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ABSTRACT 

Hybrid modeling combining First-Principles with Machine Learning (ML) is becoming a pivot-

al methodology for Biopharma 4.0 enactment.  Combining ML with prior knowledge general-

ly improves the model predictive power and model transparency while reducing the amount 

of data for process development. However, most previous studies pursued a shallow hybrid 

modeling approach based on three-layered Feedforward Neural Networks (FFNNs) combined 

with macroscopic material balance equations.  

In this thesis, a general deep hybrid modelling framework for bioreactors, that incorporates 

deep neural networks, deep learning and First Principles equations is developed and imple-

mented in the HYBrid MODdeling (HYBMOD) MATLAB® toolbox (Chapter 3).  Deep learning, 

namely the adaptive moment estimation method (ADAM), stochastic regularization and 

depth-dependent weights initialization are evaluated in a hybrid modeling context. Modified 

sensitivity equations are proposed for the computation of gradients in order to reduce CPU 

time for the training of deep hybrid models. Furthermore, the encoding of hybrid models 

obeying to the Systems Biology Markup Language (SBML) standard is implemented.  

The general deep hybrid modeling method is evaluated in several experiments using synthet-

ic and real-world experimental data. In Chapter 4 a pilot Pichia pastoris GS115 MUT+ process 

development case study is addressed. In Chapter 5 an industrial CHO-K1 process develop-

ment campaign is addressed. The results point to the conclusion that there is a clear ad-

vantage of deep hybrid modeling both in terms of predictive power and in terms of compu-

tational cost in relation to the shallow hybrid case. Furthermore, the SBML compatibility fa-

cilitates the dissemination of hybrid models in the Systems Biology community. 

Keywords: Hybrid modeling, FFNNs, Deep learning, ADAM, SBML, Bioreactors, Pichia 

pastoris, CHO-K1, Biopharma 4.0. 
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RESUMO 

Modelação híbrida que combina Primeiros-Princípios com Aprendizagem de Máquinas (ML) 

está a tornar-se numa metodologia fundamental da Biopharma 4.0.  Como vantagens apon-

ta-se a melhoria do poder preditivo do modelo bem como a sua transparência, reduzindo 

ainda a quantidade de dados para o seu desenvolvimento. No entanto, a maioria dos estu-

dos anteriores seguiu uma abordagem de modelação híbrida não-profunda baseada em Re-

des Neuronais (FFNNs) de três camadas e equações de balanços materiais macroscópicos.  

Nesta tese, modelação híbrida profunda de biorreatores que incorpora redes neurais, apren-

dizagem profunda e Primeiros-Princípios é desenvolvida e implementada na toolbox HYBrid 

MODdeling (HYBMOD) em MATLAB® (Capítulo 3).  A aprendizagem profunda, nomeada-

mente o método adaptativo de estimação de momento (ADAM), regularização estocástica e 

inicialização de pesos dependentes da profundidade são avaliadas. Equações de sensibilida-

de modificadas são propostas para o cálculo de gradientes, a fim de reduzir o tempo de CPU 

para o treino de modelos híbridos profundos. Além disso, é implementada a codificação de 

modelos híbridos obedecendo ao padrão SBML (Systems Biology Markup Language).  

O método proposto de modelação híbrida profunda é avaliado usando dados experimentais 

sintéticos e do mundo real. No Capítulo 4 é abordado o desenvolvimento de processos Pi-

chia pastoris GS115 MUT+ à escala piloto. No Capítulo 5 é estudado o desenvolvimento du-

ma cultura industrial de CHO-K1. Os resultados apontam para uma clara vantagem da mode-

lação híbrida profunda tanto em termos de poder preditivo quanto em termos de custo 

computacional em relação à modelação híbrida não-profunda. Além disso, a compatibilidade 

SBML facilita a disseminação de modelos híbridos na comunidade de Biologia de Sistemas. 

Palavas chave: Modelação híbrida, FFNNs, Aprendizagem profunda, ADAM, SBML, Biorreato-

res, Pichia pastoris, CHO-K1, Biopharma 4.0. 
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INTRODUCTION 

1.1 Thesis Motivation 

Hybrid modelling is becoming a pivotal methodology for process digitalization in the chemi-

cal and biological industries. The combination of artificial neural networks with physical laws 

in hybrid model structures has proven to be advantageous in a large number of case studies 

described in the literature. The main motivation was to overcome neural networks limitations, 

namely the i) inability to comply with process constraints, ii) the tendency for data overfitting, 

and iii) the poor predictive power outside the training-validation domain. Hybrid modelling 

workflows combining neural networks with physical laws enable a more rational usage of 

prior knowledge eventually translating into more accurate, transparent and robust process 

models. Most of previous hybrid modelling studies combined shallow neural networks with 

physical laws. Recent advances in deep learning have however demonstrated that neural 

networks with multiple hidden layers (deep networks) are advantageous over their shallow 

counterparts. Only very recently the deep learning advances are penetrating the hybrid mod-

eling field. There is a considerable research gap concerning the use of deep neural networks 

and deep learning algorithms such as the Adaptive Moment Estimation Method (ADAM) and 

stochastic regularization in the hybrid modelling field. The present PhD dissertation address-

es this research gap. 

1.2 Objectives 

The main objectives of this work are the development of a deep hybrid modelling method 

that combines mechanistic models with emergent deep neural networks and the implemen-
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tation of these developed hybrid modelling methods in a way that is scalable to large Sys-

tems Biology models and Systems Biology Markup Language (SBML) compatible. More spe-

cifically, the following objectives are targeted: 

• Develop deep hybrid modelling structures combining mechanistic knowledge with 

emergent deep neural networks. 

• Develop efficient training algorithms for deep hybrid models that are stable and cost 

efficient in terms of computation time. 

• Develop a methodology to encode hybrid model structures obeying to the SBML 

standard. 

• Implement the deep hybrid modelling methodology in the HYBMOD MATLAB/Python 

toolbox. 

• Benchmark shallow hybrid modelling and deep hybrid modelling in several case stud-

ies. 

• Showcase the deep hybrid modelling framework with real life cultivation processes.  

1.3 Thesis Organization 

This thesis is divided in 7 chapters: 

Chapter 1 is an introductory chapter where the main objectives and contributions of the the-

sis, along with its organization, are laid out for simplicity. 

Chapter 2 focuses on the topic of dynamic modeling for bioreactor monitoring, optimization, 

and control applications. The first part of the chapter overviews mechanistic modeling across 

different scales, covering the concepts of structured/unstructured, segregated/unsegregated 

and genome-scale modeling. The second part of the chapter covers machine learning meth-

ods for supervised, unsupervised and reinforced learning in a bioprocessing context, with 

emphasis on building supervised bioreactor models that improve with process experience. 

Knowledge abstraction in the machine learning world is hardly compatible with the vast 

wealth of engineering and scientific knowledge accumulated over decades in the form of 

mechanistic models. The opportunities to develop hybrid mechanistic/machine learning 

models for bioreactors in the context of Industry 4.0 are finally highlighted. The vision is that 

machine learning should augment mechanistic bioreactor models rather than replace them. 

Chapter 3 revisits the general bioreactor hybrid model and introduces deep learning tech-

niques. Multi-layer networks with varying depths were combined with First Principles equa-

tions in the form of deep hybrid models. Deep learning techniques, namely the adaptive 
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moment estimation method (ADAM), stochastic regularization and depth-dependent weights 

initialization were evaluated in a hybrid modeling context. Modified sensitivity equations are 

proposed for the computation of gradients in order to reduce CPU time for the training of 

deep hybrid models. The methods are illustrated with applications to a synthetic dataset and 

a pilot 50 L MUT+ Pichia pastoris process expressing a single chain antibody fragment. 

In Chapter 4, a hybrid deep modeling method with state-space reduction is developed and 

showcased with a P. pastoris GS115 Mut+ process expressing a single-chain antibody frag-

ment (scFv). Deep feedforward neural networks (FFNN) with varying depths were connected 

in series with bioreactor macroscopic material balance equations. The hybrid model structure 

was trained with a deep learning technique based on the adaptive moment estimation meth-

od (ADAM), semidirect sensitivity equations and stochastic regularization. A state-space re-

duction method was investigated based on principal component analysis (PCA) of cumulative 

reacted amount. Data of nine fed-batch P. pastoris 50 L cultivations served to validate the 

method. Hybrid deep models were developed describing process dynamics as function of 

critical process parameters (CPPs). 

Chapter 5 compares, for the first time, deep and shallow hybrid modeling in a CHO process 

development context. Data of 24 fed-batch cultivations of a CHO-K1 cell line expressing a 

target glycoprotein, comprising 30 measured state variables over time, were used to compare 

both methodologies. Hybrid models with varying FFNN depths (3-5 layers) were systemati-

cally compared using two training methodologies. The classical training is based on the Le-

venberg-Marquardt algorithm, indirect sensitivity equations and cross-validation. The deep 

learning is based on the Adaptive Moment Estimation Method (ADAM), stochastic regulariza-

tion and semidirect sensitivity equations. 

In Chapter 6, a computational framework is proposed that merges mechanistic modeling with 

deep neural networks obeying the Systems Biology Markup Language (SBML) standard. With 

the proposed framework, existing SBML models may be redesigned into hybrid systems 

through the incorporation of deep neural networks into the model core, using a freely availa-

ble python tool. The so-formed hybrid mechanistic/neural network models are trained with a 

deep learning algorithm based on the adaptive moment estimation method (ADAM), sto-

chastic regularization and semi-direct sensitivity equations. The trained hybrid models are 

encoded in SBML and uploaded in model databases, where they may be further analyzed as 

regular SBML models. This approach is illustrated with three well-known case studies: the 

Escherichia coli threonine synthesis model, the P58IPK signal transduction model, and the 

Yeast glycolytic oscillations model. 
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Lastly, Chapter 7 presents the main conclusions obtained from Chapters 3 to 6 and proposes 

areas where there may be future applications of hybrid models. 

1.4 Thesis Contributions 

The main contributions of this thesis are twofold. 

First, a novel deep hybrid model methodology that takes advantage of the deep learning 

paradigm is created. This approach is shown to have a higher degree of fidelity to the real 

process when compared to the standard non-deep hybrid approach, as showcased with both 

synthetic and real-world experiments. 

Second, the development of this methodology is done in such a way that new models can be 

quickly developed while maintaining a common organization amongst them. This type of 

systematic approach to modelling allows them to be compatible with the SBML format, facili-

tating their analysis with Systems Biology tools.  

The results of the research activities of this PhD dissertation originated the following five 

publications in peer-reviewed journals and one chapter book: 

• Pinto, J., Antunes, J., Ramos, J., Costa, R. S., & Oliveira, R. (2022). Modeling and optimi-

zation of bioreactor processes. In Current Developments in Biotechnology and Bioen-

gineering (pp. 89-115). Elsevier. 

• Pinto, J., Mestre, M., Ramos, J., Costa, R. S., Striedner, G., & Oliveira, R. (2022). A gen-

eral deep hybrid model for bioreactor systems: Combining first principles with deep 

neural networks. Computers & Chemical Engineering, 165, 107952. 

• Pinto, J., Ramos, J. R., Costa, R. S., & Oliveira, R. (2023). Hybrid Deep Modeling of a 

GS115 (Mut+) Pichia pastoris Culture with State–Space Reduction. Fermentation, 9(7), 

643. 

• Pinto, J., Costa, R. S., Alexandre, L., Ramos, J., & Oliveira, R. (2023). SBML2HYB: a Py-

thon interface for SBML compatible hybrid modeling. Bioinformatics, 39(1), btad044. 

• Pinto, J., Ramos, J. R., Costa, R. S., & Oliveira, R. (2023). A General Hybrid Modeling 

Framework for Systems Biology Applications: Combining Mechanistic Knowledge with 

Deep Neural Networks under the SBML Standard. AI, 4(1), 303-318. 

• Pinto, J., Ramos, J. R., Costa, R. S., Rossell, S., Dumas, P., & Oliveira, R. (2023). Hybrid 

deep modeling of a CHO-K1 fed-batch process: combining first-principles with deep 

neural networks. Frontiers in Bioengineering and Biotechnology, 11. 
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2.1  Introduction 

Mathematical modeling is in its essence the translation of prior knowledge regarding the 

system at study into a compact mathematical representation. The translation of knowledge 

into a mathematical construct can be performed in many different ways, resorting to many 

different mathematical formalisms. This chapter focuses on a particular class of bioreactor 

dynamic models for Measurement, Modeling, Monitoring and Control (M3C) applications 

(Mandenius, 2004, Carrondo et al., 2012).  Bioreactor dynamic models for M3C are essential 

tools to speed-up bioprocess development or for the control of large-scale production bio-

reactors. The aim of M3C models is to establish a quantitative cause-effect relationship be-

tween control degrees of freedom, state variables, measured variables, and a profit function, 

which is dynamic in nature. Such models are used for off-line simulation and optimization 

(the open-loop dynamic optimization problem), for on-line state and/or parameters estima-

tion, for model predictive control, among many other applications. Recently, bioreactor dy-

namic models are being considered for the implementation of digital twins in the context of 

Industry 4.0 (Nargund and Mauch, 2019, McLamore et al, 2020, Moser et al., 2020, Jens et al, 

2020).  

Bioreactors are complex multi-scale processes that are very challenging to model (Figure 1). 

For dynamic modeling of stirred tank bioreactors, homogeneity of the macroscopic scale is 

normally assumed. In scale-up problems, the understanding of the macroscopic heterogenei-

ty becomes essential, for which the development of computational fluid dynamics models 

becomes a major challenge (not covered in this chapter). Cell cultures are in reality com-

prised of heterogeneous mixtures of cells that differ with regard to size, mass and intracellu-

lar concentrations of proteins, DNA and other chemical constituents. In many problems, pop-

ulation heterogeneity is an important factor to consider thereby substantially increasing the 

complexity of the model (Ataai and Shuler 1985; Domach and Shuler 1984; Henson 2003a; 

Sidoli et al. 2004). The intracellular processes comprehend thousands of metabolic reactions 

and many more regulatory processes involving genes, RNAs, proteins and metabolites. In the 

last two decades, systems biology has led to an explosion of knowledge regarding intracellu-

lar processes, that can now be integrated in bioreactor models. For some bioreactor dynamic 

modeling problems there is no need to consider all the scales with a high level of detail. Mul-

ti-scale modeling becomes however critical when the product quality attributes are expressed 

at the molecular level (e.g. Glycosylation quality attributes of a biologic), wherefore all the 
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scales (molecular-micro-macro) potentially play a role, with the complexity of the model 

dramatically exploding. 

 

Figure 1. The multiscale nature of a bioreactor system 

There are currently two apparently conflicting approaches to address such complex bioreac-

tor modeling problems (Baker et al., 2018): mechanistic modeling and data-based/machine 

learning. From one side, mechanistic modeling based on First Principles of physics, chemistry 

and biology has been the classical approach to develop bioreactor models. First Principles 

include the conservation laws of mass, energy and momentum, which may be stated for a 

bioreactor ab initio without the need of experimental evidence. Mechanistic models are fre-

quently complemented with phenomenological and/or semi-empirical models to describe 

less defined parts of the process, for which prior mechanistic knowledge is still missing. 

The other emerging vision is that of machine learning leveraged on high throughput data 

sets across different scales. Technological advances in bioprocesses research have pushed 

high-throughput instruments, with increasingly accurate data being collected (particularly 

proteomics, metabolomics, transcriptomics, and genomics data) (Palsson 2002). With Industry 

4.0 enactment, such measurement devices will become widespread and deliver large-scale 

collections of datasets from heterogeneous sources, called in computational science as “big 

data” (Cook et al., 2018). Significant effort has been put into ensuring the scalability of com-

putational tools for the collection of these massive bioprocess data, but analysis and integra-

tion remains a challenge (Qin et al., 2015).  The availability of data has been one of the most 

notable advances in predictive modeling. With this background, the deployment of machine 

learning in a bioprocessing context will likely grow in the future, including the application for 

bioreactor modeling, optimization and control (the M3C challenge). Particularly, machine 

learning offers the possibility of modeling complex bioreactor data sets across multiple 

scales, with the ability to identify patterns and learn and improve through time, thereby real-
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izing Industry 4.0 vision (Jordan and Mitchell 2015). In parallel to the emergence of machine 

learning, a new movement towards hybrid approaches that combine mechanistic modeling 

with machine learning is getting momentum (Galvanauskas et al., 2004, Oliveira, 2004, von 

Stosch et al., 2014). The vision is that machine learning should be used to augment mecha-

nistic models rather than to replace them. Hybrid modeling combines the power of mecha-

nistic understanding and predictive modeling thus particularly attractive for tackling complex 

bioreactor modeling problems. 

The first part of this chapter overviews the key mechanistic modeling concepts for a bioreac-

tor system emphasizing the multi-scale nature and the many challenges yet to overcome. In 

particular, the reduction and integration of genome-scale models with bioreactor models is 

discussed. The second part of the chapter covers machine learning methods for supervised, 

unsupervised and reinforced learning in a bioprocessing context, with emphasis on building 

supervised bioreactor models that improve with process experience. It finalizes with an over-

view of hybrid mechanistic/machine learning models for bioreactors in the context of Indus-

try 4.0. 

2.2 The Traditional Approach: Bioreactor Mechanistic Models 

A bioreactor mathematical model may be expressed in different ways depending on the ob-

jective of the model. This chapter will address a particular class of dynamic models for per-

fectly mixed bioreactors expressed by the following general state-space representation 

(Equation 1 and Equation 2): 

Equation 1. State space model of a perfectly mixed bioreactor 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝜃𝑥 , 𝑡);     𝑥(𝑡0) = 𝑥0 

Equation 2. Measurement model of a perfectly mixed bioreactor 

𝑦 = ℎ(𝑥(𝑡), 𝜃𝑦) 

with 𝑥(t) the state vector, 𝑢(𝑡)is the control vector,  𝑦(𝑡)the vector of measured variables,  𝜃𝑥 

and 𝜃𝑦are the parameters vector of the state–space and measurement models respectively, 

and t the dependent variable time. Equation 1 is the state-space model while Equation 2 is 

the measurement model. The functions 𝑓(∙) and ℎ(∙)expressed by Equation 1 and Equation 2 

are typically complex and nonlinear, which render bioreactors rather complex dynamical sys-
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tems, which are difficult to identify and control. The system of Equation 1 and Equation 2 may 

be shaped in many different ways depending on the level of detail of the knowledge availa-

ble, as shown in the proceeding sections. 

2.2.1 Macroscopic material balances 

Macroscopic bioreactor dynamics may be established ab initio by the material balance equa-

tions of the key extracellular compounds that intervene in the reaction mechanism. These 

material balances are expressed by systems of ordinary differential equations (ODEs), which 

take the following general state-space form (Bastin and Dochain, 1990):   

Equation 3. General state-space equation 

𝑑𝑐

𝑑𝑡
= 𝑟 − 𝐷𝑐 + 𝐷𝑐𝑖𝑛 + 𝑞 

where 𝑐 is a vector of 𝑛 concentrations of extracellular compounds (the state vector), 𝑟 is a 

vector of 𝑛 volumetric reaction rates, 𝐷 =
𝐹

𝑉
 is the dilution rate (𝐹 is the volumetric feeding 

rate into the reactor and 𝑉 the liquid volume inside the reactor),  𝑐𝑖𝑛 is a vector of 𝑛 concen-

trations of extracellular compounds in the inlet stream, and 𝑞is a vector of 𝑛 volumetric ex-

change rates from the gas to the liquid phase, which apply to gases (e.g. O2, CO2, H2, CH4, 

etc.…) and extracellular volatile compounds which are typically low molecular weight metabo-

lites resulting from the central carbon metabolism (e.g., ethanol, methanol, etc.…). Equation 3 

must be complemented with the general mass balance equation. If the specific mass of the 

inlet stream is not significantly different than that of the liquid inside the bioreactor, the fol-

lowing simplified general mass balance applies: 

Equation 4. General mass balance equation 

𝑑𝑉

𝑑𝑡
= 𝐷𝑉 

Equation 3 and Equation 4 are generic for perfectly mixed bioreactors irrespective of the op-

eration mode. In batch reactors, Equation 3 and Equation 4 hold with 𝐷 = 0. Fed-batch bio-

reactors are expressed by system of Equation 3 and Equation 4 without modifications.  A 

CSTR in transient operation is modeled with Equation 3 plus 
𝑑𝑉

𝑑𝑡
= 𝐹 − 𝐹 = 0 (volume is con-

stant). A CSTR in steady state is modeled with system Equation 3 and Equation 4 by making 

all derivatives equal null, i.e.  0 = 𝑟 − 𝐷𝑐 + 𝐷𝑐𝑖𝑛 + 𝑞 and 
𝑑𝑉

𝑑𝑡
= 0.  
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The system of Equation 3 and Equation 4 must be completed with defining kinetic equations 

for the gas-liquid volumetric transfer rate, 𝑞, and for the volumetric reaction term, 𝑟. Gas-

liquid mass transfer models are well covered in reference textbooks (e.g. Bailey and Ollis, 

1986, Blanch and Clarck, 1996) and will not be covered here. The critical challenge in bioreac-

tor engineering is the modeling of the reaction kinetics, which will be further covered below.  

2.2.2 Unstructured growth models 

The simplest approach to define a bioreactor model is by considering the cells all equal (un-

segregated) and without intracellular structure (unstructured). These assumptions give rise to 

unstructured growth models, which were the prevailing type of models until the early 00s. 

The extracellular compounds are considered as biochemical species that intervene in a sim-

plified bio-reaction mechanism, with biomass the catalyst of such bio-reactions. As illustrative 

example, a simple bio-reaction mechanism whereby biomass (X) grows on a limiting sub-

strate (S) resulting in the formation of biomass itself (X) and product (P), may be expressed as 

(Equation 5):  

Equation 5. Examples of an unstructured growth model 

𝑦𝑆/𝑋𝑆
𝜇
→  1 𝑋 + 𝑦𝑃/𝑋𝑃 

𝑦𝑆/𝑃 𝑆 
𝑚𝑃
→  1 𝑃 

𝑆 
𝑚𝑆
→  ∅ 

𝑋 
𝑘𝑑
→  ∅ 

The first reaction represents cell growth with specific growth rate 𝜇 and with concomitant 

formation of product (P) (cell growth associated product synthesis). The second reaction rep-

resents cell growth dissociated product formation with specific rate of product formation 𝑚𝑃. 

The third reaction represents the substrate metabolized for cellular maintenance with 

maintenance rate, 𝑚𝑆 (the symbol ∅ represents an unspecified entity/species). The fourth 

reaction represents biomass death with death rate 𝑘𝑑. The yields 𝑦𝑖/𝑗 are stoichiometric coef-

ficients typically defined on a mass basis due to the undefined nature of some biochemical 

species, particularly biomass. The specific growth rate is normally defined by the Monod 

model (Monod, 1949) to express growth limitation by substrate S (Equation 6): 
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Equation 6. Monod model for biomass growth 

𝜇 = 𝜇𝑚𝑎𝑥
[𝑆]

𝐾𝑆 + [𝑆]
 

where 𝜇𝑚𝑎𝑥is the maximum cell growth rate, [𝑆] is the substrate concentration, and 𝐾𝑆 is the 

Monod constant. The Monod model is inspired in the irreversible Michaelis-Menten enzyme 

kinetics but is of empirical nature. To express growth inhibition by high substrate concentra-

tions, the Andrews model (Andrews, 1968) is a common choice (Equation 7): 

Equation 7. Andrews model for biomass growth with high substrate inhibition 

𝜇 = 𝜇𝑚𝑎𝑥
[𝑆]

𝐾𝑆 + [𝑆] +
[𝑆]2

𝐾𝐼,𝑠

 

 where 𝐾𝐼,𝑠is the substrate inhibition constant. The Andrews model is inspired by the Hans 

and Levenspiele acid-base equilibrium model for enzyme kinetics. Han and Levenspiel (1988) 

have extended the Monod model by considering the effect of 𝑖 = 1,… , ℎ inhibitors of cell 

growth (Equation 8): 

Equation 8. Han and Levenspiel model for biomass growth with multiple inhibitors 

𝜇 = 𝜇𝑚𝑎𝑥∏(1−
[𝐼𝑖]

[𝐼𝑖
∗]
)

𝑛𝑖

(

 
[𝑆]

[𝑆] + 𝐾𝑆∏ (1 −
[𝐼𝑖]
[𝐼𝑖
∗]
)
𝑚𝑖

ℎ
𝑖=1 )

 

ℎ

𝑖=1

 

where [𝐼𝑖] is the concentration of inhibitor 𝐼𝑖. This model assumes the existence of a critical 

inhibitor concentration [𝐼𝑖
∗] above which cells cannot grow, and that the constants of the 

Monod equation are functions of this limiting inhibitor concentration. The 𝑛𝑖 and𝑚𝑖 are addi-

tional kinetic parameters that need to be estimated from data. The Monod model may also 

be extended to express the limitation of multiple 𝑛𝑠 substrates and the inhibition of multiple 

𝑛𝑝 products (Equation 9): 

Equation 9. Extended Monod model for multiple substrate limitation and product inhibitions 

𝜇 = 𝜇𝑚𝑎𝑥∏
[𝑆𝑖]

𝐾𝑆𝑖 + [𝑆𝑖]

𝑛𝑠

𝑖=1

∏
𝐾𝑃𝑖

𝐾𝑃𝑖 + [𝑃𝑖]

𝑛𝑃

𝑖=1

 

The specific product synthesis rate, 𝑣𝑃, may be expressed by the Luedeking-Piret equation 

(Luedeking and Piret, 1959) (Equation 10): 

Equation 10. Luedeking and Piret model for product growth 

𝑣𝑃 = 𝑦𝑃/𝑋𝜇 +𝑚𝑃 
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which considers a growth associated product synthesis term and a growth dissociated term. 

These reaction kinetics and many other are simplified phenomenological models commonly 

referred to as Monod-type kinetics.  

Linking with the macroscopic balance (Equation 3) needs the definition of the volumetric re-

action rates, which for the case of unstructured growth models take the following general 

form (Equation 11): 

Equation 11. Volumetric reaction rates general equation for unstructured growth models 

𝑟 = 𝐾 𝑣(𝑐, 𝑢, 𝜃) 𝑋 

where 𝐾 = {𝑦𝑖/𝑗} is a 𝑛 ×𝑚  matrix of yield coefficients and 𝑣(𝑐, 𝑢, 𝜃)is the vector of specific 

reaction rates (𝑛 is the number of species and 𝑚 the number of reactions). The yield coeffi-

cients in matrix 𝐾 have been often observed dependent of the experimental conditions. This 

apparent time-varying nature of yield coefficients is explained by the lack of intracellular 

structure in the model. Metabolic pathway analysis of genome scale networks has highlight-

ed the redundant nature of biochemical networks, characterized by millions of metabolic 

circuits between extracellular substrates and end products in prokaryotes and even more in 

eukaryote cells. The ability to dynamically adjust intracellular states explains the time-varying 

nature of yield coefficients and the lack of predictive power of purely macroscopic models. In 

many cases the consideration of intracellular structure becomes mandatory, which will be 

further covered in the next sections.   

2.2.3 Segregated growth models 

Cell cultures are in reality comprised of heterogeneous mixtures of cells that differ with re-

gard to size, mass and intracellular concentrations of proteins, DNA and other chemical con-

stituents. To account for population heterogeneity, population material balance equations 

are applied to segregate groups of cells with identical properties.  In a population balance 

based on cell number, the cells are differentiated in terms of a given set of properties, 𝑦. The 

distribution of cells in the population in relation to properties y is given by a distribution 

function 𝑤(𝑦, 𝑡), where 𝑤(𝑦, 𝑡)𝑑𝑦 represents the number of cells per unit volume within the 

property interval[𝑦, 𝑦 + 𝑑𝑦] at time t. The total cell count is then given by( Equation 12): 

Equation 12. Cell distribution function 

𝑤(𝑡) = ∫ 𝑤(𝑦, 𝑡)𝑑𝑦
𝑦𝑚𝑎𝑥

𝑦𝑚𝑖𝑛
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The distribution function 𝑤(𝑦, 𝑡)is obtained by solving the population balance equation (PBE), 

which for a homogeneous bioreactor without cell feeding, takes the following general form 

(Nielsen and Villadsen, 1994) (Equation 13): 

Equation 13. General population balance equation 

𝜕𝑤(𝑦, 𝑡)

𝜕𝑡
+
𝜕[𝑟(𝑦, 𝑡)𝑤(𝑦, 𝑡)]

𝜕𝑦
= ℎ(𝑦, 𝑡) − 𝐷𝑤(𝑦, 𝑡) 

where 𝑟(𝑦, 𝑡) is the rate of change of property 𝑦, and ℎ(𝑦, 𝑡) is the net rate of formation of 

cells with the property 𝑦 due to cell division, and 𝐷is the dilution rate in the bioreactor. The 

net rate of formation of cells with the property 𝑦 due to cell division maybe further detailed 

by splitting into the rates of formation and disappearance of cells with property 𝑦 (Equation 

14):  

Equation 14. Net rate of cell formation 

ℎ(𝑦, 𝑡) = 2∫ (𝑦′, 𝑡)𝑝(𝑦, 𝑦′, 𝑡)𝑤(𝑦′, 𝑡)𝑑𝑦′ − (𝑦, 𝑡)𝑤(𝑦, 𝑡)
𝑦𝑚𝑎𝑥

𝑦𝑚𝑖𝑛

 

with (𝑦′, 𝑡) the division rate of cells with property𝑦′, 𝑝(𝑦, 𝑦′, 𝑡) the probability of a mother cell 

with property 𝑦′ dividing into 2 daughter cells with property 𝑦. 

The link with the macroscopic material balances requires a modification of Equation 3 to ac-

count for the influence of properties 𝑦 in the specific reaction rates, 𝑣, as follows (Equation 

15): 

Equation 15. General volumetric rates for segregated growth models 

𝑟 = 𝐾∫ 𝑣(𝑐, 𝑦, 𝑢, 𝜃) 𝑤(𝑦, 𝑡)𝑑𝑦
𝑦𝑚𝑎𝑥

𝑦𝑚𝑖𝑛

 

For simplicity, PBEs are usually applied to a single property such as cell age (A. Hjortso and 

Nielsen 1995) or cell mass (Nishimura and Bailey 1981). Since it considers growth and division 

of single cells, this approach can be used to describe heterogeneity caused by extra and in-

tracellular fluctuations (Delvigne et al. 2014). Many PBE models have been developed (Ander-

son et al. 1969; Fadda et al. 2012; Ganusov et al. 2000; Henson 2003a; Zhu et al. 2000) and 

several numerical methods were developed to reduce the computational hurdles for solving 

the resulting nonlinear integro-ordinary differential and integro-partial differential equations 

(Liu et al. 1997; Mantzaris et al. 2001; Pigou et al. 2017; Singh et al. 2020). 
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2.2.4 Intracellular structure 

Structured models further consider intracellular compartments (cytosol, mitochondria, nucle-

us, etc.…) and the concentrations of intracellular species (metabolites, proteins, RNA/DNA 

and other chemical constituents), which are involved in a very complex network of physio-

chemical transformations. Under the assumption of well-mixed compartments, the dynamic 

material balance equations over intracellular species are generically stated as Equation 16: 

Equation 16. Intracellular material balance equations' general form 

 

𝑑𝑧

𝑑𝑡
= 𝑁{𝑧}𝑣 − 𝜇𝑧 

where 𝑧 is a vector of concentrations of 𝑛𝑧 intracellular species, 𝑁{𝑧}is a 𝑛𝑧 × 𝑞  stoichiometric 

matrix of intracellular reactions, 𝑣 is a vector of 𝑞 specific reaction rates (including transport 

reactions across compartments), and 𝜇is the specific growth rate. The second term in the 

right-hand side of Equation 16 expresses the dilution of intracellular species due to the in-

crease of cell mass. The reaction rates, 𝑣, are complex functions of extracellular concentra-

tions, 𝑐, intracellular concentrations, 𝑧, input variables (such as 𝑇, 𝑝𝐻, etc) and kinetic parame-

ters, 𝜃 (Equation 17): 

Equation 17. General volumetric rates for segregated growth models 

𝑣 = 𝑓(𝑧, 𝑐, 𝑢, 𝜃) 

The development of structured models has been historically limited by the lack of knowledge 

of the very complex intracellular phenomena. With the emergence of systems biology in the 

early 00s, several GEnome-scale reconstructed Models (GEM) have been developed for indus-

trially relevant cells such as Escherichia coli (Monk et al., 2013), Saccharomyces cerevisiae 

(Foster et al., 2003), Pichia pastoris (Sohn et al., 2010), CHO cells (Hefzi et al., 2016), HEK cells 

(Quek et al., 2014) and many other. This new generation of GEMs are now being considered 

for bioreactor dynamic modeling, control and optimization. Construction of large dynamic 

GEMs has been attempted in two ways: i) traditional kinetic modeling paradigm, or ii) dynam-

ic flux balance analysis (dynamic FBA) techniques (Stanford et al., 2013). Dynamic FBA avoids 

the definition of the kinetic rate Equation 17 by dynamic optimization of a cellular objective 

function (Mahadevan et al., 2002). However, rigorous dynamic modeling requires the defini-

tion of the kinetic Equation 17. One advantage of GEMs is the association between genes, 

enzymes, reactions and respective catalytic mechanisms. For bi-molecular metabolic reac-
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tions the mechanistic Michaelis-Menten model generally applies (Cornish-Bowden, 1995).  A 

large number of metabolic reactions involve more than 1 substrate or more than 1 product. 

For such reactions, Liebermeister et al. (2010) proposed a generalized form of the reversible 

Michaelis-Menten model called modular rate law, which is now popular for GEM. Unfortu-

nately, most of the reaction mechanisms in GEMs are unknown and approximations are re-

quired, such as generalized mass action (GMA), hill kinetics, lin-log kinetics (Visser and 

Heijnen, 2003), convenience kinetics (Liebermeister and Klipp, 2006) and power laws (Sav-

ageau, 1970) and their combinations (Costa et al., 2010). GMAs are simplistic approximations 

of the reaction mechanisms based on the principle that the reaction rate is proportional to 

the probability of collision of reactant molecules. GMAs have only 2 parameters and they can 

be automatically generated from the reaction stoichiometry, which have popularized them in 

GEM.  

The link with the macroscopic material balances Equation 3 is not explicit in Equation 17. A 

subset of reactions in vector, 𝑣, is associated with transport processes across the cellular 

membrane for the exchange between intracellular and extracellular compartments. The net 

volumetric reaction rate of 𝑛 extracellular species can then be calculated as Equation 18: 

Equation 18. Volumetric reaction rates from an intracellular structure model 

𝑟 = 𝑋 𝑁{𝑐} 𝑣 

where 𝑁{𝑐} is the 𝑛 × 𝑞 stoichiometric matrix associated with 𝑛 extracellular compounds. 

Equation 18 links with the macroscopic material balances Equation 3, which may be rewritten 

as Equation 19: 

Equation 19. General state-space equations for extracellular components when using an intracellular model. 

𝑑𝑐

𝑑𝑡
= 𝑋 𝑁{𝑐} 𝑣 − 𝐷𝑐 + 𝑞 

Given the very large size of 𝑁{𝑧}, 𝑁{𝑐} and 𝑣 with thousands of species and reactions, it is crit-

ical to reduce GEMs to the reactor operating conditions. As illustrative example, Quek et al. 

(2014) have adapted the RECON-2 model (Thiele et al., 2013) with 7440 reactions for the cul-

tivation of HEK293 cells in a defined medium, with a significative reduction to 329 reactions.  
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2.3 Bioreactor Models for Industry 4.0 

Industry 4.0 is now widely accepted as the next paradigm for production with the widespread 

of automation, data connectivity and machine learning (ML). ML is an essential part of Indus-

try 4.0 that allows systems and algorithms to automatically improve based on experience. 

This section covers the key concepts and the challenges of machine learning and hybrid 

mechanistic/machine learning modeling.   

2.3.1 Machine Learning for Bioreactor Problems 

Machine learning (ML) explores the capability of computational algorithms to learn from pre-

vious large experimental data. In this context, ML employs a variety of algorithms to auto-

mate the process of data-driven models’ construction, which iteratively learn to predict and 

improve different process outcomes (Jordan and Mitchell 2015). Several ML algorithms have 

been developed and are currently available in open-source python packages like scikitlearn 

(Pedregosa et al. 2011). Here we focus on ML methods that are often used in bioreactor ap-

plications. The ML area can be divided into three main classes: supervised, unsupervised, and 

reinforcement learning (Breve and Pedronette 2016, Nian et al. 2020, Singh et al. 2016).  

Supervised learning: The supervised learning methods, such as regression (for continu-

ous/numeric outcomes) and classification (for categoric outcomes) problems, are techniques 

where the task is to create a relation between a set of input/feature observations (𝑢) and the 

corresponding real-valued outcome in a training dataset (𝑦). Mathematically this relationship 

is described by Equation 20: 

Equation 20. General relation between outputs and inputs in a ML model 

𝑦 =  𝑓(𝑢|𝜃) 

where f(.) is the model and 𝜃 the parameters. The main goal is to optimize 𝜃 to minimize the 

error between the model and the real values given in the training dataset (Alpaydin 2020). 

Figure 2 depicts a typical workflow applied in supervised learning: 
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Figure 2. Typical supervised learning workflow 

Unsupervised learning: Unlike supervised learning, where the data is labeled with the desired 

outcome value (i.e. the output associated to an observation is known), in unsupervised algo-

rithms (learning without supervision) no pre-existing labels are required (Larranaga et al., 

2006). The goal of unsupervised machine learning is to detect patterns in highly com-

plex/multivariate input data (e.g. regions of images or search results). In other words, the 

basic idea is to group together similar instances using for instance the Euclidean distance. 

Examples of unsupervised learning techniques are K-means clustering (Yu et al. 2020) and 

dimensionality reduction (DR) (Butcher and Smith 2020). 

Reinforcement Learning: A different paradigm regarding learning from experience is provid-

ed by reinforcement learning (RL) (Sutton and Barto 1998). RL is based on the relationship 

between an agent and the environment; the agent observes the state of the environment in 

order to take actions. For instance, in bioreactors the state observed by the agent could be 

the strains of microorganisms and the RL action taken by the agent control can be the con-

centration of substrate. The goal of an RL algorithm is to use evaluative feedback from the 

environment to estimate real values to update an internal policy that optimizes a desired 

target (Lee et al. 2018). RL can be viewed as a joint optimization problem between the poli-

cy/action and the data. Despite some challenges (e.g. satisfying operational constraints), RL 

can be very useful to address a wide range of chemical process control and bioprocess prob-

lems. Some examples include the nonlinear optimal control problems (Hoskins and Him-

melblau 1992, Shin et al., 2019) and real-time optimization of bioreactors (Powell et al., 2020). 

More recently, RL has also been applied for the control of bioreactor systems (Ma et al., 

2020). 

In the following sections, three of the commonly used supervised learning methods in biore-

actor modeling are further detailed. 

2.3.1.1 Artificial Neural Networks (ANNs)   

Neural network computing is currently the most popular ML tool for supervised learning in 

different domains including bioreactor modeling and control. ANNs are computing systems 

inspired by biological neural networks, consisting of multiple interconnected processing units 
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(called nodes) arranged in layers (Haykin, 2009). Each node is excited by the connecting 

nodes (typically from preceding layers) and computes an output signal that will excite other 

nodes in the network (typically in proceeding layers). The nodes of the first layer (input layer) 

receive external signals, which are propagated to the nodes of the intermediate layers (hid-

den layers) eventually exciting the output nodes (output layer) thereby forming the system 

outputs. Different ANN architectures with particular node activation functions (linear, sig-

moidal, hyperbolic tangent, ReLU, etc...) and topologies have been proposed for different 

applications (Krogh 2008).   

Neural network applications for bioreactor modeling and control first caught attention in the 

early 90s (e.g. Dimassimo et al. 1992, Dochain, et al., 1992, Joseph and Hanratty, 1993, 

Baughman and Liu, 1994). This surge was motivated by the publication of the error back-

propagation algorithm for efficient neural network training (Rumelhart et al. 1986), which 

boosted neural network applications in different domains. After a long period of skepticism, 

they are now resurging by the new developments in deep neural network topologies and 

deep learning algorithms (Larochelle et al. 2009), particularly the ADAM algorithm (Kingma 

and Ba, 2017).  

Given the non-linear character of bioreactor dynamics, the network topology most used is by 

far the Multilayer Perceptron Network (MLP). Particularly, a simple 3-layered MLP has been 

the topology of choice for now-linear regression problems in the bioreactor modeling do-

main. A 3-layered MLP for nonlinear regression problems consists of a linear input layer, a 

single hidden layer with tangent hyperbolic (tanh) nodes and an output linear layer. Mathe-

matically, a MLP is simply stated by the following function (Equation 21): 

Equation 21. Most common MLP structure for bioreactors 

𝑦 =  𝑤2 𝑡𝑎𝑛ℎ(𝑤1𝑢 + 𝑏1)  + 𝑏2 

where 𝑦 is the vector of outputs calculated by the output layer, 𝑢is the vector of inputs that 

excites the input layer and 𝜃 = {𝑤1,𝑏1, 𝑤2, 𝑏2} is the network parameters (weights associated 

with node connections) that need to be estimated from data during the training process. The 

MLP expressed by Equation 21 is of static nature. The extension to time series data is 

straightforward by considering time lagged inputs/outputs to the network. Kingma and Ba 

(2017) have shown how a deep MLP may be efficiently trained using the ADAM algorithm 

with (nodes) dropout. A network is considered deep when it has more than 2 hidden layers. 

This new development will likely boost new applications for bioreactor modeling and control 

in the near future (Salah and Fourati 2019). 
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2.3.1.2 Decision Trees (DTs)  

The DTs (DeLisle and Dixon 2004) are a simple case of a non-parametric supervised model 

and can represent any function of the input attributes, with the rules defined as a tree (con-

sists of nodes and branches). The use of a training dataset defines the set of rules that will be 

sequentially employed to a new observation until a class is estimated. This process goes on 

until a leaf (terminal) node is satisfied, corresponding to the decision outcomes (i.e., contin-

ues or categorical value) or one stopping rules are reached. The rules for each node are given 

by the division of the dataset producing better discriminative ability. DTs are one of the most 

popular algorithms due to their high human interpretability and its simplicity to imple-

ment/use. In the context of bioreactor modeling, DTs can be applied, for example, to identify 

critical process parameters using information from different fermentation runs (Buck et al. 

2002) and to find the combination of operating variables for algal biomass and lipid produc-

tion (Cosgun et al. 2021). They have also been employed to optimize fermentation medium 

(Bapat and Wangikar 2004). 

The relationship between the outcome (𝑦) and features (𝑥) is described by (Equation 22): 

Equation 22. Decision trees mathematical structure 

𝑦 =  ∑ 𝑐𝑚 𝐼{𝑥 𝜖 𝑅𝑚}   

𝑀

𝑚=1

 

Here, each instance falls into exactly one leaf node (subset of 𝑅𝑚), cm is the weight given to 

the 𝑚th transformation and 𝐼{𝑥 ∈ 𝑅𝑚} is the function that returns 1 if x is in the subset of 𝑅𝑚 

and 0 otherwise. 

2.3.1.3 Random Forest (RF)  

An RF is an ensemble method that combines different DTs, each with the same nodes 

(Breiman 2001). The RF algorithm has two main steps:(i) RF creation and (ii) make a prediction 

from the classifier created in step (i). This algorithm uses the sample bootstrapping aggrega-

tion method for each DTs (Rindskopf 1997). Additionally, a feature sampling is performed, 

making classifiers more robust to missing values and more uncorrelated to each other. For 

large numbers of trees, more accurate results are expected. This model prevents data overfit-

ting and is simple to train. For a training set 𝑇 =  {(𝑥1, 𝑦1). … , (𝑥𝑛, 𝑦𝑛)} of 𝑁 observations 

from random vectors (𝑥, 𝑦), the developed RF will be an ensemble of 𝑘 trees {𝑡1(𝑥). … , 𝑡𝑘(𝑥)}. 

The ensemble produces 𝑘 outputs {𝑦1 =  𝑡1(𝑥), … , 𝑦𝑘 =  𝑡𝑘(𝑥)}, where 𝑦𝑘 , 𝑘 =  {1,2,… . , 𝑘} is 

the prediction for a classifier by the 𝑘th tree. 
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RF methods can be used as regression, classification and to assess feature importance, mak-

ing it an algorithm with different applications on real-world problems. An example is given by 

Melcher, et al. (2015) who use RF technique to predict cell dry mass and recombinant protein 

based on online process parameters and spectroscopic information. Recently, RFs have been 

employed for on-line fault diagnosis in a bioreactor operation (Shrivastava et al. 2017). 

2.4 Hybrid Mechanistic/ML Bioreactor Models 

A very promising approach for bioreactor modeling is the combination of mechanistic mod-

els with ML into hybrid model structures. The combination of mechanistic models with ANNs 

for bioreactor dynamic modeling was first suggested by Psichogios and Ungar (1992) and 

Thompson and Kramer (1994). Thompson and Kramer (1994) classified this problem as a hy-

brid semiparametric modeling problem. Hybrid semiparametric models integrate parametric 

functions with fixed structure stemming from prior process knowledge (for example, macro-

scopic material balance equations) with nonparametric functions with loose structure that 

need to be identified from process data (for example a MLP as in the paper by Psichogios 

and Ungar (1992) or a radial basis function network, as in the paper by Thompson and Kra-

mer (1994)). The main motivation was to cope with ANN disadvantages such as the inability 

to comply with process constraints, the tendency for data overfitting, and the poor predictive 

power outside the training-validation domain.  The advantages of hybrid modeling may be 

stated in lato sensu as a more efficient usage of knowledge for process modeling, which ul-

timately translates into more accurate, precise and robust process models (Schubert et al., 

1994). Many other hybrid bioreactor modeling papers followed (e.g. Preusting et al., 1996, 

Andserson et al., 2000, Chen et al., 2000, Galvanauskas et al., 2004, Oliveira, 2004, Teixeira et 

al., 2007, review by von Stosch et al. (2014). Here we focus on the general bioreactor hybrid 

model proposed by Oliveira (2004). This hybrid structure is formed by the general state-space 

macroscopic material balance Equation 3 and Equation 4. 

The reaction rates term, 𝑟, is defined as a flexible mixture of parametric and nonparametric 

functions with the following general form (Equation 23): 

Equation 23. Reaction rates term as defined by a hybrid model. 

𝑟 = 𝐾𝐻(𝑐) 𝜌(𝑐, 𝜃) 

with 𝐾 the yields matrix, 𝐻(𝑐)a set of known kinetic rate functions (with fixed structure and 

known parameters; for example, Monod-type kinetics), and 𝜌(𝑐, 𝜃), a loose function with un-
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known structure that needs to be identified from data. The MLP network has been the pre-

ferred ML method in the context of the general bioreactor hybrid model.  

Equation 24. General form of an MLP network 

𝜌(𝑐, 𝜃 = {𝑤1, 𝑏1, 𝑤2, 𝑏2}) =  𝑤2 𝑡𝑎𝑛ℎ(𝑤1𝑐 + 𝑏1)  + 𝑏2 

The main motivation for the general hybrid model structure is to provide a flexible framework 

to include all reliable mechanistic knowledge in the models and to decrease the dimensional-

ity of the ML identification problem. It explicitly assumes that macroscopic material balance 

equations are known a priori in most of the bioreactor modeling problems. The less under-

stood part of the model in a mechanistic sense are the reaction kinetics. Thus, the experi-

mental design and ML modeling should focus on the unknown parts, which are (some of) the 

reaction kinetics.  In this way ML does not replace mechanistic models, it rather complements 

or improves existing mechanistic models. 

2.5 Summary 

Mathematical models are recognized as fundamental tools in chemical and biological engi-

neering enabling to better understand process mechanisms, to reduce the experimental 

workload for process development, to increase the process operation robustness, to improve 

productivity and yield, among many other potential benefits. While process systems engi-

neering tools have proven determinant for the development and operation of chemical pro-

cesses, the penetration in the bio-industries is lagging behind.  There is still today the per-

ception that bioreactor models are more difficult to develop (higher costs) and less perform-

ing (lower benefits) in comparison to chemical reactor models. This apparently less attractive 

benefit/cost ratio has hampered the deployment of a consistent systems bioengineering 

toolbox in the bio-industries. 

With the emergence of systems biology in the early 00s, several industrial cell lines have been 

sequenced and deeply investigated in their molecular biology traits and mechanisms. In par-

ticular, genome-scale models (GEMs) have been developed for the most important cell 

lines/microorganisms used in industry. While the development of GEMs for individual cell 

lines is work in progress, providing only a scaffold of the underlying biology, they offer the 

opportunity for holistic process modeling, linking cell line development, culture medium de-

sign, reactor optimization with downstream unit operations. GEMs may guide the integration 

of the different scales thereby realizing the concept of holistic models for process platforms.  
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Opposed to mechanistic modeling, data-driven modeling and Machine Learning (ML) are 

primarily focused on the predictive power with limited gain on process understating. The 

main bottleneck is the availability of thorough datasets covering the full domain of process 

operation. While ML in particular has enjoyed a tremendous development in the fields of 

image analysis and speech recognition, bioprocess applications are hindered by the scarcity 

of data in routine operation. The widespread use of high-throughput cultivation techniques 

linked with multi-data technologies will undeniably create novel opportunities for ML appli-

cations to bioprocesses. Such technologies generate large amounts of omics data, typically 

high-dimensional and sparse, which are difficult to integrate in bioreactor models. State-of-

the-art ML algorithms offer the tools to deal with some of the faced challenges, by unravel-

ing relationships and predictions from complex datasets without the need for a priori mecha-

nistic knowledge. However, to accelerate more successful applications of data-driven ap-

proaches, high-quality bioprocess data repositories preferably in machine-readable format 

and new computational algorithms/tools to combine the benefits of ML and mechanistic in-

formation should be produced.  

The apparently conflicting objectives between process understanding and predictive power 

may be mitigated by the adoption of hybrid modeling formalisms. Hybrid mechanistic/ML 

modeling has emerged in recent years as a promising technique for bioreactor modeling 

particularly in the biopharma sector. Many published studies have proven the superiority of 

hybrid mechanistic/ML model structures when benchmarked against the standalone mecha-

nistic or ML model components. There are however many challenges ahead in the hybrid 

modeling field. Hybrid modeling has been limited to relatively simple model structures and is 

difficult to scale to large problems, particularly to genome scale models. With current meth-

ods it is particularly difficult to develop hybrid models with detailed mechanistic modeling of 

intracellular phenomena.  The combination of symbolic and numeric computation frame-

works will likely enable to scale-up hybrid models to more complex bioreactor problems with 

acceptable computation cost. The “hybridization” of GEMs and machine learning is particular-

ly promising. Hybrid GEMs may guide the integration of the different stages of upstream and 

downstream processing thereby realizing the concept of holistic models for process plat-

forms. The embedded machine learning components will confer the learning through experi-

ence feature in the realm of Industry 4.0. From our point of view, solving these formidable 

challenges is just possible through inter- and multi-disciplinary collaborations between aca-

demia and industry. 
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3  

 

A GENERAL DEEP HYBRID MODEL FOR BIO-

REACTOR SYSTEMS: COMBINING FIRST PRIN-

CIPLES WITH DEEP NEURAL NETWORKS 

This chapter is based on the publication: Pinto, J., Mestre, M., Ramos, J., Costa, R. S., Striedner, 

G., & Oliveira, R. (2022). A general deep hybrid model for bioreactor systems: Combining first 

principles with deep neural networks. Computers & Chemical Engineering, 165, 107952. 

3.1 Introduction 

The first steps towards the integration of mechanistic abstraction and neural networks in pro-

cess systems engineering were taken in the early 90’s with the pioneering works of (Psichogi-

os and Ungar, 1992; Su and Mcavoy, 1993; Schubert et al., 1994) and (Thompson and Kramer, 

1994). The main motivation was to overcome neural networks limitations, namely the i) ina-

bility to comply with process constraints, ii) the tendency for data overfitting, and iii) the poor 

predictive power outside the training-validation domain. Thompson and Kramer (1994) 

framed this problem as hybrid semi-parametric systems, whereby parametric functions with 

fixed structure stemming from prior process knowledge (e.g., macroscopic material balance 

equations) are combined in series or in parallel with nonparametric functions (e.g. neural 

networks) identified from process data. Numerous bioprocess modeling studies followed (e.g. 

Preusting et al., 1996; van Can et al., 1998; Chen et al., 2000; Galvanauskas et al., 2004; 

Oliveira, 2004; Teixeira et al., 2007; Fiedler and Schuppert, 2008; von Stosch et al., 2011; Fer-

reira et al., 2014; Pinto et al., 2019; O'Brien et al., 2021; Bayer et al., 2021) highlighting the 

advantages of the hybrid technique, which may be summarized as a more rational usage of 
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prior knowledge eventually translating into more accurate, transparent and robust process 

models. 

The vast majority of hybrid modeling studies explored the combination of conservation laws 

and shallow neural networks (see review by (von Stosch et al., 2014)). Recent advances in 

deep learning have however demonstrated that neural networks with multiple hidden layers 

(deep networks) are advantageous over their shallow counterparts. Shallow and deep net-

works are both universal function approximators, but deep networks are able to approximate 

compositional functions with exponentially lower number of parameters and sample com-

plexity (Delalleau and Bengio, 2011; Eldan and Shamir, 2016; Liang and Srikant, 2017) and are 

less prone to overfitting (Mhaskar and Poggio, 2016). The shift from shallow to deep network 

architectures has been triggered by the development of stochastic gradient descent training 

algorithms, particularly the ADAM method (Kingma, 2014). ADAM is a first-order gradient-

based method for stochastic objective functions based on adaptive estimates of lower-order 

moments. The data subsampling along with the learning rate adaptation at each iteration 

resulted in a simple and robust training method that is less sensitive to gradient attenuation 

and to the convergence to local optima. Stochastic regularization based on weights dropout 

has been shown to effectively avoid overfitting in deep learning (Hinton et al., 2012; Srivasta-

va et al., 2014). Stochastic regularization is frequently associated with stochastic gradient de-

scent methods to prevent overfitting and to improve generalization properties (Koutsoukas 

et al., 2017). 

Only very recently the deep learning advances are penetrating the hybrid modeling field. 

Bangi and Kwon (2020) proposed a hybrid model for a hydraulic fracturing process that com-

bines a First Principles model with a deep neural network. A fully connected network with 5 

layers (1x20x20x20x1), hyperbolic tangent activation (tanh) in the 3 hidden layers and linear 

activation in the input/output layers, was adopted. The Levenberg–Marquardt algorithm and 

finite difference-based sensitivity analysis were adopted to train the hybrid model. The result-

ing hybrid model had superior extrapolation properties compared to a purely data-driven 

deep neural network model.  Following a similar approach, Shah et al. (2022) developed a 

deep hybrid model for an industrial fermentation process. Lee et al. (2020) developed a hy-

brid deep model of an intracellular signaling pathway using a neural network with 2 hidden 

layers. Bangi et al. (2022) proposed the Universal Differential Equations (UDE) formalism for 

mixing the information of physical laws and scientific models with data-driven machine learn-

ing approaches. They applied it to a Saccharomyces cerevisiae batch fermentation process. 
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Merkelbach (2022) have develop a software package called HybridML that uses TensorFlow 

for artificial neural network training and Casadi to integrate ordinary differential equations.  

In this chapter, we revisit the general bioreactor hybrid model (Oliveira, 2004; Teixeira et al., 

2007; von Stosch et al., 2011; Ferreira et al., 2014; Pinto et al., 2019) and extend it to deep 

learning. More specifically, we explore deep learning techniques in a hybrid semiparametric 

modeling context, such as deep feedforward neural networks with varying depths, the recti-

fied linear unit (ReLU) activation function, dropout regularization of network weights, and 

stochastic training with the ADAM method. These techniques are applied to two case studies 

and are benchmarked against the traditional shallow hybrid modeling approach. 

3.2 Materials and Methods 

3.2.1 General Deep Hybrid Model for Bioreactor Systems 

A stirred tank bioreactor can be generically represented by the hybrid model structure 

of Figure 3: 
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Figure 3. Schematic representation of the general deep hybrid model for bioreactor systems. The model is dynam-

ic in nature with state vector, x, and observable outputs y. The model has a parametric component (functions f(.) 

and h(.)) with fixed mathematical structure determined by First Principles (typically material/energy balance equa-

tions). Some cellular properties are modelled by a deep feedforward neural network with multiple hidden layers as 

function of the process state, x, and external inputs, u. The deep neural network is a nonparametric model com-

ponent with loose structure that must be identified from process data given the absence of explanatory mecha-

nisms for that particular part of the model.   

The dynamics of state variables are modelled by a system of ordinary differential equations 

(ODEs) derived from macroscopic material balances and/or intracellular material balances 

and/or other physical assumptions. These equations take the following general form 

(Equation 25 and Equation 26): 

Equation 25. General ODE system of a hybrid model for a bioreactor system 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑦, 𝜗, 𝑢, 𝑡) 

Equation 26. General form of the equation of observable outputs 

𝑦 = ℎ(𝑥, 𝜗)  

with t the independent variable time, 𝑥(𝑡) the process state vector, 𝑢(𝑡) the vector of external 

inputs (feed rates, temperature, pH, etc), 𝜗 a vector of process variables with unknown defin-

ing functions, and 𝑦 the vector of measured variables. Equation 25 and Equation 26 are the 

state-space model and measurement model respectively. The functions 𝑓(. ) and ℎ(. ) are of 

parametric nature thus with fixed structure stemming from prior knowledge. They are typical-

ly set by material and/or energy balance equations of extracellular and intracellular variables 

(as shown in the case studies). Some relevant bioprocess variables may be less defined in 

terms of explanatory mechanisms and/or rely on loose assumptions. Typical examples are 
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biological reaction kinetics or product quality attributes, which are difficult to establish on a 

mechanistic basis. In the general hybrid model, such properties are defined as loose func-

tions, 𝜗(. ) (typically of the process state and external inputs), with unknown structure, i.e. 

nonparametric functions without physical meaning. Among the many possibilities to define 

𝜗(. ),  the preferred approach (in a hybrid modeling context) has been by far the feedforward 

perceptron networks with 3 layers only (see review by (von Stosch et al., 2014)). In the present 

study, the more general case of deep multi-layer perceptron networks with arbitrary number 

of nh hidden layers is explored, stated as follows (Equation 27, Equation 28 and Equation 29): 

Equation 27. Multi-layer perceptron network input layer 

𝐻0 = 𝑔(𝑥, 𝑢, 𝑡) 

Equation 28. Multi-layer perceptron network hidden layer 

𝐻𝑖 =   𝜎 (𝑤𝑖 ∙ 𝐻𝑖−1 + 𝑏𝑖), 𝑖 = 1,… , 𝑛ℎ  

Equation 29. Multi-layer perceptron network output layer 

𝜗(∙) = 𝑤𝑛ℎ+1 ∙ 𝐻𝑛ℎ + 𝑏𝑛ℎ+1 

The input layer (Equation 27) typically receives information of the state variables, 𝑥  and/or 

external inputs, 𝑢 (temperature, pH, etc.…) and/or process time, 𝑡. An optional non-linear pre-

processing function 𝑔(𝑥, 𝑢, 𝑡), may sometimes facilitate the identification of 𝜗(. ), as for ex-

ample concentration ratios are set as inputs to the neural network or other normalization 

rules (see (von Stosch et al., 2016; Gnoth et al., 2008; Gnoth et al., 2010)). Then follows 𝑛ℎ 

hidden layers (Equation 28) with 𝜎(. )  the nodes transfer function (in this chapter either the 

tanh or the ReLU). Finally, the output layer has linear nodes (Equation 29). The parameters 

𝑤 = {𝑤1, 𝑤2, … , 𝑤𝑛ℎ+1} and 𝑏 = {𝑏1, 𝑏2, … , 𝑏𝑛ℎ+1} are the nodes connection weights that need 

to be identified from data during the training process. Presuming that initial conditions 

𝑥(𝑡) = 𝑥0 and network weights 𝜔 = {𝑤, 𝑏} are given, the deep hybrid model can be solved by 

numerical integration as an Initial Value Problem (IVP). In the present chapter, a Runge-Kutta 

4th order ODE solver was adopted to integrate the system (Equation 25, Equation 26 Equa-

tion 27, Equation 28 and Equation 29) and compute 𝑥, 𝑦 and 𝜗 over time. All the code was 

implemented in the HYBrid MODdeling (HYBMOD) MATLAB® toolbox on a computer with 

Intel(R) Core (TM) i5-8265U CPU @ 1.60 GHz 1.80 GHz, and 24 GB of RAM.  
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3.2.2 Training Method 

3.2.2.1 Standard Non-Deep Method 

Hybrid bioreactor models are typically trained by indirect supervised learning with cross-

validation to avoid overfitting (e.g., (Psichogios and Ungar, 1992; Oliveira, 2004; Pinto et al., 

2019; von Stosch et al., 2014)). The data are partitioned into a training subset (for parameter 

estimation), a validation subset (stop criterion to avoid overfitting) and a test subset (to as-

sess the predictive power). Partitioning is typically performed batch wise with the amount of 

data allocated in each partition depending on the objective of the study and on the amount 

of data available. The optimization of network parameters is performed over the training set 

only in a weighted least-squares sense (Equation 30):  

Equation 30. Weighted least squares for shallow hybrid modelling. 

𝑊𝑆𝑆𝐸 =
1

𝑇
 ∑

(𝑦𝑡
∗ − 𝑦𝑡)

2 

𝜎𝑡
2

𝑇

𝑡=1

   

with 𝑇 the number of training patterns, 𝑦𝑡
∗ the measured variables at time 𝑡, 𝑦𝑡

∗ the corre-

sponding model prediction and 𝜎𝑡 the measurement standard deviation. This method is 

called indirect because the loss function is not directly linked to the neural network outputs, 

𝜗. The Levenberg-Marquardt method (LMM) has been shown to solve very effectively the 

indirect training problem (Equation 25, Equation 26, Equation 27, Equation 28, Equation 29 

and Equation 30) in the case of shallow hybrid models (Schubert et al., 1994; Oliveira, 2004). 

The LMM has also been used in a recent deep hybrid modeling study (Bangi and Kwon, 

2020). The LMM convergence is improved if the sensitivity equations are applied to calculate 

the loss function gradients instead of numerical gradients (e.g. (Psichogios and Ungar, 1992; 

Schubert et al., 1994; Oliveira, 2004)). The sensitivity equations for the general hybrid have 

the following structure (for simplicity it is assumed that (𝑦 = 𝑥) (Equation 31): 

Equation 31. Indirect sensitivity equations for the general hybrid model 

𝑔 =
𝜕𝑊𝑆𝑆𝐸

𝜕𝜔
= −2∑

𝑦𝑡
∗ − 𝑦𝑡

𝜎𝑡
2 (

𝜕𝑥𝑡
𝜕𝑤
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𝑡=1
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𝜕𝑤
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𝑑𝑡
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𝜕𝑓

𝜕𝑥
) (
𝜕𝑥

𝜕𝑤
) + (

𝜕𝑓

𝜕𝑥
) 

  

(
𝜕𝑐

𝜕𝑤
) |𝑡=0 = 0 
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The sensitivity equations are obtained by differentiation of the state-space model (Equation 

25) in relation to the network parameters, 𝑤. For more details regarding the sensitivity equa-

tions in a hybrid modeling context see (Psichogios and Ungar, 1992; Oliveira, 2004). The inte-

gration of the sensitivity equations was performed in this study with a Runge-Kutta 4th order 

ODEs solver. 

3.2.2.2 Stochastic Adaptive Moment Estimation (ADAM) With Semi-Direct Sensitivities 

An important goal in this chapter is to compare the standard training method with state-of-

the-art deep learning techniques in the context of hybrid modeling. Particularly, ADAM is 

considered a landmark in deep learning and was implemented here to train hybrid models. 

The ADAM method estimates the network parameters, 𝜔 = {𝑤, 𝑏}, through the first and sec-

ond moments of the gradients of the loss function and a set of hyperparameters 𝛼, 𝛽1 and 

𝛽2, representing the step size and exponential decays of the moment estimations (for details 

see (Kingma, 2014)). The loss function is the same as in the previous method (Equation 30). 

This results in the following implementation (Equation 32): 

Equation 32. ADAM algorithm equations 

𝑚𝑘 = 
𝛽1 ∙ 𝑚𝑘−1 + (1 − 𝛽1) ∙ 𝑔𝑘

(1 − 𝛽1
𝑘)

  

   

𝑣𝑘 = 
𝛽2 ∙ 𝑣𝑘−1 + (1 − 𝛽2) ∙ 𝑔𝑘

2

(1 − 𝛽2
𝑘)

 

  

𝑤𝑘 = 𝑤𝑘−1 −
𝛼 ∙ 𝑚𝑘

(√𝑣𝑘 + 𝜀)
 

with 𝑘 the iteration number, 𝑚𝑘 the first order moment of gradients, 𝑔𝑘 the loss function 

gradients, 𝑣𝑘 the second order moment of gradients. For the present chapter, the suggested 

default parameters of 𝛼 = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999 and 𝜀 = 10−8 were adopted (Kingma, 

2014). 

The gradients at each iteration are obtained by solving the sensitivity equations (Equation 

31). Because the CPU scales exponentially with the size of the network, a different approach 

to calculate the gradients was explored. Instead of computing the sensitivities of state varia-

bles in relation to network parameters, (
𝜕𝑥

𝜕𝑤
), a semidirect approach was implemented where 

the sensitivities of state variables in relation to network outputs, (
𝜕𝑐

𝜕𝜗
), are computed. The 

semidirect sensitivity equations are as follows (again assuming 𝑦 = 𝑥) (Equation 33): 
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Equation 33. Semidirect sensitivity equations for the general hybrid model 
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Finally, the loss function gradients 𝑔 =
𝜕𝑊𝑆𝑆𝐸

𝜕𝜔
  can be computed from the 

𝜕𝑊𝑆𝑆𝐸

𝜕𝜗
 sensitivity by 

the well-known error backpropagation algorithm through the network (Werbos, 1974). The 

main advantage of the semidirect method is that the number of ODEs for calculating the sen-

sitivities is massively reduced and are independent of the size of the network. This results in a 

sizable CPU reduction as shown in section 3.2.4. 

3.2.3 Case Studies 

3.2.3.1 Lee & Ramirez Synthetic Dataset 

A synthetic dataset was generated based on the Lee & Ramirez bioreactor model (Lee and 

Ramirez, 1994). This model is frequently adopted as a benchmark to test different optimal 

control methods (e.g. (Banga et al., 2005)). The objective in this case study is to train hybrid 

models on an information rich dataset (time series data generated by statistical design of 

experiments) and then to assess if the trained hybrid models are able to describe (extrapo-

late) the maximum productivity fed-batch obtained by optimal control studies (Lee and 

Ramirez, 1994). 

The Lee & Ramirez model describes the dynamics of biomass (𝑋), substrate concentration (𝑆), 

inducer concentration (𝐼𝑁𝐷), product concentration (𝑃), shock factor (𝑆ℎ), recovery factor (𝑅𝑒) 

and reactor volume (𝑉) in a recombinant Escherichia coli fed-batch process. Experiments 

were simulated dynamically for different conditions (see below) applying a Runge-Kutta 4th 

order ODEs solver. Samples were simulated with 1 hour sampling time. Gaussian noise was 

added to “sampled” variables with standard deviations of 1.5 (𝑋), 5(𝑆) and 0.3(𝑃) (10% of 

maximum concentration). As shown in section 3.2.4., modeling errors were calculated based 

on the noisy data (noisy weighted mean squared error (WMSE)) and also on the noise free 

data (noise free WSSE).  
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A central composite design (CCD) was applied to the process degrees of freedom, namely the 

induction time between 5-9 hours, pre-induction substrate feed rate between 0-0.8ℎ−1, post-

induction substrate feed rate between 0-0.8ℎ−1 and inducer feed rate between 0-1ℎ−1. This 

resulted in 25 fed-batch experiments. The 25 fed-batch experiments were included in the 

training data partition (297 training data points). The validation dataset (used only as training 

stop criterium) was obtained by adding gaussian noise with standard deviations of 1.5 (𝑋), 

5(𝑆) and 0.3(𝑃) to the training dataset resulting in 297 validation data points.  In our experi-

ence, this partition method maximizes data usage for training and also effectively prevents 

model overfitting. For the test dataset (used to assess the model generalization capacity), the 

optimal fed-batch with optimized feeding and maximum product concentration of 3.16 g/L 

(Lee and Ramirez, 1994) was adopted (15 data points). In summary, the models were 

trained/validated with the 25 DoE experiments and then set to predict the dynamic profiles of 

the optimal production fed-batch. The optimal production fed-batch delivers a final product 

mass, which is 34.4% higher than the best DoE fed-batch. The details of the dataset are pro-

vided as supplementary material A. 

 

Figure 4. Deep hybrid model structure for the Lee & Ramirez dataset. The parametric component is established by 

a system of ODEs as described in Lee & Ramirez (1994). The specific biologic kinetics are considered mechanisti-

cally unknown thus modelled by a deep feedforward network. The job of this model is thus to “learn” from data 

the biologic kinetics under the constraint of dynamic material balance equations. 

The hybrid model structure adopted for this problem is shown in Figure 4. The reactor has 7 

internal sate variables 𝑥 = [𝑋, 𝑆,  𝑃, 𝐼𝑁𝐷, 𝑆ℎ, 𝑅𝑒]𝑇 of which only 3 are measured, thus 𝑦 =

[𝑋, 𝑆, 𝑃]𝑇 . The system of ODEs are derived from mass conservation laws and are the same as 

in (Lee and Ramirez, 1994). The neural network computes 4 reaction terms 𝜗 =  [𝜇, 𝑣𝑆, 𝑣𝑃 , 𝑘1]
𝑇, 

taken as unknown cellular features that need to be learned from data. The neural network 
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has only 3 inputs 𝐻0 = [𝑆,  𝐼𝑁𝐷, 𝑆ℎ]𝑇 which were pre-selected based on prior knowledge of 

the reaction kinetics for this problem (Lee and Ramirez, 1994).  

Hybrid models with different network depths and sizes were evaluated, with the best hybrid 

model discriminated on the basis of the Akaike Information Criterion with second order bias 

correction (AICc) computed for the training data partition as follows (Equation 34): 

Equation 34. Akaike Information Criterion with second order bias correction (AICc) 

𝐴𝐼𝐶𝑐 = 𝑇 𝑙𝑛(𝑊𝑆𝑆𝐸) + 2 𝑛𝑤 +
2 𝑛𝑤 ( 𝑛𝑤 +  1 )

𝑇 −  𝑛𝑤 −  1
 

AICc includes an overparameterization penalty and is commonly used to discriminate be-

tween empirical model candidates with different number of parameters, nw, and to select a 

parsimonious model for small sample sizes (Li et al., 2002).  

3.2.3.2 MUT+ Pichia pastoris Pilot Dataset 

A MUT+ Pichia pastoris expressing a single chain antibody (scFv) was cultivated in a Lab Pilot 

Fermenter Type LP351, 50 L, Bioengineering, Switzerland with standard instrumentation to 

measure on-line pH, temperature, pressure, stirrer, airflow and pO2. The wet cell weight and 

scFv titer were measured off-line. All the details of the experimental procedure are given 

elsewhere (Teixeira et al., 2006). The reactor operation is divided into three phases: glycerol 

batch (GB) phase, glycerol fed-batch (GFB) phase and methanol fed-batch (MFB) phase (or 

post-induction phase). In the GB phase, the initial glycerol level was set at 4%, taking approx-

imately 30 h for complete depletion. Thereupon, the GFB phase starts, following an exponen-

tial feeding profile. At the end of the GFB, a transition to the MFB phase is implemented in 

order to minimize the adaptation time of cells to methanol. After the transition phase, the 

methanol feeding rate, the pH and the temperature were designed in order to generate pro-

cess data to optimize scFv productivity (see (Teixeira et al., 2006) for details). A total of 9 ex-

periments were performed with varying methanol feed rate, temperature, and pH. In this case 

study, only the MFB phase was considered for hybrid modeling. The dataset with the 9 exper-

iments has 207 measurements of biomass wet cell weight in triplicate and 207 measurements 

of scFv in triplicate. The training-validation partition included 8 experiments and the test par-

tition 1 experiment. All possible training-validation/test permutations were evaluated. The 

hybrid model structure adopted for this problem is similar to that of Figure 4 with a few ad-

aptations (discussed in section 3.2.4.). The training and model discrimination methods were 

as for the Lee & Ramirez case study. 
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3.2.4 Results and Discussion 

3.2.4.1 Development Of a Shallow Hybrid Model: Lee & Ramirez Case Study 

A traditional shallow hybrid model was first developed for the Lee & Ramirez dataset. A shal-

low feedforward network with a single hidden layer with tanh activation function was em-

ployed. The hybrid model was trained with the standard nondeep method (LMM optimiza-

tion + cross-validation + random weights initialization from the uniform distribution). The 

training and validation partition comprehended 25 experiments (825 training patterns) de-

signed by statistical DoE (see section 3.2.3.1). The test partition included a single experiment 

with the highest protein production (optimal batch obtained by dynamic optimization as re-

ported in (Lee and Ramirez, 1994). The test experiment has a final product mass 34.4% higher 

than the best training/validation experiment. For a given network size, the training was al-

ways repeated 10 times with different weights initialization between [-0.1, 0.1] and only the 

best result was kept (lower validation error). This procedure was repeated for hybrid models 

with varying number of nodes in the hidden layer keeping the same data partition and a 

maximum number of iterations of 20000 for comparability. The overall results are shown in 

Table 1: 

Table 1. Training results of shallow hybrid models for the Lee & Ramirez data set with 25 training batches (Train-

ing WSSE), 25 validation batches (Validation WSSE) and a single test batch with the highest possible productivity 

obtained by optimal control (Test WSSE noisy/noise free are computed with noisy or noise free target concentra-

tions respectively ). The AICc is computed for the training data set only. Each row represents a different model 

with a given number of hidden nodes (between 1-15) in a single hidden layer with tanh activation function. The 

hybrid models were trained with the standard nondeep method (LMM optimization with 20000 iterations + cross-

validation + random weights initialization between [-0.1, 0.1] from the uniform distribution). The training was 

repeated 10 times with different weights initialization and only the best result is kept for each model. 

Number of 

hidden nodes 

Training 

WSSE 

Validation 

WSSE 

Test WSSE 

(noisy) 

Test WSSE 

(noise free) 

AICc CPU 

time 

Number 

of 

Weights 

1 20.2 20.3 42.2 2.1 2490 776 12 

2 2.57 2.77 7.53 8.12 810 1320 20 

3 1.16 1.31 1.08 1.39 172 1780 28 

4 1.1 1.29 1.34 1.01 146 1560 36 

5 2.77 3.07 6.56 5.42 922 1390 44 

6 1.78 1.94 1.22 2.11 570 1730 52 



 38 

7 1.40 1.70 7.87 7.31 389 1870 60 

8 1.09 1.32 1.14 0.76 200 2050 68 

9 1.01 1.21 1.04 0.68 150 2250 76 

10 0.941 1.16 1.05 0.54 111 2250 84 

11 0.949 1.22 1.33 0.83 134 2360 92 

12 0.914 1.11 0.86 0.75 121 2290 100 

13 0.935 1.07 1.03 0.69 154 2280 108 

14 0.944 1.15 1.10 0.93 183 2230 116 

15 0.899 1.11 0.937 0.62 152 2670 124 

 

From these results, it is possible to conclude that the optimal number of hidden nodes is 10 

corresponding to the lowest corrected Akaike information criterion (AICc) value (111). Of 

note, the AICc criterion, which is calculated for the training partition only, coincided with the 

lowest noise free test error (0.54 noise free WSSE; to note that the noise free WSSE is com-

puted on process data uncorrupted by experimental noise, thus a better metric for accessing 

the predictive power). Despite the coincident outcome in this case, the AICc sometimes fails 

to discriminate the structure with the highest predictive power as shown in the next sections. 

Moreover, the noisy test error of the selected model with 10 hidden nodes (noisy 

WSSE=1.05) is only moderately higher (11,6%) than the corresponding training error 

(WSSE=0.941).  

3.2.4.2 Comparing The Deep and Shallow Hybrid Modeling Approaches 

Several hybrid structures with varying neural network depths (2-4 hidden layers) were com-

pared with the shallow network case (1 hidden layer). The same Lee & Ramirez dataset and 

data partition were kept as in the previous section. We first focused on the tanh activation (in 

the hidden layers), which has been the standard for nonlinear regression problems with shal-

low neural networks (Cybenko, 1989). Every model structure was trained with two different 

methods: the traditional LMM+CV+tanh and ADAM+CV+tanh. The training was always re-

peated 10 times and only the best solution (lowest validation error) was kept, as before. The 

number of iterations for the ADAM method was 20000 as for the LMM method. The overall 

results are shown in Table 2: 
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Table 2. Comparison of deep and shallow hybrid models for the Lee & Ramirez data set (same data partition as in 

Table 1) trained either by the LMM algorithm or by the ADAM algorithm. In all cases cross-validation (CV) and 

indirect sensitivities were applied. Each row represents a different shallow or deep hybrid model structure using 

either tanh or ReLU in the hidden layers. The training was repeated 10 times with different weights initialization 

and only the best result is kept. 

Hybrid 

model 

Training 

method 

Hidden 

layer 

type 

Training 

WSSE 

(noisy) 

Valida-

tion 

WSSE 

(noisy) 

Testing 

WSSE 

(noisy) 

Testing 

WSSW 

(noise 

free) 

AICc CPU 

time 

Weights 

Shallow 

5 

LMM+CV tanh 2.77 3.07 6.56 5.42 922 1390 44 

Shallow 

10 

LMM+CV tanh 0.941 1.16 1.05 0.54 111 2250 84 

Deep 5x5 LMM+CV tanh 1.06 1.31 1.40 1.05 198 1674 68 

Deep 

5x5x5 

LMM+CV tanh 0.921 1.17 1.13 0.72 154 74892 98 

Deep 

5x5x5x5 

LMM+CV tanh 0.835 1.09 0.915 0.32 155 81430 128 

Shallow 

5  

ADAM+CV tanh 1.22 1.32 1.20 0.66 242 33476 44 

ReLu 1.02 1.05 1.03 0.35 98 33410 

Shallow 

10 

ADAM+CV tanh 1.60 1.21 0.91 0.24 547 30376 84 

ReLu 1.34 1.13 0.94 0.14 352 30200 

Deep 5x5 ADAM+CV tanh 0.937 1.15 0.82 0.14 95 28567 68 

ReLu 0.926 1.08 0.923 0.05 90 28122 

Deep 

5x5x5 

ADAM+CV tanh 0.936 1.16 0.81 0.09 168 32285 98 

ReLu 0.886 1.04 0.96 0.04 87 32174 

Deep 

5x5x5x5 

ADAM+CV tanh 0.870 1.11 1.05 0.28 189 40570 128 

ReLu 0.841 1.07 0.942 0.16 152 40514 

 

The results in Table 2 clearly show ADAM to outperform the LMM method in what concerns 

the predictive power of the final model (the noise free test WSSE; to note that the AICc is not 
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an adequate metric to compare models of equal sizes). This conclusion is valid for deep or 

shallow hybrid structures. The best shallow structure with 10 hidden nodes (identified in the 

previous section) improved the noise free test error from 0.54 to 0.24 (>2-fold decrease) with 

ADAM+CV+tanh. The same conclusions can be taken for the deep structures, without excep-

tion. The key conclusion is that the ADAM method systematically increases the predictive 

power of the final hybrid model for the Lee & Ramirez data set. 

The best model (with tanh activation function) among the deep and shallow structures is the 

5x5x5 deep hybrid model with 98 weights, showing a noise free test error (WSSE = 0.09) 2.7-

fold lower than the best hybrid shallow case (WSSE=0,24). The AICc miss spotted the best 

deep model. It identified the 2nd best model (5x5 structure) with, however, comparable per-

formance. In terms of CPU, the ADAM method is generally more expensive than the LMM 

method for small size networks. This pattern reverses for large size networks (e.g. the best 

5x5x5 structure decreased CPU by 2,3-fold with ADAM in comparison to LMM). Thus, the CPU 

scales more steeply with the network size in the case of LMM training when compared to 

ADAM training. This favors ADAM for deep hybrid structures, both in terms of predictive 

power and CPU time for training.  

 

Figure 5. Boxplot of training, validation and testing WSSE for 10 training repetitions of the deep hybrid structure 

5x5x5 trained by different training approaches either using the LMM or the ADAM method. Ten sets of initial 

weights were randomly generated (one per repletion) and kept the same in all tests performed for comparability. 

Figure 5 shows the effect of weights initialization on the final training, validation, and testing 

error for the best deep configuration 5x5x5 when the model is trained with LMM or with AD-

AM. The initial weights values were kept the same for LMM and ADAM training for compara-

bility. Interestingly, the dispersion of the errors for 10 repetitions with different weights ini-
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tialization is significantly lower for ADAM in comparison to LMM, irrespective of the data par-

tition (train, validation, or testing). There is an outlying point with significantly higher final 

errors for both the LMM and ADAM trainings. Concordant results were obtained for the other 

model configurations (results not shown). This suggests the ADAM method to be less sensi-

tive to weights initialization. Similar conclusions were reported by (Hiscock, 2019) for 

standalone deep neural networks, who showed that gradient descent training methods with 

variable learning rate (such as the ADAM method) are less prone to be trapped in local opti-

ma thus less sensitive to weights initialization. The key conclusion to be taken is that the 

number of repetitions for different weights initialization may be mitigated in the case of AD-

AM training. This represents a potential 10-fold cut in CPU time in comparison to the LMM 

method for the case of 10 repetitions. 

The ReLU activation function in the hidden layers has been a key achievement in deep learn-

ing, outperforming the tanh function for standalone deep neural networks (Nair and Hinton, 

2010). The use of ReLU was investigated comparatively with tanh in a hybrid modeling con-

text. Table 2 compares hybrid model performances using the one or the other activation 

function in the hidden layers trained by ADAM + CV using the same training procedure. The 

key conclusion to be taken is that the ReLU further improved the training and test error in all 

cases without exception. The best 5x5x5 structure further decreased the noise free test WSSE 

from 0.09 (with tanh) to 0.04 (with ReLU) at comparable CPU cost. Our results clearly show 

the ReLU to be advantageous in a deep hybrid modeling context as previously shown for 

(standalone) deep neural networks (Nair and Hinton, 2010). The ReLU activation function was 

thus adopted in all proceeding studies. These results might be related to the problem of gra-

dients vanishing/exploding in deep networks. Typically, the tanh activation function is associ-

ated with vanishing gradients whereas the ReLU is associated with exploding gradients (Ding, 

et al., 2018) (Ding et al, 2018). The ADAM training is invariant to diagonal rescaling of the 

gradients. It does not completely avoid the problem of gradient vanishing when tanh is used. 

The use of ADAM with ReLU is however very efficient at avoiding gradient explosion since it 

performs dynamic scaling of the learning rate (down) when the gradients become very large.  

3.2.4.3 Introducing Stochastic Regularization 

Stochastic regularization (SR) has been reported as an effective method to avoid overfitting 

in deep learning (Srivastava et al., 2014). Here we study the ADAM method with stochastic 

regularization in replacement of the cross-validation technique. More specifically, ADAM was 

implemented with the minibatch technique and the weights dropout technique. The mini-
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batch technique consists of a random selection of the training patterns from the uniform 

distribution using a cutoff probability parameter. Similarly, the weights dropout technique 

used random weights selection according to a cutoff probability parameter.  

 

Figure 6. Effect of stochastic regularization (SR) on the predictive power of the hybrid model configuration 5x5x5 

trained with ADAM + SR + indirect sensitivities with 20000 iterations for the Lee & Ramirez data set. Obtained 

noise free test WSSE over minibatch probability (M probability) and weights dropout probability (Wd probability). 

Figure 6 shows the lowest WSSE test among the 10 repetitions as function of the minibatch 

size probability and of the weights dropout probability. The training performance is indeed 

very sensitive to the choice of these two parameters. The optimal minibatch probability is 

~90% and the optimal dropout probability is ~50%. The final noise free test WSSE was 

0.0258, which is 35.5% lower than the corresponding solution without stochastic regulariza-

tion (Table 2, ADAM+CV+ReLU). The final train and test errors among the 10 repetitions are 

shown in Figure 5. Interestingly the stochastic regularization eliminated the outlying training 

result obtained by LMM+CV and ADAM+CV in the previous section. This result is promising 

because it shows the weights initialization to have practically no influence on the final train-

ing outcome. If repetitions are not needed, the CPU cost may be significantly reduced in rela-

tion to the LMM+CV or ADAM+CV methods.  

3.2.4.4 Speeding up Hybrid Deep Learning by Semidirect Sensitivities 

The results above support ADAM + deep networks + stochastic regularization to produce 

hybrid models with higher predictive power in comparison to the traditional shallow hybrid 

approach. Nevertheless, deep models tend to have large networks with the CPU time increas-

ing with the network size (Luo et al., 2005). Solving the sensitivity equations is responsible for 
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a significant part of the CPU cost. Taking the 5x5x5 hybrid structure as example, solving the 

sensitivity equations implies integrating 98 × 5 =  490 ODEs along with the hybrid model 

ODEs for the computation of the objective function and objective function gradients. Such a 

large number of ODEs represents a significant CPU burden. A different implementation of the 

sensitivity method was investigated, namely the semidirect sensitivity equations (see section 

3.2.2.2) in an attempt to reduce CPU time. In the semidirect approach, a much lower number 

of (
𝜕𝑐

𝜕𝑣
) sensitivity equations are integrated over time. For the same 5x5x5 hybrid structure, 

the (
𝜕𝑐

𝜕𝑣
) sensitivities only require 5 × 4 = 20 ODEs to be integrated over time. Furthermore, 

the semidirect sensitivity equations are independent of the number and size of hidden layers 

(they depend only on the number of network inputs and outputs). 

 

Figure 7. Training and testing error (WSSE) over CPU time for 1) shallow hybrid model {10} + LMM +CV with ten 

repetitions (blue line) 2) the hybrid model 5x5x5 trained with ADAM + stochastic regularization + indirect sensitiv-

ities (red line) and 3) ADAM + stochastic regularization + semidirect sensitivities (yellow line) 

Figure 7 shows the variation of the train and test cost function over CPU for the configuration 

5x5x5. This result shows that the semidirect sensitivity equations produced a comparable final 

training WSSE in relation to the indirect sensitivity equations. The convergence is however 

much faster. The CPU time could be reduced by 77.4% when adopting the semidirect sensi-

tivity equations in comparison with the indirect approach. Furthermore, the test error follows 

similar patterns for both methods reaching a comparable final value. 
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Figure 8. Prediction of the dynamic profiles of observable variables (biomass -X, substrate– S and product–P) of 

the test batch (Lee & Ramirez dataset) by the best shallow hybrid model trained with the standard method (10 

hidden nodes) and by the best deep hybrid model (5x5x5). Asterisks represented observations and respective  

standard deviation. The dashed line represents the “true” noise-free process behavior (hidden to the training of 

the hybrid models). The red line represents the predictions of the shallow hybrid model. The green line represents 

the prediction by the deep hybrid model.  The shallow hybrid model used the tanh function and was trained by 

the traditional non-deep method (LMM algorithm + CV + indirect sensitivities + 10 repetitions and only the best 

result is kept). The deep hybrid model used the ReLU activation function and was trained by the novel method 

(ADAM + SR + semidirect sensitivities + no repetitions). 

Figure 8 shows the prediction of the optimal batch dynamics by the hybrid 5x5x5 model 

trained with ADAM+SR+ReLU+semidirect compared to the standard shallow model with 10 

hidden nodes (LMM+CV+tanh+indirect). The noise free test WSSE was 0.03 and 0.54, respec-

tively (94.4% reduction). It may be seen that both models are able to describe fairly well the 

dynamics of the test experiment up to 7.5 hours. There are however some visible differences 

towards the end of the cultivation. The shallow hybrid model underestimated the final bio-

mass and final product by 15.3% and 13.8% respectively, whereas the deep hybrid model 

overestimated the final biomass by 2.7% and underestimated the final product by 5.8% only. 

 

3.2.4.5 Pilot Scale Pichia pastoris Case Study 

Hybrid models were developed for the P. pastoris process with a similar structure to the Lee 

& Ramirez model. The biomass and product material balance equations, and the shock factor 

ODEs are kept the same in both models. A few modifications were however required as fol-

lows:   
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• The inducer material balance equation was removed because in the MUT+ P. 

pastoris expression system the methanol is simultaneously the main carbon 

source and the inducer of foreign protein expression. 

• The substrate material balance equation was also removed because methanol 

concentration (the substrate) was not measured. This is a limitation imposed by 

the experimental protocol. Instead, the measured volumetric methanol feed rate 

(𝐹𝑚𝑒𝑡, g/Lh) and the measured total methanol fed to the reactor (g) were set as 

external inputs to the neural network.   

• Temperature (T) and pH were also added as external inputs to the neural net-

work as these two parameters varied between 17.2-30.1º𝐶 and pH 4.0-7.0 in the 

experiments performed as part of a design of experiments to study the influ-

ence of these two parameters in the protein expression.  

• The neural network computed the volumetric protein production rate (output) 

instead of the specific protein production rate as in the case of Lee & Ramirez. It 

is known that Pichia pastoris secretes proteases that hydrolyses the target 

product on certain experimental conditions (Cereghino and Cregg, 2000). The 

neural network is thus set to calculate the apparent volumetric production rate 

of the scFv, which lumps the synthesis and hydrolysis in the same kinetic term. 

We have investigated the optimal hybrid structures and concluded that the two best shallow 

and deep hybrid structures previously identified for the Lee & Ramirez case study (namely 

the shallow structure with 10 nodes in the hidden layer and the deep 5x5x5 structure) also 

apply for the Pichia pastoris case study (results not shown). The number of parameters in 

both the shallow and deep models is the same, namely 123. The shallow hybrid structure was 

trained with the traditional method (LM+CV+tanh+direct, 10 repetitions with random 

weights initialization from the uniform distribution) whereas the deep hybrid structure was 

trained with the new method (ADAM+SR+ReLU+semidirect, weight dropout probability of 

0.5, minibatch probability of 0.9 and no repetitions). Eight reactor experiments were used for 

training-validation (validation data points were obtained by adding gaussian noise to the 

training data points as in the Lee & Ramirez case study) and just one experiment for testing. 

All possible training-validation/testing permutations were evaluated. The overall results are 

shown in Table 3 where each row represents a different training-validation/testing permuta-

tion: 

Table 3. Comparison of deep and shallow hybrid models for the pilot reactor MUT+ Pichia pastoris dataset. Each 

row represents a hybrid model obtained by training over a different training/testing data permutation (Test batch 
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ID refers to the batch used for testing while the remaining 8 batches were used for training/validation). Shallow 

hybrid models had tanh activation function and were trained by the traditional non-deep method (LMM algorithm 

+ CV + indirect sensitivities + 10 repetitions and only the best result is kept). Deep hybrid models used the ReLU 

activation function and were trained by the novel method (ADAM + SR + semidirect sensitivities + no repetitions).   

Test batch 

ID 

Model type Training 

WSSE 

(noisy) 

Testing 

WSSE 

(noisy) 

AICc CPU time 

F037 Shallow 10 2.18 2.58 664 19560 

Deep 5x5x5 1.79 2.13 587 13980 

F044 Shallow 10 2.42 3.94 700 46440 

Deep 5x5x5 2.14 3.73 633 19980 

F048 Shallow 10 2.01 2.55 626 15060 

Deep 5x5x5 1.96 2.28 618 12000 

F061 Shallow 10 2.65 4.69 738 22860 

Deep 5x5x5 1.98 4.05 620 14520 

F066 Shallow 10 2.54 2.82 722 13680 

Deep 5x5x5 1.59 1.86 542 9660 

F007  Shallow 10 2.79 4.13 752 23640 

Deep 5x5x5 2.24 2.98 663 13320 

F009 Shallow 10 2.82 4.72 754 30180 

Deep 5x5x5 2.62 3.76 730 12480 

F018 Shallow 10 2.48 3.28 710 15900 

Deep 5x5x5 2.31 2.67 684 10200 

F072 Shallow 10 3.15 4.85 791 26100 

Deep 5x5x5 3.01 3.98 775 14820 
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Sum Shallow 10 23.04 33.6 6457 213420 

Deep 5x5x5 19.64 27.4 5852 120960 

 

 As an illustrative example, Figure 9 shows the measured and predicted dynamic profiles of 

biomass and product for the case of experiment F66 used for testing:  

 

Figure 9. Prediction of the dynamic profiles of observable variables (biomass-X, and product–scFv) by the shallow 

(10) hybrid model and by the deep (5x5x5) hybrid model for the test batch F066 of the MUT+ Pichia pastoris pilot 

data set. Asterisks represent observations and respective  standard deviation. The red line represents the predic-

tions of the shallow hybrid model. The green line represents the prediction of the deep hybrid model.  The shallow 

hybrid model used the tanh activation function and was trained by the traditional non-deep method (LMM algo-

rithm + CV + indirect sensitivities + 10 repetitions and only the best result is kept). The deep hybrid model used 

the ReLU activation function and was trained by the novel method (ADAM + SR + semidirect sensitivities + no 

repetitions).  

The key conclusions to be taken is that both the training and testing WSSEs were lower for 

the deep hybrid structure in relation to the shallow structure, in all data partitions tested 

without exception. The AICc criteria also points to the same conclusion. The differences be-

tween the dynamic profiles of biomass and scFv are clearly visible in Figure 9. The predicted 

final scFv titer by the shallow hybrid model is 17.5% below the experimental value whereas 

the deep hybrid model overestimated the experimental value by only 4.2%. Taking all data 

partitions together (last row in Table 3), the average training WSSE decreased by 14.8% 

whereas the average testing WSSE decreased by 18.4% for the deep hybrid structure in rela-

tion to the shallow hybrid structure. Moreover, the average CPU time decreased by 43.4% 

when applying the deep methodology in comparison to the standard methodology.  
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3.2.5 Conclusions 

In this chapter the general bioreactor hybrid model was revisited, and some recent deep 

learning techniques were investigated in the context of hybrid modeling. The effect of in-

creasing the depth of the neural network resorting to two different training approaches was 

investigated. The traditional approach uses the Levenberg-Marquardt optimization coupled 

with the indirect sensitivities, cross-validation, and tanh activation function. The novel hybrid 

deep approach uses the adaptive moment estimation method (ADAM), semidirect sensitivi-

ties, stochastic regularization and ReLU activation functions in the hidden layers. Two applica-

tions were addressed, one with a synthetic data set, the other with an experimental dataset 

collected in a pilot 50 L bioreactor. The key conclusion to be taken is that there is a clear ad-

vantage of adopting hybrid deep models both in terms of predictive power and in terms of 

computational cost in relation to the shallow hybrid case. In the Lee & Ramirez case study, 

the prediction error decreased 94.4% and the CPU decreased 29%. In the case of the P. pas-

toris case study, the prediction error decreased 18.4% and the CPU decreased 43,3%. The 

ADAM method coupled with stochastic regularization shows two significant advantages. First, 

it is practically insensitive to weight initialization thereby eliminating the need for training 

repetitions. Second, the stochastic nature of the method is less sensitive to experimental 

noise, eliminating the need for cross-validation. Lastly, the introduction of semidirect sensi-

tives further decreases the CPU time particularly for large deep structures as the number of 

sensitivity equations (that need to be integrated over time) becomes independent of the 

number of hidden layers. 
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4  

 

HYBRID DEEP MODELLING OF A GS115 

(MUT+) PICHIA PASTORIS CULTURE 

This chapter is based on the publication: Pinto, J., Ramos, J. R., Costa, R. S., & Oliveira, R. 

(2023). Hybrid Deep Modeling of a GS115 (Mut+) Pichia pastoris Culture with State–Space 

Reduction. Fermentation, 9(7), 643. 

4.1 Introduction 

Many biomanufacturing companies are currently investing in digitalization tools such as big 

data analytics and digital twins (Udugama et al. 2021). Big data analytics applies artificial in-

telligence techniques on large collections of both structured and unstructured biological and 

process data. Such large volumes of heterogeneous data are processed by machine learning 

techniques such as artificial neural networks, deep learning, support vector machines, ran-

dom forest, and many others, to extract valuable process insights (Yang et al. 2023). Digital 

Twins (DT) rely on high-fidelity mathematical models with different levels of integration with 

the physical process. A fully-fledged DT applies a mathematical model that receives infor-

mation from the physical process in real-time and also manipulates the process in real time 

(Udugama et al. 2021, Appl et al. 2021). In its simplest form, a DT consists of a thoroughly 

validated mathematical model with historical data that is able to produce high-fidelity simu-

lations of the physical process thus allowing to conduct in silico experiments in replacement 

of the physical process (Lukowski, Rauch, and Rosendahl 2019). 

Many authors are considering the combination of mechanistic models with machine learning 

in hybrid modeling workflows for bioprocess digitalization (Badr and Sugiyama 2020). Hybrid 

modeling naturally pops up as a digitalization framework as it allows to integrate prior mech-
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anistic knowledge with large volumes of process data in a straight-forward way. Hybrid mod-

eling is a well-established framework in process systems engineering (von Stosch et al. 2014) 

and in bioprocessing (Agharafeie et al. 2023). It has covered a wide range of biological sys-

tems applications for process measurement, monitoring, optimization, and control, which are 

the basic building blocks of a bioprocess DT (Udugama et al. 2021).  

The P. pastoris yeast has evolved to an industrial workhorse for microbial production of re-

combinant proteins (De Brabander et al. 2023). However, only a few studies have addressed 

hybrid modeling of P. pastoris cultures. Ferreira et al. (2014) developed a simple hybrid mod-

el of P. pastoris GS115 (Mut+) based on a shallow feedforward neural network (FFNN) com-

bined in series with macroscopic material balance equations. The shallow FFNN described the 

specific growth rate and specific product synthesis rate as a function of reactor pH, tempera-

ture and volumetric methanol feeding rate. An iterative batch-to-batch control scheme was 

applied to optimize methanol feeding, pH and temperature based on the hybrid model re-

sulting in a fourfold titer improvement after 4 optimization cycles. Brunner et al. (2020) de-

veloped a soft sensor based on a hybrid model that combined a carbon balance model 

(mechanistic) and a multilinear regression model (statistical) for the prediction of biomass 

concentration in real time. The software sensor was able to adapt automatically between 

glycerol and methanol feeding. Pinto et al. (2022) have recently applied a deep learning 

technique to a hybrid model of a P. pastoris process. FFNNs networks with 2-3 hidden layers 

were combined in series with material balance equations and trained with a deep learning 

technique, namely the adaptive moment estimation method (ADAM), semidirect sensitivity 

equations and stochastic regularization. The main outcome was an increase in the prediction 

accuracy by 18.4% and a decrease of CPU training time by 43.4% in comparison to shallow 

hybrid modeling.  

Previous P. pastoris hybrid modeling studies have considered only a few state variables due 

to the very simple culture medium employed. Indeed, P. pastoris is capable of growing in a 

chemical defined media containing a carbon source (e.g. glycerol and/or methanol (Met)), a 

nitrogen source (ammonium (NH4)) and a few essential inorganic elements (Zhang and 

Greasham 1999). However, inorganic elements also play an important role in cell physiology. 

Magnesium (Mg), calcium (Ca), potassium (K), copper (Cu), strontium (Sr), iron (Fe), zinc (Zn), 

manganese (Mn) and chloride (Cl) were reported to be essential elements for yeast (Spencer 

1997). None of the previous hybrid modeling studies have analyzed the effect of inorganic 

elements dynamics on recombinant protein production by P. pastoris. Metal ions serve as 

structural components of proteins and metalloenzymes and as structural elements of enzyme 



 51 

active sites (Plantz et al. 2007). Magnesium (Mg), Mn and Ca are cofactors of several enzymes 

present in yeast, such as ATPases (Willsky 1979), (Okorokov and Lehle 1998), aspartases 

(Depue and Moat 1961) and glycolytic enzymes (Walker and Maynard 1997). Potassium(K) 

and Na are key elements in the regulation of electrochemical gradients in yeast (Arino, Ra-

mos, and Sychrova 2010) (Martinez-Munoz and Pena 2005). The inclusion of Zn, Co, and Mn 

in the P. pastoris medium was shown to affect the quality of the final product, namely the 

activity of a recombinant phospholipase C (PLC) (Seo and Rhee (2004)).  

In this chapter, a hybrid deep modeling framework was applied to describe the cultivation 

dynamics of a GS115 (Mut+) P. pastoris strain expressing a scFv fragment. Cultivation data 

acquired in a pilot 50 L bioreactor in Basal Salts Media (BSM) (Invitrogen) under different 

conditions of methanol feeding, temperature and pH were analyzed. The BSM medium is 

probably the most frequently used medium for high cell density P. pastoris cultivation. It con-

tains high concentrations of phosphorus (P), sulfur (S), Ca, Mg, and K to support high cell 

density (Brady et al. 2001, Cereghino et al. 2002, Damasceno et al. 2004). Precipitation of BSM 

salts has been however reported during BSM handling at pH higher than 5.0 (Cos et al. 2006, 

Ghosalkar, Sahai, and Srivastava 2008). In this study, the inorganic elements were assayed 

during cultivation by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). A 

hybrid deep model was developed to describe process dynamics as a function of control in-

puts. A key difference from previous studies (Pinto et al. 2022) is the inclusion of inorganic 

elements dynamics in the state-space vector. Since the mechanisms underlying the biological 

kinetics of inorganic elements are not well understood, the hybrid mechanistic/FFNN ap-

proach was adopted. 

4.2 Materials and Methods 

4.2.1 Strain, Medium and Inoculum Preparation 

A genetically engineered GS115 (Mut+) P. pastoris strain expressing a scFv was used in this 

study. The Basal Salts Media (BSM) was used during cell stocking, in cryogenic vials at −80°𝐶, 

and all cultivation steps (pre-inoculum, inoculum and bioreactor). The BSM solution was for-

mulated and sterilized at 121°C for 30 minutes containing: 𝐻3𝑃𝑂4 85%, 26.70 ml/L, 

𝐶𝑎𝑆𝑂4. 2𝐻2𝑂 0.93 g/L, 𝐾2𝑆𝑂418.20 g/L, 𝑀𝑔𝑆𝑂4. 7𝐻2𝑂 14.90 g/L, 𝐾𝑂𝐻 4.13 g/L and glycerol 

40.00 g/L. The Pichia Trace Metal (PTM1) solution was formulated as follows: 𝐶𝑢𝑆𝑂4. 5𝐻2𝑂 

6.00 g/L, 𝑁𝑎𝐼 0.08 g/L, 𝑀𝑛𝑆𝑂4. 𝐻2𝑂 3.00 g/L, 𝑁𝑎2𝑀𝑜𝑂4. 2𝐻2𝑂 0.20 g/L, 𝐻3𝐵𝑂3 0.02 g/L, 
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𝐶𝑜𝐶𝑙2. 6𝐻2𝑂 0.50 g/L, 𝑍𝑛𝐶𝑙2 20.00 g/L, 𝐹𝑒𝑆𝑂4. 7𝐻2𝑂 65.00 g/L, 𝐻2𝑆𝑂4 5.00 ml/L and biotin 

0.20 g/L. The PTM1 solution was filter sterilized, using a 0.22 mm pore size filter, and added 

to the temperature sterilized BSM solution at a volumetric ratio of 4.35 ml.L‑1. The pH of the 

BSM solution was adjusted to pH=5.0 with 25% ammonium hydroxide. The pre-inoculum was 

composed of 40 mL BSM pH 5.0 and 1 mL of cell stock. The pre-inoculum was incubated at 

30°C at 150 rpm for 3 days. The bioreactor inoculum consisted of 10 mL of pre-inoculum and 

750 mL BSM pH 5.0.  It was incubated for 3 days at 30°C and at 150 rpm. 

4.2.2 Bioreactor Operation 

A Lab Pilot Fermenter Type LP351, 50 L, with 42 L working volume (Bioengineering, Wald, 

Switzerland) was used in all bioreactor experiments. The initial bioreactor volume was 15L of 

BSM pH 5.0. The aeration rate and overhead pressure were 1800 L.ℎ−1and 100 mbar respec-

tively at the beginning of operation. The cultivation started at 300 rpm stirrer speed. The re-

actor was inoculated with 750 mL of pre-inoculum. Then the process undergoes two distinct 

phases using two distinct substrates. The first phase is the glycerol batch/fed-batch (GBFB) 

phase. It starts in batch mode for approximately 30 h with an initial glycerol concentration of 

40 g/L. Once the glycerol is nearly depleted, the glycerol fed-batch starts with an exponential 

feeding profile for approximately 12 hours to increase cell density. The cell density reached at 

the end of the GBFB phase varied depending on the glycerol feeding program. The second 

phase starts with methanol induction by the addition of 20 g/h to 100 g/h (depending on 

experiment) of methanol for 5 hours. A smooth transition between glycerol and methanol is 

applied to minimize the adaptation time to methanol metabolization. It then followed a 

methanol fed-batch (MFB) phase with a feed program that varied in the experiments. The 

temperature and pH were controlled to different set points depending on the experiment. It 

was not possible to control temperatures below 23.6°C due to heat transfer limitation. The 

pH was controlled with the addition of ammonium hydroxide 25%. The dissolved oxygen 

(pO2) starts at ~100% at the inoculation point and then decreases as biomass grows. Once it 

reaches 50% of saturation, a PID (Proportional-Integral-Derivative) controller is started to 

manipulate the stirrer between 300 to 1000 rpm and then the pressure between 100 to 800 

mbar in order to regulate pO2 to a constant 50% set point. Further details on the experi-

mental protocol are provided elsewhere (Ferreira et al. (2014)). 
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4.2.3 Analytical Techniques 

Samples were withdrawn from the bioreactor at regular intervals for off-line analysis at a fre-

quency of 4-6 samples per day. The optical density was measured in a spectrophotometer at 

600nm (OD600) after appropriate dilution of the broth ensuring a value within the linear 

range (<0.6). For the determination of wet cell weight per unit volume (gWCW/L), samples of 

the culture broth were taken in triplicate and centrifuged at 15000 rpm for 10 min at 4°C. The 

centrifuged cell pellets were weighted to determine the sample wet cell weight (WCW). The 

secreted scFv was assayed by Enzyme-Linked Immuno-sorbent Assay (ELISA) according to the 

protocol described in Ferreira et al. 2012. The concentration of inorganic elements (P, K, Mg, 

S and Ca) in supernatant samples were assayed by inductively coupled plasma-atomic emis-

sion spectroscopy (ICP-AES). The conditions of the ICP-AES system were the following: Argon 

with the flow 15 L. 𝑚𝑖𝑛−1, temperature between 5700–10000°C, pressure of 3 bar and poten-

cy of the plasma equal to 1 KW. 

4.2.4 Hybrid Deep Model with State-Space Reduction 

Considering a perfectly mixed fed-batch bioreactor, the macroscopic material balance equa-

tions take the following state-space form (Equation 35): 

Equation 35. Perfectly mixed fed-batch bioreactor state-space equation 

𝑑𝐶

𝑑𝑡
= 𝑟 + 𝐷𝐶𝑖𝑛 −𝐷𝐶 

with 𝐶 a (𝑚 × 1) vector of state variables (concentrations in the liquid phase), 𝑟 a (𝑚 × 1) 

vector of volumetric reaction rates,  𝐷 =
𝐹

𝑉
 the dilution rate, 𝐹 the feed rate to the bioreactor, 

𝑉 the liquid volume inside the bioreactor, and 𝐶𝑖𝑛 a (𝑚 × 1) vector of concentration in the 

feed stream to the bioreactor. The 𝑚 = 9 concentrations included in the state vector, C, were 

those of biomass (X), recombinant protein (scFv), methanol (Met), ammonium ion (𝑁𝐻4), Mg, 

K, Ca, P and S.  

The (𝑚 × 1) vector of cumulative reacted amount of each compound at a given time 𝑡, 𝐼𝑅(𝑡), 

is defined as the time integral of the respective reaction rates as follows (Equation 36):  

Equation 36. Reacted mass definition. 

𝐼𝑅(𝑡) = ∫𝑟(𝜏)𝑉(𝜏)𝑑𝜏

𝑡

0
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By combining Equation 35 and Equation 36, 𝐼𝑅(𝑡) may be estimated from measured data of 

concentrations and culture volume (for simplicity we assume negligible sampling and bleed-

ing volume) as follows (Equation 37): 

Equation 37. Reacted mass estimation from measured concentrations and volume. 

𝐼𝑅(𝑡) = 𝐶(𝑡)𝑉(𝑡) − 𝐶(0)𝑉(0) − (𝑉(𝑡) − 𝑉(0))𝐶𝑖𝑛 

Using Equation 37, a transformed data matrix 𝐼𝑅 (with the same size as 𝐶) was computed for 

each fed-batch experiment with rows representing process time and columns the cumulative 

reacted amount of compounds (X, scFv, Met, NH4, Mg, K, Ca, P and S). The 𝐼𝑅 matrices of all 

fed-batch experiment were stacked vertically in a single matrix and then normalized by divid-

ing each column by the respective absolute maximum value, 𝐼𝑅𝑚𝑎𝑥 (Equation 38): 

Equation 38. Reacted mass normalization. 

𝐼𝑅𝑛𝑜𝑟𝑚 =  𝐼𝑅 ⊘  𝐼𝑅𝑚𝑎𝑥 

with ⊘ the Hadamard division. The data matrix 𝐼𝑅𝑛𝑜𝑟𝑚 was decomposed in a matrix of 

scores, 𝑆𝑐𝑜, and a matrix of coefficients, 𝐶𝑜𝑒𝑓𝑓𝑛𝑜𝑟𝑚, by PCA using the alternating least-

squares algorithm (MATLAB function “pca” with option ALS) (Equation 39). This step was per-

formed with the objective of data compression by choosing a number of principal compo-

nents 𝑁𝑃𝐶𝐴 < 𝑚. 

Equation 39. PCA decomposition of normalized reacted mass 

𝐼𝑅𝑛𝑜𝑟𝑚 = 𝑆𝑐𝑜 × 𝐶𝑜𝑒𝑓𝑓𝑛𝑜𝑟𝑚
𝑇  

 

A denormalized form of Equation 39 was obtained by multiplying with 𝐼𝑅𝑚𝑎𝑥 (Equation 40): 

Equation 40. Denormalized PCA decomposition  

𝐼𝑅 = 𝑆𝑐𝑜 × 𝐶𝑜𝑒𝑓𝑓
𝑇 

𝐶𝑜𝑒𝑓𝑓 =  𝐶𝑜𝑒𝑓𝑓𝑛𝑜𝑟𝑚 𝐼𝑅𝑚𝑎𝑥 

with  the Hadamard multiplication.  

Recognizing that the IR is obtained by the time integral of reaction rates (Equation 36) then 

the compression of IR data according to Equation 40 with 𝑁𝑃𝐶𝐴 < 𝑚 has implicit a reduction 

of the volumetric reaction rates, 𝑟, to 𝑁𝑃𝐶𝐴 linearly independent reaction rates,  𝑟𝑍 (Equation 

41): 

Equation 41. Correlation between the volumetric reaction rates and the NPCA reaction rates 

𝑟 = 𝐶𝑜𝑒𝑓𝑓 ×  𝑟𝑍 
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Equation 35 was finally transformed in a reduced state-space equation by replacing the vol-

umetric reaction rates, 𝑟, in Equation 35 by Equation 41 and then by multiplying each term by 

the pseudo-inverse of 𝐶𝑜𝑒𝑓𝑓, resulting in the following reduced state-space model (Equation 

42): 

Equation 42. Reduced state-space model equations 

𝑑𝑍

𝑑𝑡
= 𝑟𝑍 + 𝐷𝑍𝑖𝑛 − 𝐷𝑍 

𝑍 = 𝑝𝑖𝑛𝑣(𝐶𝑜𝑒𝑓𝑓) × 𝐶 

𝑍𝑖𝑛 = 𝑝𝑖𝑛𝑣(𝐶𝑜𝑒𝑓𝑓) × 𝐶𝑖𝑛 

The reduced state space-model is then completed with the linear measurement model 

(Equation 43): 

Equation 43. Linear measurement model 

𝐶 = 𝐶𝑜𝑒𝑓𝑓  × 𝑍 

Furthermore, given that methanol feeding has a cumulative toxic effect in the metabolism of 

P. pastoris, an ODE that confers intracellular memory was added to the model (Equation 44): 

Equation 44. Intracellular memory ODE 

𝑑𝑆𝐻

𝑑𝑡
= −𝑟𝑆𝐻𝑆𝐻 

with 𝑆𝐻 the shock factor with initial value 𝑆𝐻(0) = 1 and 𝑟𝑆𝐻 the rate of variation of the shock 

factor. The shock factor is thus an internal unmeasured state variable. A similar ODE has been 

proposed by (Lee and Ramirez, 1992). 

The reactions rates are described by a FFNN with 𝑛ℎ hidden layers as follows (Equation 45): 

Equation 45. FFNN model for the GS115 (Mut+) Pichia pastoris model with state-space reduction 

𝐻0 = [𝑍 ⊘ 𝑍𝑚𝑎𝑥, 𝑆𝐻/𝑆𝐻𝑚𝑎𝑥, 𝑇/𝑇𝑚𝑎𝑥, 𝑝𝐻/𝑝𝐻𝑚𝑎𝑥]
𝑇 

𝐻𝑖 =   𝜎 (𝑤𝑖 ∙ 𝐻𝑖−1 + 𝑏𝑖), 𝑖 = 1,… , 𝑛ℎ 

[𝑟𝑍, 𝑟𝑆𝐻]
𝑇 = 𝑤𝑛ℎ+1 ∙ 𝐻𝑛ℎ + 𝑏𝑛ℎ+1 

 

The input layer 𝑖 = 0 receives the information of the reduced state space vector, 𝑍, internal 

state, 𝑆𝐻, cultivation temperature, T and pH (𝑍𝑚𝑎𝑥, 𝑆ℎ𝑚𝑎𝑥, 𝑇𝑚𝑎𝑥 and 𝑝𝐻𝑚𝑎𝑥 are the absolute 

maximum of 𝑍, 𝑆𝐻, 𝑇 and 𝑝𝐻 respectively). Each hidden layer 𝑖 computes a vector of outputs, 

𝐻𝑖, from a vector of inputs, 𝐻𝑖−1, which are the outputs of the preceding layer. The transfer 

function of hidden nodes, 𝜎(. ), was always the rectified linear unit ReLU. The output layer 

computes the reaction rates in the reduced reaction space. The parameters 𝑤 =

{𝑤1, 𝑤2, … , 𝑤𝑛ℎ+1} are the nodes connections weights and 𝑏 = {𝑏1, 𝑏2, … , 𝑏𝑛ℎ+1} the bias 
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weights. The resulting hybrid model structure with state-space reduction is represented in 

Figure 10: 

 

Figure 10. Hybrid model structure with state-space reduction for the methanol fed-batch phase (MFB) of the P. 

pastoris GS115 (Mut+) fed-batch process. The kinetic rates are defined nonparametrically by a deep FFNN. Biore-

actor dynamics are defined parametrically by macroscopic material balance equations in a perfectly mixed vessel. 

The observable state variables are the concentrations of 𝑚=9 compounds, 𝐶 =

[𝑋, 𝑠𝑐𝐹𝑣,𝑀𝑒𝑡, 𝑁𝐻4,𝑀𝑔, 𝐾, 𝐶𝑎, 𝑃, 𝑆]𝑇. The compressed internal state, 𝑍, depends on the number of columns of the 

PCA coefficients matrix, 𝐶𝑜𝑒𝑓𝑓. The PCA coefficients are obtained by unsupervised learning using data of cumula-

tive reacted amount. The FFNNs weights are trained with a deep learning method based on ADAM, stochastic 

regularization and semidirect sensitivity equations as described by (Pinto et al. 2022). 

All developed hybrid models were focused on the production MFB phase. The hybrid models 

were trained with the deep learning method proposed by (Pinto et al. 2022) based on the 

ADAM method adapted to dynamic hybrid models. Briefly, the MFB phase data were por-

tioned in a training and a testing data subset (more details in section 4.3). The network 

weights were optimized on the training subset only (minimization of the weighted mean 

square error) using the ADAM algorithm and stochastic regularization. The objective function 

gradients were computed dynamically by the semidirect sensitivity equations method. For 

more details the reader is referred to (Pinto et al. 2022). Two different metrics were adopted 

to compare the hybrid models. The weighted mean square error (WMSE) was computed as 

(Equation 46): 

Equation 46. Objective function for the reduced state-space models 

𝑊𝑀𝑆𝐸 =
1

𝑇
 ∑

(𝑐𝑡
∗ − 𝑐𝑡)

2 

𝜎𝑡
2

𝑇

𝑡=1

 

with 𝑇 the number of data points, 𝑐𝑡
∗ the observed concentration at time 𝑡, 𝑐𝑡 the predicted 

concentration at time 𝑡 and 𝜎𝑡 the standard deviation of measurement at time 𝑡. The WMSE 
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was minimized during the training and was also calculated for the test partition at the end of 

the training. The second metric was the Akaike Information Criterion with second order bias 

correction (AICc): 

Equation 47. Akaike Information Criterion with second order bias correction 

𝐴𝐼𝐶𝑐 = 𝑇 𝑙𝑛(𝑊𝑀𝑆𝐸) + 2 𝑛𝑤 +
2 𝑛𝑤 ( 𝑛𝑤 +  1 )

𝑇 −  𝑛𝑤 −  1
 

The AICc was computed on the training partition only and is used to compare hybrid models 

of different complexity (e.g. different number of network parameters, 𝑛𝑤).  

All the code was developed in-house and implemented in MATLAB on a computer with In-

tel(R) Core(TM) i5-8265U CPU @ 1.60 GHz 1.80 GHz, and 24 GB of RAM. The CPU time of the 

different tests performed were computed as the difference between the result of the 

“cputime” function in MATLAB. The source code and an example hybrid model implementa-

tion for the case study is accessible at: https://github.com/sbegroup-nova/HYBMOD. 

4.3 Results and Discussion  

4.3.1 Cultivation Experiments 

Nine 50 L fed-batch cultivations were performed with varying pH, temperature and feeding 

profiles of glycerol and methanol in order to analyze the effect of reactor operational param-

eters on process dynamics. The temperature and pH were always the same in the GBFB phase 

(30°C and pH 5.0, respectively). In the MFB phase, the temperature levels were 23.6°C or 30°C 

whereas the pH levels were 4.0, 5.0, 6.5 or 7.0. Two experiments (A and E) were performed at 

baseline conditions (T=30°C and pH 5.0 according to Invitrogen guidelines). The overall re-

sults are summarized in Table 4. The final biomass concentration varied between 428.1±3.8 

and 598.1±7.1 gWCW/L (40% variation) whereas the endpoint scFv titer varied almost tenfold 

(between 5.9±0.4 and 54.4±1.3 mg/L). As discussed below, the experiments A and F with the 

lowest and highest endpoint scFv titer were selected for testing while the remaining 7 exper-

iments (B, C, D, E, G, H, and I) were selected for training the hybrid models. The prod-

uct/biomass yield varied more than sixfold between 42 and 243.3 µg of scFv per unit of 

gWCW produced in the MFB phase. Experiment H, performed at 30°C and pH 6.5, resulted in 

the highest scFv yield (243.3 µg of scFv per unit of gWCW produced). Experiment I was per-

formed at similar conditions to experiment H except for the higher pH 7.0. This experiment 
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delivered one of the lowest yields (45.7 µg of scFv per unit gWCW produced) denoting a very 

significant effect of pH on the process kinetics. 

 

Table 4. Summary of 50 L fed-batch cultivation experiments performed and respective production yields. In the 

glycerol batch/ fed-batch phase (GBFB) the glycerol feeding program varied but the temperature and pH were 

30°C and pH 5.0 in all cases. Temperature, pH, and methanol feeding in the methanol fed-batch phase (MFB) 

varied from experiment to experiment. 

Exp. 

Glycerol batch/fed-batch 

(GBFB) 
Methanol fed-batch (MFB) 

t (h) 
Glycerol 

feed (kg) 

Final X 

(gWCW/L) 
t (h) T(°C) pH 

Methanol 

feed (kg) 

Final X 

(gWCW/L) 

Final scFv 

(mg/L) 

Yield scFv/X 

(µg/gWCW) 

A 46.8 1.285 316.9±3.2 53.7 30.0 5.0 7.516 457.3±3.8 5.9±0.4 42.0 

B 76.7 2.821 447.3±2.7 50.5 23.6/30.0* 5.0 9.540 585.0±0.5 15.6±2.2 113.3 

C 47.3 1.264 295.4±1.1 98.0 23.6 5.0/7.0** 14.794 587.7±2.2 16.1±2.5 55.1 

D 50.3 1.218 268.1±1.6 95.5 23.6 5.0/7.0*** 19.002 573.1±1.1 14.3±1.8 46.9 

E 53.4 1.285 301.5±2.7 70.5 30.0 5.0 13.338 434.2±3.8 11.9±1.3 89.7 

F 48.3 0.586 164.2±6.0 136.7 23.6 4.0 23.602 598.1±7.1 54.4±1.3 125.4 

G 48.0 1.031 274.2±10.3 102.0 23.6 4.0 9.808 479.6±1.6 30.7±0.6 149.5 

H 47.3 1.037 259.6±10.3 105.5 30.0 6.5 12.189 475.4±3.3 52.5±8.6 243.3 

I 46.0 1.034 244.2±22.3 103.0 30.0 7.0 10.488 428.1±3.8 8.4±0.5 45.7 

(*) – transition occurred at t=121.2 h; (**) – transition occurred at t=123.0 h; (***) – tran-

sition occurred at t=125.0 h. 

4.3.2 Inorganic Elements Dynamics 

The dissolved concentration of inorganic elements Ca, Mg, K, S and P were assayed in the 

supernatant by ICP-AES during the MFB phase. Figure 11 shows the percentual variation of 

dissolved concentrations over time. These data show that in a typical BSM P. pastoris cultiva-

tion, run at 30°C and pH 5.0 according to Invitrogen guidelines (experiments A and E), Ca and 

S tend to be in excess whereas K, P and Mg tend to deplete sooner. In general, Mg tends to 

deplete first as seen in experiments C, D, H, and I. (Cos et al. 2006) reported the precipitation 

of BSM salts at pH higher than 5.0 and the same was observed in the present study (Figure 

2). Precipitation occurred in experiments H and I, which were performed at pH 6.5 and 7.0 

respectively during the MFB phase. The shift from pH 5.0 to 6.5 or 7.0 caused severe precipi-

tation of Mg and Ca salts as evidenced by the sudden variation of the respective dissolved 
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concentrations, close to -100% in the case of Mg (e.g. complete depletion) and close to -80% 

in the case of Ca. The precipitation of other salts also occurred but not as severely. In experi-

ments C and D, a pH shift from pH 5.0 to 7.0 occurred in the middle of MFB phase (at 123.0 h 

and 125.0 h respectively). This caused some precipitation of salts in both experiments. In the 

experiment that reached the highest bio-mass concentration (598.1 g-WCW.L-1, in experi-

ment F), Mg and K depleted while P almost depleted. In the experiment that reached the 

lowest biomass concentration (428.1 g-WCW.L-1 in experiment I), salts precipitation occurred 

early in the culture, caused by the pH shift to 7.0 at the methanol induction point. Overall, 

these data suggest a strong correlation between pH, growth kinetics and salts precipitation. 

There seems to be a clear challenge to optimize the salts concentrations in the medium for 

high cell density P. pastoris. But even if the medium composition is optimized e.g. by statisti-

cal design of experiments, the salts concentrations will significantly decrease as cells grow 

over time. The salts dynamics may strongly affect the growth and protein expression kinetics 

in different phases of the process. Other factors such as temperature and methanol feeding 

rate may also play an important role. Understanding the combined dynamic effects of all Crit-

ical Process Parameters (CPPs) requires in-depth data analysis using a suitable dynamic mod-

eling framework as discussed next. 
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Figure 11. Percentual variation of dissolved inorganic elements concentrations (Ca, K, Mg, P and S) determined 

from ICP-AES measurements for each reactor experiment A-I (Table 4). The percentual variation of concentration 

was calculated as 
𝑐𝑖(𝑡)−𝑐𝑖(0)

𝑐𝑖(0)
× 100 with 𝑐𝑖(𝑡) the concentration of element 𝑖 at cultivation time 𝑡. 

4.3.3 PCA of Cumulative Reacted Amount 

Data analysis started with the computation of the cumulative reacted amount over time, 

𝐼𝑅(𝑡), of the 9 bioreactor compounds (X, scFv, Met, NH4, Ca, K, Mg, P and S) for each experi-

ment (A-I, Table 4) using the previously described method. In the case of Met and NH4, the 

variation of concentrations in the liquid were assumed to be negligible in comparison to the 

cumulative amount metabolized by the cells. In the case of inorganic elements, it was not 
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possible to distinguish between cellular uptake and precipitation/dissolution caused by the 

varying reactor conditions. The computed cumulative reacted amount thus aggregated both 

kinetic terms in the case of inorganic elements.  

The IR data were normalized column wise by dividing with the maximum absolute value of 

each column. The normalized data was subject to PCA for a maximum number of principal 

components equal to 8 (𝑁𝑃𝐶𝐴 = 8). The data were partitioned into 7 fed-batch experiments 

(B, C, D, E, G, H, and I) for the PCA and 2 experiments (A and F) for validation. The validation 

experiments corresponded to the extreme low and high scFv endpoint titer experiments. The 

overall results are shown in Figure 3. The resulting 9×8 coefficients matrix (Equation 48), with 

rows representing bioreactor compounds and columns the PCs, was used in the state-space 

reduction step described in the following section. 

Equation 48. PCA coefficients matrix 

𝐶𝑜𝑒𝑓𝑓𝑛𝑜𝑟𝑚 =

[
 
 
 
 
 
 
 
 
0.32 0.38 0.13 0.03 0.05 0.35 0.65 0.43
0.21 0.02 0.22 0,68 −0,60 0.13 −0.24 0.06
−0.42 0.63 −0.17 −0.19 −0.20 0.45 −0.32 −0.04
−0.19 −0.16 0.85 −0.12 0.24 0.34 −0.14 −0.04
−0.55 0.33 0.09 0.50 −0.28 −0.35 0.23 −0.04
−0.32 −0.09 0.18 −0.10 −0.25 −0.37 0.01 0.60
−0.11 0.08 0.22 −0.43 −0.61 −0.25 0.34 −0.27
−0.34 −0.37 −0.14 0.21 −0.14 0.36 0.46 −0.38
−0.33 −0.41 −0.27 −0.04 −0.09 0.31 −0.02 0.49 ]

 
 
 
 
 
 
 
 

 

 

Figure 12A shows that 2 to 4 principal components (PC) cumulatively explain 90.3%, 94.5% 

and 97.0% of data variance. These results evidence strong linear dependencies between the 

biochemical transformations involving the 9 bioreactor compounds. The PCA coefficients 

shown in Figure 12B (blue dots and blue lines) suggest a very strong correlation between 

biomass production, methanol consumption, NH4 consumption and K consumption along 

the directions of PC-1 and PC-2, which together explain 90.3% of data variance. The PC-1 and 

PC-2 are mainly associated with cell growth metabolic processes (all other PCs have low bio-

mass coefficients) with PC-2 showing a minor contribution to scFv synthesis (low scFv coeffi-

cient). The scFv synthesis is mainly explained by PC-1, PC-3, and PC-4. The scFv synthesis ap-

pears positively correlated with cell growth along the direction of PC-1 (Figure 12B). Howev-

er, in the biplots of PC-3 (4.2% explained variance, Figure 12C) and 4 (2.5% explained vari-

ance, Figure 12D), the coefficients of scFv and biomass are large and negligible, respectively, 

suggesting cell growth dissociated product synthesis. The interpretation of the inorganic el-

ements coefficients is more difficult due to the occurrence of precipitation. The coefficients of 

PC-1 (75.6% explained variance) suggest that all inorganic elements are consumed for cell 
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growth with S showing the least significant contribution. The elements Ca and Mg, which 

precipitated more severely, are orthogonal to X along the direction of PC-1 and PC-2 (Figure 

12B) suggesting a low correlation with biomass growth. The S also appears orthogonal to X 

denoting a low correlation with biomass growth. Biomass growth seems to be controlled 

mainly by Met, NH4 and K availability and to be practically insensitive to Ca, Mg and S avail-

ability. As for the product synthesis, the main contributions are from PC-1 (75.6% explained 

variance) and PC-3 (4.2% explained variance). In the case of PC-1 the conclusions already 

taken for biomass growth hold for scFv synthesis. As for the PC-3, the coefficients show again 

a low correlation with the Ca and Mg (direction of PC3 in Figure 12C). On the other hand, 

scFv appears positively correlated with K, S and P along the direction of PC -3 suggesting that 

excessive consumption of these elements (e.g. lower reaction rates) is associated with a lower 

scFv synthesis rate. This interpretation is only qualitative as the different PCs collectively con-

tribute to explain data variance. 
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Figure 12. PCA of normalized cumulative reacted amount data of X, Met, NH4, Ca, K, Mg, P and S for 9 fed-batch 

experiments. Each column was divided by the maximum absolute value of reacted amount among the 9 fed-batch 

experiments. The PCA algorithm was the alternating least-squares (MATLAB function “pca” with option ALS). Red 

points are scores of training data. Green points are scores of validation data. Blue dots and blue lines are coeffi-

cients. A: explained variance over number of principal components. B: scores and coefficients of principal compo-

nent 2 over principal component 2. C: scores and coefficients of principal component 3 over principal component 

1. D: scores and coefficients of principal component 4 over principal component 1. 

4.3.4 Hybrid Model Development 

For a quantitative analysis of all critical process parameters (CPPs), hybrid models were de-

veloped to describe process dynamics using the previously described state-space reduction 

method. The PCA coefficients matrix obtained in the previous section was used to transform 

the concentrations vector in a reduced Z state-vector by applying the transformations 

(Equation 42). 

Firstly, the effect of the state-space reduction on the hybrid model training and testing was 

investigated. Different hybrid models were developed by considering an increasing number 

of PCs, e.g. by taking an increasing number of columns of matrix Coeff. The same data parti-

tioning as for the PCA was adopted, namely 7 experiments were selected for training (B, C, D, 

E, G, H, and I) and 2 experiments were selected for testing (A and F). The number of hidden 

layers was 2 with 10 nodes each, which were kept the same in all tests performed. The train-

ing method was also the same in all tests performed (ADAM with 1000 iterations and default 
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hyperparameters, stochastic regularization with 80% minibatch size and 20% weights dropout 

and semidirect sensitivity equations). The overall results are presented in Table 5. The final 

training error systematically decreased with the number of PCs. The lowest training error was 

achieved with the original unreduced state-vector of concentrations. However, a clear mini-

mum in the test error is obtained for 5-6 PCs, which corresponds to a reduction of 40% and 

30% in the number of state variables (6 and 7 respectively). The number of FFNN weights 

increased with the number of PCs but the AICc criterion failed to discriminate the model with 

the highest predictive power, which was the model with 5 PCs reduction. 

Table 5. Effect of state-space reduction on the hybrid modeling results. The number of principal components was 

increased from 1 to 8 in the state space transformation defined by Equation 42. Seven fed-batch experiments 

were selected for training (B, C, D, E, G, H, and I) and 2 for testing (A and F). The training was performed with the 

ADAM algorithm with 1000 iterations and hyperparameters α=0.001, β1=0.9 β2=0.999 and η=1×10-7. Gradients 

were computed by the semidirect sensitivity equations. Stochastic regularization was applied with weights drop-

out of 0.2 and minibatch size of 0.8. The training was repeated only once with random weights initialization from 

the uniform distribution between -0.01 and 0.01. 

Number of 

principal 

components 

WMSE 

train 

WMSE 

test 
AICc 

CPU time 

(hh:mm:ss) 

Number of 

weights 

Cumulative 

explained 

variance (%) 

1 11.31 12.4 4380 02:19:00 182 72.25 

2 3.45 4.47 2490 02:25:00 203 89.94 

3 2.61 3.99 2090 02:20:00 224 95.24 

4 0.98 1.97 550 02:30:00 245 97.77 

5 0.59 1.18 -300 02:24:00 266 98.85 

6 0.50 1.21 -430 02:22:00 287 99.33 

7 0.37 1.40 -820 02:25:00 308 99.72 

8 0.32 1.42 -1110 02:20:00 329 99.91 

unreduced 0.30 1.42 -1100 02:24:00 350 100.00 

 

For both the unreduced and 5 PCs reduced hybrid models, it was further investigated the 

optimal size of the FFNN. Several architectures were investigated with 1 to 3 hidden layers 

and with varying number of nodes in the hidden layers. The same training/testing data parti-

tioning and training methods were adopted. Table 6 shows the results for the hybrid model 

with 5 PCs reduction. The best shallow hybrid structure had a single hidden layer with 13 

nodes and 201 parameters. The training and testing errors were 0.50 and 1.10 respectively. 

The best deep structure had 2 hidden layers with 13 nodes each and 383 parameters. The 
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final training error was the same as the shallow structure (0.50), but the test error was slightly 

lower (1.01). Nevertheless, given the lower model complexity reflected in the lower AICc val-

ue, the shallow structure with 13 hidden nodes was taken as the best hybrid model with 5 

PCs reduction. Table 7 presents the results for the unreduced hybrid model with varying 

FFNN sizes. The hybrid structure with 2 hidden layers 15×15 and 595 parameters stands out 

as the best model. It had a low training error (0.33), the lowest test error (1.35) and the lowest 

AICc value (-150). 

 

Table 6. Hybrid modeling results as a function of FFNN size for 5 principal components reduction (6 state varia-

bles). Seven fed-batch experiments were used to train the model (B, C, D, E, G, H, and I) and 2 experiments were 

used for testing (A and F). The training was performed with the ADAM algorithm with 1000 iterations and hy-

perparameters α=0.001, β1=0.9 β2=0.999 and η=1e-7. Gradients were computed by the semidirect sensitivity 

equations. Stochastic regularization was applied with weights dropout of 0.2 and minibatch size of 0.8. The train-

ing was performed only once with random weights initialization from the uniform distribution between -0.01 and 

0.01. 

Number of hidden 

nodes 
WMSE train WMSE test AICc 

CPU time 

(hh:mm:ss) 

Number of 

weights 

5 1.57 3.19 910 02:10:00 81 

6 0.95 2.11 170 02:14:00 96 

7 0.89 1.88 56 02:12:00 111 

8 0.67 1.54 -380 02:15:00 126 

9 0.65 1.47 -390 02:16:00 141 

10 0.57 1.26 -590 02:08:00 156 

11 0.58 1.26 -520 02:26:00 171 

12 0.57 1.27 -490 02:18:00 186 

13 0.50 1.10 -680 02:25:00 201 

14 0.52 1.31 -560 02:12:00 216 

15 0.51 1.12 -540 02:13:00 231 

[5 5] 1.05 2.08 320 02:05:00 111 

[6 6] 0.80 1.76 -70 02:21:00 138 

[7 7] 0.79 1.64 -10 02:28:00 167 

[8 8] 0.63 1.31 -300 02:27:00 198 

[9 9] 0.62 1.22 -230 02:33:00 231 

[10 10] 0.59 1.18 -300 02:24:00 266 
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[11 11] 0.52 1.16 -310 02:32:00 303 

[12 12] 0.58 1.21 -10 02:30:00 342 

[13 13] 0.50 1.01 -470 02:33:00 383 

[14 14] 0.58 1.22 250 02:40:00 426 

[15 15] 0.59 1.23 450 02:32:00 471 

[5 5 5] 0.94 2.10 220 02:24:00 141 

[6 6 6] 0.76 1.76 -40 02:32:00 180 

[7 7 7] 0.63 1.35 -230 02:28:00 223 

[8 8 8] 0.69 1.41 50 02:39:00 270 

[9 9 9] 0.59 1.22 -50 02:34:00 321 

[10 10 10] 0.61 1.13 240 02:36:00 376 

[11 11 11] 0.64 1.17 710 02:36:00 435 

[12 12 12] 0.65 1.21 1170 02:39:00 498 

 

 

Table 7. Hybrid modeling results as a function of FFNN size for the unreduced case (10 state variables). Seven fed-

batch experiments were used to train the model (B, C, D, E, G, H, and I) and 2 experiments were used for testing (A 

and F). The training was performed with the ADAM algorithm with 1000 iterations and hyperparameters α=0.001, 

β1=0.9 β2=0.999 and η=1e-7. Gradients were computed by the semidirect sensitivity equations. Stochastic regu-

larization was applied with weights dropout of 0.2 and minibatch size of 0.8. The training was performed only 

once with random weights initialization from the uniform distribution between -0.01 and 0.01. 

Number of hidden 

nodes 

WMSE train WMSE test AICc CPU time 

(hh:mm:ss) 

Number of 

weights 

10 1.41 2.58 1080 02:15:00 240 

15 0.48 1.87 -300 02:29:00 355 

20 0.52 1.74 -120 02:30:00 470 

[10 10] 0.30 1.42 -1100 02:28:00 350 

[15 15] 0.33 1.35 -1150 02:38:00 595 

[20 20] 0.42 1.38 210 02:44:00 890 

[10 10 10] 0.41 1.48 -360 02:26:00 460 

[15 15 15] 0.42 1.54 140 02:41:00 835 

[20 20 20] 0.35 1.64 360 02:48:00 1310 
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Comparing the best reduced model (with five PCs' reduction and a single hidden layer with 

13 nodes, Table 6) and the best unreduced model (two hidden layers with 15 nodes each, 

Table 7), it becomes clear that the state-space reduction had a very positive impact in the 

hybrid model performance metrics. The model complexity was reduced by 66% partially due 

to the lower number of state variables, which reflected in a lower number of FFNN inputs and 

outputs. Moreover, 1 hidden layer was removed comparatively to the best deep model. It 

may be argued that the PCA coefficients in Equation 41 act as a linear layer obtained by un-

supervised learning (namely by PCA) downstream of the FFNN. Such structural differences 

resulted in a higher training error (51.5% higher) for the reduced shallow hybrid model but, 

more importantly, in a significantly lower testing error (18.5% lower). The AICc is not a good 

discrimination metric in this case because the training error is systematically lower for unre-

duced models thus always favoring unreduced structures. The reduced hybrid model predic-

tions and respective measured concentrations of biomass, scFv and inorganic elements (Mg, 

K, Ca, P and S) for the two test experiments A and F in Figure 13. The model was able to faith-

fully predict the state variables for the two extreme experiments with predictions always with-

in or very close to measurement error bounds. 

 

Figure 13. Comparison between predictions of the hybrid model 5x13x5 with 5 state variables and experimental 

data of X, scFv, Met, NH3, Ca, K, Mg, P and S for the 2 fed-batch experiments A and F. Squares and triangles are 
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measurements of experiment A and F respectively. Full line and dashed line are hybrid model predictions of ex-

periment A and F respectively. A: biomass. B: single-chain antibody fragment(scFv). C: cumulative methanol con-

sumption (kg). D: cumulative NH4 consumption (kg). E: calcium (Ca, g/L). F: potassium (K, g/L). G: magnesium (Mg, 

g/L). H: Phosphorus (P, g/L). I: sulfur (S, g/L). 

 

4.3.5 Design Space Exploratory Analysis 

Here we illustrate how the hybrid model can be used as a DT prototype for dynamic design 

space exploration. The CPPs that affect recombinant protein production by methylotrophic P. 

pastoris are typically the pH, temperature and methanol feeding strategy (e.g. (Jahic et al. 

2003), (Jahic et al. 2006), (Vanz et al. 2012), Ferreira et al. (2014), (Looser et al. 2015)). In this 

study, the feeding of inorganic elements is also analyzed. The impact of CPPs on cell growth 

and scFv synthesis dynamics was characterized by process simulations using the best hybrid 

structure with 5 PCs reduction and 13 hidden nodes developed in the previous section (Table 

6 and Figure 13). A sensitivity analysis was performed taking as reference condition the ex-

periment H, which delivered the highest scFv/biomass yield. Thus, the objective is to analyze 

the feasibility of increasing the scFv yield beyond the value obtained in experiment H by op-

timizing CPPs.  

The optimal pH and temperature in the production phase depend on the nature and function 

of the expressed protein and on the genetic modification of the host cells. Figure 14 shows a 

sensitivity analysis of scFv endpoint titer to temperature and pH for the recombinant strain 

used in this study. The inner rectangle represents the domain of experience covered by the 9 

fed-bath experiments. These data suggest an optimal pH 5.75-6.75 and temperature 27.5-

35°C region corresponding to a higher endpoint scFv titer. These results are aligned with the 

data reported by Joseph et al. (2022), obtained with a P. pastoris GS115 (Mut+) strain ex-

pressing recombinant thaumatin II. The authors consistently observed a higher viable cell 

density and higher secretion of protein at pH 6.0 compared to pH 5.0 (when the cells were 

grown at 30 °C) in different culture media. A low pH between 4.0-5.0 has been reported to 

decrease the proteolytic activity of proteases in the supernatant (Jahic et al., 2003). On the 

other hand, a high pH may counteract by increasing cellular viability thereby reducing the cell 

lysis and the release of proteases (Joseph, Akkermans, and Van Impe 2022). A trade-off be-

tween both mechanisms must be evaluated on a case-by-case basis. Protein folding may also 

be severely affected by temperature. Misfolded proteins can lead to a higher degradation 

rate in the cytosol and ultimately to a lower secretion rate. Joseph et al. (2022) observed that 
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the protein levels were the highest at 30 °C compared to 20 and 25 °C at pH 6.0 thus the de-

crease of temperature did not improve the final titer. These results are in line with the opti-

mal PH-temperature space identified in the present study. The identified optimal region en-

compasses experiment H (conducted at 30°C and pH 6.5), which delivered the highest 

scFv/biomass yield of 243.3 µg/gWCW. It may be thus concluded that, for the strain used in 

the present study, temperature and pH optimization have low potential for further scFv titer 

improvement. 

 

Figure 14. Sensitivity analysis of scFv endpoint titer to temperature (15-35 °C) and pH (3.5 – 7.5). The methanol 

feeding strategy was that of experiment H (reference condition). Data was obtained by simulations of the hybrid 

shallow model with 5 PCs reduction. The inner square represents the domain of experience. The cross marker 

represents the temperature (30°C) and pH (6.5) conditions of experiment H (reference condition). 

The methanol feeding rate also plays a critical role in the P. pastoris GS115 Mut+ ex-pression 

system. The protein expression is controlled by the very strong AOX1 promoter induced by 

methanol. Methanol also serves as the main carbon source for cell growth and protein ex-

pression. Overflow methanol metabolism may lead to the accumulation of reactive oxygen 

species and a pronounced oxidative stress response (Vanz et al., 2012). Protein expression 

kinetics in the Mut+ P. pastoris phenotype may vary considerably from strain to strain. It may 

be growth coupled, negative growth related and bell shaped in relation to the specific 

growth rate profile (Looser et al., 2015). The methanol feeding rate is typically used to control 

the specific growth rate and the associated specific protein expression rate. This control 
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needs to be optimized on a case-by-case basis. Figure 15 shows a sensitivity analysis of scFv 

endpoint titer to the methanol feeding strategy for the strain used in this study. Again, the 

most productive experiment H served as a reference condition. The pH was varied between 

3.5 and 7.5. The temperature was kept constant at 30°C. The methanol feeding was de-

creased or increased in relation to the experiment H feeding program by a multiplying factor 

between 0.25 and 1.5. The overall results show that there is a significant potential for scFv 

endpoint titer improvement by increasing the methanol feeding rate. Specifically, the pH re-

gion between 5.5-6.5 combined with 25% methanol feed rate in-crease (in relation to exper-

iment H) has a scFv endpoint titer improvement potential of about 30%. 

 

Figure 15. Sensitivity analysis of scFv endpoint titer to pH (3.5 – 7.5) and methanol feeding program (0.25 to 1.5 

multiplying factor in relation to the methanol feed program applied to experiment H). The temperature was kept 

constant at 30°C. The data was obtained by simulations of the hybrid shallow model with 5 PCs reduction. The 

cross marker represents the reference condition of experiment H. 

The high concentration of salts in the BSM medium is required to supply inorganic elements 

at sufficient stoichiometric quantities to sustain high cell density. An indication of this are the 

PC 1 coefficients (First column of Equation 48 and biplot of Figure 12B) showing that all inor-

ganic elements have a significant contribution to the production of biomass. A common 

problem is however precipitation (Figure 11). The dilution of BSM medium to one-quarter has 

been studied by Brady et al. (2001) to mitigate the precipitation problem. The authors utilized 

a low salt medium that did not reduce growth rates nor protein expression rates while avoid-
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ing medium precipitation. They observed no adverse effect on both glycerol and methanol 

growth kinetics. Later on, the dilution of BSM was shown to increase P. pastoris cellular viabil-

ity and to reduce the cell death rate (Surribas et al. 2007) (Zhao et al. 2008). The reduction of 

the cell death rate decreases the accumulation of proteases in the supernatant and therefore 

the proteolytic attack on the secreted protein. Furthermore, the excess of trace metals was 

shown to decrease the expression of β-galactosidase by P. pastoris GS115 (Mut+) (Plantz et 

al. 2007). More recently, Joseph et al. (2022) compared different media and concluded that 

BSM resulted in the highest total cell concentration (as measured by dry cell weight) concom-

itantly with the lowest viable cell concentration. The high concentrations of salts may cause 

high osmotic stress to the cells resulting in a decrease of metabolic efficiency, cellular viability 

and in an increase of the cell death rate (Zhao et al. 2008). The higher cell death rate causes 

the release of proteolytic enzymes to the medium and a higher degradation of the expressed 

protein in the supernatant.  

To test these hypotheses a set of dynamic simulations were performed with the hybrid model 

with 5 PCs reduction. The overall results are shown in Figure 16. Taking as reference the best 

experiment H (methanol feed program, 30°C and pH 6.5), one simulation was performed with 

a reduction of inorganic elements concentrations at the onset of the MFB phase to one-

quarter. Another simulation was performed with controlled inorganic elements concentra-

tions to constant values corresponding to one-quarter of BSM concentrations throughout the 

complete MFB phase.  

The simulation with reduction to one-quarter of the initial salts concentrations showed no 

significant effect in the beginning of the MFB phase until approximately 72 hours. This is in 

accordance with the experimental results reported by (Brady et al. 2001). After 72 hours of 

cultivation, severe cell growth limitation by inorganic elements is forecasted. The much lower 

cellular concentration resulted in a significant reduction of the scFv titer. This simulation sug-

gests that a BSM/4 diluted medium is no longer able to sustain high cell density.  

The second simulation with inorganic elements control to constant levels suggests a very 

significant increase in the scFv endpoint titer by 80% in relation to the reference condition 

and also an increase in the final biomass by approximately 15%. The cell growth rate de-

creased but the growth phase was extended to a longer period of time. The scFv specific 

productivity was boosted by keeping the salts at a constant and low concentrations level. 

These results are in accordance with the experimental data reported by (Jahic et al. 2006). The 

authors developed a salts control system based on on-line conductivity monitoring in a P. 
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pastoris process. The control of conductivity at 8 mS.cm-1 resulted in a 3.6fold titer increase 

in relation to a standard BSM cultivation.  

Overall, the design space analysis suggests that the control of inorganic salts in the MFB 

phase has the highest potential to further increase the scFv yield for the recombinant P. pas-

toris strain under study. 

 

Figure 16. In silico experiments obtained by simulations of the hybrid shallow model with 5 PCs reduction based 

on experiment H control degrees of freedom. Symbols and error bars are measured data points of reference con-

dition (experiment H). Full line is the hybrid model simulation of reference condition (experiment H). Dashed line 

is the hybrid model simulation of reference condition with one-quarter reduction of initial concentrations of in-

organic elements at the onset of the MFB phase. Dotted line is the hybrid model simulation of reference condition 

with inorganic elements concentrations controlled to constant values corresponding to one-quarter of BSM con-

centrations throughout the complete MFB phase. A – biomass concentration over time. B – scFv titer over time. 

4.4 Conclusions 

In this chapter the dynamics of the main inorganic elements in P. pastoris GS115 (Mut+) cul-

tures expressing a scFv were investigated. The ICP-AES data showed excess of Ca and S over 

Mg, P and K in BSM medium. In some cultures, Mg, P and K depleted completely eventually 

limiting biomass growth and scFv expression. Precipitation occurred during the MFB phase at 

pH 6.5 and 7.0, more severely for Ca and Mg. A hybrid modeling framework with state-space 

reduction was applied for data analysis and design space exploration. The state-space reduc-

tion framework succeeded in decreasing the model complexity by 60% and improving the 

predictive power by 18.5% in relation to a standard nonreduced hybrid model. The reduced 

hybrid model was able to correctly simulate the experiments performed including the test 

experiments. However, more data is required to strengthen model validation before it can be 

considered for a process digital twin. An exploratory sensitivity analysis of process dynamics 

to CPPs was performed. It was concluded that a temperature of 30 °C and pH 6.5 are close to 

the optimal operating point. Interestingly, at these conditions the culture suffered from se-
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vere salts precipitation resulting in the highest scFv/biomass yield. The methanol feeding 

sensitivity analysis showed a significant 30% scFv endpoint titer improvement potential. The 

optimization of the inorganic elements feeding showed the highest potential for further scFv 

endpoint titer improvement. Namely, the control of inorganic elements concentration to one-

quarter of the BSM during the MFB phase displayed an 80% scFv endpoint titer improvement 

potential. 
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5  

 

HYBRID DEEP MODELING OF A CHO-K1 

FED-BATCH PROCESS 

This chapter is based on the publication: Pinto, J., Ramos, J. R., Costa, R. S., Rossell, S., Dumas, 

P., & Oliveira, R. (2023). Hybrid deep modeling of a CHO-K1 fed-batch process: combining 

first-principles with deep neural networks. Frontiers in Bioengineering and Biotechnology, 11. 

5.1 Introduction 

Chinese hamster ovary (CHO) cells are the most widely used host system for the industrial 

production of biologics. They cover more than 70% of the mammalian cell-based therapeutic 

proteins production (Vcelar et al., 2018). They present several advantages such as well-

established large-scale cultivation with high productivity (cell densities higher than 20 

Mcell/mL with protein titer as high as 10 g/L), human-like N-glycosylation, well-established 

molecular biology techniques and an impressive track record of approvals by the U.S. Food 

and Drug Administration (FDA) (Galleguillos et al., 2017). Given its industrial relevance, many 

companies have established CHO-cell platforms to streamline process development of many 

different molecule candidates in a short timeframe (e.g., (Mora et al., 2018)). Different up-

stream tasks such as clone screening, culture media customization and reactor optimization 

should be integrated in a rational way to improve the efficiency of process development. The 

adoption of high-throughput screening technologies allied with advanced digitalization tools 

for data analysis, mathematical modeling and control across the different development stag-

es are key factors to improve process development efficiency (Hole et al., 2021).  

There are currently three main mathematical modeling formalisms that are used for the digi-

talization of biopharmaceutical processes: First-Principles or mechanistic modeling (e.g., 
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Hartman et al., 2022, Monteiro et al., 2023), data-based or machine learning (ML) (e.g., 

Monbray et al., 2022, Helleckes et al., 2023) and hybrid mechanistic/ML (e.g., Badr and 

Sugiyama, 2020, Narayanan et al., 2023, Bayer et al., 2023). Mechanistic modeling relies on 

prior process knowledge and requires less process data. Conversely, ML relies almost exclu-

sively on process data with minimal prior knowledge requirements. Mechanistic models are 

more complex to develop but tend to extrapolate better outside the domain of experience. 

The intrinsic complexity of biological systems is however a critical limitation for the deploy-

ment of mechanistic models in an industrial context (Badr et al., 2021). Data-driven and ML 

methods are easier to develop but require large amounts of data that are costly, time-

consuming, and difficult to reuse. ML models tend to describe better inside the domain of 

experience (e.g., better interpolation) but are less reliable at extrapolating in comparison to 

mechanistic models. Hybrid models combine mechanistic and ML techniques in a common 

workflow and share the pros and cons of both techniques (e.g., Psichogios and Ungar, 1992, 

Oliveira, 2004, Teixeira et al., 2005, Teixeira et al., 2007, von Stosch et al., 2014, Kurz et al., 

2022, Pinto et al., 2019). The mechanistic modules allow to decrease the complexity of the ML 

modules within the hybrid model and as such the overall data requirements are decreased. 

Moreover, the ML modules fill the gaps of the mechanistic modules for which knowledge is 

still lacking. Narayanan et al. (2022) studied the impact of increasing the amount of prior 

knowledge (e.g., material balances, reaction stoichiometry and reaction kinetics) in the hybrid 

model of a cell culture process. Between a fully data-driven (or ML model) and a fully mecha-

nistic model, there are different degrees of hybridization possible depending on the amount 

of prior knowledge included in the hybrid model. The authors concluded that the inclusion of 

unbiased prior knowledge progressively improves the performance of the hybrid model. Un-

surprisingly, fully data-driven models showed poor performance particularly when data is 

scarce. Rogers et al (2023) have also investigated the optimal amount of prior knowledge to 

incorporate in a hybrid bioprocess model. The authors concluded that the inclusion of correct 

kinetic information generally improves the performance of the hybrid. The inclusion of incor-

rect kinetic assumptions may however create inductive bias that decreases the performance 

of the hybrid model. Due to the flexible trade-off between prior knowledge and data availa-

bility, hybrid modeling is becoming a method of choice to develop digital twins in the realm 

of Biopharma 4.0 (e.g. Badr and Sugiyama, 2020, Yang et al., 2019, Sansana et al., 2021, 

Sokolov et al., 2021, Badr and Sugiyama, 2020, Narayanan et al., 2023, Bayer et al. (2022), 

Bayer et al. (2023)).    
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Being the preferred host system in biopharma, CHO cultivation processes have been the ob-

ject of several hybrid modeling studies (Table 8). Most of the previous studies combined 

macroscopic material balance equations of extracellular species with some machine learn-

ing/statistical modeling methods with predominance of shallow FFNNs with a single hidden 

layer. The macroscopic material balance equations are translated to systems of Ordinary Dif-

ferential Equations (ODEs) describing bioreactor dynamics. The machine learning component 

is typically dedicated to model biological kinetics, which are parts of the system lacking 

mechanistic basis. The number of biochemical species has been limited to 2-12 species. Typi-

cally, the viable cell count, concentrations of the target molecule and the concentrations of 

key central carbon metabolites such as glucose, lactate, glutamine, glutamate, and ammoni-

um. A recent study by Doyle et al. (2023) has also covered amino acids dynamics. The training 

method is either coupled or uncoupled. In the latter case, the machine learning component is 

isolated from the mechanistic model and trained as a standalone module. In the former case, 

the mechanistic and machine learning models are parametrized in a common mathematical 

structure and trained together. Uncoupled training has been adopted by Kotidis et al. (2021) 

to develop a hybrid model of glycosylation critical quality attributes in CHO cultures. The N-

linked glycosylation was described by a FFNN with 2 hidden layers, while the cell growth and 

metabolism were described by a mechanistic model based on a system of Differential and 

Algebraic Equations (DAEs) (Kotidis et al., 2019). The FFNN was trained as a standalone model 

on data generated by the mechanistic model using the TensorFlow package in Python 3.7. 

The final trained FFNN and the mechanistic model were assembled in a hybrid workflow in 

gPROMS v.5.0.1. Coupled training has been the preferred approach for material balance + 

FFNN hybrid models, following the scheme originally proposed by Psichogios and Ungar 

(1992). The sum of square error between measured and calculated concentrations is mini-

mized during the training using the Levenberg-Marquardt (LMM) algorithm. Since the FFNN 

outputs cannot be directly compared with measured properties, this method is termed indi-

rect training. The indirect sensitivity equations are employed to compute the gradients of 

measured concentrations in relation to neural network weights (Psichogios and Ungar, 1992, 

Oliveira, 2004). Cross-validation techniques are employed to avoid overfitting.  Following the 

coupled training approach with cross-validation, Bayer et al. (2022) compared mechanistic 

and shallow hybrid modeling for characterization of a CHO cultivation process. The authors 

concluded that the prediction accuracy of the shallow hybrid model was always superior to 

the mechanistic model irrespective of the utilized data partition. Due to its’ higher fitting 

power, the shallow hybrid model prediction accuracy showed to be more sensitive to data 
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resampling than the mechanistic model. Every hybrid model in Table 8 is of dynamic nature 

except the one by Ramos et al. (2022). The authors have used a large genome-scale network 

with 788 reactions as mechanistic component combined with a Principal Component Analysis 

(PCA) model. The overall hybrid model is of static nature, solved by linear programming un-

der the pseudo steady-state hypothesis, i.e. by hybrid Flux Balance Analysis (hybrid FBA).    

Table 8. Compilation of CHO hybrid modeling studies 

First-Principles Machine learning Training method Cross 

valida-

tion 

Objective Reference 

Macroscopic 

material balances 

(2 species) 

Shallow FFNN 

(tanh hidden 

nodes) 

Levenberg-

Marquardt; cou-

pled  

Yes Prediction of cul-

ture dynamics; 

Quality-By-Design 

Bayer et al. 

(2021) 

Macroscopic 

material balances 

(7 species) 

Shallow FFNN 

(tanh hidden 

nodes) 

Levenberg-

Marquardt; cou-

pled 

Yes Prediction of cul-

ture dynamics; 

Quality-By-Design 

Bayer et al. 

(2022), Bayer 

et al. (2023) 

Macroscopic 

material balances 

(4 species) 

Shallow FFNN 

(tanh hidden 

nodes) 

Levenberg-

Marquardt; cou-

pled 

Yes Optimize viable cell 

density 

Nold et al. 

(2023) 

Macroscopic 

material balances 

(4 species) 

Shallow FFNN 

(tanh hidden 

nodes) 

MATLAB fmin-

unc function; 

coupled 

Yes Prediction of cul-

ture dynamics; 

Quality-By-Design 

Narayanan et 

al. (2019) 

Macroscopic 

material balances 

(6 species) 

Gaussian Process 

regression 

Maximum likeli-

hood estimator; 

uncoupled 

Yes Prediction of cul-

ture dynamics 

across different 

products  

Hutter et al. 

(2021)  

Mechanistic ki-

netic models (12 

species) 

Deep FFNN with 2 

hidden layers 

(softmax/sigmoid 

hidden nodes) 

Python 3.7 Ten-

sorflow/ 

gPROMS v.5.0.1; 

uncoupled 

Yes Prediction of cul-

ture dynamics and 

mAb glycosylation 

Kotidis et al. 

(2021) 
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Macroscopic 

material balances 

(5 species) 

Set of Shallow 

FFNN (tanh hid-

den nodes) 

Levenberg-

Marquardt; un-

coupled  

Yes Software sensor of 

r-tPA production 

Senger and 

Karim (2003) 

Macroscopic 

material balances 

(4 species) 

Principle Compo-

nent Regression 

(PCR) 

PCA + least 

squares regres-

sion; uncoupled 

Yes Prediction of cul-

ture dynamics 

Okamura et al. 

(2022) 

Macroscopic 

material balances 

(24 species) 

Saturation and 

sigmoidal func-

tions 

Least squares 

regression; un-

coupled 

 Automated assem-

bly of dynamic 

model 

Doyle et al. 

(2023) 

CHO-K1 Ge-

nome-scale net-

work (788 reac-

tions; 686 spe-

cies) 

PCA of reaction 

rates of extracellu-

lar species 

Linear pro-

gramming; cou-

pled  

Yes Hybrid FBA; Culture 

media design 

Ramos et al. 

(2022) 

 

Most previous hybrid modeling studies have combined material balance equations with shal-

low FFNNs or other nondeep machine learning techniques. In the field of neural networks, 

Deep neural networks have however been shown to have a general advantage over their 

shallow counterparts thanks to their ability to approximate more complex functions with a 

lower number of parameters and being less prone to overfitting (Delalleau and Bengio, 2011, 

Eldan and Shamir, 2016, Liang and Srikant, 2017, Mhaskar and Poggio, 2016). Training of 

deep structures also requires special care, with the ADAM method (Kingma, 2014) being 

commonly used due to its robustness and lower sensitivity to local optima. Along with the 

training approach, the use of stochastic regularization techniques has also been shown to be 

very effective at avoiding overfitting (Hinton et al., 2012, Srivastava et al., 2014, Koutsoukas et 

al., 2017).  

Only very recently, hybrid modeling is incorporating deep neural networks and deep learning 

into its framework (Bangi and Kwon, 2020, Pinto et al., 2022, Bangi and Kwon, 2023). Pinto et 

al. (2022) investigated the use of ADAM and stochastic regularization in a hybrid modeling 

context concluding that the predictive power of deep hybrid models was significantly im-

proved. None of these techniques have been applied to CHO processes (Table 8). In this 

study, we thus investigate deep learning techniques based on ADAM and stochastic regulari-

zation in a hybrid modeling context with application to a CHO-K1 fed-batch process. The 
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deep learning method is compared with the classical shallow method based on the LMM 

algorithm, indirect sensitivity equations and cross-validation. 

5.2 Methods 

5.2.1 CHO-K1 Experimental Dataset 

Data from 24 fed-batch reactor experiments with a CHO-K1 cell line coding for a target gly-

coprotein were used to compare the hybrid modeling methodologies. Briefly, the cells were 

pre-cultured in shake-flasks (Corning, NY, USA) at 37°C in a proprietary chemically defined 

medium. The inoculum was transferred to 250 mL stirred microcarrier vessel (Ambr® 250 

workstation, Sartorius, Göttingen, Germany) for antigen production. Stirring was kept at 

around 20 W/m³. Dissolved oxygen was controlled at 30% of saturation by sparging pure 

oxygen. The pH was controlled at 7.0 with a 0.5M NaOH solution and CO2 sparging.  The 

reactors were seeded at 3.0 Mcell/mL. They followed a batch/fed-batch phase for viable cells 

expansion. Once a threshold viable cell density was reached, the temperature was decreased 

to 33°C to induce antigen production. The antigen production phase was carried out in fed-

batch mode with varying feeding compositions of amino acids, glucose, and pyruvate. The 

whole process lasted approximately 12 days. Samples were taken daily. Viable cell density 

and viability were assayed using a Vi-Cell cell counter (Beckman, Indianapolis, USA). Glucose, 

lactate, pyruvate, glutamine, ammonium, glycerol, and lactate dehydrogenase were assayed 

using a CedexBio-HT metabolite analyzer (Roche, Penzberg, Germany). The antigen quantifi-

cation was performed off-line with an Octet HTX (Pall, NY, USA). The remaining metabolites 

and amino acids were assayed off-line by Nuclear Magnetic Resonance spectroscopy at Eu-

rofins Spinnovation (Oss, The Netherlands). A total of  30 concentrations were measured at 

each time point (with few exceptions): viable cell count (Xv), glycoprotein (P), glucose (Glc), 

lactate (Lac), glutamine (Gln), glutamate (Glu), ammonium (NH4), pyruvate (Pyr), glycerol 

(Glyc), citrate (Cit), alanine (Ala), arginine (Arg), asparagine (Asn), aspartate (Asp), L-cystine 

(Lcystin), glycine (Gly), histidine (His), isoleucine (Ile), leucine (Leu), lysine (Lys), methionine 

(Met), phenylalanine (Phe), proline (Pro), serine (Ser), threonine (Thr), tryptophane (Trp), tyro-

sine (Tyr), valine (Val), acetate (Ac) and formate (For). The data was assumed to be corrupted 

by heterogenous gaussian noise.  The measurement error standard deviations were assumed 

to be of 5% for P, 10% for Xv and 20% for remaining metabolites, based on equipment cali-

bration data. The data reliability was pre-assessed by statistical analysis of metabolic fluxes in 



 80 

the exponential growth and production phases. The spread of data was analyzed in a boxplot 

of metabolic fluxes. No outlying reactor experiments were identified. All the 24 reactor exper-

iments were used for modeling thus none discarded due to reliability issues. More details 

regarding the experimental protocol and data pre-assessment are provided by Ramos et al. 

(2022) 

5.2.2 CHO-K1 Synthetic Dataset 

In addition to the experimental dataset, a synthetic dataset was created based on the meta-

bolic model proposed by Robitaille et al. (2015). A synthetic dataset is useful in this context 

to better assess the ability of the hybrid modeling methods to describe the intrinsic process 

behavior irrespective of measurement noise. Simulations of this model were performed by 

varying two parameters, namely the pre-induction feeding rate and the post-induction feed-

ing rate. A central composite design of experiments (CC-DoE) was applied to obtain 9 com-

binations of the two feed rates. This resulted in 9 fed-batch simulated experiments. The dy-

namic model has 21 intracellular species and 25 extracellular species.  The intracellular spe-

cies were hidden from the hybrid model development. The concentrations of extracellular 

species were recorded as time series for 240 hours with 24 hours sampling time and included 

the following variables: Xv, monoclonal antibody concentration (mAb), Ala, Arg, Asn, Asp, 

Cysteine (Cys), Glc, Gln, Glu, Pyr, Gly, His, Ile, Lac, Leu, Lys, Met, NH4, Phe, Pro, Ser, Thr, Tyr 

and Val. The recorded variables from the synthetic dataset were the same as in the experi-

mental dataset, except that Pyr, Glyc, Cit and Ac are not considered in the Robitaille et al 

(2015) model.  Moreover, the target products are different and Robitaille et al (2015) consid-

ers Cysteine instead of Cystine. Gaussian white noise with standard deviation of 10% of max-

imum concentration values was added to concentrations time points to mimic (heterogene-

ous) gaussian measurement error. This synthetic dataset is provided as supplementary mate-

rial B. 

5.2.3 CHO-K1 Hybrid Model 

A standard hybrid model configuration was adopted in this study consisting of a multilayered 

FFNN connected in series with macroscopic material balance equations. This configuration is 

similar to previously published studies (Table 8) except for the depth of the FFNN and the 

training methods employed. The FFNN is dedicated to completely model the reaction kinet-

ics. The dynamics of state variables are modeled by a system of ODEs based on macroscopic 
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material balance equations (First-Principles). Considering a perfectly mixed fed-batch biore-

actor with multiple feed streams, the macroscopic material balance equations take the fol-

lowing state-space form (Equation 49): 

Equation 49. State-space equations for the CHO-K1 hybrid model 

𝑑𝒄

𝑑𝑡
= 𝒗(𝒄,𝒘)𝑋𝑣 +∑𝐷𝑘𝒄𝑘,𝑖𝑛

𝑘

− 𝒄∑𝐷𝑘
𝑘

 

𝑑𝑉

𝑑𝑡
= 𝑉∑𝐷𝑘

𝑘

 

𝐷𝑘 =
𝐹𝑘
𝑉

 

with 𝑡 the independent variable time, 𝒄 the state vector with the concentrations of 30 species 

(Xv, P, Glc, Lac, Gln, Glu, Nh4, Pyr, Glyc, Cit, Ala, Arg, Asn, Asp, Lcystin, Gly, His, Ile, Leu, Lys, 

Met, Phe, Pro, Ser, Thr, Trp, Tyr, Val, Ac, For), 𝒗(∙) the specific reaction rates vector of the 30 

species,  𝐷 = ∑ 𝐷𝑘𝑘  the reactor dilution rate (scalar), 𝑉 the cultivation volume (scalar), 𝐹𝑘  the 

feed rate of stream 𝑘 (there are in total 5 feed streams) and  𝒄𝑘,𝑖𝑛 the vector of species con-

centrations in feed stream 𝑘. The specific reactions rates, 𝒗(𝒄,𝒘) lack mechanistic basis and 

were thus modeled by a deep FFNN with nh hidden layers (Equation 50): 

Equation 50. General FFNN equation 

𝑯0 = 𝒄⊘ 𝒄𝑚𝑎𝑥 

𝑯𝑖 =   𝜎 (𝒘𝑖 ∙ 𝑯𝑖−1 + 𝒃𝑖), 𝑖 = 1,… , 𝑛ℎ  

𝒗 = 𝒘𝑛ℎ+1 ∙ 𝑯𝑛ℎ + 𝒃𝑛ℎ+1 

The input layer 𝑖 = 0 with 30 nodes receives the information of normalized concentrations 

(𝒄𝑚𝑎𝑥 is the absolute maximum concentration of the 30 species (vector) and ⊘ the Hada-

mard division). Each hidden layer 𝑖 computes a vector of outputs, 𝑯𝑖, from a vector of inputs, 

𝑯𝑖−1, which are the outputs of the preceding layer. The transfer function of hidden nodes, 

𝜎(∙), was either the hyperbolic tangent function, tanh, or the rectified linear unit, ReLU. The 

output layer computed the specific reaction rates vector of the 30 species. The parameters 

𝒘 = {𝒘1, 𝒘2, … ,𝒘𝑛ℎ+1} are the nodes connection weights between layers and 

𝒃 = {𝒃1, 𝒃2, … , 𝒃𝑛ℎ+1} the bias weights that need to be optimized data during the training 

process. The deep hybrid model Equation 49 and Equation 50  were integrated numerically 

using a Runge-Kutta 4th order ODE solver (in-house developed in MATLAB). 
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Figure 17. Hybrid model structure of a CHO-K1 fed-batch process. 

5.2.3.1 Shallow Hybrid Modeling Method 

This chapter compares shallow and deep hybrid modeling. The shallow structures are repre-

sented by Equation 49 and Equation 50 with FFNNs with a single hidden layer and with hy-

perbolic tangent activation function, tanh. Sigmoidal activation functions, and particularly 

tanh, are generally accepted as a default in shallow FFNNs. Many practical studies have cor-

roborated the universal function approximation property derived by Cybenko (1987). This 

FFNN architecture has also been the preferred choice in a hybrid modeling context (e.g., Ta-

ble 8). The training of shallow hybrid models is based on the LMM optimization with the indi-

rect sensitivity equations (to compute gradients) and cross-validation (as early stop criteria). 

Briefly, the data were partitioned into a training/validation subset (for parameter estimation) 

and a testing subset (to assess the predictive power). Partitioning was performed batch wise 

with the amount of data allocated in each partition depending on the context (further details 

in section 5.3). The LMM algorithm (fminunc function in MATLAB) was adopted to optimize 

the network parameters, {𝒘, 𝒃}, by unconstrained weighted least squares computed on the 

training data subset only. The inverse of measurement error variance was used as weighting 

factor in the weighted least squares minimization in order to effectively filter heterogeneous 

gaussian error Equation 51. The objective function gradients were computed by the indirect 

sensitivity equations following the method described by Oliveira (2004). Cross-validation was 

adopted as a stop criterion to avoid overfitting, i.e. the training is stopped when the valida-

tion error increases. A data augmentation strategy was used to automatically create the vali-

dation data subset from the training subset by adding gaussian noise to the concentrations 
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(Bejani and Ghatee, 2021). The standard deviation of the added noise was the same as the 

standard deviation of the measured concentration error. This strategy has proven to effec-

tively avoid overfitting to the experimental noise and to produce good generalization models 

when the data information content is well distributed among the training and testing data 

subsets (Pinto et al. (2022)). For each shallow hybrid structure, the training was repeated 10 

times with random weights initialization from the uniform distribution. Only the best result 

(lowest training/validation error) was kept. 

5.2.3.2 Deep Hybrid Modeling Method 

The shallow hybrid models were systematically compared with deep hybrid models. The deep 

hybrid models are represented by Equation 49 and Equation 50 with FFNNs with multiple 

hidden layers (𝑛ℎ ≥ 2) and with rectified linear unit (ReLU) hidden nodes. The tanh was re-

placed by the ReLU because the latter is generally accepted as a default for several deep neu-

ral network architectures including deep FFNNs (Goodfellow et al., 2006). The ReLU function 

solved two main problems associated with the tanh function, namely signal saturation and 

the vanishing gradients problem that occurs during error backpropagation in networks with 

multiple hidden layers (Glorot and Yoshua, 2010). Instead of the LMM algorithm, deep hybrid 

models were trained with the ADAM algorithm (in-house implementation). The ADAM algo-

rithm is generally accepted as an efficient method to train deep FFNNs (Kingma, 2014). The 

use of ADAM in a hybrid modeling context has been recently investigated by Pinto et al 

(2022).  Briefly, the data were portioned in a training and in a testing subset as for shallow 

hybrid modeling. The ADAM was adopted to optimize the network parameter, {𝒘, 𝒃}, also in 

a weighted least squares sense in order to effectively filter heterogeneous gaussian error 

Equation 51. The objective function gradients were computed by the semidirect sensitivity 

equations. The semidirect sensitivity equations method was shown to reduce the training 

CPU time in comparison to the indirect sensitivity equations method used in shallow hybrid 

modeling (Pinto et al (2022)). Stochastic regularization with minibatch size (0–1) and weights 

dropout probability (0–1) was applied to avoid overfitting in replacement of cross-validation 

normally applied in shallow hybrid modeling. The ADAM with stochastic regularization was 

run for a sufficiently large number of iterations with the final deep FFNN weights taken at the 

iteration with minimum training error. The training was performed only once because ADAM 

is less sensitive to weights initialization. This methodology has been thoroughly investigated 

by Pinto et al (2022). 
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5.2.3.3 Model Performance, Selection, and Implementation 

The performances of shallow and deep hybrid models were assessed by the Weighted Mean 

Square Error (WMSE) computed as follows (Equation 51): 

Equation 51. Objective function of the CHO-K1 model 

𝑊𝑀𝑆𝐸 =
1

𝑇
 ∑

(𝑐𝑡
∗ − 𝑐𝑡)

2 

𝜎𝑡
2

𝑇

𝑡=1

 

with 𝑇 the number of data examples, 𝑐𝑡
∗ the measured concentration at time 𝑡, 𝑐𝑡 the model 

calculated concentration at time 𝑡 and 𝜎𝑡 the standard deviation of measurement at time 𝑡. 

The WMSE was computed separately for the training and testing data subsets. In the case of 

the synthetic dataset, the test WMSE was computed using 𝑐𝑡
∗ with experimental noise (noisy 

test WMSE) and without noise (noise-free test WMSE). 

Model selection was performed by a probabilistic method and by a resampling method. The 

probabilistic method consisted in the Akaike’s Information Criterion (AIC) with second order 

bias correction (AICc). The second order correction is needed for small data samples (T<40), 

eventually converging to the AIC value for very larger samples (Banks and Joiner, 2017). It is 

computed on the training data subset as follows (Equation 52):  

Equation 52. Akaike Information Criterion with second order bias correction 

𝐴𝐼𝐶𝑐 = 𝑇 𝑙𝑛(𝑊𝑀𝑆𝐸) + 2 𝑛𝑤 +
2 𝑛𝑤 ( 𝑛𝑤 +  1 )

𝑇 −  𝑛𝑤 −  1
 

The AICc was adopted to discriminate parsimonious hybrid structures by taking into account 

the model complexity (i.e., the total number of network parameters, 𝑛𝑤). The model with 

lowest AICc score was selected as the best model.  

Model selection was also performed by a resampling technique. Ten different training and 

testing data partitions were created by random selection (from the uniform distribution) of 

reactor experiments allocated either for training or for testing. The training was repeated for 

every data partition resulting in 10 different models. The respective training and testing 

WMSE statistics were evaluated. The best model was selected to be the one with the lowest 

mean test WMSE. 

The AICc and the resampling method often led to different model selection conclusions (fur-

ther discussed section 5.3). It is generally accepted that resampling methods are preferred 

over probabilistic methods for statistical model selection (Tashman, 2000). Therefore, the 

resampling method, based on the lowest test WMSE, was taken as the final decision metric 

for the selection of hybrid models.  
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All the code of shallow and deep hybrid modeling was developed in-house and implemented 

in MATLAB on a computer with Intel(R) Core(TM) i5-8265U CPU @ 1.60 GHz 1.80 GHz, and 24 

GB of RAM. CPU time of the different tests performed were computed as the difference be-

tween the result of the “cputime” MATLAB function at the start and end of a run. 

5.3 Results  

5.3.1 Shallow Hybrid Modeling of the CHO-K1 Synthetic Dataset 

Shallow hybrid models with varying number of nodes in a single hidden layer with tanh acti-

vation function were investigated. At this stage, the synthetic dataset was adopted since it 

allows a better control of the information content distribution among the training and testing 

data subsets. The training partition was composed of 5 batches with 2400 training examples 

(the number of training examples was always higher than the number of FFNN weights). The 

testing partition was composed of 4 batches with 1920 testing examples. The training exper-

iments were the center and square points of the CC-DoE, whereas the test experiments were 

the star points of the CC-DoE. The comparatively large testing data subset, generated at the 

extreme star points of the CC-DoE, represents a challenging extrapolating test for the trained 

hybrid models. Given the very clear testing rationale, the resampling repetitions were not 

applied in this case, which allowed to save some CPU time. The training and testing data sub-

sets were always the same with models compared based on the AICc score and on the final 

test WMSE. The number of nodes of the hidden layer varied between 1 and 15 corresponding 

to a number of weights between 77 and 805. The training algorithm was the LMM with gra-

dients computed by the indirect sensitivity method. For each structure, the training was re-

peated 10 times with different weights initialization (classical method). The overall results are 

shown in Table 9. These results confirm that the number of nodes in the hidden layers has a 

significant effect on the model performance. The AICc score and the test WMSE did not con-

verge to a common conclusion (discussed below). The shallow structure with lowest AICc had 

5 hidden nodes only, which did not correspond to the lowest test error. The shallow structure 

with highest predictive power had 12 hidden nodes with the lowest noisy and noise-free test 

WMSE (2.04 and 2.06, respectively). The noisy test WMSE was 32.5% higher than the train 

WMSE denoting some degree of overfitting of the training data. The AICc criterion miss se-

lected the model with the highest predictive power in this case.  

Table 9. Shallow hybrid modeling results on the CHO-K1 synthetic dataset. Hybrid models had a FFNN with a 

single hidden layer with hyperbolic tangent activation function and a number of nodes between 1 and 15. The 
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training algorithm was the Levenberg-Marquardt with gradients computed by the indirect sensitivity equations 

with 1000 iterations and cross-validation as stop criterion. Training was repeated 10 times for each structure with 

random weights initialization from the uniform distribution between -0.01 and 0.01 and only the best result was 

kept. The WMSE-train was computed on the training dataset with 10% gaussian noise in concentrations. WMSE-

test (noisy) was computed on the test dataset with 10% gaussian noise in concentrations. WMSE-test (noise free) 

was computed on the test dataset without noise in the concentrations. The AICc was computed on the same da-

taset as WMSE-train. 

Number of 

hidden 

nodes 

WMSE -

train 

WMSE-test 

(noisy) 

WMSE-test 

(noise free) 

AICc CPU time 

(hh:mm:ss) 

Number of 

weights 

1 6.07 7.46 8.16 4890 00:13:20 77 

2 2.17 3.82 4.32 2310 00:25:31 129 

3 1.81 3.25 3.64 1950 00:30:04 181 

4 1.76 2.79 3.15 2000 00:26:44 233 

5 1.28 4.57 4.31 1290 00:23:06 285 

6 1.52 2.31 2.76 1890 00:27:34 337 

7 1.55 2.10 2.18 2070 00:24:58 389 

8 1.66 3.09 3.45 2400 00:30:18 441 

9 1.73 2.71 2.79 2500 00:26:40 493 

10 1.60 2.47 2.63 2450 00:32:20 545 

11 1.70 2.73 3.12 2930 00:28:15 597 

12 1.54 2.04 2.06 2850 00:24:52 649 

13 1.64 2.70 2.84 3210 00:32:30 701 

14 1.73 6.33 7.14 3550 00:18:15 753 

15 1.54 2.65 2.86 3460 00:22:18 805 
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5.3.2 Deep Hybrid Modeling of the CHO-K1 Synthetic Dataset 

Deep hybrid modeling with FFNNs with 2 or 3 hidden layers was investigated on the same 

synthetic dataset. Models with more than 3 hidden layers did not produce further improve-

ments (results not shown). The activation function in the hidden layer was the ReLU in all cas-

es. The training algorithm was the ADAM with standard hyperparameters (Kingma, 2014). 

Stochastic regularization with optimal minibatch size of 0.8 and weights dropout of 0.2 was 

adopted, based on a previous study by Pinto et al. (2022). Stochastic regularization coupled 

with ADAM was shown to be very robust to weights initialization (Pinto et al., 2022) thus the 

training was carried out only once with a single random weights initialization (between -0.01 

and 0.01). The overall results are shown in Table 10. As expected, the complexity of the FFNN 

has a significant effect on the model performance. The number of weights varied between 

315–1905, always lower than the number of training examples (2400). The hybrid structure 

10×10×10 with 765 weights clearly stands out as the best performing structure. The obtained 

training and testing errors are comparable denoting a successful training without overfitting. 

Moreover, the noise free test error is clearly below the noisy test error, showing that this 

model was able to filter noise in the test partition. The AICc of the 10×10×10 structure was 

also the lowest among the deep hybrid structures investigated. The AICc and the test WMSE 

pointed to the same conclusion in this case. 

Table 10. Deep hybrid modeling results on the synthetic CHO-K1 dataset. Hybrid models had a FFNN with 2 or 3 

hidden layers with ReLU activation function. The training algorithm was the ADAM algorithm run for 1000 itera-

tions with hyperparameters α=0.001, β1=0.9 β2=0.999 and η=1e^(-7). Gradients were computed by the semidi-

rect sensitivity equations. Stochastic regularization was applied with weights dropout of 0.2 and minibatch size of 

0.8. The training was repeated only once with random weights initialization from the uniform distribution between 

-0.01 and 0.01. The WMSE-train was computed on the training dataset with 10% gaussian noise in concentrations. 

WMSE-test (noisy) was computed on the test dataset with 10% gaussian noise in concentrations. WMSE-test 

(noise free) was computed on the test dataset without noise in the concentrations. The AICc was computed on the 

same dataset as WMSE-train. 

Number of 

hidden 

nodes 

WMSE 

train 

WMSE test 

(noisy) 

WMSE test 

(noise free) 

AICc CPU time 

(hh:mm:ss) 

Number of 

weights 

[5 5] 1.85 2.47 2.63 2330 00:14:20 315 

[7 7] 1.48 2.00 1.94 2090 00:13:30 445 

[10 10] 1.34 1.84 1.56 2510 00:17:15 655 



 88 

[5 5 5] 2.00 4.43 4.35 2610 00:19:43 345 

[7 7 7] 1.50 2.13 2.35 2300 00:15:18 501 

[10 10 10] 0.982 1.05 0.54 1800 00:19:42 765 

[15 15] 1.33 1.72 1.62 3970 00:17:32 1045 

[20 20] 0.922 1.27 1.01 4250 00:22:51 1485 

[20 20 20] 0.972 1.27 0.98 6860 00:24:47 1905 

 

Comparing the shallow hybrid model with 12 hidden nodes (Table 9) with the deep hybrid 

model with 3 hidden layers (10×10×10) (Table 10) shows that the latter has significantly bet-

ter training and testing metrics. The 3 hidden layers did not correspond to a large increase in 

the number of weights (only 17.9%). However, the training error decreased 36.2% and more 

importantly the noise free test error decreased 73.8%. Both the AICc score and the test 

WMSE point to the hybrid deep structure (10×10×10) as being the best model. As for the 

CPU time, albeit the higher complexity of the deep model (with 17.9% more parameters), the 

CPU time was reduced by 20.8%. This is mainly explained by the fact that ADAM with sto-

chastic regularization is practically insensitive to weights initialization requiring a single train-

ing event compared to the 10 training repetitions in the case of LMM with cross-validation.  

Figure 18 shows the prediction of the dynamics in a test experiment by the best shallow and 

best deep hybrid models. This example shows qualitatively that the deep hybrid model suc-

ceeded to predict very faithfully the dynamics of each variable individually (the predicted 

time profiles of process variables are always within the error bars). Conversely, the shallow 

hybrid structure shows systematic deviations in different process phases for different varia-

bles. As examples, mAb, Ala, Cys, Gly, Asn, Glu and Thr show systematic deviations in relation 

to the true profiles. 
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Figure 18. Dynamic simulation of the best shallow (12 hidden modes + tanh) and best deep (10x10x10 + ReLU) 

hybrid models for a test reactor experiment of the CHO-K1 synthetic dataset. Circles are simulated data points 

and error bars are standard deviations. Green line is the best deep hybrid model structure (10×10×10) (Table 10); 

Blue line is the best shallow structure with 12 hidden nodes (Table 9). 

5.3.2.1 Comparison Between Training Methods 

In order to better understand if the differences in the models performances are due to the 

training method or to the depth of the FFNNs, the shallow hybrid structures of Table 9 were 

also trained with the deep learning method (ADAM + semidirect sensitivity + stochastic 

regularization) and the deep structures of Table 10 were also trained with the classical meth-

od (LMM + Indirect sensitivity + cross-validation). The results are shown in Figure 19.  Figure 

19A shows that the final training error is comparable for both methodologies in the case of 

shallow hybrid models. The testing error tends to be slightly lower and more stable for shal-

low hybrid models trained with ADAM. The LMM delivers in some cases equally performing 

models, but it is more unstable. For deep hybrid models with 2 (Figure 19C, Figure 19D) and 

3 (Figure 19E, Figure 19F) hidden layers, the differences between both methods are more 
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substantial. For deep structures, as the model size increases the training and testing errors of 

the ADAM method are significantly lower than those of the LMM method. For large models 

(number of weights approaching 2000), the difference between ADAM and LMM final train-

ing and/or testing errors is as high as 100%. Contrary to ADAM, the final training error deliv-

ered by LMM tends to increase with the number of weights suggesting that this approach is 

unable to exploit the descriptive power of deep FFNNs. However, for small FFNN structures 

the LMM performs equally or better than the ADAM method. 
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Figure 19. Hybrid model final training and testing errors as function of the FFNN depth (number of hidden layer) 

and size (number of weights). Orange line and orange squares – hybrid models trained with LMM + indirect sensi-

tivity equations + cross-validation. Green line and green circles – hybrid models trained with ADAM + semidirect 

sensitivity equations + stochastic regularization. A) Training WMSE of shallow hybrid models (Table 9). B) Testing 

WMSE of shallow hybrid models (Table 9). C) Training WMSE of hybrid models with 2 hidden layers (Table 10). D) 

Testing WMSE of hybrid models with 2 hidden layers (Table 10). E) Training WMSE of hybrid models with 3 hidden 

layers (Table 10). F) Testing WMSE of hybrid models with 3 hidden layers (Table 10). 

5.3.3 Hybrid Deep Modeling of the CHO-K1 Fed-Batch Process 

The hybrid modeling framework was applied to the 24 fed-batch experiments collected in a 

process development campaign to produce a therapeutic glycoprotein. Deep hybrid struc-

tures with 2 or 3 hidden layers with nodes between 3 and 30 were investigated. For compa-

rability, single hidden layer hybrid models with 1 to 18 nodes were also investigated. Given 

the results of the previous section, only the deep learning method based on ADAM, semidi-

rect sensitivity equations and stochastic regularization was adopted. The training hyperpa-

rameters were kept the same as in the synthetic dataset study.  The training partition was 

composed in this case of 20 experiments with 7953 training examples (83% of data). The test-



 92 

ing partition was composed of 4 batches with 1593 testing examples (17% of data). The train-

ing was repeated 10 times for each hybrid model structure with random permutations of 

test/train experiments to avoid data selection bias, with the results analyzed statistically 

(resampling method). The 10 train/test permutations were kept the same in all tests per-

formed to ensure comparability. The overall results are shown in Table 11. Structures with 

less than 8 hidden nodes did not have sufficient complexity to describe the process, showing 

a very high and unstable training error. The hybrid deep structure (25×25×25) with 2855 pa-

rameters showed the lowest test error of 1.88±0.44, although 39.3% higher than the training 

error (1.35±0.21). The best shallow structure with 17 hidden nodes had 16.3% higher training 

error and more importantly 30.8% higher test error compared to the best deep structure.  As 

in the previous sections, increasing the depth of the FFNN seems to be advantageous in 

terms of predictive power. The lowest AICc was obtained with the structure (25×25×25) 

which also had the lowest test error.  

Table 11. Hybrid modeling results on the experimental CHO-K1 dataset with 24 independent fed-batch experi-

ments and 31 state variables. The activation function in the hidden layers was the ReLU in all cases. Hybrid models 

were trained with ADAM ( 𝛼 =  0.001, 𝛽1 =  0.9, 𝛽2 =  0.999 and 𝜂 =  1𝑒−7), semidirect sensitivity equations and 

stochastic regularization (minibatch size = 0.8 and weights dropout = 0.2). For each structure, the training was 

repeated 10 times with random train/test experiment permutations.  Error metrics (WMSE-train, WMSE-test and 

AICc) are displayed as the mean ± SD of the 10 repetitions. 

Number of 

hidden nodes 

WMSE-train WMSE-test AICc CPU time 

(hh:mm:ss) 

Number of 

weights 

7 Unstable Unstable Unstable Unstable 457 

8 25.9±0.74 33.6±1.14 70000±220 01:32:00 518 

9 7.39±0.65 9.18±0.89 24000±150 01:37:00 579 

10 3.54±0.40 4.12±0.75 9075 ± 120 01:40:00 640 

11 3.11±0.36 4.09±0.41 6980±80 02:05:00 701 

12 2.61±0.28 3.84±0.62 4650±60 01:52:00 762 

13 1.74±0.29 2.88±0.62 3920±70 02:01:00 823 

14 1.68±0.27 2.74±0.55 3880±75 02:10:00 884 

15 1.60±0.28 2.66±0.54 3790±60 02:15:00 945 

16 1.58±0.28 2.51±0.50 3775±80 02:17:00 1006 
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17 1.57±0.27 2.46±0.42 3800±70 02:21:00 1067 

18 1.58±0.27 2.47±0.45 4025±70 02:18:00 1128 

[5 5] Unstable Unstable Unstable Unstable 365 

[7 7] 17.4±0.61 26.9±0.76 50000±200 01:22:00 513 

[10 10] 1.57±0.25 2.50±0.77 3950±75 01:38:00 750 

[5 5 5] Unstable Unstable Unstable Unstable 395 

[7 7 7] 4.61±0.31 5.61±0.69 14010±100 01:16:00 569 

[10 10 10] 1.41±0.21 2.17±0.55 3750±61 02:13:00 860 

[15 15] 1.45±0.22 2.33±0.45 3890±70 02:21:00 1185 

[20 20] 1.39±0.25 2.10±0.51 3730±80 02:33:00 1670 

[25 25] 1.38±0.21 2.03±0.49 3725±60 02:49:00 2205 

[30 30] 1.34±0.23 1.98±0.43 3630±70 02:59:00 2790 

[20 20 20] 1.37±0.22 2.00±0.48 3680±70 02:41:00 2090 

[25 25 25] 1.35±0.21 1.88±0.44 3625±60 03:05:30 2855 

[30 30 30] 1.34±0.23 1.95±0.42 3715±80 03:43:00 3720 

 

5.3.4 Predictive Power Analysis of the Hybrid Deep Structure (25×25×25) 

The best deep hybrid structure (25×25×25) was analyzed in more detail. Figure 20A shows 

the training and test errors obtained for the 10 train/test permutations. The partitioning of 

data for training and testing has indeed a significant effect on the modeling error metrics. 

Partition 1 produced a low training error but also the highest test error. Partition 2 produced 

the best results with both low training and testing errors, and closely matching each other. 

These results show that the process information content is not equally distributed among the 

10 randomly selected train/partitions. This problem can be mitigated with more data added 

to both the train and test partition in the future. Figure 20B further details model predictions 

of all concentrations over the respective experimental values for partition 8, which had the 

closest train and test error to the respective mean values. The slope of the linear regression 

as well as the Pearson correlation coefficient (𝑟2) of train and test data are similar. This shows 
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that despite the slightly larger WMSE for the test partition, there is no significant bias when 

compared to the train partition data subset.   

 

Figure 20. Training results for the best hybrid model structure (25×25×25) with 2855 weights. A – Final training 

and testing error for 10 randomly selected train (20)/test (4) permutations of experiments. B - Predicted over 

measured concentrations of all biochemical species for training/test partition 8 (highlighted in A). Blue circles are 

training data. Green circles are test data. Full line is the linear regression. Dashed lines are the upper and lower 

intervals corresponding to one standard deviation. The 𝑟2 is the Pearson correlation coefficient. 

The predicted time profiles were analyzed qualitatively for each variable individually. Figure 

21 shows the dynamic profiles of the 30 concentrations individually for a selected test exper-

iment (experiment 8) predicted by the best shallow model with 17 hidden nodes and the best 

deep model (25×25×25) trained on partition 8. The deep hybrid model follows very closely 

the measured data. Particularly, viable cells (Xv) and product (P) were accurately predicted. 

The predictions of metabolites are within the experimental error bars or very close. On the 

contrary, predictions of the best shallow hybrid model show a tendency to deviate outside of 

experimental error bounds, especially as the cultivation progresses in time. Figure 22 shows 

the predicted time profiles for several test experiments for a subset of process variables. It 

shows that viable cell count, glycoprotein titer, glucose and glutamine concentrations are 

always predicted within the error bars. Moreover, the switch between lactate production and 

lactate consumption as well as from ammonium production and ammonium consumption 

were correctly described by the model. 
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Figure 21. Dynamic simulation of best shallow (17) and best deep hybrid (25×25×25) models for a test experiment 

of the CHO-K1 experimental dataset. Circles are experimental data points and error bars are measurement stand-

ard deviation. Green line is the best deep hybrid model structure 25×25×25; Blue line is the best shallow hybrid 

structure with 17 hidden nodes. 
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Figure 22. Dynamic simulation of best deep hybrid model (25×25×25) for multiple test experiments of the CHO-

K1 experimental dataset. Circles are experimental data points and error bars are measurement standard deviation. 

Full lines are model predictions. The color code (symbol + full line) refers to different test experiments of partition 

8. Blue, orange, yellow and purple colors represent test experiments 1, 4, 5 and 8 respectively. A – viable cell 

count. B – glycoprotein titer. C – glucose concentration. D – lactate concentration. E – glutamine concentration. F – 

ammonium concentration. 

5.4 Discussion 

Hybrid modeling combining First-Principles with neural networks is a well-established meth-

odology in process systems engineering since the early 90’s (e.g. von Stosch et al., 2014, 

Agharafeie et al., 2023). Only very recently hybrid modeling is incorporating deep neural net-

works and deep learning into its framework (Bangi and Kwon, 2020, Pinto et al., 2022, Bangi 

and Kwon, 2023). Most hybrid modeling studies of CHO cells followed the shallow approach. 

The primary goal of this chapter was to investigate if hybrid deep modeling is advantageous 

over shallow hybrid modeling in a CHO-K1 process development context. 

5.4.1 Is Deep Hybrid Modeling Advantageous? 

In the case of the synthetic dataset the best shallow model had (12) hidden nodes (Table 9) 

whereas the best deep structure had 3 hidden layers (10×10×10) (Table 10).  The deep model 

complexity, as measured by the number of weights, increased only 17.9% in relation to the 

shallow model. The deep structure achieved a reduction of 36.2% in the training error 

(WMSE-train), 48.5% in the test error (WMSE-test noisy) and 73.8% in the noise free test error 
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(WMSE-test noise free). All error metrics were significantly improved with emphasis on the 

noise-free test error, which clearly shows that the deep structure captured more faithfully the 

intrinsic process dynamics. The CPU time was also reduced by 20.8%. It is noteworthy to 

mention that the Robitaille et al. (2015) model used to generate the synthetic dataset includ-

ed the intracellular dynamics of 21 molecular species. The cells accumulated different 

amounts of intracellular species depending on the reactor feeding conditions eventually trig-

gering different regulatory mechanisms. The deep FFNN is of static nature thus a structural 

bias could be anticipated due to the mismatch between the dynamic nature of the true pro-

cess and the structure of the hybrid model. This was however successfully mitigated as re-

flected in the extremely low noise free test error of extracellular concentrations (Table 10 and 

Figure 18).  

In the case of the experimental dataset the best shallow model had 17 hidden nodes whereas 

the best deep structure had 3 hidden layers (25×25×25) (Table 11).  The model complexity 

(number of weights) increased in this case quite substantially by 167.6%. The deep structure 

achieved a reduction of 14.0% in the training error (WMSE-train) and 23.6% in the test error 

(WMSE-test) on average. In this case it is impossible to evaluate the noise-free test error re-

duction. Although the magnitude of the improvement is lower than in the synthetic dataset, 

it is statistically significant. Moreover, the improvement in the test error is on average higher 

than in the training error. The training CPU time increased in this case by 31.6%. This increase 

is explained by the higher model complexity (more 167.6% weights). It becomes clear that 

CPU time increase does not scale linearly with model complexity (number of weights). This is 

related with the computation of gradients by the semidirect sensitivity equations (Pinto et al., 

2022). In this approach, the sensitivity of state variables in relation to network outputs are 

independent of the size of the network.  

The results obtained for both the synthetic and experimental datasets indicate a clear ad-

vantage of deep hybrid models over shallow hybrid models in terms of predictive power. In 

both cases the test error reduction is significant and always higher than the training error 

reduction. This suggests that hybrid deep structures capture more faithfully the intrinsic non-

linear dynamics of the true process than the shallow counterpart when exposed to the same 

training dataset. This eventually translates into more accurate predictions of novel process 

conditions. This advantage is generally accepted for standalone FFNNs (Goodfellow et al. 

(2006) and is likely to generalize for hybrid models incorporating deep FFNNs. The only 

downside to the deep model in this study is the training CPU time increase. Pinto et al. (2022) 

reported a decrease in prediction error of 18.4% in a Pichia pastoris pilot process using the 
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same training scheme, which is close to the one reported here. In that study, the shallow and 

deep structures had the same number of weights, and as such the CPU time was also de-

creased by 43.4%. The CPU cost comparison seems to be case dependent and mainly related 

with the size of the shallow and deep FFNN embodied in the hybrid model.  

5.4.2 What is the Best Training Method? 

Two different training methodologies were compared in this study: the classical method and 

the deep learning method. The classical method is based on the LMM algorithm coupled with 

indirect sensitivity equations and cross-validation. This method is normally used to train shal-

low hybrid models (Table 8). The LMM is prone to be trapped in local optima. For this reason, 

the training must be repeated several times (in our case 10 times) with different parameter 

initializations for each structure investigated. The deep learning method is based on ADAM, 

semidirect sensitivity equations and stochastic regularization. ADAM is an improvement of 

the stochastic gradient descent algorithms with adaptive learning rate. The method estimates 

the learning rate during the training, based on the first and second moments of the gradients 

(Kingma, 2014). Only very recently ADAM was applied to train hybrid models (Pinto et al., 

2022). A key conclusion was that ADAM is less prone to be trapped in local optima and is 

practically insensitive to weights initialization. For this reason, the ADAM training was repeat-

ed only once for each of the structures investigated, which in theory reduces the CPU time 

for FFNNs of comparable sizes. Based on the results of Figure 19 with the synthetic dataset, 

the ADAM method outperforms the classical method based on LMM both in terms of the 

training and test error especially for deep and large FFNNs. The differences are less marked 

for shallow and small FFNNs.  

5.4.3 What is the Optimal Network Complexity? 

Several methods have been proposed to determine the optimal neural network size (Teoh et 

al., 2006, Mohanan et al., 2022, Lawrence et al., 1997, Lawrence et al., 1996)  but there is no 

consensus on a general methodology. Here, the number of hidden layers and number of 

nodes in hidden layers were chosen heuristically starting with a single hidden layer with a 

number of nodes equal to approximately half the number of inputs and then increasing until 

the optimal size is found. This procedure is replicated with an increasing number of hidden 

layers. Adding nodes and layers obviously carries a higher number of weights and higher 

complexity. Thus, choosing the best structure must balance the decrease in error with the 
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increase in model complexity. It is noteworthy to mention that the AICc criterion, which is 

evaluated on the training dataset only, often fails to discriminate the hybrid structures with 

the lowest test error. This is an important point because the final hybrid model is expected to 

faithfully predict unseen process conditions. Unseen process conditions mean that the test 

data is not yet available. Mei and Smith (2021) have compared probabilistic methods (the AIC 

and the Bayesian Information Criteria (BIC)) with a resampling method based on blocked 

cross-validation for selection of shallow FFNNs trained on meteorological data. They con-

cluded that these approaches do not converge to the same conclusions, with the AIC and BIC 

generally selecting simpler models than the resampling technique. The results in this study 

show that the AICc and the resampling methods pointed roughly to the same conclusions in 

the case of hybrid models trained with ADAM (Table 10 and Table 11). This means that the 

lowest AICc score, calculated solely on the training dataset, coincided with the lowest test 

error statistics produced by the resampling method. Both methods selected the hybrid deep 

structure (25×25×25) in the case of the experimental dataset (Table 11) and the hybrid deep 

structure (10×10×10) for the case of the synthetic dataset (Table 10). The AICc failed however 

to discriminate the shallow hybrid model with the lowest test error in the case of the synthet-

ic dataset and the LMM training method (Table 9). It clearly selected a much simpler model in 

line with the results by Mei and Smith (2021). It is generally accepted that the performance of 

statistical models should be assessed using resampling methods rather than probabilistic 

methods (Tashman, 2000). It is thus advisable to apply resampling methods also in the con-

text of hybrid modeling despite the higher CPU cost. In both cases (synthetic and experi-

mental datasets) the optimal depth was 3 hidden layers.  

5.5 Conclusions 

This chapter compares for the first time deep and shallow hybrid modeling of a CHO-K1 fed-

batch process in a process development campaign. Data of a CHO-K1 cell line expressing a 

target glycoprotein comprising 24 independent fed-batch experiments with 30 measured 

state variables were used to compare both methodologies. The results point to a systematic 

generalization improvement of deep hybrid models with FFNNs with 3 hidden layers over 

shallow hybrid models. The overall improvement was 14.0% in the training error and 23.6% in 

the testing error. The CPU time to train the deep hybrid model increased by 31.6% and is 

mainly related to the higher FFNN complexity. It is today generally accepted that deep neural 

networks have a general advantage over their shallow counterparts in terms of descriptive 
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power and generalization capacity. This study points to a similar conclusion in a hybrid mod-

eling context. Particularly, deep hybrid models tend to generalize better than shallow hybrid 

models provided that efficient deep learning algorithms (such as ADAM with stochastic regu-

larization) are adapted to the hybrid model framework. This study focused on FFNN hybrid 

structures. The combination of first Principles equations with more complex deep neural net-

work architectures, such as convolution neural networks (CNN) and long short-term memory 

(LSTM) networks, are future research directions in the hybrid modeling field. Shallow hybrid 

modeling is currently a method of choice in the digitalization of biopharma processes. We 

expect deep hybrid modeling to further accelerate the deployment of high-fidelity digital 

twins in the biopharma sector in the near future. 



 101 

6  

 

A GENERAL HYBRID MODELING FRAMEWORK 

FOR SYSTEMS BIOLOGY APPLICATIONS 

This chapter is based on the publications: Pinto, J., Ramos, J. R., Costa, R. S., & Oliveira, R. 

(2023). A General Hybrid Modeling Framework for Systems Biology Applications: Combining 

Mechanistic Knowledge with Deep Neural Networks under the SBML Standard. AI, 4(1), 303-

318. and Pinto, J., Costa, R. S., Alexandre, L., Ramos, J., & Oliveira, R. (2023). SBML2HYB: a Py-

thon interface for SBML compatible hybrid modeling. Bioinformatics, 39(1), btad044. 

6.1 Introduction 

Hybrid modeling methods combining mechanistic knowledge with machine learning (ML) in 

a common workflow have found wide application in process systems engineering since the 

early 1990s (e.g., review by von Stosch et al., 2014). Psichogios and Ungar (1992) described 

one of the first applications of hybrid models to bioprocess engineering. The proposed hy-

brid model consisted of dynamic material balance equations of biochemical species (system 

of ordinary differential equations (ODEs)) connected with a shallow feed-forward neural net-

work in a common mathematical structure. Sensitivity equations were derived enabling the 

training of the neural network by error backpropagation on indirect training examples (e.g., 

measured target variables not coincident with the neural network output variables). Thomp-

son and Kramer (1994) framed this problem as hybrid semiparametric modeling, as such 

models merge parametric functions (stemming from knowledge) with nonparametric func-

tions (stemming from data) in the same mathematical structure. Schubert et al. (1994) pre-

sented the first industrial application of hybrid modeling (material balance equations com-

bined with neural networks) to a Baker’s yeast process. Since the early 1990s, hybrid model 
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structure definition, parameter identification and model-based process control have been 

extensively covered (e.g., Teixeira et al., 2006; Teixeira et al., 2007; von Stosch et al., 2011; 

Pinto et al., 2019; Rajulapati et al., 2022; Glassey and von Stosch, 2018). Hybrid models were 

applied to a wide array of microbial, animal cells, mixed microbial and enzyme processes in 

different industries, such as wastewater treatment, clean energy, biopolymers, and biophar-

maceutical manufacturing (Agharafeie et al., 2023). The potential advantages of hybrid mod-

eling may be summarized as a more rational usage of prior knowledge (mechanistic, heuris-

tic, and empirical) eventually translating into more accurate, transparent, and robust process 

models (von Stosch et al., 2011; Glassey and von Stosch, 2018). 

With a significant lag, hybrid modeling is currently receiving a lot of attention in the systems 

biology scientific community. ML has been applied for the prediction of the function of genes 

(Le at al., 2020) and proteins (Le, 2022) and is gaining popularity in all fields of systems biolo-

gy (Greener at al., 2022). Cuperlovic-Culf et al. (2023) highlighted the difficulty of gathering 

high-quality in vivo data to validate detailed metabolic models, and the opportunity to alter-

natively apply ML and hybrid mechanistic/ML methods. Antonakoudis et al. (2020) recently 

reviewed the efforts to integrate GEnome-scale Models (GEMs) with supervised and unsuper-

vised ML. Kim et al. (2021) reviewed ML applications in the construction and simulation of 

GEMs, and ML applications in use of GEM-derived information. The integration of mechanis-

tic models and ML may be realized through a hybrid pipeline of activities, where both model-

ing frameworks participate to solve particular sub-tasks. Alternatively, mechanistic and ML 

models may be “fused” in a common semiparametric mathematical structure. Following the 

latter approach, hybrid metabolic flux analysis, combining metabolic networks and principal 

component analysis (PCA) in semiparametric linear models, has been studied by Carinhas et 

al. (2011) and Isidro et al. (2016). Hybrid metabolic models combining metabolic networks 

and partial least squares have been proposed by Ferreira et al. (2014) and Teixeira et al. 

(2011). The combination of systems of ODEs with neural networks (hybrid ODEs formalism) 

for the modeling of biochemical networks with intrinsic time delays has been studied by von 

Stosch et al. (2010). The integration of elementary flux modes (EMs) and PCA for hybrid met-

abolic pathway analysis has been researched by Folch-Fortuny et al. (2016) and von Stosch et 

al. (2016). Hybrid dynamic models that combine ODEs, PCA and EMs have been addressed by 

Folch-Fortuny et al. (2016). Lee et al. (2020) developed hybrid mechanistic/neural network 

models for partially known intracellular signaling pathways. Hybrid modeling approaches 

combining neural networks and ODEs have been applied to describe immunodeficiency virus 

(HIV) dynamics (2021) and coronavirus disease 2019 (COVID−19) dynamics (2020). Yang et al. 
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(2019) developed a white-box machine learning approach, leveraging carefully curated bio-

logical network models to mechanistically link input and output data, to reveal metabolic 

mechanisms of antibiotic lethality. Lewis and Kemp (2021) applied genome-scale flux balance 

analysis (FBA) to generate data to train ML classifiers to predict tumor radiosensitivity. Vijaya-

kumar et al. (2020) developed a hybrid pipeline combining multi-omics ML with genome-

scale FBA to analyze the phenotypic potential of cyanobacterium. Ramos et al. (2022) recently 

proposed a hybrid FBA technique that integrates GEMs and PCA constraints in a common 

linear program with mechanistic decision variables (fluxes) concomitantly with empirical deci-

sion variables (scores of principal components).  

A large number of systems biology models, including GEMs, have been developed and stored 

in databases (e.g., BioModels (Le Noverre et al., 2006), JWS online (Olivier and Snoep, 2004), 

and KiMoSys (Mochao et al., 2020)) in the Systems Biology Markup Language (SBML) format 

(Hucka et al., 2003). SBML is a free and open standard based on XML to encode computa-

tional models of biological processes with widespread use in the systems biology scientific 

community. The SBML standard is, however, not commonly adopted in ML software tools. 

This significantly hinders the interlink between both modeling approaches in a hybrid work-

flow. Here, we propose a hybrid modeling framework that combines both modeling ap-

proaches and obeying the SBML standard. A previously published python package, 

SBML2HYB, is used to convert existing systems biology models into hybrid models and vice 

versa (Pinto et al., 2023). The so-formed hybrid models are trained with a deep learning algo-

rithm based on ADAM, stochastic regularization and semidirect sensitivity equations (Pinto et 

al., 2022). The final (trained) hybrid models are uploaded in SBML databases, where they may 

be further analyzed as regular SBML models. This procedure was applied to three well-known 

models: the E. coli threonine pathway model (Chassagnole et al., 2001), the P58IPK signal 

transduction pathway model (Goodman et al., 2011) and the yeast glycolytic oscillations 

model (Dano et al., 2006). 

6.2 Methods 

6.2.1 General SBML Hybrid Model 

SBML models are organized as 𝑗 = 1, ..., 𝑛 compartments with size 𝑉𝑗. Each compartment 

contains 𝑚𝑗 species with a concentration vector 𝑐𝑗 . The species are interlinked through 𝑞𝑗 

reactions with stoichiometry 𝑆𝑗 and reaction kinetics 𝑟𝑗. SBML models also contain parame-
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ters, θ, with given initial values (parameters may be local to reactions or global; for simplicity, 

we assume global). In SBML, the parameter values are not necessarily fixed as they may 

change over time according to predefined algebraic rules. The compartment size may also 

change over time according to predefined compartment rate rules (other rate rules were not 

considered here for simplicity). External time dependent stimuli may be defined through 

events, giving rise to a vector of exogenous input variables, 𝑢, that may change over time. 

With these elements, the dynamics of biochemical species in a generic compartment 𝑗 may 

be described by the following ODEs model: 

Equation 53. ODE model for an SBML model 

𝑑(𝑐𝑗𝑉𝑗)

𝑑𝑡
= 𝑆𝑗  ×  𝑟𝑗(𝑐𝑗, 𝜃, 𝑢, 𝜗, 𝑡)  ×  𝑉𝑗 

𝑑𝑉𝑗

𝑑𝑡
= 𝑧𝑗(𝑉𝑗, 𝑐𝑗 , 𝜃, 𝑢, 𝜗, 𝑡) 

𝜃 = ℎ(𝑉𝑗 , 𝑐𝑗, 𝜃, 𝑢, 𝜗, 𝑡) 

Equation 53a is a conservation law of mass assuming a perfectly mixed compartment. Equa-

tion 53B represents a generic compartment rate rule in case the compartment size changes 

over time. Equation 53C represents generic algebraic rules to compute model parameters 

over time. Equation 53 is of a parametric nature with fixed structure stemming from prior 

knowledge (e.g., mass conservation laws, reaction stoichiometry or enzyme kinetics). Some 

variables may, however, lack a mechanistic basis (e.g., unknown reaction kinetics mechanisms 

or unknown physicochemical properties of molecular species such as charge or glycosylation 

pattern). In the general SBML hybrid model, variables lacking a mechanistic basis are defined 

as loose nonparametric functions, ϑ(∙), without a fixed structure. They are computed by a 

deep feedforward neural network (FFNN) with 𝑛ℎ hidden layers as a function of species con-

centrations, exogenous inputs, and other relevant variables (Equation 54): 

Equation 54. General FFNN for an SBML model 

𝐻0 = 𝑔(𝑉𝑗, 𝑐𝑗, 𝜃, 𝑢, 𝑡) 

𝐻𝑖 =   𝜎 (𝑤𝑖 ∙ 𝐻𝑖−1 + 𝑏𝑖), 𝑖 = 1,… , 𝑛ℎ  

𝜗(∙) = 𝑤𝑛ℎ+1 ∙ 𝐻𝑛ℎ + 𝑏𝑛ℎ+1 

A non-linear pre-processing function, 𝑔 (𝑉𝑗, 𝑐𝑗, 𝜃, 𝑢, 𝑡), may be used to compute the FFNN 

input signals to improve the training. The input signals are forward propagated through the 

hidden layers. The σ(∙) represents the nodes transfer function in the hidden layers (always the 

hyperbolic tangent function in this chapter). Finally, the FFNN outputs, ϑ, are computed by a 

linear output layer. The nodes connections weights, 𝑤 = {𝑤1, 𝑤2, … , 𝑤𝑛ℎ+1} and 𝑏 =
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{𝑏1, 𝑏2, … , 𝑏𝑛ℎ+1},  are calculated during the training of the model, for which an informative 

dataset is needed.  

For a particular biological model, Equation 53 and Equation 54 describing 𝑛 compartments 

with species and reactions are transformed via automatic symbolic manipulation into an 

equivalent set of ODEs and derived sensitivity equations using the Symbolic Math toolbox 

(MATLAB R2020a, MathWorks Inc.). The end result of this procedure is an automatically gen-

erated Matlab/Octave function that computes time derivatives of all state variables, 𝑦 = {𝑐1,

𝑐2, … , 𝑐𝑛, 𝑉1,  𝑉2, … , 𝑉𝑛} (Equation 55): 

Equation 55. General form of the automated derivatives function 

𝑑𝑦

𝑑𝑡
= 𝑓(𝑦, 𝜗, 𝑢, 𝑡) 

 

And also, the semidirect sensitivity parameters obtained by the symbolic differentiation of 

Equation 55 with respect to state variables, 𝑦, and FFNN outputs, ϑ (Equation 56): 

Equation 56. General form of automated semidirect sensitivities 

𝑑 (
𝜕𝑦
𝜕𝜗
)

𝑑𝑡
=  (

𝜕𝑓

𝜕𝑦
)(
𝜕𝑦

𝜕𝜗
) + (

𝜕𝑓

𝜕𝜗
) 

(
𝜕𝑦

𝜕𝜗
) |𝑡=0 = 0 

Deep learning of hybrid models obeying to the system of Equation 55 and Equation 56 has 

been thoroughly investigated by Pinto et al. (2022). A Runge–Kutta 4th order ODE solver was 

implemented in MATLAB R2020a (MathWorks Inc.) to integrate the system of Equation 55 

and Equation 56. The training was performed in a weighted least squares sense by minimiz-

ing the following loss function (Equation 57): 

Equation 57. Loss function for an SBML hybrid model 

𝑊𝑀𝑆𝐸 =
1

𝑇
 ∑

(𝑦𝑡
∗ − 𝑦𝑡)

2 

𝜎𝑡
2

𝑇

𝑡=1

  
 

with T the number of training examples, 𝑦𝑡
∗the measured training example at time t, 𝑦𝑡the 

corresponding model prediction and 𝜎𝑡 the measurement standard deviation. The gradients 

of the loss function with respect to the neural network outputs were computed by the equa-

tion (Equation 58): 



 106 

Equation 58. Loss function gradients 

𝜕𝑊𝑀𝑆𝐸

𝜕𝜗
= −2 ∑

𝑦𝑡
∗ − 𝑦𝑡

𝜎𝑖
2 (

𝜕𝑦

𝜕𝜗
)
𝑡

𝑇

𝑡=1

 
 

The output layer gradients, 
𝜕𝑊𝑀𝑆𝐸

𝜕𝜗
, were backpropagated to the input layer via the well-

known error backpropagation algorithm (Werbos, 1974), yielding the loss function gradients 

with respect to the neural network parameters (Equation 59): 

Equation 59. Loss function gradients in respect to the FFNN parameters 

𝑔 =  [
𝜕𝑊𝑀𝑆𝐸

𝜕𝜔
,
𝜕𝑊𝑀𝑆𝐸

𝜕𝑏
] ( 

 

Finally, the adaptive moment estimation algorithm (ADAM) (Kingma, 2014) with stochastic 

minibatch and weights dropout regularization was adopted to minimize the loss function 

given by Equation 57, using gradients, 𝑔 (Equation 59). For further details, the reader is re-

ferred to Lee et al., 2020. The code was implemented in MATLAB R2020a (MathWorks Inc.) on 

a computer with Intel® CoreTM i5–8265U CPU @ 1.60 GHz 1.80 GHz, and 24 GB of RAM. 

6.2.2 Interfacing with SBML Databases and SBML Modeling Tools 

The SBML2HYB python package (Pinto et al., 2023) was adopted to read SBML models, rede-

sign them as hybrid models and to store them in model databases. This freely available py-

thon package converts existing systems biology models encoded in SBML into hybrid models 

that combine mechanistic equations and deep neural networks (currently limited to FFNNs). 

SBML is not a common format to encode ML models. An intermediate HMOD format sup-

ports the conversion process. The HMOD format is a text-based file (ASCII) with the list of 

properties defining the model (species, reactions, parameters, rates, and rules) in a similar 

manner to SBML, by considering any number of species with a certain initial concentration 

distributed among any number of compartments. These species are then interlinked through 

a list of reactions and rate rules. The user inputs the information of the deep neural network 

into the HMOD file either manually or through a pre-configured neural network in Python 

keras, using the SBML2HYB tool. The resulting hybrid model in HMOD format is reconverted 

to SBML and uploaded in model databases. In this step, the FFNN Equation 54 is mapped to 

assignment rules in SBML format, whereas the network weights are mapped to global pa-

rameters in the SBML format. The resulting SBML hybrid models may be simulated, analyzed 

and/or trained with existing tools such as MATLAB (MathWorks Inc.), COPASI (Hoops et al., 
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2006) or special purpose tools with training algorithms for hybrid models that are able to 

read SBML files. For further details, the reader is referred to (Pinto et al., 2023). 

6.2.3 Case Studies  

The SBML hybrid modeling framework was applied to three systems biology case studies 

freely available in the JWS Online database (https://jjj.bio.vu.nl/models/, accessed on January 

2024) (Olivier and Snoep, 2004) with the access IDs given in Table 12. The first case study is a 

metabolic network describing the synthesis of threonine in E. coli proposed by Chassagnole 

et al. (2001). The second case study is the P58IPK signal transduction network to study Influ-

enza infection dynamics proposed by Goodman et al. (2011). The third case study is a re-

duced yeast glycolytic model with preserved limit cycle stability proposed by Dano et al. 

(2006). In order to upgrade the original mechanistic models in hybrid mechanistic/neural 

network versions, the following pipeline of activities (Figure 23) was applied to each of the 

case studies: 

Step 1: The original systems biology models were retrieved from the JWS database in 

SBML format. The respective files are provided as supplementary material.  

Step 2: Synthetic time series datasets were generated by simulating the original models 

in the JWS platform. The resulting data sets are provided as supplementary material. These 

data are needed to train the hybrid models as a proof-of-concept. No experimental data 

were used in this study. More details are provided in section 6.3. 

Step 3: For each case study, a feedforward neural network (FFNN) was inserted into the 

mechanistic model and converted to the HMOD format using the SBML2HYB python tool, 

freely available in Pinto et al., 2023. The size of the FFNN and interface with the mechanistic 

model depended on the case study. More details are given in section 6.3. 

Step 4: The hybrid mechanistic/FFNN models encoded in the HMOD format were 

trained using the deep learning approach described in Section 2.1 and the datasets generat-

ed in step 2. Implementation details varied in the case studies (more on this in section 6.3). 

The main concern was the proof-of-concept that SBML hybrid models may be efficiently 

trained to a comparable performance to the original mechanistic models. The effect of the 

size of the FFNN was investigated. The final trained hybrid models, with the updated FFNN 

weights, were saved in the HMOD format.  

Step 5: The trained hybrid models in the HMOD format were reconverted to SBML us-

ing the SBML2HYB tool. In this step, the FFNN information is mapped to assignment rules in 

the SBML format. The obtained SBML files were uploaded to the JWS online platform and are 
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now freely available for the community to analyze. The hybrid model structures encoded in 

SBML were visualized using the freely available Cytoscape cy3sbml tool (Konig et al., 2012). 

The hybrid models SBML files are provided as supplementary material.  

Step 6: For proof-of-concept, the original mechanistic SBML models (step 1) and the fi-

nal hybrid SBML models (step 5) were simulated and compared using the JWS online simula-

tor (https://jjj.bio.vu.nl/models/experiments/, accessed on January 2024) showing that their 

outputs are practically coincident. 

 

Figure 23. Schematic workflow for redesigning existing SBML models stored in databases into hybrid mechanis-

tic/neural network models. Step 1: An SBML biologic model is extracted from a model database. Step 2: A synthet-

ic time series dataset is generated to train the hybrid model. Step 3: A feedforward neural network (FFNN) is in-

serted in the mechanistic kinetic model and converted to the HMOD format using the SBML2HYB tool. Step 4: The 

hybrid mechanistic/FFNN model encoded in the HMOD format is trained by applying the deep learning approach 

(Section 6.2.1) and the synthetic dataset. Step 5: The trained hybrid model in the HMOD format is reconverted to 

SBML using the SBML2HYB tool. Step 6: The final trained hybrid model in the SBML format is uploaded in the 

model database and simulated comparatively to the original nonhybrid model. 

 

Table 12. Summary of the three SBML models that were redesigned to hybrid mechanistic/neural network models 

in the present study. 

Case Study 
Number of 

Species 

Number of 

Reactions 

Number of 

Parameters 
JWS Online ID Reference 

E. coli threonine 

synthesis pathway 
11 7 47 chassagnole1 

Chassagnole 

et al., 2001 

P58IPK signal trans-

duction pathway 
9 (4 fixed) 9 10 goodman 

Goodman et 

al., 2011 

Yeast glycolytic os-

cillations 
7 (1 fixed) 11 31 dano1 

Dano et al., 

2006 
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As mentioned in step 5, hybrid models with different network depths and sizes were evaluat-

ed for each case study. The “best” hybrid model was discriminated on the basis of the Akaike 

Information Criterion with a second order bias correction (AICc), computed for the training 

data partition as follows (Equation 60): 

Equation 60. Akaike Information Criterion with second order bias correction 

𝐴𝐼𝐶𝑐 = 𝑇 𝑙𝑛 +  2 𝑛𝑤 +
2 𝑛𝑤 (𝑛𝑤 +  1)

𝑇 −  𝑛𝑤 −  1
 ( 

With 𝑛𝑤 the total number of FFNN weights that are calculated during the training process. 

AICc includes an overparameterization penalty and is commonly used to discriminate be-

tween empirical model candidates and to select a parsimonious model for small sample sizes 

(Li et al., 2002). 

6.3 Results and Discussion 

6.3.1 Case Study 1: Threonine Synthesis Pathway in E. coli 

The first case study is the metabolic model proposed by Chassagnole et al. (2001), describing 

the threonine synthesis pathway in E. coli (Table 12). This model dynamically simulates the 

time course of 11 species (adp, asa, asp, aspp, atp, hs, hsp, nadp, naph, phos and thr) in a 

single compartment, corresponding to 11 ODEs. It has seven reactions (with rates vak, vasd, 

vatpase, vhdh, vhk, vnadph_endo and vtsy) and 47 kinetic parameters (the names of variables 

were kept the same as in the original SBML model to facilitate cross-reference; for details, the 

reader is referred to the JWS Online model with access ID ‘chassagnole’). 

Hybrid models were created by combining deep FFNNs of different sizes with the original 

mechanistic model, following the previously described procedure (Figure 23). The FFNNs had 

11 inputs corresponding to the concentrations of the 11 species (adp, asa, asp, aspp, atp, hs, 

hsp, nadp, naph, phos, thr). The number of hidden layers and nodes in the hidden layers var-

ied (Table 2). The activation function in the hidden layers was always the hyperbolic tangent 

function. The FFNNs had seven outputs corresponding to the maximum reaction rate values 

of the seven metabolic reactions. The kinetic equations of the original SBML model were fully 

kept in the hybrid models. The job of the FFNNs was thus to describe the maximum reaction 

rate parameters as a function of species concentrations. Figure 24 graphically represents the 

hybrid model structure [11 × 5 × 5 × 7] (Table 13) using the Cytoscape cy3sbml tool. This 

figure shows an heterogenous (hybrid) network composed of nodes and edges of different 
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nature. On the biochemical network side (left), the large circles represent the molecular spe-

cies, which have a physical concentration associated. The small black squares and respective 

edges represent biochemical reactions with a well-defined stoichiometry. The black triangles 

are the reaction kinetic rates. On the feedforward neural network side (right), the blue circles 

represent the neural network nodes, which have an abstract numerical value associated de-

fining the node strength. The green squares and respective edges represent signal propaga-

tion between nodes. The interlink between the two sides of the network is mediated by the 

black triangles, which in this case correspond to the maximum reaction rate parameters to be 

applied in the kinetic law equations. An interesting analogy may be established between the 

neural network part and an artificial nucleus of a cell with associated signal transduction net-

works and gene regulatory networks, with the job of controlling the underlying metabolic 

processes. 

Table 13. Training metrics of different hybrid models for the E. coli threonine synthesis pathway case study (chas-

sagnole1). The dataset was divided in four experiments for training (400 training examples for each state variable) 

and five for testing (500 testing examples for each state variable). The training was performed with ADAM with 

default hyperparameters as suggested by Kingma (2014) (𝛼=0.001,  = 0.9,  = 0.999 and ζ = 1 × 10−8). The number 

of iterations was 5000. The minibatch size was 78% and weight dropout probability was 0.22 as suggested by 

Pinto et al. (2022). The AICc was computed on the training set only. The noise-free WSSE measures the error be-

tween noise-free data (e.g., true process behavior) and model predictions. 

Hybrid model 
WMSE 

Train 

WMSE 

Test 

WMSE Test 

(Noise Free) 
AICc 

CPU Time 

(hh:mm:ss) 

Number of 

Weights 

11 × 5 × 5 × 7 1.03 0.99 0.07 838 00:31:00 132 

11 × 10 × 10 × 7 1.07 1.00 0.08 2510 00:29:00 307 

11 × 15 × 15 × 7 1.04 0.99 0.08 2102 00:35:00 532 

11 × 20 × 20 × 7 1.03 0.98 0.07 2400 00:33:00 807 

11 × 5 × 5 × 5 × 7 1.03 0.99 0.07 918 00:32:00 162 

11 × 10 × 10 × 10 × 7 1.05 0.98 0.07 1890 00:40:00 417 

11 × 15 × 15 × 15 × 7 1.04 1.01 0.08 2659 00:36:00 772 

11 × 20 × 20 × 20 × 7 1.04 1.00 0.07 3684 00:35:00 1227 
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Figure 24. Hybrid model structure [11 × 5 × 5 × 7] for the threonine synthesis pathway (1st row of Table 2) visual-

ized in the cy3sbml tool (Konig et al., 2012). Left side: Metabolic network with physical meaning. Large circles 

represent biochemical species (metabolites). Black squares and black edges represent biochemical reactions. Black 

triangles represent kinetic laws. Right side: Artificial feedforward neural network with size [11 × 5 × 5 × 7]. Small 

blue circles represent neural network nodes. Green squares and gray edges represent signal propagation between 

neural network nodes. The first layer receives input signals of biochemical species concentrations (Large circles). 

The last layer delivers kinetic parameter values to the black triangles, which mediate the communication between 

both sides of the network. 

The hybrid models were trained with a synthetic data set following the procedure of Figure 

23. A time series dataset was created by simulating the original SBML model directly in the 

JWS platform. A two-factor central composite design of experiments (CC-DOE) was carried 

out to the initial concentrations of atp between 5 and 15 (arbitrary units) and of asp between 

1 and 3 (arbitrary units) resulting in nine experiments. The data for each experiment was rec-

orded as a time series with 100 data points and a sampling time of 1 (arbitrary units). Gaussi-

an noise (10%) was added to concentrations of species, thereby simulating experimental er-

ror. This synthetic dataset is available in the supplementary material (Simulation_data.xlsx; 

chassagnole_data sheet). From the nine experiments, four were used for training (the star 

experiments of the CC-DOE corresponding to 400 training examples for each state variable) 

and five were used for testing (the square plus the center experiments of the CC-DOE corre-

sponding to 500 training examples for each state variable). The training was performed with 

ADAM with default hyperparameters (Table 13), 5000 iterations, semidirect sensitivity equa-

tions and stochastic regularization with a minibatch size of 0.78 and weights dropout of 0.22. 

The choice of the minibatch size and weights dropout was based on the results by Pinto et al. 
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(2022). Table 13 shows the overall training metrics for different FFNNs sizes. The performanc-

es of the hybrid models in terms of training error (WMSE train) and testing error (WMSE test) 

are comparable. The magnitude of the train and test errors are also comparable, denoting an 

effective training without overfitting in all cases. This is further strengthened by the very low 

noise-free test error showing that model predictions are very close to the true process be-

havior in all cases. The total number of network weights varied almost 10-fold, but this was 

not reflected in the training performance. The best hybrid structure was chosen to be the 

smallest one [11 × 5 × 5 × 7] based on the lowest AICc value (1st row in Table 13). 

The trained hybrid models may be simulated and analyzed in any systems biology platform 

complying with the SBML standard. As proof-of-concept, the best hybrid model [11 × 5 × 5 

× 7] in the SBML format was uploaded to the JWS online platform and simulated. Figure 25 

shows the JWS online simulation of the original model and of the best hybrid model [11 × 5 

× 5 × 7] for a test experiment not used for training (the center point experiment of the CC-

DOE). The results show that the hybrid model perfectly mimicked the dynamics of the origi-

nal mechanistic model. 

 

Figure 25. Comparison between original model and best hybrid model for case study 1 (threonine synthesis path-

way in E. coli) Dynamic profiles were simulated based on the respective SBML files in the JWS Online platform. The 

test experiment was the center point experiment of the CC-DOE (not used for training). Full lines represent species 

concentrations over time. Left panel: Original SBML model simulation. Right panel: Best hybrid model simulation 

with structure [11 × 5 × 5 × 7] (First row of Table 13). 

The procedure presented in Figure 23 may result in mathematical structures that are more 

detailed mechanistically and much more complex to train than previously published hybrid 

models. This may raise concerns about the training feasibility of FFNNs interlinked with com-

plex mathematical structures. Pinto et al. (2022) compared traditional shallow hybrid model-

ing (using the Levenberg–Marquardt algorithm coupled with the indirect sensitivity equa-

tions, cross-validation, and a hyperbolic tangent activation function) with deep hybrid model-

ing (using ADAM, semidirect sensitivity equations, stochastic regularization and multiple hid-

den layers). A clear advantage of hybrid deep learning both in terms of predictive power and 
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computational cost was demonstrated. However, all experiments had a simplistic mechanistic 

part. Here, case study 1 model kept the original kinetic law equations. Seven highly complex 

kinetic equations with 47 parameters were “merged” with the FFNN. Table 13 results suggest 

nonetheless that the previously published deep learning approach for hybrid models (ADAM 

+ semidirect sensitivity equations + stochastic regularization) is equally effective at training 

hybrid models with complex parametric functions. 

6.3.2 Case Study 2: P58IPK Signal Transduction Pathway 

The second case study was based on the viral infection model proposed by Goodman et al. 

(2011), freely available in SBML in the JWS Online database (http://www.jjj.bio.vu.nl, accessed 

on January 2024) under access ID ‘goodman’ (Table 12). The authors studied the dynamics of 

the P58IPK signal transduction pathway during Influenza virus infection. A mathematical 

model was developed to evaluate the effect of protein P58a activation on the P58IPK path-

way dynamics, particularly on the activation of the PKR kinase and on the phosphorylation of 

eIF2, both controlling viral protein expression. The model comprehends nine species (Flu, 

NS1, P58a, P58total, PKRp, PKRtotal, eIF2ap, eIF2atotal and ext) in a single compartment, of 

which four are fixed (P48total, PKRtotal, eIF2atotal and ext), corresponding to five ODEs. The 

model further has nine reactions and 10 parameters. The names of variables were kept the 

same as in the original model and are explained in the database. 

As in the previous case study, SBML hybrid models were created by combining FFNNs of dif-

ferent sizes (Table 14) with the original mechanistic model following the procedure of Figure 

23. Figure 26 shows the hybrid model structure [5 × 10 × 10 × 10 × 9] (Table 14) using the 

SBML-visualizing cy3sbml tool (Konig et al., 2012. The left side of Figure 26 represents the 

original mechanistic signal transduction network, whereas the right side represents the FFNN 

added to the mechanistic core. The FFNN has five inputs corresponding to the concentrations 

of the five dynamical species (Flu, NS1, P58a, PKRp and EIF2ap), three hidden layers (10 × 10 

× 10) with hyperbolic tangent activation functions, and nine outputs corresponding to the 

kinetic rates (v_1r, v_2r, v_3r, v_4r, v_5r, v_6r, v_7r, v_8r, v_9r as they are named in the original 

SBML implementation). In this case study, the FFNNs in Table 14 completely replaced the 

kinetic laws of the original model, which were therefore deleted in the hybrid model struc-

tures. This network may be interpreted as a hybrid signal transduction pathway with a physi-

cal part composed of proteins and an artificial part composed of abstract neural network 

nodes. 



 114 

Table 14. Training metrics of different hybrid models for the P58IPK signal transduction pathway case study 

(goodman). The dataset was divided into four experiments for training (400 training examples for each state vari-

able) and five for testing (500 testing examples for each state variable). The training was performed with ADAM 

with default hyperparameters as suggested by Kingma (2014) (𝛼 = 0.001,   =  0.9,  = 0.999 and ζ = 1 × 10−8). The 

number of iterations was 5000. The minibatch size was 78% and weight dropout probability was 0.22 as suggested 

by Pinto et al. (2022). The AICc was computed on the training set only. The noise-free WSSE measures the error 

between noise-free data (e.g., true process behavior) and model predictions. 

Hybrid model 
WMSE 

Train 

WMSE 

Test 

WMSE Test 

(Noise Free) 
AICc 

CPU Time 

(h:m:s) 

Number of 

Weights 

5 × 5 × 5 × 9 1.60 1.51 0.54 1916 00:12:10 114 

5 × 10 × 10 × 9 1.59 1.48 0.53 2181 00:11:54 269 

5 × 15 × 15 × 9 1.61 1.50 0.56 2810 00:15:15 474 

5 × 20 × 20 × 9 1.58 1.49 0.51 3480 00:20:48 729 

5 × 5 × 5 × 5 × 9 1.45 1.50 0.48 1890 00:13:15 144 

5 × 10 × 10 × 10 × 9 1.23 1.28 0.12 1430 00:16:10 379 

5 × 15 × 15 × 15 × 9 1.35 1.36 0.31 2140 00:19:30 714 

5 × 20 × 20 × 20 × 9 1.34 1.40 0.36 4150 00:27:12 1149 

 

Figure 26. Hybrid model structure [5 × 10 × 10 × 10 × 9] for the P58IPK signal transduction pathway (6th row of 

Table 3) visualized using the cy3sbml tool (Konig et al., 2012). Left side: Signal transduction network with physical 

meaning. Large circles represent biochemical species (proteins). Black squares and black edges represent bio-

chemical reactions. Black triangles represent kinetic laws. Right side: Artificial feedforward neural network with size 

[5 × 10 × 10 × 10 × 9]. Small blue circles represent neural network nodes. Green squares and gray edges repre-
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sent signal propagation between neural network nodes. The first layer receives input signals of biochemical spe-

cies concentrations (Large circles). The last layer delivers kinetic parameter values to the black triangles, which 

mediate the communication between both sides of the network. 

Hybrid SBML models with varying number of hidden layers and nodes in the hidden layers 

were trained using a synthetic data set. A time-series dataset was created by simulating the 

original SBML model in the JWS platform following a similar procedure to case study 1 (avail-

able in the supplementary material as Simulation_data.xlsx; goodman_data sheet). A two-

factor CC-DOE was carried out to the initial amount of Flu (overall level of infection within the 

host cell) between 2 and 6 (arbitrary units) and the initial amount of PKRp (phosphorylated 

PKR protein) between 0 and 2 (arbitrary units). The data for each experiment were recorded 

as a time series with 100 points and sampling time of 0.05 (arbitrary units). This resulted in 

nine experiments with 100 time points each. Additionally, 10% Gaussian noise was added to 

concentrations of species to simulate experimental error. As in the previous case study, four 

experiments were selected for training (the star experiments of the CC-DOE corresponding to 

400 training examples for each state variable), and five experiments were used for testing 

(the square plus the center experiments of the CC-DOE corresponding to 500 training exam-

ples for each state variable). The training was performed using ADAM with default hyperpa-

rameters (Table 14), 5000 iterations, semidirect sensitivity equations and stochastic regulari-

zation (minibatch size of 0.78 and weight dropout of 0.22, as before). The overall training 

results for different FFNN sizes are shown in Table 14. As opposed to the previous case study, 

the size of the FFNN has an effect on the training performance. This may be explained by the 

smaller amount of mechanistic knowledge embodied in the hybrid models. Since the original 

kinetic laws were completely deleted in the hybrid models, the training results are more 

heavily dependent on the FFNN structure. Interestingly, the larger networks with a higher 

depth (three hidden layers) outperformed the smaller networks, particularly in the extrapola-

tion experiments (test WMSE). Overall, the structure [5 × 10 × 10 × 10 × 9] stands out as the 

best-performing model with the lowest training error (WMSE train) and lowest testing error 

(WMSE test). This is further reinforced by the lowest noise-free test error and the lowest AICc. 

This structure was uploaded to the JWS online platform and simulated comparatively to the 

original mechanistic model (Figure 27). As in the previous case study, the best-performing 

hybrid SBML model [5 × 10 × 10 × 10 × 9] was able to perfectly mimic the dynamics of the 

original mechanistic model. 
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Figure 27. Comparison between original model and best hybrid model for case study 2 (P58IPK signal transduc-

tion pathway). Dynamic profiles were simulated based on the respective SBML files in the JWS Online platform. 

The test experiment was the center point experiment of the CC-DOE (not used for training). Full lines represent 

species concentrations over time. Left panel: Original SBML model simulation. Right panel: Best hybrid model 

simulation with structure [5 × 10 × 10 × 10 × 9] (Sixth row of Table 14). 

6.3.3 Case Study 3: Yeast Glycolytic Oscillations 

The third case study consisted of the reduced dynamical model of yeast glycolysis proposed 

by Dano et al. (2006). This model is a reduced version of a more detailed yeast glycolysis 

model. Both the original and reduced models exhibit limit cycle stability, with a certain num-

ber of species showing stable oscillations over time. It comprehends eight species (ADP, 

AMP, ATP, BPG, DHAP, FBP, GAP and sink) in a single compartment. The dynamic variable 

‘sink’ was the only one that was fixed, thus translating to a system of seven ODEs. The model 

further comprehends 11 metabolic reactions and 31 parameters. This model is freely available 

in SBML format on the JWS Online database (http://www.jjj.bio.vu.nl, accessed on January 

2024) with access ID ‘dano1′. 

SBML hybrid models were created by combining FFNNs of different sizes with the original 

mechanistic model. Figure 6 illustrates this process for the structure [7 × 10 × 10 × 10 × 11] 

with 421 weights (6th row of Table 15). The right side of Figure 28 represents the original 

metabolic network, whereas the left side represents the incorporated FFNN. In this example, 

the FFNN has seven inputs corresponding to the concentrations of the seven species (ADP, 

AMP, ATP, BPG, DHAP, FBP, GAP), three hidden layers (10 × 10 × 10) with hyperbolic tangent 

activation functions, and 11 outputs corresponding to the kinetic rates (v_1r, v_2r, v_3r, v_4r, 

v_5r, v_6r, v_7r, v_8r, v_9r, v_10r, v_11r as they are named in the original SBML model). As in 

case study 2, the original kinetic laws were completely deleted in the hybrid models. 

Table 15. Training metrics of different hybrid models for the yeast glycolytic oscillations case study (Dano1). The 

dataset was divided into four experiments for training (400 training examples for each state variable) and five for 

testing (500 testing examples for each state variable). The training was performed with ADAM with default hy-
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perparameters as suggested by Kingma (2014) (𝛼 = 0.001,  = 0.9,  = 0.999 and ζ = 1 × 10−8). The number of itera-

tions was 10000. The minibatch size was 78% and weight dropout probability was 0.22 as suggested by Pinto et al. 

(2022). The AICc was computed on the training set only. The noise-free WSSE measures the error between noise-

free data (e.g., true process behavior) and model predictions. 

Hybrid model 
WMSE 

Train 

WMSE 

Test 

WMSE Test 

(Noise Free) 
AICc 

CPU time 

(h:m:s) 

Number of 

Weights 

7 × 5 × 5 × 11 20.12 21.05 20.14 5730 01:05:00 136 

7 × 10 × 10 × 11 1.87 1.99 1.67 3818 01:20:00 311 

7 × 15 × 15 × 11 1.74 1.78 1.56 4120 01:15:00 536 

7 × 20 × 20 × 11 1.16 1.43 0.98 2740 01:24:00 811 

7 × 5 × 5 × 5 × 11 5.33 5.84 5.14 3930 01:33:00 166 

7 × 10 × 10 × 10 × 11 0.93 0.94 0.11 −41 01:31:00 421 

7 × 15 × 15 × 15 × 11 0.98 0.97 0.21 784 01:20:00 776 

7 × 20 × 20 × 20 × 11 0.97 0.97 0.17 2213 01:40:00 1231 
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Figure 28. Hybrid model structure [7 × 10 × 10 × 10 × 11] for the yeast glycolysis pathway (6th row of Table 15) 

visualized in the cy3sbml tool (Konig et al., 2012). Left side: Reduced glycolysis network with physical meaning. 

Large circles represent biochemical species (metabolites). Black squares and black edges represent biochemical 

reactions. Black triangles represent kinetic laws. Right side: Artificial feedforward neural network with size [7 × 10 

× 10 × 10 × 11]. Small blue circles represent neural network nodes. Green squares and gray edges represent sig-

nal propagation between neural network nodes. The first layer receives input signals of biochemical species con-

centrations (Large circles). The last layer delivers kinetic parameter values to the black triangles, which mediate the 

communication between both sides of the network. 

Hybrid SBML models of different sizes were trained with a synthetic dataset following a simi-

lar process to the previous case studies. A two-factor CC-DOE was carried out by varying the 

amount of initial ADP concentration between 1 and 2 (arbitrary units) and the initial ATP con-

centration between 1 and 2 (arbitrary units), resulting in nine experiments. Each experiment 

was simulated on the JWS Online platform with the resulting time-series data (100 time 

points) recorded with a sampling time of 0.05 (arbitrary units).  Gaussian noise (10%) was 

added to the concentrations of species. This synthetic dataset is available as supplementary 

material (Simulation_data.xlsx; dano1_data sheet). Four experiments were selected for train-

ing (the star experiments of the CC-DOE corresponding to 400 training examples for each 

state variable) and five were used for testing (the square plus the center experiments of the 

CC-DOE corresponding to 500 training examples for each state variable). The hybrid models 

were trained with this data using ADAM with default hyperparameters (10000 iterations, sem-

idirect sensitivity equations, stochastic regularization with minibatch size of 0.78 and weight 
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dropout of 0.22). The overall training results for different FFNNs sizes are shown in Table 15. 

Unsurprisingly, limit cycle stability is a more challenging problem for hybrid model develop-

ment. The effect of the FFNN depth and size was much more pronounced than in the previ-

ous example. The smaller networks were not able to exhibit stable oscillations even for the 

training examples. Only models with three hidden layers were able to accurately capture the 

oscillatory dynamics. The three largest structures show a comparable training and testing 

error. However, the structure [7 × 10 × 10 × 10 × 11] clearly stands out as the best-

performing model with the lowest training error (WMSE train) and the lowest testing error 

(WMSE test). This is further accentuated by the significantly lower noise-free test error and 

lower AICc. This hybrid SBML model was uploaded to the JWS online platform and simulated 

comparatively to the original metabolic model for the center point test experiment (not used 

for training) of the CC-DOE (Figure 29). Remarkably, the best hybrid model structure [7 × 10 

× 10 × 10 × 11] was able to reproduce very faithfully the oscillatory behavior of the original 

metabolic model when exposed to different initial conditions than those applied in the train-

ing experiments. 

 

Figure 29. Comparison between original model and best hybrid model for case study 3 (yeast glycolysis model). 

Dynamic profiles were simulated based on the respective SBML files on the JWS Online platform. Simulations were 

performed for the center point experiment of the CC-DOE (not used for training). Full lines represent species con-

centrations over time. Left panel: Original SBML model simulation. Right panel: Best hybrid model simulation with 

structure [7 × 10 × 10 × 10 × 11] (Sixth row of Table 15). 

6.4 Conclusions 

SBML is an open standard based on XML currently adopted by the systems biology commu-

nity to encode computational models of biological processes. An extensive body of research 

has produced a large number of such SBML models that are currently stored in public data-

bases. The SBML standard is, however, not commonly adopted to encode ML models. The 

main novelty of the present study is the combination of both modeling formalisms in a 
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common hybrid workflow obeying the SBML standard. With few exceptions, previously pub-

lished hybrid models embodied relatively simple mechanistic models (mechanistic scale-gap) 

and relatively simple ML models (ML scale-gap). With the proposed SBML hybrid modeling 

framework, the mechanistic scale-gap may be significantly narrowed. It is shown with three 

simple examples how publicly available SBML models may be easily upgraded to hybrid 

mechanistic/neural network models obeying the SBML standard. Such hybrid models may be 

trained with state-of-the-art deep learning algorithms to either mimic, improve or extend 

existing SBML models. They may be further uploaded, trained, and analyzed in SBML com-

patible software tools. Even if the presented examples are relatively simple, the proposed 

framework is, in principle, directly scalable to larger whole organism models, eventually at the 

genome-scale. All in all, it is expected this framework to greatly facilitate the adoption of hy-

brid mechanistic/ML techniques to develop computational models of biological systems. 
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7  

 

CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

The main objectives of this PhD dissertation was to develop a deep hybrid modelling meth-

odology that combines mechanistic models with emergent deep neural networks and the 

implementation of these developed hybrid modelling methods in a way that is scalable to 

large Systems Biology models and Systems Biology Markup Language (SBML) compatible. 

To fulfill the general objective, in Chapter 3 the general bioreactor hybrid model was revisited 

and the use of deep learning techniques in the context of hybrid modeling. Two different 

approaches were applied, and their results compared: First, the traditional approach using 

Levenberg-Marquardt optimization coupled with the indirect sensitivities, cross-validation, 

and tanh activation function. Second, the novel hybrid deep approach that uses the adaptive 

moment estimation method (ADAM), semidirect sensitivities, stochastic regularization and 

ReLU activation functions in the hidden layers. Overall, the results showed that the deep 

learning method has better predictive capabilities along with some other advantages: First, it 

is practically insensitive to weight initialization thereby eliminating the need for training repe-

titions. Second, the stochastic nature of the method is less sensitive to experimental noise, 

eliminating the need for cross-validation. Lastly, the introduction of semidirect sensitives fur-

ther decreases the CPU time particularly for large deep structures as the number of sensitivity 

equations (that need to be integrated over time) becomes independent of the number of 

hidden layers. 

In Chapter 4, a hybrid modeling framework that makes use of deep learning with state-space 

reduction was applied for data analysis and design space exploration to a case of P. pastoris 

GS115 (Mut+) cultures expressing a scFv. The state-space reduction consisted in using a PCA 
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in order to reduce the number of species requiring time series integration from 9 to a lower 

amount (optimal values were achieved with 5 principal components). In this scenario, the 

inorganic elements in the medium can have a large impact on the kinetics. The state-space 

reduction framework succeeded in decreasing the model complexity by 60% and improving 

the predictive power by 18.5% in relation to a standard nonreduced hybrid model. The re-

duced hybrid model was able to correctly simulate the experiments performed including the 

test experiments. It should be noted that, despite the success of this approach, more data is 

required to strengthen model validation before it can be considered for a process digital 

twin. 

In Chapter 5, the first comparison between the deep and shallow hybrid modeling approach-

es on a CHO-K1 fed-batch process in a process development campaign was carried out. In 

this chapter 2 case studies were used. The first was a synthetic dataset that considered the 

existence of 25 extracellular species (considered to be "measured" for model training pur-

poses) and 21 intracellular species (considered to be "unmeasured" and, as such, hidden from 

the model during training). The second was an experimental dataset with 30 measured spe-

cies. Of note, the main challenges of each were, for the first case, the existence of hidden 

states (the 21 intracellular species) and, for the second case, the switch between lactate pro-

duction and lactate consumption as well as from ammonium production and ammonium 

consumption. The obtained results pointed to a systematic improvement in the generaliza-

tion capabilities of the model when using a deep hybrid model in comparison to the shallow 

hybrid model, including successfully solving the main challenges identified. These results are 

in line with the generally accepted view that deep neural networks have a better generaliza-

tion power than shallow networks. This chapter points to similar conclusions when dealing in 

a hybrid modeling context. 

Lastly, Chapter 6 introduced SBML compatibility to the hybrid modeling paradigm. A meth-

odology was proposed that allows an SBML model to be hybridized or for a hybrid SBML 

compatible model to be created from the start. The proposed framework allows, as such, for 

a significant reduction in the mechanistic scale-gap. This framework was tested with three 

case studies, starting at a mechanistic model from a database, those models were turned into 

hybrid models, trained, and then reuploaded to the database. All the case studies were suc-

cessful in creating a hybrid model with results comparable to the original mechanistic model 

(which was the training objective). All in all, it is hoped that this framework will greatly facili-

tate the adoption of hybrid mechanistic/ML techniques in the development of computational 

models of biological systems. 
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Overall, this thesis proposes a hybrid modelling framework that makes use of state-of-the-art 

deep learning techniques to improve upon the classic shallow hybrid models. Furthermore, 

the proposed framework is shown to be SBML compatible. The results show an all-around 

improvement in the predictive capabilities of the models generated with this framework 

when compared to the classic approach. The SBML compatibility can also facilitate the dis-

semination of hybrid models in the Systems Biology community. 

7.2 Future Work 

Only recently has the hybrid modelling community started the shift from shallow non-

parametric parts (mostly non-deep FFNNs) to deep ones. This shift comes at a time when, 

with the recent explosion in the field of Artificial Intelligence (AI) methods, it can be expected 

that new approaches will keep appearing and have a further impact in how hybrid modelling 

is conducted. As deep hybrid modelling techniques have shown to be an overall improve-

ment over their shallow counterparts, future work should be directed towards applying deep 

learning centric approaches from the AI fields to the hybrid paradigm. 

Among these, some novelties that can be of high interest for hybrid modelling are the use of 

Physics Informed Neural Networks (PINNs) and Long Short-Term Memory (LSTM) networks. 

Further work should also be done in scaling up the sizes of the hybrid models (i.e. Genome 

Scale models) to allow for increasingly complex scenarios to be described with relative ease. 

Lastly, the application of hybrid models to real time process control and optimization is also 

an area with large interest as it can reduce the amounts of waste/increase productivity in 

bioprocess development, such as the highly competitive and highly complex biopharma in-

dustry. 
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