No entanto, a maioria dos estu-
dos anteriores seguiu uma abordagem de modelacao hibrida ndo-profunda baseada em Re-
des Neuronais (FFNNs) de trés camadas e equacdes de balancos materiais macroscopicos.
Nesta tese, modelacado hibrida profunda de biorreatores que incorpora redes neurais, apren-
dizagem profunda e Primeiros-Principios é desenvolvida e implementada na too/box HYBrid
MODdeling (HYBMOD) em MATLAB® (Capitulo 3). A aprendizagem profunda, nomeada-
mente o método adaptativo de estimacdo de momento (ADAM), regularizagdo estocastica e
inicializagdo de pesos dependentes da profundidade sdo avaliadas. Equagdes de sensibilida-
de modificadas sdo propostas para o calculo de gradientes, a fim de reduzir o tempo de CPU
para o treino de modelos hibridos profundos. Além disso, é implementada a codificacdo de
modelos hibridos obedecendo ao padrao SBML (Systems Biology Markup Language).

O método proposto de modelagdo hibrida profunda é avaliado usando dados experimentais
sintéticos e do mundo real. No Capitulo 4 é abordado o desenvolvimento de processos Ai-
chia pastoris GS115 MUT+ a escala piloto. No Capitulo 5 é estudado o desenvolvimento du-
ma cultura industrial de CHO-K1. Os resultados apontam para uma clara vantagem da mode-
lacdo hibrida profunda tanto em termos de poder preditivo quanto em termos de custo
computacional em relacdo a modelacdo hibrida ndo-profunda. Além disso, a compatibilidade

SBML facilita a disseminag@o de modelos hibridos na comunidade de Biologia de Sistemas.

Palavas chave: Modelagdo hibrida, FFNNs, Aprendizagem profunda, ADAM, SBML, Biorreato-
res, Pichia pastoris, CHO-K1, Biopharma 4.0.
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INTRODUCTION

1.1 Thesis Motivation

Hybrid modelling is becoming a pivotal methodology for process digitalization in the chemi-
cal and biological industries. The combination of artificial neural networks with physical laws
in hybrid model structures has proven to be advantageous in a large number of case studies
described in the literature. The main motivation was to overcome neural networks limitations,
namely the i) inability to comply with process constraints, ii) the tendency for data overfitting,
and iii) the poor predictive power outside the training-validation domain. Hybrid modelling
workflows combining neural networks with physical laws enable a more rational usage of
prior knowledge eventually translating into more accurate, transparent and robust process
models. Most of previous hybrid modelling studies combined shallow neural networks with
physical laws. Recent advances in deep learning have however demonstrated that neural
networks with multiple hidden layers (deep networks) are advantageous over their shallow
counterparts. Only very recently the deep learning advances are penetrating the hybrid mod-
eling field. There is a considerable research gap concerning the use of deep neural networks
and deep learning algorithms such as the Adaptive Moment Estimation Method (ADAM) and
stochastic regularization in the hybrid modelling field. The present PhD dissertation address-

es this research gap.

1.2 Objectives

The main objectives of this work are the development of a deep hybrid modelling method

that combines mechanistic models with emergent deep neural networks and the implemen-



tation of these developed hybrid modelling methods in a way that is scalable to large Sys-
tems Biology models and Systems Biology Markup Language (SBML) compatible. More spe-
cifically, the following objectives are targeted:
e Develop deep hybrid modelling structures combining mechanistic knowledge with
emergent deep neural networks.
e Develop efficient training algorithms for deep hybrid models that are stable and cost
efficient in terms of computation time.
e Develop a methodology to encode hybrid model structures obeying to the SBML
standard.
e Implement the deep hybrid modelling methodology in the HYBMOD MATLAB/Python
toolbox.
e Benchmark shallow hybrid modelling and deep hybrid modelling in several case stud-
ies.

e Showcase the deep hybrid modelling framework with real life cultivation processes.

1.3 Thesis Organization

This thesis is divided in 7 chapters:

Chapter 1 is an introductory chapter where the main objectives and contributions of the the-
sis, along with its organization, are laid out for simplicity.

Chapter 2 focuses on the topic of dynamic modeling for bioreactor monitoring, optimization,
and control applications. The first part of the chapter overviews mechanistic modeling across
different scales, covering the concepts of structured/unstructured, segregated/unsegregated
and genome-scale modeling. The second part of the chapter covers machine learning meth-
ods for supervised, unsupervised and reinforced learning in a bioprocessing context, with
emphasis on building supervised bioreactor models that improve with process experience.
Knowledge abstraction in the machine learning world is hardly compatible with the vast
wealth of engineering and scientific knowledge accumulated over decades in the form of
mechanistic models. The opportunities to develop hybrid mechanistic/machine learning
models for bioreactors in the context of Industry 4.0 are finally highlighted. The vision is that
machine learning should augment mechanistic bioreactor models rather than replace them.
Chapter 3 revisits the general bioreactor hybrid model and introduces deep learning tech-
niques. Multi-layer networks with varying depths were combined with First Principles equa-

tions in the form of deep hybrid models. Deep learning techniques, namely the adaptive



moment estimation method (ADAM), stochastic regularization and depth-dependent weights
initialization were evaluated in a hybrid modeling context. Modified sensitivity equations are
proposed for the computation of gradients in order to reduce CPU time for the training of
deep hybrid models. The methods are illustrated with applications to a synthetic dataset and
a pilot 50 L MUT+ Pichia pastoris process expressing a single chain antibody fragment.

In Chapter 4, a hybrid deep modeling method with state-space reduction is developed and
showcased with a 2. pastoris GS115 Mut+ process expressing a single-chain antibody frag-
ment (scFv). Deep feedforward neural networks (FFNN) with varying depths were connected
in series with bioreactor macroscopic material balance equations. The hybrid model structure
was trained with a deep learning technique based on the adaptive moment estimation meth-
od (ADAM), semidirect sensitivity equations and stochastic regularization. A state-space re-
duction method was investigated based on principal component analysis (PCA) of cumulative
reacted amount. Data of nine fed-batch P. pastoris 50 L cultivations served to validate the
method. Hybrid deep models were developed describing process dynamics as function of
critical process parameters (CPPs).

Chapter 5 compares, for the first time, deep and shallow hybrid modeling in a CHO process
development context. Data of 24 fed-batch cultivations of a CHO-K1 cell line expressing a
target glycoprotein, comprising 30 measured state variables over time, were used to compare
both methodologies. Hybrid models with varying FFNN depths (3-5 layers) were systemati-
cally compared using two training methodologies. The classical training is based on the Le-
venberg-Marquardt algorithm, indirect sensitivity equations and cross-validation. The deep
learning is based on the Adaptive Moment Estimation Method (ADAM), stochastic regulariza-
tion and semidirect sensitivity equations.

In Chapter 6, a computational framework is proposed that merges mechanistic modeling with
deep neural networks obeying the Systems Biology Markup Language (SBML) standard. With
the proposed framework, existing SBML models may be redesigned into hybrid systems
through the incorporation of deep neural networks into the model core, using a freely availa-
ble python tool. The so-formed hybrid mechanistic/neural network models are trained with a
deep learning algorithm based on the adaptive moment estimation method (ADAM), sto-
chastic regularization and semi-direct sensitivity equations. The trained hybrid models are
encoded in SBML and uploaded in model databases, where they may be further analyzed as
regular SBML models. This approach is illustrated with three well-known case studies: the
Escherichia coli threonine synthesis model, the P58IPK signal transduction model, and the

Yeast glycolytic oscillations model.



Lastly, Chapter 7 presents the main conclusions obtained from Chapters 3 to 6 and proposes

areas where there may be future applications of hybrid models.

1.4 Thesis Contributions

The main contributions of this thesis are twofold.

First, a novel deep hybrid model methodology that takes advantage of the deep learning
paradigm is created. This approach is shown to have a higher degree of fidelity to the real
process when compared to the standard non-deep hybrid approach, as showcased with both
synthetic and real-world experiments.

Second, the development of this methodology is done in such a way that new models can be
quickly developed while maintaining a common organization amongst them. This type of
systematic approach to modelling allows them to be compatible with the SBML format, facili-
tating their analysis with Systems Biology tools.

The results of the research activities of this PhD dissertation originated the following five
publications in peer-reviewed journals and one chapter book:

e Pinto, J, Antunes, J., Ramos, J., Costa, R. S., & Oliveira, R. (2022). Modeling and optimi-
zation of bioreactor processes. In Current Developments in Biotechnology and Bioen-
gineering (pp. 89-115). Elsevier.

e Pinto, J.,, Mestre, M., Ramos, J.,, Costa, R. S., Striedner, G., & Oliveira, R. (2022). A gen-
eral deep hybrid model for bioreactor systems: Combining first principles with deep
neural networks. Computers & Chemical Engineering, 165, 107952.

e Pinto, J, Ramos, J. R, Costa, R. S., & Oliveira, R. (2023). Hybrid Deep Modeling of a
GS115 (Mut+) Pichia pastoris Culture with State-Space Reduction. Fermentation, A7),
643.

e Pinto, J, Costa, R. S, Alexandre, L., Ramos, J., & Oliveira, R. (2023). SBML2HYB: a Py-
thon interface for SBML compatible hybrid modeling. Bioinformatics, 391), btad044.

e Pinto, J, Ramos, J. R, Costa, R. S., & Oliveira, R. (2023). A General Hybrid Modeling
Framework for Systems Biology Applications: Combining Mechanistic Knowledge with
Deep Neural Networks under the SBML Standard. A/, 4(1), 303-318.

e Pinto, J, Ramos, J. R, Costa, R. S., Rossell, S., Dumas, P., & Oliveira, R. (2023). Hybrid
deep modeling of a CHO-K1 fed-batch process: combining first-principles with deep
neural networks. Frontiers in Bioengineering and Biotechnology, 11.
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2.1 Introduction

Mathematical modeling is in its essence the translation of prior knowledge regarding the
system at study into a compact mathematical representation. The translation of knowledge
into a mathematical construct can be performed in many different ways, resorting to many
different mathematical formalisms. This chapter focuses on a particular class of bioreactor
dynamic models for Measurement, Modeling, Monitoring and Control (M3C) applications
(Mandenius, 2004, Carrondo et al., 2012). Bioreactor dynamic models for M3C are essential
tools to speed-up bioprocess development or for the control of large-scale production bio-
reactors. The aim of M3C models is to establish a quantitative cause-effect relationship be-
tween control degrees of freedom, state variables, measured variables, and a profit function,
which is dynamic in nature. Such models are used for off-line simulation and optimization
(the open-loop dynamic optimization problem), for on-line state and/or parameters estima-
tion, for model predictive control, among many other applications. Recently, bioreactor dy-
namic models are being considered for the implementation of digital twins in the context of
Industry 4.0 (Nargund and Mauch, 2019, McLamore et al, 2020, Moser et al., 2020, Jens et al,
2020).

Bioreactors are complex multi-scale processes that are very challenging to model (Figure 1).
For dynamic modeling of stirred tank bioreactors, homogeneity of the macroscopic scale is
normally assumed. In scale-up problems, the understanding of the macroscopic heterogenei-
ty becomes essential, for which the development of computational fluid dynamics models
becomes a major challenge (not covered in this chapter). Cell cultures are in reality com-
prised of heterogeneous mixtures of cells that differ with regard to size, mass and intracellu-
lar concentrations of proteins, DNA and other chemical constituents. In many problems, pop-
ulation heterogeneity is an important factor to consider thereby substantially increasing the
complexity of the model (Ataai and Shuler 1985; Domach and Shuler 1984; Henson 2003a;
Sidoli et al. 2004). The intracellular processes comprehend thousands of metabolic reactions
and many more regulatory processes involving genes, RNAs, proteins and metabolites. In the
last two decades, systems biology has led to an explosion of knowledge regarding intracellu-
lar processes, that can now be integrated in bioreactor models. For some bioreactor dynamic
modeling problems there is no need to consider all the scales with a high level of detail. Mul-
ti-scale modeling becomes however critical when the product quality attributes are expressed

at the molecular level (e.g. Glycosylation quality attributes of a biologic), wherefore all the



scales (molecular-micro-macro) potentially play a role, with the complexity of the model

dramatically exploding.

T
63

S Phase

G1 Phase

Macrosopic models Population balance models Structured/Genome scale models Molecular models

Figure 1. The multiscale nature of a bioreactor system

There are currently two apparently conflicting approaches to address such complex bioreac-
tor modeling problems (Baker et al., 2018): mechanistic modeling and data-based/machine
learning. From one side, mechanistic modeling based on First Principles of physics, chemistry
and biology has been the classical approach to develop bioreactor models. First Principles
include the conservation laws of mass, energy and momentum, which may be stated for a
bioreactor ab /nitio without the need of experimental evidence. Mechanistic models are fre-
quently complemented with phenomenological and/or semi-empirical models to describe
less defined parts of the process, for which prior mechanistic knowledge is still missing.

The other emerging vision is that of machine learning leveraged on high throughput data
sets across different scales. Technological advances in bioprocesses research have pushed
high-throughput instruments, with increasingly accurate data being collected (particularly
proteomics, metabolomics, transcriptomics, and genomics data) (Palsson 2002). With Industry
4.0 enactment, such measurement devices will become widespread and deliver large-scale
collections of datasets from heterogeneous sources, called in computational science as "big
data” (Cook et al., 2018). Significant effort has been put into ensuring the scalability of com-
putational tools for the collection of these massive bioprocess data, but analysis and integra-
tion remains a challenge (Qin et al.,, 2015). The availability of data has been one of the most
notable advances in predictive modeling. With this background, the deployment of machine
learning in a bioprocessing context will likely grow in the future, including the application for
bioreactor modeling, optimization and control (the M3C challenge). Particularly, machine
learning offers the possibility of modeling complex bioreactor data sets across multiple

scales, with the ability to identify patterns and learn and improve through time, thereby real-



izing Industry 4.0 vision (Jordan and Mitchell 2015). In parallel to the emergence of machine
learning, a new movement towards hybrid approaches that combine mechanistic modeling
with machine learning is getting momentum (Galvanauskas et al., 2004, Oliveira, 2004, von
Stosch et al.,, 2014). The vision is that machine learning should be used to augment mecha-
nistic models rather than to replace them. Hybrid modeling combines the power of mecha-
nistic understanding and predictive modeling thus particularly attractive for tackling complex
bioreactor modeling problems.

The first part of this chapter overviews the key mechanistic modeling concepts for a bioreac-
tor system emphasizing the multi-scale nature and the many challenges yet to overcome. In
particular, the reduction and integration of genome-scale models with bioreactor models is
discussed. The second part of the chapter covers machine learning methods for supervised,
unsupervised and reinforced learning in a bioprocessing context, with emphasis on building
supervised bioreactor models that improve with process experience. It finalizes with an over-
view of hybrid mechanistic/machine learning models for bioreactors in the context of Indus-

try 4.0.

2.2 The Traditional Approach: Bioreactor Mechanistic Models

A bioreactor mathematical model may be expressed in different ways depending on the ob-
jective of the model. This chapter will address a particular class of dynamic models for per-
fectly mixed bioreactors expressed by the following general state-space representation

(Equation 1 and Equation 2):

Equation 1. State space model of a perfectly mixed bioreactor

dx

= D u(0,0, 0 x(to) = xp

Equation 2. Measurement model of a perfectly mixed bioreactor

y = h(x(t), By)

with x(t) the state vector, u(t)is the control vector, y(t)the vector of measured variables, 6,
and 6,are the parameters vector of the state-space and measurement models respectively,
and ¢ the dependent variable time. Equation 1 is the state-space model while Equation 2 is
the measurement model. The functions f(-) and h(-)expressed by Equation 1 and Equation 2

are typically complex and nonlinear, which render bioreactors rather complex dynamical sys-
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tems, which are difficult to identify and control. The system of Equation 1 and Equation 2 may
be shaped in many different ways depending on the level of detail of the knowledge availa-

ble, as shown in the proceeding sections.

2.2.1 Macroscopic material balances

Macroscopic bioreactor dynamics may be established ab /nitio by the material balance equa-
tions of the key extracellular compounds that intervene in the reaction mechanism. These
material balances are expressed by systems of ordinary differential equations (ODEs), which

take the following general state-space form (Bastin and Dochain, 1990):

Equation 3. General state-space equation

dc
E=T—DC+DCin+q

where ¢ is a vector of n concentrations of extracellular compounds (the state vector), r is a

vector of n volumetric reaction rates, D :g is the dilution rate (F is the volumetric feeding

rate into the reactor and V the liquid volume inside the reactor), c;, is a vector of n concen-
trations of extracellular compounds in the inlet stream, and gis a vector of n volumetric ex-
change rates from the gas to the liquid phase, which apply to gases (e.g. Oz CO,, H,, CH,,
etc....) and extracellular volatile compounds which are typically low molecular weight metabo-
lites resulting from the central carbon metabolism (e.g., ethanol, methanol, etc....). Equation 3
must be complemented with the general mass balance equation. If the specific mass of the
inlet stream is not significantly different than that of the liquid inside the bioreactor, the fol-

lowing simplified general mass balance applies:

Equation 4. General mass balance equation

av

— =DV
dt

Equation 3 and Equation 4 are generic for perfectly mixed bioreactors irrespective of the op-
eration mode. In batch reactors, Equation 3 and Equation 4 hold with D = 0. Fed-batch bio-

reactors are expressed by system of Equation 3 and Equation 4 without modifications. A
CSTR in transient operation is modeled with Equation 3 plus Z—: =F —F =0 (volume is con-
stant). A CSTR in steady state is modeled with system Equation 3 and Equation 4 by making

all derivatives equal null, i.e. 0 =r — Dc + D¢, + q and % =0.
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The system of Equation 3 and Equation 4 must be completed with defining kinetic equations
for the gas-liquid volumetric transfer rate, g, and for the volumetric reaction term, r. Gas-
liquid mass transfer models are well covered in reference textbooks (e.g. Bailey and Ollis,
1986, Blanch and Clarck, 1996) and will not be covered here. The critical challenge in bioreac-

tor engineering is the modeling of the reaction kinetics, which will be further covered below.

2.2.2 Unstructured growth models

The simplest approach to define a bioreactor model is by considering the cells all equal (un-
segregated) and without intracellular structure (unstructured). These assumptions give rise to
unstructured growth models, which were the prevailing type of models until the early 00s.
The extracellular compounds are considered as biochemical species that intervene in a sim-
plified bio-reaction mechanism, with biomass the catalyst of such bio-reactions. As illustrative
example, a simple bio-reaction mechanism whereby biomass (X) grows on a limiting sub-
strate (S) resulting in the formation of biomass itself (X) and product (P), may be expressed as
(Equation 5):

Equation 5. Examples of an unstructured growth model

u
Ys/xS—= 1X + yp/xP

mp
Ys;pS — 1P

ms

S—>0

k
X3S0

The first reaction represents cell growth with specific growth rate p and with concomitant
formation of product (P) (cell growth associated product synthesis). The second reaction rep-
resents cell growth dissociated product formation with specific rate of product formation mp.
The third reaction represents the substrate metabolized for cellular maintenance with
maintenance rate, mg (the symbol @ represents an unspecified entity/species). The fourth
reaction represents biomass death with death rate k,. The yields y;,; are stoichiometric coef-
ficients typically defined on a mass basis due to the undefined nature of some biochemical
species, particularly biomass. The specific growth rate is normally defined by the Monod

model (Monod, 1949) to express growth limitation by substrate S (Equation 6):
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Equation 6. Monod model for biomass growth

[S]

U= Umax Ks + [S]

where tmqis the maximum cell growth rate, [S] is the substrate concentration, and K; is the
Monod constant. The Monod model is inspired in the irreversible Michaelis-Menten enzyme
kinetics but is of empirical nature. To express growth inhibition by high substrate concentra-

tions, the Andrews model (Andrews, 1968) is a common choice (Equation 7):
Equation 7. Andrews model for biomass growth with high substrate inhibition
[S]

U= Umnax
S 2
Ks + [s]+ 2ok

where K ¢is the substrate inhibition constant. The Andrews model is inspired by the Hans
and Levenspiele acid-base equilibrium model for enzyme kinetics. Han and Levenspiel (1988)
have extended the Monod model by considering the effect of i =1, ..., h inhibitors of cell
growth (Equation 8):

Equation 8. Han and Levenspiel model for biomass growth with multiple inhibitors

n n
1]\ 5]
U = Umax <1 - _*> )™
1_:1[ [1;] [S]+ Ks ?=1 (1 - [[II}]])

where [I;] is the concentration of inhibitor I;. This model assumes the existence of a critical
inhibitor concentration [I;] above which cells cannot grow, and that the constants of the
Monod equation are functions of this limiting inhibitor concentration. The n; andm,; are addi-
tional kinetic parameters that need to be estimated from data. The Monod model may also
be extended to express the limitation of multiple ng substrates and the inhibition of multiple
n, products (Equation 9):

Equation 9. Extended Monod model for multiple substrate limitation and product inhibitions

Ng np
L=y 1—[ [S:] 1—[ Kbpi
max L Ksi + [Si] L Kp; + [P;]

The specific product synthesis rate, vp, may be expressed by the Luedeking-Piret equation

(Luedeking and Piret, 1959) (Equation 10):
Equation 10. Luedeking and Piret model for product growth

Vp = Yp/xi + Mp
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which considers a growth associated product synthesis term and a growth dissociated term.
These reaction kinetics and many other are simplified phenomenological models commonly
referred to as Monod-type kinetics.

Linking with the macroscopic balance (Equation 3) needs the definition of the volumetric re-
action rates, which for the case of unstructured growth models take the following general
form (Equation 11):

Equation 11. Volumetric reaction rates general equation for unstructured growth models

r=Kv(cu08)X

where K = {y;/;}is a n x m matrix of yield coefficients and v(c, u, 8)is the vector of specific
reaction rates (n is the number of species and m the number of reactions). The yield coeffi-
cients in matrix K have been often observed dependent of the experimental conditions. This
apparent time-varying nature of yield coefficients is explained by the lack of intracellular
structure in the model. Metabolic pathway analysis of genome scale networks has highlight-
ed the redundant nature of biochemical networks, characterized by millions of metabolic
circuits between extracellular substrates and end products in prokaryotes and even more in
eukaryote cells. The ability to dynamically adjust intracellular states explains the time-varying
nature of yield coefficients and the lack of predictive power of purely macroscopic models. In
many cases the consideration of intracellular structure becomes mandatory, which will be

further covered in the next sections.

2.2.3 Segregated growth models

Cell cultures are in reality comprised of heterogeneous mixtures of cells that differ with re-
gard to size, mass and intracellular concentrations of proteins, DNA and other chemical con-
stituents. To account for population heterogeneity, population material balance equations
are applied to segregate groups of cells with identical properties. In a population balance
based on cell number, the cells are differentiated in terms of a given set of properties, y. The
distribution of cells in the population in relation to properties y is given by a distribution
function w(y, t), where w(y, t)dy represents the number of cells per unit volume within the

property interval[y,y + dy] at time t. The total cell count is then given by( Equation 12):

Equation 12. Cell distribution function

Ymax
wit) = f w(y, t)dy

Ymin
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The distribution function w(y, t)is obtained by solving the population balance equation (PBE),
which for a homogeneous bioreactor without cell feeding, takes the following general form
(Nielsen and Villadsen, 1994) (Equation 13):

Equation 13. General population balance equation

w(y,t)  dlr(y,iw(y, t)]
+
at dy

= h(y,t) = Dw(y,t)

where r(y, t) is the rate of change of property y, and h(y,t) is the net rate of formation of
cells with the property y due to cell division, and Dis the dilution rate in the bioreactor. The
net rate of formation of cells with the property y due to cell division maybe further detailed
by splitting into the rates of formation and disappearance of cells with property y (Equation
14):

Equation 14. Net rate of cell formation

ymax
hy,6) = 2 j O, 0P,y OW(, Ody' — (7, OW(, )

Ymin

with (y’,t) the division rate of cells with propertyy’, p(y,y’,t) the probability of a mother cell
with property y’ dividing into 2 daughter cells with property y.

The link with the macroscopic material balances requires a modification of Equation 3 to ac-
count for the influence of properties y in the specific reaction rates, v, as follows (Equation
15):

Equation 15. General volumetric rates for segregated growth models

Ymax
r= Kf v(c,y,u,0) w(y, t)dy

Ymin

For simplicity, PBEs are usually applied to a single property such as cell age (A. Hjortso and
Nielsen 1995) or cell mass (Nishimura and Bailey 1981). Since it considers growth and division
of single cells, this approach can be used to describe heterogeneity caused by extra and in-
tracellular fluctuations (Delvigne et al. 2014). Many PBE models have been developed (Ander-
son et al. 1969; Fadda et al. 2012; Ganusov et al. 2000; Henson 2003a; Zhu et al. 2000) and
several numerical methods were developed to reduce the computational hurdles for solving
the resulting nonlinear integro-ordinary differential and integro-partial differential equations
(Liu et al. 1997; Mantzaris et al. 2001; Pigou et al. 2017; Singh et al. 2020).
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2.2.4 Intracellular structure

Structured models further consider intracellular compartments (cytosol, mitochondria, nucle-
us, etc...) and the concentrations of intracellular species (metabolites, proteins, RNA/DNA
and other chemical constituents), which are involved in a very complex network of physio-
chemical transformations. Under the assumption of well-mixed compartments, the dynamic

material balance equations over intracellular species are generically stated as Equation 16:

Equation 16. Intracellular material balance equations' general form

% =Ny — pz

dt

where z is a vector of concentrations of nz intracellular species, Nis anz x q stoichiometric
matrix of intracellular reactions, v is a vector of q specific reaction rates (including transport
reactions across compartments), and pis the specific growth rate. The second term in the
right-hand side of Equation 16 expresses the dilution of intracellular species due to the in-
crease of cell mass. The reaction rates, v, are complex functions of extracellular concentra-
tions, ¢, intracellular concentrations, z, input variables (such as T, pH, etc) and kinetic parame-
ters, 8 (Equation 17):

Equation 17. General volumetric rates for segregated growth models

v={f(zcub)

The development of structured models has been historically limited by the lack of knowledge
of the very complex intracellular phenomena. With the emergence of systems biology in the
early 00s, several GEnome-scale reconstructed Models (GEM) have been developed for indus-
trially relevant cells such as Escherichia coli (Monk et al., 2013), Saccharomyces cerevisiae
(Foster et al., 2003), Pichia pastoris (Sohn et al.,, 2010), CHO cells (Hefzi et al., 2016), HEK cells
(Quek et al., 2014) and many other. This new generation of GEMs are now being considered
for bioreactor dynamic modeling, control and optimization. Construction of large dynamic
GEMs has been attempted in two ways: i) traditional kinetic modeling paradigm, or ii) dynam-
ic flux balance analysis (dynamic FBA) techniques (Stanford et al., 2013). Dynamic FBA avoids
the definition of the kinetic rate Equation 17 by dynamic optimization of a cellular objective
function (Mahadevan et al., 2002). However, rigorous dynamic modeling requires the defini-
tion of the kinetic Equation 17. One advantage of GEMs is the association between genes,

enzymes, reactions and respective catalytic mechanisms. For bi-molecular metabolic reac-
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tions the mechanistic Michaelis-Menten model generally applies (Cornish-Bowden, 1995). A
large number of metabolic reactions involve more than 1 substrate or more than 1 product.
For such reactions, Liebermeister et al. (2010) proposed a generalized form of the reversible
Michaelis-Menten model called modular rate law, which is now popular for GEM. Unfortu-
nately, most of the reaction mechanisms in GEMs are unknown and approximations are re-
quired, such as generalized mass action (GMA), hill kinetics, lin-log kinetics (Visser and
Heijnen, 2003), convenience kinetics (Liebermeister and Klipp, 2006) and power laws (Sav-
ageau, 1970) and their combinations (Costa et al., 2010). GMAs are simplistic approximations
of the reaction mechanisms based on the principle that the reaction rate is proportional to
the probability of collision of reactant molecules. GMAs have only 2 parameters and they can
be automatically generated from the reaction stoichiometry, which have popularized them in
GEM.

The link with the macroscopic material balances Equation 3 is not explicit in Equation 17. A
subset of reactions in vector, v, is associated with transport processes across the cellular
membrane for the exchange between intracellular and extracellular compartments. The net

volumetric reaction rate of n extracellular species can then be calculated as Equation 18:

Equation 18. Volumetric reaction rates from an intracellular structure model

r=XNCyp

where N{¢} is the n x q stoichiometric matrix associated with n extracellular compounds.
Equation 18 links with the macroscopic material balances Equation 3, which may be rewritten

as Equation 19:

Equation 19. General state-space equations for extracellular components when using an intracellular model.

dC—XN{C} Dc +
dt_ % c q

Given the very large size of N#, N{¢} and v with thousands of species and reactions, it is crit-
ical to reduce GEMs to the reactor operating conditions. As illustrative example, Quek et al.
(2014) have adapted the RECON-2 model (Thiele et al.,, 2013) with 7440 reactions for the cul-

tivation of HEK293 cells in a defined medium, with a significative reduction to 329 reactions.
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2.3 Bioreactor Models for Industry 4.0

Industry 4.0 is now widely accepted as the next paradigm for production with the widespread
of automation, data connectivity and machine learning (ML). ML is an essential part of Indus-
try 4.0 that allows systems and algorithms to automatically improve based on experience.
This section covers the key concepts and the challenges of machine learning and hybrid

mechanistic/machine learning modeling.

2.3.1 Machine Learning for Bioreactor Problems

Machine learning (ML) explores the capability of computational algorithms to learn from pre-
vious large experimental data. In this context, ML employs a variety of algorithms to auto-
mate the process of data-driven models’ construction, which iteratively learn to predict and
improve different process outcomes (Jordan and Mitchell 2015). Several ML algorithms have
been developed and are currently available in open-source python packages like scikitlearn
(Pedregosa et al. 2011). Here we focus on ML methods that are often used in bioreactor ap-
plications. The ML area can be divided into three main classes: supervised, unsupervised, and
reinforcement learning (Breve and Pedronette 2016, Nian et al. 2020, Singh et al. 2016).

Supervised learning: The supervised learning methods, such as regression (for continu-
ous/numeric outcomes) and classification (for categoric outcomes) problems, are techniques
where the task is to create a relation between a set of input/feature observations (u) and the
corresponding real-valued outcome in a training dataset (y). Mathematically this relationship

is described by Equation 20:

Equation 20. General relation between outputs and inputs in a ML model
y = f(ulo)

where () is the model and 6 the parameters. The main goal is to optimize 8 to minimize the
error between the model and the real values given in the training dataset (Alpaydin 2020).

Figure 2 depicts a typical workflow applied in supervised learning:
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Figure 2. Typical supervised learning workflow

Unsupervised learning: Unlike supervised learning, where the data is labeled with the desired
outcome value (i.e. the output associated to an observation is known), in unsupervised algo-
rithms (learning without supervision) no pre-existing labels are required (Larranaga et al.,
2006). The goal of unsupervised machine learning is to detect patterns in highly com-
plex/multivariate input data (e.g. regions of images or search results). In other words, the
basic idea is to group together similar instances using for instance the Euclidean distance.
Examples of unsupervised learning techniques are K-means clustering (Yu et al. 2020) and
dimensionality reduction (DR) (Butcher and Smith 2020).

Reinforcement Learning: A different paradigm regarding learning from experience is provid-
ed by reinforcement learning (RL) (Sutton and Barto 1998). RL is based on the relationship
between an agent and the environment. the agent observes the state of the environment in
order to take actions. For instance, in bioreactors the state observed by the agent could be
the strains of microorganisms and the RL action taken by the agent control can be the con-
centration of substrate. The goal of an RL algorithm is to use evaluative feedback from the
environment to estimate real values to update an internal policy that optimizes a desired
target (Lee et al. 2018). RL can be viewed as a joint optimization problem between the poli-
cy/action and the data. Despite some challenges (e.g. satisfying operational constraints), RL
can be very useful to address a wide range of chemical process control and bioprocess prob-
lems. Some examples include the nonlinear optimal control problems (Hoskins and Him-
melblau 1992, Shin et al.,, 2019) and real-time optimization of bioreactors (Powell et al., 2020).
More recently, RL has also been applied for the control of bioreactor systems (Ma et al.,
2020).

In the following sections, three of the commonly used supervised learning methods in biore-

actor modeling are further detailed.

2.3.1.1 Artificial Neural Networks (ANNSs)

Neural network computing is currently the most popular ML tool for supervised learning in
different domains including bioreactor modeling and control. ANNs are computing systems

inspired by biological neural networks, consisting of multiple interconnected processing units
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(called nodes) arranged in layers (Haykin, 2009). Each node is excited by the connecting
nodes (typically from preceding layers) and computes an output signal that will excite other
nodes in the network (typically in proceeding layers). The nodes of the first layer (input layer)
receive external signals, which are propagated to the nodes of the intermediate layers (hid-
den layers) eventually exciting the output nodes (output layer) thereby forming the system
outputs. Different ANN architectures with particular node activation functions (linear, sig-
moidal, hyperbolic tangent, RelLU, etc...) and topologies have been proposed for different
applications (Krogh 2008).

Neural network applications for bioreactor modeling and control first caught attention in the
early 90s (e.g. Dimassimo et al. 1992, Dochain, et al., 1992, Joseph and Hanratty, 1993,
Baughman and Liu, 1994). This surge was motivated by the publication of the error back-
propagation algorithm for efficient neural network training (Rumelhart et al. 1986), which
boosted neural network applications in different domains. After a long period of skepticism,
they are now resurging by the new developments in deep neural network topologies and
deep learning algorithms (Larochelle et al. 2009), particularly the ADAM algorithm (Kingma
and Ba, 2017).

Given the non-linear character of bioreactor dynamics, the network topology most used is by
far the Multilayer Perceptron Network (MLP). Particularly, a simple 3-layered MLP has been
the topology of choice for now-linear regression problems in the bioreactor modeling do-
main. A 3-layered MLP for nonlinear regression problems consists of a linear input layer, a
single hidden layer with tangent hyperbolic (tanh) nodes and an output linear layer. Mathe-

matically, a MLP is simply stated by the following function (Equation 21):

Equation 21. Most common MLP structure for bioreactors

y = w, tanh(w,u + by) + by

where y is the vector of outputs calculated by the output layer, uis the vector of inputs that
excites the input layer and 6 = {w,; b;, w,, b,}is the network parameters (weights associated
with node connections) that need to be estimated from data during the training process. The
MLP expressed by Equation 21 is of static nature. The extension to time series data is
straightforward by considering time lagged inputs/outputs to the network. Kingma and Ba
(2017) have shown how a deep MLP may be efficiently trained using the ADAM algorithm
with (nodes) dropout. A network is considered deep when it has more than 2 hidden layers.
This new development will likely boost new applications for bioreactor modeling and control

in the near future (Salah and Fourati 2019).
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2.3.1.2 Decision Trees (DTs)

The DTs (DelLisle and Dixon 2004) are a simple case of a non-parametric supervised model
and can represent any function of the input attributes, with the rules defined as a tree (con-
sists of nodes and branches). The use of a training dataset defines the set of rules that will be
sequentially employed to a new observation until a class is estimated. This process goes on
until a leaf (terminal) node is satisfied, corresponding to the decision outcomes (i.e., contin-
ues or categorical value) or one stopping rules are reached. The rules for each node are given
by the division of the dataset producing better discriminative ability. DTs are one of the most
popular algorithms due to their high human interpretability and its simplicity to imple-
ment/use. In the context of bioreactor modeling, DTs can be applied, for example, to identify
critical process parameters using information from different fermentation runs (Buck et al.
2002) and to find the combination of operating variables for algal biomass and lipid produc-
tion (Cosgun et al. 2021). They have also been employed to optimize fermentation medium
(Bapat and Wangikar 2004).

The relationship between the outcome (y) and features (x) is described by (Equation 22):

Equation 22. Decision trees mathematical structure

M

y = 2 cm I{x € Rm}

m=1
Here, each instance falls into exactly one leaf node (subset of Rm), ¢, is the weight given to

the mth transformation and [{x € Rm} is the function that returns 1 if Xis in the subset of Rm

and 0 otherwise.

2.3.1.3 Random Forest (RF)

An RF is an ensemble method that combines different DTs, each with the same nodes
(Breiman 2001). The RF algorithm has two main steps:(i) RF creation and (ii) make a prediction
from the classifier created in step (i). This algorithm uses the sample bootstrapping aggrega-
tion method for each DTs (Rindskopf 1997). Additionally, a feature sampling is performed,
making classifiers more robust to missing values and more uncorrelated to each other. For
large numbers of trees, more accurate results are expected. This model prevents data overfit-
ting and is simple to train. For a training set T = {(x1,y1)....,(xn,yn)} of N observations
from random vectors (x, y), the developed RF will be an ensemble of k trees {t1(x). ..., tk(x)}.
The ensemble produces k outputs {y1 = t1(x),...,yk = tk(x)}, where y,, k = {1,2,....,k} is
the prediction for a classifier by the kth tree.
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RF methods can be used as regression, classification and to assess feature importance, mak-
ing it an algorithm with different applications on real-world problems. An example is given by
Melcher, et al. (2015) who use RF technique to predict cell dry mass and recombinant protein
based on online process parameters and spectroscopic information. Recently, RFs have been

employed for on-line fault diagnosis in a bioreactor operation (Shrivastava et al. 2017).

2.4 Hybrid Mechanistic/ML Bioreactor Models

A very promising approach for bioreactor modeling is the combination of mechanistic mod-
els with ML into hybrid model structures. The combination of mechanistic models with ANNs
for bioreactor dynamic modeling was first suggested by Psichogios and Ungar (1992) and
Thompson and Kramer (1994). Thompson and Kramer (1994) classified this problem as a hy-
brid semiparametric modeling problem. Hybrid semiparametric models integrate parametric
functions with fixed structure stemming from prior process knowledge (for example, macro-
scopic material balance equations) with nonparametric functions with loose structure that
need to be identified from process data (for example a MLP as in the paper by Psichogios
and Ungar (1992) or a radial basis function network, as in the paper by Thompson and Kra-
mer (1994)). The main motivation was to cope with ANN disadvantages such as the inability
to comply with process constraints, the tendency for data overfitting, and the poor predictive
power outside the training-validation domain. The advantages of hybrid modeling may be
stated in /ato sensu as a more efficient usage of knowledge for process modeling, which ul-
timately translates into more accurate, precise and robust process models (Schubert et al.,
1994). Many other hybrid bioreactor modeling papers followed (e.g. Preusting et al., 1996,
Andserson et al., 2000, Chen et al., 2000, Galvanauskas et al., 2004, Oliveira, 2004, Teixeira et
al., 2007, review by von Stosch et al. (2014). Here we focus on the general bioreactor hybrid
model proposed by Oliveira (2004). This hybrid structure is formed by the general state-space
macroscopic material balance Equation 3 and Equation 4.

The reaction rates term, r, is defined as a flexible mixture of parametric and nonparametric

functions with the following general form (Equation 23):

Equation 23. Reaction rates term as defined by a hybrid model.

r=KH(c) p(c,6)

with K the yields matrix, H(c)a set of known kinetic rate functions (with fixed structure and

known parameters; for example, Monod-type kinetics), and p(c, 8), a loose function with un-
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known structure that needs to be identified from data. The MLP network has been the pre-

ferred ML method in the context of the general bioreactor hybrid model.

Equation 24. General form of an MLP network

p(c, 0 = {wy,by,wy, by}) = w, tanh(wyc + by) + b,

The main motivation for the general hybrid model structure is to provide a flexible framework
to include all reliable mechanistic knowledge in the models and to decrease the dimensional-
ity of the ML identification problem. It explicitly assumes that macroscopic material balance
equations are known a priori in most of the bioreactor modeling problems. The less under-
stood part of the model in a mechanistic sense are the reaction kinetics. Thus, the experi-
mental design and ML modeling should focus on the unknown parts, which are (some of) the
reaction kinetics. In this way ML does not replace mechanistic models, it rather complements

or improves existing mechanistic models.

2.5 Summary

Mathematical models are recognized as fundamental tools in chemical and biological engi-
neering enabling to better understand process mechanisms, to reduce the experimental
workload for process development, to increase the process operation robustness, to improve
productivity and yield, among many other potential benefits. While process systems engi-
neering tools have proven determinant for the development and operation of chemical pro-
cesses, the penetration in the bio-industries is lagging behind. There is still today the per-
ception that bioreactor models are more difficult to develop (higher costs) and less perform-
ing (lower benefits) in comparison to chemical reactor models. This apparently less attractive
benefit/cost ratio has hampered the deployment of a consistent systems bioengineering
toolbox in the bio-industries.

With the emergence of systems biology in the early 00s, several industrial cell lines have been
sequenced and deeply investigated in their molecular biology traits and mechanisms. In par-
ticular, genome-scale models (GEMs) have been developed for the most important cell
lines/microorganisms used in industry. While the development of GEMs for individual cell
lines is work in progress, providing only a scaffold of the underlying biology, they offer the
opportunity for holistic process modeling, linking cell line development, culture medium de-
sign, reactor optimization with downstream unit operations. GEMs may guide the integration

of the different scales thereby realizing the concept of holistic models for process platforms.
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Opposed to mechanistic modeling, data-driven modeling and Machine Learning (ML) are
primarily focused on the predictive power with limited gain on process understating. The
main bottleneck is the availability of thorough datasets covering the full domain of process
operation. While ML in particular has enjoyed a tremendous development in the fields of
image analysis and speech recognition, bioprocess applications are hindered by the scarcity
of data in routine operation. The widespread use of high-throughput cultivation techniques
linked with multi-data technologies will undeniably create novel opportunities for ML appli-
cations to bioprocesses. Such technologies generate large amounts of omics data, typically
high-dimensional and sparse, which are difficult to integrate in bioreactor models. State-of-
the-art ML algorithms offer the tools to deal with some of the faced challenges, by unravel-
ing relationships and predictions from complex datasets without the need for a priori mecha-
nistic knowledge. However, to accelerate more successful applications of data-driven ap-
proaches, high-quality bioprocess data repositories preferably in machine-readable format
and new computational algorithms/tools to combine the benefits of ML and mechanistic in-
formation should be produced.

The apparently conflicting objectives between process understanding and predictive power
may be mitigated by the adoption of hybrid modeling formalisms. Hybrid mechanistic/ML
modeling has emerged in recent years as a promising technique for bioreactor modeling
particularly in the biopharma sector. Many published studies have proven the superiority of
hybrid mechanistic/ML model structures when benchmarked against the standalone mecha-
nistic or ML model components. There are however many challenges ahead in the hybrid
modeling field. Hybrid modeling has been limited to relatively simple model structures and is
difficult to scale to large problems, particularly to genome scale models. With current meth-
ods it is particularly difficult to develop hybrid models with detailed mechanistic modeling of
intracellular phenomena. The combination of symbolic and numeric computation frame-
works will likely enable to scale-up hybrid models to more complex bioreactor problems with
acceptable computation cost. The “hybridization” of GEMs and machine learning is particular-
ly promising. Hybrid GEMs may guide the integration of the different stages of upstream and
downstream processing thereby realizing the concept of holistic models for process plat-
forms. The embedded machine learning components will confer the learning through experi-
ence feature in the realm of Industry 4.0. From our point of view, solving these formidable
challenges is just possible through inter- and multi-disciplinary collaborations between aca-

demia and industry.
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A GENERAL DEep HYBRID MODEL FOR BIO-
REACTOR SYSTEMS: COMBINING FIRST PRIN-
CIPLES WITH DEEP NEURAL NETWORKS

This chapter is based on the publication: Pinto, J., Mestre, M., Ramos, J., Costa, R. S., Striedner,
G., & Oliveira, R. (2022). A general deep hybrid model for bioreactor systems: Combining first
principles with deep neural networks. Computers & Chemical Engineering, 165, 107952.

3.1 Introduction

The first steps towards the integration of mechanistic abstraction and neural networks in pro-
cess systems engineering were taken in the early 90's with the pioneering works of (Psichogi-
os and Ungar, 1992; Su and Mcavoy, 1993; Schubert et al., 1994) and (Thompson and Kramer,
1994). The main motivation was to overcome neural networks limitations, namely the i) ina-
bility to comply with process constraints, ii) the tendency for data overfitting, and iii) the poor
predictive power outside the training-validation domain. Thompson and Kramer (1994)
framed this problem as hybrid semi-parametric systems, whereby parametric functions with
fixed structure stemming from prior process knowledge (e.g., macroscopic material balance
equations) are combined in series or in parallel with nonparametric functions (e.g. neural
networks) identified from process data. Numerous bioprocess modeling studies followed (e.g.
Preusting et al, 1996; van Can et al, 1998; Chen et al, 2000; Galvanauskas et al., 2004;
Oliveira, 2004; Teixeira et al., 2007; Fiedler and Schuppert, 2008; von Stosch et al., 2011; Fer-
reira et al,, 2014; Pinto et al,, 2019; O'Brien et al.,, 2021; Bayer et al., 2021) highlighting the

advantages of the hybrid technique, which may be summarized as a more rational usage of
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prior knowledge eventually translating into more accurate, transparent and robust process
models.

The vast majority of hybrid modeling studies explored the combination of conservation laws
and shallow neural networks (see review by (von Stosch et al., 2014)). Recent advances in
deep learning have however demonstrated that neural networks with multiple hidden layers
(deep networks) are advantageous over their shallow counterparts. Shallow and deep net-
works are both universal function approximators, but deep networks are able to approximate
compositional functions with exponentially lower number of parameters and sample com-
plexity (Delalleau and Bengio, 2011; Eldan and Shamir, 2016; Liang and Srikant, 2017) and are
less prone to overfitting (Mhaskar and Poggio, 2016). The shift from shallow to deep network
architectures has been triggered by the development of stochastic gradient descent training
algorithms, particularly the ADAM method (Kingma, 2014). ADAM s a first-order gradient-
based method for stochastic objective functions based on adaptive estimates of lower-order
moments. The data subsampling along with the learning rate adaptation at each iteration
resulted in a simple and robust training method that is less sensitive to gradient attenuation
and to the convergence to local optima. Stochastic regularization based on weights dropout
has been shown to effectively avoid overfitting in deep learning (Hinton et al., 2012; Srivasta-
va et al., 2014). Stochastic regularization is frequently associated with stochastic gradient de-
scent methods to prevent overfitting and to improve generalization properties (Koutsoukas
et al,, 2017).

Only very recently the deep learning advances are penetrating the hybrid modeling field.
Bangi and Kwon (2020) proposed a hybrid model for a hydraulic fracturing process that com-
bines a First Principles model with a deep neural network. A fully connected network with 5
layers (1x20x20x20x1), hyperbolic tangent activation (fan/) in the 3 hidden layers and linear
activation in the input/output layers, was adopted. The Levenberg—Marquardt algorithm and
finite difference-based sensitivity analysis were adopted to train the hybrid model. The result-
ing hybrid model had superior extrapolation properties compared to a purely data-driven
deep neural network model. Following a similar approach, Shah et al. (2022) developed a
deep hybrid model for an industrial fermentation process. Lee et al. (2020) developed a hy-
brid deep model of an intracellular signaling pathway using a neural network with 2 hidden
layers. Bangi et al. (2022) proposed the Universal Differential Equations (UDE) formalism for
mixing the information of physical laws and scientific models with data-driven machine learn-

ing approaches. They applied it to a Saccharomyces cerevisiae batch fermentation process.
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Merkelbach (2022) have develop a software package called HybridML that uses TensorFlow
for artificial neural network training and Casadi to integrate ordinary differential equations.

In this chapter, we revisit the general bioreactor hybrid model (Oliveira, 2004; Teixeira et al,,
2007; von Stosch et al,, 2011; Ferreira et al, 2014; Pinto et al,, 2019) and extend it to deep
learning. More specifically, we explore deep learning techniques in a hybrid semiparametric
modeling context, such as deep feedforward neural networks with varying depths, the recti-
fied linear unit (ReLl) activation function, dropout regularization of network weights, and
stochastic training with the ADAM method. These techniques are applied to two case studies

and are benchmarked against the traditional shallow hybrid modeling approach.

3.2 Materials and Methods

3.2.1 General Deep Hybrid Model for Bioreactor Systems

A stirred tank bioreactor can be generically represented by the hybrid model structure

of Figure 3:
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Figure 3. Schematic representation of the general deep hybrid model for bioreactor systems. The model is dynam-
ic in nature with state vector, x, and observable outputs y. The model has a parametric component (functions f(.)
and h(.)) with fixed mathematical structure determined by First Principles (typically material/energy balance equa-

tions). Some cellular properties are modelled by a deep feedforward neural network with multiple hidden layers as
function of the process state, x, and external inputs, u. The deep neural network is a nonparametric model com-
ponent with loose structure that must be identified from process data given the absence of explanatory mecha-

nisms for that particular part of the model.

The dynamics of state variables are modelled by a system of ordinary differential equations
(ODEs) derived from macroscopic material balances and/or intracellular material balances
and/or other physical assumptions. These equations take the following general form

(Equation 25 and Equation 26):

Equation 25. General ODE system of a hybrid model for a bioreactor system

dx

— = f(9ut
dt f(y, YU, )

Equation 26. General form of the equation of observable outputs
y =h(x9)
with t the independent variable time, x(t) the process state vector, u(t) the vector of external
inputs (feed rates, temperature, pH, etc), 9 a vector of process variables with unknown defin-
ing functions, and y the vector of measured variables. Equation 25 and Equation 26 are the
state-space model and measurement model respectively. The functions f(.) and h(.) are of
parametric nature thus with fixed structure stemming from prior knowledge. They are typical-
ly set by material and/or energy balance equations of extracellular and intracellular variables
(as shown in the case studies). Some relevant bioprocess variables may be less defined in

terms of explanatory mechanisms and/or rely on loose assumptions. Typical examples are
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biological reaction kinetics or product quality attributes, which are difficult to establish on a
mechanistic basis. In the general hybrid model, such properties are defined as loose func-
tions, 9(.) (typically of the process state and external inputs), with unknown structure, i.e.
nonparametric functions without physical meaning. Among the many possibilities to define
9(.), the preferred approach (in a hybrid modeling context) has been by far the feedforward
perceptron networks with 3 layers only (see review by (von Stosch et al., 2014)). In the present
study, the more general case of deep multi-layer perceptron networks with arbitrary number

of nh hidden layers is explored, stated as follows (Equation 27, Equation 28 and Equation 29):

Equation 27. Multi-layer perceptron network input layer

H° = g(x,u,t)
Equation 28. Multi-layer perceptron network hidden layer
H'= o (W' -H"1 +b"),i=1,..,nh
Equation 29. Multi-layer perceptron network output layer
9(:) = whh+1. gnh 4 pnh+1

The input layer (Equation 27) typically receives information of the state variables, x and/or
external inputs, u (temperature, pH, etc....) and/or process time, t. An optional non-linear pre-
processing function g(x,u,t), may sometimes facilitate the identification of 9(.), as for ex-
ample concentration ratios are set as inputs to the neural network or other normalization
rules (see (von Stosch et al., 2016; Gnoth et al., 2008; Gnoth et al., 2010)). Then follows nh
hidden layers (Equation 28) with o(.) the nodes transfer function (in this chapter either the
tanh or the RelU). Finally, the output layer has linear nodes (Equation 29). The parameters
w = {wl,w?, ..., w1} and b = {b%,b?, ..., b™* 1} are the nodes connection weights that need
to be identified from data during the training process. Presuming that initial conditions
x(t) = xo and network weights w = {w, b} are given, the deep hybrid model can be solved by
numerical integration as an Initial Value Problem (IVP). In the present chapter, a Runge-Kutta
4th order ODE solver was adopted to integrate the system (Equation 25, Equation 26 Equa-
tion 27, Equation 28 and Equation 29) and compute x, y and 9 over time. All the code was
implemented in the HYBrid MODdeling (HYBMOD) MATLAB® toolbox on a computer with
Intel(R) Core (TM) i5-8265U CPU @ 1.60 GHz 1.80 GHz, and 24 GB of RAM.
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3.2.2 Training Method

3.2.2.1 Standard Non-Deep Method

Hybrid bioreactor models are typically trained by indirect supervised learning with cross-
validation to avoid overfitting (e.g., (Psichogios and Ungar, 1992; Oliveira, 2004; Pinto et al,
2019; von Stosch et al., 2014)). The data are partitioned into a training subset (for parameter
estimation), a validation subset (stop criterion to avoid overfitting) and a test subset (to as-
sess the predictive power). Partitioning is typically performed batch wise with the amount of
data allocated in each partition depending on the objective of the study and on the amount
of data available. The optimization of network parameters is performed over the training set

only in a weighted least-squares sense (Equation 30):

Equation 30. Weighted least squares for shallow hybrid modelling.

T
1 = Ye)?

WSSE = — E (e Z}’t)
T 4 of

with T the number of training patterns, y; the measured variables at time t, y; the corre-
sponding model prediction and o, the measurement standard deviation. This method is
called indirect because the loss function is not directly linked to the neural network outputs,
9. The Levenberg-Marquardt method (LMM) has been shown to solve very effectively the
indirect training problem (Equation 25, Equation 26, Equation 27, Equation 28, Equation 29
and Equation 30) in the case of shallow hybrid models (Schubert et al., 1994; Oliveira, 2004).
The LMM has also been used in a recent deep hybrid modeling study (Bangi and Kwon,
2020). The LMM convergence is improved if the sensitivity equations are applied to calculate
the loss function gradients instead of numerical gradients (e.g. (Psichogios and Ungar, 1992;
Schubert et al., 1994; Oliveira, 2004)). The sensitivity equations for the general hybrid have

the following structure (for simplicity it is assumed that (y = x) (Equation 31):

Equation 31. Indirect sensitivity equations for the general hybrid model

(’)WSSE yt yt <6xt)
g=
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The sensitivity equations are obtained by differentiation of the state-space model (Equation
25) in relation to the network parameters, w. For more details regarding the sensitivity equa-
tions in a hybrid modeling context see (Psichogios and Ungar, 1992; Oliveira, 2004). The inte-
gration of the sensitivity equations was performed in this study with a Runge-Kutta 4th order

ODEs solver.

3.2.2.2 Stochastic Adaptive Moment Estimation (ADAM) With Semi-Direct Sensitivities

An important goal in this chapter is to compare the standard training method with state-of-
the-art deep learning techniques in the context of hybrid modeling. Particularly, ADAM is
considered a landmark in deep learning and was implemented here to train hybrid models.
The ADAM method estimates the network parameters, w = {w, b}, through the first and sec-
ond moments of the gradients of the loss function and a set of hyperparameters «, §; and
B2, representing the step size and exponential decays of the moment estimations (for details
see (Kingma, 2014)). The loss function is the same as in the previous method (Equation 30).

This results in the following implementation (Equation 32):

Equation 32. ADAM algorithm equations

_ Br M1+ (1 —B1) gk

’"" -8D
_ B+ (1= B) - gk
Vi = A
1-53)
a-myg
Wi =

Wg—1 — —(\/v—k T o)

with k the iteration number, m; the first order moment of gradients, g, the loss function
gradients, v;, the second order moment of gradients. For the present chapter, the suggested
default parameters of @ = 0.001, §; = 0.9, B, = 0.999 and ¢ = 10~8 were adopted (Kingma,
2014).

The gradients at each iteration are obtained by solving the sensitivity equations (Equation
31). Because the CPU scales exponentially with the size of the network, a different approach

to calculate the gradients was explored. Instead of computing the sensitivities of state varia-

bles in relation to network parameters, (g—;), a semidirect approach was implemented where

the sensitivities of state variables in relation to network outputs, (Z—;), are computed. The

semidirect sensitivity equations are as follows (again assuming y = x) (Equation 33):
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Equation 33. Semidirect sensitivity equations for the general hybrid model
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l
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Finally, the loss function gradients g = can be computed from the 2 sen5|t|V|ty by

w a9

the well-known error backpropagation algorithm through the network (Werbos, 1974). The
main advantage of the semidirect method is that the number of ODEs for calculating the sen-
sitivities is massively reduced and are independent of the size of the network. This results in a

sizable CPU reduction as shown in section 3.2.4.

3.2.3 Case Studies

3.23.1 Lee & Ramirez Synthetic Dataset

A synthetic dataset was generated based on the Lee & Ramirez bioreactor model (Lee and
Ramirez, 1994). This model is frequently adopted as a benchmark to test different optimal
control methods (e.g. (Banga et al.,, 2005)). The objective in this case study is to train hybrid
models on an information rich dataset (time series data generated by statistical design of
experiments) and then to assess if the trained hybrid models are able to describe (extrapo-
late) the maximum productivity fed-batch obtained by optimal control studies (Lee and
Ramirez, 1994).

The Lee & Ramirez model describes the dynamics of biomass (X), substrate concentration (S),
inducer concentration (IND), product concentration (P), shock factor (Sh), recovery factor (Re)
and reactor volume (V) in a recombinant Escherichia coli fed-batch process. Experiments
were simulated dynamically for different conditions (see below) applying a Runge-Kutta 4th
order ODEs solver. Samples were simulated with 1 hour sampling time. Gaussian noise was
added to “sampled” variables with standard deviations of 1.5 (X), 5(S) and 0.3(P) (10% of
maximum concentration). As shown in section 3.2.4., modeling errors were calculated based
on the noisy data (noisy weighted mean squared error (WMSE)) and also on the noise free

data (noise free WSSE).
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A central composite design (CCD) was applied to the process degrees of freedom, namely the
induction time between 5-9 hours, pre-induction substrate feed rate between 0-0.8h~%, post-
induction substrate feed rate between 0-0.8h~1 and inducer feed rate between 0-1h~1. This
resulted in 25 fed-batch experiments. The 25 fed-batch experiments were included in the
training data partition (297 training data points). The validation dataset (used only as training
stop criterium) was obtained by adding gaussian noise with standard deviations of 1.5 (X),
5(S) and 0.3(P) to the training dataset resulting in 297 validation data points. In our experi-
ence, this partition method maximizes data usage for training and also effectively prevents
model overfitting. For the test dataset (used to assess the model generalization capacity), the
optimal fed-batch with optimized feeding and maximum product concentration of 3.16 g/L
(Lee and Ramirez, 1994) was adopted (15 data points). In summary, the models were
trained/validated with the 25 DoE experiments and then set to predict the dynamic profiles of
the optimal production fed-batch. The optimal production fed-batch delivers a final product
mass, which is 34.4% higher than the best DoE fed-batch. The details of the dataset are pro-

vided as supplementary material A.

Hidden layers
External inputs

9= [HJ Vg, vpuk1] 1 u = [Fy, Fy,Sin, INDyy, |

H°

B ; State React Feeding
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i _’Us s w X 0 Observable
> o s FiSin/V outputs
IND =p- dal P vpX Farl P 0
Ve _[inD|= 0 22 hnp [+ FyIND,, [V —
—) dt vV
Sh ey Sh 0 0 Y= [X.5.P]
Sh —p ky Re (1—k;)Re 0 0 .S,
— 4 0 v 0

Internal state feedback, x = [X, 5, P,IND, Sk, Re]”

Figure 4. Deep hybrid model structure for the Lee & Ramirez dataset. The parametric component is established by
a system of ODEs as described in Lee & Ramirez (1994). The specific biologic kinetics are considered mechanisti-
cally unknown thus modelled by a deep feedforward network. The job of this model is thus to “learn” from data

the biologic kinetics under the constraint of dynamic material balance equations.

The hybrid model structure adopted for this problem is shown in Figure 4. The reactor has 7
internal sate variables x = [X,S, P,IND,Sh,Re]” of which only 3 are measured, thus y =
[X, S, P]T. The system of ODEs are derived from mass conservation laws and are the same as
in (Lee and Ramirez, 1994). The neural network computes 4 reaction terms 9 = [u, vs, vp, k117,

taken as unknown cellular features that need to be learned from data. The neural network
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has only 3 inputs H® =[S, IND,Sh]T which were pre-selected based on prior knowledge of
the reaction kinetics for this problem (Lee and Ramirez, 1994).

Hybrid models with different network depths and sizes were evaluated, with the best hybrid
model discriminated on the basis of the Akaike Information Criterion with second order bias

correction (AlCc) computed for the training data partition as follows (Equation 34):

Equation 34. Akaike Information Criterion with second order bias correction (AlCc)

2nw (nw + 1)

AICc =T In(WSSE) + 2 nw +
T —nw -1

AlCc includes an overparameterization penalty and is commonly used to discriminate be-
tween empirical model candidates with different number of parameters, nw, and to select a

parsimonious model for small sample sizes (Li et al., 2002).

3.23.2 MUT+ Pichia pastoris Pilot Dataset

A MUT+ Pichia pastoris expressing a single chain antibody (scFv) was cultivated in a Lab Pilot
Fermenter Type LP351, 50 L, Bioengineering, Switzerland with standard instrumentation to
measure on-line pH, temperature, pressure, stirrer, airflow and pO2. The wet cell weight and
scFv titer were measured off-line. All the details of the experimental procedure are given
elsewhere (Teixeira et al, 2006). The reactor operation is divided into three phases: glycerol
batch (GB) phase, glycerol fed-batch (GFB) phase and methanol fed-batch (MFB) phase (or
post-induction phase). In the GB phase, the initial glycerol level was set at 4%, taking approx-
imately 30 h for complete depletion. Thereupon, the GFB phase starts, following an exponen-
tial feeding profile. At the end of the GFB, a transition to the MFB phase is implemented in
order to minimize the adaptation time of cells to methanol. After the transition phase, the
methanol feeding rate, the pH and the temperature were designed in order to generate pro-
cess data to optimize scFv productivity (see (Teixeira et al., 2006) for details). A total of 9 ex-
periments were performed with varying methanol feed rate, temperature, and pH. In this case
study, only the MFB phase was considered for hybrid modeling. The dataset with the 9 exper-
iments has 207 measurements of biomass wet cell weight in triplicate and 207 measurements
of scFv in triplicate. The training-validation partition included 8 experiments and the test par-
tition 1 experiment. All possible training-validation/test permutations were evaluated. The
hybrid model structure adopted for this problem is similar to that of Figure 4 with a few ad-
aptations (discussed in section 3.2.4.). The training and model discrimination methods were

as for the Lee & Ramirez case study.
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3.2.4 Results and Discussion

3.24.1 Development Of a Shallow Hybrid Model: Lee & Ramirez Case Study

A traditional shallow hybrid model was first developed for the Lee & Ramirez dataset. A shal-
low feedforward network with a single hidden layer with fanh activation function was em-
ployed. The hybrid model was trained with the standard nondeep method (LMM optimiza-
tion + cross-validation + random weights initialization from the uniform distribution). The
training and validation partition comprehended 25 experiments (825 training patterns) de-
signed by statistical DoE (see section 3.2.3.1). The test partition included a single experiment
with the highest protein production (optimal batch obtained by dynamic optimization as re-
ported in (Lee and Ramirez, 1994). The test experiment has a final product mass 34.4% higher
than the best training/validation experiment. For a given network size, the training was al-
ways repeated 10 times with different weights initialization between [-0.1, 0.1] and only the
best result was kept (lower validation error). This procedure was repeated for hybrid models
with varying number of nodes in the hidden layer keeping the same data partition and a
maximum number of iterations of 20000 for comparability. The overall results are shown in
Table 1:

Table 1. Training results of shallow hybrid models for the Lee & Ramirez data set with 25 training batches (Train-
ing WSSE), 25 validation batches (Validation WSSE) and a single test batch with the highest possible productivity
obtained by optimal control (Test WSSE noisy/noise free are computed with noisy or noise free target concentra-
tions respectively ). The AlCc is computed for the training data set only. Each row represents a different model
with a given number of hidden nodes (between 1-15) in a single hidden layer with fanh activation function. The
hybrid models were trained with the standard nondeep method (LMM optimization with 20000 iterations + cross-
validation + random weights initialization between [-0.1, 0.1] from the uniform distribution). The training was

repeated 10 times with different weights initialization and only the best result is kept for each model.

Number of Training Validation Test WSSE Test WSSE AlCc CPU  Number

hidden nodes  WSSE WSSE (noisy) (noise free) time of
Weights
1 20.2 20.3 422 2.1 2490 776 12
2 2.57 2.77 7.53 8.12 810 1320 20
3 1.16 1.31 1.08 1.39 172 1780 28
4 1.1 1.29 1.34 1.01 146 1560 36
5 2.77 3.07 6.56 542 922 1390 44
6 1.78 1.94 1.22 2.11 570 1730 52
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7 1.40 1.70 7.87 7.31 389 1870 60
8 1.09 1.32 1.14 0.76 200 2050 68
9 1.01 1.21 1.04 0.68 150 2250 76
10 0.941 1.16 1.05 0.54 111 2250 84
11 0.949 1.22 1.33 0.83 134 2360 92
12 0.914 1.11 0.86 0.75 121 2290 100
13 0.935 1.07 1.03 0.69 154 2280 108
14 0.944 1.15 1.10 0.93 183 2230 116
15 0.899 1.11 0.937 0.62 152 2670 124

From these results, it is possible to conclude that the optimal number of hidden nodes is 10
corresponding to the lowest corrected Akaike information criterion (AICc) value (111). Of
note, the AlCc criterion, which is calculated for the training partition only, coincided with the
lowest noise free test error (0.54 noise free WSSE; to note that the noise free WSSE is com-
puted on process data uncorrupted by experimental noise, thus a better metric for accessing
the predictive power). Despite the coincident outcome in this case, the AlCc sometimes fails
to discriminate the structure with the highest predictive power as shown in the next sections.
Moreover, the noisy test error of the selected model with 10 hidden nodes (noisy
WSSE=1.05) is only moderately higher (11,6%) than the corresponding training error
(WSSE=0.941).

3.24.2 Comparing The Deep and Shallow Hybrid Modeling Approaches

Several hybrid structures with varying neural network depths (2-4 hidden layers) were com-
pared with the shallow network case (1 hidden layer). The same Lee & Ramirez dataset and
data partition were kept as in the previous section. We first focused on the fanh activation (in
the hidden layers), which has been the standard for nonlinear regression problems with shal-
low neural networks (Cybenko, 1989). Every model structure was trained with two different
methods: the traditional LMM+CV+tanh and ADAM+CV+{anh. The training was always re-
peated 10 times and only the best solution (lowest validation error) was kept, as before. The
number of iterations for the ADAM method was 20000 as for the LMM method. The overall

results are shown in Table 2:
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Table 2. Comparison of deep and shallow hybrid models for the Lee & Ramirez data set (same data partition as in

Table 1) trained either by the LMM algorithm or by the ADAM algorithm. In all cases cross-validation (CV) and

indirect sensitivities were applied. Each row represents a different shallow or deep hybrid model structure using

either tanh or ReLU in the hidden layers. The training was repeated 10 times with different weights initialization

and only the best result is kept.

Hybrid Training Hidden Training Valida- Testing Testing AICc CPU Weights
model method layer WSSE tion WSSE  WSSW time

type (noisy) WSSE (noisy)  (noise

(noisy) free)

Shallow LMM+CV  tanh 2.77 3.07 6.56 542 922 1390 44
5
Shallow LMM+CV tanh 0.941 1.16 1.05 0.54 111 2250 84
10
Deep 5x5 LMM+CV  tanh 1.06 1.31 1.40 1.05 198 1674 68
Deep LMM+CV tanh 0.921 1.17 1.13 0.72 154 74892 98
5x5x5
Deep LMM+CV tanh 0.835 1.09 0.915 0.32 155 81430 128
5x5x5x5
Shallow ADAM+CV tanh 1.22 1.32 1.20 0.66 242 33476 44
> Relu 1.02 1.05 1.03 0.35 98 33410
Shallow ADAM+CV tanh 1.60 1.21 0.91 0.24 547 30376 84
1o Relu 134 113 094 014 352 30200
Deep 5x5 ADAM+CV tanh 0.937 1.15 0.82 0.14 95 28567 68

Relu 0.926 1.08 0.923 0.05 90 28122
Deep ADAM+CV tanh 0.936 1.16 0.81 0.09 168 32285 98
SX5X5 Relu 0886 104 096 004 87 32174
Deep ADAM+CV tanh 0.870 1.11 1.05 0.28 189 40570 128
PXIX5XS Relu 0841 107 0942 016 152 40514

The results in Table 2 clearly show ADAM to outperform the LMM method in what concerns

the predictive power of the final model (the noise free test WSSE; to note that the AlCc is not
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an adequate metric to compare models of equal sizes). This conclusion is valid for deep or
shallow hybrid structures. The best shallow structure with 10 hidden nodes (identified in the
previous section) improved the noise free test error from 0.54 to 0.24 (>2-fold decrease) with
ADAM+CV+tanh. The same conclusions can be taken for the deep structures, without excep-
tion. The key conclusion is that the ADAM method systematically increases the predictive
power of the final hybrid model for the Lee & Ramirez data set.

The best model (with tanh activation function) among the deep and shallow structures is the
5x5x5 deep hybrid model with 98 weights, showing a noise free test error (WSSE = 0.09) 2.7-
fold lower than the best hybrid shallow case (WSSE=0,24). The AICc miss spotted the best
deep model. It identified the 2nd best model (5x5 structure) with, however, comparable per-
formance. In terms of CPU, the ADAM method is generally more expensive than the LMM
method for small size networks. This pattern reverses for large size networks (e.g. the best
5x5x5 structure decreased CPU by 2,3-fold with ADAM in comparison to LMM). Thus, the CPU
scales more steeply with the network size in the case of LMM training when compared to
ADAM training. This favors ADAM for deep hybrid structures, both in terms of predictive

power and CPU time for training.

50 |

Figure 5. Boxplot of training, validation and testing WSSE for 10 training repetitions of the deep hybrid structure
5x5x5 trained by different training approaches either using the LMM or the ADAM method. Ten sets of initial

weights were randomly generated (one per repletion) and kept the same in all tests performed for comparability.

Figure 5 shows the effect of weights initialization on the final training, validation, and testing
error for the best deep configuration 5x5x5 when the model is trained with LMM or with AD-
AM. The initial weights values were kept the same for LMM and ADAM training for compara-

bility. Interestingly, the dispersion of the errors for 10 repetitions with different weights ini-
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tialization is significantly lower for ADAM in comparison to LMM, irrespective of the data par-
tition (train, validation, or testing). There is an outlying point with significantly higher final
errors for both the LMM and ADAM trainings. Concordant results were obtained for the other
model configurations (results not shown). This suggests the ADAM method to be less sensi-
tive to weights initialization. Similar conclusions were reported by (Hiscock, 2019) for
standalone deep neural networks, who showed that gradient descent training methods with
variable learning rate (such as the ADAM method) are less prone to be trapped in local opti-
ma thus less sensitive to weights initialization. The key conclusion to be taken is that the
number of repetitions for different weights initialization may be mitigated in the case of AD-
AM training. This represents a potential 10-fold cut in CPU time in comparison to the LMM
method for the case of 10 repetitions.

The ReLU activation function in the hidden layers has been a key achievement in deep learn-
ing, outperforming the tanh function for standalone deep neural networks (Nair and Hinton,
2010). The use of ReLU was investigated comparatively with fanh in a hybrid modeling con-
text. Table 2 compares hybrid model performances using the one or the other activation
function in the hidden layers trained by ADAM + CV using the same training procedure. The
key conclusion to be taken is that the ReLU further improved the training and test error in all
cases without exception. The best 5x5x5 structure further decreased the noise free test WSSE
from 0.09 (with tanh) to 0.04 (with ReLU) at comparable CPU cost. Our results clearly show
the RelLU to be advantageous in a deep hybrid modeling context as previously shown for
(standalone) deep neural networks (Nair and Hinton, 2010). The ReLU activation function was
thus adopted in all proceeding studies. These results might be related to the problem of gra-
dients vanishing/exploding in deep networks. Typically, the fanh activation function is associ-
ated with vanishing gradients whereas the RelUis associated with exploding gradients (Ding,
et al., 2018) (Ding et al, 2018). The ADAM training is invariant to diagonal rescaling of the
gradients. It does not completely avoid the problem of gradient vanishing when tanh is used.
The use of ADAM with RelLU is however very efficient at avoiding gradient explosion since it

performs dynamic scaling of the learning rate (down) when the gradients become very large.

3.24.3 Introducing Stochastic Regularization

Stochastic regularization (SR) has been reported as an effective method to avoid overfitting
in deep learning (Srivastava et al, 2014). Here we study the ADAM method with stochastic
regularization in replacement of the cross-validation technique. More specifically, ADAM was

implemented with the minibatch technique and the weights dropout technique. The mini-
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batch technique consists of a random selection of the training patterns from the uniform
distribution using a cutoff probability parameter. Similarly, the weights dropout technique

used random weights selection according to a cutoff probability parameter.

WSSE test

: - S — T 10
iy 02 S - 68
# 04 0.
¥ °© o = M probability

Figure 6. Effect of stochastic regularization (SR) on the predictive power of the hybrid model configuration 5x5x5
trained with ADAM + SR + indirect sensitivities with 20000 iterations for the Lee & Ramirez data set. Obtained
noise free test WSSE over minibatch probability (M probability) and weights dropout probability (Wd probability).

Figure 6 shows the lowest WSSE test among the 10 repetitions as function of the minibatch
size probability and of the weights dropout probability. The training performance is indeed
very sensitive to the choice of these two parameters. The optimal minibatch probability is
~90% and the optimal dropout probability is ~50%. The final noise free test WSSE was
0.0258, which is 35.5% lower than the corresponding solution without stochastic regulariza-
tion (Table 2, ADAM+CV+ RelLl). The final train and test errors among the 10 repetitions are
shown in Figure 5. Interestingly the stochastic regularization eliminated the outlying training
result obtained by LMM+CV and ADAM+CV in the previous section. This result is promising
because it shows the weights initialization to have practically no influence on the final train-
ing outcome. If repetitions are not needed, the CPU cost may be significantly reduced in rela-
tion to the LMM+CV or ADAM+CV methods.

3.24.4 Speeding up Hybrid Deep Learning by Semidirect Sensitivities

The results above support ADAM + deep networks + stochastic regularization to produce
hybrid models with higher predictive power in comparison to the traditional shallow hybrid
approach. Nevertheless, deep models tend to have large networks with the CPU time increas-

ing with the network size (Luo et al.,, 2005). Solving the sensitivity equations is responsible for

42



a significant part of the CPU cost. Taking the 5x5x5 hybrid structure as example, solving the
sensitivity equations implies integrating 98 x5 = 490 ODEs along with the hybrid model
ODEs for the computation of the objective function and objective function gradients. Such a
large number of ODEs represents a significant CPU burden. A different implementation of the
sensitivity method was investigated, namely the semidirect sensitivity equations (see section

3.2.2.2) in an attempt to reduce CPU time. In the semidirect approach, a much lower number
of (%) sensitivity equations are integrated over time. For the same 5x5x5 hybrid structure,
the (Z—;) sensitivities only require 5 x 4 = 20 ODEs to be integrated over time. Furthermore,

the semidirect sensitivity equations are independent of the number and size of hidden layers

(they depend only on the number of network inputs and outputs).

10°
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ADAM Semidirect (train)
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Figure 7. Training and testing error (WSSE) over CPU time for 1) shallow hybrid model {10} + LMM +CV with ten
repetitions (blue line) 2) the hybrid model 5x5x5 trained with ADAM + stochastic regularization + indirect sensitiv-

ities (red line) and 3) ADAM + stochastic regularization + semidirect sensitivities (yellow line)

Figure 7 shows the variation of the train and test cost function over CPU for the configuration
5x5x5. This result shows that the semidirect sensitivity equations produced a comparable final
training WSSE in relation to the indirect sensitivity equations. The convergence is however
much faster. The CPU time could be reduced by 77.4% when adopting the semidirect sensi-
tivity equations in comparison with the indirect approach. Furthermore, the test error follows

similar patterns for both methods reaching a comparable final value.
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Figure 8. Prediction of the dynamic profiles of observable variables (biomass -X, substrate— S and product-P) of
the test batch (Lee & Ramirez dataset) by the best shallow hybrid model trained with the standard method (10
hidden nodes) and by the best deep hybrid model (5x5x5). Asterisks represented observations and respective +
standard deviation. The dashed line represents the “true” noise-free process behavior (hidden to the training of
the hybrid models). The red line represents the predictions of the shallow hybrid model. The green line represents
the prediction by the deep hybrid model. The shallow hybrid model used the tanA function and was trained by
the traditional non-deep method (LMM algorithm + CV + indirect sensitivities + 10 repetitions and only the best
result is kept). The deep hybrid model used the RelU activation function and was trained by the novel method

(ADAM + SR + semidirect sensitivities + no repetitions).

Figure 8 shows the prediction of the optimal batch dynamics by the hybrid 5x5x5 model
trained with ADAM+SR+ ReLU+semidirect compared to the standard shallow model with 10
hidden nodes (LMM+CV+ tanh+indirect). The noise free test WSSE was 0.03 and 0.54, respec-
tively (94.4% reduction). It may be seen that both models are able to describe fairly well the
dynamics of the test experiment up to 7.5 hours. There are however some visible differences
towards the end of the cultivation. The shallow hybrid model underestimated the final bio-
mass and final product by 15.3% and 13.8% respectively, whereas the deep hybrid model

overestimated the final biomass by 2.7% and underestimated the final product by 5.8% only.

3.24.5 Pilot Scale Pichia pastoris Case Study

Hybrid models were developed for the P. pastoris process with a similar structure to the Lee
& Ramirez model. The biomass and product material balance equations, and the shock factor
ODEs are kept the same in both models. A few modifications were however required as fol-

lows:
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e The inducer material balance equation was removed because in the MUT+ P.
pastoris expression system the methanol is simultaneously the main carbon
source and the inducer of foreign protein expression.

e The substrate material balance equation was also removed because methanol
concentration (the substrate) was not measured. This is a limitation imposed by
the experimental protocol. Instead, the measured volumetric methanol feed rate
(Fiet. 9/Lh) and the measured total methanol fed to the reactor (g) were set as
external inputs to the neural network.

e Temperature (T) and pH were also added as external inputs to the neural net-
work as these two parameters varied between 17.2-30.12C and pH 4.0-7.0 in the
experiments performed as part of a design of experiments to study the influ-
ence of these two parameters in the protein expression.

e The neural network computed the volumetric protein production rate (output)
instead of the specific protein production rate as in the case of Lee & Ramirez. It
is known that Pichia pastoris secretes proteases that hydrolyses the target
product on certain experimental conditions (Cereghino and Cregg, 2000). The
neural network is thus set to calculate the apparent volumetric production rate
of the scFv, which lumps the synthesis and hydrolysis in the same kinetic term.

We have investigated the optimal hybrid structures and concluded that the two best shallow
and deep hybrid structures previously identified for the Lee & Ramirez case study (namely
the shallow structure with 10 nodes in the hidden layer and the deep 5x5x5 structure) also
apply for the Pichia pastoris case study (results not shown). The number of parameters in
both the shallow and deep models is the same, namely 123. The shallow hybrid structure was
trained with the traditional method (LM+CV+tanh+direct, 10 repetitions with random
weights initialization from the uniform distribution) whereas the deep hybrid structure was
trained with the new method (ADAM+SR+ ReLU+semidirect, weight dropout probability of
0.5, minibatch probability of 0.9 and no repetitions). Eight reactor experiments were used for
training-validation (validation data points were obtained by adding gaussian noise to the
training data points as in the Lee & Ramirez case study) and just one experiment for testing.
All possible training-validation/testing permutations were evaluated. The overall results are
shown in Table 3 where each row represents a different training-validation/testing permuta-
tion:

Table 3. Comparison of deep and shallow hybrid models for the pilot reactor MUT+ Pichia pastoris dataset. Each

row represents a hybrid model obtained by training over a different training/testing data permutation (Test batch
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ID refers to the batch used for testing while the remaining 8 batches were used for training/validation). Shallow

hybrid models had tanh activation function and were trained by the traditional non-deep method (LMM algorithm

+ CV + indirect sensitivities + 10 repetitions and only the best result is kept). Deep hybrid models used the Rell/

activation function and were trained by the novel method (ADAM + SR + semidirect sensitivities + no repetitions).

Test batch  Model type Training Testing AlCc CPU time
ID WSSE WSSE
(noisy) (noisy)
FO37 Shallow 10 2.18 2.58 664 19560
Deep 5x5x5 1.79 2.13 587 13980
F044 Shallow 10 242 3.94 700 46440
Deep 5x5x5 214 3.73 633 19980
F048 Shallow 10 2.01 2.55 626 15060
Deep 5x5x5 1.96 2.28 618 12000
FO61 Shallow 10 2.65 4.69 738 22860
Deep 5x5x5 1.98 4.05 620 14520
FO66 Shallow 10 2.54 2.82 722 13680
Deep 5x5x5 1.59 1.86 542 9660
FOO7 Shallow 10 2.79 413 752 23640
Deep 5x5x5 2.24 2.98 663 13320
FO09 Shallow 10 2.82 4.72 754 30180
Deep 5x5x5 2.62 3.76 730 12480
FO18 Shallow 10 248 3.28 710 15900
Deep 5x5x5 2.31 2.67 684 10200
FO72 Shallow 10 3.15 4.85 791 26100
Deep 5x5x5 3.01 3.98 775 14820
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Sum Shallow 10 23.04 33.6 6457 213420

Deep 5x5x5 19.64 27.4 5852 120960

As an illustrative example, Figure 9 shows the measured and predicted dynamic profiles of

biomass and product for the case of experiment F66 used for testing:
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Figure 9. Prediction of the dynamic profiles of observable variables (biomass-X, and product-scFv) by the shallow
(10) hybrid model and by the deep (5x5x5) hybrid model for the test batch FO66 of the MUT+ Pichia pastoris pilot
data set. Asterisks represent observations and respective + standard deviation. The red line represents the predic-
tions of the shallow hybrid model. The green line represents the prediction of the deep hybrid model. The shallow
hybrid model used the tanh activation function and was trained by the traditional non-deep method (LMM algo-
rithm + CV + indirect sensitivities + 10 repetitions and only the best result is kept). The deep hybrid model used
the RelU activation function and was trained by the novel method (ADAM + SR + semidirect sensitivities + no
repetitions).

The key conclusions to be taken is that both the training and testing WSSEs were lower for
the deep hybrid structure in relation to the shallow structure, in all data partitions tested
without exception. The AlCc criteria also points to the same conclusion. The differences be-
tween the dynamic profiles of biomass and scFv are clearly visible in Figure 9. The predicted
final scFv titer by the shallow hybrid model is 17.5% below the experimental value whereas
the deep hybrid model overestimated the experimental value by only 4.2%. Taking all data
partitions together (last row in Table 3), the average training WSSE decreased by 14.8%
whereas the average testing WSSE decreased by 18.4% for the deep hybrid structure in rela-
tion to the shallow hybrid structure. Moreover, the average CPU time decreased by 43.4%

when applying the deep methodology in comparison to the standard methodology.
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3.2.5 Conclusions

In this chapter the general bioreactor hybrid model was revisited, and some recent deep
learning techniques were investigated in the context of hybrid modeling. The effect of in-
creasing the depth of the neural network resorting to two different training approaches was
investigated. The traditional approach uses the Levenberg-Marquardt optimization coupled
with the indirect sensitivities, cross-validation, and tanh activation function. The novel hybrid
deep approach uses the adaptive moment estimation method (ADAM), semidirect sensitivi-
ties, stochastic regularization and ReLU activation functions in the hidden layers. Two applica-
tions were addressed, one with a synthetic data set, the other with an experimental dataset
collected in a pilot 50 L bioreactor. The key conclusion to be taken is that there is a clear ad-
vantage of adopting hybrid deep models both in terms of predictive power and in terms of
computational cost in relation to the shallow hybrid case. In the Lee & Ramirez case study,
the prediction error decreased 94.4% and the CPU decreased 29%. In the case of the P. pas-
toris case study, the prediction error decreased 18.4% and the CPU decreased 43,3%. The
ADAM method coupled with stochastic regularization shows two significant advantages. First,
it is practically insensitive to weight initialization thereby eliminating the need for training
repetitions. Second, the stochastic nature of the method is less sensitive to experimental
noise, eliminating the need for cross-validation. Lastly, the introduction of semidirect sensi-
tives further decreases the CPU time particularly for large deep structures as the number of
sensitivity equations (that need to be integrated over time) becomes independent of the

number of hidden layers.
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4

HYBRID DEEP MODELLING OF A GS115
(MuT+) PicHIA PASTORIS CULTURE

This chapter is based on the publication: Pinto, J,, Ramos, J. R, Costa, R. S., & Oliveira, R.
(2023). Hybrid Deep Modeling of a GS115 (Mut+) Pichia pastoris Culture with State-Space
Reduction. Fermentation, A7), 643.

4.1 Introduction

Many biomanufacturing companies are currently investing in digitalization tools such as big
data analytics and digital twins (Udugama et al. 2021). Big data analytics applies artificial in-
telligence techniques on large collections of both structured and unstructured biological and
process data. Such large volumes of heterogeneous data are processed by machine learning
techniques such as artificial neural networks, deep learning, support vector machines, ran-
dom forest, and many others, to extract valuable process insights (Yang et al. 2023). Digital
Twins (DT) rely on high-fidelity mathematical models with different levels of integration with
the physical process. A fully-fledged DT applies a mathematical model that receives infor-
mation from the physical process in real-time and also manipulates the process in real time
(Udugama et al. 2021, Appl et al. 2021). In its simplest form, a DT consists of a thoroughly
validated mathematical model with historical data that is able to produce high-fidelity simu-
lations of the physical process thus allowing to conduct in silico experiments in replacement
of the physical process (Lukowski, Rauch, and Rosendahl 2019).

Many authors are considering the combination of mechanistic models with machine learning
in hybrid modeling workflows for bioprocess digitalization (Badr and Sugiyama 2020). Hybrid

modeling naturally pops up as a digitalization framework as it allows to integrate prior mech-
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anistic knowledge with large volumes of process data in a straight-forward way. Hybrid mod-
eling is a well-established framework in process systems engineering (von Stosch et al. 2014)
and in bioprocessing (Agharafeie et al. 2023). It has covered a wide range of biological sys-
tems applications for process measurement, monitoring, optimization, and control, which are
the basic building blocks of a bioprocess DT (Udugama et al. 2021).

The P. pastoris yeast has evolved to an industrial workhorse for microbial production of re-
combinant proteins (De Brabander et al. 2023). However, only a few studies have addressed
hybrid modeling of P. pastoris cultures. Ferreira et al. (2014) developed a simple hybrid mod-
el of P. pastoris GS115 (Mut+) based on a shallow feedforward neural network (FFNN) com-
bined in series with macroscopic material balance equations. The shallow FFNN described the
specific growth rate and specific product synthesis rate as a function of reactor pH, tempera-
ture and volumetric methanol feeding rate. An iterative batch-to-batch control scheme was
applied to optimize methanol feeding, pH and temperature based on the hybrid model re-
sulting in a fourfold titer improvement after 4 optimization cycles. Brunner et al. (2020) de-
veloped a soft sensor based on a hybrid model that combined a carbon balance model
(mechanistic) and a multilinear regression model (statistical) for the prediction of biomass
concentration in real time. The software sensor was able to adapt automatically between
glycerol and methanol feeding. Pinto et al. (2022) have recently applied a deep learning
technique to a hybrid model of a P. pastoris process. FFNNs networks with 2-3 hidden layers
were combined in series with material balance equations and trained with a deep learning
technique, namely the adaptive moment estimation method (ADAM), semidirect sensitivity
equations and stochastic regularization. The main outcome was an increase in the prediction
accuracy by 18.4% and a decrease of CPU training time by 43.4% in comparison to shallow
hybrid modeling.

Previous P. pastoris hybrid modeling studies have considered only a few state variables due
to the very simple culture medium employed. Indeed, P. pastoris is capable of growing in a
chemical defined media containing a carbon source (e.g. glycerol and/or methanol (Met)), a
nitrogen source (@ammonium (NH4)) and a few essential inorganic elements (Zhang and
Greasham 1999). However, inorganic elements also play an important role in cell physiology.
Magnesium (Mg), calcium (Ca), potassium (K), copper (Cu), strontium (Sr), iron (Fe), zinc (Zn),
manganese (Mn) and chloride (Cl) were reported to be essential elements for yeast (Spencer
1997). None of the previous hybrid modeling studies have analyzed the effect of inorganic
elements dynamics on recombinant protein production by P. pastoris. Metal ions serve as

structural components of proteins and metalloenzymes and as structural elements of enzyme
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active sites (Plantz et al. 2007). Magnesium (Mg), Mn and Ca are cofactors of several enzymes
present in yeast, such as ATPases (Willsky 1979), (Okorokov and Lehle 1998), aspartases
(Depue and Moat 1961) and glycolytic enzymes (Walker and Maynard 1997). Potassium(K)
and Na are key elements in the regulation of electrochemical gradients in yeast (Arino, Ra-
mos, and Sychrova 2010) (Martinez-Munoz and Pena 2005). The inclusion of Zn, Co, and Mn
in the P. pastoris medium was shown to affect the quality of the final product, namely the
activity of a recombinant phospholipase C (PLC) (Seo and Rhee (2004)).

In this chapter, a hybrid deep modeling framework was applied to describe the cultivation
dynamics of a GS115 (Mut+) P. pastoris strain expressing a scFv fragment. Cultivation data
acquired in a pilot 50 L bioreactor in Basal Salts Media (BSM) (Invitrogen) under different
conditions of methanol feeding, temperature and pH were analyzed. The BSM medium is
probably the most frequently used medium for high cell density P. pastoris cultivation. It con-
tains high concentrations of phosphorus (P), sulfur (S), Ca, Mg, and K to support high cell
density (Brady et al. 2001, Cereghino et al. 2002, Damasceno et al. 2004). Precipitation of BSM
salts has been however reported during BSM handling at pH higher than 5.0 (Cos et al. 2006,
Ghosalkar, Sahai, and Srivastava 2008). In this study, the inorganic elements were assayed
during cultivation by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). A
hybrid deep model was developed to describe process dynamics as a function of control in-
puts. A key difference from previous studies (Pinto et al. 2022) is the inclusion of inorganic
elements dynamics in the state-space vector. Since the mechanisms underlying the biological
kinetics of inorganic elements are not well understood, the hybrid mechanistic/FFNN ap-

proach was adopted.

4.2 Materials and Methods

4.2.1 Strain, Medium and Inoculum Preparation

A genetically engineered GS115 (Mut+) P. pastoris strain expressing a scFv was used in this
study. The Basal Salts Media (BSM) was used during cell stocking, in cryogenic vials at —80°C,
and all cultivation steps (pre-inoculum, inoculum and bioreactor). The BSM solution was for-
mulated and sterilized at 121°C for 30 minutes containing: H;P0O, 85%, 26.70 ml/L,
CaS0,.2H,0 0.93 g/L, K,50,18.20 g/L, MgS0,.7H,0 14.90 g/L, KOH 4.13 g/L and glycerol
40.00 g/L. The Pichia Trace Metal (PTM1) solution was formulated as follows: CuS0,.5H,0
6.00 g/L, Nal 0.08 g/L, MnSO,.H,0 3.00 g/L, Na,Mo0,.2H,0 0.20 g/L, H3B0; 0.02 g/L,
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CoCl,.6H,0 0.50 g/L, ZnCl, 20.00 g/L, FeS0O,.7H,0 65.00 g/L, H,SO, 5.00 ml/L and biotin
0.20 g/L. The PTM1 solution was filter sterilized, using a 0.22 mm pore size filter, and added
to the temperature sterilized BSM solution at a volumetric ratio of 4.35 ml.L-1. The pH of the
BSM solution was adjusted to pH=5.0 with 25% ammonium hydroxide. The pre-inoculum was
composed of 40 mL BSM pH 5.0 and 1 mL of cell stock. The pre-inoculum was incubated at
30°C at 150 rpm for 3 days. The bioreactor inoculum consisted of 10 mL of pre-inoculum and

750 mL BSM pH 5.0. It was incubated for 3 days at 30°C and at 150 rpm.

4.2.2 Bioreactor Operation

A Lab Pilot Fermenter Type LP351, 50 L, with 42 L working volume (Bioengineering, Wald,
Switzerland) was used in all bioreactor experiments. The initial bioreactor volume was 15L of
BSM pH 5.0. The aeration rate and overhead pressure were 1800 L.h~tand 100 mbar respec-
tively at the beginning of operation. The cultivation started at 300 rpm stirrer speed. The re-
actor was inoculated with 750 mL of pre-inoculum. Then the process undergoes two distinct
phases using two distinct substrates. The first phase is the glycerol batch/fed-batch (GBFB)
phase. It starts in batch mode for approximately 30 h with an initial glycerol concentration of
40 g/L. Once the glycerol is nearly depleted, the glycerol fed-batch starts with an exponential
feeding profile for approximately 12 hours to increase cell density. The cell density reached at
the end of the GBFB phase varied depending on the glycerol feeding program. The second
phase starts with methanol induction by the addition of 20 g/h to 100 g/h (depending on
experiment) of methanol for 5 hours. A smooth transition between glycerol and methanol is
applied to minimize the adaptation time to methanol metabolization. It then followed a
methanol fed-batch (MFB) phase with a feed program that varied in the experiments. The
temperature and pH were controlled to different set points depending on the experiment. It
was not possible to control temperatures below 23.6°C due to heat transfer limitation. The
pH was controlled with the addition of ammonium hydroxide 25%. The dissolved oxygen
(pO2) starts at ~100% at the inoculation point and then decreases as biomass grows. Once it
reaches 50% of saturation, a PID (Proportional-Integral-Derivative) controller is started to
manipulate the stirrer between 300 to 1000 rpm and then the pressure between 100 to 800
mbar in order to regulate pO2 to a constant 50% set point. Further details on the experi-

mental protocol are provided elsewhere (Ferreira et al. (2014)).
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4.2.3 Analytical Techniques

Samples were withdrawn from the bioreactor at regular intervals for off-line analysis at a fre-
quency of 4-6 samples per day. The optical density was measured in a spectrophotometer at
600nm (OD600) after appropriate dilution of the broth ensuring a value within the linear
range (<0.6). For the determination of wet cell weight per unit volume (gWCW/L), samples of
the culture broth were taken in triplicate and centrifuged at 15000 rpm for 10 min at 4°C. The
centrifuged cell pellets were weighted to determine the sample wet cell weight (WCW). The
secreted scFv was assayed by Enzyme-Linked Immuno-sorbent Assay (ELISA) according to the
protocol described in Ferreira et al. 2012. The concentration of inorganic elements (P, K, Mg,
S and Ca) in supernatant samples were assayed by inductively coupled plasma-atomic emis-
sion spectroscopy (ICP-AES). The conditions of the ICP-AES system were the following: Argon
with the flow 15 L. min~1, temperature between 5700-10000°C, pressure of 3 bar and poten-
cy of the plasma equal to 1 KW.

4.2.4 Hybrid Deep Model with State-Space Reduction

Considering a perfectly mixed fed-batch bioreactor, the macroscopic material balance equa-

tions take the following state-space form (Equation 35):

Equation 35. Perfectly mixed fed-batch bioreactor state-space equation

dc
=7 =7 +DCin = DC

with € a (m X 1) vector of state variables (concentrations in the liquid phase), r a (m x 1)

vector of volumetric reaction rates, D = g the dilution rate, F the feed rate to the bioreactor,

V the liquid volume inside the bioreactor, and C;, a (m x 1) vector of concentration in the
feed stream to the bioreactor. The m = 9 concentrations included in the state vector, C, were
those of biomass (X), recombinant protein (scFv), methanol (Met), ammonium ion (NH,), Mg,
K, Ca, P and S.

The (m x 1) vector of cumulative reacted amount of each compound at a given time t, IR(t),
is defined as the time integral of the respective reaction rates as follows (Equation 36):

Equation 36. Reacted mass definition.

t

IR(t) = fr(T)V(T)dT

0
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By combining Equation 35 and Equation 36, IR(t) may be estimated from measured data of
concentrations and culture volume (for simplicity we assume negligible sampling and bleed-

ing volume) as follows (Equation 37):

Equation 37. Reacted mass estimation from measured concentrations and volume.

IR(t) = C@OV () = C(O)V(0) = V(&) = V(0)Cin
Using Equation 37, a transformed data matrix IR (with the same size as C) was computed for
each fed-batch experiment with rows representing process time and columns the cumulative
reacted amount of compounds (X, scFv, Met, NH4, Mg, K, Ca, P and S). The IR matrices of all
fed-batch experiment were stacked vertically in a single matrix and then normalized by divid-

ing each column by the respective absolute maximum value, IR,,,, (Equation 38):

Equation 38. Reacted mass normalization.

IRyporm = IR @ IRmax
with @ the Hadamard division. The data matrix IR,,n» Was decomposed in a matrix of

scores, S.,, and a matrix of coefficients, Coeff,orm, by PCA using the alternating least-
squares algorithm (MATLAB function “pca” with option ALS) (Equation 39). This step was per-
formed with the objective of data compression by choosing a number of principal compo-

nents NPCA < m.

Equation 39. PCA decomposition of normalized reacted mass

IRy orm = Sco X CoeffnT;)rm

A denormalized form of Equation 39 was obtained by multiplying with IR,,,,, (Equation 40):

Equation 40. Denormalized PCA decomposition

IR = S., X CoeffT
Coeff = Coef fuorm® [Rmax
with ® the Hadamard multiplication.

Recognizing that the IR is obtained by the time integral of reaction rates (Equation 36) then
the compression of IR data according to Equation 40 with NPCA < m has implicit a reduction
of the volumetric reaction rates, r, to NPCA linearly independent reaction rates, r; (Equation
41):

Equation 41. Correlation between the volumetric reaction rates and the NPCA reaction rates

r = Coeff X 1y
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Equation 35 was finally transformed in a reduced state-space equation by replacing the vol-
umetric reaction rates, r, in Equation 35 by Equation 41 and then by multiplying each term by
the pseudo-inverse of Coeff, resulting in the following reduced state-space model (Equation
42):
Equation 42. Reduced state-space model equations

dz
= =72+ DZin = DZ

Z = pinv(Coeff) X C

Zin = pinv(Coeff) X Cip

The reduced state space-model is then completed with the linear measurement model
(Equation 43):

Equation 43. Linear measurement model

C= Coeff X Z
Furthermore, given that methanol feeding has a cumulative toxic effect in the metabolism of

P. pastoris, an ODE that confers intracellular memory was added to the model (Equation 44):

Equation 44. Intracellular memory ODE

dSH
F = —TSHSH

with SH the shock factor with initial value SH(0) = 1 and rgy the rate of variation of the shock
factor. The shock factor is thus an internal unmeasured state variable. A similar ODE has been
proposed by (Lee and Ramirez, 1992).

The reactions rates are described by a FFNN with nh hidden layers as follows (Equation 45):

Equation 45. FFNN model for the GS115 (Mut+) Pichia pastoris model with state-space reduction

H® = [Z @ Zmax»SH/SHmax, T/ Tinax pH/pHmax]T
H'= o (w'-H"1 +bY), i=1,..,nh
nh+1 , th + bnh+1

[rz,1su]” =w
The input layer i = 0 receives the information of the reduced state space vector, Z, internal
state, SH, cultivation temperature, T and pH (Zax: Shmax: Tmax @and pHp,q, are the absolute
maximum of Z, SH, T and pH respectively). Each hidden layer i computes a vector of outputs,
H!, from a vector of inputs, H=1, which are the outputs of the preceding layer. The transfer
function of hidden nodes, a(.), was always the rectified linear unit ReLU. The output layer
computes the reaction rates in the reduced reaction space. The parameters w =

(wl,w?,...,w™1} are the nodes connections weights and b = {b%,b?,...,b™"*1} the bias
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weights. The resulting hybrid model structure with state-space reduction is represented in

Figure 10:

First-Principles
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Figure 10. Hybrid model structure with state-space reduction for the methanol fed-batch phase (MFB) of the ~.

pastoris GS115 (Mut+) fed-batch process. The kinetic rates are defined nonparametrically by a deep FFNN. Biore-
actor dynamics are defined parametrically by macroscopic material balance equations in a perfectly mixed vessel.
The  observable  state  variables are the  concentrations of m=9  compounds, C=
[X,scFv,Met,NH4,Mg,K,Ca,P,S]". The compressed internal state, Z, depends on the number of columns of the
PCA coefficients matrix, Coef f. The PCA coefficients are obtained by unsupervised learning using data of cumula-
tive reacted amount. The FFNNs weights are trained with a deep learning method based on ADAM, stochastic

regularization and semidirect sensitivity equations as described by (Pinto et al. 2022).

All developed hybrid models were focused on the production MFB phase. The hybrid models
were trained with the deep learning method proposed by (Pinto et al. 2022) based on the
ADAM method adapted to dynamic hybrid models. Briefly, the MFB phase data were por-
tioned in a training and a testing data subset (more details in section 4.3). The network
weights were optimized on the training subset only (minimization of the weighted mean
square error) using the ADAM algorithm and stochastic regularization. The objective function
gradients were computed dynamically by the semidirect sensitivity equations method. For
more details the reader is referred to (Pinto et al. 2022). Two different metrics were adopted
to compare the hybrid models. The weighted mean square error (WMSE) was computed as
(Equation 46):

Equation 46. Objective function for the reduced state-space models

1% (cf — cp)?
WMSE:_Z%
T e lop:

with T the number of data points, ¢/ the observed concentration at time t, ¢; the predicted

concentration at time t and o; the standard deviation of measurement at time t. The WMSE
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was minimized during the training and was also calculated for the test partition at the end of
the training. The second metric was the Akaike Information Criterion with second order bias

correction (AlICc):

Equation 47. Akaike Information Criterion with second order bias correction

2nw (nw + 1)
T —nw -1

AICc = T In(WMSE) + 2 nw +

The AlCc was computed on the training partition only and is used to compare hybrid models
of different complexity (e.g. different number of network parameters, nw).

All the code was developed in-house and implemented in MATLAB on a computer with In-
tel(R) Core(TM) i5-8265U CPU @ 1.60 GHz 1.80 GHz, and 24 GB of RAM. The CPU time of the
different tests performed were computed as the difference between the result of the
“cputime” function in MATLAB. The source code and an example hybrid model implementa-

tion for the case study is accessible at: https://github.com/sbegroup-nova/HYBMOD.

4.3 Results and Discussion

4.3.1 Cultivation Experiments

Nine 50 L fed-batch cultivations were performed with varying pH, temperature and feeding
profiles of glycerol and methanol in order to analyze the effect of reactor operational param-
eters on process dynamics. The temperature and pH were always the same in the GBFB phase
(30°C and pH 5.0, respectively). In the MFB phase, the temperature levels were 23.6°C or 30°C
whereas the pH levels were 4.0, 5.0, 6.5 or 7.0. Two experiments (A and E) were performed at
baseline conditions (T=30°C and pH 5.0 according to Invitrogen guidelines). The overall re-
sults are summarized in Table 4. The final biomass concentration varied between 428.1+3.8
and 598.1+7.1 gWCWY/L (40% variation) whereas the endpoint scFv titer varied almost tenfold
(between 5.9+0.4 and 54.4+1.3 mg/L). As discussed below, the experiments A and F with the
lowest and highest endpoint scFv titer were selected for testing while the remaining 7 exper-
iments (B, C, D, E, G, H, and I) were selected for training the hybrid models. The prod-
uct/biomass yield varied more than sixfold between 42 and 243.3 pyg of scFv per unit of
gWCW produced in the MFB phase. Experiment H, performed at 30°C and pH 6.5, resulted in
the highest scFv yield (243.3 pg of scFv per unit of gWCW produced). Experiment | was per-

formed at similar conditions to experiment H except for the higher pH 7.0. This experiment
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delivered one of the lowest yields (45.7 ug of scFv per unit gWCW produced) denoting a very

significant effect of pH on the process kinetics.

Table 4. Summary of 50 L fed-batch cultivation experiments performed and respective production yields. In the
glycerol batch/ fed-batch phase (GBFB) the glycerol feeding program varied but the temperature and pH were
30°C and pH 5.0 in all cases. Temperature, pH, and methanol feeding in the methanol fed-batch phase (MFB)

varied from experiment to experiment.

Glycerol batch/fed-batch
Methanol fed-batch (MFB)

E (GBFB)
Xp.
P Glycerol  Final X Methanol Final X  Final scFv Yield scFv/X
At (h) T(°C) pH
feed (kg) (gWCWY/L) feed (kg) (QWCW/L) (mg/L) (ug/gWCW)
468 1.285 316.9+32 537 300 5.0 7516  4573+3.8 59104 420

767 2821  4473+27 505 23.6/30.0° 5.0 9.540  585.0+0.5 15.6+2.2 113.3

473 1264 2954+1.1 980 23.6 5.0/7.07 14794 587.7+22 16.1+25 55.1

503 1218 268.1+1.6 955 236 50/7.07 19.002 573.1+1.1 14318 46.9

534 1285 301527 705 300 5.0 13338 434.2+38 119£13 89.7

483 0586 164.2+6.0 136.7 23.6 4.0 23.602 598.1£7.1 54.4+13 125.4

480 1.031 2742+103 102.0 23.6 4.0 9.808 479.6x1.6 30.7%0.6 149.5

I Q| M m| Ol O @ >

473 1.037 259.6+10.3 105.5 30.0 6.5 12.189  4754+33 52586 2433

460 1.034 2442+223 103.0 30.0 7.0 10488 428.1+38 8.4+05 457

(*) — transition occurred at t=121.2 h; (**) — transition occurred at t=123.0 h; (***) — tran-

sition occurred at t=125.0 h.

4.3.2 Inorganic Elements Dynamics

The dissolved concentration of inorganic elements Ca, Mg, K, S and P were assayed in the
supernatant by ICP-AES during the MFB phase. Figure 11 shows the percentual variation of
dissolved concentrations over time. These data show that in a typical BSM P. pastoris cultiva-
tion, run at 30°C and pH 5.0 according to Invitrogen guidelines (experiments A and E), Ca and
S tend to be in excess whereas K, P and Mg tend to deplete sooner. In general, Mg tends to
deplete first as seen in experiments C, D, H, and I. (Cos et al. 2006) reported the precipitation
of BSM salts at pH higher than 5.0 and the same was observed in the present study (Figure
2). Precipitation occurred in experiments H and |, which were performed at pH 6.5 and 7.0
respectively during the MFB phase. The shift from pH 5.0 to 6.5 or 7.0 caused severe precipi-

tation of Mg and Ca salts as evidenced by the sudden variation of the respective dissolved
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concentrations, close to -100% in the case of Mg (e.g. complete depletion) and close to -80%
in the case of Ca. The precipitation of other salts also occurred but not as severely. In experi-
ments C and D, a pH shift from pH 5.0 to 7.0 occurred in the middle of MFB phase (at 123.0 h
and 125.0 h respectively). This caused some precipitation of salts in both experiments. In the
experiment that reached the highest bio-mass concentration (598.1 g-WCW.L-1, in experi-
ment F), Mg and K depleted while P almost depleted. In the experiment that reached the
lowest biomass concentration (428.1 g-WCW.L-1 in experiment I), salts precipitation occurred
early in the culture, caused by the pH shift to 7.0 at the methanol induction point. Overall,
these data suggest a strong correlation between pH, growth kinetics and salts precipitation.
There seems to be a clear challenge to optimize the salts concentrations in the medium for
high cell density P. pastoris. But even if the medium composition is optimized e.g. by statisti-
cal design of experiments, the salts concentrations will significantly decrease as cells grow
over time. The salts dynamics may strongly affect the growth and protein expression kinetics
in different phases of the process. Other factors such as temperature and methanol feeding
rate may also play an important role. Understanding the combined dynamic effects of all Crit-
ical Process Parameters (CPPs) requires in-depth data analysis using a suitable dynamic mod-

eling framework as discussed next.
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Figure 11. Percentual variation of dissolved inorganic elements concentrations (Ca, K, Mg, P and S) determined

from ICP-AES measurements for each reactor experiment A-I (Table 4). The percentual variation of concentration
ci(®)—ci(0)

was calculated as
¢i(0)

% 100 with ¢;(t) the concentration of element i at cultivation time t.

4.3.3 PCA of Cumulative Reacted Amount

Data analysis started with the computation of the cumulative reacted amount over time,
IR(t), of the 9 bioreactor compounds (X, scFv, Met, NH4, Ca, K, Mg, P and S) for each experi-
ment (A-1, Table 4) using the previously described method. In the case of Met and NH4, the
variation of concentrations in the liquid were assumed to be negligible in comparison to the

cumulative amount metabolized by the cells. In the case of inorganic elements, it was not
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possible to distinguish between cellular uptake and precipitation/dissolution caused by the
varying reactor conditions. The computed cumulative reacted amount thus aggregated both
kinetic terms in the case of inorganic elements.

The IR data were normalized column wise by dividing with the maximum absolute value of
each column. The normalized data was subject to PCA for a maximum number of principal
components equal to 8 (NPCA = 8). The data were partitioned into 7 fed-batch experiments
(B, C, D, E, G, H, and |) for the PCA and 2 experiments (A and F) for validation. The validation
experiments corresponded to the extreme low and high scFv endpoint titer experiments. The
overall results are shown in Figure 3. The resulting 9x8 coefficients matrix (Equation 48), with
rows representing bioreactor compounds and columns the PCs, was used in the state-space

reduction step described in the following section.

Equation 48. PCA coefficients matrix

[ 0.32 0.38 0.13 0.03 0.05 0.35 0.65 0.43 1
0.21 0.02 0.22 0,68 -060 0.13 -0.24 0.06
-042 063 -0.17 -0.19 -0.20 045 -0.32 -0.04
-0.19 -0.16 085 -0.12 0.24 034 -0.14 -0.04
Coef frorm =|—0.55 0.33 0.09 0.50 -0.28 -035 0.23 -0.04
-0.32 -0.09 018 -0.10 -0.25 -0.37 0.01 0.60
—-0.11 0.08 0.22 -043 -0.61 -0.25 034 -0.27
-0.34 -0.37 -0.14 021 -0.14 036 046 —0.38
l-0.33 -0.41 -0.27 -0.04 -0.09 031 -0.02 0.49

Figure 12A shows that 2 to 4 principal components (PC) cumulatively explain 90.3%, 94.5%
and 97.0% of data variance. These results evidence strong linear dependencies between the
biochemical transformations involving the 9 bioreactor compounds. The PCA coefficients
shown in Figure 12B (blue dots and blue lines) suggest a very strong correlation between
biomass production, methanol consumption, NH4 consumption and K consumption along
the directions of PC-1 and PC-2, which together explain 90.3% of data variance. The PC-1 and
PC-2 are mainly associated with cell growth metabolic processes (all other PCs have low bio-
mass coefficients) with PC-2 showing a minor contribution to scFv synthesis (low scFv coeffi-
cient). The scFv synthesis is mainly explained by PC-1, PC-3, and PC-4. The scFv synthesis ap-
pears positively correlated with cell growth along the direction of PC-1 (Figure 12B). Howev-
er, in the biplots of PC-3 (4.2% explained variance, Figure 12C) and 4 (2.5% explained vari-
ance, Figure 12D), the coefficients of scFv and biomass are large and negligible, respectively,
suggesting cell growth dissociated product synthesis. The interpretation of the inorganic el-
ements coefficients is more difficult due to the occurrence of precipitation. The coefficients of

PC-1 (75.6% explained variance) suggest that all inorganic elements are consumed for cell
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growth with S showing the least significant contribution. The elements Ca and Mg, which
precipitated more severely, are orthogonal to X along the direction of PC-1 and PC-2 (Figure
12B) suggesting a low correlation with biomass growth. The S also appears orthogonal to X
denoting a low correlation with biomass growth. Biomass growth seems to be controlled
mainly by Met, NH4 and K availability and to be practically insensitive to Ca, Mg and S avail-
ability. As for the product synthesis, the main contributions are from PC-1 (75.6% explained
variance) and PC-3 (4.2% explained variance). In the case of PC-1 the conclusions already
taken for biomass growth hold for scFv synthesis. As for the PC-3, the coefficients show again
a low correlation with the Ca and Mg (direction of PC3 in Figure 12C). On the other hand,
scFv appears positively correlated with K, S and P along the direction of PC -3 suggesting that
excessive consumption of these elements (e.g. lower reaction rates) is associated with a lower
scFv synthesis rate. This interpretation is only qualitative as the different PCs collectively con-

tribute to explain data variance.
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Figure 12. PCA of normalized cumulative reacted amount data of X, Met, NH4, Ca, K, Mg, P and S for 9 fed-batch
experiments. Each column was divided by the maximum absolute value of reacted amount among the 9 fed-batch
experiments. The PCA algorithm was the alternating least-squares (MATLAB function “pca” with option ALS). Red
points are scores of training data. Green points are scores of validation data. Blue dots and blue lines are coeffi-
cients. A: explained variance over number of principal components. B: scores and coefficients of principal compo-
nent 2 over principal component 2. C: scores and coefficients of principal component 3 over principal component

1. D: scores and coefficients of principal component 4 over principal component 1.

4.3.4 Hybrid Model Development

For a quantitative analysis of all critical process parameters (CPPs), hybrid models were de-
veloped to describe process dynamics using the previously described state-space reduction
method. The PCA coefficients matrix obtained in the previous section was used to transform
the concentrations vector in a reduced Z state-vector by applying the transformations
(Equation 42).

Firstly, the effect of the state-space reduction on the hybrid model training and testing was
investigated. Different hybrid models were developed by considering an increasing number
of PCs, e.g. by taking an increasing number of columns of matrix Coeff. The same data parti-
tioning as for the PCA was adopted, namely 7 experiments were selected for training (B, C, D,
E, G, H, and ) and 2 experiments were selected for testing (A and F). The number of hidden
layers was 2 with 10 nodes each, which were kept the same in all tests performed. The train-

ing method was also the same in all tests performed (ADAM with 1000 iterations and default
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hyperparameters, stochastic regularization with 80% minibatch size and 20% weights dropout
and semidirect sensitivity equations). The overall results are presented in Table 5. The final
training error systematically decreased with the number of PCs. The lowest training error was
achieved with the original unreduced state-vector of concentrations. However, a clear mini-
mum in the test error is obtained for 5-6 PCs, which corresponds to a reduction of 40% and
30% in the number of state variables (6 and 7 respectively). The number of FFNN weights
increased with the number of PCs but the AICc criterion failed to discriminate the model with

the highest predictive power, which was the model with 5 PCs reduction.

Table 5. Effect of state-space reduction on the hybrid modeling results. The number of principal components was
increased from 1 to 8 in the state space transformation defined by Equation 42. Seven fed-batch experiments
were selected for training (B, C, D, E, G, H, and 1) and 2 for testing (A and F). The training was performed with the
ADAM algorithm with 1000 iterations and hyperparameters a=0.001, B1=0.9 B2=0.999 and n=1x10". Gradients
were computed by the semidirect sensitivity equations. Stochastic regularization was applied with weights drop-
out of 0.2 and minibatch size of 0.8. The training was repeated only once with random weights initialization from
the uniform distribution between -0.01 and 0.01.

Number of ) Cumulative
o WMSE WMSE CPU time Number of )
principal ) AlCc ) explained
train test (hh:mm:ss) weights )
components variance (%)
1 11.31 124 4380 02:19:00 182 72.25
2 3.45 4.47 2490 02:25:00 203 89.94
3 2.61 3.99 2090 02:20:00 224 95.24
4 0.98 1.97 550 02:30:00 245 97.77
5 0.59 1.18 -300 02:24:00 266 98.85
6 0.50 1.21 -430 02:22:00 287 99.33
7 0.37 1.40 -820 02:25:00 308 99.72
8 0.32 1.42 -1110 02:20:00 329 99.91
unreduced 0.30 142 -1100 02:24:00 350 100.00

For both the unreduced and 5 PCs reduced hybrid models, it was further investigated the
optimal size of the FFNN. Several architectures were investigated with 1 to 3 hidden layers
and with varying number of nodes in the hidden layers. The same training/testing data parti-
tioning and training methods were adopted. Table 6 shows the results for the hybrid model
with 5 PCs reduction. The best shallow hybrid structure had a single hidden layer with 13
nodes and 201 parameters. The training and testing errors were 0.50 and 1.10 respectively.

The best deep structure had 2 hidden layers with 13 nodes each and 383 parameters. The
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final training error was the same as the shallow structure (0.50), but the test error was slightly
lower (1.01). Nevertheless, given the lower model complexity reflected in the lower AlCc val-
ue, the shallow structure with 13 hidden nodes was taken as the best hybrid model with 5
PCs reduction. Table 7 presents the results for the unreduced hybrid model with varying
FFNN sizes. The hybrid structure with 2 hidden layers 15x15 and 595 parameters stands out
as the best model. It had a low training error (0.33), the lowest test error (1.35) and the lowest

AlCc value (-150).

Table 6. Hybrid modeling results as a function of FFNN size for 5 principal components reduction (6 state varia-
bles). Seven fed-batch experiments were used to train the model (B, C, D, E, G, H, and 1) and 2 experiments were
used for testing (A and F). The training was performed with the ADAM algorithm with 1000 iterations and hy-
perparameters a=0.001, B1=0.9 B2=0.999 and n=1Te-7. Gradients were computed by the semidirect sensitivity
equations. Stochastic regularization was applied with weights dropout of 0.2 and minibatch size of 0.8. The train-
ing was performed only once with random weights initialization from the uniform distribution between -0.01 and
0.01.

Number of hidden ) CPU time Number of
nodes WMSE train WMSE test AlCc (hhemmiss) weights
5 1.57 3.19 910 02:10:00 81
6 0.95 2.11 170 02:14:00 96
7 0.89 1.88 56 02:12:00 111
8 0.67 1.54 -380 02:15:00 126
9 0.65 1.47 -390 02:16:00 141
10 0.57 1.26 -590 02:08:00 156
11 0.58 1.26 -520 02:26:00 171
12 0.57 1.27 -490 02:18:00 186
13 0.50 1.10 -680 02:25:00 201
14 0.52 1.31 -560 02:12:00 216
15 0.51 1.12 -540 02:13:00 231
[5 5] 1.05 2.08 320 02:05:00 111
[6 6] 0.80 1.76 -70 02:21:00 138
[77] 0.79 1.64 -10 02:28:00 167
[8 8] 0.63 1.31 -300 02:27:00 198
[99] 0.62 1.22 -230 02:33:00 231

[10 10] 0.59 1.18 -300 02:24:00 266
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[1111] 0.52 1.16 -310 02:32:00 303

[12 12] 0.58 1.21 -10 02:30:00 342
[1313] 0.50 1.01 -470 02:33:00 383
[14 14] 0.58 1.22 250 02:40:00 426
[1515] 0.59 1.23 450 02:32:00 471
[555] 0.94 2.10 220 02:24:00 141
[6 6 6] 0.76 1.76 -40 02:32:00 180
[777] 0.63 1.35 -230 02:28:00 223
[8 8 8] 0.69 1.41 50 02:39:00 270
[999] 0.59 1.22 -50 02:34:00 321
[10 10 10] 0.61 1.13 240 02:36:00 376
(1111 11] 0.64 1.17 710 02:36:00 435
[12 12 12] 0.65 1.21 1170 02:39:00 498

Table 7. Hybrid modeling results as a function of FFNN size for the unreduced case (10 state variables). Seven fed-
batch experiments were used to train the model (B, C, D, E, G, H, and 1) and 2 experiments were used for testing (A
and F). The training was performed with the ADAM algorithm with 1000 iterations and hyperparameters a=0.001,
B1=0.9 B2=0.999 and n=1e-7. Gradients were computed by the semidirect sensitivity equations. Stochastic regu-
larization was applied with weights dropout of 0.2 and minibatch size of 0.8. The training was performed only

once with random weights initialization from the uniform distribution between -0.01 and 0.01.

Number of hidden WMSE train  WMSE test  AlCc CPU time Number of

nodes (hh:mm:ss) weights
10 1.41 2.58 1080 02:15:00 240
15 0.48 1.87 -300 02:29:00 355
20 0.52 1.74 -120 02:30:00 470
[1010] 0.30 1.42 -1100 02:28:00 350
[15 15] 0.33 1.35 -1150 02:38:00 595
[20 20] 0.42 1.38 210 02:44:00 890
[10 10 10] 0.41 1.48 -360 02:26:00 460
[15 15 15] 0.42 1.54 140 02:41:00 835
[20 20 20] 0.35 1.64 360 02:48:00 1310
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Comparing the best reduced model (with five PCs' reduction and a single hidden layer with
13 nodes, Table 6) and the best unreduced model (two hidden layers with 15 nodes each,
Table 7), it becomes clear that the state-space reduction had a very positive impact in the
hybrid model performance metrics. The model complexity was reduced by 66% partially due
to the lower number of state variables, which reflected in a lower number of FFNN inputs and
outputs. Moreover, 1 hidden layer was removed comparatively to the best deep model. It
may be argued that the PCA coefficients in Equation 41 act as a linear layer obtained by un-
supervised learning (namely by PCA) downstream of the FFNN. Such structural differences
resulted in a higher training error (51.5% higher) for the reduced shallow hybrid model but,
more importantly, in a significantly lower testing error (18.5% lower). The AlCc is not a good
discrimination metric in this case because the training error is systematically lower for unre-
duced models thus always favoring unreduced structures. The reduced hybrid model predic-
tions and respective measured concentrations of biomass, scFv and inorganic elements (Mg,
K, Ca, P and S) for the two test experiments A and F in Figure 13. The model was able to faith-
fully predict the state variables for the two extreme experiments with predictions always with-

in or very close to measurement error bounds.
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Figure 13. Comparison between predictions of the hybrid model 5x13x5 with 5 state variables and experimental

data of X, scFv, Met, NH3, Ca, K, Mg, P and S for the 2 fed-batch experiments A and F. Squares and triangles are

67



measurements of experiment A and F respectively. Full line and dashed line are hybrid model predictions of ex-
periment A and F respectively. A: biomass. B: single-chain antibody fragment(scFv). C: cumulative methanol con-
sumption (kg). D: cumulative NH4 consumption (kg). E: calcium (Ca, g/L). F: potassium (K, g/L). G: magnesium (Mg,
g/L). H: Phosphorus (P, g/L). I: sulfur (S, g/L).

4.3.5 Design Space Exploratory Analysis

Here we illustrate how the hybrid model can be used as a DT prototype for dynamic design
space exploration. The CPPs that affect recombinant protein production by methylotrophic 2.
pastoris are typically the pH, temperature and methanol feeding strategy (e.g. (Jahic et al.
2003), (Jahic et al. 2006), (Vanz et al. 2012), Ferreira et al. (2014), (Looser et al. 2015)). In this
study, the feeding of inorganic elements is also analyzed. The impact of CPPs on cell growth
and scFv synthesis dynamics was characterized by process simulations using the best hybrid
structure with 5 PCs reduction and 13 hidden nodes developed in the previous section (Table
6 and Figure 13). A sensitivity analysis was performed taking as reference condition the ex-
periment H, which delivered the highest scFv/biomass yield. Thus, the objective is to analyze
the feasibility of increasing the scFv yield beyond the value obtained in experiment H by op-
timizing CPPs.

The optimal pH and temperature in the production phase depend on the nature and function
of the expressed protein and on the genetic modification of the host cells. Figure 14 shows a
sensitivity analysis of scFv endpoint titer to temperature and pH for the recombinant strain
used in this study. The inner rectangle represents the domain of experience covered by the 9
fed-bath experiments. These data suggest an optimal pH 5.75-6.75 and temperature 27.5-
35°C region corresponding to a higher endpoint scFv titer. These results are aligned with the
data reported by Joseph et al. (2022), obtained with a P. pastoris GS115 (Mut+) strain ex-
pressing recombinant thaumatin Il. The authors consistently observed a higher viable cell
density and higher secretion of protein at pH 6.0 compared to pH 5.0 (when the cells were
grown at 30 °C) in different culture media. A low pH between 4.0-5.0 has been reported to
decrease the proteolytic activity of proteases in the supernatant (Jahic et al., 2003). On the
other hand, a high pH may counteract by increasing cellular viability thereby reducing the cell
lysis and the release of proteases (Joseph, Akkermans, and Van Impe 2022). A trade-off be-
tween both mechanisms must be evaluated on a case-by-case basis. Protein folding may also
be severely affected by temperature. Misfolded proteins can lead to a higher degradation

rate in the cytosol and ultimately to a lower secretion rate. Joseph et al. (2022) observed that
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the protein levels were the highest at 30 °C compared to 20 and 25 °C at pH 6.0 thus the de-
crease of temperature did not improve the final titer. These results are in line with the opti-
mal PH-temperature space identified in the present study. The identified optimal region en-
compasses experiment H (conducted at 30°C and pH 6.5), which delivered the highest
scFv/biomass yield of 243.3 ug/gWCW. It may be thus concluded that, for the strain used in
the present study, temperature and pH optimization have low potential for further scFv titer

improvement.

Endpoit scFv titer (mgiL)

Figure 14. Sensitivity analysis of scFv endpoint titer to temperature (15-35 °C) and pH (3.5 — 7.5). The methanol
feeding strategy was that of experiment H (reference condition). Data was obtained by simulations of the hybrid
shallow model with 5 PCs reduction. The inner square represents the domain of experience. The cross marker

represents the temperature (30°C) and pH (6.5) conditions of experiment H (reference condition).

The methanol feeding rate also plays a critical role in the P. pastoris GS115 Mut+ ex-pression
system. The protein expression is controlled by the very strong AOX1 promoter induced by
methanol. Methanol also serves as the main carbon source for cell growth and protein ex-
pression. Overflow methanol metabolism may lead to the accumulation of reactive oxygen
species and a pronounced oxidative stress response (Vanz et al., 2012). Protein expression
kinetics in the Mut+ P. pastoris phenotype may vary considerably from strain to strain. It may
be growth coupled, negative growth related and bell shaped in relation to the specific
growth rate profile (Looser et al., 2015). The methanol feeding rate is typically used to control

the specific growth rate and the associated specific protein expression rate. This control
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needs to be optimized on a case-by-case basis. Figure 15 shows a sensitivity analysis of scFv
endpoint titer to the methanol feeding strategy for the strain used in this study. Again, the
most productive experiment H served as a reference condition. The pH was varied between
3.5 and 7.5. The temperature was kept constant at 30°C. The methanol feeding was de-
creased or increased in relation to the experiment H feeding program by a multiplying factor
between 0.25 and 1.5. The overall results show that there is a significant potential for scFv
endpoint titer improvement by increasing the methanol feeding rate. Specifically, the pH re-
gion between 5.5-6.5 combined with 25% methanol feed rate in-crease (in relation to exper-

iment H) has a scFv endpoint titer improvement potential of about 30%.
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Figure 15. Sensitivity analysis of scFv endpoint titer to pH (3.5 — 7.5) and methanol feeding program (0.25 to 1.5
multiplying factor in relation to the methanol feed program applied to experiment H). The temperature was kept
constant at 30°C. The data was obtained by simulations of the hybrid shallow model with 5 PCs reduction. The

cross marker represents the reference condition of experiment H.

The high concentration of salts in the BSM medium is required to supply inorganic elements
at sufficient stoichiometric quantities to sustain high cell density. An indication of this are the
PC 1 coefficients (First column of Equation 48 and biplot of Figure 12B) showing that all inor-
ganic elements have a significant contribution to the production of biomass. A common
problem is however precipitation (Figure 11). The dilution of BSM medium to one-quarter has
been studied by Brady et al. (2001) to mitigate the precipitation problem. The authors utilized

a low salt medium that did not reduce growth rates nor protein expression rates while avoid-



ing medium precipitation. They observed no adverse effect on both glycerol and methanol
growth kinetics. Later on, the dilution of BSM was shown to increase P. pastoris cellular viabil-
ity and to reduce the cell death rate (Surribas et al. 2007) (Zhao et al. 2008). The reduction of
the cell death rate decreases the accumulation of proteases in the supernatant and therefore
the proteolytic attack on the secreted protein. Furthermore, the excess of trace metals was
shown to decrease the expression of B-galactosidase by P. pastoris GS115 (Mut+) (Plantz et
al. 2007). More recently, Joseph et al. (2022) compared different media and concluded that
BSM resulted in the highest total cell concentration (as measured by dry cell weight) concom-
itantly with the lowest viable cell concentration. The high concentrations of salts may cause
high osmotic stress to the cells resulting in a decrease of metabolic efficiency, cellular viability
and in an increase of the cell death rate (Zhao et al. 2008). The higher cell death rate causes
the release of proteolytic enzymes to the medium and a higher degradation of the expressed
protein in the supernatant.

To test these hypotheses a set of dynamic simulations were performed with the hybrid model
with 5 PCs reduction. The overall results are shown in Figure 16. Taking as reference the best
experiment H (methanol feed program, 30°C and pH 6.5), one simulation was performed with
a reduction of inorganic elements concentrations at the onset of the MFB phase to one-
quarter. Another simulation was performed with controlled inorganic elements concentra-
tions to constant values corresponding to one-quarter of BSM concentrations throughout the
complete MFB phase.

The simulation with reduction to one-quarter of the initial salts concentrations showed no
significant effect in the beginning of the MFB phase until approximately 72 hours. This is in
accordance with the experimental results reported by (Brady et al. 2001). After 72 hours of
cultivation, severe cell growth limitation by inorganic elements is forecasted. The much lower
cellular concentration resulted in a significant reduction of the scFv titer. This simulation sug-
gests that a BSM/4 diluted medium is no longer able to sustain high cell density.

The second simulation with inorganic elements control to constant levels suggests a very
significant increase in the scFv endpoint titer by 80% in relation to the reference condition
and also an increase in the final biomass by approximately 15%. The cell growth rate de-
creased but the growth phase was extended to a longer period of time. The scFv specific
productivity was boosted by keeping the salts at a constant and low concentrations level.
These results are in accordance with the experimental data reported by (Jahic et al. 2006). The

authors developed a salts control system based on on-line conductivity monitoring in a 2.
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pastoris process. The control of conductivity at 8 mS.cm-1 resulted in a 3.6fold titer increase
in relation to a standard BSM cultivation.

Overall, the design space analysis suggests that the control of inorganic salts in the MFB
phase has the highest potential to further increase the scFv yield for the recombinant 2. pas-

toris strain under study.
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Figure 16. In silico experiments obtained by simulations of the hybrid shallow model with 5 PCs reduction based
on experiment H control degrees of freedom. Symbols and error bars are measured data points of reference con-
dition (experiment H). Full line is the hybrid model simulation of reference condition (experiment H). Dashed line
is the hybrid model simulation of reference condition with one-quarter reduction of initial concentrations of in-
organic elements at the onset of the MFB phase. Dotted line is the hybrid model simulation of reference condition
with inorganic elements concentrations controlled to constant values corresponding to one-quarter of BSM con-

centrations throughout the complete MFB phase. A — biomass concentration over time. B — scFv titer over time.

4.4 Conclusions

In this chapter the dynamics of the main inorganic elements in P. pastoris GS115 (Mut+) cul-
tures expressing a scFv were investigated. The ICP-AES data showed excess of Ca and S over
Mg, P and K in BSM medium. In some cultures, Mg, P and K depleted completely eventually
limiting biomass growth and scFv expression. Precipitation occurred during the MFB phase at
pH 6.5 and 7.0, more severely for Ca and Mg. A hybrid modeling framework with state-space
reduction was applied for data analysis and design space exploration. The state-space reduc-
tion framework succeeded in decreasing the model complexity by 60% and improving the
predictive power by 18.5% in relation to a standard nonreduced hybrid model. The reduced
hybrid model was able to correctly simulate the experiments performed including the test
experiments. However, more data is required to strengthen model validation before it can be
considered for a process digital twin. An exploratory sensitivity analysis of process dynamics
to CPPs was performed. It was concluded that a temperature of 30 °C and pH 6.5 are close to

the optimal operating point. Interestingly, at these conditions the culture suffered from se-
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vere salts precipitation resulting in the highest scFv/biomass yield. The methanol feeding
sensitivity analysis showed a significant 30% scFv endpoint titer improvement potential. The
optimization of the inorganic elements feeding showed the highest potential for further scFv
endpoint titer improvement. Namely, the control of inorganic elements concentration to one-

quarter of the BSM during the MFB phase displayed an 80% scFv endpoint titer improvement

potential.
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HYBRID DEEP MODELING OF A CHO-K1
FED-BATCH PROCESS

This chapter is based on the publication: Pinto, J.,, Ramos, J. R, Costa, R. S., Rossell, S., Dumas,
P., & Oliveira, R. (2023). Hybrid deep modeling of a CHO-K1 fed-batch process: combining

first-principles with deep neural networks. Frontiers in Bioengineering and Biotechnology, 11.

5.1 Introduction

Chinese hamster ovary (CHO) cells are the most widely used host system for the industrial
production of biologics. They cover more than 70% of the mammalian cell-based therapeutic
proteins production (Vcelar et al., 2018). They present several advantages such as well-
established large-scale cultivation with high productivity (cell densities higher than 20
Mcell/mL with protein titer as high as 10 g/L), human-like N-glycosylation, well-established
molecular biology techniques and an impressive track record of approvals by the U.S. Food
and Drug Administration (FDA) (Galleguillos et al., 2017). Given its industrial relevance, many
companies have established CHO-cell platforms to streamline process development of many
different molecule candidates in a short timeframe (e.g., (Mora et al., 2018)). Different up-
stream tasks such as clone screening, culture media customization and reactor optimization
should be integrated in a rational way to improve the efficiency of process development. The
adoption of high-throughput screening technologies allied with advanced digitalization tools
for data analysis, mathematical modeling and control across the different development stag-
es are key factors to improve process development efficiency (Hole et al., 2021).

There are currently three main mathematical modeling formalisms that are used for the digi-

talization of biopharmaceutical processes: First-Principles or mechanistic modeling (e.g.,
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Hartman et al., 2022, Monteiro et al., 2023), data-based or machine learning (ML) (e.g.,
Monbray et al, 2022, Helleckes et al, 2023) and hybrid mechanistic/ML (e.g., Badr and
Sugiyama, 2020, Narayanan et al., 2023, Bayer et al., 2023). Mechanistic modeling relies on
prior process knowledge and requires less process data. Conversely, ML relies almost exclu-
sively on process data with minimal prior knowledge requirements. Mechanistic models are
more complex to develop but tend to extrapolate better outside the domain of experience.
The intrinsic complexity of biological systems is however a critical limitation for the deploy-
ment of mechanistic models in an industrial context (Badr et al., 2021). Data-driven and ML
methods are easier to develop but require large amounts of data that are costly, time-
consuming, and difficult to reuse. ML models tend to describe better inside the domain of
experience (e.g., better interpolation) but are less reliable at extrapolating in comparison to
mechanistic models. Hybrid models combine mechanistic and ML techniques in a common
workflow and share the pros and cons of both techniques (e.g., Psichogios and Ungar, 1992,
Oliveira, 2004, Teixeira et al., 2005, Teixeira et al., 2007, von Stosch et al., 2014, Kurz et al.,
2022, Pinto et al., 2019). The mechanistic modules allow to decrease the complexity of the ML
modules within the hybrid model and as such the overall data requirements are decreased.
Moreover, the ML modules fill the gaps of the mechanistic modules for which knowledge is
still lacking. Narayanan et al. (2022) studied the impact of increasing the amount of prior
knowledge (e.g., material balances, reaction stoichiometry and reaction kinetics) in the hybrid
model of a cell culture process. Between a fully data-driven (or ML model) and a fully mecha-
nistic model, there are different degrees of hybridization possible depending on the amount
of prior knowledge included in the hybrid model. The authors concluded that the inclusion of
unbiased prior knowledge progressively improves the performance of the hybrid model. Un-
surprisingly, fully data-driven models showed poor performance particularly when data is
scarce. Rogers et al (2023) have also investigated the optimal amount of prior knowledge to
incorporate in a hybrid bioprocess model. The authors concluded that the inclusion of correct
kinetic information generally improves the performance of the hybrid. The inclusion of incor-
rect kinetic assumptions may however create inductive bias that decreases the performance
of the hybrid model. Due to the flexible trade-off between prior knowledge and data availa-
bility, hybrid modeling is becoming a method of choice to develop digital twins in the realm
of Biopharma 4.0 (e.g. Badr and Sugiyama, 2020, Yang et al., 2019, Sansana et al., 2021,
Sokolov et al, 2021, Badr and Sugiyama, 2020, Narayanan et al, 2023, Bayer et al. (2022),
Bayer et al. (2023)).
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Being the preferred host system in biopharma, CHO cultivation processes have been the ob-
ject of several hybrid modeling studies (Table 8). Most of the previous studies combined
macroscopic material balance equations of extracellular species with some machine learn-
ing/statistical modeling methods with predominance of shallow FFNNs with a single hidden
layer. The macroscopic material balance equations are translated to systems of Ordinary Dif-
ferential Equations (ODEs) describing bioreactor dynamics. The machine learning component
is typically dedicated to model biological kinetics, which are parts of the system lacking
mechanistic basis. The number of biochemical species has been limited to 2-12 species. Typi-
cally, the viable cell count, concentrations of the target molecule and the concentrations of
key central carbon metabolites such as glucose, lactate, glutamine, glutamate, and ammoni-
um. A recent study by Doyle et al. (2023) has also covered amino acids dynamics. The training
method is either coupled or uncoupled. In the latter case, the machine learning component is
isolated from the mechanistic model and trained as a standalone module. In the former case,
the mechanistic and machine learning models are parametrized in a common mathematical
structure and trained together. Uncoupled training has been adopted by Kotidis et al. (2021)
to develop a hybrid model of glycosylation critical quality attributes in CHO cultures. The N-
linked glycosylation was described by a FFNN with 2 hidden layers, while the cell growth and
metabolism were described by a mechanistic model based on a system of Differential and
Algebraic Equations (DAEs) (Kotidis et al., 2019). The FFNN was trained as a standalone model
on data generated by the mechanistic model using the TensorFlow package in Python 3.7.
The final trained FFNN and the mechanistic model were assembled in a hybrid workflow in
gPROMS v.5.0.1. Coupled training has been the preferred approach for material balance +
FFNN hybrid models, following the scheme originally proposed by Psichogios and Ungar
(1992). The sum of square error between measured and calculated concentrations is mini-
mized during the training using the Levenberg-Marquardt (LMM) algorithm. Since the FFNN
outputs cannot be directly compared with measured properties, this method is termed indi-
rect training. The indirect sensitivity equations are employed to compute the gradients of
measured concentrations in relation to neural network weights (Psichogios and Ungar, 1992,
Oliveira, 2004). Cross-validation techniques are employed to avoid overfitting. Following the
coupled training approach with cross-validation, Bayer et al. (2022) compared mechanistic
and shallow hybrid modeling for characterization of a CHO cultivation process. The authors
concluded that the prediction accuracy of the shallow hybrid model was always superior to
the mechanistic model irrespective of the utilized data partition. Due to its’ higher fitting

power, the shallow hybrid model prediction accuracy showed to be more sensitive to data
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resampling than the mechanistic model. Every hybrid model in Table 8 is of dynamic nature

except the one by Ramos et al. (2022). The authors have used a large genome-scale network

with 788 reactions as mechanistic component combined with a Principal Component Analysis

(PCA) model. The overall hybrid model is of static nature, solved by linear programming un-

der the pseudo steady-state hypothesis, i.e. by hybrid Flux Balance Analysis (hybrid FBA).

Table 8. Compilation of CHO hybrid modeling studies

First-Principles

Macroscopic
material balances

(2 species)

Macroscopic
material balances

(7 species)

Macroscopic
material balances

(4 species)

Macroscopic
material balances

(4 species)

Macroscopic
material balances

(6 species)

Mechanistic ki-
netic models (12

species)

Machine learning

Shallow FFNN
(tanh hidden

nodes)

Shallow FFNN
(tanh hidden

nodes)

Shallow FFNN
(tanh hidden

nodes)

Shallow FFNN
(tanh hidden

nodes)

Gaussian Process

regression

Deep FFNN with 2
hidden layers
(softmax/sigmoid
hidden nodes)

Training method Cross

Levenberg-

Marquardt; cou-

pled

Levenberg-

Marquardt; cou-

pled

Levenberg-

Marquardt; cou-

pled

MATLAB fmin-
unc function;

coupled

Maximum likeli-

hood estimator;

uncoupled

Python 3.7 Ten-

sorflow/

gPROMS v.5.0.1;

uncoupled

valida-

tion

Yes

Yes

Yes

Yes

Yes

Yes

Objective

Prediction of cul-
ture dynamics;

Quality-By-Design

Prediction of cul-
ture dynamics;

Quality-By-Design

Optimize viable cell

density

Prediction of cul-
ture dynamics;

Quality-By-Design

Prediction of cul-
ture dynamics
across different

products

Prediction of cul-
ture dynamics and

mADb glycosylation

Reference

Bayer et al.
(2021)

Bayer et al.
(2022), Bayer
et al. (2023)

Nold et al.
(2023)

Narayanan et
al. (2019)

Hutter et al.
(2021)

Kotidis et al.
(2021)
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Macroscopic Set of Shallow Levenberg- Yes Software sensor of ~ Senger and
material balances FFNN (tanh hid- Marquardt; un- r-tPA production Karim (2003)
(5 species) den nodes) coupled

Macroscopic Principle Compo-  PCA + least Yes Prediction of cul- Okamura et al.
material balances nent Regression squares regres- ture dynamics (2022)

(4 species) (PCR) sion; uncoupled

Macroscopic Saturation and Least squares Automated assem-  Doyle et al.
material balances sigmoidal func- regression; un- bly of dynamic (2023)

(24 species) tions coupled model

CHO-K1 Ge- PCA of reaction Linear pro- Yes Hybrid FBA; Culture Ramos et al.
nome-scale net-  rates of extracellu- gramming; cou- media design (2022)

work (788 reac-
tions; 686 spe-

cies)

lar species

pled

Most previous hybrid modeling studies have combined material balance equations with shal-
low FFNNs or other nondeep machine learning techniques. In the field of neural networks,
Deep neural networks have however been shown to have a general advantage over their
shallow counterparts thanks to their ability to approximate more complex functions with a
lower number of parameters and being less prone to overfitting (Delalleau and Bengio, 2011,
Eldan and Shamir, 2016, Liang and Srikant, 2017, Mhaskar and Poggio, 2016). Training of
deep structures also requires special care, with the ADAM method (Kingma, 2014) being
commonly used due to its robustness and lower sensitivity to local optima. Along with the
training approach, the use of stochastic regularization techniques has also been shown to be
very effective at avoiding overfitting (Hinton et al., 2012, Srivastava et al., 2014, Koutsoukas et
al, 2017).

Only very recently, hybrid modeling is incorporating deep neural networks and deep learning
into its framework (Bangi and Kwon, 2020, Pinto et al., 2022, Bangi and Kwon, 2023). Pinto et
al. (2022) investigated the use of ADAM and stochastic regularization in a hybrid modeling
context concluding that the predictive power of deep hybrid models was significantly im-
proved. None of these techniques have been applied to CHO processes (Table 8). In this
study, we thus investigate deep learning techniques based on ADAM and stochastic regulari-

zation in a hybrid modeling context with application to a CHO-K1 fed-batch process. The

78



deep learning method is compared with the classical shallow method based on the LMM

algorithm, indirect sensitivity equations and cross-validation.

5.2 Methods

5.2.1 CHO-K1 Experimental Dataset

Data from 24 fed-batch reactor experiments with a CHO-K1 cell line coding for a target gly-
coprotein were used to compare the hybrid modeling methodologies. Briefly, the cells were
pre-cultured in shake-flasks (Corning, NY, USA) at 37°C in a proprietary chemically defined
medium. The inoculum was transferred to 250 mL stirred microcarrier vessel (Ambr® 250
workstation, Sartorius, Gottingen, Germany) for antigen production. Stirring was kept at
around 20 W/m?. Dissolved oxygen was controlled at 30% of saturation by sparging pure
oxygen. The pH was controlled at 7.0 with a 0.5M NaOH solution and CO2 sparging. The
reactors were seeded at 3.0 Mcell/mL. They followed a batch/fed-batch phase for viable cells
expansion. Once a threshold viable cell density was reached, the temperature was decreased
to 33°C to induce antigen production. The antigen production phase was carried out in fed-
batch mode with varying feeding compositions of amino acids, glucose, and pyruvate. The
whole process lasted approximately 12 days. Samples were taken daily. Viable cell density
and viability were assayed using a Vi-Cell cell counter (Beckman, Indianapolis, USA). Glucose,
lactate, pyruvate, glutamine, ammonium, glycerol, and lactate dehydrogenase were assayed
using a CedexBio-HT metabolite analyzer (Roche, Penzberg, Germany). The antigen quantifi-
cation was performed off-line with an Octet HTX (Pall, NY, USA). The remaining metabolites
and amino acids were assayed off-line by Nuclear Magnetic Resonance spectroscopy at Eu-
rofins Spinnovation (Oss, The Netherlands). A total of 30 concentrations were measured at
each time point (with few exceptions): viable cell count (Xv), glycoprotein (P), glucose (Glc),
lactate (Lac), glutamine (GIn), glutamate (Glu), ammonium (NH4), pyruvate (Pyr), glycerol
(Glyc), citrate (Cit), alanine (Ala), arginine (Arg), asparagine (Asn), aspartate (Asp), L-cystine
(Lcystin), glycine (Gly), histidine (His), isoleucine (lle), leucine (Leu), lysine (Lys), methionine
(Met), phenylalanine (Phe), proline (Pro), serine (Ser), threonine (Thr), tryptophane (Trp), tyro-
sine (Tyr), valine (Val), acetate (Ac) and formate (For). The data was assumed to be corrupted
by heterogenous gaussian noise. The measurement error standard deviations were assumed
to be of 5% for P, 10% for Xv and 20% for remaining metabolites, based on equipment cali-

bration data. The data reliability was pre-assessed by statistical analysis of metabolic fluxes in
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the exponential growth and production phases. The spread of data was analyzed in a boxplot
of metabolic fluxes. No outlying reactor experiments were identified. All the 24 reactor exper-
iments were used for modeling thus none discarded due to reliability issues. More details
regarding the experimental protocol and data pre-assessment are provided by Ramos et al.
(2022)

5.2.2 CHO-K1 Synthetic Dataset

In addition to the experimental dataset, a synthetic dataset was created based on the meta-
bolic model proposed by Robitaille et al. (2015). A synthetic dataset is useful in this context
to better assess the ability of the hybrid modeling methods to describe the intrinsic process
behavior irrespective of measurement noise. Simulations of this model were performed by
varying two parameters, namely the pre-induction feeding rate and the post-induction feed-
ing rate. A central composite design of experiments (CC-DoE) was applied to obtain 9 com-
binations of the two feed rates. This resulted in 9 fed-batch simulated experiments. The dy-
namic model has 21 intracellular species and 25 extracellular species. The intracellular spe-
cies were hidden from the hybrid model development. The concentrations of extracellular
species were recorded as time series for 240 hours with 24 hours sampling time and included
the following variables: Xv, monoclonal antibody concentration (mAb), Ala, Arg, Asn, Asp,
Cysteine (Cys), Glc, GIn, Glu, Pyr, Gly, His, lle, Lac, Leu, Lys, Met, NH4, Phe, Pro, Ser, Thr, Tyr
and Val. The recorded variables from the synthetic dataset were the same as in the experi-
mental dataset, except that Pyr, Glyc, Cit and Ac are not considered in the Robitaille et al
(2015) model. Moreover, the target products are different and Robitaille et al (2015) consid-
ers Cysteine instead of Cystine. Gaussian white noise with standard deviation of 10% of max-
imum concentration values was added to concentrations time points to mimic (heterogene-
ous) gaussian measurement error. This synthetic dataset is provided as supplementary mate-

rial B.

5.2.3 CHO-K1 Hybrid Model

A standard hybrid model configuration was adopted in this study consisting of a multilayered
FFNN connected in series with macroscopic material balance equations. This configuration is
similar to previously published studies (Table 8) except for the depth of the FFNN and the
training methods employed. The FFNN is dedicated to completely model the reaction kinet-

ics. The dynamics of state variables are modeled by a system of ODEs based on macroscopic
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material balance equations (First-Principles). Considering a perfectly mixed fed-batch biore-
actor with multiple feed streams, the macroscopic material balance equations take the fol-

lowing state-space form (Equation 49):

Equation 49. State-space equations for the CHO-K1 hybrid model

dc
e v(c,w)X, + Z Dy Cyin — CZ Dy
K K

with t the independent variable time, ¢ the state vector with the concentrations of 30 species
(Xv, P, Glc, Lac, GIn, Glu, Nh4, Pyr, Glyc, Cit, Ala, Arg, Asn, Asp, Lcystin, Gly, His, lle, Leu, Lys,
Met, Phe, Pro, Ser, Thr, Trp, Tyr, Val, Ac, For), v(-) the specific reaction rates vector of the 30
species, D = ), D, the reactor dilution rate (scalar), V the cultivation volume (scalar), F the
feed rate of stream k (there are in total 5 feed streams) and ¢y, ;,, the vector of species con-
centrations in feed stream k. The specific reactions rates, v(c,w) lack mechanistic basis and

were thus modeled by a deep FFNN with n/ hidden layers (Equation 50):
Equation 50. General FFNN equation

H’ = ¢ @ cpax
H'= o(W-H"'+b'), i=1,..,nh
v = whh+1. gni 4 pnh+l
The input layer i = 0 with 30 nodes receives the information of normalized concentrations
(Cmax 1S the absolute maximum concentration of the 30 species (vector) and @ the Hada-
mard division). Each hidden layer i computes a vector of outputs, H', from a vector of inputs,
H'"1, which are the outputs of the preceding layer. The transfer function of hidden nodes,
a(-), was either the hyperbolic tangent function, tanh, or the rectified linear unit, ReLU. The
output layer computed the specific reaction rates vector of the 30 species. The parameters
w={wlw? .., w1} are the nodes connection weights between layers and
b = {b,b?,...,b™*1} the bias weights that need to be optimized data during the training
process. The deep hybrid model Equation 49 and Equation 50 were integrated numerically

using a Runge-Kutta 4" order ODE solver (in-house developed in MATLAB).
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Figure 17. Hybrid model structure of a CHO-K1 fed-batch process.

5.2.3.1 Shallow Hybrid Modeling Method

This chapter compares shallow and deep hybrid modeling. The shallow structures are repre-
sented by Equation 49 and Equation 50 with FFNNs with a single hidden layer and with hy-
perbolic tangent activation function, tanh. Sigmoidal activation functions, and particularly
tanh, are generally accepted as a default in shallow FFNNs. Many practical studies have cor-
roborated the universal function approximation property derived by Cybenko (1987). This
FFNN architecture has also been the preferred choice in a hybrid modeling context (e.g., Ta-
ble 8). The training of shallow hybrid models is based on the LMM optimization with the indi-
rect sensitivity equations (to compute gradients) and cross-validation (as early stop criteria).
Briefly, the data were partitioned into a training/validation subset (for parameter estimation)
and a testing subset (to assess the predictive power). Partitioning was performed batch wise
with the amount of data allocated in each partition depending on the context (further details
in section 5.3). The LMM algorithm (fminunc function in MATLAB) was adopted to optimize
the network parameters, {w, b}, by unconstrained weighted least squares computed on the
training data subset only. The inverse of measurement error variance was used as weighting
factor in the weighted least squares minimization in order to effectively filter heterogeneous
gaussian error Equation 51. The objective function gradients were computed by the indirect
sensitivity equations following the method described by Oliveira (2004). Cross-validation was
adopted as a stop criterion to avoid overfitting, i.e. the training is stopped when the valida-
tion error increases. A data augmentation strategy was used to automatically create the vali-

dation data subset from the training subset by adding gaussian noise to the concentrations
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(Bejani and Ghatee, 2021). The standard deviation of the added noise was the same as the
standard deviation of the measured concentration error. This strategy has proven to effec-
tively avoid overfitting to the experimental noise and to produce good generalization models
when the data information content is well distributed among the training and testing data
subsets (Pinto et al. (2022)). For each shallow hybrid structure, the training was repeated 10
times with random weights initialization from the uniform distribution. Only the best result

(lowest training/validation error) was kept.

5.23.2 Deep Hybrid Modeling Method

The shallow hybrid models were systematically compared with deep hybrid models. The deep
hybrid models are represented by Equation 49 and Equation 50 with FFNNs with multiple
hidden layers (nh > 2) and with rectified linear unit (ReLl) hidden nodes. The tanh was re-
placed by the ReLU because the latter is generally accepted as a default for several deep neu-
ral network architectures including deep FFNNs (Goodfellow et al., 2006). The RelU function
solved two main problems associated with the tanh function, namely signal saturation and
the vanishing gradients problem that occurs during error backpropagation in networks with
multiple hidden layers (Glorot and Yoshua, 2010). Instead of the LMM algorithm, deep hybrid
models were trained with the ADAM algorithm (in-house implementation). The ADAM algo-
rithm is generally accepted as an efficient method to train deep FFNNs (Kingma, 2014). The
use of ADAM in a hybrid modeling context has been recently investigated by Pinto et al
(2022). Briefly, the data were portioned in a training and in a testing subset as for shallow
hybrid modeling. The ADAM was adopted to optimize the network parameter, {w, b}, also in
a weighted least squares sense in order to effectively filter heterogeneous gaussian error
Equation 51. The objective function gradients were computed by the semidirect sensitivity
equations. The semidirect sensitivity equations method was shown to reduce the training
CPU time in comparison to the indirect sensitivity equations method used in shallow hybrid
modeling (Pinto et al (2022)). Stochastic regularization with minibatch size (0-1) and weights
dropout probability (0-1) was applied to avoid overfitting in replacement of cross-validation
normally applied in shallow hybrid modeling. The ADAM with stochastic regularization was
run for a sufficiently large number of iterations with the final deep FFNN weights taken at the
iteration with minimum training error. The training was performed only once because ADAM
is less sensitive to weights initialization. This methodology has been thoroughly investigated

by Pinto et al (2022).
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5.2.3.3 Model Performance, Selection, and Implementation

The performances of shallow and deep hybrid models were assessed by the Weighted Mean

Square Error (WMSE) computed as follows (Equation 51):
Equation 51. Objective function of the CHO-K1 model

1y (¢ — cp)?
WMSE:_Z%
T ] o

with T the number of data examples, ¢/ the measured concentration at time t, ¢, the model
calculated concentration at time t and o; the standard deviation of measurement at time ¢t.
The WMSE was computed separately for the training and testing data subsets. In the case of
the synthetic dataset, the test WMSE was computed using ¢; with experimental noise (noisy
test WMSE) and without noise (noise-free test WMSE).

Model selection was performed by a probabilistic method and by a resampling method. The
probabilistic method consisted in the Akaike’s Information Criterion (AIC) with second order
bias correction (AlCc). The second order correction is needed for small data samples (T <40),
eventually converging to the AIC value for very larger samples (Banks and Joiner, 2017). It is

computed on the training data subset as follows (Equation 52):

Equation 52. Akaike Information Criterion with second order bias correction

2nw (nw + 1)
T —nw —1

AICc = T In(WMSE) + 2 nw +

The AlCc was adopted to discriminate parsimonious hybrid structures by taking into account
the model complexity (i.e., the total number of network parameters, nw). The model with
lowest AlCc score was selected as the best model.

Model selection was also performed by a resampling technique. Ten different training and
testing data partitions were created by random selection (from the uniform distribution) of
reactor experiments allocated either for training or for testing. The training was repeated for
every data partition resulting in 10 different models. The respective training and testing
WMSE statistics were evaluated. The best model was selected to be the one with the lowest
mean test WMSE.

The AlCc and the resampling method often led to different model selection conclusions (fur-
ther discussed section 5.3). It is generally accepted that resampling methods are preferred
over probabilistic methods for statistical model selection (Tashman, 2000). Therefore, the
resampling method, based on the lowest test WMSE, was taken as the final decision metric

for the selection of hybrid models.
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All the code of shallow and deep hybrid modeling was developed in-house and implemented
in MATLAB on a computer with Intel(R) Core(TM) i5-8265U CPU @ 1.60 GHz 1.80 GHz, and 24
GB of RAM. CPU time of the different tests performed were computed as the difference be-

tween the result of the "¢putime’ MATLAB function at the start and end of a run.

5.3 Results

5.3.1 Shallow Hybrid Modeling of the CHO-K1 Synthetic Dataset

Shallow hybrid models with varying number of nodes in a single hidden layer with tanh acti-
vation function were investigated. At this stage, the synthetic dataset was adopted since it
allows a better control of the information content distribution among the training and testing
data subsets. The training partition was composed of 5 batches with 2400 training examples
(the number of training examples was always higher than the number of FFNN weights). The
testing partition was composed of 4 batches with 1920 testing examples. The training exper-
iments were the center and square points of the CC-DoE, whereas the test experiments were
the star points of the CC-DoE. The comparatively large testing data subset, generated at the
extreme star points of the CC-DoE, represents a challenging extrapolating test for the trained
hybrid models. Given the very clear testing rationale, the resampling repetitions were not
applied in this case, which allowed to save some CPU time. The training and testing data sub-
sets were always the same with models compared based on the AlICc score and on the final
test WMSE. The number of nodes of the hidden layer varied between 1 and 15 corresponding
to a number of weights between 77 and 805. The training algorithm was the LMM with gra-
dients computed by the indirect sensitivity method. For each structure, the training was re-
peated 10 times with different weights initialization (classical method). The overall results are
shown in Table 9. These results confirm that the number of nodes in the hidden layers has a
significant effect on the model performance. The AlCc score and the test WMSE did not con-
verge to a common conclusion (discussed below). The shallow structure with lowest AlCc had
5 hidden nodes only, which did not correspond to the lowest test error. The shallow structure
with highest predictive power had 12 hidden nodes with the lowest noisy and noise-free test
WMSE (2.04 and 2.06, respectively). The noisy test WMSE was 32.5% higher than the train
WMSE denoting some degree of overfitting of the training data. The AlCc criterion miss se-

lected the model with the highest predictive power in this case.
Table 9. Shallow hybrid modeling results on the CHO-K1 synthetic dataset. Hybrid models had a FFNN with a

single hidden layer with hyperbolic tangent activation function and a number of nodes between 1 and 15. The
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training algorithm was the Levenberg-Marquardt with gradients computed by the indirect sensitivity equations

with 1000 iterations and cross-validation as stop criterion. Training was repeated 10 times for each structure with

random weights initialization from the uniform distribution between -0.01 and 0.01 and only the best result was

kept. The WMSE-train was computed on the training dataset with 10% gaussian noise in concentrations. WMSE-

test (noisy) was computed on the test dataset with 10% gaussian noise in concentrations. WMSE-test (noise free)

was computed on the test dataset without noise in the concentrations. The AlCc was computed on the same da-
taset as WMSE-train.

Number of WMSE-  WMSE-test WMSE-test AlCc CPU time Number of
hidden train (noisy) (noise free) (hh:mm:ss) weights
nodes

1 6.07 7.46 8.16 4890 00:13:20 77
2 2.17 3.82 432 2310 00:25:31 129
3 1.81 3.25 3.64 1950 00:30:04 181
4 1.76 2.79 3.15 2000 00:26:44 233
5 1.28 4.57 4.31 1290 00:23:06 285
6 1.52 2.31 2.76 1890 00:27:34 337
7 1.55 2.10 2.18 2070 00:24:58 389
8 1.66 3.09 345 2400 00:30:18 441
9 1.73 2.71 2.79 2500 00:26:40 493
10 1.60 247 2.63 2450 00:32:20 545
11 1.70 2.73 3.12 2930 00:28:15 597
12 1.54 2.04 2.06 2850 00:24:52 649
13 1.64 2.70 2.84 3210 00:32:30 701
14 1.73 6.33 7.14 3550 00:18:15 753
15 1.54 2.65 2.86 3460 00:22:18 805
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5.3.2 Deep Hybrid Modeling of the CHO-K1 Synthetic Dataset

Deep hybrid modeling with FFNNs with 2 or 3 hidden layers was investigated on the same
synthetic dataset. Models with more than 3 hidden layers did not produce further improve-
ments (results not shown). The activation function in the hidden layer was the ReLUin all cas-
es. The training algorithm was the ADAM with standard hyperparameters (Kingma, 2014).
Stochastic regularization with optimal minibatch size of 0.8 and weights dropout of 0.2 was
adopted, based on a previous study by Pinto et al. (2022). Stochastic regularization coupled
with ADAM was shown to be very robust to weights initialization (Pinto et al., 2022) thus the
training was carried out only once with a single random weights initialization (between -0.01
and 0.01). The overall results are shown in Table 10. As expected, the complexity of the FFNN
has a significant effect on the model performance. The number of weights varied between
315-1905, always lower than the number of training examples (2400). The hybrid structure
10x10x10 with 765 weights clearly stands out as the best performing structure. The obtained
training and testing errors are comparable denoting a successful training without overfitting.
Moreover, the noise free test error is clearly below the noisy test error, showing that this
model was able to filter noise in the test partition. The AlCc of the 10x10x10 structure was
also the lowest among the deep hybrid structures investigated. The AlCc and the test WMSE

pointed to the same conclusion in this case.

Table 10. Deep hybrid modeling results on the synthetic CHO-K1 dataset. Hybrid models had a FFNN with 2 or 3

hidden layers with ReLU activation function. The training algorithm was the ADAM algorithm run for 1000 itera-
tions with hyperparameters a=0.001, B1=0.9 B2=0.999 and n=1e(-7). Gradients were computed by the semidi-
rect sensitivity equations. Stochastic regularization was applied with weights dropout of 0.2 and minibatch size of
0.8. The training was repeated only once with random weights initialization from the uniform distribution between
-0.01 and 0.01. The WMSE-train was computed on the training dataset with 10% gaussian noise in concentrations.

WMSE-test (noisy) was computed on the test dataset with 10% gaussian noise in concentrations. WMSE-test

(noise free) was computed on the test dataset without noise in the concentrations. The AlCc was computed on the

same dataset as WMSE-train.

Number of WMSE WMSE test WMSE test AlCc CPU time Number of
hidden train (noisy) (noise free) (hh:mm:ss) weights
nodes

[5 5] 1.85 2.47 2.63 2330 00:14:20 315
[7 7] 1.48 2.00 1.94 2090 00:13:30 445
[10 10] 1.34 1.84 1.56 2510 00:17:15 655
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[555] 2.00 443 435 2610 00:19:43 345

[777] 1.50 2.13 2.35 2300 00:15:18 501
[10 10 10] 0.982 1.05 0.54 1800 00:19:42 765
[15 15] 1.33 1.72 1.62 3970 00:17:32 1045
[20 20] 0.922 1.27 1.01 4250 00:22:51 1485
[20 20 20] 0.972 1.27 0.98 6860 00:24:47 1905

Comparing the shallow hybrid model with 12 hidden nodes (Table 9) with the deep hybrid
model with 3 hidden layers (10x10x10) (Table 10) shows that the latter has significantly bet-
ter training and testing metrics. The 3 hidden layers did not correspond to a large increase in
the number of weights (only 17.9%). However, the training error decreased 36.2% and more
importantly the noise free test error decreased 73.8%. Both the AlCc score and the test
WMSE point to the hybrid deep structure (10x10x10) as being the best model. As for the
CPU time, albeit the higher complexity of the deep model (with 17.9% more parameters), the
CPU time was reduced by 20.8%. This is mainly explained by the fact that ADAM with sto-
chastic regularization is practically insensitive to weights initialization requiring a single train-
ing event compared to the 10 training repetitions in the case of LMM with cross-validation.

Figure 18 shows the prediction of the dynamics in a test experiment by the best shallow and
best deep hybrid models. This example shows qualitatively that the deep hybrid model suc-
ceeded to predict very faithfully the dynamics of each variable individually (the predicted
time profiles of process variables are always within the error bars). Conversely, the shallow
hybrid structure shows systematic deviations in different process phases for different varia-
bles. As examples, mAb, Ala, Cys, Gly, Asn, Glu and Thr show systematic deviations in relation

to the true profiles.
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Blue line is the best shallow structure with 12 hidden nodes (Table 9).

Comparison Between Training Methods
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Figure 18. Dynamic simulation of the best shallow (12 hidden modes + tanh) and best deep (10x10x10 + ReLl)
hybrid models for a test reactor experiment of the CHO-K1 synthetic dataset. Circles are simulated data points
and error bars are standard deviations. Green line is the best deep hybrid model structure (10x10x10) (Table 10);

In order to better understand if the differences in the models performances are due to the
training method or to the depth of the FFNNs, the shallow hybrid structures of Table 9 were
also trained with the deep learning method (ADAM + semidirect sensitivity + stochastic
regularization) and the deep structures of Table 10 were also trained with the classical meth-
od (LMM + Indirect sensitivity + cross-validation). The results are shown in Figure 19. Figure
19A shows that the final training error is comparable for both methodologies in the case of
shallow hybrid models. The testing error tends to be slightly lower and more stable for shal-
low hybrid models trained with ADAM. The LMM delivers in some cases equally performing
models, but it is more unstable. For deep hybrid models with 2 (Figure 19C, Figure 19D) and
3 (Figure 19E, Figure 19F) hidden layers, the differences between both methods are more



substantial. For deep structures, as the model size increases the training and testing errors of
the ADAM method are significantly lower than those of the LMM method. For large models
(number of weights approaching 2000), the difference between ADAM and LMM final train-
ing and/or testing errors is as high as 100%. Contrary to ADAM, the final training error deliv-
ered by LMM tends to increase with the number of weights suggesting that this approach is
unable to exploit the descriptive power of deep FFNNs. However, for small FFNN structures

the LMM performs equally or better than the ADAM method.
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Figure 19. Hybrid model final training and testing errors as function of the FFNN depth (number of hidden layer)
and size (number of weights). Orange line and orange squares — hybrid models trained with LMM + indirect sensi-
tivity equations + cross-validation. Green line and green circles — hybrid models trained with ADAM + semidirect
sensitivity equations + stochastic regularization. A) Training WMSE of shallow hybrid models (Table 9). B) Testing
WMSE of shallow hybrid models (Table 9). C) Training WMSE of hybrid models with 2 hidden layers (Table 10). D)
Testing WMSE of hybrid models with 2 hidden layers (Table 10). E) Training WMSE of hybrid models with 3 hidden
layers (Table 10). F) Testing WMSE of hybrid models with 3 hidden layers (Table 10).

5.3.3 Hybrid Deep Modeling of the CHO-K1 Fed-Batch Process

The hybrid modeling framework was applied to the 24 fed-batch experiments collected in a
process development campaign to produce a therapeutic glycoprotein. Deep hybrid struc-
tures with 2 or 3 hidden layers with nodes between 3 and 30 were investigated. For compa-
rability, single hidden layer hybrid models with 1 to 18 nodes were also investigated. Given
the results of the previous section, only the deep learning method based on ADAM, semidi-
rect sensitivity equations and stochastic regularization was adopted. The training hyperpa-
rameters were kept the same as in the synthetic dataset study. The training partition was

composed in this case of 20 experiments with 7953 training examples (83% of data). The test-
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ing partition was composed of 4 batches with 1593 testing examples (17% of data). The train-
ing was repeated 10 times for each hybrid model structure with random permutations of
test/train experiments to avoid data selection bias, with the results analyzed statistically
(resampling method). The 10 train/test permutations were kept the same in all tests per-
formed to ensure comparability. The overall results are shown in Table 11. Structures with
less than 8 hidden nodes did not have sufficient complexity to describe the process, showing
a very high and unstable training error. The hybrid deep structure (25x25x25) with 2855 pa-
rameters showed the lowest test error of 1.88+0.44, although 39.3% higher than the training
error (1.35+£0.21). The best shallow structure with 17 hidden nodes had 16.3% higher training
error and more importantly 30.8% higher test error compared to the best deep structure. As
in the previous sections, increasing the depth of the FFNN seems to be advantageous in
terms of predictive power. The lowest AlCc was obtained with the structure (25x25x25)

which also had the lowest test error.

Table 11. Hybrid modeling results on the experimental CHO-K1 dataset with 24 independent fed-batch experi-
ments and 31 state variables. The activation function in the hidden layers was the ReLU in all cases. Hybrid models
were trained with ADAM (@ = 0.001, 81 = 0.9, 82 = 0.999 and = 1e~7), semidirect sensitivity equations and
stochastic regularization (minibatch size = 0.8 and weights dropout = 0.2). For each structure, the training was
repeated 10 times with random train/test experiment permutations. Error metrics (WMSE-train, WMSE-test and

AlICc) are displayed as the mean * SD of the 10 repetitions.

Number of ~ WMSE-train WMSE-test AlCc CPU time Number of
hidden nodes (hh:mm:ss) weights
7 Unstable Unstable Unstable Unstable 457
8 25.9+0.74 33.6+1.14 70000+220 01:32:00 518
9 7.39+0.65 9.18+0.89 24000+150 01:37:00 579
10 3.54+0.40 4.12+0.75 9075 + 120 01:40:00 640
11 3.11+0.36 4.09+0.41 6980180 02:05:00 701
12 2.61+0.28 3.8410.62 4650160 01:52:00 762
13 1.74+0.29 2.88+0.62 3920+70 02:01:00 823
14 1.68+0.27 2.74+0.55 388075 02:10:00 884
15 1.60+0.28 2.6610.54 3790+60 02:15:00 945
16 1.58+0.28 2.51+0.50 3775180 02:17:00 1006
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17 1.57+0.27 2.46+0.42 3800+70 02:21:00 1067

18 1.58+0.27 2.47+0.45 4025+70 02:18:00 1128

[5 5] Unstable Unstable Unstable Unstable 365
[77] 17.4£0.61 26.9+0.76 50000+200 01:22:00 513
[10 10] 1.57+0.25 2.50+0.77 395075 01:38:00 750
[555] Unstable Unstable Unstable Unstable 395
[777] 4.61+0.31 5.61+0.69 14010100 01:16:00 569
[10 10 10] 1.41+0.21 2.17+0.55 3750161 02:13:00 860
[15 15] 1.45+0.22 2.33+0.45 3890+70 02:21:00 1185
[20 20] 1.39+0.25 2.10+0.51 3730+80 02:33:00 1670
[25 25] 1.38+0.21 2.03+0.49 3725160 02:49:00 2205
[30 30] 1.34+0.23 1.98+0.43 3630+70 02:59:00 2790
[20 20 20] 1.37+0.22 2.00+0.48 3680+70 02:41:00 2090
[25 25 25] 1.35+0.21 1.88+0.44 3625160 03:05:30 2855
[30 30 30] 1.34£0.23 1.95+0.42 3715180 03:43:00 3720

5.3.4 Predictive Power Analysis of the Hybrid Deep Structure (25x25x25)

The best deep hybrid structure (25x25x25) was analyzed in more detail. Figure 20A shows
the training and test errors obtained for the 10 train/test permutations. The partitioning of
data for training and testing has indeed a significant effect on the modeling error metrics.
Partition 1 produced a low training error but also the highest test error. Partition 2 produced
the best results with both low training and testing errors, and closely matching each other.
These results show that the process information content is not equally distributed among the
10 randomly selected train/partitions. This problem can be mitigated with more data added
to both the train and test partition in the future. Figure 20B further details model predictions
of all concentrations over the respective experimental values for partition 8, which had the
closest train and test error to the respective mean values. The slope of the linear regression

as well as the Pearson correlation coefficient (r?) of train and test data are similar. This shows

93



that despite the slightly larger WMSE for the test partition, there is no significant bias when

compared to the train partition data subset.
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Figure 20. Training results for the best hybrid model structure (25x25x25) with 2855 weights. A — Final training
and testing error for 10 randomly selected train (20)/test (4) permutations of experiments. B - Predicted over
measured concentrations of all biochemical species for training/test partition 8 (highlighted in A). Blue circles are
training data. Green circles are test data. Full line is the linear regression. Dashed lines are the upper and lower

intervals corresponding to one standard deviation. The r* is the Pearson correlation coefficient.

The predicted time profiles were analyzed qualitatively for each variable individually. Figure
21 shows the dynamic profiles of the 30 concentrations individually for a selected test exper-
iment (experiment 8) predicted by the best shallow model with 17 hidden nodes and the best
deep model (25x25x25) trained on partition 8. The deep hybrid model follows very closely
the measured data. Particularly, viable cells (Xv) and product (P) were accurately predicted.
The predictions of metabolites are within the experimental error bars or very close. On the
contrary, predictions of the best shallow hybrid model show a tendency to deviate outside of
experimental error bounds, especially as the cultivation progresses in time. Figure 22 shows
the predicted time profiles for several test experiments for a subset of process variables. It
shows that viable cell count, glycoprotein titer, glucose and glutamine concentrations are
always predicted within the error bars. Moreover, the switch between lactate production and
lactate consumption as well as from ammonium production and ammonium consumption

were correctly described by the model.
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Figure 21. Dynamic simulation of best shallow (17) and best deep hybrid (25x25x25) models for a test experiment

of the CHO-K1 experimental dataset. Circles are experimental data points and error bars are measurement stand-

ard deviation. Green line is the best deep hybrid model structure 25x25x25; Blue line is the best shallow hybrid

structure with 17 hidden nodes.
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Figure 22. Dynamic simulation of best deep hybrid model (25x25x25) for multiple test experiments of the CHO-
K1 experimental dataset. Circles are experimental data points and error bars are measurement standard deviation.
Full lines are model predictions. The color code (symbol + full line) refers to different test experiments of partition
8. Blue, orange, yellow and purple colors represent test experiments 1, 4, 5 and 8 respectively. A — viable cell
count. B — glycoprotein titer. C — glucose concentration. D — lactate concentration. E — glutamine concentration. F —

ammonium concentration.

5.4 Discussion

Hybrid modeling combining First-Principles with neural networks is a well-established meth-
odology in process systems engineering since the early 90's (e.g. von Stosch et al., 2014,
Agharafeie et al., 2023). Only very recently hybrid modeling is incorporating deep neural net-
works and deep learning into its framework (Bangi and Kwon, 2020, Pinto et al.,, 2022, Bangi
and Kwon, 2023). Most hybrid modeling studies of CHO cells followed the shallow approach.
The primary goal of this chapter was to investigate if hybrid deep modeling is advantageous

over shallow hybrid modeling in a CHO-K1 process development context.

5.4.1 Is Deep Hybrid Modeling Advantageous?

In the case of the synthetic dataset the best shallow model had (12) hidden nodes (Table 9)
whereas the best deep structure had 3 hidden layers (10x10x10) (Table 10). The deep model
complexity, as measured by the number of weights, increased only 17.9% in relation to the
shallow model. The deep structure achieved a reduction of 36.2% in the training error
(WMSE-train), 48.5% in the test error (WMSE-test noisy) and 73.8% in the noise free test error
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(WMSE-test noise free). All error metrics were significantly improved with emphasis on the
noise-free test error, which clearly shows that the deep structure captured more faithfully the
intrinsic process dynamics. The CPU time was also reduced by 20.8%. It is noteworthy to
mention that the Robitaille et al. (2015) model used to generate the synthetic dataset includ-
ed the intracellular dynamics of 21 molecular species. The cells accumulated different
amounts of intracellular species depending on the reactor feeding conditions eventually trig-
gering different regulatory mechanisms. The deep FFNN is of static nature thus a structural
bias could be anticipated due to the mismatch between the dynamic nature of the true pro-
cess and the structure of the hybrid model. This was however successfully mitigated as re-
flected in the extremely low noise free test error of extracellular concentrations (Table 10 and
Figure 18).

In the case of the experimental dataset the best shallow model had 17 hidden nodes whereas
the best deep structure had 3 hidden layers (25x25x25) (Table 11). The model complexity
(number of weights) increased in this case quite substantially by 167.6%. The deep structure
achieved a reduction of 14.0% in the training error (WMSE-train) and 23.6% in the test error
(WMSE-test) on average. In this case it is impossible to evaluate the noise-free test error re-
duction. Although the magnitude of the improvement is lower than in the synthetic dataset,
it is statistically significant. Moreover, the improvement in the test error is on average higher
than in the training error. The training CPU time increased in this case by 31.6%. This increase
is explained by the higher model complexity (more 167.6% weights). It becomes clear that
CPU time increase does not scale linearly with model complexity (number of weights). This is
related with the computation of gradients by the semidirect sensitivity equations (Pinto et al.,
2022). In this approach, the sensitivity of state variables in relation to network outputs are
independent of the size of the network.

The results obtained for both the synthetic and experimental datasets indicate a clear ad-
vantage of deep hybrid models over shallow hybrid models in terms of predictive power. In
both cases the test error reduction is significant and always higher than the training error
reduction. This suggests that hybrid deep structures capture more faithfully the intrinsic non-
linear dynamics of the true process than the shallow counterpart when exposed to the same
training dataset. This eventually translates into more accurate predictions of novel process
conditions. This advantage is generally accepted for standalone FFNNs (Goodfellow et al.
(2006) and is likely to generalize for hybrid models incorporating deep FFNNs. The only
downside to the deep model in this study is the training CPU time increase. Pinto et al. (2022)

reported a decrease in prediction error of 18.4% in a Pichia pastoris pilot process using the
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same training scheme, which is close to the one reported here. In that study, the shallow and
deep structures had the same number of weights, and as such the CPU time was also de-
creased by 43.4%. The CPU cost comparison seems to be case dependent and mainly related

with the size of the shallow and deep FFNN embodied in the hybrid model.

5.4.2 What is the Best Training Method?

Two different training methodologies were compared in this study: the classical method and
the deep learning method. The classical method is based on the LMM algorithm coupled with
indirect sensitivity equations and cross-validation. This method is normally used to train shal-
low hybrid models (Table 8). The LMM is prone to be trapped in local optima. For this reason,
the training must be repeated several times (in our case 10 times) with different parameter
initializations for each structure investigated. The deep learning method is based on ADAM,
semidirect sensitivity equations and stochastic regularization. ADAM is an improvement of
the stochastic gradient descent algorithms with adaptive learning rate. The method estimates
the learning rate during the training, based on the first and second moments of the gradients
(Kingma, 2014). Only very recently ADAM was applied to train hybrid models (Pinto et al.,
2022). A key conclusion was that ADAM is less prone to be trapped in local optima and is
practically insensitive to weights initialization. For this reason, the ADAM training was repeat-
ed only once for each of the structures investigated, which in theory reduces the CPU time
for FFNNs of comparable sizes. Based on the results of Figure 19 with the synthetic dataset,
the ADAM method outperforms the classical method based on LMM both in terms of the
training and test error especially for deep and large FFNNs. The differences are less marked

for shallow and small FFNNSs.

5.4.3 What is the Optimal Network Complexity?

Several methods have been proposed to determine the optimal neural network size (Teoh et
al., 2006, Mohanan et al., 2022, Lawrence et al.,, 1997, Lawrence et al., 1996) but there is no
consensus on a general methodology. Here, the number of hidden layers and number of
nodes in hidden layers were chosen heuristically starting with a single hidden layer with a
number of nodes equal to approximately half the number of inputs and then increasing until
the optimal size is found. This procedure is replicated with an increasing number of hidden
layers. Adding nodes and layers obviously carries a higher number of weights and higher

complexity. Thus, choosing the best structure must balance the decrease in error with the

98



increase in model complexity. It is noteworthy to mention that the AICc criterion, which is
evaluated on the training dataset only, often fails to discriminate the hybrid structures with
the lowest test error. This is an important point because the final hybrid model is expected to
faithfully predict unseen process conditions. Unseen process conditions mean that the test
data is not yet available. Mei and Smith (2021) have compared probabilistic methods (the AIC
and the Bayesian Information Criteria (BIC)) with a resampling method based on blocked
cross-validation for selection of shallow FFNNs trained on meteorological data. They con-
cluded that these approaches do not converge to the same conclusions, with the AIC and BIC
generally selecting simpler models than the resampling technique. The results in this study
show that the AlCc and the resampling methods pointed roughly to the same conclusions in
the case of hybrid models trained with ADAM (Table 10 and Table 11). This means that the
lowest AlCc score, calculated solely on the training dataset, coincided with the lowest test
error statistics produced by the resampling method. Both methods selected the hybrid deep
structure (25x25x25) in the case of the experimental dataset (Table 11) and the hybrid deep
structure (10x10x10) for the case of the synthetic dataset (Table 10). The AICc failed however
to discriminate the shallow hybrid model with the lowest test error in the case of the synthet-
ic dataset and the LMM training method (Table 9). It clearly selected a much simpler model in
line with the results by Mei and Smith (2021). It is generally accepted that the performance of
statistical models should be assessed using resampling methods rather than probabilistic
methods (Tashman, 2000). It is thus advisable to apply resampling methods also in the con-
text of hybrid modeling despite the higher CPU cost. In both cases (synthetic and experi-

mental datasets) the optimal depth was 3 hidden layers.

5.5 Conclusions

This chapter compares for the first time deep and shallow hybrid modeling of a CHO-K1 fed-
batch process in a process development campaign. Data of a CHO-K1 cell line expressing a
target glycoprotein comprising 24 independent fed-batch experiments with 30 measured
state variables were used to compare both methodologies. The results point to a systematic
generalization improvement of deep hybrid models with FFNNs with 3 hidden layers over
shallow hybrid models. The overall improvement was 14.0% in the training error and 23.6% in
the testing error. The CPU time to train the deep hybrid model increased by 31.6% and is
mainly related to the higher FFNN complexity. It is today generally accepted that deep neural

networks have a general advantage over their shallow counterparts in terms of descriptive
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power and generalization capacity. This study points to a similar conclusion in a hybrid mod-
eling context. Particularly, deep hybrid models tend to generalize better than shallow hybrid
models provided that efficient deep learning algorithms (such as ADAM with stochastic regu-
larization) are adapted to the hybrid model framework. This study focused on FFNN hybrid
structures. The combination of first Principles equations with more complex deep neural net-
work architectures, such as convolution neural networks (CNN) and long short-term memory
(LSTM) networks, are future research directions in the hybrid modeling field. Shallow hybrid
modeling is currently a method of choice in the digitalization of biopharma processes. We
expect deep hybrid modeling to further accelerate the deployment of high-fidelity digital

twins in the biopharma sector in the near future.
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A GENERAL HYBRID MODELING FRAMEWORK
FOR SYSTEMS BIOLOGY APPLICATIONS

This chapter is based on the publications: Pinto, J.,, Ramos, J. R., Costa, R. S., & Oliveira, R.
(2023). A General Hybrid Modeling Framework for Systems Biology Applications: Combining
Mechanistic Knowledge with Deep Neural Networks under the SBML Standard. A/ 4(1), 303-
318. and Pinto, J,, Costa, R. S., Alexandre, L., Ramos, J., & Oliveira, R. (2023). SBML2HYB: a Py-
thon interface for SBML compatible hybrid modeling. Bioinformatics, 3%1), btad044.

6.1 Introduction

Hybrid modeling methods combining mechanistic knowledge with machine learning (ML) in
a common workflow have found wide application in process systems engineering since the
early 1990s (e.g., review by von Stosch et al., 2014). Psichogios and Ungar (1992) described
one of the first applications of hybrid models to bioprocess engineering. The proposed hy-
brid model consisted of dynamic material balance equations of biochemical species (system
of ordinary differential equations (ODEs)) connected with a shallow feed-forward neural net-
work in a common mathematical structure. Sensitivity equations were derived enabling the
training of the neural network by error backpropagation on indirect training examples (e.g.,
measured target variables not coincident with the neural network output variables). Thomp-
son and Kramer (1994) framed this problem as hybrid semiparametric modeling, as such
models merge parametric functions (stemming from knowledge) with nonparametric func-
tions (stemming from data) in the same mathematical structure. Schubert et al. (1994) pre-
sented the first industrial application of hybrid modeling (material balance equations com-

bined with neural networks) to a Baker's yeast process. Since the early 1990s, hybrid model
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structure definition, parameter identification and model-based process control have been
extensively covered (e.g. Teixeira et al., 2006; Teixeira et al., 2007; von Stosch et al., 2011;
Pinto et al., 2019; Rajulapati et al., 2022; Glassey and von Stosch, 2018). Hybrid models were
applied to a wide array of microbial, animal cells, mixed microbial and enzyme processes in
different industries, such as wastewater treatment, clean energy, biopolymers, and biophar-
maceutical manufacturing (Agharafeie et al.,, 2023). The potential advantages of hybrid mod-
eling may be summarized as a more rational usage of prior knowledge (mechanistic, heuris-
tic, and empirical) eventually translating into more accurate, transparent, and robust process
models (von Stosch et al,, 2011; Glassey and von Stosch, 2018).

With a significant lag, hybrid modeling is currently receiving a lot of attention in the systems
biology scientific community. ML has been applied for the prediction of the function of genes
(Le at al., 2020) and proteins (Le, 2022) and is gaining popularity in all fields of systems biolo-
gy (Greener at al.,, 2022). Cuperlovic-Culf et al. (2023) highlighted the difficulty of gathering
high-quality /n vivo data to validate detailed metabolic models, and the opportunity to alter-
natively apply ML and hybrid mechanistic/ML methods. Antonakoudis et al. (2020) recently
reviewed the efforts to integrate GEnome-scale Models (GEMs) with supervised and unsuper-
vised ML. Kim et al. (2021) reviewed ML applications in the construction and simulation of
GEMs, and ML applications in use of GEM-derived information. The integration of mechanis-
tic models and ML may be realized through a hybrid pipeline of activities, where both model-
ing frameworks participate to solve particular sub-tasks. Alternatively, mechanistic and ML
models may be “fused” in a common semiparametric mathematical structure. Following the
latter approach, hybrid metabolic flux analysis, combining metabolic networks and principal
component analysis (PCA) in semiparametric linear models, has been studied by Carinhas et
al. (2011) and Isidro et al. (2016). Hybrid metabolic models combining metabolic networks
and partial least squares have been proposed by Ferreira et al. (2014) and Teixeira et al.
(2011). The combination of systems of ODEs with neural networks (hybrid ODEs formalism)
for the modeling of biochemical networks with intrinsic time delays has been studied by von
Stosch et al. (2010). The integration of elementary flux modes (EMs) and PCA for hybrid met-
abolic pathway analysis has been researched by Folch-Fortuny et al. (2016) and von Stosch et
al. (2016). Hybrid dynamic models that combine ODEs, PCA and EMs have been addressed by
Folch-Fortuny et al. (2016). Lee et al. (2020) developed hybrid mechanistic/neural network
models for partially known intracellular signaling pathways. Hybrid modeling approaches
combining neural networks and ODEs have been applied to describe immunodeficiency virus

(HIV) dynamics (2021) and coronavirus disease 2019 (COVID-19) dynamics (2020). Yang et al.
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(2019) developed a white-box machine learning approach, leveraging carefully curated bio-
logical network models to mechanistically link input and output data, to reveal metabolic
mechanisms of antibiotic lethality. Lewis and Kemp (2021) applied genome-scale flux balance
analysis (FBA) to generate data to train ML classifiers to predict tumor radiosensitivity. Vijaya-
kumar et al. (2020) developed a hybrid pipeline combining multi-omics ML with genome-
scale FBA to analyze the phenotypic potential of cyanobacterium. Ramos et al. (2022) recently
proposed a hybrid FBA technique that integrates GEMs and PCA constraints in a common
linear program with mechanistic decision variables (fluxes) concomitantly with empirical deci-
sion variables (scores of principal components).

A large number of systems biology models, including GEMs, have been developed and stored
in databases (e.g., BioModels (Le Noverre et al., 2006), JWS online (Olivier and Snoep, 2004),
and KiMoSys (Mochao et al.,, 2020)) in the Systems Biology Markup Language (SBML) format
(Hucka et al., 2003). SBML is a free and open standard based on XML to encode computa-
tional models of biological processes with widespread use in the systems biology scientific
community. The SBML standard is, however, not commonly adopted in ML software tools.
This significantly hinders the interlink between both modeling approaches in a hybrid work-
flow. Here, we propose a hybrid modeling framework that combines both modeling ap-
proaches and obeying the SBML standard. A previously published python package,
SBML2HYB, is used to convert existing systems biology models into hybrid models and vice
versa (Pinto et al.,, 2023). The so-formed hybrid models are trained with a deep learning algo-
rithm based on ADAM, stochastic regularization and semidirect sensitivity equations (Pinto et
al., 2022). The final (trained) hybrid models are uploaded in SBML databases, where they may
be further analyzed as regular SBML models. This procedure was applied to three well-known
models: the £ coli threonine pathway model (Chassagnole et al., 2001), the P58IPK signal
transduction pathway model (Goodman et al, 2011) and the yeast glycolytic oscillations

model (Dano et al., 2006).

6.2 Methods

6.2.1 General SBML Hybrid Model

SBML models are organized as j = 1, .., n compartments with size V/. Each compartment
contains m’ species with a concentration vector ¢/. The species are interlinked through q’

reactions with stoichiometry S/ and reaction kinetics 7/. SBML models also contain parame-
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ters, 8, with given initial values (parameters may be local to reactions or global; for simplicity,
we assume global). In SBML, the parameter values are not necessarily fixed as they may
change over time according to predefined algebraic rules. The compartment size may also
change over time according to predefined compartment rate rules (other rate rules were not
considered here for simplicity). External time dependent stimuli may be defined through
events, giving rise to a vector of exogenous input variables, u, that may change over time.
With these elements, the dynamics of biochemical species in a generic compartment j may

be described by the following ODEs model:
Equation 53. ODE model for an SBML model

ac’vhy . o .

T=S] X rf(cJ,B,u,ﬁ,t) x VJ
avi-— .
F=Z1(V1,C1,B,u,l9,t)

6 = h(Vj,cj,G,u,ﬁ, t)
Equation 53a is a conservation law of mass assuming a perfectly mixed compartment. Equa-
tion 53B represents a generic compartment rate rule in case the compartment size changes
over time. Equation 53C represents generic algebraic rules to compute model parameters
over time. Equation 53 is of a parametric nature with fixed structure stemming from prior
knowledge (e.g., mass conservation laws, reaction stoichiometry or enzyme kinetics). Some
variables may, however, lack a mechanistic basis (e.g., unknown reaction kinetics mechanisms
or unknown physicochemical properties of molecular species such as charge or glycosylation
pattern). In the general SBML hybrid model, variables lacking a mechanistic basis are defined
as loose nonparametric functions, 9(:), without a fixed structure. They are computed by a
deep feedforward neural network (FFNN) with nh hidden layers as a function of species con-

centrations, exogenous inputs, and other relevant variables (Equation 54):
Equation 54. General FFNN for an SBML model

H° = g(V/,c/,6,u,t)
H'= o (w'-H"1 + b, i=1,..,nh
9(-) = whh+1. gnh 4 pnh+t
A non-linear pre-processing function, g (V/,cj,6,u,t), may be used to compute the FFNN
input signals to improve the training. The input signals are forward propagated through the
hidden layers. The o(-) represents the nodes transfer function in the hidden layers (always the
hyperbolic tangent function in this chapter). Finally, the FFNN outputs, 9, are computed by a

linear output layer. The nodes connections weights, w = {wl,w?, .., w™*1} and b=
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{b%,b2,...,b™*1}, are calculated during the training of the model, for which an informative
dataset is needed.

For a particular biological model, Equation 53 and Equation 54 describing n compartments
with species and reactions are transformed via automatic symbolic manipulation into an
equivalent set of ODEs and derived sensitivity equations using the Symbolic Math toolbox
(MATLAB R2020a, MathWorks Inc.). The end result of this procedure is an automatically gen-
erated Matlab/Octave function that computes time derivatives of all state variables, y = {c?,
c?,..,c" Vi, V2 .., V") (Equation 55):

Equation 55. General form of the automated derivatives function

Y _ eondut
Y fyou)

And also, the semidirect sensitivity parameters obtained by the symbolic differentiation of

Equation 55 with respect to state variables, y, and FFNN outputs, 8 (Equation 56):

Equation 56. General form of automated semidirect sensitivities

G oy 2

dt ay/\av) " \av

dy
(55)1e0=0

Deep learning of hybrid models obeying to the system of Equation 55 and Equation 56 has
been thoroughly investigated by Pinto et al. (2022). A Runge—Kutta 4th order ODE solver was
implemented in MATLAB R2020a (MathWorks Inc.) to integrate the system of Equation 55
and Equation 56. The training was performed in a weighted least squares sense by minimiz-

ing the following loss function (Equation 57):

Equation 57. Loss function for an SBML hybrid model

T
1 = Ye)?
WMSE — L Z Ot 23’1&)
T = o¢

with T the number of training examples, y;the measured training example at time ¢ y,the
corresponding model prediction and o, the measurement standard deviation. The gradients
of the loss function with respect to the neural network outputs were computed by the equa-

tion (Equation 58):
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Equation 58. Loss function gradients

OWMSE yt yt (6y>

The output layer gradients, %, were backpropagated to the input layer via the well-

known error backpropagation algorithm (Werbos, 1974), yielding the loss function gradients

with respect to the neural network parameters (Equation 59):

Equation 59. Loss function gradients in respect to the FFNN parameters

OWMSE OWMSE
dw ' b

g:

Finally, the adaptive moment estimation algorithm (ADAM) (Kingma, 2014) with stochastic
minibatch and weights dropout regularization was adopted to minimize the loss function
given by Equation 57, using gradients, g (Equation 59). For further details, the reader is re-
ferred to Lee et al,, 2020. The code was implemented in MATLAB R2020a (MathWorks Inc.) on
a computer with Intel® Core™ i5-8265U CPU @ 1.60 GHz 1.80 GHz, and 24 GB of RAM.

6.2.2 Interfacing with SBML Databases and SBML Modeling Tools

The SBML2HYB python package (Pinto et al., 2023) was adopted to read SBML models, rede-
sign them as hybrid models and to store them in model databases. This freely available py-
thon package converts existing systems biology models encoded in SBML into hybrid models
that combine mechanistic equations and deep neural networks (currently limited to FFNNs).
SBML is not a common format to encode ML models. An intermediate HMOD format sup-
ports the conversion process. The HMOD format is a text-based file (ASCIl) with the list of
properties defining the model (species, reactions, parameters, rates, and rules) in a similar
manner to SBML, by considering any number of species with a certain initial concentration
distributed among any number of compartments. These species are then interlinked through
a list of reactions and rate rules. The user inputs the information of the deep neural network
into the HMOD file either manually or through a pre-configured neural network in Python
keras, using the SBML2HYB tool. The resulting hybrid model in HMOD format is reconverted
to SBML and uploaded in model databases. In this step, the FFNN Equation 54 is mapped to
assignment rules in SBML format, whereas the network weights are mapped to global pa-
rameters in the SBML format. The resulting SBML hybrid models may be simulated, analyzed
and/or trained with existing tools such as MATLAB (MathWorks Inc.), COPASI (Hoops et al.,
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2006) or special purpose tools with training algorithms for hybrid models that are able to
read SBML files. For further details, the reader is referred to (Pinto et al., 2023).

6.2.3 Case Studies

The SBML hybrid modeling framework was applied to three systems biology case studies
freely available in the JWS Online database (https://jjj.bio.vu.nl/models/, accessed on January
2024) (Olivier and Snoep, 2004) with the access IDs given in Table 12. The first case study is a
metabolic network describing the synthesis of threonine in £ coli proposed by Chassagnole
et al. (2001). The second case study is the P58IPK signal transduction network to study /nflu-
enza infection dynamics proposed by Goodman et al. (2011). The third case study is a re-
duced yeast glycolytic model with preserved limit cycle stability proposed by Dano et al.
(2006). In order to upgrade the original mechanistic models in hybrid mechanistic/neural
network versions, the following pipeline of activities (Figure 23) was applied to each of the
case studies:

Step 1: The original systems biology models were retrieved from the JWS database in
SBML format. The respective files are provided as supplementary material.

Step 2: Synthetic time series datasets were generated by simulating the original models
in the JWS platform. The resulting data sets are provided as supplementary material. These
data are needed to train the hybrid models as a proof-of-concept. No experimental data
were used in this study. More details are provided in section 6.3.

Step 3: For each case study, a feedforward neural network (FFNN) was inserted into the
mechanistic model and converted to the HMOD format using the SBML2HYB python tool,
freely available in Pinto et al.,, 2023. The size of the FFNN and interface with the mechanistic
model depended on the case study. More details are given in section 6.3.

Step 4: The hybrid mechanistic/FFNN models encoded in the HMOD format were
trained using the deep learning approach described in Section 2.1 and the datasets generat-
ed in step 2. Implementation details varied in the case studies (more on this in section 6.3).
The main concern was the proof-of-concept that SBML hybrid models may be efficiently
trained to a comparable performance to the original mechanistic models. The effect of the
size of the FFNN was investigated. The final trained hybrid models, with the updated FFNN
weights, were saved in the HMOD format.

Step 5: The trained hybrid models in the HMOD format were reconverted to SBML us-
ing the SBML2HYB tool. In this step, the FFNN information is mapped to assignment rules in
the SBML format. The obtained SBML files were uploaded to the JWS online platform and are
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now freely available for the community to analyze. The hybrid model structures encoded in
SBML were visualized using the freely available Cytoscape cy3sbml tool (Konig et al., 2012).
The hybrid models SBML files are provided as supplementary material.

Step 6: For proof-of-concept, the original mechanistic SBML models (step 1) and the fi-
nal hybrid SBML models (step 5) were simulated and compared using the JWS online simula-
tor (https://jjj.bio.vu.nl/models/experiments/, accessed on January 2024) showing that their

outputs are practically coincident.
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Figure 23. Schematic workflow for redesigning existing SBML models stored in databases into hybrid mechanis-
tic/neural network models. Step 1: An SBML biologic model is extracted from a model database. Step 2: A synthet-
ic time series dataset is generated to train the hybrid model. Step 3: A feedforward neural network (FFNN) is in-
serted in the mechanistic kinetic model and converted to the HMOD format using the SBML2HYB tool. Step 4: The
hybrid mechanistic/FFNN model encoded in the HMOD format is trained by applying the deep learning approach
(Section 6.2.1) and the synthetic dataset. Step 5: The trained hybrid model in the HMOD format is reconverted to
SBML using the SBML2HYB tool. Step 6: The final trained hybrid model in the SBML format is uploaded in the

model database and simulated comparatively to the original nonhybrid model.

Table 12. Summary of the three SBML models that were redesigned to hybrid mechanistic/neural network models
in the present study.

Number of Number of Number of )
Case Study ) ) JWS Online ID  Reference
Species Reactions Parameters

E. colithreonine Chassagnole
] 11 7 47 chassagnole1
synthesis pathway et al., 2001
P58IPK signal trans- ] Goodman et
) 9 (4 fixed) 9 10 goodman
duction pathway al., 2011
Yeast glycolytic os- Dano et al,,
7 (1 fixed) 11 31 dano1
cillations 2006
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As mentioned in step 5, hybrid models with different network depths and sizes were evaluat-
ed for each case study. The “best” hybrid model was discriminated on the basis of the Akaike
Information Criterion with a second order bias correction (A/Cc), computed for the training

data partition as follows (Equation 60):

Equation 60. Akaike Information Criterion with second order bias correction
2nw (nw + 1)

T —nw -1
With nw the total number of FFNN weights that are calculated during the training process.

AlCc=TIn + 2nw +

AlCc includes an overparameterization penalty and is commonly used to discriminate be-
tween empirical model candidates and to select a parsimonious model for small sample sizes
(Li et al., 2002).

6.3 Results and Discussion

6.3.1 Case Study 1: Threonine Synthesis Pathway in E. coli

The first case study is the metabolic model proposed by Chassagnole et al. (2001), describing
the threonine synthesis pathway in £ coli (Table 12). This model dynamically simulates the
time course of 11 species (adp, asa, asp, aspp, atp, hs, hsp, nadp, naph, phos and thr) in a
single compartment, corresponding to 11 ODEs. It has seven reactions (with rates vak, vasd,
vatpase, vhdh, vhk, vnadph_endo and vtsy) and 47 kinetic parameters (the names of variables
were kept the same as in the original SBML model to facilitate cross-reference; for details, the
reader is referred to the JWS Online model with access ID ‘chassagnole’).

Hybrid models were created by combining deep FFNNs of different sizes with the original
mechanistic model, following the previously described procedure (Figure 23). The FFNNs had
11 inputs corresponding to the concentrations of the 11 species (adp, asa, asp, aspp, atp, hs,
hsp, nadp, naph, phos, thr). The number of hidden layers and nodes in the hidden layers var-
ied (Table 2). The activation function in the hidden layers was always the hyperbolic tangent
function. The FFNNs had seven outputs corresponding to the maximum reaction rate values
of the seven metabolic reactions. The kinetic equations of the original SBML model were fully
kept in the hybrid models. The job of the FFNNs was thus to describe the maximum reaction
rate parameters as a function of species concentrations. Figure 24 graphically represents the
hybrid model structure [11 x 5 x 5 x 7] (Table 13) using the Cytoscape cy3sbml tool. This

figure shows an heterogenous (hybrid) network composed of nodes and edges of different
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nature. On the biochemical network side (left), the large circles represent the molecular spe-
cies, which have a physical concentration associated. The small black squares and respective
edges represent biochemical reactions with a well-defined stoichiometry. The black triangles
are the reaction kinetic rates. On the feedforward neural network side (right), the blue circles
represent the neural network nodes, which have an abstract numerical value associated de-
fining the node strength. The green squares and respective edges represent signal propaga-
tion between nodes. The interlink between the two sides of the network is mediated by the
black triangles, which in this case correspond to the maximum reaction rate parameters to be
applied in the kinetic law equations. An interesting analogy may be established between the
neural network part and an artificial nucleus of a cell with associated signal transduction net-
works and gene regulatory networks, with the job of controlling the underlying metabolic

processes.

Table 13. Training metrics of different hybrid models for the £ coli threonine synthesis pathway case study (chas-
sagnole1). The dataset was divided in four experiments for training (400 training examples for each state variable)
and five for testing (500 testing examples for each state variable). The training was performed with ADAM with
default hyperparameters as suggested by Kingma (2014) («=0.001, =0.9, =0.999 and ¢ = 1 x 1078). The number
of iterations was 5000. The minibatch size was 78% and weight dropout probability was 0.22 as suggested by
Pinto et al. (2022). The AICc was computed on the training set only. The noise-free WSSE measures the error be-

tween noise-free data (e.g., true process behavior) and model predictions.

WMSE WMSE WMSE Test AlC CPU Time Number of

Hybrid model C
Train Test (Noise Free) (hh:mm:ss) Weights

M x5x5x%x7 1.03 0.99 0.07 838  00:31:00 132
11 x10x10x7 1.07 1.00 0.08 2510  00:29:00 307
11 x15%x 15 x 7 1.04 0.99 0.08 2102 00:35:00 532
11 x20x20x7 1.03 0.98 0.07 2400 00:33:00 807
1M x5x5x5x%x7 1.03 0.99 0.07 918  00:32:00 162
1Mx10x10x10x7 1.05 0.98 0.07 1890  00:40:00 417
11 x15x15x15x7 1.04 1.01 0.08 2659  00:36:00 772
1Mx20x20%x20x7 1.04 1.00 0.07 3684  00:35:00 1227
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Figure 24. Hybrid model structure [11 x 5 x 5 x 7] for the threonine synthesis pathway (1st row of Table 2) visual-
ized in the cy3sbml tool (Konig et al., 2012). Left side: Metabolic network with physical meaning. Large circles
represent biochemical species (metabolites). Black squares and black edges represent biochemical reactions. Black
triangles represent kinetic laws. Right side: Artificial feedforward neural network with size [11 x 5 x 5 x 7]. Small
blue circles represent neural network nodes. Green squares and gray edges represent signal propagation between
neural network nodes. The first layer receives input signals of biochemical species concentrations (Large circles).
The last layer delivers kinetic parameter values to the black triangles, which mediate the communication between
both sides of the network.

The hybrid models were trained with a synthetic data set following the procedure of Figure
23. A time series dataset was created by simulating the original SBML model directly in the
JWS platform. A two-factor central composite design of experiments (CC-DOE) was carried
out to the initial concentrations of atp between 5 and 15 (arbitrary units) and of asp between
1 and 3 (arbitrary units) resulting in nine experiments. The data for each experiment was rec-
orded as a time series with 100 data points and a sampling time of 1 (arbitrary units). Gaussi-
an noise (10%) was added to concentrations of species, thereby simulating experimental er-
ror. This synthetic dataset is available in the supplementary material (Simulation_data.xlsx;
chassagnole_data sheet). From the nine experiments, four were used for training (the star
experiments of the CC-DOE corresponding to 400 training examples for each state variable)
and five were used for testing (the square plus the center experiments of the CC-DOE corre-
sponding to 500 training examples for each state variable). The training was performed with
ADAM with default hyperparameters (Table 13), 5000 iterations, semidirect sensitivity equa-
tions and stochastic regularization with a minibatch size of 0.78 and weights dropout of 0.22.

The choice of the minibatch size and weights dropout was based on the results by Pinto et al.
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(2022). Table 13 shows the overall training metrics for different FFNNs sizes. The performanc-
es of the hybrid models in terms of training error (WMSE train) and testing error (WMSE test)
are comparable. The magnitude of the train and test errors are also comparable, denoting an
effective training without overfitting in all cases. This is further strengthened by the very low
noise-free test error showing that model predictions are very close to the true process be-
havior in all cases. The total number of network weights varied almost 10-fold, but this was
not reflected in the training performance. The best hybrid structure was chosen to be the
smallest one [11 x 5 x 5 x 7] based on the lowest AlCc value (1st row in Table 13).

The trained hybrid models may be simulated and analyzed in any systems biology platform
complying with the SBML standard. As proof-of-concept, the best hybrid model [11 x 5 x 5
x 7] in the SBML format was uploaded to the JWS online platform and simulated. Figure 25
shows the JWS online simulation of the original model and of the best hybrid model [11 x 5
x 5 x 7] for a test experiment not used for training (the center point experiment of the CC-
DOE). The results show that the hybrid model perfectly mimicked the dynamics of the origi-

nal mechanistic model.

10 10
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3 6f asp —thr E 6f
o @
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Figure 25. Comparison between original model and best hybrid model for case study 1 (threonine synthesis path-
way in £. cofj) Dynamic profiles were simulated based on the respective SBML files in the JWS Online platform. The
test experiment was the center point experiment of the CC-DOE (not used for training). Full lines represent species
concentrations over time. Left panel: Original SBML model simulation. Right panel: Best hybrid model simulation
with structure [11 x 5 x 5 x 7] (First row of Table 13).

The procedure presented in Figure 23 may result in mathematical structures that are more
detailed mechanistically and much more complex to train than previously published hybrid
models. This may raise concerns about the training feasibility of FFNNs interlinked with com-
plex mathematical structures. Pinto et al. (2022) compared traditional shallow hybrid model-
ing (using the Levenberg—Marquardt algorithm coupled with the indirect sensitivity equa-
tions, cross-validation, and a hyperbolic tangent activation function) with deep hybrid model-
ing (using ADAM, semidirect sensitivity equations, stochastic regularization and multiple hid-

den layers). A clear advantage of hybrid deep learning both in terms of predictive power and
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computational cost was demonstrated. However, all experiments had a simplistic mechanistic
part. Here, case study 1 model kept the original kinetic law equations. Seven highly complex
kinetic equations with 47 parameters were “merged” with the FFNN. Table 13 results suggest
nonetheless that the previously published deep learning approach for hybrid models (ADAM
+ semidirect sensitivity equations + stochastic regularization) is equally effective at training

hybrid models with complex parametric functions.

6.3.2 Case Study 2: P58IPK Signal Transduction Pathway

The second case study was based on the viral infection model proposed by Goodman et al.
(2011), freely available in SBML in the JWS Online database (http://www.jjj.bio.vu.nl, accessed
on January 2024) under access ID ‘goodman’ (Table 12). The authors studied the dynamics of
the P58IPK signal transduction pathway during /nfluenza virus infection. A mathematical
model was developed to evaluate the effect of protein P58a activation on the P58IPK path-
way dynamics, particularly on the activation of the PKR kinase and on the phosphorylation of
elF2, both controlling viral protein expression. The model comprehends nine species (Flu,
NS1, P58a, P58total, PKRp, PKRtotal, elF2ap, elF2atotal and ext) in a single compartment, of
which four are fixed (P48total, PKRtotal, elF2atotal and ext), corresponding to five ODEs. The
model further has nine reactions and 10 parameters. The names of variables were kept the
same as in the original model and are explained in the database.

As in the previous case study, SBML hybrid models were created by combining FFNNs of dif-
ferent sizes (Table 14) with the original mechanistic model following the procedure of Figure
23. Figure 26 shows the hybrid model structure [5 x 10 x 10 x 10 x 9] (Table 14) using the
SBML-visualizing cy3sbml tool (Konig et al, 2012. The left side of Figure 26 represents the
original mechanistic signal transduction network, whereas the right side represents the FFNN
added to the mechanistic core. The FFNN has five inputs corresponding to the concentrations
of the five dynamical species (Flu, NS1, P58a, PKRp and EIF2ap), three hidden layers (10 x 10
x 10) with hyperbolic tangent activation functions, and nine outputs corresponding to the
kinetic rates (v_1r, v_2r, v_3r, v_4r, v_5r, v_6br, v_7r, v_8r, v_9r as they are named in the original
SBML implementation). In this case study, the FFNNs in Table 14 completely replaced the
kinetic laws of the original model, which were therefore deleted in the hybrid model struc-
tures. This network may be interpreted as a hybrid signal transduction pathway with a physi-
cal part composed of proteins and an artificial part composed of abstract neural network

nodes.
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Table 14. Training metrics of different hybrid models for the P58IPK signal transduction pathway case study
(goodman). The dataset was divided into four experiments for training (400 training examples for each state vari-
able) and five for testing (500 testing examples for each state variable). The training was performed with ADAM
with default hyperparameters as suggested by Kingma (2014) (« = 0.001, = 0.9, =0.999 and 7 = 1 x 1078). The
number of iterations was 5000. The minibatch size was 78% and weight dropout probability was 0.22 as suggested
by Pinto et al. (2022). The AlCc was computed on the training set only. The noise-free WSSE measures the error

between noise-free data (e.g., true process behavior) and model predictions.

) WMSE WMSE WMSE Test CPU Time Number of
Hybrid model ) ) AlCc )
Train Test (Noise Free) (h:m:s) Weights
5x5x5x9 1.60 1.51 0.54 1916  00:12:10 114
5x10x10x9 1.59 1.48 0.53 2181 00:11:54 269
5x15x15x%x9 1.61 1.50 0.56 2810 00:15:15 474
5x20x20x9 1.58 1.49 0.51 3480 00:20:48 729
5x5x5x%x5x9 1.45 1.50 0.48 1890 00:13:15 144
5x10x10x10x9 1.23 1.28 0.12 1430 00:16:10 379
5x15x15x15%x9 1.35 1.36 0.31 2140 00:19:30 714
5x20x20x20x9 134 1.40 0.36 4150 00:27:12 1149
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Figure 26. Hybrid model structure [5 x 10 x 10 x 10 x 9] for the P58IPK signal transduction pathway (6th row of
Table 3) visualized using the cy3sbml tool (Konig et al,, 2012). Left side: Signal transduction network with physical
meaning. Large circles represent biochemical species (proteins). Black squares and black edges represent bio-
chemical reactions. Black triangles represent kinetic laws. Right side: Artificial feedforward neural network with size

[5 x 10 x 10 x 10 x 9]. Small blue circles represent neural network nodes. Green squares and gray edges repre-
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sent signal propagation between neural network nodes. The first layer receives input signals of biochemical spe-
cies concentrations (Large circles). The last layer delivers kinetic parameter values to the black triangles, which
mediate the communication between both sides of the network.

Hybrid SBML models with varying number of hidden layers and nodes in the hidden layers
were trained using a synthetic data set. A time-series dataset was created by simulating the
original SBML model in the JWS platform following a similar procedure to case study 1 (avail-
able in the supplementary material as Simulation_data.xlsx; goodman_data sheet). A two-
factor CC-DOE was carried out to the initial amount of Flu (overall level of infection within the
host cell) between 2 and 6 (arbitrary units) and the initial amount of PKRp (phosphorylated
PKR protein) between 0 and 2 (arbitrary units). The data for each experiment were recorded
as a time series with 100 points and sampling time of 0.05 (arbitrary units). This resulted in
nine experiments with 100 time points each. Additionally, 10% Gaussian noise was added to
concentrations of species to simulate experimental error. As in the previous case study, four
experiments were selected for training (the star experiments of the CC-DOE corresponding to
400 training examples for each state variable), and five experiments were used for testing
(the square plus the center experiments of the CC-DOE corresponding to 500 training exam-
ples for each state variable). The training was performed using ADAM with default hyperpa-
rameters (Table 14), 5000 iterations, semidirect sensitivity equations and stochastic regulari-
zation (minibatch size of 0.78 and weight dropout of 0.22, as before). The overall training
results for different FFNN sizes are shown in Table 14. As opposed to the previous case study,
the size of the FFNN has an effect on the training performance. This may be explained by the
smaller amount of mechanistic knowledge embodied in the hybrid models. Since the original
kinetic laws were completely deleted in the hybrid models, the training results are more
heavily dependent on the FFNN structure. Interestingly, the larger networks with a higher
depth (three hidden layers) outperformed the smaller networks, particularly in the extrapola-
tion experiments (test WMSE). Overall, the structure [5 x 10 x 10 x 10 x 9] stands out as the
best-performing model with the lowest training error (WMSE train) and lowest testing error
(WMSE test). This is further reinforced by the lowest noise-free test error and the lowest AlCc.
This structure was uploaded to the JWS online platform and simulated comparatively to the
original mechanistic model (Figure 27). As in the previous case study, the best-performing
hybrid SBML model [5 x 10 x 10 x 10 x 9] was able to perfectly mimic the dynamics of the

original mechanistic model.
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Figure 27. Comparison between original model and best hybrid model for case study 2 (P58IPK signal transduc-
tion pathway). Dynamic profiles were simulated based on the respective SBML files in the JWS Online platform.
The test experiment was the center point experiment of the CC-DOE (not used for training). Full lines represent
species concentrations over time. Left panel: Original SBML model simulation. Right panel: Best hybrid model
simulation with structure [5 x 10 x 10 x 10 x 9] (Sixth row of Table 14).

6.3.3 Case Study 3: Yeast Glycolytic Oscillations

The third case study consisted of the reduced dynamical model of yeast glycolysis proposed
by Dano et al. (2006). This model is a reduced version of a more detailed yeast glycolysis
model. Both the original and reduced models exhibit limit cycle stability, with a certain num-
ber of species showing stable oscillations over time. It comprehends eight species (ADP,
AMP, ATP, BPG, DHAP, FBP, GAP and sink) in a single compartment. The dynamic variable
‘sink’ was the only one that was fixed, thus translating to a system of seven ODEs. The model
further comprehends 11 metabolic reactions and 31 parameters. This model is freely available
in SBML format on the JWS Online database (http://www.jjj.bio.vu.nl, accessed on January
2024) with access ID ‘dano1’.

SBML hybrid models were created by combining FFNNs of different sizes with the original
mechanistic model. Figure 6 illustrates this process for the structure [7 x 10 x 10 x 10 x 11]
with 421 weights (6th row of Table 15). The right side of Figure 28 represents the original
metabolic network, whereas the left side represents the incorporated FFNN. In this example,
the FFNN has seven inputs corresponding to the concentrations of the seven species (ADP,
AMP, ATP, BPG, DHAP, FBP, GAP), three hidden layers (10 x 10 x 10) with hyperbolic tangent
activation functions, and 11 outputs corresponding to the kinetic rates (v_1r, v_2r, v_3r, v_4r,
v_5r, v_6r, v_7r, v_8r, v_9r, v_10r, v_11r as they are named in the original SBML model). As in

case study 2, the original kinetic laws were completely deleted in the hybrid models.

Table 15. Training metrics of different hybrid models for the yeast glycolytic oscillations case study (Dano1). The
dataset was divided into four experiments for training (400 training examples for each state variable) and five for

testing (500 testing examples for each state variable). The training was performed with ADAM with default hy-

116



perparameters as suggested by Kingma (2014) (a = 0.001, =0.9, =0.999 and 7 = 1 x 1078). The number of itera-
tions was 10000. The minibatch size was 78% and weight dropout probability was 0.22 as suggested by Pinto et al.
(2022). The AlCc was computed on the training set only. The noise-free WSSE measures the error between noise-

free data (e.g, true process behavior) and model predictions.

Hybrid model WMSE WMSE WMSE Test AlCc CPU time Number of
Train Test (Noise Free) (h:m:s) Weights

7x5x5x 11 20.12  21.05 20.14 5730 01:05:00 136
7 x 10 x 10 x 11 1.87 1.99 1.67 3818 01:20:00 311
7 x15 % 15 x 11 1.74 1.78 1.56 4120 01:15:00 536
7 %20 x 20 x 11 1.16 1.43 0.98 2740  01:24:00 811
7x5x5x5x11 5.33 5.84 5.14 3930 01:33:00 166
7x10x10x10x 11 0.93 0.94 0.1 -41  01:31:00 421
7x15%x15x15%x 11 0.98 0.97 0.21 784  01:20:00 776
7x20x20x20x 11 097 0.97 0.17 2213 01:40:00 1231
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Figure 28. Hybrid model structure [7 x 10 x 10 x 10 x 11] for the yeast glycolysis pathway (6th row of Table 15)
visualized in the cy3sbml tool (Konig et al.,, 2012). Left side: Reduced glycolysis network with physical meaning.
Large circles represent biochemical species (metabolites). Black squares and black edges represent biochemical
reactions. Black triangles represent kinetic laws. Right side: Artificial feedforward neural network with size [7 x 10
x 10 x 10 x 11]. Small blue circles represent neural network nodes. Green squares and gray edges represent sig-
nal propagation between neural network nodes. The first layer receives input signals of biochemical species con-
centrations (Large circles). The last layer delivers kinetic parameter values to the black triangles, which mediate the

communication between both sides of the network.

Hybrid SBML models of different sizes were trained with a synthetic dataset following a simi-
lar process to the previous case studies. A two-factor CC-DOE was carried out by varying the
amount of initial ADP concentration between 1 and 2 (arbitrary units) and the initial ATP con-
centration between 1 and 2 (arbitrary units), resulting in nine experiments. Each experiment
was simulated on the JWS Online platform with the resulting time-series data (100 time
points) recorded with a sampling time of 0.05 (arbitrary units). Gaussian noise (10%) was
added to the concentrations of species. This synthetic dataset is available as supplementary
material (Simulation_data.xlIsx; dano1_data sheet). Four experiments were selected for train-
ing (the star experiments of the CC-DOE corresponding to 400 training examples for each
state variable) and five were used for testing (the square plus the center experiments of the
CC-DOE corresponding to 500 training examples for each state variable). The hybrid models
were trained with this data using ADAM with default hyperparameters (10000 iterations, sem-

idirect sensitivity equations, stochastic regularization with minibatch size of 0.78 and weight
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dropout of 0.22). The overall training results for different FFNNs sizes are shown in Table 15.
Unsurprisingly, limit cycle stability is a more challenging problem for hybrid model develop-
ment. The effect of the FFNN depth and size was much more pronounced than in the previ-
ous example. The smaller networks were not able to exhibit stable oscillations even for the
training examples. Only models with three hidden layers were able to accurately capture the
oscillatory dynamics. The three largest structures show a comparable training and testing
error. However, the structure [7 x 10 x 10 x 10 x 11] clearly stands out as the best-
performing model with the lowest training error (WMSE train) and the lowest testing error
(WMSE test). This is further accentuated by the significantly lower noise-free test error and
lower AlCc. This hybrid SBML model was uploaded to the JWS online platform and simulated
comparatively to the original metabolic model for the center point test experiment (not used
for training) of the CC-DOE (Figure 29). Remarkably, the best hybrid model structure [7 x 10
x 10 x 10 x 11] was able to reproduce very faithfully the oscillatory behavior of the original
metabolic model when exposed to different initial conditions than those applied in the train-

ing experiments.
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Figure 29. Comparison between original model and best hybrid model for case study 3 (yeast glycolysis model).
Dynamic profiles were simulated based on the respective SBML files on the JWS Online platform. Simulations were
performed for the center point experiment of the CC-DOE (not used for training). Full lines represent species con-
centrations over time. Left panel: Original SBML model simulation. Right panel: Best hybrid model simulation with
structure [7 x 10 x 10 x 10 x 11] (Sixth row of Table 15).

6.4 Conclusions

SBML is an open standard based on XML currently adopted by the systems biology commu-
nity to encode computational models of biological processes. An extensive body of research
has produced a large number of such SBML models that are currently stored in public data-
bases. The SBML standard is, however, not commonly adopted to encode ML models. The

main novelty of the present study is the combination of both modeling formalisms in a
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common hybrid workflow obeying the SBML standard. With few exceptions, previously pub-
lished hybrid models embodied relatively simple mechanistic models (mechanistic scale-gap)
and relatively simple ML models (ML scale-gap). With the proposed SBML hybrid modeling
framework, the mechanistic scale-gap may be significantly narrowed. It is shown with three
simple examples how publicly available SBML models may be easily upgraded to hybrid
mechanistic/neural network models obeying the SBML standard. Such hybrid models may be
trained with state-of-the-art deep learning algorithms to either mimic, improve or extend
existing SBML models. They may be further uploaded, trained, and analyzed in SBML com-
patible software tools. Even if the presented examples are relatively simple, the proposed
framework is, in principle, directly scalable to larger whole organism models, eventually at the
genome-scale. All in all, it is expected this framework to greatly facilitate the adoption of hy-

brid mechanistic/ML techniques to develop computational models of biological systems.
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CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

The main objectives of this PhD dissertation was to develop a deep hybrid modelling meth-
odology that combines mechanistic models with emergent deep neural networks and the
implementation of these developed hybrid modelling methods in a way that is scalable to
large Systems Biology models and Systems Biology Markup Language (SBML) compatible.

To fulfill the general objective, in Chapter 3 the general bioreactor hybrid model was revisited
and the use of deep learning techniques in the context of hybrid modeling. Two different
approaches were applied, and their results compared: First, the traditional approach using
Levenberg-Marquardt optimization coupled with the indirect sensitivities, cross-validation,
and tanh activation function. Second, the novel hybrid deep approach that uses the adaptive
moment estimation method (ADAM), semidirect sensitivities, stochastic regularization and
RelU activation functions in the hidden layers. Overall, the results showed that the deep
learning method has better predictive capabilities along with some other advantages: First, it
is practically insensitive to weight initialization thereby eliminating the need for training repe-
titions. Second, the stochastic nature of the method is less sensitive to experimental noise,
eliminating the need for cross-validation. Lastly, the introduction of semidirect sensitives fur-
ther decreases the CPU time particularly for large deep structures as the number of sensitivity
equations (that need to be integrated over time) becomes independent of the number of
hidden layers.

In Chapter 4, a hybrid modeling framework that makes use of deep learning with state-space
reduction was applied for data analysis and design space exploration to a case of P. pastoris

GS115 (Mut+) cultures expressing a scFv. The state-space reduction consisted in using a PCA
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in order to reduce the number of species requiring time series integration from 9 to a lower
amount (optimal values were achieved with 5 principal components). In this scenario, the
inorganic elements in the medium can have a large impact on the kinetics. The state-space
reduction framework succeeded in decreasing the model complexity by 60% and improving
the predictive power by 18.5% in relation to a standard nonreduced hybrid model. The re-
duced hybrid model was able to correctly simulate the experiments performed including the
test experiments. It should be noted that, despite the success of this approach, more data is
required to strengthen model validation before it can be considered for a process digital
twin.

In Chapter 5, the first comparison between the deep and shallow hybrid modeling approach-
es on a CHO-K1 fed-batch process in a process development campaign was carried out. In
this chapter 2 case studies were used. The first was a synthetic dataset that considered the
existence of 25 extracellular species (considered to be "measured” for model training pur-
poses) and 21 intracellular species (considered to be "unmeasured" and, as such, hidden from
the model during training). The second was an experimental dataset with 30 measured spe-
cies. Of note, the main challenges of each were, for the first case, the existence of hidden
states (the 21 intracellular species) and, for the second case, the switch between lactate pro-
duction and lactate consumption as well as from ammonium production and ammonium
consumption. The obtained results pointed to a systematic improvement in the generaliza-
tion capabilities of the model when using a deep hybrid model in comparison to the shallow
hybrid model, including successfully solving the main challenges identified. These results are
in line with the generally accepted view that deep neural networks have a better generaliza-
tion power than shallow networks. This chapter points to similar conclusions when dealing in
a hybrid modeling context.

Lastly, Chapter 6 introduced SBML compatibility to the hybrid modeling paradigm. A meth-
odology was proposed that allows an SBML model to be hybridized or for a hybrid SBML
compatible model to be created from the start. The proposed framework allows, as such, for
a significant reduction in the mechanistic scale-gap. This framework was tested with three
case studies, starting at a mechanistic model from a database, those models were turned into
hybrid models, trained, and then reuploaded to the database. All the case studies were suc-
cessful in creating a hybrid model with results comparable to the original mechanistic model
(which was the training objective). All in all, it is hoped that this framework will greatly facili-
tate the adoption of hybrid mechanistic/ML techniques in the development of computational

models of biological systems.
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Overall, this thesis proposes a hybrid modelling framework that makes use of state-of-the-art
deep learning techniques to improve upon the classic shallow hybrid models. Furthermore,
the proposed framework is shown to be SBML compatible. The results show an all-around
improvement in the predictive capabilities of the models generated with this framework
when compared to the classic approach. The SBML compatibility can also facilitate the dis-

semination of hybrid models in the Systems Biology community.

7.2 Future Work

Only recently has the hybrid modelling community started the shift from shallow non-
parametric parts (mostly non-deep FFNNs) to deep ones. This shift comes at a time when,
with the recent explosion in the field of Artificial Intelligence (Al) methods, it can be expected
that new approaches will keep appearing and have a further impact in how hybrid modelling
is conducted. As deep hybrid modelling techniques have shown to be an overall improve-
ment over their shallow counterparts, future work should be directed towards applying deep
learning centric approaches from the Al fields to the hybrid paradigm.

Among these, some novelties that can be of high interest for hybrid modelling are the use of
Physics Informed Neural Networks (PINNs) and Long Short-Term Memory (LSTM) networks.
Further work should also be done in scaling up the sizes of the hybrid models (i.e. Genome
Scale models) to allow for increasingly complex scenarios to be described with relative ease.
Lastly, the application of hybrid models to real time process control and optimization is also
an area with large interest as it can reduce the amounts of waste/increase productivity in
bioprocess development, such as the highly competitive and highly complex biopharma in-

dustry.
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