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Abstract 

 

Composite materials have a complex behavior, which is difficult to predict under different 

types of loads. 

In the course of this dissertation a methodology was developed to predict failure and damage 

propagation of composite material specimens. This methodology uses finite element numerical 

models created with Ansys and Matlab softwares. 

The methodology is able to perform an incremental-iterative analysis, which increases, 

gradually, the load applied to the specimen. Several structural failure phenomena are 

considered, such as fiber and/or matrix failure, delamination or shear plasticity. Failure criteria 

based on element stresses were implemented and a procedure to reduce the stiffness of the failed 

elements was prepared. 

The material used in this dissertation consist of a spread tow carbon fabric with a 0°/90° 

arrangement and the main numerical model analyzed is a 26-plies specimen under compression 

loads. Numerical results were compared with the results of specimens tested experimentally, 

whose mechanical properties are unknown, knowing only the geometry of the specimen.  

The material properties of the numerical model were adjusted in the course of this 

dissertation, in order to find the lowest difference between the numerical and experimental 

results with an error lower than 5% (it was performed the numerical model identification based 

on the experimental results). 

 

 

 

 

 

Keywords: meso-mechanical scale, delamination, cohesive elements, contacts, damage 
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Resumo 

 
Os materiais compósitos têm um comportamento bastante complexo, que é difícil de prever 

sob diferentes tipos de cargas. 

No decorrer desta dissertação foi desenvolvida uma metodologia capaz de simular a 

ocorrência de falhas e a propagação de dano em provetes construídos com materiais compósitos. 

Esta metodologia utiliza modelos numéricos de elementos finitos, à escala meso-mecânica, 

criados através dos programas Ansys e Matlab. 

A metodologia inclui a realização de uma análise incremental-iterativa, que aumenta, 

gradualmente, a carga aplicada no provete. Vários mecanismos de colapso foram incluidos, 

como a ocorrência de falha das fibras e/ou da matriz, delaminação ou plasticidade devida ao 

corte. Foram implementados critérios de falha baseados nas tensões dos elementos atraves de 

um procedimento para reduzir a rigidez dos elementos onde a falha ocorre. 

O material usado neste trabalho consiste num tecido ultrafino de carbono com fibras 

orientadas a 0° e 90° e o modelo numérico analisado foi um provete de 26 camadas de tecido 

submetido à compressão. Os resultados numéricos foram comparados com os resultados 

dos provetes ensaiados experimentalmente, cujas propriedades mecânicas são 

desconhecidas, conhecendo-se apenas a geometria do provete. 

As propriedades do material do modelo foram ajustadas no decorrer da dissertação, por 

forma a encontrar a menor diferença possível entre os resultados numéricos e experimentais 

com um erro inferior a 5% (foi realizada a identificação do modelo numérico face aos resultados 

experimentais). 

 

 

Palavras-Chave: escala meso-mecânica, delaminação, elementos coesivos, contactos, 

propagação do dano, critério de falha. 
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Introduction 

Composite materials present great advantages over many metallic materials, causing them to 

be increasingly used in the aeronautical industry. The use of these materials has grown 

considerably in this industry, mostly, because of two important characteristics, which are low 

weight and high strength. However, to be able to take advantage of these characteristics it is 

necessary that the behavior of composite materials is well known so they can be used correctly. 

The main goal of this dissertation is to study and predict the behavior of composite materials 

specimens (failure initiation and damage propagation) under certain loads, by developing an 

interface program methodology between MatLab and Ansys softwares (to perform the 

incremental-iterative analysis, which increase the applied loads on the numerical model at the 

same time as the stress results are evaluated). With this program, the numerical model of a ply 

model is first analyzed and subsequently, a 26-plies specimen under compression loads is 

studied. 

The ply model is considered in Chapter 3 and its main purpose is to test de main features 

implemented in the program. In this chapter, a mesh convergence study is performed in order to 

evaluate the right element type and size to be used in subsequent numerical models. Also, 

cohesive and contact elements are implemented. Cohesive elements are used to simulate the 

delamination observed in the specimens tested experimentally and contacts are defined between 

different plies to avoid interpenetration (volume interference). Finally, it is proposed a 

combined failure criterion combining Maximum Stress and Tsai-Wu failure criteria and it is 

performed an incremental-iterative analysis of the ply, to find out the areas with higher stress 

concentrations. 

In Chapter 4 the numerical model of 26-plies specimen is implemented and used to simulate 

the real compressive specimens tested experimentally. Here the main objectives are to properly 

define the boundary conditions that provide a final behavior representing as close as possible 

the final behavior of the experimental specimens, run the incremental-iterative analysis to 

evaluate the results and identify the parameters of numerical model in order to obtain better 

results. After the first simulation of a compression specimen, the mechanical properties of the 

material used in the numerical models are adjusted in order to reduce the difference between the 
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numerical and experimental results. Finally, a comparison between numerical and experimental 

results is made. 

The goal of this work consists in finding the material properties that provide similar results 

(with an error less than 5%) between experimental and numerical results, in order to validate the 

models presented here. 

1.1. Motivation 

The subject of this dissertation arises after performing experimental tests in composite 

materials specimens subjected to tension and compression loads.  

Before the experimental work, the behavior of the material was completely unknown and so 

there were no expectations regarding these results. After the experimental work, some doubts 

emerged concerning failure initiation and damage propagation. In order to study 

comprehensively the collapse behavior, it was proposed to implement a numerical model able to 

simulate these events that were observed in the specimens experimentally tested and obtain 

similar results. 

This numerical models must be able to predict the failure initiation and the damage 

propagation, which are difficult to observe during the experimental tests, since everything 

happens fast. 

Usually the knowledge of the composite materials behavior is acquired by the use of 

expensive and long-lasting experimental tests. The numerical simulation is capable to acquire 

the majority of this knowledge about the behavior of the composite material in a more 

economically way. Besides being less expensive than the experimental tests, virtual simulations 

have the ability to provide a better understanding of physical processes involved in the material 

behavior, since they provide much more information about the state of the system than the 

experimental test. Once the models are validated, the behavior of the material can be simulated, 

in the case of loads or boundary conditions change. Other advantages include the possibility to 

perform design optimization from the detailed knowledge of the material behavior. 

Meso-scale models are so important, once they provide a set of effective material parameters 

needed in macro-scale models implementation. 

 

1.2. Objectives 

The main objectives planned for this dissertation are presented bellow and each of them 

should be fulfilled in an objective and clearly way. 

In Chapter 5, is indicated, exactly, the pages where these objectives/goals were complied. 
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 Implement cohesive and contact elements, in order to simulate delamination accurately; 

 Develop a methodology able to model the specimens tested and simulate the 

experimental tests;  

 Perform at least one analysis of a 26-plies compression specimen and provide the stress-

strain curve results of this analysis; 

 Validate numerical models, with an error less than 5% between numerical and 

experimental results; 
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Theoretical framework 

2.1. Composite Materials  

According to Music and Witdroth [1], composite materials can be defined as a combination 

of, at least, two different materials with complementary properties. Each one of them has a 

function, one acts as a matrix, which maintains the material cohesive, while the second acts like 

a reinforcement, which provides resistance to the composite material.  

Unlike some metal alloys, where different materials can be combined at the microscale and 

the components cannot be distinguished by the naked eye (it is an homogeneous material), the 

constituents of the composite materials remain separate and are easily distinguishable by the 

naked eye and this fact makes the composite materials heterogeneous materials [2]. 

The function of the matrix [3] is to hold the reinforcement in an orderly pattern and transfer 

the loads between the fibers that constitute the reinforcement, while the reinforcement gives the 

composite materials its desired properties  

However, the global properties of these materials depends, not only, on the material 

properties of the components (matrix and reinforcement), but also, on the interface between 

them and the methods used in its production [1], [3]. It is expected that the composite material 

that results from a combination of two constituents has a balance of structural properties that is 

superior to either constituent material alone [4]. 

The main advantage of the composite materials is that, if well designed, they usually present 

the best qualities of their constituents and often some qualities that neither the constituents 

materials have [2]. Some of the properties that can be improved by producing a composite 

material are strength, stiffness, corrosion resistance, wear resistance, weight, fatigue life, 

temperature-dependent behavior, thermal insulation, thermal conductivity or acoustical isolation 

[2]. 

Figure 2.1 represents, schematically, the different types of composite materials that can be 

made. 

 



6 

 

 

Figure 2.1 - Composite materials classification [5] 

2.1.1. Matrix 

The matrix of a composite material must ensure the connection of the reinforcements due to 

its cohesive and adhesive characteristics. When fibers are used as reinforcement, it protects 

them from the environment, from damage during manufacturing and operation and transfer the 

loads to and between the fibers [4]. 

Typically, the reinforcements are stronger and stiffer than the matrix. As a continuous phase, 

the matrix controls the transverse properties, interlaminar strength and elevated-temperature 

strength of the composite material. However it allows the strength of the fibers to be used in 

their full potential by providing effective load transfer from external loads to the fibers [4]. 

Additionally, the matrix provide an inelastic response in order to reduce de stress 

concentrations. So, the internal stresses are redistribute from the broken fibers [4]. 

The constituent material of the matrix, can be polymer, metal or ceramic, but the most 

widely used for aeronautical industry is polymer. Within the polymeric materials, the most 

common are epoxy resin and polyester. In this dissertation, the matrix that constitutes the 

composite material is an epoxy resin. 

 

2.1.2. Fiber (reinforcement)  

The main function of a reinforcement is to provide superior levels of strength and stiffness to 

the composite materials [4]. 

Composites
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Composite materials can contain the fibers in three different ways: particulate, continuous 

and discontinuous fibers, which are presented in the Figure 2.2. In the composite material with 

continuous fibers, the fibers provide all the strength and stiffness to the composite. 

Music and Widroth [1] explain that, when using short fibers and particulates, the matrix must 

transfer the loads between the reinforcement more frequently, which results in a composite with 

low properties when compared to the composites with continuous fibers. 

Graphite and carbon fibers are the most generally used advanced fibers, and graphite/epoxy 

or carbon/epoxy composite materials are now used commonly in aerospace structures [6]. It 

should be noted that the reinforcement of the composite material studied in this dissertation is 

composed by carbon fibers. 

 

 

Figure 2.2 - Different reinforcement types [7] 

 

2.1.3. Textile composites 

Textile composites are widely used in advanced structures in aeronautical, automotive and 

marine industries. It happens because they have good mechanical properties and attractive 

reinforcing materials with low fabrication cost and easy handling [8]. 

Since the material properties are anisotropic and inhomogeneous in nature, the parameters 

controlling the mechanical properties are numerous, such as fiber architecture, fiber properties 

or matrix properties [8]. 

Typically, textile composites are divided in three categories: woven fabrics, knitted fabrics 

and braided fabric [1]. However, the focus of interest in this dissertation will be the woven 

fabrics, once these are the most used textile composites in aeronautical industry [1], [8]. 

Within the textile composites, it can be found the in-plain weaves (2D), where each warp 

yarn passes alternately over and under each weft yarn, making the fabric produced symmetric 

[1].  

The Figure 2.3 shows some examples of 2D woven patterns. 

Some parameters, such as the weave architecture, yarn's dimension and spacing or yarn’s 

fiber volume fraction can affect the mechanical properties of the material.  

Particles  Continuous fibers Short fibers 



8 

 

 

Figure 2.3 - Different weave patterns of textile fabrics [9] 

 

2.1.4. Spread Tow Carbon Fabric 

The material used in this dissertation is a spread tow carbon fabric, presented in the Figure 

2.4. 

This material presents many differences from the conventional carbon fabrics, with regular 

tows. To produce this material a conventional carbon fiber tow is thinned by increasing the 

width of the tow from 5 mm to approximately 25 mm, thus, reducing the weight per unit area by 

approximately 500% [10]. 

 

 

Figure 2.4 - An example of spread-tow carbon fabric [12] 

 

The tow-spreading technology was developed by Industrial Technology Center in Fukui 

Prefecture. The operating mode of the tow-spreading technology consists of passing a tow 

though a spreading machine that is equipped with an air duct and a vacuum that sucks the air 

downward through the air duct, this process is shown diagrammatically in the Figure 2.5 [11]. 

By the use of this technology it can be produced unidirectional plies or woven fabric plies [10]. 

Plain  
4 - Harness Satin  

5 - Harness Satin  

8 - Harness Satin  Twill 
Basket  
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Figure 2.5 - “Schematic of tow-spreading process with the help of air flow” [11] 

 

The use of spread-tows results in a very thin plies with optimal in-plane and out-of-plane 

properties. As Hassan et. al. [10] referred, the ply thickness has a great importance in 

controlling composite material mechanical properties: “the thinner the ply the better the 

properties” [10]. 

 

 

Figure 2.6 - Representative cross-section of: a) plain weave with spread tows; b) plane weave with 

regular tows 

 

2.2. Damage in composite material 

Composites are complex engineered materials that often behave differently than common 

isotropic materials [12]. There are many types of damage in composite materials and the initial 

state of the materials is difficult, if not impossible, to characterize [2] Moreover, it is much more 

difficult to formulate a boundary-value problem to describe crack propagation in composite 

materials than in metals. 

Polymer composites, which are generally used for manufacturing the aircraft components, 

due to their complex internal structure lead to different types of damage at many stages of their 

operational life. Defects that can emerge during the fabrication process of the composite 

materials are, for example, delamination, voids, particulates inclusion, resin-rich or resin 

starved, while during the aircraft operation damage are caused, mainly, by service loads and 

impacts.[13],[14]. 

a) 

b) 
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These damage can decrease the residual strength and durability of the structure leading to the 

failure (and then the fracture) of the material [13]. 

It should be noted the difference between damage and failure of the material. Both terms are 

ambiguous and it is important to understand the difference between them. As Oluwole. L said 

[15]: “damage leads to failure and failure leads to fracture”. When the material is damaged, due 

to problems during the fabrication process (voids, particles inclusion, resin rich, etc…) or 

impacts during its operation, it does not means that the material failed in service. Damage is a 

physical discontinuity in the material that can impair its normal functioning, which does not 

mean, necessarily, that the material is unusable. On the other hand, when the material fails, it 

cannot be used in service once it has lost its integrity. Finally when the fracture of the material 

happens, it means it was broken into two or more parts. 

2.2.1. Fracture mechanism  

Fracture mechanism has evolved from the original work of Grifith [16]. Grifith recognized 

that defects (or damage) could lead to failure in materials, so he decided to propose and solve 

the idealized problem of a single crack in an infinite two-dimensional, isotropic, elastic medium 

under transverse load [16]. The solution obtained from the energy balance principle is given by: 

 

 𝜎 = √
2𝐸𝛾

𝜋𝑎
 (1) 

 

where 𝜎, is the far-field stress that cause the crack to open and grow unstable under plane stress 

conditions, 𝑎 is the half crack length and 𝛾 represents the classical surface energy due to the 

breakage of bonds in the generation of new crack surface. 

Later, Irwin (in 1950) generalized the form of equation (1) by introducing the macroscopic 

energy release rate, 𝐺, as an independent property [16]. Thus, for the same central crack 

problem: 

 

 

𝜎 = √
𝐸𝐺

𝜋𝑎
 (2) 

 

where, 

 

 
𝐺 =

𝜕𝑈

𝜕𝐴
 (3) 
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being U, the total potential and A the crack area. 

Further, Irwin greatly expanded the utility and applicability of the method by introducing the 

stress intensity factor, 𝐾𝐼,  with [16] 

 

 
𝜎𝑖𝑗 =

𝐾𝐼

√2𝜋𝑟
𝑓𝑖𝑗(𝜃) 

(4) 

 

This is the form of stress field near the linear elastic square root singularity and 𝐾𝐼 (stress 

intensity factor) is given by 

 

 𝐾𝐼 = √𝜋𝑎𝜎 (5) 

 

Then, in more general problems, 

 

 𝐾𝐼 = 𝛼√𝜋𝑎𝜎 (6) 

 

for mode I crack opening conditions. Similar forms follow for the mode II and mode III (the 

two shear modes) [16]. 

Fracture mechanics considers that a failure can grow in three different modes, mode I, mode 

II and mode III. The first mode is the opening mode, the second mode is the in-plane shear 

mode and the third is the out-of-plane shear mode [17], these three different modes are 

represented in the Figure 2.7. 

 

 

Figure 2.7 - Failure propagation modes[17] 

 

Each of these three different modes has its critical energy 𝐺𝐼𝑐, 𝐺𝐼𝐼𝑐 and 𝐺𝐼𝐼𝐼𝑐, which will be 

used, later on this dissertation, to characterize the interface material, in order to simulate 

delamination between the plies. When damage propagates by combination of two distinct 

modes, it is called a mix mode [17]. 
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2.2.2. Laminated damage mode 

Consider composite material made of large unidirectional fibers (carbon or glass fiber, for 

example) embedded in polymer matrix (epoxy, for example). When a ply, without any notch, is 

tested, under various loading in the plane, the material fails in a manner and under certain 

tensions. The union of all the points, where the material suffers failure for the different stress 

states, generate a stress surface known as a failure criterion. In the interior of this surface are all 

the stress states that the material is capable to support without losing structural integrity. There 

are different failure modes in composite materials, which is a set of mechanisms of degradation 

that lead to the fracture of the material [17]. 

In Figure 2.8, where a unidirectional ply with the fiber oriented in the direction 1 is shown, is 

presented the different fracture surfaces under certain load states. The experimental observations 

lead to the conclusion that for an unidirectional ply under plane stress conditions there are, at 

least, four failure modes clearly identifiable. Figure 2.8 shows the fracture planes originated by 

each type of failure. 

 

 

Figure 2.8 - "Fracture surfaces and corresponding internal variables" [18] 

 

It is acceptable to consider the constitutive laws well approximated by a linear elastic 

behavior until failure, except when is applied transverse compression loads (𝜎22 < 0) or pure 

shear loads (𝜎12). In these cases the material exhibits a pronounced nonlinearity before failure. 

[17], [18]. 
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In Figure 2.9, it is represented the stress states that activated the respective failure 

modes, 𝐹𝛼=0, 𝐹𝛼≠0, 𝐹𝐹𝑇 and 𝐹𝐾𝐵 in the (𝜎11 − 𝜎22), (𝜎11 − 𝜎12) and (𝜎22 − 𝜎12). 𝐹𝛼=0 and 

𝐹𝛼≠0 are the transverse failure modes or matrix failure while 𝐹𝐹𝑇 and 𝐹𝐾𝐵 are longitudinal 

failure modes or fiber failure. 

However, due to the geometry of the material, there are 5 uniaxial tests (represented in the 

Figure 2.10) that are possible to perform in order to fully characterize the mechanical behavior 

of carbon fiber reinforced plastic: traction and compression in the direction of fibers (𝜎11 >

0 and 𝜎11 < 0, respectively), traction and compression in the transverse direction of fibers 

(𝜎22 > 0 and 𝜎22 < 0) and the pure shear test 𝜎12 [17]. Each of these failure stresses is 

represented by 𝑋𝑇 , 𝑋𝐶 , 𝑌𝑇 , 𝑌𝐶 and 𝑆𝐿, respectively. These constants are used by the failure 

criteria, to define when the material fails under the action of external loads. 

 

 

 

 

Figure 2.9 - "Fracture surfaces and corresponding internal variables"[17] 
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Figure 2.10 - In-plane failure modes 

2.2.2.1. Longitudinal tensile fracture 

This is the simplest failure mode to identify, once that in the composite reinforced with 

fibers the loads are transferred by these ones and, when it fails, the loads have to be redistribute 

by the rest of the structure areas, which can lead to structural fracture [17], [18]. 

Composite materials with a high fiber fraction or in which matrix ultimate deformation is 

higher than in fibers leads to longitudinal fracture which begins in the fibers, in regions with 

defects. With the occurrence of the fracture of some fibers, the loads in the neighboring 

increase. These loads need to be transferred by shear, between the interface and the matrix, 

which cause matrix cracking and fiber pull-out. The higher the loads on the fibers, the greater 

will be the damage in the material, which lead to structural collapse [18]. So, it can be 

concluded that this type of failure occurs in both fiber and matrix. 

2.2.2.2. Longitudinal compressive fracture 

When loads are applied in fiber direction, the laminate trend to fail by generation of kink 

band. This is the most common and most complex failure mode in this type of loading. 

Although this is not the only type of failure, the laminate can also fail by microbuckling [18]. 

In the microbuckling model, the compression failure is assumed to be triggered by the 

instability that occurs localized in the fibers [19]. This instability happens due to the critical 

loads Euler’s problem which determine the moment where a bar subjected to longitudinal 

compression lose its equilibrium or becomes unstable before a disturbance [17]. 
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Some researches were conducted about the time independent compression failure and the 

first theoretical analyses made by Rosen [20] about microbuckling as a phenomenon of elastic 

instability. But, the results were above the critical stresses needed to occur microbuckling [20]. 

Consequently, some analysis were made with the aim of improve Rosen’s model. Argon (in 

1972) and Bundiansky and Fleck (in 1993) included the yield effect in the matrix, fibers 

misalignment and fibers extensibility [20]. 

In the case of carbon fibers, several researchers observed the trend of the fibers to fail in 

shear mode instead of failing by bending from microbuckling. This produce a slant failure 

surface and consequently dislocation slip[18]. 

A kink band corresponds to the last state of damage under longitudinal compression. 

However there is a certain controversy about the generation of a kink band. The question is: It is 

a failure mechanism or it is the last stage of microbuckling? [17]. 

According to Sun and Tsai [19], it is assumed that in the kink band model, the compressive 

failure starts with the instability or excessive rotation of a misalignment fiber. This makes the 

fiber and matrix transfer high stresses, causing damage, separation of the components and 

matrix fracture [17]. 

Sun and Tsai [19], after comparing microbuckling and kink band models, concluded that in 

the microbuckling model it is assumed failure results from an instability located on fibers 

supported by elastic-plastic matrix. On the other hand, in kink band model failure is triggered by 

“yielding of plastic shear deformation of composites”. 

 

 

Figure 2.11 - "(a) Fiber micro buckling between an elastic matrix in shear mode (up) and in tension 

mode (down); (b) kink band geometry; (c) real kink band" [18] 

 

(𝑎) (𝑏) 

(𝑐) 
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2.2.2.3. Transverse fracture (with 𝛼 = 0) 

When the load is applied under transversal tension or in-plain shear, the failure progression 

occurs transversely to the laminate [17], [18]. 

These types of failures are developed essentially by transversal tension and in-plane shear. 

However, under high shear stress and with a moderate value of transversal compression, failures 

with the same orientation  can be developed (with 𝛼 = 0) [17]. 

It should be noted that 𝛼 represent the fracture angle that is measured from normal to the top 

face and the fracture plane [21]. 

2.2.2.4. Transverse fracture (with 𝛼 ≠ 0) 

As Bessa referred [18], the behavior of the composite under transverse compression is very 

interesting, once there is a non-linearity in the stress-strain curve, which means that the 

composite materials plasticizes. Under transversal compression loads it is observed 

experimentally that the fracture angle varies with compression’s strength intensity and shear. 

In fact, increasing the transversal compression loads, the fracture plain angle increases [17], 

[18]. Koerber [21] investigate the strain rate characterization of a unidirectional ply in 

transverse compression and in-plain shear using digital image correlation. Concluding that the 

behavior of a lamina subjected to shear loads is highly nonlinear. 

2.2.3. Failure criteria for plies 

Failure criteria for plies determines, by the use of the failure stresses provided from the 5 

uniaxial tests (𝑋𝑇 , 𝑋𝐶 , 𝑌𝑇 , 𝑌𝐶  and 𝑆𝐿), where lie the points that defines the failure of the ply 

through a set of functions. So, the failure criteria are used to predict the stress values for which 

the material fails under the action of external loads. 

In this section some of the most used failure criteria in the prediction of composite materials 

failure will be presented, such as: maximum stress, maximum strain, Tsai-Wu, Tsai-Hill, 

Hashin-Rotem, puck or LaRC03/LaRC04. 

2.2.3.1. Maximum stress 

The maximum stress failure criterion [22] states that failure occurs when the maximum 

principal stress exceeds a specific value. In this case, the maximum stress criterion can be 

expressed as: 
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𝑋𝐶 < 𝜎11 < 𝑋𝑇  

𝑌𝐶 < 𝜎22 < 𝑌𝑇  

𝑍𝐶 < 𝜎33 < 𝑍𝑇  

|𝜏23| < 𝑄 

|𝜏13| < 𝑅 

|𝜏12| < 𝑆 

(7) 

 

where 𝑋𝑇, 𝑌𝑇 and 𝑍𝑇 are the tensile material normal strength in 𝑋, 𝑌 and 𝑍 directions, 𝑋𝐶, 𝑌𝐶 

and 𝑍𝐶  are the compressive material normal strength and 𝑄, 𝑅 and 𝑆 are the shear material 

strength. The failure appears when one or more equations in (7) are not satisfied. 

2.2.3.2. Maximum strain 

Similar to the maximum stress failure criterion, the maximum strain can be expressed as 

[22]: 

 

 

𝜀1𝐶 < 𝜀11 < 𝜀1𝑇 

𝜀2𝐶 < 𝜀22 < 𝜀2𝑇 

𝜀3𝐶 < 𝜀33 < 𝜀3𝑇 

|𝛾23| < 𝑄𝜀 

|𝛾13| < 𝑅𝜀 

|𝛾12| < 𝑆𝜀 

(8) 

 

where 𝜀1𝑇, 𝜀2𝑇and 𝜀3𝑇 are the tensile material normal failure strains, 𝜀1𝐶, 𝜀2𝐶 and 𝜀3𝐶 are the 

compressive material normal failure strains and 𝑄𝜀, 𝑅𝜀 and 𝑆𝜀 are the material shear failure. 

Violation of any of equations (8) indicates the material failure. 

2.2.3.3. Tsai-Wu 

Tsai-Wu failure criterion is a quadratic and interactive stress-based criterion that identifies 

failure. This criterion is defined based on the tensile failure that occurs due to the five possible 

uniaxial testes, which are longitudinal tension and compression, transversal tension and 

compression and shear.[18], [17], [22], [23]. 

This failure criterion considers that directions 1, 2, 3 are not the principal directions, as 

maximum stress failures criterion do.  



18 

 

However, Tsai-Wu criterion does not distinguish between distinct modes of failure that are 

present in composite material [24]. 

This criterion can be expressed by a symmetric second order tensor: 

 

 𝑓(𝑥) =

[
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𝑓2
𝑓3
0
0
0 ]
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[
 
 
 
 
 
𝜎11

𝜎22

𝜎33

𝜎23

𝜎13

𝜎12]
 
 
 
 
 

< 1 (9) 

 

It is assumed that the material is transversally isotopic, which means that 𝑓2 = 𝑓3, 𝐹12 = 𝐹13, 

𝐹22 = 𝐹33, 𝐹55 = 𝐹66 and 𝐹44 =
𝐹22−𝐹23

2
 [17]. 

The parameters 𝑓 and 𝐹 in (9) are obtained from the failure stresses by the following 

expressions: 

 

 
𝑓1 =

1

𝑋𝑇
−

1

𝑋𝐶
 

 

(10) 

 
𝑓2 =

1

𝑌𝑇
−

1

𝑌𝐶
 

 

(11) 

 
𝐹11 =

1

𝑋𝑇𝑋𝑐
 

 

(12) 

 
𝐹22 =

1

𝑌𝑇𝑌𝐶
 

 

(13) 

 
𝐹66 =

1

𝑆𝐿
2 

 

(14) 

 𝐹12 = −
0.5

𝑋𝑇
2  𝑜𝑟 𝐹12 = −

0.5

√𝑋𝑇𝑋𝐶𝑌𝑇𝑌𝐶

 (15) 

 

𝐹23 is not considered in in-plain problems so, in this case, it is assumed 𝐹23 = 0. 
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2.2.3.4. Tsai-Hill 

Tsai-Hill failure criterion is an adaptation of the Von-Mises criterion [25], [26]. As Tsai-Wu 

failure criterion, Tsai-Hill failure criterion is not associated with failure modes and it also 

considers that the 1, 2, 3 directions are not aligned with the principal directions. 

Since the composites are transversally isotropic, this criterion reduces to: 

 

 (
𝜎11

𝑋2
)
2

+ (
𝜎22

𝑌
)
2

−
𝜎1𝜎2

𝑋2
+ (

𝜎12

𝑆𝐿
)
2

< 1 (16) 

 

here, 𝑋 = 𝑋𝑇 when 𝜎11 is positive and when it is negative, 𝑋 = 𝑋𝐶. The same happens in the 

second direction, if 𝜎22 > 0 then 𝑌 = 𝑌𝑇, but if 𝜎22 < 0 then 𝑌 = 𝑌𝐶 . 

2.2.3.5. Hashin-Rotem 

Hashin created the need for failure criterion that are based on failure mechanism [27]. He 

developed two different failure criterion, one of them was related to fiber failure and the other 

one was related to matrix failure [27]. 

In 1978 [28], [17], [29], [25], Hashin and Rotem developed a failure criterion for 

unidirectional laminates submitted to cyclic loads, distinguishing tensile loads from 

compressive loads. This criterion regards that failure of the material happens when the 

following equations are not satisfied: 

 

 𝜎11 < 𝑋𝑇                                                                                      if 𝜎11 > 0 

 

−𝜎11 < 𝑋𝐶                                                                                    if 𝜎11 < 0 

 

(
𝜎22

𝑌𝑇
)
2

+ (
𝜎12

𝑆𝐿
)
2

< 1                                                                if 𝜎22 > 0 

 

(
𝜎22

𝑌𝐶
)
2

+ (
𝜎12

𝑆𝐿
)
2

< 1                                                                if 𝜎22 < 0 

(17) 

 

Later, Hashin introduced the failure criterion for fibrous composites under a three 

dimensional stress state.[25], [29] 

So, Hashin criterion can be described as: 
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(
𝜎11

𝑋𝑇
)
2

+
𝜎12

2 + 𝜎13
2

𝑆𝐿 
2 < 1,                                                                                 𝑖𝑓 𝜎11 > 0 

 

−𝜎11 < 𝑋𝐶 ,                                                                                                         𝑖𝑓 𝜎11 < 0 

 

(
𝜎2 + 𝜎3

𝑌𝑇
)
2

+
𝜎23

2 − 𝜎2𝜎3

𝑆𝑇
2 +

𝜎12
2 + 𝜎13

2

𝑆𝐿
2 < 1,                                   𝑖𝑓 (𝜎2 + 𝜎3) > 0 

 

[(
𝑌𝐶

2𝑆𝑇
)
2

− 1]
𝜎2 + 𝜎3

𝑌𝐶
+ (

𝜎2 + 𝜎3

2𝑆𝑇
)
2

+
𝜎23

2 − 𝜎2𝜎3

𝑆𝑇
2 +

𝜎12
2 + 𝜎13

2

𝑆𝐿
2 < 1, 𝑖𝑓 (𝜎2 + 𝜎3) < 0  

(18) 

 

where 𝑆𝑇, represents the shear in 23 plain. The approximation describes the basic failure 

mechanisms but it is not capable to describe the kink band formulation [17], [24] 

2.2.3.6. Puck 

The principal difference between puck criterion and Hashin [17], [25], criterion is that, in 

this one, three modes matrix cracking are considered, differing in the angle between the fracture 

plane on the lamina and the type of load which causes the fracture, as seen in Figure 2.12. 

Puck’s criterion [30], identifies the fiber failure and inter fiber failure in a unidirectional 

composite. He separates, not only the inter fiber failure in three physical modes, but also the 

fiber failure in two different modes (tensile fiber failure and compressive fiber failure). 

 

 

Figure 2.12 - Inter/fiber fracture modes [25] 
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2.2.3.7. LaRC03/04 

Similarly to what happens in Puck’s criterion, LaRC03 and LaRC04 [17] criteria consider 

the different processes in each failure mechanism. 

In these criteria it is taking into account that the transverse strength varies in function of the 

elastic characteristics of the laminate [17]. 

The principal difference between LaRC03 [27] and LaRC04 failure criterion [31] is that 

LaRC03 failure criterion just takes into account the in-plane tensions, while LaRC04 allows 

taking into account the three-dimensional stress-states. [17] 

2.2.3.7.1. LaRC03 Failure criteria  

LaRC03 [27] failure criterion can predict matrix and fiber failure accurately, without the 

parameters provided by the curve-fitting and it consists of 6 expressions. 

The following equations that will be presented in this section can be seen, with full 

demonstration, in Davila’s article [27] 

LaRC03 criterion for matrix failure under transverse compression (𝝈𝟐𝟐 < 𝟎) 

The failure index for matrix compression is given by the following expression [27]: 

 

LaRC03#1 𝐹𝐼𝑀 = (
𝜏𝑒𝑓𝑓

𝑇

𝑆𝑇
)

2

+ (
𝜏𝑒𝑓𝑓

𝐿

𝑆𝐿𝑖𝑠

)

2

≤ 1 (19) 

 

𝑆𝑇 and 𝑆𝐿𝑖𝑠 are the transverse (23 plane) and longitudinal (12 plane) shear strength. And the 

“is” subscript means that the “in situ longitudinal shear strength rather than the strength of a 

unidirectional laminate should be used” [27]. In situ effects, here, means that the longitudinal 

shear strength varies with the elastic properties of the laminate. 

The expressions needed to complete the equation (19) are the following: 

 

 𝜏𝑒𝑓𝑓
𝑇 = 〈|𝜏𝑇| + 𝜂𝑇𝜎𝑛〉 (20) 

 

 𝜏𝑒𝑓𝑓
𝐿 = 〈|𝜏𝐿| + 𝜂𝐿𝜎𝑛〉 (21) 

 

where tan−1(𝜂), in the literature, represents the angle of the internal friction and it is assumed 

to be a material constant [27]. 
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    𝜎𝑛 = 𝜎22 cos2 𝛼 

             𝜏𝑇 = −𝜎22 sin𝛼 cos𝛼 

𝜏𝐿 = 𝜏12 cos𝛼 

(22) 

 

and 𝛼 is the angle of the fracture plane and varies between 0° and 90°. 

The coefficients of influence (𝜂𝐿  and 𝜂𝑇) can be obtained from the case of unidirectional 

transverse compression, where 𝜎22 < 0 and 𝜏12 = 0. For more details of this demonstration, see 

Davila’s article [27]. 

 

 
𝜂𝑇 = −

1

tan 2𝛼0
 (23) 

 

 
𝜂𝐿 = −

𝑆𝐿 cos 2𝛼0

𝑌𝐶 cos2 𝛼0
 (24) 

 

where 𝛼0 represents the fracture angle that maximizes the effective transverse shear (𝜏𝑒𝑓𝑓
𝑇 ). 

LaRC03 criterion for matrix failure: under transverse tension (𝝈𝟐𝟐 > 𝟎)  

The failure index for matrix tension is given by the following expression [27]: 

 

LaRC03#2 𝐹𝐼𝑀 = (1 − 𝑔)(
𝜎22

𝑌𝑇𝑖𝑠

) + 𝑔 (
𝜎22

𝑌𝑇𝑖𝑠

)

2

+ (
𝜏12

𝑆𝐿𝑖𝑠

)

2

≤ 1 (25) 

 

where 𝑔 (material constant) is given by: 

 

 
𝑔 =

𝐺𝐼𝑐

𝐺𝐼𝐼𝑐
=

Λ22
0

Λ44
0 (

𝑌𝑇𝑖𝑠

𝑆𝐿𝑖𝑠

)

2

 (26) 

 

and the parameters Λ𝑗𝑗
0  are calculated as: 

 
Λ22

0 = 2(
1

𝐸2
−

𝑣12
2

𝐸1
) 

Λ44
0 =

1

𝐺12
 

(27) 
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LaRC03 criterion for fiber failure: under longitudinal tension (𝝈𝟏𝟏 > 𝟎) 

The failure index for fiber tensile failure is given by the following expression [27]: 

 

LaRC03#3 𝐹𝐼𝐹 =
𝜀11

𝜀1𝑇
 (28) 

As it can be seen by equation (28), the LaRC03 criterion for fiber tension failure is based on 

the maximum allowable strain criterion, where the young’s moduli and the fiber volume 

fraction don’t interfere [27]. 

LaRC03 criterion for fiber failure: under longitudinal compression (𝝈𝟏𝟏 > 𝟎) 

The fiber compression failure by the formation of a kink band is predicted using the stresses 

presented in the following equation (29) and the failure criterion for the matrix tension 

(LaRC03#5) or matrix compression (LaRC03#4) [27]. 

 

 𝜎11
𝑚 = cos2 𝜑 𝜎11 + sin2 𝜑 𝜎22 + 2 sin𝜑 cos𝜑 |𝜏12| 

𝜎22
𝑚 = sin2 𝜑 𝜎11 + cos2 𝜑 𝜎22 − 2 sin𝜑 cos𝜑 |𝜏12| 

𝜏12
𝑚 = −sin𝜑 cos𝜑 𝜎11 + sin𝜑 cos𝜑 𝜎22 + (cos2 𝜑 − sin2 𝜑)|𝜏_12 | 

(29) 

 

So, the criterion for fiber kinking with matrix compression failure criterion is given by: 

 

LaRC03#4 𝐹𝐼𝐹 = ⟨
|𝜏12

𝑚 | + 𝜂𝐿𝜎22
𝑚

𝑆𝐿𝑖𝑠

⟩  ≤ 1        (30) 

 

The criterion for fiber kinking with matrix tension failure criterion is giver by: 

 

LaRC03#5 𝐹𝐼𝐹 = (1 − 𝑔)(
𝜎22

𝑚

𝑌𝑇𝑖𝑠

) + 𝑔 (
𝜎22

𝑚

𝑌𝑇𝑖𝑠

)

2

+ (
𝜏12

𝑚

𝑆𝐿𝑖𝑠

)

2

≤ 1 (31) 

LaRC03 criterion for matrix damage in biaxial compression 

LaRC03#6 𝐹𝐼𝑀 = (
𝜏𝑒𝑓𝑓

𝑚𝑇

𝑆𝑇
)

2

+ (
𝜏𝑒𝑓𝑓

𝑚𝐿

𝑆𝐿𝑖𝑠

)

2

≤ 1 (32) 

 

where the effective shear stresses, 𝜏𝑒𝑓𝑓
𝑚𝑇  and 𝜏𝑒𝑓𝑓

𝑚𝐿  are defined by: 
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 𝜏𝑒𝑓𝑓
𝑚𝑇 = 〈−𝜎22

𝑚 cos 𝛼 (sin𝛼 − 𝜂𝑇 cos 𝛼)〉 

𝜏𝑒𝑓𝑓
𝑚𝐿 = 〈cos𝛼(|𝜏12

𝑚 | + 𝜂𝐿𝜎22
𝑚 cos 𝛼)〉 

(33) 

2.2.3.7.2. LaRC04 Failure criterion  

LaRC04 failure criterion [31]consists of six expressions that are used for design proposes. 

This criterion is based on physical models for each failure mode, as it was said, and it takes into 

consideration the non-linear matrix shear behavior. 

In this criterion, the required unidirectional material properties are 𝐸11, 𝐸22, 𝐺12, 𝑣12, 𝑋𝑇, 

𝑋𝐶, 𝑌𝑇, 𝑌𝐶, 𝑆𝐿, 𝐺𝐼𝑐, 𝐺𝐼𝐼𝑐, 𝜂𝐿 and 𝛼0. These last two properties are optional. 

LaRC04 criterion for matrix failure: under transverse tension (𝝈𝟐𝟐 > 𝟎) 

The failure index for matrix tension depends on the ply stresses and in-situ strengths [31]  

 

LaRC04#1 𝐹𝐼𝑀 = (1 − 𝑔)
𝜎22

𝑌𝑇𝑖𝑠

+ 𝑔 (
𝜎22

𝑌𝑇𝑖𝑠

)

2

+
Λ23

0 𝜏23
2 + 𝜒(𝛾12)

𝜒(𝛾12|𝑖𝑠
𝑢 )

≤ 1 (34) 

 

where, the in-situ strength values for the thick embedded plies are [31]: 

 

 
𝑌𝑇𝑖𝑠 = 1.12√2𝑇𝑇 

𝛾12|𝑖𝑠
𝑢 = 𝜒−1[2𝜒(𝛾12

𝑢 )] 
(35) 

 

and the in-situ strengths for the thin embedded plies are [31]: 

 

 

𝑌𝑇𝑖𝑠 = √
8𝐺𝐼𝑐

𝜋𝑡Λ22
0  (36) 

 

 
Λ22

0 = 2(
1

𝐸22
−

𝑣21
2

𝐸11
) (37) 

 

 
𝛾12|𝑖𝑠

𝑢 = 𝜒−1 (
8𝐺𝐼𝐼𝑐

𝜋𝑡
) (38) 

 

𝑔 is obtained form the fracture mechanics test data [31]: 
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𝑔 =

𝐺𝐼𝑐

𝐺𝐼𝐼𝑐
 (39) 

LaRC04 criterion for matrix failure: under transverse compression (𝝈𝟐𝟐 < 𝟎)  

The LaRC04 failure index for matrix compression is given by the following equation [31]: 

 

LaRC04#2 𝐹𝐼𝑀 = (
𝜏𝑇

𝑆𝑇 − 𝜂𝑇𝜎𝑛
)

2

+ (
𝜏𝐿

𝑆𝐿𝑖𝑠 − 𝜂𝐿𝜎𝑛
)

2

≤ 1 (40) 

 

The fracture angle for pure transverse compression can be considered equal to 𝛼0 = 53° if 

an experimental value does not exist, so the transversal coefficient of influence 𝜂𝑇 can be 

obtained with [31]: 

 

 
tan(2𝛼0) = −

1

𝜂𝑇
 (41) 

 

where the transverse strength is [31]: 

 

 𝑆𝑇 = 𝑌𝐶 cos 𝛼0 (sin𝛼0 +
cos𝛼0

tan 2𝛼0
) (42) 

and  

 𝜂𝐿

𝑆𝐿𝑖𝑠

=
𝜂𝑇

𝑆𝑇
 (43) 

 

The expression (41) is used in the absence of experimental data to obtain the longitudinal 

coefficient of influence (𝜂𝐿). 

The stresses in the potential fracture planes are expresses by [31]: 

 

 
𝜎𝑛 =

𝜎22 + 𝜎33

2
+

(𝜎22 − 𝜎33)

2
cos 2𝛼 + 𝜏23 sin2𝛼 

𝜏𝑇 =
𝜎22 + 𝜎33

2
−

𝜎22 − 𝜎33

2
sin 2𝛼 + 𝜏23 cos 2𝛼 

𝜏𝐿 = 𝜏12 cos 𝛼 + 𝜏31 sin 𝛼 

(44) 

LaRC04 criterion for tensile fiber failure (𝝈𝟏𝟏 > 𝟎) 

The LaRC04 failure index for tensile fiber failure is expressed as [31]: 
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LaRC04#3 𝐹𝐼𝐹 =
𝜎11

𝑋𝑇
≤ 1 (45) 

 

This criterion is a non-interacting maximum allowable stress criterion [31]. 

LaRC04 criterion for compressive fiber failure (𝝈𝟏𝟏 < 𝟎) 

Fiber compression failure is a complex field, where, depending on the material, different 

compressive failure modes can occur [31]. These failure modes are micro buckling, kinking and 

fiber failure. 

For the failure mode with the kink band formation, (𝜎2𝑚2𝑚 < 0) it is predicted the following 

criterion: 

 

LaRC04#4 𝐹𝐼𝐹 = (
|𝜏1𝑚2𝑚|

𝑆𝐿𝑖𝑠 − 𝜂𝐿𝜎2𝑚2𝑚
) ≤ 1 (46) 

 

For matrix failure under biaxial compression the criterion is predicted as [31]: 

 

LaRC04#5 𝐹𝐼𝑀 = (
𝜏𝑇𝑀

𝑆𝑇 − 𝜂𝑇𝜎𝑛
𝑚)

2

+ (
𝜏𝐿𝑚

𝑆𝐿 − 𝜂𝐿𝜎𝑛
𝑚)

2

≤ 1 (47) 

 

where, 

 
𝜎𝑛

𝑚 =
𝜎2𝑚2𝑚 + 𝜎3𝜓3𝜓

2
+

𝜎2𝑚2𝑚 − 𝜎3𝜓3𝜓

2
cos 2𝛼 + 𝜏2𝑚3𝜓 sin 2𝛼 

𝜏𝑇𝑚 = −
𝜎2𝑚2𝑚 − 𝜎3𝜓3𝜓

2
sin2𝛼 + 𝜏2𝑚3𝜓 cos2𝛼 

𝜏𝐿𝑚 = 𝜏1𝑚2𝑚 cos 𝛼 + 𝜏3𝜓1𝑚 sin𝛼 

(48) 

 

The criterion for matrix tensile failure under longitudinal compressive (𝜎2𝑚2𝑚 ≥ 0) is given 

by [31]: 

 

LaRC04#6 𝐹𝐼𝑀/𝐹 = (1 − 𝑔)
𝜎2𝑚2𝑚

𝑌𝑇𝑖𝑠

+ 𝑔 (
𝜎2𝑚2𝑚

𝑌𝑇𝑖𝑠

)

2

+
Λ23

0 𝜏
2𝑚3𝜓
2 + 𝜒(𝛾1𝑚2𝑚)

𝜒(𝛾12|𝑖𝑠
𝑢 )

≤ 1 (49) 

 

The expressions for fiber kinking failure are set out below. The plane where the kinking 

takes place is [31]: 

 



27 

 

 
tan 2𝜓 =

2𝜏23

𝜎22 − 𝜎33
 (50) 

 

And the stresses rotated to that plane are [31]: 

 
𝜎2𝜓2𝜓 =

𝜎22 + 𝜎33

2
+

𝜎22 − 𝜎33

2
cos(2𝜓) + 𝜏23 sin(2𝜓) 

𝜎3𝜓3𝜓 = 𝜎22 + 𝜎33 − 𝜎2𝜓2𝜓  

𝜏12𝜓 = 𝜏12 cos(𝜓) + 𝜏31 sin(𝜓) 

𝜏2𝜓3𝜓 = 0 

𝜏3𝜓1 = 𝜏31 cos(𝜓) − 𝜏12 sin(𝜓) 

(51) 

 

After knowing the orientation of the misalignment frame, the stresses can be rotated to it 

using [31]: 

 

 
𝜎1𝑚1𝑚 =

𝜎11 + 𝜎2𝜓2𝜓

2
+

𝜎11 − 𝜎2𝜓2𝜓

2
cos(2𝜑) + 𝜏12𝜓 sin(2𝜑) 

𝜎2𝑚2𝑚 = 𝜎11 + 𝜎2𝜓2𝜓 − 𝜎1𝑚1𝑚 

𝜏1𝑚2𝑚 = −
𝜎11 − 𝜎2𝜓2𝜓

2
sin(2𝜑) + 𝜏12𝜓 cos(𝜑) 

𝜏2𝑚3𝜓 = 𝜏2𝜓3𝜓 cos(𝜑) − 𝜏3𝜓1 sin(𝜑) 

𝜏3𝜓1𝑚 = 𝜏3𝜓1𝜓 cos(𝜑) 

(52) 

 

For more detailed information about the demonstration of the expressions used in LaRC04 

failure criteriin, please see the reference of Pinho’s article[31]. 

2.3. Characterization of multi-scale models 

The multi-scale models are really important to understand complex materials, such as 

composite materials. The applications related to this kind of problems involve different length 

scales in a range from 𝜇𝑚 (micro-scale) to 𝑚 (macro-scale). Using the concept of representative 

volume element (RVE) theoretical background is discussed in this section as well as numerical 

treatment of the resulting three-dimensional representative volume element [32]. 

These multi-scale models can yield predictive insight into the origins of damage tolerance, 

leading to the investigation of damage and failure under more complex loading and 

environmental conditions, such as stress rupture and fatigue [33]. 

Damage phenomena [34] in composite materials are truly complex as a result of its 

significant heterogeneities. So, typically, damage can be discrete, for atomistic voids lattice 
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defects (which will be discussed in this thesis), or it can be continuous, for micromechanical and 

macromechanical scales. 

For fiber reinforced plastics, damage relevant [33] to macroscopic failure appear at many 

length scales: at the smallest scale, there are defects presented on fibers that propagate and leads 

to fiber cracks. Deboning, sliding or matrix yielding at crack perimeter, which occurs in a bigger 

scale, limit the crack propagation into the matrix, however, these types of damages are very 

complex. Finally, loads carried by the broken fibers are redistribute to other fibers (the unbroken 

fibers) and matrix and subsequent damage occurs in and around the fibers according to the 

distribution of the defects in the fibers and the applied stress and stress redistribution. 

Consequently, macro-cracks will be formed and propagate leading to the composite failure. 

Figure 2.13, represent the damage evolution of the fiber reinforced composites at different 

length scales [33]. 

 

 

Figure 2.13 - “Multi-scale damage and failure in fiber reinforced composites” [33] 

 

Figure 2.14, shows different geometries between micro-scale, meso-scale and macro-scale. 

Micro scale [35] geometry (Figure 2.14-(a)) consists of unidirectional fibers (carbon fibers, 

for example) surrounded by a thin interface layer and embedded in an epoxy matrix. In meso-

scale geometry (Figure 2.14-(b)) carbon yarns in a balanced 0º/90º spread tow carbon fabric 

arrangement are presented and, once again, it is all embedded in epoxy matrix. Lastly, the 

macro-scale geometry (Figure 2.14-(c)) represents a hybrid carbo epoxy composite laminate. 

This laminate consists of a spread tow carbon fabric plies oriented at 0º/90º and incorporated in 

a multi-layered structure. 
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Figure 2.14 - Different geometries for: (a) micro-scale, (b) meso-scale and (c) macro-scale [35] 

 

2.3.1. Micro-scale models 

At the micro-scale geometry, fibers are embedded in matrix material to form a yarn or a 

tow.[35]. These models are based on a representative volume element (RVE), of the composite 

material, which is composed by a cylindrical fiber surrounded by a tube shape interface 

embedded in epoxy matrix [36]. 

According to Xia and Curtin [37], “the goal of modeling at the micro mechanics scale is to 

compute the detailed stress distribution around broken fibers with various interfacial 

deformation models and extract from such studies the average stress concentrations induced in 

the surrounding unbroken fibers and the stress recovery along the broken fibers due to the 

interface shear resistance”. 

This type of model, with a high special refinement must be used to study problems such as 

introduction of fiber break or matrix crack that induces large stress changes in the neighboring 

of the crack [37]. 

Despite the micro-scale modeling approach allows obtaining an approximate prediction of 

effective properties of unidirectional lamina, when expanded to more complex structures, the 

limitations of this model are revealed as the micro-mechanical models are unable to account for 

detailed fabric geometry [36], as the number of finite elements involved is excessively high. 

Also, this type of models could be used as the first level of a multiscale simulation. 

2.3.1. Meso-scale models 

At the meso-scale level the laminate is considered homogeneous and undamaged material is 

considered orthotropic or transversely isotropic. These models are used to describe and predict 

damage and failure of composite materials [37] For that, meso-scale is the chosen scale that will 

be used in the numerical models developed in this thesis. 

(𝑎) (𝑏) (𝑐) 
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The analysis of the textile composites at this scale will lead to non-uniform stress 

distributions over the unit cell (which is different from the results provided by the micro-scale 

approaches) [36]. 

By implementing specific failure modes for the different constitutes, it can be obtained 

acceptable predictions of damage initiation and progression [36] 

In 2010, Bessa [18] used meso-mechanical models for prediction of damage and final 

fracture of notched and unnotched composite structures. In these models he represents a 

laminate where a single three-dimensional continuum element is used to represent the whole 

thickness of the ply, and cohesive surfaces represent the interface between the plies. In sum, the 

three dimensional continuum elements should be able to represent the failure of the ply and the 

cohesive elements to simulate the delamination between the plies. 

2.3.1.1. Introduction to damage description in the meso-scale 

This topic describes the damage in meso-scale and it is based on Maimi’s PhD thesis [17] 

and Bessa’s master dissertation [18] 

If the material model is not isotropic the number of independent damage variables that can 

be defined to keep the principal directions of the material unchanged is equal to the number of 

the elastic parameters of the material. Namely, 5 damage variables for transversely isotropic 

materials, 9 variables for an orthotropic material and 21 for a completely anisotropic material. 

This group of scalar variables that describe damage represents crack orientation according to 

the materials preferential direction and it does not consider that load’s direction can influence 

the cracks orientation. This assumption is very common for composite laminae. Numerous 

experimental works with this type of materials show that the cracks are generated in the fibers’ 

transverse direction, which means matrix failure, or in the longitudinal direction (fibers’ 

direction), in other words, fiber’s failure. This means that all the possible orientations are 

reduced mainly to two planes. 

The most general way to relate the undamaged stiffness tensor, 𝐶𝑚𝑛𝑠𝑡
0 , of the material with 

the damage state is by the use of a eight order tensor, (𝐼𝑖𝑗𝑘𝑙𝑚𝑛𝑠𝑡 − 𝐷𝑖𝑗𝑘𝑙𝑚𝑛𝑠𝑡): 

 

 𝐶𝑖𝑗𝑘𝑙 = (𝐼𝑖𝑗𝑘𝑙𝑚𝑛𝑠𝑡 − 𝐷𝑖𝑗𝑘𝑙𝑚𝑛𝑠𝑡) ∗ 𝐶𝑚𝑛𝑠𝑡
0  (53) 

 

where 𝐼 is the identity matrix and 𝐷 is the tensor formed by scalar damage variables. 

However, due to the great complexity and to the impossibility of determining the parameters 

for the eight order tensor, these tensors are not commonly used. 

To simplify the damage constitutive tensor some hypothesis are consider that can relate 

kinematically the damage state of the material with an effective space of the undamaged 
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material. The stresses and strains in the effective space (of the undamaged material) follow the 

initial elastic law (𝜎̃ = 𝐶0: 𝜀̃). In physical space, nominal stresses and strains are obtained by 

defining a relation between them and the effective stresses and strains. 

Figure 2.15 presents the three main principles that can be followed to define those relations: 

 

 

Figure 2.15 - “Hypothesis of A) strain equivalence, B) stress equivalence and C) energy equivalence 

between the damage physical space and undamaged effective space”[18],[17] 

 

Strain equivalence principal  

The effective stress applied to the undamaged material (𝜎̃) causes the same strains that the 

nominal stress applied to the damage material. This results in a relation between the nominal 

stress (𝜎) and the effective stress (𝜎̃): 

 

 

 𝜎 = (𝐼 − 𝐷): 𝜎̃ 

𝜎 = (𝐼 − 𝐷): 𝐶0: 𝜀 
(54) 

 

Stress equivalence principle 

The effective strain (𝜀̃) applied to the undamaged material causes the same stresses that the 

nominal strain applied to the damage material (𝜀). This results in a relation between the nominal 

strains (𝜀) and the effective strains (𝜀̃): 

 

 𝜀̃ = (𝐼 − 𝐷): 𝜀 

𝜎 = 𝐶0: (𝐼 − 𝐷): 𝜀 
(55) 

Undamaged 

Material 

Damaged 

Material 
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Energy equivalence principle 

Helmholtz free energy density (Ψ) stored in the undamaged material under an effective 

strain is equal to the free energy density stored in the damaged material under a normal strain. 

At the same time, the complementary energy density stored in the undamaged material under an 

effective stress is equal to the complementary energy density stored in the damage material 

under a nominal stress. 

 

 
Ψ =

1

2
𝜀̃: 𝐶0: 𝜀̃ 

𝐺̅ =
1

2
𝜎̃: 𝐶0

−1: 𝜎̃ =
1

2
𝜎: 𝐶0

−1: 𝜎 

(56) 

 

Resulting in: 

 

 𝜎 = (𝐼 − 𝐷): 𝐶0: (𝐼 − 𝐷)𝜀 (57) 

 

2.3.2. Macro-scale models 

The propose of this models is to analyze the response of large structures [36]. At this level, 

the whole structure is considered homogeneous and continuum and the behavior of the material 

follows an anisotropic constitutive law [33]. 

Some macro-scale composite materials models are available in commercial finite element 

codes and rely on classical laminate plate theory. These models need a set of effective material 

parameters that can be obtained by meso-scale models and appropriate experimental tests [36]. 

Macro-scale models are phenomenological based and limited to particular tests conditions 

and are computationally efficient in an impact simulation, but they are unable to predict the 

behavior of the fiber, matrix or fiber/matrix interface [36]. 
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Ply numerical model 

This chapter describes the implementation of the first numerical model used to simulate the 

behavior of a spread tow carbon fabric ply oriented at 0°/90° under static tension loads. In order 

to follow the equilibrium path until collapse, a successively increasing displacement is imposed 

at the ply boundary. 

For this first model, a linear elastic orthotropic behavior is considered. In the interfaces 

between different spread tows, cohesive elements and contacts were implemented with the aim 

of simulating delamination that occurred during the experimental tests. 

3.1. Spread Tow Carbon fabric ply: initial model description 

 

Figure 3.1 - Simplified geometry of the - spread tow carbon fabric ply 

 

Figure 3.1 represents the spread tow carbon fabric ply geometry that is used to test the 

behavior of the material under an applied displacement. The main goal of this first model is to 

obtain the most suitable element size of the mesh and also to test the methodologies developed 

𝑡 

𝑊 
𝐿 

𝑥 𝑧 

𝑦 
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on a comparatively smaller model than the complete 26 plies final model, such loads are 

perfectly capable to fulfill this objective. 

As it can be seen, the spread tow carbon fabric ply is composed by unidirectional carbon 

yarns in a balanced 0°/90° arrangement, where the dark gray represent the fibers oriented at 0º 

with the 𝑥𝑥 axis, while the light gray represent the fibers oriented at 90º. To start, it was 

considered that the unidirectional carbon fibers have the same mechanical properties as a 

Hexcel Ply IM7/8552. The dimensions of the spread tow carbon fabric ply represented in the 

Figure 3.1 are indicated in the Table 3.1. 

 

Table 3.1 - Spread tow carbon fabric ply dimensions 

Length, 𝑳 (mm) 19.998 ± 0.001 

Width, 𝑾 (mm) 10.269 ± 0.021 

Woven thickness, 𝒕 (mm) 0.226269 

Carbon fiber yarns thickness (mm) 0.113135 

 

A linear elastic orthotropic behavior was assumed for this model, and the mechanical 

properties were taken from Table 3.2 [38],[39]: 

After the definition of the geometry and the elastic properties, a static displacement was 

applied at the boundary in the 𝑥𝑥 direction, along the length of the ply, with the value of 

0.2 mm, in order to find the right element size and element type that should be used, in this 

dissertation, to study this numerical model. 

 

Table 3.2 - Elastic properties of IM7/8552 unidirectional laminates 

𝑬𝟏𝟏 

[𝑮𝑷𝒂] 

𝑬𝟐𝟐 

[𝑮𝑷𝒂] 

𝑬𝟑𝟑 

[𝑮𝑷𝒂] 
𝒗𝟏𝟐 𝒗𝟐𝟑 𝒗𝟏𝟑 

𝑮𝟏𝟐 

[𝑴𝑷𝒂] 

𝑮𝟐𝟑 

[𝑴𝑷𝒂] 

𝑮𝟏𝟑 

[𝑴𝑷𝒂] 

164 

1501∗ 
12 12 0.32∗ 0.436∗ 0.32∗ 5170∗ 3980∗ 5170∗ 

* Values taken from Kawashita’s article [38]. 

1* Value for compression loads 

 

3.2. Mesh Convergence 

As mentioned, an initial model with a simplified geometry was built, containing three 

different volumes representing the interlaced yarns of the spread tow carbon fabric ply, a good 

choice regarding the element type that will be used, in the analytical model, as well as the 

number of elements necessary to achieve good results taking into account the computational 

cost. 
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Figure 3.2 - Representative elements (a) - Brick 8 nodes and (b) Brick 20 nodes [40] 

 

Several analysis were made with two types of elements: Brick 8 nodes element, SOLID185 

in Ansys software, and Brick 20 nodes element, SOLID186 in Ansys software [40] (in Figure 

3.2 these two types of elements are represented, allowing a better perception of the differences 

between them). Two analysis were made using each of these element types, a full integration 

and a reduced integration, which results in four different tests that were carried out for each 

different mesh sizes (varying the size of the element). 

To solve finite element problems [41],[42], is normally necessary to use numerical 

integration to calculate the stiffness matrix. The functions that need to be integrated, are 

computed at a discrete number of points (Gaussian points) and the position of these points is 

calculated in order to reduce the integration errors. For each of the Gaussian points, the function 

is multiplied by an optimized weight and the integral is numerically computed as a weighted 

sum of function values times prescribed weights. 

The difference between full integration and reduced integration is that when using reduced 

integration to solve the integral, the number of Gaussian points used is smaller than the required 

minimum number according to the order of the polynomial function being integrated while in 

full integration analyses, all the Gaussian points are used. Obviously, the accuracy of the results 

is related with the number of the Gaussian points used for each element, but the computational 

cost has to be taken into account when dealing with complex models with a great number of 

elements. 

The different meshes used for this geometry and for the four types of analyses ranges from 

18 elements (a coarse mesh), which means an element size of 5 𝑚𝑚, to 197760 elements with 

an element size of 0.078125 𝑚𝑚 (a very refined mesh). 

Figure 3.3 shows the location (in the simplified geometry) of the points where the Von Mises 

stress results were taken for the convergence analysis. Point A and B are in the middle of 

different unidirectional plies and point C1 and C2 are near to the change of cell (the location 

where the higher stresses are expected). 

(𝑎) 
(b) 
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Figure 3.3 - Simplified geometry for the mesh convergence 

 

The tests were performed applying a displacement (with a value of 0.2 𝑚𝑚) along the length 

of the ply boundary, and the results were evaluated in four different points of the geometry (see 

Figure 3.3). Table 3.3 presents the coordinates of the points were the results were evaluated. 

 

Table 3.3 - Location of the evaluated points 

point 𝒙(𝒎𝒎) 𝒚(𝒎𝒎) 𝒛(𝒎𝒎) 

𝐴 15.03 0.304 5 

𝐵 14.95 0.0 5 

𝐶1 8.79 0.304 5 

𝐶2 11.29 0.304 5 

*Point B cannot be seen because it is on the hidden face of the ply. 

 

From Figure 3.4 to Figure 3.7, the results of the analyses made are presented. In the 

horizontal axis is indicated the number of elements of each mesh, while principal vertical axis 

(the axis on the left) gives the stress values for each one of the different analyses and the 

secondary axis (right one) gives the time in seconds, representing the computational cost for 

Brick 8 nodes with full integration analyses. 

Looking at the Figure 3.4, it is perceptible that when using Brick 8 nodes with full 

integration analyses and the Brick 20 nodes with reduced integration analyses, the solution 

converges when the number of elements reaches 4128, while using the Brick 8 nodes with 

reduced integration and the Brick 20 nodes with full integration, the solution needs 33024 

elements to converge. 

 

𝐶1 

𝐴 

𝐶2 

𝑦 

𝑥 

𝑧 
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Figure 3.4 - Tension-number of elements for point A 

 

The stress value at point B, computed with Brick 8 nodes with full integration converges 

similarly as the stress value in A. For Brick 20 nodes with reduced and full integration the same 

results converge since the 1040 elements, and just the Brick 8 nodes with reduced integration 

needs more elements to obtain a satisfactory result, which results in a too high computational 

cost, when compared with the computational cost of the other analysis. 

 

 

 

Figure 3.5 - Tension-number of elements for point B 

 

In point C1, Brick 20 nodes with reduced and full integration analysis converges at the same 

time, once again, and a satisfactory result is obtained when the number of elements reaches 

4128. The analysis with Brick 8 nodes with full integration converges with 9264 elements, 

although the stress value for this point is almost the same as the stress value obtained with 4128 

elements. As happens in the previous case, the Brick 8 nodes with reduced integration is not an 

option for this analysis, once the stress only converges after 33024 elements, increasing sharply 

the computational cost. 

4128 
33024 

4128 
1040 

33024 
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Figure 3.6 - Tension-number of elements for point C1 

 

 
Figure 3.7 - Tension-number of elements for point C2 

 

Finally, for the point C2, all the analysis converged and produce a very similar stresses with 

4128 elements. 

Evaluating all the results, it can be concluded that the Brick 8 nodes, with full integration, 

gives satisfactory results with an acceptable computational cost. This type of element produced 

converged results, for the four points, with meshes using 4128 elements. It can be seen that the 

Brick 20 nodes, with full integration in point B and C1, converge to the final result with less 

elements than the Brick 8 nodes, although the computational cost is about 4 times higher than 

the computational cost with Brick 8 nodes, as it can be seen the Figure 3.8. 

Comparing the difference between full and reduced integration, it was observed that the 

computational cost does not have a significant reduction when the latter option is taken (when 

using the same elements number). Observing the results obtained at points A and B, the Brick 8 

nodes with reduced integration needs much more elements to converge than the Brick 8 nodes 

with full integration, which increases significantly the computational cost. For example, at point 

A the Brick 8 nodes element with full integration converges after 4128 elements, which 

correspond to a computational cost of 1.622 seconds, while using the same element type with 

reduced integration, the analysis takes 13.41 seconds to get the same results. However, to run 

33024 

9264 

4128 

1040 
4128 
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the analyses (Brick 20 nodes with reduced integration) with 4128 elements would take just 1.31 

seconds. Here is quite evident the difference between full and reduced integration, once in 

reduced integration the analyses runs faster but the results can be less accurate. 

 

 

Figure 3.8 - Computational cost-number of elements 

 

The question of the computational cost (Figure 3.8) is so important because an insignificant 

difference of a few seconds in the computational cost in this model with only one ply, can 

represent a difference of hours in the final model, which will contain 26 plies, with contacts and 

cohesive elements. 

Since this latter model will require a considerable elements number and should be analyzed 

at a reasonable computational cost, the Brick 8 nodes element with full integration was the 

element type chosen. The minimum number of elements that should be used when considering 

the ply model is 4128, implying an element size of 0.3 𝑚𝑚. This is the element size that will be 

used for the remaining models of this dissertation. 

3.3. Details of this first model 

In order to complete this first ply model, the plasticity of the composite material and the 

delamination between different plies has to be considered. 

The delamination of the material will be simulated using the cohesive elements that were 

implemented through the contact surfaces. 

3.3.1. Shear and transverse compression plasticity 

Plasticity in composite materials is a very sensitive subject, since it can be considered in 

meso-scale, but in macro-scale the plasticity is ignored once it is insignificant. In Chapter 2, was 
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stated that there are five possible uniaxial tests to perform in a unidirectional lamina. The 

longitudinal tensile and longitudinal compression (±𝜎11), transverse tensile and transverse 

compression (±𝜎22) and pure shear (𝜎12).  

The inelastic behavior of composite material is a result of the micro-mechanical inelastic 

response of the constituents of the composite (matrix and fiber) [43]. Once it is assumed the 

material of this model has the same mechanical properties of a Hex-Ply® IM7-8552, the yield 

stresses in the different directions are the following [44]: 

 

Table 3.4 - Yield stresses of Hex-ply IM7/8552 unidirectional laminates 

𝝈𝟏𝟏
𝒚

𝑻
 

[𝑴𝑷𝒂] 

𝝈𝟏𝟏
𝒚

𝑪
 

[𝑴𝑷𝒂] 

𝝈𝟐𝟐
𝒚

𝑻
 

[𝑴𝑷𝒂] 

𝝈𝟐𝟐
𝒚

𝑪
 

[𝑴𝑷𝒂] 

𝝈𝟏𝟐
𝒚

 

[𝑴𝑷𝒂] 

2720 1690 64 64∗ 120 

*Assuming that matrix presents an isotropic behavior  

 

According to Bessa [18], from the five possible uniaxial test performed in a unidirectional 

lamina, only in two of them the material’s behavior is non-linear: under transverse compression 

loads (𝜎22 < 0) or shear loads (𝜎12 ≠ 0). 

Koerber [21] tested IM7/8552 laminates to show the difference between dynamic and quasi-

static non-linear response in of axis-compression test (with shear loads) and pure transverse 

compression test (with no shear loads). The results of the referred author are presented in Figure 

3.9. 

Observing Figure 3.9, it can be concluded that in the 90° pure transverse compression the 

behavior of the material is close to a linear behavior, despite this the results shows a non-linear 

behavior, so there is plasticity in pure transverse compression. From 75° to 45° off-axis 

compression, the non-linearity increases drastically as the angle of the fibers’ orientation 

decreases. For the 45° to 15° off-axis compression, the response is close to the linear behavior. 

So, the behavior of a lamina subjected to shear loads is highly nonlinear, while the behavior of a 

lamina under transverse compressive loads is close to linear.  

In this dissertation the plasticity of the material under transverse compressive loads (𝜎22 <

0)  will not be consider  but under shear load it will be consider. However, it should be noted 

that in this first model there is no plasticity, once the applied loads are tensile loads and there is 

no shear or transverse compression. The plasticity will not appear in the spread tow carbon 

fabric with 0º/90º arrangement, but it can be considered for other specimens subjected to shear 

loads as it will be shown in the Figure 4.26Error! Reference source not found. with the results 

of the experimental tests.  

So the plasticity of the material under shear loads will be an option in the interface program 

developed in this dissertation. 
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Figure 3.9 - Quasi-static and dynamic axial stress-strain responses from off-axis and transverse 

compression tests (for IM/8552 laminates) [21] 

 

3.3.2. Delamination  

Delamination has been considered the “Achilles heel” of laminated composite. This damage 

mode can be caused by impacts events, notches, manufacturing defects and stress concentrations 

caused by changes in structural detail [14]. 

Delamination generally develops because of excessive out-of-plane or interlaminar stresses 

being generated at the interfaces between adjacent plies. In short term, delamination can lead to 

a lack of support on the load bearing layers in a laminate, promoting damage growth and 

premature failure. In the longer term, delamination can lead to exposure of the load-bearing 

layers to environmental threats such as moisture or contaminant ingress [14]. 
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This phenomenon can be simulated, numerically, using cohesive elements. These elements 

have the matrix properties of the composite material, in this case an epoxy matrix, and are 

implemented in the interface between unidirectional tows and in the interface of different plies. 

For the cohesive elements (or interface elements), the interfacial separations is defined as the 

displacement jump, which represents the difference of the displacements of the adjacent 

interface surfaces [45]. Figure 3.10 presents a schematic of these cohesive elements. 

 

 

Figure 3.10 - “Schematic of interface elements” [45] 

 

Figure 3.11 represents the bilinear behavior of the cohesive elements. It can be indentified an 

elastic path before the damage initiation, which intoduces a very high stifness to the interface 

before damage initiation [46]. The maximum normal contact stress is achieved at point A. The 

debonding begins at this point and it just finish at point C, when the normal contact stress 

reaches zero value [45]. Since the point C any further separation occurs without normal contact 

stress. 

The area under the curve OAC represents the energy release and is called the crictical 

fracture energy (𝐺𝐼𝐶 , 𝐺𝐼𝐼𝐶  𝑜𝑟 𝐺𝐼𝐼𝐼𝐶 , depending on the debonding mode) [45]. 

Here 𝛿𝑛 represents the normal contact gap (Mode I deboning), that is related with the normal 

critical energy fracture, 𝐺𝐼𝐶. The behavior for tangential contact stress is similar to this one, but 

represents the mode II deboning, relating the tangential stress, 𝜏, with the tangential 

displacement, 𝛿𝑡
𝑐. 
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Figure 3.11 - “Normal contact stress and contact gap curve for bilinear cohesive zone material” 

[45],[18]  

 

The cohesive zone material used, in this case, to simulate debonding (or delamination), with 

no contacts, has a bilinear material behavior used to simulate interface delamination and other 

fracture phenomena, which is defined by 4 material constants (regarding the fracture mode I and 

mode II) represented in Table 3.5. 

 

Table 3.5 - Cohesive material properties for IM7-8552 [38], [47] 

𝝈𝑴á𝒙
𝒏  

[𝑴𝑷𝒂] 

𝜹𝒏
𝒄  

[𝒎] 

𝝉𝑴á𝒙 

[𝑴𝑷𝒂] 

𝜹𝒕
𝒄 

[𝒎] 

60 5.93𝑒−6 90 2.15𝑒−5 

* 𝜎𝑀á𝑥 – Maximum normal stress; 

𝛿𝑛
𝑐 – Normal displacement jump at the completion of deboning; 

    𝜏𝑀á𝑥 – Maximum tangential stress; 

𝛿𝑡
𝑐 – Tangential displacement jump at the completion of deboning; 

 

The normal and tangential displacement at the completion of the deboning were obtained by 

the use of the following equations [47]: 

 

 
𝛿𝑛

𝑐 =
2𝐺𝐼𝐶

𝜎𝑀á𝑥
𝑛  (58) 

   

 
𝛿𝑡

𝑐 =
2𝐺𝐼𝐼𝐶

𝜏𝑀á𝑥
 (59) 

𝐴 

𝑂 
𝐶 

𝜎𝑀á𝑥
𝑛  

𝜎𝑛 

𝛿𝑛 𝛿𝑛
0 𝛿𝑛

𝐶 
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With 𝐺𝐼𝐶 = 178 𝑁/𝑚 and 𝐺𝐼𝐼𝐶 = 970 𝑁/𝑚. These values were provided by Jiménez work 

[48]. 

In order to test the cohesive elements a simulation was performed with a simplified geometry 

with two unidirectional plies, with a linear elastic orthotropic material behavior (with the 

mechanical properties presented in Table 3.2). To make this simulation the cohesive elements 

were implemented in the intermediate interface between the two unidirectional plies. Two 

opposite displacements were applied, in 𝑦𝑦 direction, at one of the end surfaces, while the 

opposite surface was completely constrained, in order to understand how the cohesive elements 

are working and if they can simulate the delamination with the properties defined in Table 3.5.  

The boundary conditions applied to the model and the results of the simulation are presented 

in Figure 3.12 and Figure 3.13, respectively. 

 

 

 

Figure 3.12 - Boundary conditions used to test the cohesive elements implemented without contacts  

 

 

Figure 3.13 - Final results of the delamination test (with cohesive elements without contacts) 

𝑦 

𝑥 

𝑧 
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As it can be seen in the Figure 3.13, there is a volume interference between the different 

unidirectional plies. It was tested and concluded that this was not a graphical problem and it is 

necessary the use of contact elements to avoid this effect. 

Contact problems [49] are highly non-linear and need significant computer resources to be 

solved. Contact elements are used to model surfaces that are in contact and transmit forces to 

each other, not allowing the interpenetration that was visible during the simulation of the 

delamination tests without contact elements, presented in the Figure 3.13. 

To simulate the model with cohesive elements and contacts, it was used a surface-to-surface 

contact model, which is a contact defined between two different surfaces. Here, the contact will 

connect the nodes of one surface to the faces of the other surface (and vice-versa) [50]. 

Ansys software has an interface delamination model developed to simulate delamination 

using contact elements suporting a cohesive zone material model with bilinear behaviour. This 

model is defined by the use of the maximum stresses and critical fracture energies densities, 

presented in Table 3.6: 

 

Table 3.6 - Cohesive material properties, with critical energies density, for IM7-8552 [38], [48], [49]. 

𝝈𝑴á𝒙
𝒏  

[𝑴𝑷𝒂] 

𝑮𝑰 

[𝑱/𝒎𝟐] 

𝝉𝑴á𝒙 

[𝑴𝑷𝒂] 

𝑮𝑰𝑰 

[𝑱/𝒎𝟐] 
𝜼 

60 178.332 90 970.851 1.45 

* 𝜎𝑀á𝑥 – Maximum normal contact stress; 

    𝐺𝐼 – Critical fracture energy density (energy/area) for normal separation; 

    𝜏𝑀á𝑥 – Maximum equivalent tangential contact stress; 

    𝐺𝐼𝐼 – Critical fracture energy density (energy/area) for tangential slip; 

    𝜂 – Artificial damping coefficient; 

 

To simulate the delamination with contacts and cohesive elements it was used the same 

model with the same boundary conditions presented in Figure 3.12. The only difference 

between the two models is that the first one does not have contacts, therefore it is visible a 

volume interference, while the second one does not allow this interference to occur. The results 

of this simulation can be seen in the Figure 3.14. 

In this simple model, the contacts and the cohesive elements were implemented in the 

intermediate interface between the two unidirectional plies. Although in the compressive 

specimen model the contact and cohesive elements are implemented not only between different 

plies but also between each spread tow. 
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Figure 3.14 - Results of the delamination test with contact and cohesive elements for substep: (a) 6, (b) 

22 and (c) 25 

(𝑎) 

(𝑏) 

(𝑐) 
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As it was expected, during the second delamination test (with contacts), interpenetrations are 

not presented between the different volumes due to the contacts defined in the intermediate 

surfaces. Once the contact is activated, the surfaces apply forces to each other, not allowing the 

interpenetration. 

Comparing the results of both simulations of the delamination phenomena it can be 

concluded that they are quite similar. Both models, with and without contacts, present the same 

crack extension as seen in Figure 3.13 and Figure 3.14. 

Looking at the stress results for the first simulation, with only cohesive elements, the stress 

(Von Mises) value of the first elements that do not delaminate is around 200 𝑀𝑃𝑎, while for de 

second simulation the elements present a stress (Von Mises) value around 600 𝑀𝑃𝑎. The results 

are in same order of magnitude and the difference presented can be explained by the use of the 

contacts, which avoid the interpenetration of the volumes, thus increasing the stress value in this 

area. 

Another difference, is the stress distribution. Note that for the delamination test with 

contacts, the stress (Von Mises) value is uniform in the elements belonging to the delaminated 

area and it is around the 250 𝑀𝑃𝑎. Whereas, in the first delamination test, the stress (Von 

Mises) values of the correspondent elements are not uniform and oscillate from 100 𝑀𝑃𝑎 

to 500 𝑀𝑃𝑎. 

3.4. Combined failure criterion 

The failure criteria are used to predict the stress values for which the material fails under the 

action of external loads. These criteria use the failure stress values provided by the 5 uniaxial 

tests that are possible to perform in carbon fiber reinforced plastic, longitudinal tension and 

compression (𝑋𝑇 and 𝑋𝐶, respectively), transverse tension and compression (𝑌𝑇 and 𝑌𝐶, 

respectively), and pure shear (𝑆𝐿). 

The numerical models implemented in this dissertation have the carbon fibers oriented in a 

0°/90° arrangement, so the maximum stress failure criterion could be enough to simulate the 

material’s failure, once this criterion evaluates the stress values along the principal directions. 

This criterion is simple, it reports that the failure occurs when a principal stress exceeds a 

specific value. However, one of the main goals of this dissertation is the development of a 

methodology capable to predict the behavior of different specimens (with different layups) 

under various type of loads, so the Tsai-Wu failure criterion will be used in order to take into 

account other directions besides the principal directions. This criterion was chosen because it is 

one of the most used criterions, in aeronautical industry, to predict material failure. 

Tsai-Wu failure criterion is extensively used in determining the damage initiation of a ply, 

but nevertheless has some drawbacks. One of them is the fact the failure stress of fiber in a 
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lamina exceeds the strength of the material for the case of symmetric angle-ply laminates with 

small fiber angles subjected to off-axis tension (which is not the case, but it can be in other 

models) [51]. 

So, in order to eliminate the drawbacks of both models, it was decided use a combination of 

failure criteria with maximum stress and Tsai-Wu failure criteria.  

This combined failure criterion, for the plane stress condition, can be written as [51]: 

 

 𝑋𝐶 < 𝜎11 < 𝑋𝑇  

𝑌𝐶 < 𝜎22 < 𝑌𝑇  
(60) 

and  

 

 𝑓1𝜎11 + 𝑓2𝜎22 + 𝐹11𝜎11
2 + 𝐹22𝜎22

2 + 𝐹66𝜎12
2 < 1 (61) 

 

In Figure 3.15 is represented the stress state permissible area, of the material, with this mix 

between maximum stress failure (represented in black) and Tsai-Wu failure criteria (represented 

in blue). 

 

 

Figure 3.15 - Comparison between Tsai-Wu a maximum stress failure criteria 

 

3.5. Incremental-iterative analysis 

After the implementation of the first model and once chosen the element type and size, the 

full integration analysis, defined contacts, cohesive elements and failure criterion, it was 

necessary to test the damage propagation in composite material, using proposed combined 

failure criterion, described above. 

For this, was develop an interface program between Ansys and MatLab softwares which 

gradually increases the displacement at the same time that stress tensor is evaluated in each 

𝑌𝑇 

𝑌𝐶 

𝜎22 

𝜎11 

𝑋𝑇 𝑋𝐶 
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element. It is then possible to evaluate if each one of the elements fails or not according to the 

failure criterion. If any element fails, its stiffness is reduced by multiplying the initial value 

by 10−6, thus simulating the element’s failure. 

This program constitutes a methodology developed during the course of this dissertation and 

is capable of modeling specimens with different geometries, different lay-ups and under various 

types of loads. Once the necessary parameters to implement a meso-scale model, such as, 

geometries of the specimen, dimensions, ply number, initial displacement, increment value or 

maximum number of analysis are set, the non-linear analysis proceeds automatically. 

In this methodology all the initial parameters, failure criterion, mechanical properties, mesh 

type and size, boundary conditions, solution option, etc… are defined in the MatLab software, 

while Ansys software is only used to run the analysis (used as a solver) and export the results, in 

this case the stress tensor values with respect to the global coordinate system. These results are 

used by MatLab, which finds the elements that failed according to the failure criterion. 

Figure 3.16 describes the flow-chart of an incremental-iterative analysis using Ansys and 

MatLab, giving a better perception of the algorithm used to simulate the damage propagation. 

In the beginning of the program the initial parameters are defined, such as the maximum 

displacement, ∆𝑥𝑀𝑎𝑥, the initial displacement, 𝐷, the increment on the displacement in each 

analysis, ∆𝑥, and it is also initialized the analysis number, 𝑎. Before this, the model is already 

set with the right geometry, dimensions, number of plies, maximum number of analysis, 

material properties, mesh size, boundary conditions or solution options.  

After this, Ansys software analyzes the model and if the solution converged, which means 

that the program could finish the analysis and the results of the stress in each element were 

written in a “.txt” file, the stress results can be evaluated with the proposed combined failure 

criterion (previously mentioned, a combined failure criterion between maximum stress and Tsai-

Wu failure criteria). When an element fails according to the proposed failure criterion, the 

EKILL function, from Ansys software, is activated to reduce drastically the material’s stiffness 

of that element, multiplying it by 10−6. Whenever any element fails in an analysis, the 

displacement in the next analysis (the analysis where the element’s stiffness will be reduced) is 

not incremented because of the stress redistribution, since after the first elements failure more 

elements will fail. In fact, it is verified that, when any element fails, the stresses that it supports 

need to be redistributed to other elements that did not fail yet, which will increase the stress 

values in these elements and can lead to more elements failure. If the displacement were 

simultaneously increased, the amount of failed elements could lead to non-convergence of the 

solution. So, the prescribed displacement only increases when no more element fails according 

to the failure criterion, in the previous analysis. 
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Figure 3.16 - Incremental-iterative analysis for one ply under tensile loads (units of the initial parameters 

in m). 
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After this, the previous analysis restarts with increased prescribed displacement or with more 

failed elements. This just happens if the analysis/iterations number were less than the number 

defined in the beginning (it was defined to be 30, in this case, as shown in Figure 3.16), if not 

the incremental-iterative program finish.  

If the solution of any analysis does not converge it is necessary to know in which iteration 

this occurs. If it is at the beginning, one of the first three analysis, it means the initial parameters 

should be reviewed and the analysis stops. If more than 3 successfully iterations were already 

performed, and the last solution diverges, this iteration is ignored, returning to the displacement 

value used in the previous iteration and the value of increment is halved in order to get a shorter 

displacement and find less elements that fail. This can make the solution of the new analysis 

convergent. 

The program’s cycle only finishes by two ways: if the solution of any of the first three 

iterations does not converge or if the number of increments reaches the number defined in the 

program (maximum number of analysis). 

The main reason why there is a great difficulty in the convergence of the solutions is the use 

of contacts, since there is always contacts being activated and deactivated during the course of 

the analysis. 

3.6. Results 

After the implementation of the first model of one ply with contacts and cohesive elements 

and defined the failure criterion, an incremental iterative analysis was performed, as described 

above, with the aim of simulating the damage propagation on the material.  

This model was tested under tension loads, and no compression loads (as the real specimen 

tested experimentally), because in the case of only one ply, a compression load would introduce 

some instability and bending could occur. This would lead to inconclusive results. 

For this model, the constants provided from the five uniaxial test (tension and compression 

in the fiber directions, tension and compression in the transversal direction and pure shear) are 

taken from [17] and shown in Table 3.7: 

 

Table 3.7 - Unidirectional constants of the uniaxial tests used in the simulation of one ply under tension 

loads[17] 

𝑿𝑻 

[𝑴𝑷𝒂] 

𝑿𝑪 

[𝑴𝑷𝒂] 

𝒀𝑻 

[𝑴𝑷𝒂] 

𝒀𝑪 

[𝑴𝑷𝒂] 

𝑺𝑳 

[𝑴𝑷𝒂] 

2323.5 

500∗ 

1200.1 

350∗ 
62.3 199.8 92.3 

*these values were modified in order to see the damage initiation, once the stress values taken from Maimi’s PhD 

thesis were not reached for the imposed displacement. 



52 

 

The values in Table 3.7 had to be adapted because these values are unknown for the 

composite material used in this dissertation.  

It should be noted that the results obtained for this ply model, presented in the Figure 3.18-

Figure 3.22, cannot be compared with experimental results, and so they are merely qualitative. 

Its purpose is to know where the area of greatest stress concentration is, and how the failure 

propagates. 

The boundary conditions applied in this first simulation are presented in the Figure 3.17 and 

consists of one fixed end, while in the other a displacement of 0.2 𝑚𝑚 is imposed. To avoid the 

rotation of the ply, it was fixed the upper face in the 𝑦𝑦 direction. 

 

 

 

 

Figure 3.17 - Boundary conditions applied to the ply model 

 

 

Figure 3.18 - Equivalent Von-Mises Stress Analysis at step 1 
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Figure 3.19 - Equivalent Von-Mises Stress Analysis at step 2 

 

 

Figure 3.20 - Equivalent Von-Mises Stress Analysis at step 3 

 

 

Figure 3.21 - Equivalent Von-Mises Stress Analysis at step 14 
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Figure 3.22 - Equivalent Von-Mises Stress Analysis at step 15 

 

 

Figure 3.23 - Stress-Strain results of the simulation of the ply model under tension loads 

 

The results revealed a uniformity in Von-Mises stresses along the 𝑧𝑧 axis as it was expect 

due to the symmetry of the geometry and the boundary conditions in this direction. So, when 

there are some elements failing in the same iteration, probably most of them have the same 

coordinate in the 𝑧𝑧 direction, but not all. 
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Another event that should be noted is that the first elements to fail are the elements with 

fibers aligned with the 𝑧𝑧 direction (90° with 𝑥𝑥 direction) close to change of cell, which is the 

zone where the spread tow with the fibers aligned at 90° crosses the spread tow with the fibers 

aligned at 0°. This was not expected (matrix failure before fiber failure) and has to do with the 

unidirectional constants taken from the uniaxial tests defined in the Table 3.7 and the cohesive 

properties presented in the Table 3.6. 

The stress limit in the fibers’ transversal direction under tension loads is 62.3 𝑀𝑃𝑎, while 

the stress limit for the fibers’ longitudinal direction is 500 𝑀𝑃𝑎. This is a considerable 

difference and is the main reason for the elements whose fibers are aligned transversally to the 

applied loads failing first than the others. This is also due to the cohesive elements’ properties, 

because if the material delaminates before the elements reach the ultimate stress value, these 

elements would not fail. So, this could be a sign that the cohesive properties need to be adjusted 

in this model, once in the experimented tests, delamination was observed, and in this ply model 

this is not observed. 

Figure 3.23 presents the stress-strain diagram obtained from this simulation. This was the 

expected behavior of the material, given there is no plasticity implemented in this model. 

Observing this curve, it can be seen a drop in the stress value at a strain around the 0.22%, 

which happens due to the failure of the first elements (presented in the Figure 3.19 and Figure 

3.20) close to the change of cell. 

After the failure of the first elements, the model’s failure does not happen and the stress 

continues to be incremented until the failure of the fibers aligned at 0°. With the failure of these 

elements (presented in Figure 3.21 and Figure 3.22), the simulation ends. 

 

 
Figure 3.24 - Spread tow carbon fabric specimen after a tension test 

 

It was expected the failure to occur in the area of the change of cell, since this is the area 

with the greatest stress concentration and because this was verified in some experimental 
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tension tests (presented in the Figure 3.24), with the same material used in the models presented 

in this dissertation. 

With these results, it can be concluded that the developed methodology is efficient for the 

ply model, showing consistent results as expected. 
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Numerical model of a specimen 

 
After implementation and analysis of the first ply model, it was necessary to model the entire 

compression test specimen. For this, there were some keypoints to take into account. First, the 

plies are spread tow carbon fabric instead of unidirectional plies, which increases the degree of 

difficulty to implement the model. Then, the change of cell cannot match all the same orderly 

because the layup of the experimental specimens was not controlled except the fibers 

orientation, which were a 0º/90º arrangement for these specimens. 

To generate the geometry, it was created an automatic program (described in the Chapter 3) 

using the interface between MatLab software and Ansys software that can generate the whole 

geometry with a random layup, as it can be seen in Figure 4.1, the changes of cell can appear 

anywhere along the length of the specimen. 

As described in Chapter 3, in this program can be defined a high number of parameters of 

the model, such as the element size, number of plies or the displacement value applied to the 

model. 

The compressive specimen has the dimensions presented in Table 4.1 and the geometry is 

represented in Figure 4.1 (this figure represents one of the possible geometries, once the layup is 

generated randomly for each model, however the overall dimensions does not change). 
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Figure 4.1 - Geometry of the compressive specimen 

 

Table 4.1 - Dimensions of the compressive specimen 

𝑳 

[𝒎𝒎] 

𝑻 

[𝒎𝒎] 

𝑾 

[𝒎𝒎] 

𝑷𝒍𝒊𝒆𝒔  

𝒏𝒖𝒎𝒃𝒆𝒓 

𝑭𝒊𝒃𝒆𝒓𝒔  

𝒐𝒓𝒊𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏 [°] 

19.998 5.883 10.269 26 0º/90º 

 

4.1. Boundary conditions 

After the implementation of the model, many analysis were made with different boundary 

conditions in order to achieve a specimen’s final appearance similar to the specimens tested 

experimentally. In this analysis the kill element function was not used yet because the cohesive 

element properties need to be adjusted so that the failure modes can be identified. 

The specimens were also tested with different boundary conditions in order to find the one 

that better corresponds to reality. In the Figure 4.2 to Figure 4.5 will be represented some of 

those analysis with different boundary conditions applied and its final result. Once again, the 

main goal was to find the boundary conditions, the material and interface properties that allow a 

final appearance of the specimens similar to those tested experimentally, not taking into account 

the stress results yet. 

In the first compression test carried out, the material properties used are presented in the 

Table 4.2, the cohesive material properties are the same previously presented in Table 3.6 and 

the boundary conditions are described in Table 4.4. The results of this simulation are presented 

in Figure 4.2. 

𝑇 

𝐿 

𝑊 

𝐾5 

𝐾1 

𝐴1 

𝐴2 

𝐴3 
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Table 4.2 - Elastic properties of IM7/8552 unidirectional laminates, for compression loads [38]. 

𝑬𝟏𝟏 

[𝑮𝑷𝒂] 

𝑬𝟐𝟐 

[𝑮𝑷𝒂] 

𝑬𝟑𝟑 

[𝑮𝑷𝒂] 
𝒗𝟏𝟐 𝒗𝟐𝟑 𝒗𝟏𝟑 

𝑮𝟏𝟐 

[𝑴𝑷𝒂] 

𝑮𝟐𝟑 

[𝑴𝑷𝒂] 

𝑮𝟏𝟑 

[𝑴𝑷𝒂] 

150 12 12 0.32 0.436 0.32 5170 3980 5170 

 

 

 
Figure 4.2 - Results of the first compression test 

 

As it can be seen, after a displacement of 0.2 𝑚𝑚, the compression specimen does not 

present delamination, contrary to what was expected because the experimental specimens show 

delamination after the compression test, with the same displacement. This means the cohesive 

material properties need to be adjusted, so the delamination can be seen after a compression 

simulation with a displacement of 0.2 𝑚𝑚. 

After some simulations (less than ten) it was conclude that cohesive material properties that 

can provide a better final appearance, which means delamination can be perfectly identified and 

the model after the compression test looks like the real specimens tested experimentally, are the 

following presented in Table 4.3. As it can be seen, only the maximum normal stress and the 

maximum tangential stress were changed, the normal stress was changed from 60 𝑀𝑃𝑎 to 

30 𝑀𝑃𝑎 and the tangential stress was changed from 90 𝑀𝑃𝑎 to 10 𝑀𝑃𝑎 (comparing with Table 

3.6). 

 

Table 4.3 - Interlaminar cohesive properties changed 

𝝈𝑴á𝒙
𝒏  

[𝑴𝑷𝒂] 

𝑮𝑰 

[𝑱/𝒎𝟐] 

𝝉𝑴á𝒙 

[𝑴𝑷𝒂] 

𝑮𝑰𝑰 

[𝑱/𝒎𝟐] 
𝜼 

30 178.332 10 970.851 1.45 

 

After this adjustment, three simulations were performed with different boundary conditions.  
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For each simulation there are three common restrictions: lock the surface 𝐴1 in the 𝑥𝑥 

direction, in surface 𝐴2 is imposed a displacement of −0.2 𝑚𝑚, and to avoid the translation in 

the 𝑧𝑧 axis the keypoint 5 (Figure 4.1) is constrained in this direction too. More constrains were 

added to these three conditions, taking at the end three different boundary conditions to simulate 

the model and compare the results. 

For the first case, the boundary conditions applied are completed adding a constrain in the 

𝑦𝑦 direction in surface 𝐴3 (the top surface). Boundary conditions for this analysis are presented 

in the Table 4.4, and the final results are shown in the Figure 4.3. 

 

Table 4.4 - Boundary conditions (1) applied to the numerical model 

𝑲𝟓 𝑨𝟏 𝑨𝟐 𝑨𝟑 

    

𝑈𝑧 = 0 𝑈𝑥 = 0 𝑈𝑥 = −0.2 𝑚𝑚  𝑈𝑦 = 0 

* The degrees of freedom painted in blue are the constrained ones 

 

 

 

Figure 4.3 - Results of the compression test with the cohesive properties changed and the boundary 

conditions (1) 

 

Now, is perfectly identified the delamination in the compressive specimen, which means the 

cohesive properties used here are closer to the real properties (that are unknown) than the 

properties used in the simulation of the Figure 4.2, that corresponds to the cohesive properties of 

a IM7/8552 unidirectional laminate. Although this results cannot be compared with the 

experimental results, because this simulation was only used to evaluate the delamination and 

𝑦 

𝑥 
𝑧 

𝑦 

𝑥 
𝑧 

𝑦 

𝑥 
𝑧 

𝑦 

𝑥 
𝑧 
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final appearance of the specimen not considering the elements failure, results appear to be 

according to what was expected. 

The experimental tests present an ultimate compression stress around the 330 𝑀𝑃𝑎 (which is 

shown in the Figure 4.26) and in this simulation this value is in the range of the elements results 

presented.  

Boundary conditions for the second analysis are quite similar to those used in the first case, 

but in spite of applying constrains in 𝑦𝑦 direction of surface 𝐴3 that corresponds to the top 

surface of the specimen (as shown in Figure 4.1), the constrain is applied at surface (𝐴3’) in the 

middle of the specimen (parallel to 𝐴3 surface). These conditions are presented in the Table 4.5 

and the corresponding results in Figure 4.4. 

 

Table 4.5 - Boundary conditions (2) applied to the numerical model 

𝑲𝟓 𝑨𝟏 𝑨𝟐 𝑨𝟑′ 

    

𝑈𝑧 = 0 𝑈𝑥 = 0 𝑈𝑥 = −0.2 𝑚𝑚  𝑈𝑦 = 0 

*𝐴3′ is a parallel interface area to 𝐴3 in the middle of the specimen. 

 

 

Figure 4.4 - Results of the compression test with the cohesive properties changed and the boundary 

conditions (2) 

 

The final appearance of this simulation is also acceptable, showing some delamination areas 

and some buckling in the outer surfaces, which was visible in the compressive specimens 

experimentally tested. 
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The only drawback of these boundary conditions is the fact that the surface constrained in 𝑦𝑦 

direction is a surface in the middle of the specimen, which may influence the damage 

propagation, in this area, during the simulation of the compression specimen. For this reason, 

these boundary conditions are not acceptable for this work. 

Finally, in the third analysis it was implemented the boundary conditions that most closely 

resembles the experimental conditions. In this analysis the 𝑦𝑦 direction is just constrained in 

two keypoins, 𝐾1 and 𝐾5 (see Figure 4.1). Table 4.6 and Figure 4.5 presents the boundary 

conditions and the final results of this analysis, respectively. 

 

Table 4.6 - Boundary conditions 3) applied to the numerical model 

𝑲𝟏 𝑲𝟓 𝑨𝟏 𝑨𝟐 

    

𝑈𝑦 = 0 
𝑈𝑦 = 0 

𝑈𝑧 = 0 
𝑈𝑥 = 0 𝑈𝑥 = −0.2 𝑚𝑚  

 

 

 

Figure 4.5 - Results of the compression test with the cohesive properties changed and the boundary 

conditions (3) 

 

This third simulation, has the boundary conditions closer to the real ones, however the 

results are the most different. It presents a uniform stress distribution that is not real and the 

behavior of the material is too different from the experimented specimens. 

These boundary conditions will not be used in this dissertation to simulate the damage 

propagation of the composite material. 
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Only the two first simulations used boundary conditions capable to provide acceptable stress 

results and a similar final appearance with the real specimens after the compression test. The 

only difference in the boundary conditions of these two simulations lies in the surfaces where 

constrains in the 𝑦𝑦 direction are applied. In the first simulation the constrained surface is 

located at one end of the specimen, while in the second simulation this surface is located in the 

middle of the specimen. Since the constraints in the 𝑦𝑦 direction can interfere directly in the 

damage propagation, it is more advantageous that this surface is located at the end of the 

compression specimen than in the middle. 

Comparing the final results of the different simulations with different boundary conditions, it 

was concluded that the boundary conditions that give the most similar final appearance with the 

real specimens and less interfere with the damage propagation are those used in the first 

analysis. 

As a reference, Figure 4.6 shows the numerical model presented in Figure 4.3 and one of the 

experimented specimens with a 0º/90º arrangement. 

 

 

Figure 4.6 - Numerical model and real specimen 

 

4.2. Incremental iterative analysis 

The incremental iterative analysis, works, more or less, in the same way as described in 

Chapter 3 with some adjustments, different initial parameters and different composite material 

mechanical properties, in order to obtain final numerical results closer to the experimental 

results, with an error less than 5%.  

The initial parameters used in this model are shown in Table 4.7 and the operation of the 

program used to simulate the damage propagation in the composite material’s specimen is 

presented in the Figure 4.7. 

With this analysis it shall be obtained the principal failure modes as observed in the 

experimental work, which are delamination simulated by the use of cohesive elements, and the 

fiber failure simulated with the “EKILL” function (from Ansys software), which reduces the 

stiffness of the element to almost zero. 
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Figure 4.7 - Incremental-iterative analysis for 26-plies compression specimen 

 

Return  

Yes No 

Kill element 

𝐷 = 𝐷 + ∆𝑥 

𝐷 = 𝐷 − ∆𝑥 

∆𝑥 = ∆𝑥 ∗ 0.5 

Yes No 

Results  

Element 

fail 

𝑎 ≤ 3 

Yes No 

Beginnin

g  

Initial Parameters 

Run analysis 

Solution 

converge

d 

End   

𝑎 = 𝑎 + 1 

Run analysis (𝑎) 

𝑎 ≤ 30 

No Yes  

Yes 

No 

Solution 

converge

d 

NFE=NFE/4 

Run analysis 

NFE 



65 

 

As previously mentioned, the program was made by the use of an interface between Ansys 

and MatLab softwares and the analysis starts with an initial displacement which is gradually 

increased. In each analysis, stress results are analyzed and if any element fails, according to the 

Tsai-Wu or maximum stress failure criteria, its stiffness is reduced, which means fiber failure 

occurs (or matrix failure, depending on the direction of the fibers). 

This type of simulation, requires a high CPU time (computational cost) and has great 

difficult of convergence. So, as referred in the Chapter 3, when there are identified elements that 

do not comply with the failure criterion (defined by the use of the unidirectional constants of the 

uniaxial tests presented on the Table 4.8 for this simulation), the displacement of the next 

iteration is not incremented and this is the point where the failure of the specimen occurs. Once 

the first elements fail, it leads to the failure of more elements and the displacement will not be 

incremented anymore during the simulation, just more elements will fail and be deactivated.  

Every time an iteration does not converge, the displacement goes back to the value it had in 

the last converged iteration, and the value of the increment is reduced in 50%, so the stress 

values increase less and there are less elements to deactivate (in the case of being the first 

elements to fail) which helps the results of the iteration to converge. It is not usual, but it could 

happen the solution does not converge without the fail of any element, which means the 

increment should be reduced. The main difference of the program presented in this chapter and 

the program used to test one ply in tension (in Chapter 3) is due to the difficulty of the solution 

convergence after the failure of the first elements. To solve this, when the solution of the 

analysis does not converge (after the failure of the first elements), due to the high number of 

failed elements, the program reselect just 25% of these elements to deactivate. 

Some initial parameters were chosen based on the experimental tests results. For example, 

the maximum displacement observed in the experimental tests was around 0.2 𝑚𝑚, which can 

be seen in the Figure 4.26, so for security it was used a maximum displacement of 0.22 𝑚𝑚 in 

the numerical model.  

The values of the initial parameters as well as the material properties or the unidirectional 

constants of the uniaxial tests need to be values that provide final results close to the results 

obtained in the experimental test. For example, the value of the increment needs to be as low as 

possible taking into account the number of analyses is limited due to the high computational 

cost that these models requires. Other parameters that need to be adjusted for this analysis are 

the material mechanical properties and the unidirectional constants of the uniaxial tests, used in 

failure criterion, focusing on the failure stress, that was about 330 𝑀𝑃𝑎 in the experimental 

tests and taking into account that the maximum extension was around 1%. So, the modulus of 

elasticity of the material in the longitudinal and transverse directions must be changed as well as 

the failure stress under longitudinal compression, 𝑋𝐶, and the failure stress under transverse 

compression, 𝑌𝐶. 
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Table 4.7 - Initial parameters of the 0º/90º spread tow carbon fabric compressive specimen 

∆𝒙𝑴𝒂𝒙 

[𝒎𝒎] 

𝑫 

[𝒎𝒎] 

∆𝒙 

[𝒎𝒎] 

𝒂𝑴𝒂𝒙 

[𝒎𝒎] 

𝑬𝑺 

[𝒎𝒎] 

𝑬𝑺𝑻𝑰𝑭 

[𝒎𝒎] 

−0.22 −0.02 −0.01 30 0.3 10−6 

*Values taken from Kawashita’s article [38] 

 

The unidirectional constants of the uniaxial tests, presented in Table 4.8, are very important 

in the final results. Since the values for the material used in this dissertation are unknown and it 

was seen that these values for a Hexcel Ply IM7/8552 were too high, it had to be changed in 

order to achieve good results. 

In this compression test (compression specimen with a 0º/90º arrangement) the main applied 

loads on the specimen are longitudinal and transversal compression. So, the most important 

unidirectional constants are the failure stress under longitudinal compression, 𝑋𝐶, for the 

material whose fibers are oriented at 0° and the failure stress under transverse compression, 𝑌𝐶, 

for the material whose fibers are oriented at 90° 

These values were not based in any reference, since the material is unknown, and are the 

initial values to evaluate the behavior of the material as well as the final results. Probably, they 

will need to be adjusted after the first simulation. 

 

Table 4.8 - Unidirectional constants of the uniaxial tests used in the simulation of 26-plies specimen 

under compression loads. 

𝑿𝑻 

[𝑴𝑷𝒂] 

𝑿𝑪 

[𝑴𝑷𝒂] 

𝒀𝑻 

[𝑴𝑷𝒂] 

𝒀𝑪 

[𝑴𝑷𝒂] 

𝑺𝑳 

[𝑴𝑷𝒂] 

900 600 62.3 250 92.3 

 

However, experimental results have to be taken into account because one of the main goals 

of this dissertation is the development of numerical model that lead to similar results as the 

experimental. 

It was seen the experimental specimens collapse with a strain of 1%, which correspond to a 

displacement of 0.2 𝑚𝑚. For that, the modulus of elasticity in transverse and longitudinal 

directions are given by: 

 

 𝐸11 =
𝜎11

𝜀11
 (62) 

 

 𝐸22 =
𝜎22

𝜀11
 (63) 
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Considering 𝜎11 = 𝑋𝐶 and 𝜎22 = 𝑌𝐶 , with a strain of 1%, the modulus of elasticity were 

changed to the values presented on the Table 4.9. The rest of the values were kept. 

These values predicted for the modulus of elasticity are acceptable and make sense. In Figure 

4.26, results of the experimental compression test, for the specimen with a 0º/90º arrangement, 

present a failure stress about 330 𝑀𝑃𝑎 with a strain of 1%, which provide a modulus of 

elasticity of 33 𝐺𝑃𝑎, approximately. This is much lower from the initial values used, 

corresponding to the mechanical properties of a Hexcel ply IM7/8552.  

 

Table 4.9 - Composite material mechanical properties used  

𝑬𝟏𝟏 

[𝑮𝑷𝒂] 

𝑬𝟐𝟐 

[𝑮𝑷𝒂] 

𝑬𝟑𝟑 

[𝑮𝑷𝒂] 
𝒗𝟏𝟐 𝒗𝟐𝟑 𝒗𝟏𝟑 

𝑮𝟏𝟐 

[𝑴𝑷𝒂] 

𝑮𝟐𝟑 

[𝑴𝑷𝒂] 

𝑮𝟏𝟑 

[𝑴𝑷𝒂] 

60 2.5 2.5 0.32∗ 0.436∗ 0.32∗ 5170∗ 3980∗ 5170∗ 

*Values taken from Kawashita’s article [38] 

4.3. Results 

The simulation of a compression test of 26-plies specimen was performed, with the 

parameters and the boundary conditions described above in Chapter 4 and the final results are 

presented in Figure 4.8-Figure 4.14. 

Figure 4.15 presents the global stress-strain curve diagram, obtained considering the 

resultant force applied along x at the specimen boundary divided by the initial cross-section 

area, for the stress, and the applied x displacement divided by the specimen initial length, for the 

strain. 

 

 
Figure 4.8 - Equivalent Von-Mises Stress Analysis of a 26-plies compression specimen at step 4 
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Figure 4.9 - Equivalent Von-Mises Stress Analysis of a 26-plies compression specimen at step 16 

 
Figure 4.10 - Equivalent Von-Mises Stress Analysis of a 26-plies compression specimen at step 17 

 
Figure 4.11 - Equivalent Von-Mises Stress Analysis of a 26-plies compression specimen at step 18 
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Figure 4.12 - Equivalent Von-Mises Stress Analysis of a 26-plies compression specimen at step 19 

 
Figure 4.13 - Equivalent Von-Mises Stress Analysis of a 26-plies compression specimen at step 20 

 
Figure 4.14 - Equivalent Von-Mises Stress Analysis of a 26-plies compression specimen at step 21 
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Figure 4.15 - Stress-Strain results of the simulation of a 26-plies compression specimen 

 

The results of this analysis are similar to the results obtained in the experimental tests. The 

final appearance is very similar to the appearance of the compression specimens tested 

experimentally. Throughout Figure 4.8 to Figure 4.14 it can be seen stresses increasing 

gradually until the failure of the first elements, in Figure 4.10. The previous figure shows the 

first failed elements that correspond to the pick value in Figure 4.15. After that, the specimen 

lose its integrity, which means that the material failed in service, as it was expected. 

In Figure 4.14 the delamination in one of the ends of the compression specimen model can 

be perfectly identified. This can also be observed in the experimental specimens. 

Figure 4.15 provides a good stress-strain curve diagram (that is one of the objectives of this 

dissertation). This diagram does not show any non-linearity, such as the experimental diagram 

of the specimen with a 0°/90° arrangement.  

Another aspect that should be noted is the moment corresponding to the failure of the 

specimen. It was expected that the numerical model could not increase the applied load after the 

deactivation of the first elements and this can be observed in this diagram. The first elements 

fail at a strain of 0.85% and after this iteration (17th iteration) the strain was no longer 

incremented, and the rest of the iterations (from the iteration 18 to iteration 21) just deactivated 

more elements. In the experimental results, this can also be observed, in Figure 4.26. So, it can 

be concluded that the specimen’s numerical model presents a similar behavior to the 

experimental specimen. 
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However, the failure stress and its correspondent strain, in Figure 4.15, could be closer to the 

experimental results. In Figure 4.26, the values for the failure stress of the four specimens with a 

0°/90° arrangement are 314.6 𝑀𝑃𝑎, 298.9 𝑀𝑃𝑎, 338.2 𝑀𝑃𝑎 and 338.7 𝑀𝑃𝑎. Discarding the 

value obtained in the second test (because the stress failure value of this specimen is lower than 

the rest of the results), these results give an average value of 330.5 𝑀𝑃𝑎. The failure stress of 

the numerical model is equal to 261.4 𝑀𝑃𝑎, representing an error of 20.9% in respect the 

experimental specimens.  

One of the objectives of this dissertation is the development of a numerical model that 

provides results with an error lower than 5% relative to the experimental values. To achieve 

this, some numerical model parameters will be adjusted in order to obtain a closer 

correspondence. The next section provides the results of a simulation with adjusted parameters 

and later, in this chapter, a comparison between numerical and experimental results can be 

found. 

4.3.1. Parameters adjustment 

Looking at the stress-strain diagram obtained previously, it can be concluded that failure 

stress as well as the correspondent strain are lower than the results obtained experimentally. In 

order to achieve a higher failure stress and a higher failure strain in the numerical model some 

parameters for this model will be modified. 

To accomplish this objective, it is enough to change four parameters: the failure stress under 

longitudinal compression, 𝑋𝐶, the failure stress under transverse compression, 𝑌𝐶 and the 

modulus of elasticity in both longitudinal and transversal directions. With higher values of these 

four parameters, the failure stress and failure strain will certainly increase, because the collapse 

of the specimen will happen later. 

After several analysis performed for several different values of these parameters, the final 

update values were found. Table 4.10 and Table 4.11 presents the values of updated parameters. 

 

 

Table 4.10 - Unidirectional constants of the uniaxial tests used in the simulation of 26-plies specimen 

under compression loads updated (𝑋𝐶 and 𝑌𝐶) 

𝑿𝑻 

[𝑴𝑷𝒂] 

𝑿𝑪 

[𝑴𝑷𝒂] 

𝒀𝑻 

[𝑴𝑷𝒂] 

𝒀𝑪 

[𝑴𝑷𝒂] 

𝑺𝑳 

[𝑴𝑷𝒂] 

900 852 62.3 320 92.3 
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Table 4.11 - Composite material mechanical properties adjusted (𝐸11 𝑎𝑛𝑑 𝐸22 = 𝐸33) 

𝑬𝟏𝟏 

[𝑮𝑷𝒂] 

𝑬𝟐𝟐 

[𝑮𝑷𝒂] 

𝑬𝟑𝟑 

[𝑮𝑷𝒂] 
𝒗𝟏𝟐 𝒗𝟐𝟑 𝒗𝟏𝟑 

𝑮𝟏𝟐 

[𝑴𝑷𝒂] 

𝑮𝟐𝟑 

[𝑴𝑷𝒂] 

𝑮𝟏𝟑 

[𝑴𝑷𝒂] 

62 4 4 0.32∗ 0.436∗ 0.32∗ 5170∗ 3980∗ 5170∗ 

*Values taken from Kawashita’s article [38] 

4.3.1.1. Results 

Another simulation was performed, with the same parameters and boundary conditions used 

in the first simulation of a 26-plies compression specimen, with the exception of the four 

parameters modified and presented above in Table 4.10 and Table 4.11. 

The results of this simulation are present in Figure 4.16-Figure 4.22. 

 

 

Figure 4.16 - Equivalent Von-Mises Stress Analysis of a 26-plies compression specimen at step 5 (with 

adjusted parameters) 

 
Figure 4.17 - Equivalent Von-Mises Stress Analysis of a 26-plies compression specimen at step 19 (with 

adjusted parameters) 



73 

 

 
Figure 4.18 - Equivalent Von-Mises Stress Analysis of a 26-plies compression specimen at step 20 (with 

adjusted parameters) 

 
Figure 4.19 - Equivalent Von-Mises Stress Analysis of a 26-plies compression specimen at step 21 (with 

adjusted parameters) 

 
Figure 4.20 - Equivalent Von-Mises Stress Analysis of a 26-plies compression specimen at step 22 (with 

adjusted parameters) 
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Figure 4.21 - Equivalent Von-Mises Stress Analysis of a 26-plies compression specimen at step 23 (with 

adjusted parameters) 

 

 

 

 
Figure 4.22 - Equivalent Von-Mises Stress Analysis of a 26-plies compression specimen at step 24 (with 

adjusted parameters) 

 

 

The simulation of the 26-plies compression specimen, after the parameters adjustment, 

presents a final appearance close to the experimental specimens (and close to the numerical 

model previously simulated), as was expected. The results show a small buckling in the 

specimen that starts in the 19th increment and grows as the elements fail. 

Delamination can be observed once again, in the area where the elements failed. If the 

simulation had not stopped, the specimen would be divided in two parts, due to the propagation 

of the delaminated area. This propagation can be seen in these results, starting at the 23rd 

iteration (Figure 4.21) and grows to the 24th iteration (Figure 4.22). 
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Figure 4.23 - Stress-Strain results of the simulation of a 26-plies compression specimen (with adjusted 

parameters) 

 

Figure 4.23 shows the stress-strain curve for this simulation, and the behavior is quite similar 

to the previous 26-plies specimen numerical model, where the stress values increase until the 

failure of the first elements. When the first elements fail, the specimen also is unable to sustain 

higher loads, and the simulation ends. 

This new simulation provides a failure stress value of 323.8 𝑀𝑃𝑎 corresponding to a strain 

value of 1%, which are very close to the experimental values. The average failure stresses of the 

compression specimens tested experimentally is 330.5 𝑀𝑃𝑎 with a strain around 1%. The 

failure strain value is in the average of the results obtained in the experimental tests (this error is 

not quantified because the strains of the experimental specimens were measured by five 

different extensometers, which provided different values around 1%, as it can be seen in the 

Figure 4.26). Regarding the failure stress, the result obtained in this simulation has an error 

of 2%, which is an exceptional result and compliant with the objectives set for this dissertation. 

With these last results, it can be concluded that no further parameter adjustment is need for the 

26-plies specimen numerical model.  
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4.4. Experimental results 

The procedure used in the experimental tests is explained in this chapter, and some results of 

the tested specimens are presented. 

The different specimens are composed by spread tow carbon fabric material with different 

arrangements. The 0°/90° arrangement (arrangement simulated in the numerical model of this 

dissertation), and also the 15°/-75°, 30°/-60° and 45°/-45° arrangements. 

As it was referred in Chapter 1, the work developed in this dissertation follows from these 

experimental tests driven by the need of better understanding the behavior of composite material 

during the experimental tests. Experimental tests do not provide the instant or the location of the 

failure initiation and damage propagation, that is intended to be studied in this dissertation, is 

difficult to analyze. In contrast, the numerical models provide a useful amount of data for 

various sub-steps during the simulation tests. 

The experimental tests consists in compression tests of specimens with 26 plies of spread 

tow carbon fabric with the dimensions of 5 × 10 × 20 𝑚𝑚, approximately. 

To extract the data from the experimental tests and draw the resistance curve of the 

specimens’ two different methods were used: the digital image correlation (DIC) and the 

sensors installed on the machine that performed the experimental test. These sensors installed in 

the machine that perform the experimental test provide the stress values during the compression 

test and the displacement measured during the test while the digital image correlation provides 

directly the strain on the specimen by the use of five virtual extensometers implemented along 

the length of the specimen (see Figure 4.25). 

To use digital image correlation method, test specimens were sprayed with a white ink to 

generate a random and contrasted distribution of granular spots against the grey color of the 

material of the specimen. This method uses the granular spots size and the distance between 

different spots to measure the displacement of the specimen in the 5 virtual extensometers. 

The test set-up is shown in Figure 4.24. This test consists of an axial compression of the 

specimen between two flat plates. 



77 

 

 

Figure 4.24 - Schematic test set up of the experimental compression tests 

 

 

 

Figure 4.25 - (a) Schematic position of the virtual extensometers; (b) Digital image correlation: strain 

measurements [52] 

𝐹 

Moving Crosshead  

Upper plate 

Test Specimen 

Lower plate 

Table 

𝑉𝑖𝑟𝑡𝑢𝑎𝑙 𝑒𝑥𝑡𝑒𝑛𝑠𝑜𝑚𝑒𝑡𝑒𝑟𝑠 

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 

(𝑎) 

(𝑏) 
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The experimental tests were performed at a controlled velocity of 1 𝑚𝑚/𝑚𝑖𝑛 and the results 

of the experimental tests of the specimens with a 0°/90° arrangement are presented in Figure 

4.26. The blue curves represent the data extracted from the digital image correlation method, 

while the curve in black represents the data extracted from the sensors installed on the machine 

that perform the tests. The strains measured by the machine are not considered since these 

values do not correspond only to the strain of the specimen but also include the adjustment of 

the machine to the specimen and deformations that can occur in the machine. 

 

 

Figure 4.26 - Stress-strain curves of 4 different specimens with 26 plies and a 0º/90º arrangement, tested 

in compression 

 

The stress-strain diagram presented in Figure 4.23 is very similar to the diagrams presented 

in Figure 4.26, all the four different experimental specimens present a failure stress between 

300 𝑀𝑃𝑎 and 340 𝑀𝑃𝑎 with strains of 1%, which correspond to a displacement of 0.2 𝑚𝑚. 

These values were the basis of some parameters used in the numerical models, such as the 

maximum displacement or the unidirectional constants of the uniaxial tests (that are unknown in 

this dissertation and need to be adjusted). 
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4.4.1. Shear Plasticity 

As previously discussed in Chapter 3, the composite material used in this dissertation 

presents plasticity only when subjected to shear loads. The work developed by Koerber [21], 

where it can be seen that the material used in that work (Hexel ply IM7/8552) presents a non-

linear behavior when subjected to shear loads was also referred in this chapter. It was observed 

that non-linearity of the material increased drastically as the angle of the fibers’ orientation 

decreased (from the 75° off-axis compression to the 45° off-axis compression). 

Similar results were obtained in the experimental tests developed in this dissertation, before 

the numerical work began, with spread tow carbon fabric composite material. During these 

experimental tests, specimens with four different arrangements were tested: the 0°/90° 

arrangement, 15°/-75° arrangement, 30°/-60° arrangement and 45°/-45° arrangement. 

Figure 4.27 shows the results of the compression test of these different arrangements. These 

stress-strain diagrams were obtained from the sensors installed in the machine that executed the 

compression test. 

 

 

Figure 4.27 - Stress-strain curves resulting from the compression test of the specimens with (a) a 0º/90º 

arrangement, (b) 15º/-75º arrangement, (c) 30º/-60º arrangement and (d) 45º/-45º arrangement 

 

(𝑎) (𝑏) 

(𝑐) (𝑑) 
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These results are quite similar to those obtained by Koerber [21] on his work. For all the 

arrangements it can be observed that the non-linearity of the stress-strain curves increases. This 

is due to the plasticity of the material when subjected to shear loads. It is also observed that the 

failure stress decrease from the specimens with a 0°/90° arrangement (that are only subjected to 

longitudinal and transverse compression) to the specimens with a 45°/-45° arrangement, in 

contrast to the strains that increase from a 0°/90° to a 45°/-45° arrangement. 

In Chapter 3, it was decided that plasticity under transverse compression was insignificant 

when compared to the plasticity under shear loads, therefore it would not be considered in the 

numerical model. By looking at the experimental results of the specimen with a 0º/90º 

arrangement (in Figure 4.27-(a), which is just under transverse compression and longitudinal 

compression loads), this was proven the right choice, since the stress-strain curve does not 

present any non-linearity before the failure of the specimen.  

4.5. Comparison of Results 

The aim of this section is to compare the stress-strain diagram provided by the 26-plies 

specimen numerical model with the stress-strain diagram obtained from the experimental work, 

presented above in this chapter. 

Figure 4.28 presents, simultaneously the numerical results (in red) and the experimental 

results (in black). 

Above in this chapter, it was mentioned that the error between the numerical and the 

experimental stress at failure was around 2%, which indicates values are very similar and this is 

shown in the diagrams of Figure 4.28. The behavior of the different experimented specimens is 

quite similar to the behavior of the numerical model. Hence complying the most important 

objective of this dissertation. 
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Figure 4.28 - Comparison between the stress-strain results of the experimental specimens (in black) and 

the numerical specimen with the adjusted parameters (in red) 

 

 

 
Figure 4.29 - Final appearance of the numerical model and an experimental specimen with a 0/90 

arrangement 
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In Figure 4.29, the numerical model at collapse and a photo of the tested specimen after 

collapse are shown, allowing them to be compared qualitatively. Both present a very similar 

appearance, indicating that the boundary conditions are well implemented and provide good 

results. 

The experimental specimen shown in Figure 4.29 is almost divided in two parts, once the 

experimental test proceeded beyond the failure point of the compression specimen. This event 

could also happen with the numerical model if the simulation continues after the failure of the 

specimen modelled numerically. 
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Conclusion 

In this dissertation, a methodology was developed to create a numerical model and 

perform a numerical simulation of tension/compression tests in composite specimens. This 

methodology was developed using MatLab and Ansys softwares, with the aim to predict the 

behavior of the numerical model’s specimens under certain loads, failure initiation and damage 

propagation (such as delamination and fiber failure). 

A mesh convergence test was performed in order to find the best element type and size to be 

used in the numerical models developed in the following chapters of this dissertation. The 

results indicate that 8 nodes brick element, using full integration, with a size of 0.3 𝑚𝑚 was the 

adequate element to use, leading to a mesh with 4128 elements per ply. This is an element size 

capable of providing accurate results and allows its deactivation. First, it is the biggest element 

size that still provides accurate results (there are smaller element sizes, which provide the same 

results with a higher computational cost) in less time and, second, it is a small enough element, 

allowing the deactivation of the elements. Once a strategy using elements deactivation, in order 

to simulate the fiber and/or matrix failure, its size needs to be as small as possible in order to 

observe conveniently the damage propagation. 

Delamination was simulated using cohesive and contact elements. Two different simulations 

of delamination using two unidirectional plies were performed, the first one with only cohesive 

elements and the second with delamination and contacts. This later model, delamination with 

contacts, was used because it was identified an interpenetration between different elements 

when only cohesive elements were used. The results obtained with these two simulations were 

very close indicating the contacts were well implemented and could be used together with 

cohesive elements. 

The ply numerical model was implemented with cohesive and contact elements and a 

simulation of this ply under tension loads was performed. Results of this simulation show that 

the areas with the higher stress concentrations are the changes of cell, which is the zone where 

the spread tow with the fibers aligned at 90° crosses the spread tow with the fibers 

aligned at 0°. These results were as expected, since in the experimental tests the specimens 

with a 0°/90° arrangement tested in tension failed in the same area. 

The experimental results are presented, not only for the specimens with a 0º/90º arrangement 

but also for the specimens with 15º/-75º, 30º/-60º and a 45º/-45º arrangements. Analyzing 

experimental test results it was demonstrated that plasticity under transverse compression is 

residual for the 0º/90º, and it is acceptable not to consider it in the numerical model, thus 
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avoiding complexity in the convergence of the solution. It was also possible to see that the 

plasticity under shear loads, increase from the specimens with a 15º/-75º arrangement to the 

specimens with a 45º/-45º arrangement, being the specimens with a 45º/-45º arrangement the 

ones presenting the higher non-linearity. 

With the implementation of the 26-plies compression specimen model, the program that 

performs the incremental-iterative analysis was improved, providing better results and a more 

similar behavior to the compression specimen tested experimentally. 

The first numerical simulation of the 26-plies compression specimen provided a failure stress 

value with an error of 20.9% and the correspondent strain with an error of 15%, approximately. 

These errors were too high regarding the objective of this dissertation, therefore some 

parameters (unidirectional constants and modulus of elasticity) needed to be adjusted in order to 

improve the results (see section 4.3.1). It was decided to increase four parameters: the failure 

stress under longitudinal compression, 𝑋𝐶, the failure stress under transverse compression 𝑌𝐶 

and the modulus of elasticity in both longitudinal and transversal directions. 

The numerical simulation performed with the adjusted parameters provided better results 

than the previous one. A failure stress value of 323.8 𝑀𝑃𝑎 and a failure strain value of 1% were 

obtained, which implies a displacement of 0.2 𝑚𝑚, that was the maximum displacement 

observed during the experimental test of the compression specimens with a 0°/90° arrangement. 

Comparing the failure stress value of the 26-plies compression specimen simulation (with 

the adjusted parameters) with the experimental value, the error is around 2%, which is an 

exceptional result and compliant with the objectives set for this dissertation.  

Evaluating the results, it is concluded that the proposed failure criterion is well implemented 

in these models. Although the maximum stress failure criterion is good enough to analyze the 

0°/90° arrangement specimen, with proposed combined failure criterion the incremental-

iterative analysis program is prepared to perform simulations for specimens with directions 

besides the principal directions. 

After all this work, it can also be concluded that the simplified geometry used to create the 

numerical models fulfills the necessary requirements to provide accurate results, comparing to 

the experimental ones, and a similar final appearance. 

Finally, it should be noted that the main objective of this dissertation is to replicate the 

specimens, with a 0º/90º arrangement, tested experimentally into a numerical model able to 

provide stress and strain values with an error less than 5% and presenting a similar behavior. All 

this dissertation was developed without knowing the mechanical properties of the material used 

in the experimental work, the only data used to develop the numerical models were data 

extracted from the experimental work. That is the reason why in this dissertation, the 

mechanical properties of the material needed to be adjusted in order to obtain the final results 

pretended.  
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The construction of a numerical methodology capable of, trough numerical simulations and 

comparison of numerical and experimental results, calculate the unknown mechanical properties 

of composite materials is another very important complied objective of the dissertation. 

5.1. Complied objectives  

In this chapter it is shown compliance with the objectives defined in section 1.2 (Chapter 1). 

 

 Implement cohesive and contact elements, in order to simulate delamination accurately; 

 Chapter 3, from page 41 to page 47 

 Develop a methodology able to model the specimens tested and simulate the 

experimental tests;  

 Chapter 4, from page 63 to page 67 

 Perform at least one analysis of a 26-plies compression specimen and provide the stress-

strain curve results of this analysis; 

 Chapter 4, from page 67 to page 71 

 Validate numerical models, with an error less than 5% between numerical and 

experimental results; 

 Chapter 4, from page 71 to 75 

5.2.  Future Works 

There are several aspects that can be improved to continue the work develop in this 

dissertation. Here are presented some important improvements that can be made in order to 

continue this dissertation and improve the methodology developed. 

 

1. Improve the incremental-iterative analysis program, based on an experimental work 

with a fully characterized composite material; 

2. Incorporation of a plasticity model, in order to describe accurately the shear 

plasticity; 

3. Development of a simplified numerical model, in order to obtain acceptable results, 

with a lower computational cost. 
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