)

H

1

ol

<

A

?po
O,

%

Joao Pedro Monteiro Morgado Dias

Bachelor in Computer Science

Adaptive Replica Selection in Mobile Edge
Networks

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Engineering

Adviser: Hervé Paulino, Associate Professor, NOVA School
of Science and Technology, Universidade NOVA de
Lisboa

Examination Committee

Chair: Joao Moura Pires, Associate Professor, NOVA

School of Science and Technology, Universidade
NOVA de Lisboa

Members: Luis Veiga, Associate Professor, Instituto Superior
Técnico, Universidade de Lisboa
Hervé Paulino, Associate Professor, NOVA School
of Science and Technology, Universidade NOVA
de Lisboa

FACULDADE DE
CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

November, 2020

Adaptive Replica Selection in Mobile Edge Networks

Copyright © Joao Pedro Monteiro Morgado Dias, NOVA School of Science and Technology,
NOVA University Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon have the
right, perpetual and without geographical boundaries, to file and publish this dissertation
through printed copies reproduced on paper or on digital form, or by any other means
known or that may be invented, and to disseminate through scientific repositories and
admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created using the (pdf)IATEX processor, based on the NOVAthesis template, developed at the Dep. Informéatica of FCT-NOVA by Joao
M. Lourengo.

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt
https://docentes.fct.unl.pt/joao-lourenco
https://docentes.fct.unl.pt/joao-lourenco

To my unconditionally supporting family.

Acknowledgements

My most profound gratitude goes towards p Prof. Hervé Paulino who has guided me
throughout this journey, as well as prof. Joao Silva who has been as-present during the
elaboration of the project.

Also, to the people who are closest to me and never failed to provide clarity during
the time that I've been juggling my academic, professional and personal life.

This dissertation was written in the context of Project DeDuCe
(PTDC/CCI-COM/32166/2017), financed by Fundagao para a Ciéncia e Tecnologia.

vii

Abstract

With the ongoing increase in mobile devices and the application’s growing reliance on the
cloud, these infrastructures have become centralized hubs of computational processing
and storage. With so much traffic being generated to - and from - these centralized in-
frastructures, network congestion and delays start to become more evident. Furthermore,
having messages travel back and forth to a location that is physically distant from the
user severely punishes applications with low latency or high bandwidth demands. Mobile
Edge Computing (MEC) is a paradigm that aims to solve these limitations by bringing
cloud services closer to mobile clients, effectively reducing end-to-end delays and saving
backbone bandwidth.

As in a cloud environment, these applications are starting to make use of replication
to enhance their quality of service. Because content generated by mobile devices has a
localized interest at first, data starts by getting replicated between these devices and only
when it starts to get popular is it eventually replicated (cached) in edge servers. The
problem arises though, when there is no replica selection mechanism for data retrieval.
The resulting herd behavior causes the computational load on the network to be poorly
distributed, which combined with the unreliable wireless communication channels cause
these systems to under-perform.

In thesis we propose Wasabi, an adaptive replica selection algorithm for MEC envi-
ronments with the aim of decreasing latency and boosting both throughput and energy
efficiency in MEC systems. Furthermore, we develop a whole replica selection framework
to support Wasabi and its integration with Thyme GardenBed [14].

From our experimental results, we conclude that Wasabi performs better in dynamic
environments than any of the presented baselines, including the cloud algorithm C3 [17]

and its MEC variant, which make use of a similar set of metrics.

Keywords: Mobile Edge Computing, Replica Selection, Mobile-to-mobile, Mobile-to-
edge

X

Resumo

Com o namero de dispositivos méveis a crescer e as aplicagoes cada vez mais dependen-
tes da cloud, estas infraestruturas tém-se tornado pontos centralizados de computagao
e armazenamento. Devido a quantidade de trafego que é gerado - e recebido - nestas
infraestruturas centralizadas, o congestionamento e atrasos na rede comegam a torna-se
evidentes. Além disso, a consideravel distancia fisica entre estas infraestruturas e os utili-
zadores inviabiliza algumas das aplicagdes com maiores exigéncias a nivel de largura de
banda e laténcia. Mobile Edge Computing (MEC) é um paradigma que procura resolver
estas limitagoes trazendo os servicos cloud para mais proximo dos dispositivos moveis, de

forma a reduzir a laténcia e poupar largura de banda no canal de comunicacao principal.

Tal como nos ambientes cloud, estas aplicagcdes comecam a fazer uso de replicagao
para melhorar a sua qualidade de servigo. Como o contetido gerado pelos dispositivos
moveis tem inicialmente um interesse localizado, os dados comecam por ser replicados
entre os dispositivos mdveis e s6 mais tarde, quando se comegam a tornar populares, é
que sao eventualmente replicados (cached) em servidores edge. No entanto, o problema
surge quando nado existe qualquer tipo de mecanismo de selecao de réplicas para des-
carregar esses dados. Pela auséncia de tal mecanismo, é costume observar-se um mau
balanceamento de carga entre as réplicas disponiveis, o que combinado com canais de

comunicacao instaveis, degrada a performance destes sistemas.

Com esta tese nds propomos Wasabi, um algoritmo de selecao de réplicas adaptativo
no ambito de sistemas MEC, com o objetivo de diminuir laténcias e melhorar ambos o
throughput e a eficiéncia energética destes sistemas. Dos nossos desenvolvimentos resulta
também uma framework para desenvolver mecanismos de selegdo de réplicas e sobre a

qual construimos a integracao do Wasabi com o sistema Thyme GardenBed [14].

Através dos nossos resultados experimentais fomos capazes de concluir que o nosso
algoritmo faz melhores selecoes em ambientes dinamicos que qualquer outra baseline
definida para efeitos de comparacao, incluindo o algoritmo cloud C3 [17] e a sua variante

MEC, e que usam um conjunto de réplicas semelhante as do Wasabi.

Palavras-chave: Mobile Edge Computing, Selecao de Réplicas, Mobile-to-mobile, Mobile-
to-edge

xi

xii

Contents

List of Figures XV
Acronyms xix
1 Introduction 1
1.1 Contextand Motivation o v v it . 1

1.2 Mobile Edge Computing 2

1.3 Problem e e 4

1.4 Solution o o o e e e e 4

1.5 Contributions e e 5

1.6 Document Structure e e e 5

2 Related Work 7
2.1 Dynamic Replica Selection 7
211 OVeIrVIEW . . v v v v e e e e e e e e e e e e e e e e e e e 7

2.1.2 C3 o e e e e 9

2.1.3 L2 . e e e e 10

2.1.4 NetRS. e e 11

2.1.5 DataGrids o e e e e 12

2.1.6 Final Considerations 13

2.2 Replicated Storage at the Edge Systems 13
2.3 Mobile-to-mobile Communication. 15
2.4 Final Remarks e e 15

3 Thyme 17
3.1 Thyme e 17
3.2 Gardenbed e e e 20
3.3 Thyme Gardenbed 23
3.4 Final Remarks e e 24

4 Proposed Solution 27
41 OVeIVIEW . . . v v it i e e e e e e e e e e e e e e e e e 27
4.2 Proposed Framework Architecture 29

xiii

CONTENTS

4.2.1 Server-Side Components 29

4.2.2 Client-Side Components 32

423 Summary e 38

4.3 Replica Selection Strategy for MEC Systems 39
4.3.1 Pickingabaseline0 .. 39

4.3.2 Remaining Challenges 41

4.3.3 Proposed Algorithm 43

4.4 Integration with Thyme GardenBed 46
4.4.1 System Architecture o0 L 46

4.42 Integration e 48

4.4.3 Dealing with Early Hotspots 53

45 FinalRemarks o 55

5 Evaluation 57
51 Goals e 57
5.2 Methodology 58
5.3 Experimental Setup 60
53.1 Simulator. o oo oo 60

532 Traces. o e e 61

53.3 Hardware, 63

54 Results e 63
5.4.1 Replica Selection Quality. 63

5.4.2 System Reactivity o o o 75

5.4.3 SystemOverhead 76

5.5 FinalRemarks o o 77

6 Conclusions 79
6.1 Conclusions e 79
6.2 System Improvements and Research Opportunities 80
6.2.1 Exploring Alternative Communication Protocols 80

6.2.2 Metric Dissemination Overhead 80
Bibliography 81
Annexes 85
I Replica Selection Quality Trace 85
II System Reactivity Trace 101
IIT System Overhead Trace 105

Xiv

List of Figures

1.1
1.2

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2

5.3

5.4
5.5

5.6

5.7
5.8

5.9

Mobile Edge Computing Topology
Mobile Edge Computing: Application Classes

Example of Thyme’s publish and subscribe operations
Application in the context of a football stadium

Global P/S execution process

Replica Selection Feedback System as an Application/Network middleware .
Replica Selection Feedback System Client
Inside the server-sidemodule,
Inside the client-sidemodule 00 L
Replica Selection framework architecture diagram
Thyme’s Architecture
GardenBed’s Architecture 0oL
Server-side metrics collection sequence

Client-side metrics collection and recording sequence

Replica Selection Benchmark for the Random Selection Strategy
Percentage of replicas available in the download notification comparing to the
actual number of nodes that already has the object in its storage.
Ratio between the select replica score and the actual best replica score for the
givendownload.
Replica Selection Benchmark for the Infrastructure First Strategy
Replica Selection Benchmark with extra allowed concurrency for the Infras-
tructure First Strategy. o
Ratio between the select replica score and the actual best replica score for the
givendownload.
Replica Selection Benchmark for C3 in a MEC environment.
Replica Selection Benchmark for C3 in a MEC environment with increased
client concurrency.o o
Ratio between the select replica score and the actual best replica score for the

givendownload. o

XV

18
20
22

65

66
67

69

69
70

71

72

LIST OF FIGURES

5.10 Ratio between the select replica score and the actual best replica score for the

givendownload.
5.11 Replica Selection Benchmark for Wasabi
5.12 Bytes sent during simulation: no replica selection vs replica selection

XVi

List of Listings

4.1 MetricCollector
4.2 SampleMetricCollector
4.3 AverageMetricCollector oL,
4.4 MetricsAggregator e e e
4.5 ReplicaClassifier
4.6 MetricObserver e
4.7 ResponseTimeObserver

4.8 MetricHolder

4.9 ReplicaScoringAlgorithm o L.

4.10 C3Algorithm
4.11 ClusterLogic

XVil

30
30
31
31
32
34
35
36
36
37
38

Acronyms

AP Access Point

API Application Programming Interface
AR Augmented Reality

DHT Distributed Hash Table

EWMA Exponentially Weighted Moving Average
IoT Internet of Things

JVM Java Virtual Machine

MEC Mobile Edge Computing

TDLS Tunneled Direct Link Setup

TTL Time to Live

UUID Universally Unique Identifier

VR Virtual Reality

XiX

Chapter 1

Introduction

We start this work with its context and motivation. We then move to introducing the
Mobile Edge Computing (MEC) [1] paradigm, followed by a brief description of the
problem and its manifestation in a particular publish-subscribe (PS) system. We then
discuss our proposed solution before ending the chapter with a structure overview for

the remainder of the document.

1.1 Context and Motivation

In recent years, users have been increasingly adopting smartphones as their primary
internet-enabled device. In 2016, analysts disclosed the first report stating that mobile
devices surpassed desktop in terms of internet usage worldwide [15]. Also, the advent of
[oT and wearable devices has been contributing to this trend.

Nowadays, many mobile applications rely on services hosted in the cloud. In most
cases, all data traffic is routed through the core network to a base station which delivers
the content to mobile devices. Even though smartphones’ hardware capabilities have
been greatly increasing year after year, mobile communications still remain a bottleneck
for most applications.

All the network requests generating from these internet-enabled devices, as well as
desktop computers, are being processed by the same cloud infrastructure in a centralized
fashion. And even though geo-replication mitigates this scalability issue, the number
of concurrent network requests is so big that they are still competing for the servers’
processing power and channel throughput.

This reliance on a cloud data center is specially not feasible for applications that
require end-to-end delays to be tightly controlled. This is the case for the newer emerging
types of applications with high bandwidth demands (such as AR and VR).

Additionally, wireless communication technologies used in mobile environments -
such as Wi-Fi, Bluetooth and 3G - are unreliable, slow and congestion-prone by nature

when compared to the wired medium counterpart [21].

1

CHAPTER 1. INTRODUCTION

Mobile edge
computing server Data centers

Mobile
backhaul —E«_

SAE-GW

User plane
------------- Control plane

Operators network

Figure 1.1: Mobile Edge Computing Topology: 1) Mobile end users using User Equipment
(UE), 2) Network operators owning, managing, and operating base stations, MEC servers,
and the mobile core network, 3) Internet infrastructure providers (InPs) maintaining
Internet routers, 4) Application service providers (ASPs) hosting applications within data
centers and content delivery networks (CDN).

All the previous have been the catalyst to the introduction of Edge Network. In the
context of this work, when referring to the Edge, we’ll be talking about Mobile Edge
Computing (MEC).

1.2 Mobile Edge Computing

MEC brings cloud services closer to the mobile clients, i.e. the edge of the network,
by leveraging on the storage and processing power of smaller computational servers
that are deployed in the base stations of cellular networks. By being closer to the data
sources, MEC servers effectively reduce end-to-end delays and save backbone bandwidth
for those cases that strictly need to reach the main infrastructure. This paradigm allows
for the removal of network bottlenecks and the support of previously mentioned emerging
applications with strict end-to-end delay requirements. Furthermore, other iterations are
moving away from single node access points towards using the client’s mobile devices
as actual Edge nodes, harnessing their processing, storage and routing/communication
capabilities, in order to create a complete local system [21]. Fig. 1 depicts the MEC
ecosystem and the integration of MEC servers into the mobile network topology.

Another interesting point for our work is that by being placed at the mobile edge, MEC
servers are capable of collecting real-time network data like cell congestion, subscriber
locations and movement directions [2].

Regarding the applications that take advantage of the MEC, these can fit into one or
more of the application classes in Fig. 2. We will be focusing on Edge Content Delivery,
using metrics like Power Consumption, Delay and Bandwidth to evaluate each solution.

2

1.2. MOBILE EDGE COMPUTING

Web TV/Radio

N . Proximity Proof
Video Communication | Resolution i
T Y

P
User Requests | Geolocation
P A

i / \
Flickr \ .) (_ Bandwidth Indication
Text2Speech \ Content Scaling _Augmentation | T
~ . g \
\ i f N\ \ /
Speech2Text A\ _PIfIEdlaf . | \\ // _ Content / Face Recognition
i \ ranstormation / <’
Video2Text /“4\ J \ / __Site Recognition
Translation N\ Edge-based CDN

e.g., App Rollout

__Augmented Reality

Dedicated Enterprise

Private /obi -
Networks ~ Networking (Mobile Edge [Geoinformation

i i Computing / I
w, "\ Local Connectivity />\‘\ P g/ Edge Content Proactive Caching / Preloading
— — e
Social Events gy 5‘) | Deﬂvery (Distributed Database
:ntezlgrasion of ‘\‘\ Broadcasting / / ‘\\ ~ / \‘\ Management Systems
ocal Ads / \ \ _ (Geo)Social Networks
GPs / \ | 5 ")
. | Transparen Proximity Cachi
Cryptography |\ Computing / \ _ Caching /'w
Cloudlets / _ Offloading / \ Big Data _ Car2Car/Car2x
VolIP [_ Aggregation — o
V-do ~\ Transcoding / \99re9 <__Sensor Data __Monitoring
ideo / -

Figure 1.2: Mobile Edge Computing: Application Classes

In spite of both processing and battery capacity increases that we’ve been seeing in
mobile devices over the years, for most use cases it is still considered a good practice
to offload resource- or power-intensive tasks to remote services. We should delegate
computation to external services when we either can’t execute those computation in time
with our local resources or such practice will noticeably favour battery life. If no MEC
server is available, mobile devices can downgrade to a more distant MEC server, the main
servers or fallback to local computations. Also, mobile applications have to be aware of
the fact that MEC servers are deployed in a centralized way and, since the mobile user
might move from its current geographical position, connectivity between MEC servers
and mobile device is constrained. Thus, applications that rely on MEC services have to

be mobility-aware [2].

Edge Content Delivery refers to the fact that MEC servers can operate as local content
delivery nodes and serve cached content. This caching mechanism can be Transparent,
that is, neither the mobile device nor the service are aware it; Proactive, meaning that the
service provider will have some content already cached on their MEC servers under the
expectation that such content would otherwise create a heavy load on the network; and
Preload, which is the act of caching data before it is (potentially) requested by the end
user. In contrast to proactive caching, it is the end users’ actions that determine whether
(and which) content gets upper handedly cached in the MEC servers. In the context of
Mobile Edge Computing, pre-loading is shifted from mobile devices to MEC servers in

order to decrease power consumption.

To sum up, the introduction of MEC servers in the initial network scheme is motivated
by end users’ benefits from reduced communication delays. Due to their proximity to end
users, MEC servers allow for new kinds of applications to be considered. Also, service
providers can now host their services at the edge, effectively scaling their services and
saving backbone bandwidth. It also enables the integration of additional, congestion- or

user-related information into the traffic flow.

CHAPTER 1. INTRODUCTION

1.3 Problem

Because in a typical MEC system nodes don’t dispose of many hardware resources and
communication channels are somewhat unreliable compared to a cloud environment,
slowdown effects due to congestion or computational load might still be felt. Furthermore,
metrics like power efficiency have to be taken into account when dealing with mobile
devices. To meet applications’ low-bandwidth demands, intelligent resource management
processes have to be in place. This is specially true for MEC applications that employ
replication to enhance their quality of service by offering better availability, scalability
and reliability. This, however, can do more harm than good if there’s no proper replication
and replica selection strategy to store and retrieve data. In the scope of this thesis, we
focus on MEC systems already employing some kind of replication technique to answer

the following question: "Where should I retrieve the data from?".

Some edge-enabled peer-to-peer architectures that allow the creation of collaborative
storage systems in bound-restricted geographical areas have recently emerged. Thyme
GardenBed [14] is such an example. Thyme presents a novel time-aware approach to Pub-
lish/Subscribe systems for inherently mobile devices where the publish and subscription
brokers are the clients themselves. Thyme relies entirely on P2P communication means,
which are limited in range. Gardenbed, an edge infrastructure service that combines
device-to-device and device-to-edge interactions, with the goal of optimizing access to
popular data and allow such data to be available not only to users inside the same local
area but also the same local region. Different local areas can access each others’ popular
data by having their infrastructure nodes (MEC servers) connected. Whenever a mobile
clients wants to retrieve a popular item, it will always try to do so from the infrastructure.

The combination of device-to-device and device-to-edge interactions presents alterna-
tive channels for data retrieval. How can we leverage such channels to avoid bottlenecks?
Can we fallback from requesting content from the infrastructure to requesting it from
peer devices? When should we do it? And what if the problem doesn’t lie within the MEC
server but rather in the local area’s access point? Can we drop Wi-Fi communications

altogether?

1.4 Solution

Considering the problem presented in the previous section, we think such systems can
benefit from a service that uses network and computational-load metrics in order to
predict the best replica(s) to contact. Thus, our aim was to implement a system-agnostic
decision mechanism to determine the best data-fetching strategy in order to avoid over-

saturated channels and preserve battery capacity whenever possible.

With this thesis we propose a low-profile replica selection framework consisting of

the following high-level components:

1.5. CONTRIBUTIONS

1. A server-side metrics aggregation component that collects system metrics on de-

mand;

2. A metric collector component that is programmatically configured to collect a met-

ric value on demand and can be hooked into the aggregator;

3. A client-side replica classifier component that consumes metrics and is able to sort

a set of nodes from most to least reliable according to the configured scoring logic;

4. A client-side metric observer component that can reactively compute metric values

from system events.

We then propose an algorithm that takes predefined network, resource-usage and
device-specific metrics to predict with a high degree of certainty which is the best replica
to contact.

And finally, we use Thyme GardenBed [14] as an integrating system to evaluate our

solution.

1.5 Contributions

Throughout the development of this thesis we made the following contributions:
1. A low-profile replica selection framework that is system agnostic;
2. The integration of this framework within Thyme GardenBed;

3. Test results obtained through simulation that compare latencies, energy efficiency
and throughput from the current Thyme GardenBed implementation to the one

with our module integrated an using different baselines/algorithms.

1.6 Document Structure
The remainder of this document is structured as follows:

* Chapter 2 - Related Work: Here we start by analysing replica selection algorithms in
general. We focus on algorithms that are currently being used in practice, classifying
them on the metrics they use and how that information is available to the client.
Then we look at MEC systems, how they replicate and their replica selection process.

And finally we look at different device-to-device communication protocols.

e Chapter 3 - Thyme: In this chapter we look at Thyme, GardenBed and finally its
joint implementation, Thyme GardenBed [14].

» Chapter 4 - Proposed Solution: This chapter goes in detail into the architecture of

our replica selection framework and how its components can be composed to easily

5

CHAPTER 1. INTRODUCTION

and flexibly bring replica selection capabilities to any application. We also detail
how we have integrated it into Thyme GardenBed [14].

e Chapter 5 - Evaluation: In this chapter we show some test results and explain how

we’ve evaluated our module integration with Thyme GardenBed [14].

* Chapter 6 - Conclusions: And finally we close with some final thoughts and sugges-

tions for further work and investigation.

Chapter 2

Related Work

In this chapter we will be looking at already developed work regarding dynamic replica
selection. We focus on replica selection algorithms towards distributed key-value stores
for cloud computing because, despite MEC environments being more volatile in compar-
ison to the cloud, their replication models fundamentally impose similar challenges. We
also look at other scenarios such as grid computing, and understand how general these al-
gorithms can be. Following the approach of [3], we start by summarizing current replica
selection algorithms and classifying them into three categories: information-agnostic,
client-independence and feedback.

Then, we take a look at some MEC systems to understand how they replicate data and
how they choose replicas to retrieve data.

Finally, we do a brief comparison of existing direct-channel communication protocols

for mobile-to-device interactions.

2.1 Dynamic Replica Selection

2.1.1 Overview

Nowadays, data is usually replicated and distributed across servers for parallel access
and scalability. Thus, several replica servers might be available for the service. Two
important challenges in data replication techniques are: (i) replica placement and (ii)
replica selection. Replica placement is the problem of placing duplicate copies of data in
the most appropriate node; Replica selection is the problem of selecting the best replica
site for users to access the required data during execution. Although both play a big role
in the overall system performance, the focus of our work is on replica selection.

In a key-value store environment, the value of each key is typically replicated and
distributed across a group of replica servers. A client can select any one of these replica
servers for each key-value access. On the other side, servers receive keys from different
clients. When the server is busy, the newcome keys will be put into the waiting queue.

After a key is served, the corresponding value will be returned back to the client. This

7

CHAPTER 2. RELATED WORK

pattern is very identical for other scenarios which makes it easy to extrapolate to those.
To avoid these waiting queues, the client must be able to select the proper replica server.
We will now classify the most common algorithms and replica selection mechanisms

in the context of key-value stores:

Information-Agnostic: These are algorithms that pick a replica in an uninformed
way, not taking into account any extra information or external metrics. Examples of
such algorithms are Fixed, Random and Round Robin. Fixed always targets the same
replica, only taking into account any of the others if the fixed one is unavailable;
Random, as the name suggests, randomly selects a replica from the available pool
and finally Round Robin continuously iterates through the replica set, picking a
different one for each access. Although Round Robin is more load conscious from
the client’s perspective, neither of these algorithms take into account any external
information or measured metrics, which might results in recurrent bad decisions

specially for volatile scenarios like the ones we target.

Client-Independence: In these category, algorithms take into account metrics inde-
pendently measured by the client, without any aid from the servers. According to
the authors of [3] and further studied related work [17] [16], some classic helpful

metrics are:

— The round trip time (RTT) of network;

— The response time (RPT) of each key-value access, which involves not only the

RTT of network but also the service time and the waiting time at server;

— The outstanding keys (OSK), which has been sent out to replica server but the
corresponding value has not been received.

We can use any of these metrics directly to choose an appropriate replica or compute
some probabilistic measure with the combination of various metrics. For example,
Riak [10] algorithm lets the client choose the server with the least number of OSK.
There’s also the two choices way [7], where client chooses two replica servers ran-
domly at first, and then chooses one of these two replica servers according to above
information. MongoDB has a similar approach, where it selects the nearest replica
servers by RTT at first, and then randomly chooses one of them [8]. One downside
for this category is that the available information such as RTT and RPT may not be
fresh at the time of picking a replica. This can happen simply to the lack of interac-
tions of the client with the system within a certain time frame, which will yield no
metrics for that period. This is also something that is brought to our attention by
the authors of C3 [17] and will be further discussed in the bellow section dedicated
to this state-of-the-art [16] algorithm.

» Feedback: This category builds on top of the previous one by adding pigggybacked
information with the returned values from the server, which means that both clients

2.1. DYNAMIC REPLICA SELECTION

and servers form a feedback system. A great example is C3, which observes that
the fastest replica server is not only determined by its load or the observed latency,
but also depends on the performance of that replica server, and thus piggybacks
the service time of each key to adapt with the time-varying performance of replica
servers. We will be discussing C3 more in-depth in the following section. The
authors of [3] also propose L2, which yields similar performance compared to C3 in
simulation results, but is much simpler. We will also be discussing this algorithm

in sequence with C3.

Finally, we would like to mention some additional methods to reduce data-access
latency, such as request duplication and reissue. These can be effective in some cases
but are overall more hurtful when there’s no proper replica selection algorithm in place.
Reissuing requests but selecting poorly-performing nodes to process them increases sys-
tem utilization in exchange for limited benefits and is the cause for more herd-behavior.
We argue that these techniques can be effective as a complement to replica selection
algorithms.

The following sections further describe the most relevant algorithms and mechanisms

for dynamic replica selection.

21.2 C3

C3 [17] is an adaptive replica selection mechanism that is robust in the face of fluctua-
tions in system performance. Because servers exhibit performance fluctuations over time,
replica selection needs to quickly adapt to changing system dynamics. This is where most
replica selection algorithms (e.g. Cassadra’s Dynamic Snitching strategy, which computes
replica scores at fixed discrete intervals) fail to deliver: they do not implement a reactive
solution. Thus, C3 combines two mechanisms in order to carefully manage tail latencies
in a distributed system: (i) a load-balancing, replica ranking scheme that is informed
by a continuous stream of in-band feedback about a server’s load, and (ii) distributed
rate-control and backpressure.

With replica ranking, clients individually rank servers according to a scoring function,
with the scores serving as a proxy for the latency to expect from the corresponding server.
Servers piggyback information about their queue size and approximate service time on
each response to a client, and clients maintain a weighted moving average of these metrics.
There’s also a concurrency compensation that is calculated to account for both the existence
of other clients in the system and the number of requests that are potentially in flight.
If concurrency compensation is not taken into account for the estimation of each server’s
queue-size, replica selection gets prone to herd behaviors. The number of requests that
a client has pending over a given server also weights on the server’s score. It was also
decided to penalize scores over queue sizes using a non-linear function. This is because
for a given server A with a service time n times faster than server B, such server would

be able to get the same score as server B while holding a queue n times longer if we were

9

CHAPTER 2. RELATED WORK

to use a linear function such as multiplying the two values. If the service time of A then
increases due to an unpredictable event such as a garbage collection pause, all requests
in its queue would incur higher waiting times.

Because replica selection alone cannot ensure that the combined demands of all clients
on a single server remain within that server’s capacity, clients rate-limit requests to in-
dividual servers. If the rates of all candidate servers for a request are saturated, clients
retain the request in a backlog queue until a server is within its rate limit again. Every
client maintains a rate-limiter for each server, which limits the number of requests sent
to a server within a specified time window. Such limit is called sending rate. They also
track the number of responses being received from a server in an interval of the same
length (receive rate) and then the rate-adaptation algorithms tries to match both rates.
Upon receiving a response from a server s, the client compares the current sending and
receive rates for s. If the client’s sending rate is lower that the receive rate, it increases
its rate according to a cubic function. At any time, if the algorithm perceives itself to be
exceeding the server’s capacity, it will reduce its sending rate. Lastly, given that multiple
clients may potentially be adjusting their rates simultaneously, the step sizes of the rate
increase is capped.

The C3 replica selection process is as follow: When a request is issued at a client, it is
directed to a replica selection scheduler. The scheduler uses the scoring function to order
the subset of servers that can handle the request, that is, the replica group. It then iterates
through the list of replicas and selects the first server s that is within the rate as defined
by the local rate limiter for s. If all replicas have exceeded their rate limits, the request
is enqueued into a backlog queue. The scheduler then waits until at least one replica is
within its rate before repeating the procedure. When a response for a request arrives, the
client records the feedback metrics from the server and adjusts its sending rate for that
server.

We consider C3 to be a good base approach for our problem because it can easily
be adapted to MEC environments and does not introduce any extra messages in the
network nor requires heavy computations that would otherwise clog the nodes and system

progression.

213 L2

Based on the insights obtained from their performance analysis, the authors of [3] propose
a new algorithm: L2. From their simulations, the authors concluded that:

* RPT is useful for the selection of fastest replica server, but may lead to the herd

behaviors;

* OSK is helpful to both the selection of the fastest replica server and the avoidance

of the herd behaviors to some extent.

10

2.1. DYNAMIC REPLICA SELECTION

Similar to Riak’s algorithm, L2 first selects the replica servers with the least number
of OSK, and then sorts this subset of replica servers according to their response times.
From the resulting set, the replica with the smallest RPT and the least number of OSK,
in total, will be picked. In this way, L2 gives consideration to both the selecting of the
fastest replica server and the load balance among replica servers.

L2 is simpler than C3, as it doesn’t need any feedback information or the rate control
mechanism. However, L2 can achieve a similar best performance in terms of tail latency
like C3. The authors conclude that the complicate rate control mechanism of C3 itself is
not helpful to reduce the tail latency. Moreover, L2 can also avoid the herd behaviors like
C3, with the help of the OSK. Therefore, L2 might also be an interesting baseline for our

solution.

2.1.4 NetRS

The conventional scheme we’ve seen so far is each client being a Replica Selection Node
(RSNode). A RSNode independently selects replicas for requests based on its local in-
formation, including the data collected by itself (e.g. the number of pending requests)

and/or the server status in responses. This approach, however, has some pitfalls:

* Considering that one client typically sees a small portion of the traffic, they are
likely to select a poorly-performing server for a request due to its inaccurate estima-

tion of server status;

* Servers may suffer from load oscillations due to "herd behavior"(multiple RSNodes
simultaneously choosing replica), which is positively correlated to the number of
independent RSNodes.

NetRS [16] is a framework that enables in-network replica selection for key-value
stores in data centers. To overcome such pitfalls, NetRS offloads tasks of replica selection
to programmable network devices. Because these devices are much fewer than the end
hosts, they tend to process more messages and thus have fresher and more abundant
network information. This also minimizes the "herd behavior"since now one single device
can select replicas for multiple clients. There’s also attention in minimizing the number
of RSNodes.

There are two main components:
¢ The NetRS monitor which collects traffic statistics;

* And the NetRS controller which receives such statistics and periodically generates
a placement plan for the RSNodes which then gets deployed.

The traffic metrics are extracted/computed from message packets metadata encoded
in custom headers which is an agreed format within all intervening components (servers,

clients, switches, etc.). The authors decided to make the format flexible to diverse replica

11

CHAPTER 2. RELATED WORK

selection algorithms. One interesting header is the Server Status which characterizes the
replica’s computational load. these headers are also used to distinguish between key-
value store traffic and others, which is not a problem in our case. With the gathered
information, a selector will look into an incoming request and to the pool of replicas and
perform a best match.

Although the introduction of newer in-networking hardware and the offloading of
replica selection might make sense in a cloud-based environment where nodes are sta-
tionary, connected to reliable communication channels, usually organized in racks and
following a hierarchical topology, it is not suitable for A MEC environment. We have to
keep in mind that communication channels might not be wired and thus the introduced
network hops would be more harmful than good. Moreover, we do not expect data center
grade hardware at the edge, which implies that the cost of these in-networking devices
would probably not be supported.

Therefore, we aim at the conventional scheme where each client can independently

select a replica and make a request in a single hop.

2.1.5 Data Grids

Just like in MEC, dynamic grid architecture can have nodes join and leave the grid at
anytime. This is a factor that is not considered in the previously analysed algorithms.

There are several replica selection algorithms directed towards dynamic grids, each
basing its decisions on different sets of parameters. We start with replica selection tech-
niques based on round trip time or distance. Under this category, we have Rigel [4] which
selects the replica with smallest RTT. The system makes use of an NC Calculation System
so that the nodes can periodically calculate their virtual coordinates and then these are
stored with the node identified in a DHT so every node in the system has access to it.
These virtual coordinates allow nodes to estimate their RTT to every replica without ac-
tually ever measuring them (i.e. issuing a request and waiting for a response). Although
interesting, it is still a heavier solution than the ones previously analysed. Also, as we’ve
seen before, "periodically"is the enemy of fresh and accurate.

For replica selection techniques based on response time, we have GRESS [22]. The
response time is calculated based on the network parameters such as bandwidth and
access latency. The best replica is predicted using historical log file that contains file
transfer time, network status, server load and disk I/O information. Best replica is the one
with minimum response time. The proposed lightweight replica selection module is based
on Instance Based Learning (IBL) technology. IBL replica selection module consists of
four processes, namely parameter setting, initialization of case-base, IBL replica selection,
and update of case-base. During parameter setting, weights are assigned and contents
of historical log file stored during initialization. IBL replica selection predicts which
server is the best whenever a file is requested. The last process is used to update the case-

base periodically. Again, this solution is too heavy for a MEC network and the necessary

12

2.2. REPLICATED STORAGE AT THE EDGE SYSTEMS

information would take too long to spread.

There are also replica selection techniques based on some properties of the service
such as Availability and Security, and others based on job time. These make heavy use
of machine learning algorithms and thus are not even considered due to our battery

constrained clients.

2.1.6 Final Considerations

Most replica selection algorithms directed towards distributed key-value stores posed as
good candidates for MEC architectures for being lightweight and easy to operate on top
of existing systems. There are some more naive and others more advanced. We decided
to take a deeper look into C3 because it looks like the most complete and reliable of the
group.

C3 is coined by some authors [3, 16] as the state-of-the-art algorithm for distributed
key-value store replica selection. It is way more effective at reducing tail latencies com-
pared to its competition, very efficient at preventing herd behaviors and very robust to
performance fluctuations in the system. The C3 mechanism, however, is not trivial to
understand and in spite of its major gains in tail latency, even the authors say that there’s
still a lot of room for improvement. Ultimately, it can be perfectly adapted to a MEC
system and thus makes it a strong candidate for the baseline of our work.

L2 was also seen as an interesting alternative to C3. It is able to achieve similar results
to C3 and is a lot simpler.

NetRS raised the bar once again, proving that there really is a lot of room for improve-
ment on top of C3. Although attractive, we’ve seen that the algorithm is not suited for
our target environments and that despite the improvements, C3 still poses as the most
appropriate solution.

We’ve also looked at replica selection algorithms in the context of grid computing,
where we’ve concluded that those algorithms are too computationally demanding for our
needs.

In conclusion, C3 is what comes closer to what we are aiming to build. Even still,
neither C3 nor any other algorithm we’ve seen account for mobile nodes where parameters
such as battery percentage should weight on replica selection, as well as the possibility
of intermittent availability or even sudden unavailability caused by churn. Also, because
most of these algorithms assume reliable (wired) communication channels, they do not
account for other bottlenecks that might arise in MEC environments, such as the AP being

overloaded.

2.2 Replicated Storage at the Edge Systems

With the rise of the MEC paradigm and with data availability in mind, replicated storage

systems started to emerge. Such replication might happen through various stationary

13

CHAPTER 2. RELATED WORK

Table 2.1: Comparing Dynamic Replica Selection in Cloud Environments

C3 L2 NetRS

Performance Good Good Very Good
Complexity High Low High
Uses Client-Observed Metrics Yes Yes Yes
Uses Server-Sent Metrics Yes No Yes
Uses Special Networking Hardware No No Yes
Clients Can Select Replicas Independently Yes Yes No

edge servers, the mobile clients themselves or even both. An example of such system is
Thyme GardenBed [14], which actively replicates data objects through mobile devices in
the same cell, passively replicates the same objects through mobile devices that download
them from others cells, and such objects can even be replicated in the infrastructure
servers if they become popular. Subscriptions are also replicated within the cells and the
infrastructure. Regarding replica selection for data retrieval, however, Thyme GardenBed
will always default to the infrastructure if the item is popular. Otherwise, the native
Thyme methodology is used: iterating the list of replicas by their order of arrival, without
any special criteria. Bellow we discuss some of the MEC systems we analyzed and a direct

comparison can be found on Table 2.2.

EPHESUS [12], an ephemeral distributed data storage system for networks of hand-
held mobile devices, is inspired by use cases similar to Thyme’s. This system doesn’t
employ edge servers and its storage substrate is restricted to mobile devices. It makes
internal use of a Distributed Hash Table (DHT) to replicate the data so that content
doesn’t become unavailable as soon as their publisher leaves the network. To retrieve the
data, the system first checks if it is already replicating such data, thus not needing to
retrieve it from a peer; in case it doesn’t, a system-wide (i.e. flood) search is performed.
This is obviously not an optimal solution for our case because we are already considering

one—hop messages.

MobiTribe [18, 19] makes use of an edge server as a proxy to redirect data requests.
Since it is single-handedly managing the network traffic, it can redirect requests taking
parameters such as load into account. However, this indirection already introduces extra
latency to the network and the way it uses the edge server poses some serious scalability

issues.

From the studied systems, none employed a sophisticated replica selection mechanism
that takes into account network, load or device-specific metrics, either transmitted by the
server or observed by the client, and that allows it to make an isolated pondered decision

of which replica should be contacted.

14

2.3. MOBILE-TO-MOBILE COMMUNICATION

Table 2.2: Mobile Edge Systems w/ Replication

Thyme GB Ephesus GHT [9] TOTA [5] MobiTribe

Par./Full Replication Partial Partial Partial Full Partial
Act./Pass. Replication Both Both Active Active Both
Requires Infra. Yes No No No Yes
Range 1-Hop 1-Hop Multi-Hop Multi-Hop Multi-Hop
Network Structure DHT DHT DHT Unstruct. Unstruct.
Rep. Select. Strategy Static Static Static Static Dynamic

2.3 Mobile-to-mobile Communication

As mentioned previously, in case of congestion due to computational load, the load might
not be on the replicas/servers but rather on the AP. In such cases, it might be attractive
to open a direct communication channel between mobile devices, avoiding the infrastruc-
ture altogether. To this end, we’ve looked at possible communication protocols that cover
this use-case and two stood out: TDLS and WiFi-Direct.

Although both of these protocols allow for mobile devices to establish direct links
between them, they are not the same thing. TDLS requires that the devices are con-
nected to the AP so that they can negotiate the direct connection. The protocol itself
has mechanisms to evaluate if a better connection would result from opening this direct
tunnel. TDLS operates in the background of the network and might automatically make
the connection switch if it detects a performance increase. WiFi-Direct, on the other hand,
enables a direct channel to be established while no WiFi network is available. It is similar
to establishing a Bluetooth connection. WiFi-Direct is newer and struck us as being more

programmer friendly.

2.4 Final Remarks

In this chapter we have looked into other computation environments, such as the cloud, to
understand how their replicated systems adapt to the environment conditions and strive
to select the replica that most positively impacts the overall system liveness for their data
retrievals. From this analysis we have highlighted a particular Feedback algorithm, C3,
which seems to be suited as the baseline for our developments.

We have then discussed some existing MEC systems which already employ replication
to enhance their quality of service. When analysing their replica selection mechanism,
however, we have seen that most employ a very naive strategy which never adapts to
the system’s and environment’s variable conditions. The only exception to this rule was
MobiTribe [18, 19] which uses a dynamic replica selection strategy; however, this strategy
is coupled to a centralized piece of the system, the infrastructure, which is by itself a
hotspot and single point of failure. Moreover, many of the discussed systems did not have

a supporting infrastructure, which would make it impossible to adopt such strategy.

15

CHAPTER 2. RELATED WORK

Finally, we have looked into alternative communication channels as a complementary
solution to replica selection when constrains are detected in the communication medium,
which is something to be expected more often than in cloud environments for instance,
where communication channels are more reliable. From our brief discussion, WiFi-Direct
poses as an attractive protocol.

In the next chapter we discuss Thyme GardenBed [14], the system we aim to enhance

with our solution for experimental evaluation purposes.

16

Chapter 3

Thyme

3.1 Thyme

Thyme [11] is a time-aware reactive data storage system for wireless edge networks, that
exploits synergies between the storage substrate and the publish/subscribe paradigm [13].
It combines the storage and P/S interfaces making their operations intertwined: for in-
stance, the insert and publish operations are combined into one. Queries are in the form of
subscriptions that have a specific time scope defining when they are active. Their active
time-span can target the future, the present or even the past, expanding on the usual
concept of subscription in a P/S system. Also, the reactive interaction model supporting
the storage substrate avoids peers having to proactively search for content. Instead, it
allows applications to react to new data being generated and stored. On the one hand, the
storage substrate leverages the P/S abstraction to provide a reactive interaction model
whereby users register their interests through subscriptions and are notified as relevant
data is generated. On the other hand, the P/S abstraction takes advantage of the storage
substrate to provide persistent publications, enabling the time-awareness concept and
providing full time decoupling [13]. Because of time decoupling, custom operations were
also added to this framework, such as the ability for a node to unpublish a previously
shared item.

An asynchronous model comprised of mobile devices is considered. Nodes communi-
cate by exchanging messages through a wireless medium and should be able to establish
communication with their one-hop neighbors. Each node has a globally unique identifier.
Nodes’ clocks are also assumed to be synchronized (with a negligible skew).

Nodes are considered to be functionally symmetric, sharing the same responsibili-
ties and having no particular roles, meaning that there are no centralized or specialized
components, and each node can be a publisher, a subscriber, or both. Moreover, the area
covered by the system is divided into square-shaped cells and all nodes inside a given
cell collaborate with each other to form a virtual node. Cells can store (replicate) data
items, metadata and subscriptions, thus acting as virtual P/S brokers. Over this network

topology is the implementation of a DHT.

17

CHAPTER 3. THYME

publish(m,

“beach.jpg”, subscribe((“sun” & “sand”) | “beach”,
<“beach”, “summer”>) tsstart pgend)
13
hash(“sun”)
5
hash(“summer?”)
2
hash(“beach”) hash(“beach”)

Figure 3.1: Example of Thyme’s publish and subscribe operations. The tags’ hashing
determines the cells responsible for managing the object metadata (cells 2 and 5) and
the subscription (cells 2 and 13). If a subscription has overlapping tags with a publica-
tion (and vice versa) it will also have overlapping (responsible) cells, guaranteeing the
matching and sending of notifications to the subscriber. Adapted from [13].

Below we cover Thyme’s main features:

* Inserting/Publishing Data: As stated before, the insert and publish operations are
merged together. Each inserted data object has associated metadata. This metadata

consists of:

the object identifier;

a set of tags related to the object (like hashtags in social networks);

a summary of the object (e.g. a thumbnail in case of a photo sharing applica-

tion);

the insertion timestamp;

and the owner’s node identifier.

Thyme runs each tag though a hash function to determine which cell(s) should
receive the object metadata. It then sends the metadata information to each of
the determined cells, which will also be holding any subscription to those topics
(tags). This way, the insertion of a data object into storage may trigger the sending
of notifications to subscribers. Only the metadata is sent to save bandwidth and
overall resources since the metadata tends to be much smaller than the actual data

object. The data object is replicated by all the nodes of the publisher/owner’s cell.

* Replicating Data: In order to provide data availability, Thyme has two replication

mechanisms in place:

— Active replication: Upon the insertion of a data object, said object is dissemi-
nated inside the owner’s cell. From that point onward, every node inside the
cell should be able to serve the data. This gives us the guarantee that the object
will remain in the system even after the owner leaves. Furthermore, it allows
for load balancing inside the virtual node. The object metadata is replicated in

the same way inside the corresponding cell(s).

18

3.1. THYME

— Passive replication: Nodes outside the owner’s cell that retrieve the data object
will also be replicating it (in a passive way) from the moment they receive it.

This offers a better data availability and scatters the objects across the network.

To fully take advantage of both mechanisms, Thyme adds a list of the object’s repli-
cas in the metadata.

Deleting Data: The delete operation removes the object metadata indexed by the
responsible cells, as well as the active replicas in the system. This causes the data
object to be inaccessible to future subscriptions. This way, subscriptions targeting
the past will not see deleted objects, even if these were initially available in the

subscription’s time frame.

Subscribing: A subscription contains: its unique identifier, a query which is a logic
formula composed of conjunctions and disjunctions of literals (that will match the
tags), a timestamp indicating the beginning of the time frame for the subscription,
another timestamp indicating the upper bound of the time frame for the subscrip-
tion, the identifier of the node making the subscription and the identifier of the
cell where the owner is located. Following the same method as in the insertion, the
tags (this time inside the query) are hashed to obtain the corresponding responsible
cells. The subscription will be registered within those cells, effectively triggering
data notification(s) if there are already data objects with corresponding tags and
the subscription spans to the past (far enough to cover the matching data objects’
timestamp). From this point onward, when the cells responsible for the subscrip-
tion receive object metadata that matches it, they will send such metadata to the
subscription owner. The subscription owner will be responsible to retrieve the data
object from one of the replicas listed in the metadata or ignore the subscription alto-
gether. The unsubscribe operation is as simple as a message asking the responsible

cell(s) to delete the stored subscription.

Retrieving Data: The client will choose a node from all the replicas in the repli-
cation list and send a retrieve request for the desired object. If a negative reply is
received, the requester proceeds and tries the next replica in the list (until no more
options are available, or a maximum of retries is reached). If the maximum number
of tries is reached trying passive replicas, it will try to force the download from the

active replica before as a last resort.

A node with the intention of joining the system will wait a configurable amount of

time for a beacon sent by a neighbor in the same cell. If such beacon is received, it can be

used as an entry point. At this point the node will send a join request and, if successful, it

will receive the cell state. If a maximum number of retries is reached, the node assumes

it is alone in the cell, and starts operating normally.

19

CHAPTER 3. THYME

. v
‘Pl > O 40 e
A POA

SRPLLLTLLLECLEL LTI
v

Figure 3.2: Application in the context of a football stadium. Adapted from [14].

3.2 Gardenbed

Gardenbed [14] is a framework that leverages stationary nodes within the edge infras-
tructure to provide a persistent publish/subscribe system to a set of mobile devices, dis-
tributed across multiple network regions. It leverages both device-to-device and device-
to-edge interactions with the goal of optimizing access to popular data, and allow such
data to be available to all users, hence creating a persistent and global end-to-end storage
and dissemination network.

Infrastructure-wise, each edge server can be connected to multiple wireless access
points, each of which is responsible for managing its own region. Each AP can connect
only to one server. Moreover, each mobile node belongs to a single region, even though it
may be in range of multiple APs. This is depicted in Fig. 2. These servers connect multiple
regions through a caching and prefetching mechanism. Therefore, mobile nodes are able
to retrieve data that was generated in others regions. However, nodes from different
regions won’t have access to all the data in the other region: there will be popularity
metrics in place to decide which data gets exposed. These servers also allow for the
mobile nodes to offload some of their management responsibilities in their region.

Gardenbed offers an interface to the mobile nodes to communicate with the servers,
comprised of the following main operations: publish, unpublish, subscribe, unsub-
scribe and download. There are additional operations such as isOnTheEdge, which
indicates if a given data object is being cached by the edge server. Clients map their
operations into operations of this API and the data-related operations performed within

the region will be periodically batch-disseminated to the server. On the other side, the

20

3.2. GARDENBED

server will be notifying clients of newer data or other changes. Mobile nodes should listen

to the following commands from the server:
* notification of a new publication from a remote region;
* update of a given object’s metadata to keep it consistent with the server;

* download of a given object the client is holding, in order for the server to cache or

serve it to a client in another region;
* unpublish of a given object so that it is effectively removed from the system.

Gardenbed supports the idea of clusters (which can be seen as a virtual node com-
prised of several mobile nodes). In these cases, the interaction from client to server can
be delegated to the cluster-head node. To define a cluster-head, the Gardenbed server API
also offers the setClusterHead operation.

The framework offers some hooks for the programmer to register their logic. One such
case is the Popularity algorithm, which determines what data items must be uploaded
to Gardenbed. Gardenbed asynchronously collects and caches the most popular items
within the region, according to the injected popularity algorithm. Items downloaded
and cached in this fashion are stored in the Local Popularity Cache (LPC). With this,
we get to 1) serve subscriptions from other regions and 2) same region nodes can grab
the data directly from the edge instead of requesting it from their peers, which drops
the number of download requests to mobile clients effectively saving battery life. The
item will now be registered as being on the edge and is up to the cluster-head node to
disseminate the information to its peers. This process is run periodically and thus, the
LPC will continuously be updated with what is most popular.

Another piece of logic that can be registered by the programmer is the Matching
Logic algorithm, which will tell Gardenben how to match publications with subscriptions.
With this, the server will match every subscribe operation retrieved from the cluster
data against the data in its caches. For every match, it will trigger a notification to the
subscriber. Because the subscriptions are potentially relayed and stored in both the
region peers and the server, data might flow from both ends. To avoid duplicates and
other shortcomings, the programmer should also register a Notification Priority Policy
algorithm that determines whether a notification should be sent by the edge, by the
underlying system or by both.

The subscribe operations extracted from the cluster data are also used to build the
subscription catalog, which consists in a set of subscriptions from the region that will be
sent to other regions so these know their interests. This catalog is periodically recomputed,
avoiding the need for the server to keep state information about individual nodes. Fig. 3
depicts this cross-region P/S process.

This cross-region process makes use of two other caches:

21

CHAPTER 3. THYME

S (@®)
«I» = 1

(61
&& ool

O 00 Prefetch
OO QOO Cache
C
OO .
Global S = Subscription Needs
Cache C = Consumption Notification

Figure 3.3: Global P/S execution process. Adapted from [14].

* Prefetch Cache: Stores data and metadata from other regions. The turnover rate
of the contents in this cache is expected to be quite high, increasing with the total

number of nodes in the system;

* Global Cache: Stores entries from the prefetch cache that were specifically down-
loaded (i.e. considered relevant), so that these are stored in a more persistent way
and available to other users. This is an optimization done under the assumption

that geographically-adjacent users share similar interests to some degree.
The process happens in three steps (Fig. 3):

* Dissemination of Subscription Catalog: As stated before, each server periodically

broadcasts its clients’ subscription catalog to other regions’ servers.

* Provisioning the Subscription Catalog: The server looks at the received subscrip-
tion catalog and its own LPC, and tries to match cache entries to the remote sub-
scriptions. If there are any matches, the data and metadata will be sent in batches.
Although this means that only popular data is transmitted to other regions, it trans-
lates to great bandwidth savings. Moreover, it makes use of additional information
that comes attached to the subscription catalog in order to make this step much
more efficient in terms of network utilization. When matching LPC entries to the
subscription catalog, the Matching Logic algorithm is once again applied so we are
sure that only the relevant matches are considered.

* Notification of Remote Publications: Upon the reception of a periodic data provi-
sioning message, a server notifies the corresponding subscribers of the arrival of the
data, and stores the received items in its Prefetch Cache. These will remain there

until they are moved to the Global Cache or evicted by the arrival of new data.

22

3.3. THYME GARDENBED

To retrieve content, a client sends a download message to the server. The operation
will explicitly state if it’s a local or remote download (the information can be retrieved
from the metadata). For a local download, either the server serves the item from one of
its caches or it forwards the request to the mobile replicas within the region. For a remote
download, the server will first look for the item in its Prefetch and Global caches. If the
item is found it is send to the client, otherwise the server will reroute the request to the
source region. There, that region’s server will look for the item within its caches and, if
it isn’t there it will forward the request to the mobile replicas within the region. When
a server receives the reply to a remote download with data from another region, before
routing the requested item to the end-user, it will proactively cache the incoming data in
its Global Cache.

Unpublish operations have a global scope, since the item to unpublish may have
crossed the boundaries of the current region, and may be cached in several servers or even
be indexed in multiple regions. Thus, whenever a server receives an unpublish operation
it deletes the entries associated to the referenced item in all of its caches (if present).
Moreover, except the server of the region emitting the operation, they also propagates
the operation to the cluster-head responsible for handling the item’s metadata, for it to

execute the operation locally [14].

3.3 Thyme Gardenbed

GardenBed is able to enhance Thyme in a way that allows for inter-region communication
(something that is not possible using Thyme as a standalone system). Fig. 2 greatly
illustrates the concept.

A Thyme cell can be seen as a cluster for GardenBed. By leveraging on this orga-
nization, a cluster-head is picked per cell, making it responsible for interacting with
GardenBed. All traffic targeting a cell is sent to the cell’s cluster-head, and then dissem-
inated inside the cell. This approach trades-off the over-utilization of a single node’s
resources within each cell for the resources needed to proactively keep cell membership
in the server. To elect the cluster-head, a stability index is calculated. This index is derived
from local hardware information such as battery percentage and represents the probabil-
ity of a node leaving the network either by leaving the covered geographical area or by
shutting down. Each node is capable of comparing its index to its neighbours and if is the
one with higher stability it will take the initiative. Note that a new cluster-head might be
elected at each data dissemination cycle.

The metadata for the objects is also extended to contain the boolean flag onTheEdge,
which is set when the object is uploaded to the server and updated when proper.

Following the above section, when an object that originated in region A is downloaded
for the first time in region B, the item will be moved from the server’s Prefetch Cache to
the Global Cache, which will guarantee its availability for all other mobile nodes in region

B. The object is also indexed in Thyme so that it can be retrieved from other devices.

23

CHAPTER 3. THYME

Regarding the matching logic, it is two-fold:

* Matching subscriptions against publications: all cache entries related with the sub-
scription tags are retrieved and then filtered to keep only those within the subscrip-

tion time frame;

* Matching publications against subscriptions: Filters the subscriptions list to retrieve

only those matching the publication.

The configured notification priority policy is to always prioritize the usage of the
edge servers in favor of the mobile clients, meaning that whenever a subscription is
matched for an object which metadata is flagged onTheEdge, the cell trusts that the edge
server will send the notification and will thus refrain from sending one itself to avoid any
duplicates. This strategy is aimed at reducing battery consumption because now mobile
devices will only trigger notifications of data not available in any of the server’s caches
(i.e. not popular).

Finally, the replica selection policy follows the same logic as the notification prior-
ity policy, which is to favor the edge servers in order to preserve the battery capacity of
mobile nodes. If the object is onTheEdge, then the mobile devices will always favor the
edge server over the mobile replicas. This seems like a decent strategy and is most likely
the easiest to implement, but it can ultimately incur in higher latencies and system con-
gestion depending on network load. If we consider that the majority of traffic generated
in the system is related to the most popular content, then it’s easy to understand that the
higher the mobile nodes count in the system, the faster the edge server’s and network
devices’ resources will get saturated. If nodes could share information between them
and the edge which would allow them to detect or even prevent these scenarios, then
such information could be used to make better informed replica selections and allow the
system to scale more gracefully. With this thesis we understand and decide on these met-
rics, and take them into account to enable mobile nodes to independently decide which
might be the best replica to download the object from. This is done in order to minimize
communication latencies and effectively distributing load whilst being conscious about

mobile devices power consumption.

3.4 Final Remarks

In this chapter we have discussed Thyme, a time-aware reactive data storage system
for wireless edge networks. We have described Thyme’s replica selection policy, which
iterates through the available replicas in no logical order; when the selected replica fails
to provide the desired file, it tries the next one until it has tried a maximum number of
passive replicas, and then makes a last attempt by contacting the cell or if it has previously
tried the cell and it failed to provide the file, which the node assumes is permanently gone

from the system. The idea is that we should try to move the load away from the active

24

3.4. FINAL REMARKS

replication cluster as it most likely serves the most downloads regarding that file. Also,
files that cannot be found in their active replication cluster are assumed to be unpublished.

We have also discussed GardenBed, a framework that leverages stationary nodes
within the edge infrastructure to provide a persistent publish/subscribe system to a
set of mobile devices, and Thyme GardenBed, where Thyme is enhanced by GardenBed’s
infrastructure server. Here, the replica selection policies shifts to give preference to the
infrastructure. If the infrastructure is not available, or fails to provide the required file,
we fallback into Thyme’s replica selection policy. The idea is that the infrastructure server
is a more powerful node which is not power constrained, thus it should serve most of
the downloads. This is a valid strategy which yields interesting results compared to its
implementation complexity; however, it is still not flexible (dynamic) and all nodes will
follow these rules independently of system performance and network congestion, which
might severely degrade the quality of service in some scenario where it would have been
preferable to trade some of the mobile devices’ battery capacity for liveness.

In the following chapter we present Wasabi, our replica selection algorithm that is
tailored for MEC systems. With this, we discuss each of the concerns raised by the practice
of replica selection and in special, those that are characteristic of MEC environments and
how we tackle each of them. We also present the replica selection behind it and how
the programmer can integrate it within their system. Moreover, we discuss how we have

integrated Wasabi into Thyme GardenBed.

25

Chapter 4
Proposed Solution

As we have introduced in Section 1.4, to accurately answer the question "Where should I
retrieve the object from?”, given a set of available replicas, we need to have fresh informa-
tion about those replicas’ state and potentially even be able to predict network conditions.
To have such information available to us, we need a pluggable system that can put and
retrieve these metrics to and from the transport layer, ideally in a non-evasive fashion.

In this chapter we first give a detailed overview of the designed replica selection
framework. Then, we explain the replica selection strategy/algorithm we found to be
optimal for MEC systems. And lastly, we describe our framework integration with Thyme
GardenBed [14].

4.1 Overview

Starting our design we understood that, in essence, the problem boils down to a client
having interest over a piece of data that is owned by one or more servers, independently.
We have seen from Section 2.1 that there are three categories of replica selection algo-
rithms and that these build on top of each other. Feedback is the most comprehensive
because it makes use of both metrics sent by the servers and metrics perceived by the
client. We have thus decided to design a system that enables Feedback strategies for replica
selection, as it in turn enables us to build any of the others as well simply by omitting
unnecessary components (e.g. not sending any metrics from servers and only consider-
ing metrics measured by the client, which classifies the underlying ranking algorithm as
Client-Independent).

Feedback strategies also bring another performance idea to the table, which is that
the extra information sent by the servers to the clients through the transport layer does
not necessarily need to generate new messages within the system. Instead, it can use
already existing messages and piggyback metrics onto those. This is what we have done
with Thyme GardenBed [14], as we will explain later in this chapter.

Our first step was thus to split our architecture in two independent parts: client-side

and server-side. Each part provides a disjoint set of components and these can coexist at

27

CHAPTER 4. PROPOSED SOLUTION

| Application Layer | Server | Application Layer Client
1. Send Message
Message 7. Redirect to 7. Register
Application metrics
N _Application |
Server-Side 2. Enhance Client-Side
Module with metrics ——— | Module g'eszfear::
(6. Deliver Message
network
3. Redirect to Network Message Me!ric§ behavior
(Mossage Juetrics
| Network Layer | Network Layer
4. Send 5. Receive
| (Message Juetrics Transport Layer)

Figure 4.1: Replica Selection Feedback System as an Application/Network middleware.
The server sends extra information regarding its internal status with the system messages
and the client stores those metrics plus some extra observed information. The client will
then use this information to pick the most appropriate replica for each of its operations
with a certain degree of certainty.

the same runtime without any conflict - this is to cover the scenarios where the mobile

nodes are functionally symmetric (both client and server), as is the case with Thyme [13].

Then we had to think about component placement. From the beginning of this docu-
ment we have proposed a middleware service that could seat between the Network and
Application layers to transparently include and consume the included metrics packets on
the server- and client-side, respectively. Figure 4.1 shows how the metric dissemination
flow of a system integrating our framework should unfold. In a nutshell, the server-side
component will proxy the Network layer (1), trapping all messages ready to be sent in
order to include extra information (its metrics) (2). It will then forward the message to
the network (3). On the client-side, there’s another module now proxying the Applica-
tion layer which will first pre-process the delivered messages to extract the previously
injected metrics (7). It should also take the opportunity to take some measurements on
the network behavior, update some existing state related to that server or generate any
other metric value that is required by the replica selection algorithm (8). Finally, the

original message is delivered to the Application layer.

We also need to look at it from the opposite direction, that is, a client request to a
server. Whenever we need to contact a server and are presented with multiple options,
we should make use of the previously gathered metrics to decide which server to contact.
Figure 4.2 depicts this flow: the application dispatches the request which is proxied by
the client-side module (1) to add the destination address, which will be the replica we
perceived as being the most favourable (2). The request is now redirected to the Network

Layer (3) as it was intended to be sent to the selected server.

28

4.2. PROPOSED FRAMEWORK ARCHITECTURE

Application Layer | Server | Application Layer | Cllent
A
i
(Request
: 1. Send request 2. Sort
: -— N available
H Client-Side replicas
~3.Sendrequestto | Tequest to Module acc;rdmg to
target replica ranking
score
A
Network Layer | Network Layer |
5. Receive 4. Send
Transport Layer

Figure 4.2: Replica Selection Feedback System as an Application/Network middleware.
The client relies on the Replica Selection module to pick a request target before pushing
such request into the Network.

4.2 Proposed Framework Architecture

Having an high-level overview of how the framework should operate, we will now dive
in detail into each of the modules’ components, the available interfaces as well as some

out-of-the-box implementations and how the programmer can use them.

4.2.1 Server-Side Components

Metric Collector
Metric Collector Metrics Aggregator [------- Trare p ot
Layer
ann
Metric Collector
Server-side Client-side
Moduls Module

Figure 4.3: Inside the server-side module

4.2.1.1 Metric Collector

A Metric Collector is a small footprint component that contains the necessary logic to
read or compute a system metric. This logic is to be provided by the developer. As a basic
- and most common - use case, a Metric Collector will be a purely functional component,
i.e., it will perform stateless computations to produce a value. For such scenarios we
can directly create instances of the interface in Listing 4.1, which are inherently thread-
safe. However, for more complex scenarios where we might want to provide a stateful
implementation, care should be taken to avoid concurrency problems. One use case that

we have found to be common is to have a Collector that stores value samples and returns a

29

11

21
22

23

CHAPTER 4. PROPOSED SOLUTION

value based on the stored samples when queried for it. For these we also offer the class in
Listing 4.2. This class already offers a synchronized implementation of the collect method
(Line 9), as well as a synchronized method to add sample values (Line 18). And finally, as
the example of a concrete implementation, we have the class in Listing 4.3 which should
be used when we want to compute the average of the stored values and use it as the metric

value.

public interface MetricCollector {
Double collect();

Listing 4.1: MetricCollector

public abstract class SampleMetricCollector<T extends Number> extends
— SynchronizedMetricCollector {

private final Number|[] samples; // Sample vector

private final int maxSize;

private int currentlndex = 0;

private int sampleCount = 0;

private final T defaultValue;

@0verride
protected synchronized Double collect() {
Number[] currentSamples = sampleCount >= maxSize ? samples
— Arrays.copyOfRange(samples, 0, currentIndex);
DoubleStream samplesStream =
— Stream.of (currentSamples) .mapToDouble(Number: :doubleValue);
return aggregateSamples(samplesStream)
.orElse(defaultValue.doubleValue());

protected abstract OptionalDouble aggregateSamples(DoubleStream samples);

public synchronized void addSample(T sample) {
samples|[currentIndex]| = sample;
currentIndex = (currentIndex + 1) % maxSize;

sampleCount++;

Listing 4.2: SampleMetricCollector

30

4.2. PROPOSED FRAMEWORK ARCHITECTURE

public class AverageMetricCollector<T extends Number> extends
— SampleMetricCollector<T> {
public AverageMetricCollector(int maxSize, Number defaultValue) {

super (maxSize, defaultValue);

@0verride
protected OptionalDouble aggregateSamples(DoubleStream samples) {
return samples.average();

Listing 4.3: AverageMetricCollector

4.2.1.2 Metrics Aggregator

The Metrics Aggregator is the component that aggregates all the metric values produced
by Metric Collectors. To be able to collect their values, Metric Collectors have to be
registered into the Metrics Aggregator in association with the respective Metric label.
When queried, the Metrics Aggregator will poll the Metric Collectors for their values and
will store them in a key/value data structure to which it will then return a reference. This
data structure is already the format expected to be processed by the client-side. Listing
4.4 represents the public interface for the Metrics Aggregator component.

The programmer should first register the Collectors at bootstrap time. The Metrics
bundle should be retrieved any time we want to send metrics to the client, as shown
in Figure 4.1. Although we offer simple implementations for the MetricsAggregator
interface, we do not offer any component that automatically performs the concatenation

of the message with the metrics and serialization of such.

public interface MetricsAggregator<Metric extends Enum<Metric>> {
Metrics getMetrics();

void addCollector(Metric metric, MetricCollector collector);

Listing 4.4: MetricsAggregator

To sum up, the programmer should:
1. Create a MetricsAggregator component specifying the metric enumeration;

2. Create a MetricCollector for each server-side metric and register it with the respec-

tive Metric within the MetricsAggregator;

3. Join the application serializable message with Metrics in order to serialize every-

thing according to the marshalling protocol in place and send it to the network.

31

CHAPTER 4. PROPOSED SOLUTION

4.2.2 Client-Side Components

Metric Cluster Metric Observer
—
etric
___________________ Metric .
Transport Classifier
Layer Sor
Metric
Holder
=i

[Replica Scoring Algorithm] Client-side
Module

Metric Observer

Metric Observer

Figure 4.4: Inside the client-side module

4.2.2.1 Replica Classifier

The Replica Classifier is the central piece on the client-side. As the name indicates, it is
responsible for classifying the available replicas for any given operation. It does so by
taking a set of replicas and sorting them from best to worst using the collected metrics.
The certainty on that ordering is proportional to how many metrics we have over that set
of replicas and how fresh that information is. But the Classifier does more than this. It
stores the metric values for each (already) known node with different retention, batching

and even decaying policies.

public interface ReplicaClassifier<Replica extends Comparable<Replica>, Metric

— extends Enum<Metric>> {

Set<Replica> sort(Collection<Replica> replicas);

void record(Replica replica, Metrics metrics);

void record(Replica replica, Metric metric, double value);

void addMetric(Metric metric, Class<? extends MetricHolder> metricHolder);

void addMetric(Metric metric, Class<? extends MetricHolder> metricHolder,

— MetricDecayFunction decayFunction);

Listing 4.5: ReplicaClassifier

Listing 4.5 contains the public interface for the Replica Classifier. Other than sorting
a collection of replicas, it allows for the record of individual or bundled metrics, to con-

figure how the values are stored internally (e.g. only keep last, keep a moving average,

32

4.2. PROPOSED FRAMEWORK ARCHITECTURE

etc) and to define a decaying policy for the metric. It is important to note the generic
types declared on the interface. The Replica generic placeholder represents the nodes’
identifier, i.e., what identifies an individual node/server. Here we can use any kind of
comparable data structure and it will be used to index information on that node, retrieve
it and guarantee that we do not consider the same node more than once. This can also be
exploited for more complex use cases, for instance, we could identify a node within the
module not only by its id but rather by the combination of its id and the communication
protocol. This would allow for the same node to be considered more than once but each
time with a different protocol. This can be useful to explore the alternative channels
proposed in Section 2.3.

The Metric generic will usually match the metrics’ set representation of the server-
side module. However, because in a distributed system sometimes there’s different node
versions and even different types of servers, the client-side module will simply ignore
any metric that it does not recognize. Moreover, we can have different Replica Classifier
instances in the client in case we have interest in different kinds of servers which emit
different sets of metrics.

We already offer an out-of-the-box standard implementation of this interface, Stan-
dardReplicaClassifier, which should fit most use cases and already uses data structures
from Java’s concurrent package to avoid unwanted interference. However, if there is any
required customization for this component, then the programmer will still be able to
easily extend either the provided implementation, since its internal state and important
inner methods are all accessible to extending classes, or the provided interface if they
required a fundamental change in the functionality.

The Replica Classifier sorts the replicas based on their score, using a custom Com-
parator that sorts elements from highest to lowest score. The score is calculated by the
underlying Scoring Algorithm which contains the formula that is applied over the metric
values. We will cover this component, as well as the Cluster Logic in further sections.
These can be ignored for now. However, it makes sense to discuss the Decay Function in
this context.

Line 11 of Listing 4.5 shows that we can also register a MetricDecayFunction for a
given Metric. This decay function will take into consideration the elapsed time since we
have last record a value for the given Metric and will penalize the metric according to
said time. Because the Scoring Algorithm always has a scale (i.e. it only produces scores
between a configurable minimum and highest value), there is also the concept of the
neutral value, which usually will translate to the middle value on the scale. This value is
used as the score for the replicas we do not know anything about (i.e. to which we still
hold no metrics). This is a way to neither penalize nor favor unknown outcomes. Having
this into consideration, we felt like we needed to addresses the cases where we would
score a replica above the neutral score if no decay were applied to its metrics, but, with
decay, it goes bellow said threshold. In that situation, we consider the neutral score as

the replica’s score instead. Otherwise, we always consider the decay score. And, when no

33

CHAPTER 4. PROPOSED SOLUTION

decay function is applied, there is no change to any metrics’ value over time. This is our
integrated mechanism to deal with metrics freshness.

The Replica Classifier does not hold the metrics directly but rather stores them within
containers (Metric Holders) that deals with further concerns regarding the stored value.
To be able to consider a given metric, we must register it at bootstrap time using the
addMetric method (Listing 4.5, line 9 and 11) where we provide the reference to an
implementation of MetricHolder.

In conclusion, the programmer should create the Classifier at system bootstrap time
specifying the node’s identifier type (the Replica generic), the Metric enumeration, and
configure it with a Scoring Algorithm, Cluster Logic, Metric Holders and Decay Functions,
when applicable. Some of these components still were not discussed, so that is what we

will keeping doing throughout this section.

4.2.2.2 Metric Observer

In spite of having Metric Collectors on the server-side, we still need a mechanism to
produce metrics on the client-side. We thought about using Metric Collectors for this
purpose as well, however, Collectors are pull-based and we required push-based com-
ponent. Hence, we have introduced Metric Observers, which, like Collectors do hold
programmer-provided logic to compute a metric value in the system. The difference is
that these do not need to be registered within the framework. Instead, these require a
reference to the Replica Classifier in order to push their readings. The push model is
required to update the stored information regarding a given node on system events, such
as network activity. One simple example extracted from C3 metrics is the measurement
of the server response time, to which we first need to save the request id with a timestamp
and, when we eventually receive a response, we measure the elapsed time and push this
value to the Classifier (Listing 4.7).

@RequiredArgsConstructor
public class MetricObserver<Replica extends Comparable<Replica>, Metric
— extends Enum<Metric>> {

protected final Metric metric;
protected final ReplicaClassifier<Replica, Metric> replicaClassifier;

protected final void updateMetric(Replica replica, double value) {

replicaClassifier.record(replica, metric, value);

Listing 4.6: MetricObserver

For this component(s) we provide a base class (Listing 4.6) that should be extended by

34

4.2. PROPOSED FRAMEWORK ARCHITECTURE

the developer. As with the Replica Classifier, we need to provide the actual type definition
for the nodes’ identifier and the metrics enumeration. Additionally to the Response Time
Observer, we also offer the Outstanding Requests Observer out-of-the-box to track how

many requests we have outgoing to a server and to which we have not received a response

yet.

public class ResponseTimeObserver<Replica extends Comparable<Replica>> extends

— MetricObserver<Replica, C3Metric> {

private final Map<Replica, Map<Object, Long>>
— replicaRequestIssuingTimestamps = new ConcurrentHashMap<>();

public void registerRequest(Replica replica, Object request) {
Map<Object, Long> timestamps =
— replicaRequestIssuingTimestamps.computelfAbsent(replica, r -> new
< ConcurrentHashMap<>());

timestamps.put(request, System.currentTimeMillis());

public void computeResponseTime(Replica replica, Object request) {
Map<Object, Long> timestamps =
— replicaRequestIssuingTimestamps.computelfAbsent(replica, r -> new
— ConcurrentHashMap<>());
Long timestamp = timestamps.remove(request);
Optional.ofNullable(timestamp).ifPresent(startTime -> {
long latency = System.currentTimeMillis() - startTime;
updateMetric(replica, latency);

1)

Listing 4.7: ResponseTimeObserver

4.2.2.3 Metric Holder

A Metric Holder (Listing 4.8) is simply a container for the metric current value. These
are needed because different metrics require different ways to be stored; we might just
want to keep a discrete value or we might need to keep something more complex such
as a moving average. We already offer a variety of Metric Holders out-of-the-box. These
are used to configure the value storing policy for each metric on the Replica Classifier
(method addMetric in Listing 4.5).

35

CHAPTER 4. PROPOSED SOLUTION

public interface MetricHolder {

Double getValue();

void put(double value);

Long lastRecordedTimestamp();

Listing 4.8: MetricHolder

4.2.2.4 Replica Scoring Algorithm

The Replica Scoring Algorithm is the component that contains the ranking formula. It
takes the set of metrics and computes a score. As a guideline, the better the metrics, the
higher the score should be. The Scoring Algorithm component consists of the interface
on Listing 4.9. As mentioned in one of the previous sections, the algorithm should
produce scores within a scale (i.e. only produces scores between a configurable minimum
and highest values). For this, the programmer should follow the formula below when

implementing the score method:
score = min(MAX_SCORE, max(MIN_SCORE, formula(metrics)))

We also offer an abstract class with this implemented out-of-the-box, AbstractScoringAl-
gorithm, which might be easier to extend. Still, this is just a guideline and not required
for the system to function properly. In some cases it might not even make sense to set
score bounds and thus we still offer the interface. Aside from this, we also offer some
implemented scoring formulas, such as C3 (Listing 4.10) and our own formula which

deals with more MEC specific concerns and which we will cover in a section ahead.

public interface ReplicaScoringAlgorithm {

double score(Metrics metrics);

double getMinScoreValue();

double getNeutralScoreValue();

double getMaxScoreValue();

Listing 4.9: ReplicaScoringAlgorithm

36

4.2. PROPOSED FRAMEWORK ARCHITECTURE

public class C3Algorithm extends AbstractScoringAlgorithm {
// omitted source code. ..

@0verride
public double algorithm(Metrics metrics) {
Double queueSizeBoxed =
— metrics.stringifyKeyAndGet (C3Metric.QUEUE_SIZE);
Double serviceTimeBoxed =
— metrics.stringifyKeyAndGet (C3Metric.SERVICE_TIME);

if (queueSizeBoxed == null || serviceTimeBoxed == null) {

return neutralScoreValue;

double queueSize = queueSizeBoxed;

double serviceTime = serviceTimeBoxed;

double outstandingRequests = Optional.ofNullable(
— metrics.stringifyKeyAndGet (C3Metric.OUTSTANDING REQUESTS))
.orElse(0.0);
double responseTime = Optional
.ofNullable(
metrics.stringifyKeyAndGet (C3Metric.RESPONSE_TIME))

.orElse(serviceTime);

double concurrencyCompensation = outstandingRequests

— concurrencyWeight;

double queueSizeEstimate = pow((1 + concurrencyCompensation +

— queueSize), QUEUE_FACTOR);

double latency = (responseTime - serviceTime) + (queueSizeEstimate x

— serviceTime);

return maxScoreValue - latency;

Listing 4.10: C3Algorithm

To use the algorithm the programmer simply has to wire it through constructor in-
jection if they are using the Standard Replica Classifier, or make sure they sure the score
method of the Scoring Algorithm to compute a score for the replica and use that value
to sort the available replicas. As a final note regarding implementation details, it should
be noted that even though we operate with Java Enums regarding metrics, which does

not allow us to extend a set of existing metrics, we can still circumvent this because the

37

CHAPTER 4. PROPOSED SOLUTION

Replica Classifier should use the String version of the enumeration items to communicate
the metrics to the Scoring Algorithm, which means that we can use already implemented
algorithms that use a given Enum underneath by simply declaring the same items with
the exact same name on our new Enum (e.g. if we create a new metrics Enum with the
same items as C3Metric in Listing 4.10: QUEUE_SIZE, SERVICE_TIME, etc, then we can
use the existing C3 algorithm implementation).

4.2.2.5 Cluster Logic

Finally, because some systems might have the need to tell apart cluster nodes from single
nodes when scoring them, we have introduced the Cluster Logic component. These
systems can be, for instance, cluster-based DHTs on which clusters of nodes act as virtual
nodes with their own role in the system.

This is a component that hooks into the Replica Classifier and requires two developer-

provided functions:
1. A predicate that indicates whether or not the current node is a cluster;

2. A function that retrieves the cluster nodes from the known replica set on the Clas-

sifier.

This is an optional component. However, if provided when using the Standard Replica
Classifier, it will classify a cluster with the average score of all its composing (known)
replicas.

To register the Cluster Logic the programmer should implement the interface in List-
ing 4.11 and then inject it into the Replica Classifier through constructor injection when
using the Standard Replica Classifier or, when using a custom implementation, simply

make use of it to compute the clusters’ score.

public interface ClusterLogic<Replica> {

boolean isCluster(Replica replica);

Set<Replica> findClusterNodes(Replica cluster, Collection<Replica>

— replicas);

Listing 4.11: ClusterLogic

4.2.3 Summary

In this chapter we have presented our replica selection framework architecture. We have

separated it in two modules: server- and client-side; and described each of the modules

38

4.3. REPLICA SELECTION STRATEGY FOR MEC SYSTEMS

Metric Observer|

Metric Collector
Metric Collector

Metric Collector

Metric Cluster
Holder Logic

R Rt Metric »
Transport Classifier

Layer naam
Holder/

A

|

[Replica Scoring Algorithm]
Server-side Client-side

Metric Observer|

Metrics Aggregator

Metric Observer|

Figure 4.5: Replica Selection framework architecture diagram. The server produces a
metrics bundle that is sent over the network to the client. The client forwards this bundle
to the classifier to store information about this server. The metric holders will store the
value of the corresponding metric. Metric Observers also produce individual metrics, on
the client. When we need to sort a set of replicas we pass the stored information on each
replica to the scoring algorithm which in turn will produce scores. The replicas are sorted
by their descending scores.

components in detail and what role they play in the system. We have also discussed
how these components should be placed. We explained how these components could be
used and the available APIs. Furthermore, we have discussed some component specific
challenges such as how to deal with concurrency and freshness, and presented some
of our out-of-the-box implementations. Additionally, we have discussed some possible
scenarios and advanced usages show as how the framework could be harnessed to support
multiple (alternative) communication channels. Figure 4.5 gives the full picture of the

framework.

4.3 Replica Selection Strategy for MEC Systems

4.3.1 Picking a baseline

From our analysis on Section 2.1, two options stood out as possible baselines to our work:
C3 (Section 2.1.2) and L2 (Section 2.1.3). We first looked at L2 and soon realized it is
not a suitable baseline for our work because it only takes into consideration client-side
measured metrics: the outstanding requests to a server and the perceived response time.
Even though L2 can achieve a similar best performance comparatively to C3 in cloud
environments, as concluded by the authors of [3], MEC environments are in contrast
more volatile and present additional challenges. Here, communication channels are less
reliable and the available replicas are constantly varying. Therefore, it is best to use a
Feedback algorithm when considering a replica selection strategy for a MEC system, in
order to get information both from the client-side as well as the server-side. This allows
us to not only decide upon the explicit values but also infer new information, e.g., we
can compare reported server-side values with perceived client-side values to be able to

distinguish server resource saturation from a network congestion and thus be able to

39

CHAPTER 4. PROPOSED SOLUTION

consider alternative communication channels. C3 is thus a better baseline for our use
case.

C3is a state-of-the-art [16] Feedback algorithm that combines a replica ranking scheme
with rate-control and backpressure. The replica ranking scheme is a mathematical for-
mula that computes a server’s expected latency given the server’s reported queue size and
average service time, the client’s pending requests and the observed server response time.
The formula is as follows:

Hs Hs

where 1, is the expected latency for servers, §; = 1+0ss-w+4; is the queue-size estimation,

1
l;bs:Rs__

0s, is the number of pending requests the client has to s, w is a configurable concurrency
weight number that represents the potential number of clients in the system (in a cloud
system this might be an exact number, like the number of nodes in a cluster, but in a
MEC system it has to be a sensibly configured parameter since it will remain a static
value but the number of connected mobile nodes will vary fairly often over time), R;, §
and i are Exponentially Weighted Moving Averages (EWMAs) of the observed response
time, queue-size and service time of s, respectively. The queue-size estimation grows
at a cubic rate to punish higher queue sizes. If it grew at a linear rate then it would be
possible for a server s; with service time n times lower than s, to hold a queue n times
bigger than s, and still have the same expected latency. As explained by the authors of
[17] such scenario would be problematic if s; suddenly slowed down or even ran into
a halt. Finally, the term os, - w is also known as a concurrency compensation, which is
the term that weights the most in the queue-size estimation and it encourages clients
to better distribute their requests through the available replicas, effectively achieving a
load-balanced system.

The rate control and backpressure module is used in C3 because, according to the
authors, replica selection alone cannot ensure that the combined demands of all clients
on a single server remain within that server’s capacity. On the other hand, the authors
of [3] conclude that the complicated rate control mechanism of C3 itself is not helpful
to reduce tail latency. Our conclusion is that, although such component might have
a positive impact on systems such as the Cassandra Cluster presented for evaluation
purposes in [17], where all nodes are continuously engaged in high throughput / high
bandwidth operations, for most systems that will not be the case, especially in MEC
environments where nodes are power constrained. Also, we already have the concurrency
compensation baked into the replica selection algorithm to prevent saturating a specific
server; And finally, although we understand how this client-side component protects the
whole system, we argue that it might not be so interesting and even hurt latencies more
than it helps on systems where there might not be many available replicas to start with,
because if a low sending rate threshold was to be configured we could easily hit the quota
on all replicas and incur in unnecessary waiting times imposed by the client itself. For

these reasons, we decided to discard the rate control and backpressure component.

40

4.3. REPLICA SELECTION STRATEGY FOR MEC SYSTEMS

4.3.2 Remaining Challenges

With C3 ranking scheme as the basis for our algorithm, we have enough information to
understand servers’ resources occupation and network conditions, as well as the ability
to avoid herd behaviors. We also get intrinsic load-balancing. But there are additional
challenges related to MEC environments, namely churn, power efficiency, metrics fresh-
ness and a dynamic set of replicas which is not known at start time and evolves over time
(nodes join and leave). Also, nodes’ computational capacity is linked to the available

battery capacity, which drops at a probably non-linear rate over time.

4.3.2.1 Churn

Churn refers to the movement of system nodes. In a cloud environment nodes have a
static physical position (usually machines in racks within a data center) and are wired
to the network infrastructure which provides highly reliable and high bandwidth con-
nections. On the other hand, MEC systems present a more volatile environment with
wireless communication medium that might degrade with physical distance and other en-
vironment related variables, as well as mobile nodes which often experiment movement,
effectively shifting their physical location. Regarding nodes’ movement, there are two

possible scenarios:

1. either these nodes move within range of the beacon for the wireless medium (e.g.
the AP);

2. or they cross the range boundary, effectively leaving or rejoining the system.

For the first scenario, and because we are using C3 as a basis, we already have what we
need to detect nodes’ movement. A server’s network latency should be directly influenced
by their distance to the connected network device. This means that the clients” perceived
response time will increase or decrease when the server gets closed or further to the
beacon, respectively, and directly impact the computed score.

For the second scenario, however, this might not be of much help. If we consider the
scenario where a node leaves the system, the outgoing requests to it will be left hanging.
Here we can try to leverage the error conditions. If the application implements some
sort of timeouts around the request, we can stop tracking the request upon a timeout
and use the configured timeout value as the perceived response time, which penalizes
the score as intended. Another more penalizing factor in this case would be the outgoing
requests count to that server, which could potentially never decrease; this would greatly
increase the chances that the node would not be picked again as the designated replica
but, if the node rejoins the system, it would still keep a perpetual penalty. With this, we
think it is important for MEC systems to have a request timeout policy in place in order
to react and adapt to these situations. As suggested, a timeout would be a great place to

adapt client-side metrics. For C3 metrics we can take the chance to register a very high

41

CHAPTER 4. PROPOSED SOLUTION

response time and also discount the timed-out outgoing request. To complement this
practice, however, we think we should also have a way to explicitly penalize the score.
The most direct way to do this is to inform the algorithm to return only a percentual part
of the computed score. This way we could penalize the replica on timeout - or whenever
it made sense - by asking the algorithm to, for instance, only consider 80% of the the
computed score. We could then raise this back to 100% once we were confident enough

that the node was back online.

4.3.2.2 Power Efficiency

Power efficiency refers to how much regard the system gives to the power consumption
of power constrained devices. In a Cloud environment, computing nodes are usually
plugged to an energy source with no hard limits to its capacity, and therefore this is not
a concern. In a MEC environment, however, mobile devices have very specific power
restrictions. All mobile nodes are limited by their battery capacity and some have higher
capacity than others. It is also likely that nodes will be joining the system will only a
percentage of their total battery capacity and that this remaining capacity has to be shared
between our application and others. It is of the system’s interest to keep the maximum
number of nodes online for as long as possible. Thus, our replica selection strategy also
has to score replicas according to their remaining battery capacity. Furthermore, it might
be interest to observe how a device’s battery evolves over time [6, 20]. Devices’ batteries

drop at different rates and some might even be increasing.

4.3.2.3 Freshness

Freshness refers to how much time has passed since we have registered a given metric
value. The longer we hold onto that value the less fresh it will be, or in other words, the
less likely it is that it still represents the reality of the system. We argue that the impor-
tance of this concept depends on the metric at hand. There is also a set of assumptions
we might be able to make depending on the metric.

Server-side metrics tend to be more impacted by freshness as they report a server’s
state at a given point in time. For instance, a server’s reported queue size tells us how
many requests it still has to process at a given point in time; the longer it has been since
we received that value, the more likely it is it is not true anymore. However, we cannot
make any assumption about the evolution of the queue-size; at most we can either be
optimistic or pessimistic and assume it has decreased or increased, respectively, or we
can try to use past readings to predict the curvature of the value. Although these are all
valid techniques, they might introduce entropy and have a harmful effect to the system.
For metrics such as battery percentage, however, it could be possible to make accurate
predictions of the current value using past reading to understand at which rate it was
decreasing, or even in certain cases, increasing, which is possible if people are carrying

powerbanks or have other sources of energy available.

42

4.3. REPLICA SELECTION STRATEGY FOR MEC SYSTEMS

For client-side metrics such as perceived latencies we might not be able to make any
assumptions as well. For others, such as outstanding requests, we always know the exact
value. Still, there might be systems that introduce other kinds of client-side metrics.

We see freshness as a concern that should be evaluated for each metric individually.
With this kind of granularity we can better fine tune our system. Also, we take into
account the possibility that, for some systems, metrics’ readings might reach the client or
be computed in an asynchronous fashion and, therefore, there is not only no guarantee
that there is a value for each considered metric at the same time, but it also implies that
some metrics might have fresher values than others.

There are multiple possibilities to implement this. We could easily define a TTL for
each metric and, once that TTL was reached we could disregard the value for that metric.
There is also the possibility to define a decay function for each metric, effectively adapting
its value over time. This last option seems more attractive to us as it allows for a better
expression of how a metric reading should evolve over time and it still allows for the

implementation of the first option.

4.3.2.4 Unknown Replicas

All the studied Cloud systems consisted of static clusters where, although there could
be some process in place for nodes going offline and coming back online, there was no
need to worry about new nodes other than those configured initially joining the cluster.
In a MEC system, however, nodes are constantly leaving and new nodes joining. Due to
this, more often than usual we might be faced with the situation where we have unknown

servers within the available replicas list. Here we can take one of several approaches:
* we can be pessimistic and always consider these replicas last;
* we can optimistic and favour them;

* or we can try to be impartial and prefer them over the bad replicas but only after

the good ones.

To define what are good or bad replicas we need to define a threshold for the scores.
Furthermore, it is easier to define said threshold if we first define a closed interval for the
possible score values. Given an algorithm that produces replica scores within [0;x], the
neutral score value would be 7. We could thus classify the unknown replicas with this

score value and effectively achieve the impartial option listed above.

4.3.3 Proposed Algorithm

Having looked at the additional challenges introduced by the MEC environment, we now
present our proposed algorithm, Algorithm 1.
First, we will look at the scoring formula. As stated before, our proposed algorithm

expands on top of C3. We evaluate a metric on their internal state (queue-size and service

43

CHAPTER 4. PROPOSED SOLUTION

time), on how much demand we already have over that server (outstanding requests) and
on the perceived end-to-end latency (response time). We store the outstanding requests
indexed to the server and request identifiers in order to easily resolve requests as well as
being able to count them. All the other metrics are stored as EWMAs as in the original
C3 paper [17]. We also report the battery capacity from the server-side so we know how
much battery that replica has left. Having the battery capacity and the expected latency
for that replica, we translate these values into the same scale. Now that we have two
distinct values of the same order of magnitude (remaining battery and expected latency),

we attribute a percentage weight to each one to form the final score value.

Algorithm 1 Replica Selection for MEC Systems

1: procedure ScoRrRE(metrics)

2 if hasEssentialMetrics(metrics) then

3 queueSize < getQueueSize(metrics)

4 serviceTime «— getServiceTime(metrics)

5: outstandingRequests «— getOutstandingRequests(metrics)
6 responseTime «— getResponseTime(metrics)

7 concurrencyCompensation «— outstandingRequests * CONCURRENCY_WEIGHT
8 queueSizeEstimate « (1 + concurrencyCompensation + queueSize)QUEUE-FACTOR
9

expectedLatency <« (responseTime — serviceTime) + (queueSizeEstimate

serviceTime)
10: latencyScore «— MAX_SCORE — expectedLatency
11: battery « getBattery(metrics)
12: score «<— BATTERY_WEIGHT * battery + (1 - BATTERY_WEIGHT) * latencyScore
13: return score

14: end if
15: return NEUTRAL_SCORE
16: end procedure

17: procedure DEcayBaTTERYMETRIC(recordBatteryValue, recordTimestamp)
totalTransferredBytes

18: bytesPeerlllsecond < elapsed time since first message

19: metricValueAge < System.currentTime() — record Timestamp
20: transferredBytesSinceLastRecord < bytesPerMillisecond » metricValueAge
21: concurrencyCompensation — transferredBytesSinceLastRecord *

CONCURRENCY_WEIGHT
22: expectedSpentBattery < concurrencyCompensation + BATTERY_PER_BYTE
23: return recordBatteryValue — expectedSpentBattery
24: end procedure
25: procedure ONTimEOUT(n0de, requestld)
26: requests < getRequests(node)
27: requests «— requests \ {requestld}
28: recordResponseTime(node, TIMEOUT_THRESHOLD)
29: penalizeScoreBy(PENALIZATION_PERCENTAGE)
30: end procedure

When any metric that is essential to the calculations is missing, or when there are no

metrics at all, we fallback to the neutral score, which means that we cannot (yet) classify

44

4.3. REPLICA SELECTION STRATEGY FOR MEC SYSTEMS

that replica according to our parameters. The neutral score is the middlemost value from
the closed interval of possible score values. With this we divide the scale in half, where
the scores falling on the left side of the neutral score are seen as “less good” and the ones
on the right side are seen as “preferable”. As explained in the previous section, this is
because we do not want to take neither an optimistic nor a pessimistic approach towards
the unknown.

Regarding freshness, we consider each metric individually. When considering queue-
size, service time or response time, there is no obvious answer as to how these values
can evolve over time. We found that simpler solutions such as an always optimistic
or pessimistic approach would more than often lead to incorrect predictions. A better
approach would be to apply a statistical prediction function to past data points, such
as a linear regression, in order to predict the current value. For these to be effective,
however, we need a continuous stream of values, and the absence of such stream is why
we might need to deal with freshness in the first place. Since we already keep a EWMA
for each of these metrics, we decided to skip having a decay function for any of them.
The outstanding requests number is an exact number that the client always knows and
does not vary over time without it being registered so, it too dismisses the need for a
decay function. For the battery capacity, however, we keep track of how many bytes are
transferred between the server and the client (upstream and downstream) since we first
connected to the server and create a ratio between those bytes and the elapsed time to
obtain a byte per millisecond rate. We multiply that rate for the last received value’s age
to have a rough estimation of how many bytes might have been transferred, in average,
between that server and any other node. Then we multiply this value by a concurrency
weight just like in C3 to account for the other nodes in the system and obtain some sort
of concurrency compensation. And finally, we multiply this value by a system configured
rate that represents how much battery a node spends when it sends or receives 1 byte.
The produced value from these multiplications represents the battery decay estimation
for the elapsed time since the last feedback. We then subtract this value to the current
value to obtain the final considered battery value. We also make sure that this subtraction
does not go below zero. As discussed in Section 4.3.2.2, there is also the possibility for
the battery to increase if the mobile device gets connected to a power source. However,
considering the curve of the battery instead of (or complementary to) the absolute value
would make our calculations more complex and possibly bias clients to pick that replica.
Instead, we decide to degrade the last received reading over time, with an adjustable
rate. If a node’s battery levels are increasing, we definitely will capture that increase
on sequent readings, which will replace the previous ones. If no updates are received,
we assume the battery level is degrading. In this scenario, given that we only degrade
because we are not receiving metric updates, and metric updates are piggy-backed in all
types of traffic, it means we are receiving no traffic from that node; if no traffic is received
from a given node for a long interval, the decay penalty will not be very steep either. This

ends up being the most simple and elegant solution.

45

CHAPTER 4. PROPOSED SOLUTION

Lastly, when a request to a server times out we adjust the client-side metrics by remov-
ing the outstanding request from the list and recording the configured timeout span as
the response time. However, because this might not be enough to make the client immedi-
ately prefer other replicas, we also apply an explicit penalty. With the explicit penalty we
tell the client to only consider a percentage of the computed score as the effective score to
compare to other replicas’. This penalty can be reverted by the client whenever it makes

sense.

4.4 Integration with Thyme GardenBed

Now that we know how our replica selection module works, we will go over the in-
tegration with Thyme Gardenbed [14]. In this section we will talk about Thyme and
GardenBed’s architectures and then we will show where we have connected the pieces of

our module, as well as discussing some of our decisions.

4.4.1 System Architecture

We thus start by describing Thyme GardenBed’s architecture. This section is adapted
from [21] as it already provides a concise explanation of the whole system architecture.
Here we only take the necessary parts to understand the integration process, omitting
some more detailed information that is irrelevant for this work and would otherwise

overwhelm the reader.

4.41.1 Thyme

We present the full architectural picture of Thyme in Fig 4.6. Below we give a brief
explanation of the necessary components.

Time-Aware Publish/Subscribe. This module provides the Time-Aware Publish/-
Subscribe interface to the application in order for the user to be able to persistently share
content between devices. Through this P/S layer it is possible to specify a time interval in
which subscriptions will be active, whether that interval is in the past, present or future.
Furthermore, this layer is responsible for managing the client’s subscription and publish

requests as well as all the notifications associated with them.

Storage. Thyme fuses the Publish/Subscribe infrastructure with the actual storage sys-
tem by using the virtual nodes to store published content and subscriptions, while cells
act as virtual P/S brokers. Upon a notification, the P/S module delegates to the storage
the decision to either download the object or ignore it. This is where the replica selection

process occurs in the context of downloads.

46

4.4. INTEGRATION WITH THYME GARDENBED

Application

Thyme Interface

Services

Time-Aware Storage Replication Grid Manager Localization Cell Data
Publish/Subscrive 9 Manager 9 Disseminator

Network Layer

Mobile Nodes Thyme

Network

Infrastructure

Routing

Link Layer

Connectivity
Bluetooth Wi-Fi Direct

Figure 4.6: Thyme’s Architecture

Mobile Nodes Network Layer. This layer allows the communication between mobile
devices running Thyme in their front-most application. It offers a custom node identifi-
cation service that uses logical addresses instead of more classical approaches such as a
TCP/IP address for each device.

Routing. The Routing layer was developed with the goal of managing the transmission
of messages from one point of the system to another, by choosing the most appropriate
dissemination route. It is also this layer that knows how to forward messages to cells/-

clusters.

Infrastructure Network Layer. This component enables the communication with the

nearest infrastructure, if present.

4.4.1.2 GardenBed

Here the only layer we care about is the Network Layer. This is because the supporting
MEC infrastructure nodes only act as servers and therefore our only change here is to
guarantee we piggy-back feedback metrics on each message, as we will explain in the
section ahead. This layer is divided into two parts, the Mobile Nodes and the Infras-

tructure, and has the goal of allowing not only the infrastructure nodes to communicate

47

CHAPTER 4. PROPOSED SOLUTION

Infrastructure Time-Aware Publish/Subscribe
Worlds

Storage
Local Ponulari Mobile Address
ocal Popularity Prefetch Cache Global Cache Translation Store
Cache
Network Layer
’ Mobile Nodes ‘ | Infrastructure ‘
Routing

Link Layer

Figure 4.7: GardenBed’s Architecture

wirelessly with its mobile clients and through wired links with other base stations, but
also to process incoming messages from those sources. Nonetheless, we leave the full

architecture diagram in Fig 4.7.

4.4.2 Integration

Now that we have looked within Thyme and GardenBed’s architectures, we will discuss

the Replica Selection integration.

4.4.2.1 Server-side

First, we needed to disseminate metrics. Metrics are disseminated by servers and each
node on this system is a server: it is either a mobile node, which is both a server and a
client, or an infrastructure node, which is only a server. Servers piggy-back their metrics
on each sent message. We started by adding a Metrics payload within the application
message. Because we depend on the application’s serialization mechanism, and Thyme
GardenBed makes use of Protocol Buffers, we also had to add the metrics payload to
the message .proto definition and edit the marshalling and unmarshalling logic to map
between the application and proto generated message formats.

On both Thyme and GardenBed we have created a new Metrics Aggregator 4.2.1.2 com-
ponent which sits on both’s Mobile Nodes Network Layer and can thus inject the metrics
into the message before forwarding it. On both cases we used the StandardMetricsAggre-
gator which we provide out-of-the-box and offers the exact expected functionality from
the interface.

The final step needed to successfully disseminate metrics is to actually gather said
metrics. We need to register Metric Collectors 4.2.1.1 into the Metrics Aggregator in order
for it to bundle some metrics. The metrics we want to gather are: request queue-size, service

time and remaining battery.

48

4.4. INTEGRATION WITH THYME GARDENBED

‘ Link Layer | Network ’ ‘ Classifier | ‘ Observer 1..n | Upper Layer

receive message

: :
: ! !
' '
. .
1 1
extract i
metrics '
- '
record metrics :
compute

metrics

record metric

|
' .
. deliver message

Figure 4.8: Server-side metrics collection sequence

To gather the request queue-size in Thyme, we have enhanced both the Mobile Nodes
Network Layer and the Infrastructure Network Layer to expose the number of requests yet
to be processed. This functionality consists of an atomic integer that keeps track of the
working queue size for each network layer and is exposed to the other layers. We then
create a Metric Collector that gathers and adds these two counters. The pending mobile
requests plus the pending infrastructure requests represent the total number of pending
requests in the Network Layer. The same approach is taken in GardenBed as we enhance
both the Mobile Nodes and Infrastructure components in the Network Layer to report their
queue-sizes as well. With these we can know all the pending mobile requests to that
infrastructure node as well as the inter-infrastructure requests. We then create a similar
Metric Collector that adds both counters.

To gather the service time samples we also had to enhance the Network layer of both
systems. We have created hooks within these layers to be able to tap into and receive
metric reports, such as the service time with represents how long the system took to
process the last request. We then use these hooks to install our ServiceTimeCollector which
we provide out-of-the-box. This will record the service time samples and will return
the average value whenever queried for it. We have also decided to filter the messages
we consider here in order to avoid skewed times between mobiles and infra. Thus, and
because we decided that we would not specifically differentiate between mobiles and

infra, we only consider the common messages, namely the subscriptions and downloads.

49

CHAPTER 4. PROPOSED SOLUTION

Metrics Metric Collector .
{ Upper Layer J [Netwcrk Layer} [Aggregator] { in } { Link Layer }

sendMessage

L

getMetrics

A 4

collect

h J

get metric value

return

return

| inject —
‘Dmetrics LI L
into]]
message ' '

:
forward message

h 4

Figure 4.9: Client-side metrics collection and recording sequence

Finally, to gather the remaining battery in mobile devices we have created a custom
Metric Collector that queries the Android battery service for such value. To keep the
infrastructure nodes homogeneous with the mobiles, we also report the battery level
from those - even though they are not battery constrained - with the maximum capacity.
This enables the infrastructure nodes to still be preferred power-efficiency-wise but, with
the remaining metrics, they can be considered only after any other available replicas if

the expected latencies differentiate much.

4.4.2.2 Client-side

When talking about clients we will only refer to mobile devices running an instance of
Thyme. GardenBed servers can also be clients (of other infrastructure servers), but it
is out of the scope of our work. Nevertheless, these could also be adapted to use our
framework and form a feedback system between them.

To register the metrics and compute scores for each replica we first need our central
piece, the Replica Classifier 4.2.2.1. Here we use the StandardReplicaClassifier we already
provide out-of-the-box. The first thing we have to define is the replicas’ identifier type.
We chose to use the Address structure that represents the virtual addresses we have ref-
erenced in the previous section. These consist of a UUID and a cell identifier. There is a
reserved UUID to represent cells instead of individual nodes, and we have also defined a

new reserved UUID and combined it with an otherwise invalid cell identifier, -1, to create

50

4.4. INTEGRATION WITH THYME GARDENBED

a static address for the infrastructure server. Then we have injected a custom Cluster
Logic 4.2.2.5 component to be able to identify and correctly score cells, also known as
active replicas, which are always the first storage location for the object within the system.
We identify a cell by the UUID in the virtual address, and we then are able to retrieve all
its known composing nodes by the cell identifier. This will then allow for the classifier
to use the average of the nodes scores to score the cluster. This was explained in greater
detail on Section 4.2.2.5.

We also register the Replica Scoring Algorithm 4.2.2.4 on the bootstrap of this compo-
nent. This is essentially the scoring formula that we have described in Section 4.3.3. Still
on the bootstrap of the Replica Classifier, we register the Metric Holder 4.2.2.3 class for
each metric. We use the Exponential MovingAvgMetricHolder that is provided out-of-the-
box to hold the values of the queue-size, service time and response time metrics as EWMAs.
For the remaining battery we use a simple RecordMetricHolder which simply holds the last
recorded value; and finally, for the outstanding requests we use a CounterMetricHolder.

When registering the Metric Holder for the remaining battery, we also register a decay
function to account for the value’s age since we might not receive any feedback from that
server for a large time window even though it still is within the system and its remaining
battery will still decay. This function is as explained in Section 4.3.3. For this we needed
to introduce a new component within the Network Layer, which will register a timestamp
for the first transferred byte between the client and the considered server, and will also
keep a registry of how many bytes where sent and received since. The Metric Holders
already keep a timestamp for the last value registry and the concurrency weight used for
the calculations is the same used for the C3 computations. Lastly, the battery per byte
rate is a number that can be configured within Thyme configurations. These are all the
necessary components to compute the decayed battery level. Also, to preserve the correct
state of the system, if the value falls below the scale minimum, it is assumed as the
minimum, which in this case is zero.

This concludes the bootstrap of the Replica Classifier but we still lack a way to capture
client-side metrics. As described in Section 4.2.2, we need Metric Oberservers 4.2.2.2 in
place to be able to keep track of the outstanding requests as well as response times.

The Outstanding Requests Observer is installed on the Network Layer and each time a
request is sent to server s, it notifies the Replica Classifier to increment the counter on the
CounterMetricHolder. Similarly, whenever we receive a response from server s, it notifies
the Replica Classifier to decrement the counter on the CounterMetricHolder. Because not
all outgoing messages are requests and not all incoming messages are responses, we need
to apply message filters to the increment and decrement notifications of the observer,
otherwise we would possibly see incorrect values for the outstanding requests metric.

The Response Time Observer is installed on the Publish/Subscribe and Storage services
to keep track of the outgoing requests and incoming responses. Although all these mes-
sages have to go through the Network Layer, this upper layer was easier to install such

observer as it already tracks requests. When a request is sent, the observer stores the

51

CHAPTER 4. PROPOSED SOLUTION

request identifier alongside the replica identifier and a timestamp. Then, when the re-
quest eventually resolves - either with a response or a timeout - we measure the elapsed
time and notify the Replica Classifier to record that response time sample indexed to the
replica.

The last step to complete this feedback system is to include the Replica Classifier
component in the necessary layers. First, we need to have this component tap into the
Network Layer in the same way that the Metrics Aggregator does; however, instead of
injecting the metrics into the message before it is sent to the Link Layer, now we want to
extract the Metrics bundle from the payload before we forward the message to the upper
layers to be processed. We thus include our Replica Classifier on the Mobile Nodes and
Infrastructure components from the Network Layer and have it pre-process all incoming
messages to consume the included metrics. With this we have finished the setup and can
now make informed decision on which might be the most interesting replica to download

a data object from.

Algorithm 2 Previous Replica Selection Policy

1: retries < 0
2: forced « false
3: procedure prRocEssDownNLoAD(objectID, replicas)

4: if isInInfra(objectID) AND retries == 0 then
5: downloadFromInfra(objectID)
6: else if retries == MAX_RETRIES then
7: cell « getCellAddress(replicas)
8: download(cell, objectID)
9: forced « true

10: else

11: replica < replicas[0]

12: download(replica, objectID)

13: if isCell(replica) then

14: forced « true

15: end if

16: end if

17: end procedure

18: procedure ONTIMEOUT(request)

19: if retries == MAX_RETRIES OR forced then

20: fail(request.objectID)

21: end if

22: remainingReplicas <« retries == 0 ? request.replicas : request.replicas '\
{request.chosenReplica}

23: retries « retries + 1

24: processDownload(request.object]D, remainingReplicas)

25: end procedure

Now we can sort the available replicas for a given download. To do so, we need to
include the Replica Classifier in the Storage Layer which, as stated before, is responsible to
handle a Notification. The Notification data structure includes the metadata for the data

52

4.4. INTEGRATION WITH THYME GARDENBED

object, including the available replicas to serve the object and if a copy of the object exists
in the infrastructure. The Storage layer already had a replica selection policy which is
synthesised in Algorithm 2. The strategy was to always prefer the infrastructure first
in order to conserve the other devices battery as much as possible. If the infrastructure
had already been tried or was never an option, we started visiting the replicas by the
order they appear in the Metadata. We would try at most as many passive replicas as the
possible number of retries before being forced into downloading from the active replica
(the cell). If we ever found the cell in the ordering before running out of retries, it would
still be the last try since it was assumed that if the object did not exist in the active
replica then it had been removed from the system. Thus, if that last resort failed, we
failed the download. The changes we have made in this policy were that, first we are
not immediately considering the infrastructure in the first place anymore; it can still be
the first option, but it is not guaranteed that it will be. Before starting to process the
download, we check if the object is indeed available in the infrastructure. If it is, we add
the reserved infrastructure Address to the metadata replicas list. Then, we use the Replica
Classifier to sort the metadata replicas list and only after start processing the download.
We still keep visiting the replicas by their order but now they are sorted by our criteria.
Furthermore, we keep the timeouts, retries and the forcing of the active replica if we ran
out of options. We can see the revised policy in Algorithm 3.

With this, we finish our integration of our Replica Selection framework and Algo-
rithm 1 with Thyme GardenBed.

4.4.3 Dealing with Early Hotspots

At this point, there is still one problem that remains unsolved. Inspired by Figure 3.2, we
have proposed the following hypothetical scenario: We imagine a football match where
the people in the stadium are using a multimedia sharing application supported by
Thyme. In the beginning of the game, a big part of the users make a future subscription
to the tag goal, spanning the expected duration of the game. Then, at some point during
the game, there is a goal and everyone starts publishing photos and videos to the tag.
What follows is a barrage of notifications from the broker cell to the possibly interested
devices. Then, most of these devices will potentially try to download each of these files
at the same time, resulting in a really high demand over the publishers’ cell.

In this scenario, there is not much a replica selection algorithm can do because there
are no alternative replicas to select from. The only nodes holding these files are the
publishers and eventually their cell peers, meaning that only the active replica will be
listed as the available replica in all those subscription match notifications. Because of this,
the cell will be serving all the downloads resulting from a notification for a file it owns.
This, in turn, results in a steep battery capacity reduction on the cell nodes, which might
ultimately cause them to leave the system. Moreover, because bandwidth and computing

power are specially limited, nodes might start to queue up download requests, causing

53

CHAPTER 4. PROPOSED SOLUTION

Algorithm 3 New Replica Selection Policy

1: retries < 0
2: forced « false
3: procedure BEFORESTARTINGTOPROCEsSsDowNLoAD(metadata)
4 if isInInfra(metadata.objectID) then
5 metadata.replicas «— metadata.replicas + {INFRA_ADDRESS}
6: end if
7 sort(metadata.replicas)
8 processDownload(metadata.objectID, metadata.replicas)
9: end procedure
10: procedure pPRoceEssDowNLoaD(objectID, replicas)
11: if retries == MAX_RETRIES then

12: cell « getCellAddress(replicas)
13: download(cell, objectID)

14: forced « true

15: else

16: replica < replicas[0]

17: download(replica, objectID)
18: if isCell(replica) then

19: forced « true

20: end if

21: end if

22: end procedure
23: procedure ONTiMEOUT(request)
24: if retries == MAX_RETRIES OR forced then

25: fail(request.objectID)

26: end if

27: remainingReplicas < request.replicas \ {request.chosenReplica}
28: retries «— retries + 1

29: processDownload(request.object]D, remainingReplicas)

30: end procedure

them to timeout.

From our definition of “popular”, we understand that these files are already popular,
or at least, have the potential to be. However, by the system definition, popularity is a
product of a file’s demand, or in other words, how much they are downloaded. In the
presented scenario, it would be ideal if these files could be served from the infrastructure
right from the beginning; but picking the infrastructure as the target download location
is a concern of the downloading node, and it will not target the infrastructure because
the initial notification states that only the active cell contains the file. Therefore, we need
a way to better preserve the replicating cell without depriving nodes from the requested
files.

One first solution that came up was to delay notifications, or send notifications in
batches. Effectively, if the broker cell did not send all notifications at once, but instead

waited until the first notified nodes downloaded the object and only after notified another

54

4.5. FINAL REMARKS

batch, now with more storage locations, the active replication cell would not be so severely
punished. However, this does not seem like a really good solution because it intentionally
degrades the quality of service for some nodes in favor of others.

Another possible solution, and the one we have picked, is to redirect the download
requests to new replicas. For this, we have introduced a new configurable setting into
the system: the threshold value of concurrent downloads one node can serve. All the
downloads beyond this threshold should be redirected to another replica whenever possi-
ble. To redirect a download to another replica, we have leveraged the existing Download
Fail message, adding a redirection flag. We have also added a section to include the most
up-to-date metadata for the target object, which will include the new storage locations.
Instead of a File Message, the serving node sends a Download Fail message in response to
the download request, containing these extra fields. This gives the downloading node the

possibility to pick a new replica to fetch the file from, now using proper replica selection.

4.5 Final Remarks

In this chapter we started by presenting the framework we have created to be the basis
of our solution for replica selection in MEC systems. We made a deep dive into each
component and saw how the programmer could use them to build a replica selection
mechanism into his system. Then, we went over our proposed algorithm and how it deals
with the extra challenges introduced by the volatility found in MEC environments. And
lastly, we analyzed the integration of our framework and algorithm with the existing MEC
system, Thyme GardenBed.

Now that we have a solution in place we need to assess how effective it is. To this
end, we have designed and ran some scenarios to answer some fundamental questions
regarding the validity of our solution. Next chapter goes over the evaluation process and

presents our experimental results.

55

Chapter 5

Evaluation

In this chapter we will go over the experimental evaluation process we used to validate our
framework and its integration with Thyme GardenBed. We will first discuss which ques-
tions do we want to answer with this evaluation, then we will explain how we can answer
those questions, followed by the necessary experimental setup to apply our methodology.
Having discussed all the preparations, we will then discuss the experimental results, if
they were expected and what did we learn from them. Lastly, we close this chapter by

summing up our findings.

5.1 Goals

Before being able to evaluate anything, we have to decide what to evaluate. Since we have
built a replica selection mechanism and had it integrated within an existing system, the
big question is how much did the system improve? In the broad sense, and as explained
before, our aim was to improve latencies and overall system resources usage (such as
battery capacity), as well as being able to better react to network congestion and system’s
performance degradation. In Chapter 4, Sections 4.3.1 and 4.3.2, we have explained in
detail the faced challenge and in Section 4.3.3 we have explained how these principles
are baked into our work.

Because these concerns are properties (or desired side-effects) of our solution, it would
not make sense to test each of them separately. Thus, we gather them all into a simpler
question: how good is the replica selection process? In other words, do we consistently
pick the best replica amongst the available ones? Ideally, we should be able to compare
our algorithm’s decisions with which would actually had been the best option available
option. With this, we could compute an average error value that represents how accurate
our replica selection strategy is. Furthermore, we could apply the same methodology to
the Thyme’s previous replica selection scheme as well as other baselines that might be
interesting to consider.

Even with the best strategy, the replica selection process can only be as good as the

available information about the replicas. Little information can lead to bad, uninformed

57

CHAPTER 5. EVALUATION

and even arbitrary decisions. Stale information, on the other hand, can lead to confident
bad decisions. Ideally, we would know about any system change as soon as it happens;
however, that is usually (if not always) not the case. Thus, it poses the question: how
fast can we perceive this changes? How quickly can we propagate and perceive this
information? How reactive is our system?

Lastly, we would like to know the overhead introduced by our module. Effectively, we
are introducing more bytes into the network by piggybacking system metrics on existing
messages. Thus, we would like to know how much. In short, we want to know what is the
increase in traffic volume and how does it relate to performance gains.

In summary, we want answers to the following questions:
* How good does our replica selection strategy perform?
* How reactive is our solution?

* How much overhead does it introduce and how does it relate to the results for the

first question?

5.2 Methodology

Now that we know what to evaluate, we are missing how. In this section, we discuss
our experimental methodology and how the produced results answer the questions from
Section 5.1.

To assess whether or not we consistently pick the best replica, we need to know two
things for each download: the chosen replica and the actual best replica. To know which
replica was chosen is just a matter of recording it; to know which would have otherwise
been the best choice, however, requires a bit more effort. To know the latter, we came up
with the idea of an oracle.

The oracle is an extra piece of software that needs to be fed with the whole system
information to be able to answer any question with the highest degree of certainty. It is

composed of two parts:

* an extra persistent logging component that is enabled within the system nodes to

record their state and downloads information;

* a post-processing script which computes metrics (e.g. how good was the replica
selection on each specific download) over the previously collected runtime data.

With this we can now answer our first question, “How good in our replica selection strategy?”.
To start, each node creates a new record for each download, containing the important
information that would impact the replica selection decision, such as the available infor-
mation about the system (i.e. which metrics does it have for each of the nodes it knows

at that point in time), as well as the replica it chose. Furthermore, each nodes records

58

5.2. METHODOLOGY

a snapshot of itself at each second, containing its most up-to-date metrics and stored
(replicated) objects.

Using the download records, we can compute the degree of effectiveness of each
algorithm, i.e., we can assess whether the given algorithm is consistently picking the
replicas which best satisfy our previously established concerns by comparing its results
to the oracle’s and if not, how close it was. We can determine this by comparing the
replicas’ order as sorted by the node to the order as sorted by the oracle. The idea is to
run this test in the exact same conditions for different baselines and use the results as
a base of comparison. Moreover, we use these results to understand the cost/benefit of
more complex solutions - such as ours - compared to simpler solutions such as a random
selection algorithm, or other intermediary solutions such as the C3 algorithm designed
for Cloud environments and a slightly tuned version for MEC environments.

Using the recorded system snapshots, which contains the most up-to-date metrics of
each node and their stored contents at each moment, we can use the oracle to compute
the optimal replica system-wide to the node’s decision. The difference from the previous
measurement is that now we are not evaluating whether the selection scheme made the
best decision with the information it had available at that moment - keep in mind that
even though some algorithms do not use any of our metrics or very few, we assume these
are available to all baselines regardless of utilization - but instead we are considering the
most up-to-date system snapshot, containing not only the replicas presented in the down-
load notification but also replicas that have not yet been registered as being replicating
the target object, or subtracting any node that might have stopped replicating that object;
all the nodes” metrics considered for the computations are also the most up-to-date to the
download’s moment as reported by the nodes themselves. By being able to sort the whole
replicas in the system using their exact most up-to-date metrics, we are able to determine
just how good a replica selection was system-wide using only the available information in
the node. This can give us a rough estimation of how effective the whole replica selection
module is, as well as a rough estimation of the reactivity of the system. For this test, we
defined the following baselines:

1. Random Selection - The client sorts the available replica in an arbitrary fashion;

2. Infrastructure First - The client always picks the infrastructure whenever it is

available;
3. C3 - The cloud envisioned implementation of C3;
4. MEC C3 - A slight variation of C3 which is more adjusted to MEC environments;
5. Wasabi - Our replica selection algorithm.

Still on the topic of reactivity, we want to have a better estimation of how the system
reacts to change, specially abrupt variations on replica metrics. Our concerns here are

in regards to whether the system re-prioritizes replicas upon one of the preferred ones

59

CHAPTER 5. EVALUATION

becoming a bad choice or even if nodes can get access to such information before it needs
to be put at use (i.e. before trying to perform a bad download). To this end, we can
create a controlled environment where we use the same set of replicas for consecutive
downloads. Then, we can abruptly drop the battery levels of the preferred one(s) which
should cause it to rank worst, and wait a variable amount of time before attempting a new
download. With this, we can see if the downloading node(s) can get the battery metric
updates in time to impact their decision.

And last but not least, we want to measure the overhead of our solution in the inte-
grating system. Specifically, we want to know how the volume of data in transit increases
with the piggybacked metrics. Currently, the nodes already report the amount of bytes
they send over the network. We can aggregate these measurements of each node to know
how many bytes have been in transit for a given test. If we do this for an instance of
the system without our module, and one with it integrated, we can then compute a ratio
of the total bytes transferred to have a value that represents the increase. After, we can
compare this ratio with perceived increase in the quality of the replica selection process

and compare the two to understand if there is a good cost/benefit to our solution.

5.3 Experimental Setup

In this section we discuss our testing environment. Each Thyme node represents a mobile
device in the topology of the system. However, we do not have access to a sufficient
amount of devices to properly set up a real testing environment. Moreover, even if we
did, it would be troublesome to constantly update the application and further manage
each device. Thus, we resort to a simulated environment which allows us to better control
each device and its performed operations, as well as system topology (i.e. how many nodes

to use).

5.3.1 Simulator

The simulator we used is one developer in-house and which utilizes a trace-based simu-
lation framework. We represent our simulated environment with a trace file which lists
the operations we want each node to perform and when, such as going online or offline,
subscribing a tag, publishing to a tag, and so on. The simulation itself is a single process
in a single machine, emulating each mobile device in a separate thread (and from here,
each device can use as many threads as necessary).

Furthermore, the simulator replaces Thyme’s Network Layer to support logical dissem-
ination of messages between any number of virtual nodes. Although the communication
between mobile nodes is now captured in a logical layer that removes the need for the
Link Layer for mobile-to-mobile communication, the communication between mobile
nodes and infrastructure still uses the usual network layer. This is because we do not sim-

ulate the infrastructure. Instead, we run the actual infrastructure server, GardenBed, in a

60

5.3. EXPERIMENTAL SETUP

different process and use socket communication with the usual TCP/IP stack to exchange
messages.

Each operation within the trace will map to an action. An action is the logical repre-
sentation of the operation. Each kind of action has a mapped behavior which represents
the effect the action should cause in the system, and the action itself contains the values
to parameterize such behavior. Furthermore, we have to provide mock implementations
for the runtime components provided by the Android SDK, which let us use and read
information about the underlying hardware, such as battery levels. To control the initial
battery capacity, we have edited the existing NODE action, which spawns a new mobile

device, to contain the initial battery value.

5.3.2 Traces

Now that we have discussed the simulator, it is time to discuss our testing scenarios.

We started by choosing a scenario to evaluate how good the replica selection algorithm
is. To properly evaluate this, we decided to create a scenario with lots of subscriptions and
publications. We also wanted a sufficiently large amount of nodes to be able to span multi-
ple cells. To this end, we have created a script that generates a scenario according to some
specific parameters, namely the number of mobile nodes to spawn and the number of
tags to use for publications and subscriptions. After testing several scenarios, we decided
to go with 64 mobile nodes and 8 distinct tags. Also, as said before, the infrastructure
server is not simulated; Instead, we spawn it in a different process. The virtual devices
are configured to find the infrastructure server through broadcast discovery, which will
allow them to then know the infrastructure address to further open TCP/IP connections.

The generated trace is divided in 4 parts, each representing a phase of our simulated

environment:

1. Spawn all the 64 nodes and let them join the system. Only after all the nodes are
online and ready do we proceed;

2. All nodes have a 50% change of subscribing to each of the available tags. This
will cause some tags to be more subscribed than others, which will cause some
published items to be popular later on. All these subscriptions are spanning into
the future, meaning that from that point onward, each time some node publishes
to one of the subscribed tags, the subscribed devices will all the a notification. We
have configured all devices to download the object upon a notification, in order
to maximize the number of downloads in the simulation and thus have a more

accurate measure of the selection process;

3. After all the future subscriptions comes a barrage of publications. As before, each
node has a 50% chance of making a publication on each tag. This will trigger
several notifications on each publication, which in turn will trigger the same number

of downloads. The most downloaded items might eventually be pushed into the

61

CHAPTER 5. EVALUATION

infrastructure. Because these are all new publications, they will only be available
from the active replica, which means that the cell address will be the only one
available in the list of replicas. This is not very interesting because there is only one
option and thus we are not able to make any kind of selection. However, everything
up to this point serves to the purpose of warming-up the system, from having
nodes contact each other and exchange metrics to giving the possibility to have the

infrastructure as a replica option for the most popular items;

4. In this final step, which spans through most of the simulation, all nodes have a 70%
chance to subscribe to the tags they have not subscribed before. These subscriptions,
however, are spanning to the past, meaning that each of them will pick all the items
published to the same tag on the previous step. In this phase we will continuously
have a high volume of downloads in the system which means that smart replica
selection might play a big part in load balancing and resource management. Most
of the items here will become popular, meaning that as we progress through the
trace, more and more downloads will consider the infrastructure as a possibility as

well.

We use the same trace to run a simulation for each of the baselines outlined in Sec-
tion 5.2. Then we post-process the log files from Thyme and GardenBed using our oracle
to retrieve the necessary data and apply the detailed methodology of Section 5.2.

After these, a different trace is used to test system reactivity. We create a trace with
10 nodes and each makes a future subscription to the same 10 tags. Then, we make each
one of them publish an item for the corresponding tag (e.g. nodel publishes to topicl,
node?2 to topic2, and so on). Then, we introduce an extra node and start a warm up phase
to let the nodes know each other. Finally, the extra node starts making subscriptions
into the past to each of the tags and, between each subscription, we abruptly drop the
battery levels of one of the nodes and wait a configured amount of time to perform the
next subscription. Specifically, we subscribe to topic 1, then drop the battery of node 1
and wait 9 seconds before subscribing to topic 2 to see if the node perceived the battery
change of nodel. We repeat this process with all nodes and tags, ultimately reaching the 1
second interval between the last two past subscription. The idea is that, since the available
replicas will always be the same 10 nodes, we should compute different orderings of the
same replicas when performing the next download - which will happen in response to
the notification we receive after subscribing to the past - since we are forcing big battery
drops between each download, which should reflect on the affected replica’ score. If such
reordering happens, we know that the metrics update reached the downloading node on
time; if not, we know that the replica selection was made using stale information. there
are some other changes we node to make to the system for this trace execution to work
as expect, namely, we have to force the client to expand the virtual node address into all

the nodes it knows with the same address group. This is because each node is part of the

62

5.4. RESULTS

same cell, and thus the cell address is what is presented as the available replica, not the
actual nodes.

We also introduce a third trace which is a smaller variation of the first, i.e., with
less nodes and less operations. We opted for 16 ran the same script to generate the
trace. The idea is to run this trace twice, with and without our solution. From both
simulation instances we can then compute the total amount of bytes transmitted during
system execution, and finally compute a ratio between the two values to know the total %
increase in bytes caused by our solution. We can also check the % performance different
between our solution and the previous one - Infrastructure First - from the first test, and

finally compare these two values to have an indicator for cost/benefit.

5.3.3 Hardware

To support our simulated scenario, we made use of the computational nodes cluster
available from our college department. We have run the simulator in a AMD EPYC 7281
cpu with 16 cores and 32 threads. The system also had 128 GiB DDR4 2666 MHz of RAM
and a 2 x 10 Gbps.

We have run GardenBed in a second node of the cluster with the same specification.
The communication between simulator and infrastructure was made through the network
connection link while the communication between nodes was made through the logical

layer provided by the simulator.

5.4 Results

In this section we present and interpret the experimental results of our system. We split
the results into sub-sections, one for each of the questions laid out in Section 5.1, which

we answer on the respective section.

5.4.1 Replica Selection Quality

As described in Section 5.2, we have established some baselines to understand how they
compare to our solution and how much it impacts the integrating system, Thyme Gar-
denBed. We sorted each baseline by their implementation complexity, starting from a
totally arbitrary selection, to always giving preference to the infrastructure when it is
available (which was the previously established solution), to making use of feedback met-
rics with the C3 algorithm, followed by a new version of C3 tuned for MEC environments
and finally our solution, Wasabi.

Below we present the same kind of chart for each baseline: the horizontal axis rep-
resenting time, more precisely instants from the trace execution, and the vertical axis
representing, as a percentage, the quality of the replica selection: 0% meaning that the
worst possible choice was made and 100% meaning the best. All the charts have two

plots: blue and orange. The blue plot contains the points representing the quality of the

63

CHAPTER 5. EVALUATION

replica selection for a given download happening at a certain instant, and exclusively
considering the replicas that are listed as copies of the target object within the download
notification. The orange plot contains the points representing the quality of replica selec-
tion for the same download at the same instant, but now considering a global snapshot of
the system where we know the exact metrics for each node at that same moment, as well
as what are the actual replicas for the target object. These evaluation metrics have been
discussed in Section 5.2. For instance, if some other node has the object in its storage
already but is still not in the available replicas list, we still consider it. This is because we
want to understand the real impact each replica selection has on Thyme GardenBed and
how much room there is to improve the feedback system. Even if a node always makes
the best choices with the available information, that information will most likely not be
100% accurate with the current state of the system. These can also help in understanding
the reactivity of the system. This means that for each download in the chart there will be
two points: one in the blue plot and another one in the orange plot.

Moreover, we present additional information regarding how many of the existing
replicas were included in the download notification (i.e., how many replicas of that object
did the system already know), as well as how good is the score of the selected replica
versus the best available option. We compare the computed score for the selected replica
to the score of the actual best option amongst the available ones because we want to have
one more way to compare each baseline to our solution other than just the ordering of the
replicas. Even if a given baseline decides on the second or third replica, it might happen
that their scores are very similar and therefore the difference in the selection might be

negligible.

5.4.1.1 Random Selection

The Random Selection strategy takes a completely uninformed approach towards replica
ranking as it simply shuffles the available list. For this reason, our expectation towards
its benchmark was that it would be the worst performer. And indeed, Figure 5.1 proves
that the quality of the selected replicas is fairly inconsistent. Looking at the blue plot,
even though it takes the best available replica for some of the downloads, these were all
scenarios where the infrastructure was an option and, by chance, it was picked. When
we say by chance though, the odds where actually favourable. Looking at Figure 5.2 we
can see that most downloads are only considering a tiny part of all the existing replicas
for that object. In fact, for this simulation we knew on average about 40% of the existing
replicas on each download. The average number of replicas available on each decision
was around 3.6 replicas. Since we were only considering for statistics the downloads with
3 or more replicas, this absolute number shows that most downloads had only 3 replicas
to pick from. That is a 33% change to pick the infrastructure if it is amongst the available
options. Other than those scenarios, we rarely see any download with a selection score

over 80% and there are more below 40% than on any other baseline.

64

5.4. RESULTS

100% >
80%]\

60%

40%

20%

Replica Selection Quality Compared to Oracle

0%

1334
1369
1374
1378
1386

-
o
LN
-

1465
1483
1511
1539
1545
1550
1555
1562
1575
1580
1583
1586
1589
1598
1602

Moment in Simulation

—-—Known Replicas Decision Score —-=—Global Decision Score

Figure 5.1: Replica Selection Benchmark for the Random Selection Strategy

90%
80%
70%
60%
50%
40%

30%

Percentage of Known Replicas

20%

10%

0%

< O < 00 VW N M H = 0O N O N &N 1N O M W O 0 o

m © R N 00 W © O o4 M & b D © N ® © 0 ® & O

M on m 0n oNn < < nown N n mn N n wn wn wmn O

D D B B I B B B = I s T o R B D B I B B o B o B o R |
Moment in Simulation

Figure 5.2: Percentage of replicas available in the download notification comparing to the
actual number of nodes that already has the object in its storage.

Looking at the orange plot in Figure 5.1, we can see that the quality of the replica
selections from the perspective of the oracle is not much different. In fact, on average,
this strategy scores 69% for replica selection quality over the known replicas and 68%

looking at the exact snapshot of the system at that moment. It could be argued that

65

CHAPTER 5. EVALUATION

considering more replicas than on the blue plot, the replica selection quality should be
even worst. If we look closely, there are choices which score goes below 20% here, which
means that some choices had a big potential to slow down the system. Still, there are some
instances where the choice was the best possible one, most of these still considering the
infrastructure. It is important to notice that in only very few occasion does the the select
replica represent both the best option amongst the ones available for the download and
amongst all the existing replicas. When the choice represents one of these maximumes, it
is usually in an exclusive way. This also hints to the asynchrony between stored metrics
and system state. This, however, is something that has no impact on this strategy given

that it has no logical selection criteria.

100%
80%

60%

40%

20%

Selected Replica Score / Oracle Replica Score *100

0%

= o !w O un
= M S 1N
In 1N 10 10 In
N " -

Moment in Simulation

1334
1369
1374
1378
1386
1483
1501
1562
1575
1580
1583
1586
1589
1598
1602

1465

Figure 5.3: Ratio between the select replica score and the actual best replica score for the
given download.

Regarding the score difference between the picked replica and the actual best, it also
has the steepest curve amongst all the baselines (Figure 5.3), holding on average 78% of
the best score. This means that there is enough room to make bad decisions that might
slow down the system. Granted, the trace executions for the Random Selection always
yielded less total downloads than any of the others, meaning that some download requests

incurred in big waiting queues.

5.4.1.2 Infrastructure First

Infrastructure-first was the previous solution and possibly the most interesting one to
compare our solution to. The infrastructure is always preferred when it is available,

regardless of load and network conditions. We argue that this creates a major possibility

66

5.4. RESULTS

for a hotspot. When the infrastructure is not available though, it falls back to the order
of the list presented in the download replicas, which should compare to the Random

Selection since there is also no criteria on that ordering.

100%

80%

60%

40%

20%

Replica Selection Quality Compared to Oracle

0%

N N < 0O O F +d O N O 00 VW O O N 0O O NSNS o OO0
N o0 1D IS 00 O NN N < 1D W VO N 0 O " A N M & 1N © O S
0N & & S T NN NN n wn wn O O OV VU U © © O O v
L B I B | L I I B B B I T T R B | L T I e B B | L B |
Moment in Simulation
-—Known Replicas Decision Score Global Decision Score

Figure 5.4: Replica Selection Benchmark for the Infrastructure First Strategy

Figure 5.4 shows a much more consistent replica selection quality towards the bench-
mark, compared to Random Selection. The great majority of downloads were indeed
targeted towards the infrastructure and, to some of our surprise, the oracle agreed on
the infrastructure almost always being the best available option, as depicted from all the

100%’s. After further analysis, we have found that this result was due to several points:

* First, our benchmark was pretty linear and without any artificial network conges-
tion or system pauses introduced. Because the execution environment was a very
controlled one, these phenomenon did not occur by themselves. Thus, mobile nodes

never experienced large latencies from the infrastructure;

* The infrastructure always reports 100% battery capacity, as it is not a battery con-
strained server. As previously explained, this is a design decision to make the
infrastructure server seamless with the mobile ones, although creating a conserva-
tive bias towards it. Because no other device in the simulation started with 100%
battery and, at the moment these downloads occurred the batteries had been slightly

drained already, contributing to the infrastructure bias;

* Moreover, the infrastructure consistently reported service times in the order of 1
millisecond whereas the mobile nodes had, on average, 132 milliseconds of service
time. This can be justified by the fact that we had a dedicated machine for the

67

CHAPTER 5. EVALUATION

GardenBed server, whereas, in spite of the available hardware resources, the mo-
bile devices were all being simulated from the same process and thus had some

limitations such as the number of threads a single process can spawn;

* Lastly, we verified that each node was very limited in the number of concurrent
requests it could make. Adding this to the time interval between each trace action,
the fact that nodes process the simulation trace in a synchronized fashion (nodes
have to wait for the others to finish processing the current action before it can move
to the next one) and the service time of GardenBed, means that the number of
outstanding requests towards the infrastructure would rarely grow. Since this is
the most penalizing metric towards expected latencies, the expected latency for the

infrastructure would always be reasonable.

To sum up, according to the previous points the infrastructure is greatly favoured in
these benchmarks since it reports maximum battery levels at all times and the expected
latencies are very reasonable. However, looking at the actual download conditions (orange
plot) we can see that the infrastructure was rarely the best option. Still, selecting it always
resulted in a selection quality above 60%.

When the infrastructure was not available, however, this strategy falls back to an
arbitrary selection, which results in skewed results compared to the alternative. Most of
the downloads for non-popular objects have much lower replica selection quality, some
even dropping below 40%.

The difference between the selection quality of the available replicas and known met-
rics versus the actual system state stems mostly from the outstanding requests metric, as
explained above. Although each node individually was not sending many concurrent
requests to the infrastructure, the infrastructure was still receiving many requests at the
same time, from different nodes. Thus, each node individually expects a better infrastruc-
ture latency than it can actually provide when considering all system nodes. On average,
the selections had a 96% quality considering the available information and only 68% over
the actual system state. This last percentage is, in fact, very similar to Random Selection’s,
meaning that this baseline has the same potential for decisions that might slowdown the
system.

To compare this scenario with a more download-intensive one, we removed the con-
currency limit of each individual node on the simulator and ran the same trace. Figure 5.5
shows a very different story from the previous benchmark. Raising the number of con-
current requests per node, and therefore the number of outstanding requests towards the
infrastructure, makes the quality of the replica selection drop significantly when priori-
tizing the infrastructure. Here, the quality of replica selection considering the available
information and the global system state dropped to 73% and 53%, respectively. This tells
us that this solution has even more potential for bad decisions than the previous Random
Selection (!). This is because it is intentionally creating a hotspot which, in the face of

infrastructure delays or network congestion can bring the system to a halt.

68

5.4. RESULTS

] B
. | /~)/ \v @& »/\V\
) .V

20% °

¢

<

Replica Selection Quality Compared to Oracle

Oﬂﬂ

M O N AN A O TN AN NN WOWOO OUN O M— O

O O MNN WO T ANME N OO O MIMWMNMNOGWOWO O o

NnMmMMmO Nt ITITITITITIILTOOMNDININIDININOG OO

R I B B B O B O B O O B O IO O IO B O T O IO B B B B B I |
Moment of Simulation

—-—Known Replicas Decision Score —-=—Global Decision Score

Figure 5.5: Replica Selection Benchmark with extra allowed concurrency for the Infras-
tructure First Strategy.

Regarding the percentage of known replicas at download time versus the actual num-
ber of replicas in the system for the given object, it follows the same trend of the Random
Selection benchmark where, on average, nodes had 40% of the existing replicas available
in the download notification. This will keep being a trend throughout all benchmarks
and we discuss it in more detail at the end of this section.

STV e

80% 80%
60% 60%
40%

40%

20% 20%

Selected Replica Score / Oracle Replica Score *100
Selected Replica Score / Oracle Replica Score *100

1372
1433
1454
1473
1489
1504
1521
1530
1541
1552
1560
1568
1576

§ 1586

g 1600
1612
1618
1630
1637
1647
1654
1662
1669
1679
1363
1366
1375
1382
1385
1398
1412
1421
1431
1444

= 1450
1464
1472
1481
1485
1495
1507
1536
1556
1570
1576
1582
1588
1599
1603
1611
1620

5
3
H
2
9
v
3
@
g
S

(a) Benchmark 1 (b) Benchmark 2
Figure 5.6: Ratio between the select replica score and the actual best replica score for the

given download.

Finally, regarding absolute score differences, we have two different indicators. On one
hand, looking at the first benchmark (Figure 5.6a) we see that the scores of the replicas

selected by this strategy were very identical to the ones which would have been picked by

69

CHAPTER 5. EVALUATION

Wasabi, with an average of 99.3% score similarity. On the other hand, when we introduce
extra individual request concurrency, this value drops significantly to an average of 83%

(Figure 5.6b), following the trend of the chart in Figure 5.5.

5.4.1.3 C3

C3 was our highlighted replica selection algorithm for cloud environments. Since it
was the starting point to our work, we included it as a baseline to understand how it
performs without being adapted to MEC environments. Figure 5.7 shows that C3 still
had an interesting behavior in a MEC environment. Most choices made using the available
information were spot on, despite having some distinctively bad ones as well. The average
selection quality rate was 93%. The worst choices, mainly the ones we see below 40%
were due to the fact that C3 does not account for battery consumption thus, replicas
that might soon leave the system due to a power shortage are still selected in order to
minimize latencies. Furthermore, C3 does not account for unknown replicas, meaning
that when there is a replica amongst the available set to which we have no metrics, it is
considered only as a last resort. Thus, C3 will pick replicas it knows will perform badly

over replicas it knows nothing about.

T I

80%

| |
60% || \\

40%

._—7
PN

20%

Replica Selection Quality Compared to Oracle

0%

00 W O 0 =« 0 O MO O WO WN WO dONNMOS 4o N O
00 O O =1 N N <t N NNV O A AN M T N OMNNOW OO 1M < 1N 0
n M < 9 S T T n wn n wn n wmwuwmwmw o v vV O v o
™ ™ e e e e e e e e e e
Moment of Simulation
-—Known Replicas Decision Score Global Decision Score

Figure 5.7: Replica Selection Benchmark for C3 in a MEC environment.

Regarding the quality of the replica selections according to the global system state,
we see a positive increase compared to the previous baselines, scoring an average of
80%. This is the first baseline to make use of available feedback metrics which means
that having a feedback loop between servers and clients can have a positive impact on

a replicated system. As we can see on the chart, the worst system-wide selections also

70

5.4. RESULTS

match the worst selections made with the available information. Most selections are still
above 80% and, following the trend from the previous baselines’ benchmarks, only about
40% of the existing replicas were available for selection on each download. This means
that the stored replicas metrics on each client were very identical to the actual system

state when performing a download and the gap between both plots can be justified by:
1. The disregard for the battery levels;
2. Considering bad replicas before unknown replicas;

3. Not knowing the best existing replicas on some of the downloads, making it impos-

sible to select them despite selection scheme.

Wil F\/’\Mf“\ i/ M\/r” N
A |
| V

60%
40%

20%

Replica Selection Quality Compared to Oracle

0%

[ee] o (2] wn wn Ll wn R (2] o] ~ Ll < (o] o o ()] [(e) (=) i [(e) (2]
< wn wn [oe] Al o < wn wn O ~ o] (o)) o — o~ o~ [32] < ~ 5] (o))
Mm Mnm N N & < 9§ < 8 & < <5 <5 0 ononon ononon onown
i i i i i i i i i i - i - - - - i - - - i -
Moment in Simulation
-—Known Replicas Decision Score Global Decision Score

Figure 5.8: Replica Selection Benchmark for C3 in a MEC environment with increased
client concurrency.

We have also made a second benchmark allowing for more individual client concur-
rency just to guarantee that the results were not overly biased by the infrastructure as in
the Infrastructure First approach. And as shown by Figure 5.8, we can see that they are
not. This is because the algorithm adjusted itself to the circumstances. When using the
Infrastructure First approach, it picked the infrastructure as the target replica if it was
available, disregarding any type of metrics; this led to poor choices on the second bench-
mark where the outstanding requests to the infrastructure tracked by each client rose
and the expected latency was a more pessimistic indicator. In the case of C3, it reacted
to the increased outstanding requests and picked a different replica when the previous

baseline would have decided otherwise.

71

CHAPTER 5. EVALUATION

100% /-—V _\/ v

80%
60%
40%

20%

Selected Replica Score / Oracle Replica Score *100

0%

00 O O o 0 WMOO WO WNLLW O dON~NMNNDTF O N O

00 O O =1 MM N < LD NN O A AN M N OMNNOWOOO A M < 1N 0

N N & & 8¢ 9 8@ 8§ & &S < DD WD W W0 WM WMmWMmMmO OO O oo

Lo B o R I O o IO B IR o O IR B o IO R o SO T e O R R T G R B I O IR o IR o R |
Moment of Simulation

Figure 5.9: Ratio between the select replica score and the actual best replica score for the
given download.

We can also see the gap closing on the score difference between the picked replica and
the best amongst the available ones, as classifier by our criteria (Figure 5.9). The average

replica selection holds around 95% of the score of the best option.

5.4.1.4 MECC3

MEC C3 is still the C3 replica ranking scheme, but instead of disregarding unknown
replicas and look at these as a last resort, it scores them with a neutral value (i.e. in the
middle of the scale of possible scores) to try and place them between the best replicas
and the least desirable ones. This allows for possibly better replicas to be picked much

earlier and is thus a preferable behavior in MEC systems.

From Figure 5.10 we can see that this yields some positive results even though not
drastically positive. The average replica selection quality rose from 93 to 95% and the
quality of those selections system-wide kept in the previous 80%. Still, as we have seen
in the previous section, there are additional improvement vectors to C3. We have once
again observed around 40% replica availability on download and the score gaps were also

similar.

We still observe some specially bad replica selections, such as the one at moment 1545.
This is mainly caused by not taking power consumption into consideration. Also, being

unaware of more than half of the existing replicas plays a big part.

72

5.4. RESULTS

TR

60%

40%

20%

Replica Selection Quality Compared to Oracle

0%

N O N N o << D N OO O O VL AN O N O O W WU N 0
wn n ~N 0 O = M NS 00O 0N MM g O NN 0 0O 0O O o oo
Mm MM Mm on m < < S T T NN N NN N N N wW LW W W o
Ll Ll - - Ll - Ll - Ll Ll Ll - - Ll Ll Ll - - - - Ll - -
Moment in Simulation
-=—Known Replicas Decision Score Global Decision Score

Figure 5.10: Ratio between the select replica score and the actual best replica score for
the given download.

5.4.1.5 Wasabi

Finally, we present the results to our solution. Up until here we have seen the added
benefit of using client- and server-side metrics to estimate the expected latency from each
replica, which has resulted in more predictable selections. Still, there are several con-
cerns that remain unattended, such as power consumption and metric values decadence.
Wasabi gathers all these concerns into a single replica selection mechanism in order to
improve MEC systems. The results are as presented in Figure 5.11.

First, looking at the replica selection from the available replicas, we see that it con-
sistently picks the best replica. This was expected since the same specification is imple-
mented on the evaluation side (the oracle) and we use the same information as the client
had on its’ state to rank the replicas. This was also a way for us to validate our algorithm:
if the results were inconsistent, we would have to review both implementations. Essen-
tially, this is what we have been comparing the other baselines to. The most interesting
part of the chart is the replica selection quality considering the system snapshot at that
moment. As we can see, not always did our algorithm pick the best replica according
to the exact system state. And this is essentially because the client was not perceiving
the whole system as it actually was. As in the other baselines, this is the common enemy.

There are two important factors at play:
1. The client did not know the exact replicas of the target object at download time;

2. Some of the metrics stored at the client’s selection module were already outdated

or the client was missing some metrics.

73

CHAPTER 5. EVALUATION

100% sag-es \a—as PP

80%

60%

40%

20%

Replica Selection Quality Compared to Oracle

0%

D o — (o] — ~ o o < (o)) o o (<2} wn [} o0 ~ ~ o o (o))
< un (22} o < < wn wn o O ~ ~ ~ 0 (<) n ~ 0 o — ol
Mm MM M & ¥ S 8§ & 8§ S 8§ & & & < 0 onon ©® 0
- -
Moment in Simulation
—=—Known Replicas Decision Score Global Decision Score

Figure 5.11: Replica Selection Benchmark for Wasabi

Regarding 1., we have once again estimated that, on average, the client was presented
with about 40% of the existing replicas for each download. We have seen that it is a
common trend among the simulations and which we will explain in the following section.
Regarding 2., the quality of the selected replicas is directly proportional to the amount
and freshness of the available information. In the best case scenario, the client would
have an omniscient view of the system such as our post-processing tool which is able to
reconstruct the exact system state at a certain moment. However, because we are talking
about a distributed system, all we can do is try to improve the propagation of new metrics
as well as the information about replicas being created or destroyed.

Nevertheless, we argue that the results are satisfactory as this benchmark had more
than twice the number of best selections compared to any other, regarding the current
system state. Also, most selections stayed around 80 to 100% while the remaining choices
did not drop below 40%. On average, the replica selection quality was 82% in spite of
considering only 40% of existing replicas, which is a big improvement compared to the

previous solution in place, Infrastructure First.

5.4.1.6 Closing Remarks

In this section we have benchmarked all proposed baselines regarding their replica se-
lection quality. We have presented the results in order of implementation complexity,
starting from the Random Selection up until our final solution, Wasabi. We have seen
improvements on each baseline over the previous one, the biggest leap being from In-
frastructure First to C3 as it starts to use client- and server-side metrics to make better
informed decisions.

In spite of our solution having by far the best consistency on picking the best replica,

74

5.4. RESULTS

it is still prone to pick a less favourable replica if the client does not have the most up-to-
date information about the current system state. In our benchmarks this was observed
mostly due to the available replicas (i.e. the replicas listed in the download notification)
representing, on average, less than half of the already existing copies of the object. This
phenomenon happened due to the way we wrote our traces, specially in the part of
the past subscriptions. Here, nodes subscribe to the same tag all at once, with almost
negligible intervals between each subscription and start downloading the same objects
almost simultaneously and some are still downloading other objects from the future
subscriptions. This is why most replicas do not appears listed in the available copies of
the object download notification, because they are too recent and that information has
not propagated yet. This can be a whole parallel topic as replica management is out of
the scope of this thesis. In fact, the metadata update policy is something that was are
part of Thyme GardenBed and is something we did not touch. Regardless, a system that
would react that fast to this kinds of updates is probably not achievable. At most, the
notification could also include the currently downloading nodes alongside the effectively
confirmed replicas and the client could then try to be optimistic and contact one of those
instead.

Still on up-to-date information, we have also noticed that already outdated metric
readings we also behind some of the less satisfactory replica selections. This concerns
our feedback mechanism and, just like the information about replica availability, there
were times where our mechanism could not keep up with the pace of the trace execution.
We are totally against adding adding new messages to the system specifically for this pur-
pose and we are already making use of all existing messages to piggyback the necessary
metrics. Thus, if we do not add extra vehicles of information then the solution might be
adding extra information onto the current messages. We will be going through possible

improvements in the next chapter. Nevertheless, we are satisfied by the current results.

5.4.2 System Reactivity

In the previous section we got a rough estimation of how reactive the whole system is.
We have seen that it struggled to keep the list of available replicas up-to-date and some
replica metrics were also outdated for some clients at download time. In this section we
focus on the reactivity of the feedback system, i.e., how fast can a client update its metrics.
To this end, we run the scenario described in Section 5.2 where we have a fixed number
of mobile nodes plus one, replicate a set of objects through those same nodes and use
the other node we left out to download those objects, resulting in multiple downloads
with the same set of replicas. The time intervals between each download get smaller
and smaller, and we abruptly drop the battery of one of the available nodes between
downloads, to understand if the those changes can be perceived within that interval.

To recap on the important details of this test, all nodes start with 100% battery levels.
There is a warm up phase to guarantee that they know each other, specifically to guarantee

75

CHAPTER 5. EVALUATION

that the node which will perform the evaluated downloads can know all its peers. After
each download, we drop the battery levels of one of the replicas. The first two downloads
have a 10 second interval between them, and this interval decreases 1 second on each
consecutive download, being only 1 second between the last two, which was the time
interval used between actions on the previous benchmarks.

What we were able to observe with this test was that, effectively, the downloading
node got the metrics update up until the 2 seconds gap. For the last download, however,
the available replicas were still sorted in the same way as in the previous one, which
means that the update did not go through. Since we are using the system messages as a
vehicle to broadcast these updates, we need to look into the messages exchanged between
downloads. In this case, the only messages exchanged were the Hello messages, which are
broadcast at a configured time rate (1 second in our configuration). This means that if no
other messages are exchanged within the system, there is at least a chance for each client
to update its replica metrics roughly each second. Those changes did not reflect on the
last download because it happened to be processed first.

To confirm our hypothesis we reconfigured the Hello intervals to 5 seconds and indeed,
this time around we only got about 50% success rate on the same test. It would have been
interesting to exchange other kinds of actions between the downloads to see if these
results could improve at the expense of other messages. However, this would make the
test more complex and harder to reason about since these could introduce other delays
and make the intervals between downloads be less accurate. Furthermore, it would be
difficult for us to filter out the target downloads from the collected data.

Our conclusion is that the Hello messages have a great impact on metric updates.
Shorter Hello intervals improve the overall freshness of system metrics. However, very
short intervals on those messages can generate a lot of traffic, create bigger processing
queues on the servers and ultimately punish battery-constrained devices. There should

be a considerate trade-off when configuring the system.

5.4.3 System Overhead

In this section we evaluate the increase in byte count introduced by adding the metrics
section the each system message. We run a decreased version of the first benchmark traces
with only 16 nodes and register all the bytes sent by each node. After, we aggregate all
these values to have a total amount of bytes transferred during the simulation. We run
the simulation for our version of Thyme GardenBed and then repeat the process with a
version that does not have our module integrated. In the end, we compare the two values.

From Figure 5.12 we can see that there is not an enormous overhead in communication
when including the metrics payload in all system messages. Simulating the exact same
scenario, we get an increase of 12% in the amount of bytes transferred. On average, each
metric payload increased the size of each message by about 50 bytes. At this size, the

metrics payload is smaller than any system message. However, it is still a considerable

76

5.5. FINAL REMARKS

7000000

6000000 5763053

5134544

5000000

4000000

3000000

2000000

1000000

No Metrics With Metrics

Figure 5.12: Bytes sent during simulation: no replica selection vs replica selection

size compared to the simplest messages, such as the Hello message. It is also important to
note that in this trace the transferred files were always 1KB in size. If smaller files were
to be transferred, the metrics payload would represent a slightly bigger percentage of the
overal traffic.

As we have seen from Section 5.4.1, the less biased results for the Infrastructure First
approach have shown that its replica selection quality is only 73% of Wasabi’s when
considering known replica metrics. Moreover, this approach has only scored 53% when
looking at the true system state captured by the runtime snapshots, whereas Wasabi has
scored 82%, which is an overall 29% better replica selection. This is a considerable in-
crease which will reflect in the system’s resource management and liveness. As we have
seen, the cost of this benefit comes at a smaller rate, having the underlying feedback
system increase the overall generated traffic by 12%. Still, the system can be fine-tuned
to decrease this cost by filtering out the messages which less contribute for metrics dis-
semination in the Metrics Aggregator.

5.5 Final Remarks

In this chapter we have discussed what should be evaluated in our work. Then, we have
defined an evaluation strategy which could yield the results we sought. After, we have
discussed our experimental setup: the simulator, the execution traces and why simulation
was required. Finally, we have presented the experimental results.

To understand how good the replica selection process in our solution is, we have
defined some comparison baselines and classified their sorting of available replicas in

two dimensions:

77

CHAPTER 5. EVALUATION

1. how much they tried to preserve and improve the MEC concerns laid out in Chap-

ter 4, which are the foundation for our solution;

2. still with those concerns in mind, how those solutions would actually impact the

real state of the system.

With this we have seen that there is a satisfactory improvement when dropping the
previous solution and adopting Wasabi for selecting download replicas.

Additionally, we have seen that the additional payload injection for replica dissemi-
nation yields a considerable increase in the amount of transferred bytes. This, however,
can be mitigated with a better tuning of the system by removing the metrics from the
messages that less contribute to their dissemination and by decreasing the serialized rep-
resentation of the the metrics payload. Ideally, the improvement yields should as big, or
bigger than the percentage overhead.

78

Chapter 6

Conclusions

6.1 Conclusions

In this dissertation, we set out to build an adaptive replica selection mechanism that is
able to improve MEC systems. We had to deal with the same concerns as the algorithms
tailored for other environments, such as the cloud, but on top of that, we had to address
other new challenges such as dealing with a dynamic set of replicas which is not known at
start and is continuously changing over time. Furthermore, other concerns arose, such as
energy efficiency due to power constrained devices, churn, less reliable communication

and freshness of replica information.

To tackle this need, we have designed and developed Wasabi, an adaptive replica
selection algorithm for MEC environments. To support the development and integration
of Wasabi in existing MEC systems, we have developed a low-profile replica selection
framework. This framework is system-agnostic and can not only be used in MEC systems,
but actually in all kinds of distributed systems. We have also provided an integration of
Wasabi with Thyme GardenBed, where the mobile nodes have symmetric responsibilities
(both servers and clients) and the GardenBed infrastructure server was only integrated as

a server.

From our experimental results we can proudly say that the integration of Wasabi
within Thyme GardenBed, replacing the previous replica selection policy of always pre-
ferring the infrastructure server, has yield significant improvement on the quality of the
selected replicas to retrieve data objects. We have also seen that the integration of the
required feedback system between servers and clients creates a considerable overhead
regarding the amount of data transferred between nodes, but which we believe can be

easily minimized by applying some simple techniques.

Overall, we can say that we have accomplished the objectives for this dissertation.

79

CHAPTER 6. CONCLUSIONS

6.2 System Improvements and Research Opportunities

Because there is always something else that can be added and improved, in this section we
suggest some extensions and improvements to our work, and what kind of investigation

can be conducted from here on.

6.2.1 Exploring Alternative Communication Protocols

This is a topic we have opened up in Section 2.3. Since currently the only communication
medium supported by Thyme is WiFi, this topic arose in response to the question “What
if the congestion is in the AP?”. The idea is that mobile devices may consider alternative
communication channels when they detect that it can improve the quality of service.
In this sense, we have highlighted WiFi-Direct for direct peer-to-peer communication
while offering a decent range of communication. Furthermore, it might be interesting to
consider other protocols depending on device proximity, such as Bluetooth.

In Section 4.2.2.1 we have also suggested that the provided node identifier type when
using our framework could not only be its unique identifier but rather the combination
of the id with the communication protocol. With this, we could consider alternative
communication channels to contact the same server, and even compare it with itself
using different protocols.

The challenge here is in which communication channels should be considered and
when. What to do when the device does not support that technology or protocol, how
do we classify different communication channels and when do we have to establish those
connections. Should we try to open all different channels as soon as possible and strive

to maintain all connections or should these be established ad hoc?

6.2.2 Metric Dissemination Overhead

As seen from the results in Section 5.4.3, the dissemination of replica metrics adds a
non-negligible overhead on the network layer, increasing the observed traffic size by 12%.
Although there is a positive ratio between this increase and the replica selection quality
increase, we believe we can further mitigate this side-effect of the underlying feedback
system.

As it has already been suggested in Section 5.4.3, it could be interesting to understand
how much each message type contributes for the dissemination of metrics and its impact
in replica selection performance. We believe some messages could be filtered out of
this process since they add little value to keep the overall system up-to-date but still
contribute to the bandwidth penalties. We could even try to keep just the Hello messages
as the vehicle for metrics dissemination, since we have seen from Section 5.4.2 that these
alone were able to provide a high degree of freshness. Still, this freshness is tightly
coupled with the periodicity of the Hello messages and the more frequent these are, the

higher the overall byte count will be.

80

Bibliography

[1]

N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie. “Mobile Edge Computing: A
Survey.” In: IEEE Internet Things J. 5.1 (2018), pp. 450-465. por: 10.1109/JI0T.
2017.2750180. urL: https://doi.org/10.1109/JI0T.2017.2750180.

M. T. Beck, M. Werner, S. Feld, and T. Schimper. “Mobile Edge Computing: A
Taxonomy.” In: AFIN 2014 : The Sixth International Conference on Advances in
Future Internet. 2014, pp. 48-54. 1sBn: 9781612083773.

W. Jiang, H. Xie, X. Zhou, L. Fang, and J. Wang. “Performance Analysis and Im-
provement of Replica Selection Algorithms for Key-Value Stores.” In: 2017 IEEE
10th International Conference on Cloud Computing (CLOUD), Honolulu, HI, USA,
June 25-30, 2017. Ed. by G. C. Fox. IEEE Computer Society, 2017, pp. 786—
789. 1sBN: 978-1-5386-1993-3. po1: 10. 1109/CLOUD. 2017 . 115. URL: https:
//doi.org/10.1109/CLOUD.2017.115

Y. Lin, Y. Chen, G. Wang, and B. Deng. “Rigel: A Scalable and Lightweight Replica
Selection Service for Replicated Distributed File System.” In: 10th IEEE/ACM Inter-
national Conference on Cluster, Cloud and Grid Computing, CCGrid 2010, 17-20 May
2010, Melbourne, Victoria, Australia. IEEE Computer Society, 2010, pp. 581-582.
por: 10.1109/CCGRID.2010.51. urL: https://doi.org/10.1109/CCGRID.2010.
51.

M. Mamei and F. Zambonelli. “Programming Pervasive and Mobile Computing
Applications with the TOTA Middleware.” In: Proceedings of the Second IEEE In-
ternational Conference on Pervasive Computing and Communications (PerCom 2004),
14-17 March 2004, Orlando, FL, USA. IEEE Computer Society, 2004, pp. 263-276.
por1: 10.1109/PERCOM.2004.1276864. urL: https://doi.org/10.1109/PERCOM.
2004 .1276864.

G. Metri, A. Agrawal, R. Peri, and W. Shi. “What is eating up battery life on my
SmartPhone: A case study.” In: International Conference on Energy Aware Computing,
ICEAC 2012, Guzelyurt, Cyprus, December 3-5, 2012. 1EEE, 2012, pp. 1-6. por:
10.1109/ICEAC.2012.6471003. urL: https://doi.org/10.1109/ICEAC.2012.
6471003.

81

https://doi.org/10.1109/JIOT.2017.2750180
https://doi.org/10.1109/JIOT.2017.2750180
https://doi.org/10.1109/JIOT.2017.2750180
https://doi.org/10.1109/CLOUD.2017.115
https://doi.org/10.1109/CLOUD.2017.115
https://doi.org/10.1109/CLOUD.2017.115
https://doi.org/10.1109/CCGRID.2010.51
https://doi.org/10.1109/CCGRID.2010.51
https://doi.org/10.1109/CCGRID.2010.51
https://doi.org/10.1109/PERCOM.2004.1276864
https://doi.org/10.1109/PERCOM.2004.1276864
https://doi.org/10.1109/PERCOM.2004.1276864
https://doi.org/10.1109/ICEAC.2012.6471003
https://doi.org/10.1109/ICEAC.2012.6471003
https://doi.org/10.1109/ICEAC.2012.6471003

BIBLIOGRAPHY

[7]

(8]

[11]

[12]

M. Mitzenmacher. “The Power of Two Choices in Randomized Load Balancing.” In:
IEEE Trans. Parallel Distributed Syst. 12.10 (2001), pp. 1094-1104. po1: 10. 1109/
71.963420. urL: https://doi.org/10.1109/71.963420.

K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B. Chun. “Making Sense
of Performance in Data Analytics Frameworks.” In: 12th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 15, Oakland, CA, USA, May
4-6, 2015. USENIX Association, 2015, pp. 293-307. URL: https://www.usenix.

org/conference/nsdi15/technical-sessions/presentation/ousterhout.

S. Ratnasamy, B. Karp, L. Yin, E. Yu, D. Estrin, R. Govindan, and S. Shenker. “GHT:
a geographic hash table for data-centric storage.” In: Proceedings of the First ACM
International Workshop on Wireless Sensor Networks and Applications, WSNA 2002,
Atlanta, Georgia, USA, September 28, 2002. Ed. by C. S. Raghavendra and K. M.
Sivalingam. ACM, 2002, pp. 78-87. po1: 10.1145/570738.570750. URL: https:
//doi.org/10.1145/570738.570750.

Riak Load Balancing and Proxy Configuration. Last visited on July 2019. 2014. urr:
http://docs.basho.com/riak/1.4.0/cookbooks/Load-Balancing-and-Proxy-

Configuration/.

J. A. Silva, F. Cerqueira, H. Paulino, J. M. Lourenco, J. Leitao, and N. M. Preguica.
“It’s about Thyme: On the design and implementation of a time-aware reactive stor-
age system for pervasive edge computing environments.” In: Future Gener. Comput.
Syst. 118 (2021), pp. 14-36. po1: 10.1016/j . future.2020.12.008. urL: https:
//doi.org/10.1016/j.future.2020.12.008.

J. A. Silva, R. Monteiro, H. Paulino, and J. M. Lourenco. “Ephemeral Data Storage
for Networks of Hand-Held Devices.” In: 2016 IEEE Trustcom/BigDataSE/ISPA,
Tianjin, China, August 23-26, 2016. 1EEE, 2016, pp. 1106-1113. po1: 10. 1109/
TrustCom.2016.0182. urL: https://doi.org/10.1109/TrustCom.2016.0182.

J. A. Silva, H. Paulino, J. M. Lourenco, J. Leitao, and N. M. Preguica. “Time-aware
reactive storage in wireless edge environments.” In: MobiQuitous 2019, Proceedings
of the 16th EAI International Conference on Mobile and Ubiquitous Systems: Comput-
ing, Networking and Services, Houston, Texas, USA, November 12-14, 2019. Ed. by
H. V. Poor, Z. Han, D. Pompili, Z. Sun, and M. Pan. ACM, 2019, pp. 238-247. por:
10.1145/3360774.3360828. urL: https://doi.org/10.1145/3360774.3360828.

J. A. Silva, P. Vieira, and H. Paulino. “Data Storage and Sharing for Mobile Devices
in Multi-region Edge Networks.” In: 21st IEEE International Symposium on "A World
of Wireless, Mobile and Multimedia Networks", WoWMoM 2020, Cork, Ireland, August
31 - September 3, 2020. IEEE, 2020, pp. 40-49. 1sBN: 978-1-7281-7374-0. por1: 10.
1109/WoWMoM49955.2020.00021. urL: https://doi.org/10.1109/WoWMoM49955.
2020.00021.

82

https://doi.org/10.1109/71.963420
https://doi.org/10.1109/71.963420
https://doi.org/10.1109/71.963420
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ousterhout
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ousterhout
https://doi.org/10.1145/570738.570750
https://doi.org/10.1145/570738.570750
https://doi.org/10.1145/570738.570750
http://docs.basho.com/riak/1.4.0/cookbooks/Load-Balancing-and-Proxy-Configuration/
http://docs.basho.com/riak/1.4.0/cookbooks/Load-Balancing-and-Proxy-Configuration/
https://doi.org/10.1016/j.future.2020.12.008
https://doi.org/10.1016/j.future.2020.12.008
https://doi.org/10.1016/j.future.2020.12.008
https://doi.org/10.1109/TrustCom.2016.0182
https://doi.org/10.1109/TrustCom.2016.0182
https://doi.org/10.1109/TrustCom.2016.0182
https://doi.org/10.1145/3360774.3360828
https://doi.org/10.1145/3360774.3360828
https://doi.org/10.1109/WoWMoM49955.2020.00021
https://doi.org/10.1109/WoWMoM49955.2020.00021
https://doi.org/10.1109/WoWMoM49955.2020.00021
https://doi.org/10.1109/WoWMoM49955.2020.00021

BIBLIOGRAPHY

[15]

[16]

[17]

[19]

R. Simpson. Mobile and tablet internet usage exceeds desktop for first time worldwide.
Last visited on July 2019. StatCounter. 2016. urL: http://gs.statcounter.com/
press/mobile-and-tablet-internet-usage-exceeds-desktop-for-first-

time-worldwide.

Y. Su, D. Feng, Y. Hua, Z. Shi, and T. Zhu. “NetRS: Cutting Response Latency in
Distributed Key-Value Stores with In-Network Replica Selection.” In: 38th IEEE
International Conference on Distributed Computing Systems, ICDCS 2018, Vienna,
Austria, July 2-6, 2018. IEEE Computer Society, 2018, pp. 143-153. por: 10.1109/
ICDCS.2018.00024. urL: https://doi.org/10.1109/ICDCS.2018.00024.

P. L. Suresh, M. Canini, S. Schmid, and A. Feldmann. “C3: Cutting Tail Latency in
Cloud Data Stores via Adaptive Replica Selection.” In: 12th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 15, Oakland, CA, USA, May
4-6, 2015. USENIX Association, 2015, pp. 513-527. urL: https://www.usenix.

org/conference/nsdil15/technical-sessions/presentation/suresh.

K. Thilakarathna, A. A. A. Karim, H. Petander, and A. Seneviratne. “MobiTribe:
Enabling device centric social networking on smart mobile devices.” In: 10th An-
nual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Commu-
nications and Networks, SECON 2013, New Orleans, LA, USA, 24-27 June, 2013.
IEEE, 2013, pp. 230-232. por: 10. 1109/ SAHCN . 2013 . 6644982. urL: https:
//doi.org/10.1109/SAHCN.2013.6644982.

K. Thilakarathna, H. Petander, J. Mestre, and A. Seneviratne. “MobiTribe: Cost
Efficient Distributed User Generated Content Sharing on Smartphones.” In: IEEE
Trans. Mob. Comput. 13.9 (2014), pp. 2058-2070. por: 10.1109/TMC.2013. 89.
URL: https://doi.org/10.1109/TMC.2013.89.

N. Vallina-Rodriguez, P. Hui, J. Crowcroft, and A. C. Rice. “Exhausting battery
statistics: understanding the energy demands on mobile handsets.” In: Proceedings
of the 2ndt ACM SIGCOMM Workshop on Networking, Systems, and Applications for
Mobile Handhelds, MobiHeld 2010, New Delhi, India, August 30, 2010. Ed. by L. P.
Cox and A. Wolman. ACM, 2010, pp. 9-14. por: 10.1145/1851322.1851327. UrL:
https://doi.org/10.1145/1851322.1851327.

P. Vieira. “A Persistent Publish/Subscribe System for Mobile Edge Computing.”
http://hdl.handle.net/10362/71124. Master’s thesis. Faculty of Science and
Technology, NOVA University of Lisbon, 2018.

Y. Zhao and Y. Hu. “GRESS - a Grid Replica Selection Service.” In: Proceedings of the
ISCA 16th International Conference on Parallel and Distributed Computing Systems,
August 13-15, 2003, Atlantis Hotel, Reno, Nevada, USA. Ed. by S. Yoo and H. Y. Youn.
ISCA, 2003, pp. 423-429.

83

http://gs.statcounter.com/press/mobile-and-tablet-internet-usage-exceeds-desktop-for-first-time-worldwide
http://gs.statcounter.com/press/mobile-and-tablet-internet-usage-exceeds-desktop-for-first-time-worldwide
http://gs.statcounter.com/press/mobile-and-tablet-internet-usage-exceeds-desktop-for-first-time-worldwide
https://doi.org/10.1109/ICDCS.2018.00024
https://doi.org/10.1109/ICDCS.2018.00024
https://doi.org/10.1109/ICDCS.2018.00024
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/suresh
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/suresh
https://doi.org/10.1109/SAHCN.2013.6644982
https://doi.org/10.1109/SAHCN.2013.6644982
https://doi.org/10.1109/SAHCN.2013.6644982
https://doi.org/10.1109/TMC.2013.89
https://doi.org/10.1109/TMC.2013.89
https://doi.org/10.1145/1851322.1851327
https://doi.org/10.1145/1851322.1851327
http://hdl.handle.net/10362/71124

© 0 N OO g o~ W N =

Annex I

Replica Selection Quality Trace

NODE$ | 0 | $0

NODE$ | 1|$1

NODE$ | 2 | $2

NODE$ | 3|$3

NODES$ | 4 | $4

NODE$ | 5 | $5

NODE$ | 6 | $6

NODE$ | 7|$7

NODE$ | 8 | $8

NODES$ | 9 | $9

NODE$ | 10|$10
NODE$ |11|$11
NODE$ |12|$12
NODE$ | 13|$13
NODE$|$14$|$14
NODE$ | 15|$15
NODE$ |16|$16
NODE$ |17|$17
NODE$ |18|$18
NODE$|$19$|$19
NODE$ | 20 | $20
NODE$ | 21 | $21
NODE$ | 22 | $22
NODE$ | 23 | $23
NODE$ | 24 | $24
NODE$ | 25 | $25
NODE$ | 26 | $26
NODE$ | 27 | $27
NODE$ | 28 | $28
NODE$ | $29% | $29
NODE$ | 30 | $30
NODE$ | 31|$31
NODE$ | 32 | $32
NODE$ | 33 | $33
NODE$ | 34|$34

85

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

ANNEX I. REPLICA SELECTION QUALITY TRACE

NODE$ | 35 | $35
NODE$ | 36 | $36
NODE$ | 37|$37
NODE$ | 38|$38
NODE$ | 39 | $39
NODE$ | 40 | $40
NODES$ | 41 | $41
NODE$ | 42 | $42
NODE$ | 43 | $43
NODE$ | 44 | $44
NODE$ | 45 | $45
NODE$ | 46 | $46
NODE$ | 47|$47
NODE$ | $48% | $48
NODE$ | 49 | $49
NODE$ | $50% | $50
NODE$ | 51|$51
NODE$ | 52 | $52
NODE$ | 53 | $53
NODE$ | 54 | $54
NODE$ | 55 | $55
NODE$ | $56% | $56
NODE$ | 57|$57
NODE$ | $58% | $58
NODE$ | $59% | $59
NODE$ | 60 | $60
NODE$ | 61|$61
NODE$ | 62 | $62
NODE$ | 63 | $63
SUB_F$|$184$|$1$|$TAGO
SUB_F$|$185$|$6$ | $TAGO
SUB_F$|$186%|7| $TAGO
SUB_F$|$187$|$12$ | $TAGO
SUB_F$|$188$|$14$|$TAGO
SUB_F$|$189$|$19% | $TAGO
SUB_F$|$190$|$21$| $TAGO
SUB_F$|$191$|$22% | $TAGO
SUB_F$|$192$|$23$ | $TAGO
SUB_F$|$193$|$25%| $TAGO
SUB_F$|$194$ | 26| $TAGO
SUB_F$|$195$|$29$ | $TAGO
SUB_F$|$196$|$30$ | $TAGO
SUB_F$|$197$|$32% | $TAGO
SUB_F$|$198$|$33$ | $TAGO
SUB_F$|$199% | 34| $TAGO
SUB_F$|$200%|35| $TAGO
SUB_F$|$201$|$37$| $TAGO
SUB_F$|$202$|$38% | $TAGO
SUB_F$|$203$|$39% | $TAGO
SUB_F$|$204%|41| $TAGO

86

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

105
106
107
108
109
110
111
112
113
114
115
116
17
118
119
120

122
123
124
125
126
127
128
129
130
131
132
133
134
135

SUB_F$|$205% | 42 | $TAGO
SUB_F$|$206% | 44 | $TAGO
SUB_F$|$207$ | 45 | $TAGO
SUB_F$|$208% | 46 | $TAGO
SUB_F$|$209% | 51 | $TAGO
SUB_F$|$210% | 54 | $TAGO
SUB_F$|$211$|$55$ | $TAGO
SUB_F$|$2128 | 56 | $TAGO
SUB_F$|$213$ | 60 | $TAGO
SUB_F$|$214$|$0$ | $TAG1

SUB_F$|$215$|$1$| $TAG1

SUB_F$|$216$|$28 | $TAG1

SUB_F$|$217$|$3$ | $TAG1

SUB_F$|$2188$ | 4 | $TAG1

SUB_F$|$219%|$5%| $TAG1

SUB_F$|$2208 | $6% | $TAG1

SUB_F$|$221$|$12$ | $TAG
SUB_F$|$222$ | 13 | $TAGT
SUB_F$|$223$|$15$ | $TAG
SUB_F$|$2248$|$17$ | $TAG
SUB_F$|$225$|$19$ | $TAG
SUB_F$|$226%|21 | $TAG
SUB_F$|$2278 | 22 | $TAG
SUB_F$|$2288 | 24 | $TAG
SUB_F$|$229% | 27 | $TAG
SUB_F$|$2308 | $28% | $TAG1
SUB_F$|$231$|$30$ | $TAG
SUB_F$|$232$|$31$ | $TAGT
SUB_F$|$233$ | 33 | $TAG
SUB_F$|$234$ | 36 | $TAG
SUB_F$|$235% | 37 | $TAG
SUB_F$|$236% | 38 | $TAG
SUB_F$|$237$|$42$ | $TAGT
SUB_F$|$238% | 43 | $TAG
SUB_F$|$239% | 44 | $TAG
SUB_F$|$2408 | $45% | $TAG1
SUB_F$|$241$|$46$ | $TAG
SUB_F$|$2428 | 47 | $TAG
SUB_F$|$243$ | 508 | $TAG
SUB_F$|$244$|$51$ | $TAG
SUB_F$|$2458 | $52% | $TAG1
SUB_F$|$246% | 54 | $TAG
SUB_F$|$247$|$55$ | $TAG
SUB_F$|$2488 | 57 | $TAG
SUB_F$|$249% | $58% | $TAG
SUB_F$|$250$|$59% | $TAG1
SUB_F$|$251$|$61$ | $TAG
SUB_F$|$252 | 62 | $TAG
SUB_F$|$253$ | $63% | $TAGT
SUB_F$|$2548 | 0 | $TAG2

87

136
137
138
139
140

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

168
169
170

172
173
174
175
176
177
178
179
180
181
182
183
184
185

ANNEX I. REPLICA SELECTION QUALITY TRACE

SUB_F$|$255$|$1$ | $TAG2
SUB_F$|$256%|2 | $TAG2
SUB_F$|$257$|$4$ | $TAG2
SUB_F$|$258%|5 | $TAG2
SUB_F$|$259%|$8% | $TAG2
SUB_F$|$260%|12 | $TAG2
SUB_F$|$261$|$15% | $TAG2
SUB_F$|$262$|$16$ | $TAG2
SUB_F$|$263$|$18$| $TAG2
SUB_F$|$264%|19 | $TAG2
SUB_F$|$265%|20 | $TAG2
SUB_F$|$266$|$21$| $TAG2
SUB_F$|$267$|$24$ | $TAG2
SUB_F$|$268%|25| $TAG2
SUB_F$|$269%|26 | $TAG2
SUB_F$|$270%|27 | $TAG2
SUB_F$|$271$|$28$ | $TAG2
SUB_F$|$272$|$29$ | $TAG2
SUB_F$|$273$|$30$| $TAG2
SUB_F$|$274$|$33$ | $TAG2
SUB_F$|$275%|34 | $TAG2
SUB_F$|$276$|$38$| $TAG2
SUB_F$|$277$|$39$| $TAG2
SUB_F$|$278%|46 | $TAG2
SUB_F$|$279%|49 | $TAG2
SUB_F$|$280%|52 | $TAG2
SUB_F$|$281$|$53$| $TAG2
SUB_F$|$282$|$54% | $TAG2
SUB_F$|$283%|55 | $TAG2
SUB_F$|$284$|$56$| $TAG2
SUB_F$|$285$|$1$|$TAG3
SUB_F$|$286%|3 | $TAG3
SUB_F$|$287$|$5% | $TAG3
SUB_F$|$288%|$8% | $TAG3
SUB_F$|$289%|10| $TAG3
SUB_F$|$290$|$11$|$TAG3
SUB_F$|$291$|$14$| $TAG3
SUB_F$|$292$|$15%| $TAG3
SUB_F$|$293%|16 | $TAG3
SUB_F$|$294%|17| $TAG3
SUB_F$|$295$|$19$ | $TAG3
SUB_F$|$296%|27 | $TAG3
SUB_F$|$297$|$31$| $TAG3
SUB_F$|$298%|34 | $TAG3
SUB_F$|$299% | 36 | $TAG3
SUB_F$|$300%$|$38$ | $TAG3
SUB_F$|$301$|$39$ | $TAG3
SUB_F$|$302$|$40$| $TAG3
SUB_F$|$303%|41 | $TAG3
SUB_F$|$304$|$43$| $TAG3

88

211

SUB_F$|$305$|$45$| $TAG3
SUB_F$|$306$|$46%| $TAG3
SUB_F$|$307$|$47$| $TAG3
SUB_F$|$308% | 49 | $TAG3
SUB_F$|$309%|51| $TAG3
SUB_F$|$310$|$52$ | $TAG3
SUB_F$|$311$|$53$ | $TAG3
SUB_F$|$312$|$56$ | $TAG3
SUB_F$|$313$|$59%| $TAG3
SUB_F$|$314$|$0$ | $TAG4
SUB_F$|$315%|2 | $TAG4
SUB_F$|$316%|4 | $TAG4
SUB_F$|$317$|$7$ | $TAG4
SUB_F$|$318$|$12$| $TAG4
SUB_F$|$319$|$16$ | $TAGA
SUB_F$|$320$|$245 | $TAG4
SUB_F$|$321$|$25$ | $TAG4
SUB_F$|$322$|$26$ | $TAG4
SUB_F$|$323$|$285 | $TAG4
SUB_F$|$324$|$30$ | $TAGA
SUB_F$|$325$|$32$ | $TAG4
SUB_F$|$326$|$33$ | $TAG4
SUB_F$|$327$|$34$ | $TAGA
SUB_F$|$328%|36 | $TAG4
SUB_F$|$329%|37| $TAG4
SUB_F$|$330$|$38$ | $TAG4
SUB_F$|$331$|$39$| $TAG4
SUB_F$|$332$ | $42% | $TAG4
SUB_F$|$333$|$43$| $TAG4
SUB_F$|$334$|$44$| $TAG4
SUB_F$|$335$|$455 | $TAG4
SUB_F$|$336%|46 | $TAGA
SUB_F$|$337$|$47$ | $TAG4A
SUB_F$|$338%|50 | $TAG4
SUB_F$|$339%|54 | $TAG4
SUB_F$|$340%|55 | $TAG4
SUB_F$|$341$|$57$| $TAG4
SUB_F$|$342$|$58% | $TAG4
SUB_F$|$343$|$60$ | $TAG4
SUB_F$|$344$|$62$ | $TAG4
SUB_F$|$345$|$1$| $TAGS
SUB_F$|$346$|$4$ | $TAGS
SUB_F$|$347$|$5% | $TAGS
SUB_F$|$348%|7|$TAGS
SUB_F$|$349$|$11$| $TAGS
SUB_F$|$350$|$13$| $TAGS
SUB_F$|$351$|$15$| $TAGS
SUB_F$|$352$|$17$| $TAGS
SUB_F$|$353$|$19$| $TAGS
SUB_F$|$354$|$24$| $TAGS

89

ANNEX I. REPLICA SELECTION QUALITY TRACE

SUB_F$|$355$|$26% | $TAGS
SUB_F$|$356$|$27$ | $TAGS
SUB_F$|$357$|$29% | $TAGS
SUB_F$|$358%|31|$TAGS
SUB_F$|$359$ | 33 | $TAGS
SUB_F$|$360% | $36% | $TAGS
SUB_F$|$361$|$37$|$TAGS
SUB_F$|$362$|$42$ | $TAGS
SUB_F$|$363%|43|$TAGS
SUB_F$|$364%|45| $TAGS
SUB_F$|$365%|$48% | $TAGS
SUB_F$|$366%|49 | $TAGS
SUB_F$|$367$|$50$ | $TAGS
SUB_F$|$368%|51| $TAGS
SUB_F$|$369%|$52% | $TAGS
SUB_F$|$370$|$53% | $TAGS
SUB_F$|$371$|$55% | $TAGS
SUB_F$|$372$|$56% | $TAGS
SUB_F$|$373%|57| $TAGS
SUB_F$|$374$|$58% | $TAGS
SUB_F$|$375$|$59% | $TAGS
SUB_F$|$376%|60 | $TAGS
SUB_F$|$377$|$61$|$TAGS
SUB_F$|$378%|$62% | $TAGS
SUB_F$|$379%|63| $TAGS
SUB_F$|$380%|0|$TAG6
SUB_F$|$381$|$3$ | $TAGE
SUB_F$|$382$|$8% | $TAG6
SUB_F$|$383$|$16%|$TAG6E
SUB_F$|$384%|19|$TAG6
SUB_F$|$385$|$20$ | $TAG6
SUB_F$|$386%|23|$TAG6
SUB_F$|$387%|$24% | $TAG6
SUB_F$|$388%|$25% | $TAG6
SUB_F$|$389%|29 | $TAG6
SUB_F$|$390$ | 30 | $TAG6E
SUB_F$|$391$|$31$|$TAG6E
SUB_F$|$392%|35 | $TAG6E
SUB_F$|$393%|$36% | $TAG6E
SUB_F$|$394%|41| $TAG6
SUB_F$|$395$ | 42 | $TAG6E
SUB_F$|$396$ | $43% | $TAG6
SUB_F$|$397%|45| $TAG6
SUB_F$|$398% | $49% | $TAG6
SUB_F$|$399%|50 | $TAG6
SUB_F$|$400$|$53$ | $TAG6E
SUB_F$|$401$|$54% | $TAG6
SUB_F$|$402%|55 | $TAG6
SUB_F$|$403$|$57$ | $TAG6
SUB_F$|$404$|$58% | $TAG6E

90

SUB_F$|$405% | 62 | $TAGE
SUB_F$|$406$|$63$| $TAGE
SUB_F$|$407$|$3$| $TAG7

SUB_F$|$408$|$7$ | $TAG7

SUB_F$|$409%|9 | $TAG7

SUB_F$|$410$|$11$| $TAG?
SUB_F$|$411$|$14$| $TAGY
SUB_F$|$412$|$15$| $TAG7
SUB_F$|$413$|$19% | $TAG7
SUB_F$|$414$|$20$ | $TAG7
SUB_F$|$415$|$21$| $TAG7
SUB_F$|$416$|$22% | $TAG7
SUB_F$|$417$|$27$| $TAG7
SUB_F$|$418%|30 | $TAG7
SUB_F$|$419$|$31$| $TAGY
SUB_F$|$420$|$328$ | $TAG7
SUB_F$|$421$|$35% | $TAG7
SUB_F$|$422$|$41$| $TAG7
SUB_F$|$423%|$42% | $TAG7
SUB_F$|$424%|43| $TAGY
SUB_F$|$425%|$45% | $TAG7
SUB_F$|$426$|$46$ | $TAG7
SUB_F$|$427$|$47% | $TAGT
SUB_F$|$428%|$508 | $TAG7
SUB_F$|$429$|$53% | $TAG7
SUB_F$|$430$|$54% | $TAG7
SUB_F$|$431$|$55% | $TAG7
SUB_F$|$432$|$56$ | $TAGY

PUB$ | 463|3|466|$0bject 466$|$Published by 3$|$TAGO
PUB$ | 464|7|471|$0bject 471$|$Published by 7$|$TAGO
PUB$ | 465|$8%|$473%|$0bject 473$|$Published by 8$|$TAGO
PUB$ | 466|$9%|$475%|$0bject 475%|$Published by 9% |$TAGO

PUBS$ | 467|11|$478%|$0bject
PUB$ | $468%|$12$|$480$|$0bject
PUB$ | 469 | 13|$482%|$0bject
PUB$|$470$|$15%|$485%|$0bject
PUBS$ | 471|17|$488%|$0bject
PUBS$ | 472|19|491|$0bject
PUBS$ | 473|21|$4948|$0bject
PUB$|$474$|$22$|$496%|$0bject
PUBS$ | 475 | 24|$499% | $0bject
PUB$ | 476|29|$505%|$0bject
PUB$|$477$|$36%|513|$0bject
PUB$|$478%|37|$515%| $0bject
PUBS$ | 479|$40%|$519%|$0bject
PUB$ | $480%|$41$|$521$|$0bject
PUBS$ | 481|43|$524%|$0bject
PUB$ | 482 | 45|$527%|$0bject
PUB$|$483%|47|$530%|$0bject
PUBS | 484|48|$532%|$0bject

478$|$Published
480%|$Published
482% | $Published
485$|$Published
488%|$Published
491$|$Published
494%|$Published
496$ | $Published
499$ | $Published
505%|$Published
513%|$Published
515%|$Published
519$ | $Published
521$|$Published
524%|$Published
527%|$Published
530%|$Published
532%|$Published

91

by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by

11$ | $TAGO
12$ | $TAGO
13$ | $TAGO
15$ | $TAGO
17$ | $TAGO
19$ | $TAGO
21$| $TAGO
22$ | $TAGO
24$| $TAGO
29% | $TAGO
36% | $TAGO
37$| $TAGO
40$ | $TAGO
41$| $TAGO
43$ | $TAGO
45$ | $TAGO
47$ | $TAGO
48% | $TAGO

ANNEX I. REPLICA SELE

CTION QUALITY TRACE

PUB$ | 485 | 49|$534%|$0bject
PUB$ | 486 | $52% | $538%|$0bject
PUB$ | 487|$53%|$540$|$0bject
PUB$ | $488%|$54$|$542%|$0bject
PUB$|$489%|$63%|$552% | $0bject
PUB$ | 490 | 0|$490%|$0bject

PUB$ | 491|1|492|$0bject

PUB$ | 492|$3%|$495%|$0bject

PUB$ | 493 | 4|497|$0bject

PUB$ | 494|$58|$499%|$0bject

PUB$ | 495|7|$502%|$0bject

PUB$ | 496 | 10|$506% | $0bject
PUB$|$497$|$11$|$508%|$0bject
PUB$ | 498|12|510|$0bject
PUB$|$499$|$14$|$513$|$0bject
PUB$ | 500|18|$518%|$0bject
PUB$ | 501|20|521|$0bject
PUB$ | $502% | $22% | $524% | $0bject
PUB$ | 503 | 23|$526% | $0bject
PUB$ | 504 | 25|$529% | $0bject
PUB$ | 505 | $28%|$533%|$0bject
PUB$|$506$|$31$|$537$|$0bject
PUB$ | 507|34|541|$0bject
PUB$ | $508% | 36 | $544% | $0bject
PUB$ | 509 | $38% | 547|$0bject
PUB$|$510% | $39%|$549% | $0bject
PUB$|$511$|$40$|$551$|$0bject
PUB$|$512%|41|$553% | $0bject
PUB$ | 513|42|$555%|$0bject
PUBS$ | 514 | 43|$557%|$0bject
PUB$|$515% | 44|$559% | $0bject
PUBS$ |516 | 49|$565%| $0bject
PUB$|$517$|$50$|$567%|$0bject
PUB$ | 518|52|570|$0bject
PUB$|$519$|$53%|572 | $0bject
PUB$|$520% | $60% | $580% | $0b ject
PUB$|$521$|$61$|$582%|$0bject
PUB$ | 522 | $62% | 584 |$0bject
PUB$ | 523|63|$586% | $0bject
PUB$ | 524|2|526|$0bject

PUB$ | 525 | $3%|$528%|$0bject

PUB$ | 526 | 4|$530%|$0bject

PUBS$ | 527|$78|$534%|$0bject

PUB$ | $528% | $8%|$536%|$0bject

PUBS$ | $529%|$12$|$541$|$0bject
PUB$ | $530% | 14|$544%|$0bject
PUB$ | 531|15|$546%|$0bject
PUB$ | 532 | 20 | $552% | $0bject
PUB$ | $533%|$21$|$554%| $0bject
PUB$ | 534|22|$556% | $0bject

534$|$Published by 49$|$TAGO
538$|$Published by 52$|$TAGO
540$|$Published by 53$%|$TAGO
542$|$Published by 54$|$TAGO
552$|$Published by 63$|$TAGO
490$|$Published by 0%|$TAG1
492$|$Published by 1$|$TAG1
495$|$Published by 3$|$TAG1
497$|$Published by 4$|$TAG1
499$ | $Published by 5$|$TAG1
502%|$Published by 7$|$TAG1
506$|$Published by 10$|$TAG1
508%|$Published by 11$|$TAG1
510$|$Published by 12$|$TAG1
513$|$Published by 14$|$TAG1
518%|$Published by 18%|$TAG1
521$|$Published by 20$|$TAG1
524$|$Published by 22%|$TAG1
526% | $Published by 23$|$TAG1
529$|$Published by 25%|$TAG1
533$|$Published by 28%|$TAG1
537$|$Published by 31$|$TAG1
541$|$Published by 34$|$TAG1
544%|$Published by 36$|$TAG1
547$|$Published by 38$|$TAG1
549%|$Published by 39%|$TAG1
551$|$Published by 40$|$TAG1
553$|$Published by 41$|$TAG1
555% | $Published by 42$|$TAG1
557$|$Published by 43$|$TAG1
559%|$Published by 44$|$TAG1
565$ | $Published by 49$|$TAG1
567$|$Published by 50$|$TAG1
570$|$Published by 52%|$TAG1
572$|$Published by 53$|$TAG1
580$|$Published by 60%$|$TAG1
582%|$Published by 61$|$TAG1
584$|$Published by 62%|$TAG1
586%|$Published by 63$|$TAG1
526%|$Published by 2$|$TAG2
528%|$Published by 3$|$TAG2
530$|$Published by 4$|$TAG2
534$|$Published by 7$|$TAG2
536%|$Published by 8%|$TAG2
541$|$Published by 12$|$TAG2
544$|$Published by 14$|$TAG2
546% |$Published by 15$|$TAG2
552$|$Published by 20$|$TAG2
554$|$Published by 21$|$TAG2
556$|$Published by 22$|$TAG2

92

PUB$ | $535% | 24|$559% | $0bject
PUB$ | $536% | $28% | $564% | $0bject
PUB$ | 537 | 29 | $566% | $0b ject
PUB$ | 538|33|571|$0bject
PUB$ | 539 | 37|$576% |$0bject
PUB$ | 540 | 39 | $579% | $0b ject
PUB$ | 541|$43%|$584% | $0bject
PUB$ | $542% | $46% | $588% | $0bject
PUB$ | 543 | $48%|$591$|$0bject
PUB$ | 544|51|$595% | $0bject
PUB$ | 545 | 53 | $598% | $0b ject
PUB$ | 546 | 54 | 600 | $0bject
PUB$ | 547|$55%|$602% | $0bject
PUB$ | $548% | 60|$608%|$0bject
PUB$ | 549|$62%|$611$|$0bject
PUB$ | 550 | 63 | $613% | $0bject

559$|$Published
564$|$Published
566%|$Published
571$|$Published
576% | $Published
579%|$Published
584$|$Published
588%|$Published
591$ | $Published
595$| $Published
598%|$Published
600$ | $Published
602% | $Published
608%|$Published
611$|$Published
613%|$Published

by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by

24$ | $TAG2
28% | $TAG2
29$ | $TAG2
33%| $TAG2
37$ | $TAG2
39| $TAG2
43% | $TAG2
46$| $TAG2
48%| $TAG2
51$ | $TAG2
53$ | $TAG2
54$ | $TAG2
55$ | $TAG2
60$ | $TAG2
62% | $TAG2
63$| $TAG2

PUB$ | 551|0|551|$0bject 551$|$Published by 0$|$TAG3
PUB$ | 552|1|553|$0bject 553$|$Published by 1$|$TAG3
PUB$ | 553|7|$560%|$0bject 560$|$Published by 7$|$TAG3
PUB$ | 554 | $9%$|$563%|$0bject 563%|$Published by 9$|$TAG3

PUB$ | 555|10|$565%|$0bject
PUBS$ | 556|15|571|$0bject
PUB$ | 557|16|$573%|$0bject
PUB$ | $558%|$18$|$576%|$0bject
PUB$ | 559 | $20% | $579% | $0bject
PUB$ | 560|21|581|$0bject
PUBS$ | 561|22|$583%|$0bject
PUB$ | 562 | 23|$585%|$0bject
PUB$ | $563% | 24|$587%|$0bject
PUB$ | 564 | 30|$594%|$0bject
PUB$ | 565|31|$596% |$0bject
PUB$ | 566 | 34|600|$0bject
PUB$ | 567|37|604|$0bject
PUB$ | $568%|$43$|$611$|$0bject
PUBS$ | $569% | 45|614|$0bject
PUB$|$570% | 46|$616% | $0bject
PUB$|$571$|$50$|$621$|$0bject
PUB$|$572$ | 52 | 624 | $0bject
PUB$ | 573 | 54|$627%|$0bject
PUB$ | 574|55|629|$0bject
PUB$|$575%|56 | 631|$0bject
PUB$ | 576|57|$633%|$0bject
PUB$ | 577|$58%|$635%|$0bject
PUB$ | $578% | $59% | 637|$0bject

565%|$Published
571$|$Published
573$|$Published
576%|$Published
579$ | $Published
581%|$Published
583%|$Published
585$|$Published
587%|$Published
594$ | $Published
596%|$Published
600$ | $Published
604$ | $Published
611$|$Published
614$|$Published
616$|$Published
621%|$Published
624$ | $Published
627%|$Published
629% | $Published
631$|$Published
633%|$Published
635% | $Published
637%|$Published

by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by

10$ | $TAG3
15$ | $TAG3
16$ | $TAG3
18$| $TAG3
20$ | $TAG3
21$|$TAG3
228 | $TAG3
23$ | $TAG3
24$ | $TAG3
30$ | $TAG3
31$|$TAG3
34%| $TAG3
37$ | $TAG3
43$| $TAG3
45% | $TAG3
46% | $TAG3
50$ | $TAG3
52$ | $TAG3
54$ | $TAG3
55$ | $TAG3
56$ | $TAG3
57$| $TAG3
58% | $TAG3
59$ | $TAG3

PUB$ | $579%|$1$|$580$|$0bject 580%|$Published by 1$|$TAG4
PUB$ | $580% | 3|$583%|$0bject 583%|$Published by 3$|$TAG4
PUB$|$581$|$8$|$589%|$0bject 589%|$Published by 8%|$TAG4E
PUB$|$582$|$11$|$593%|$0bject 593%|$Published by 11$|$TAGE
PUB$ | $583%|$12$|$595%|$0bject 595%|$Published by 12$|$TAG4S
PUB$ | 584|14|$598%|$0bject 598%|$Published by 14$|$TAG4E

93

ANNEX I. REPLICA SELECTION QUALITY TRACE

PUB$ | 585|15 | 600 |$0bject
PUB$|$586%|16|$602% | $0bject
PUB$ | 587|17|604|$0bject
PUB$ | $588%|$20$|$608%|$0bject
PUB$ | 589|21|610|$0bject
PUB$ | 590 | 23 | $613% | $0b ject
PUB$|$591$|$24$|$615%|$0bject
PUB$ | 592 | 26 | $618% | $0bject
PUBS$ | 593|$28%|$621$|$0bject
PUB$ | 594 | 30 | $624%|$0bject
PUB$ | $595% | 31 | $626% | $0b ject
PUB$ | 596 | 34 | $630% |$0bject
PUB$ | 597|40|637|$0bject
PUB$ | $598% | 46 | $644%|$0bject
PUB$ | $599% | $48%|$647%|$0bject
PUB$ | 600 | $49% | $649% |$0bject
PUB$ | 601|$53% | $654%|$0bject
PUB$ | 602 | $54% | 656 | $0bject
PUB$ | 603 | 56|$659% | $0bject
PUB$ | 604 | $58% | $662% |$0bject
PUB$ | 605 | 59 | $664% | $0b ject
PUB$ | 606 | 60 | $666% | $0bject
PUB$ | 607|61|$668%|$0bject
PUB$ | $608% | 62 | $670% | $0b ject

600$ | $Published
602% | $Published
604%|$Published
608% | $Published
610$|$Published
613%|$Published
615$ | $Published
618%|$Published
621$|$Published
624$|$Published
626% | $Published
630$ | $Published
637%|$Published
644$ | $Published
647$|$Published
649% | $Published
654% | $Published
656% | $Published
659$ | $Published
662% | $Published
664%|$Published
666$ | $Published
668% | $Published
670%|$Published

by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by

15$ | $TAG4
16$ | $TAG4
17$ | $TAG4
20$ | $TAG4
21$| $TAG4
23$ | $TAG4H
245 | $TAG4
26$ | $TAGA
28%| $TAG4
30| $TAGA
31$| $TAGS
34| $TAG4
40$ | $TAG4
46$ | $TAG4
48% | $TAG4
49$ | $TAG4
53$ | $TAG4
54%| $TAG4
56$ | $TAG4
585 | $TAG4
59$ | $TAG4
60$ | $TAG4
61$|$TAG4
62| $TAG4

PUB$ | $609% | 3|612|$0bject 612$|$Published by 3$|$TAGS
PUB$|$610$|$7$|$617$|$0bject 617$|$Published by 7$|$TAGS
PUB$|$611$|$9%|620|$0bject 620$|$Published by 9$|$TAGS

PUBS$ |612|11|$623%|$0bject
PUB$|$613%|12|$625%|$0bject
PUB$ |614|13|627|$0bject
PUB$|$615%|14|$629% | $0bject
PUB$ | 616|17|$633%|$0bject
PUB$ | 617|$25% | $642% | $0bject
PUB$|$618%|27|$645%| $0bject
PUB$|$619$|$29%|$648%|$0bject
PUB$ | 620 | 34 | $654%|$0bject
PUB$|$621$|$37$|$658% | $0bject
PUB$ | $622% | $38% | $660% | $0bject
PUB$|$623%|41|$664%|$0bject
PUB$|$624$|$42$|$666%|$0bject
PUB$|$625% | $45%|$670% | $0bject
PUB$ | 626 | 52 | $678% | $0b ject
PUB$ | 627|$53% | $680% |$0bject
PUB$|$628% | 54 | $682% | $0bject
PUB$ | 629 | 55 | 684 | $0bject
PUB$|$630% | $56% | $686% | $0bject
PUB$ | 631 | $58% | $689% | $0b ject
PUB$ | 632|59|691|$0bject
PUB$|$633%|61|$694% | $0bject
PUB$ | 634|63|$697%|$0bject

623%|$Published
625%|$Published
627% | $Published
629% | $Published
633% | $Published
642$ | $Published
645%|$Published
648% | $Published
654$|$Published
658% | $Published
660$ | $Published
664%|$Published
666%$|$Published
670$ | $Published
678%|$Published
680$ | $Published
682% | $Published
684$ | $Published
686%$ | $Published
689% | $Published
691$|$Published
694% | $Published
697% | $Published

94

by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by

11$| $TAGS
12$ | $TAGS
13$ | $TAGS
14$ | $TAGS
17$ | $TAGS
25% | $TAG5
27$| $TAG5
29% | $TAG5
34$| $TAGS
37%| $TAGS
38%| $TAGS
41$ | $TAGS
42$ | $TAGS
45% | $TAG5
52%| $TAG5
53%| $TAGS
54| $TAGS
55%| $TAGS
56$ | $TAGS
58%| $TAGS
59$ | $TAGS
61% | $TAGS
63% | $TAGS

PUB$ | 635|0|$635%|$0bject 635%|$Published by 0$|$TAGE
PUB$ | 636|1|637|$0bject 637$|$Published by 1$|$TAGE
PUB$|$637$|$3$|$640$|$0bject 640$|$Published by 3$|$TAGE
PUB$ | 638|5|643|$0bject 643%|$Published by 5% |$TAGE

PUB$|$639%|14|$653% | $0bject
PUB$ | 640|15 | $655%|$0bject
PUB$|$641$|$16$|$657$|$0bject
PUB$ | 642|17|$659% |$0bject
PUB$ | 643|18|661|$0bject
PUB$ | 644|$19%|$663%|$0bject
PUB$ | $645% | 23 | $668% | $0b ject
PUB$ | 646|24|670 |$0bject
PUB$ | 647|$25%|$672$%|$0bject
PUB$ | $648%|$26$|$674%|$0bject
PUB$ | $649%|$28%|$677%|$0bject
PUB$ | 650 | 35 | $685% | $0b ject
PUB$ | 651|37|$688%|$0bject
PUB$ | 652|$39%|$691$|$0bject
PUB$|$653$|$41$|$694$|$0bject
PUB$ | $654% | $42% | $696% | $0bject
PUB$ | 655 | $44%|$699% |$0bject
PUB$|$656$|$47$|$703$|$0bject
PUB$|$657$|$50$|$707$|$0bject
PUB$ | $658% | 54 | $7128 | $0bject
PUB$ | 659 | $58%|$717$|$0bject
PUB$ | 660 | $59%|$719%|$0bject
PUB$|$661$|$60$|$721$|$0bject
PUB$ | 662 | 61|$723%|$0bject
PUB$ | 663 | 62 | $725% | $0b ject
PUB$ | 664|63|$727$8|$0bject

653% | $Published
655% | $Published
657$|$Published
659% | $Published
661$ | $Published
663% | $Published
668%|$Published
670$ | $Published
672%|$Published
674%|$Published
677$|$Published
685% | $Published
688% | $Published
691%|$Published
694$ | $Published
696$ | $Published
699% | $Published
703% | $Published
707$|$Published
712%|$Published
717$|$Published
719%|$Published
721$|$Published
723$ | $Published
725%|$Published
727$|$Published

by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by

14$ | $TAG6
15$ | $TAG6
16$ | $TAG6E
17$| $TAGE
18$| $TAG6
19$ | $TAG6
23$ | $TAGE
24$ | $TAG6
25$ | $TAG6E
26$ | $TAG6
28%| $TAG6
35$| $TAG6
378 | $TAG6E
39| $TAG6
41$ | $TAG6
42% | $TAG6
44| $TAG6
47$ | $TAG6
50$ | $TAG6
54$ | $TAGE
58% | $TAG6
59$ | $TAG6E
60$ | $TAG6
61$ | $TAG6
62%| $TAG6
63%| $TAG6

PUB$ | $665% | 0|665|$0bject 665%|$Published by 0$|$TAG7
PUB$ | 666|1|667|$0bject 667$|$Published by 1$|$TAG7
PUB$ | 667|$9%|$676$|$0bject 676$|$Published by 9% |$TAG7

PUB$ | $668%|$11$|$679$ | $0bject
PUB$ | 669 | 12|681|$0bject
PUB$|$670%|$13%|$683%|$0bject
PUB$|$671$|$14$|$685%|$0bject
PUB$ | 672|$15%|$687$|$0bject
PUB$ | $673%|$16$|$689$ | $0b ject
PUB$|$674$|$19$|$693%|$0bject
PUB$|$675%|$20% | $695% | $0bject
PUB$ | $676%|$21$|$697$ | $0bject
PUB$|$677$|$24$|$701$|$0bject
PUB$|$678%|$25%|$703%|$0bject
PUB$ | 679 | 26|$705%|$0bject
PUB$|$680%|$28%|$708%|$0bject
PUB$ | 681|35|716|$0bject
PUB$|$682% | 44|$726%|$0bject
PUB$ | $683%|$48%|731|$0bject
PUB$|$684%|51|$735%|$0bject

679%|$Published
681$|$Published
683%|$Published
685% | $Published
687%|$Published
689%|$Published
693%|$Published
695$ | $Published
697%|$Published
701$|$Published
703%|$Published
705$ | $Published
708$|$Published
716%|$Published
726$ | $Published
731$|$Published
735% | $Published

95

by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by

11§ | $TAG7
12§ | $TAGY
13$ | $TAG7
14$ | $TAG7
15$ | $TAG7
16$ | $TAG7
19$ | $TAG7
20$ | $TAG7
21$| $TAG7
24% | $TAG7
25%| $TAG7
26$| $TAG7
28%| $TAG7
355 | $TAG7
44% | $TAG7
48% | $TAG7
51$| $TAG7

ANNEX I. REPLICA SELECTION QUALITY TRACE

PUB$ | 685|$52%|$737$|$0bject 737$|$Published by 52$|$TAG7
SUB_P$|$716$|$0$ | $TAGO
SUB_P$|$717$|$0$ | $TAG3
SUB_P$|$718%|0 | $TAGS
SUB_P$|$719$|$0$ | $TAG7
SUB_P$|$720$|$1$ | $TAG4
SUB_P$|$721$|$1$| $TAG6
SUB_P$|$722$|$1$ | $TAG7
SUB_P$|$723%|$2% | $TAGS
SUB_P$|$724%|2| $TAGE
SUB_P$|$725$|$28$ | $TAG7
SUB_P$|$726$|$3$ | $TAGO
SUB_P$|$727$|$3$ | $TAG2
SUB_P$|$728%|3 | $TAG4
SUB_P$|$729%|3 | $TAGS
SUB_P$|$730$|$4$ | $TAGO
SUB_P$|$731$|$4% | $TAG3
SUB_P$|$732$|$4$ | $TAG6
SUB_P$|$733$|$5% | $TAG4
SUB_P$|$734$|$5% | $TAG6
SUB_P$|$735$|$6%$ | $TAG4
SUB_P$|$736$|$6$ | $TAGS
SUB_P$|$737$|$6$ | $TAG6
SUB_P$|$738%|6 | $TAG7
SUB_P$|$739%|7|$TAG1
SUB_P$|$740$|$8% | $TAGO
SUB_P$|$741$|$8% | $TAG1
SUB_P$|$742%|$8% | $TAG4
SUB_P$|$743$|$8% | $TAGS
SUB_P$|$744%|8 | $TAGY
SUB_P$|$745$|$9% | $TAGO
SUB_P$|$746$|$9% | $TAG1
SUB_P$|$747%|9 | $TAG4
SUB_P$|$748%|$9% | $TAGS
SUB_P$|$749%|10 | $TAG1
SUB_P$|$750$|$10$| $TAG4
SUB_P$|$751$|$10$| $TAG6
SUB_P$|$752$|$10$| $TAGY
SUB_P$|$753$|$11$| $TAGA
SUB_P$|$754%|11| $TAGE
SUB_P$|$755%|12 | $TAGS
SUB_P$|$756$|$12$ | $TAG7
SUB_P$|$757$|$13$| $TAGO
SUB_P$|$758%|13| $TAG2
SUB_P$|$759$|$13$| $TAG3
SUB_P$|$760$|$13$| $TAGE
SUB_P$|$761$|$13$| $TAGY
SUB_P$|$762$|$14$ | $TAG1
SUB_P$|$763$|$14$| $TAGA
SUB_P$|$764%|14| $TAGS

96

611

SUB_P$|$765%|15| $TAGO
SUB_P$|$766%|15 | $TAGE
SUB_P$|$767$|$16$|$TAGO
SUB_P$|$768$|$16$|$TAG1
SUB_P$|$769%|16 | $TAGS
SUB_P$|$770%|16 | $TAG7
SUB_P$|$771$|$17$|$TAGO
SUB_P$|$772$|$17$ | $TAG2
SUB_P$|$773$|$17$| $TAGY7
SUB_P$|$774%|18|$TAGO
SUB_P$|$775%|18 | $TAG1
SUB_P$|$776$|$18$| $TAG3
SUB_P$|$777$|$18$ | $TAGA
SUB_P$|$778$|$18$| $TAGY?
SUB_P$|$779%|$20% | $TAGO
SUB_P$|$780%|20 | $TAG1
SUB_P$|$781$|$20$| $TAG3
SUB_P$|$782$|$21$ | $TAG4A
SUB_P$|$783$|$21$| $TAGS
SUB_P$|$784$|$22% | $TAG2
SUB_P$|$785%|22 | $TAG4
SUB_P$|$786$|$22$ | $TAGS
SUB_P$|$787$|$22$ | $TAG6E
SUB_P$|$788%|23 | $TAG1
SUB_P$|$789%|23| $TAG3
SUB_P$|$790%|23 | $TAG4
SUB_P$|$791$|$23$| $TAGS
SUB_P$|$792$ | 23 | $TAGY
SUB_P$|$793%|24 | $TAG3
SUB_P$|$794$|$24$ | $TAG7
SUB_P$|$795%|25 | $TAG1
SUB_P$|$796$|$25$ | $TAG3
SUB_P$|$797$|$25% | $TAGS
SUB_P$|$798%|25 | $TAG7
SUB_P$|$799%|26 | $TAG1
SUB_P$|$800%|26 | $TAG3
SUB_P$|$801$|$26$ | $TAG7
SUB_P$|$802$|$27$| $TAGO
SUB_P$|$803%|27 | $TAG6
SUB_P$|$804$|$28$| $TAGO
SUB_P$|$805%|28 | $TAG3
SUB_P$|$806%$|$28$ | $TAGS
SUB_P$|$807$|$28$ | $TAG6
SUB_P$|$808%|28 | $TAG7
SUB_P$|$809% | $29% | $TAG1
SUB_P$|$810$|$29$ | $TAG7
SUB_P$|$811$|$30$ | $TAG3
SUB_P$|$812$|$31$ | $TAG2
SUB_P$|$813$|$31$ | $TAGA
SUB_P$|$814$|$32$ | $TAG1

97

ANNEX I. REPLICA SELECTION QUALITY TRACE

SUB_P$|$815%|32 | $TAG2
SUB_P$|$816$|$32$ | $TAG3
SUB_P$|$817$|$32$ | $TAGS
SUB_P$|$818%|33| $TAG3
SUB_P$|$819%|33 | $TAG6
SUB_P$|$820% | 33 | $TAG7
SUB_P$|$821$|$34$ | $TAG1
SUB_P$|$822%|34 | $TAGS
SUB_P$|$823%|34 | $TAGE
SUB_P$|$824$|$35$ | $TAG1
SUB_P$|$825%|35 | $TAG2
SUB_P$|$826$ | 35 | $TAG3
SUB_P$|$827$|$35$ | $TAG4
SUB_P$|$828% | 35 | $TAGS
SUB_P$|$829%|36 | $TAGO
SUB_P$|$830%|36 | $TAG7
SUB_P$|$831$|$37$| $TAG2
SUB_P$|$832$|$37$ | $TAG3
SUB_P$|$833% | 37| $TAGE
SUB_P$|$834%|$38% | $TAGS
SUB_P$|$835$|$38$ | $TAG7
SUB_P$|$836%|$39% | $TAG1
SUB_P$|$837$|$40$| $TAG2
SUB_P$|$838%|40 | $TAG4
SUB_P$|$839%|40 | $TAG6
SUB_P$|$840%|40 | $TAG7
SUB_P$|$841$|$41$ | $TAG1
SUB_P$|$842$|$41$| $TAG2
SUB_P$|$843%|41 | $TAG4
SUB_P$|$844%|42 | $TAG2
SUB_P$|$845%|43 | $TAGO
SUB_P$|$846$ | 43| $TAG2
SUB_P$|$847$|$44%| $TAG2
SUB_P$|$848%|44 | $TAG3
SUB_P$ | $849% | 44| $TAGE
SUB_P$|$850% | 44 | $TAG7
SUB_P$|$851$|$45$ | $TAG2
SUB_P$|$852$ | 47| $TAG2
SUB_P$|$853%|47 | $TAGS
SUB_P$|$854% | $48% | $TAGO
SUB_P$|$855% | $48% | $TAG3
SUB_P$|$856% | 48 | $TAG4
SUB_P$|$857$|$48$| $TAG7
SUB_P$|$858% | 49 | $TAG1
SUB_P$|$859% | 49 | $TAG4
SUB_P$|$860% | 49 | $TAG7
SUB_P$|$861$|$51$ | $TAG2
SUB_P$|$862$|$51$ | $TAG4
SUB_P$|$863%|51 | $TAG7
SUB_P$|$864$|$52$ | $TAGO

98

711

SUB_P$|$865% | 52 | $TAG4
SUB_P$|$866% | 52 | $TAG7
SUB_P$|$867% | 53 | $TAGO
SUB_P$|$868% | 53 | $TAG
SUB_P$|$8698 | $53% | $TAG4
SUB_P$|$870$ | 54 | $TAG3
SUB_P$|$871$ | 54 | $TAGS5
SUB_P$|$8728 | 55 | $TAG3
SUB_P$|$873% | 56 | $TAG6
SUB_P$|$874% | 57 | $TAGO
SUB_P$|$875%$ | 57 | $TAG2
SUB_P$ | $876% | 57 | $TAG7
SUB_P$|$877% | $58% | $TAGO
SUB_P$|$878% | $58% | $TAG3
SUB_P$|$879% | $58% | $TAG7
SUB_P$|$880% | 59 | $TAGO
SUB_P$|$881$|$59$ | $TAG2
SUB_P$|$8828 | $59% | $TAG4
SUB_P$|$883% | 59 | $TAG6
SUB_P$|$884%|$59% | $TAG7
SUB_P$|$885% | 60 | $TAG
SUB_P$|$886% | 60 | $TAG2
SUB_P$|$887$ | 60 | $TAG3
SUB_P$|$888% | 60 | $TAG7
SUB_P$|$889% | 61 | $TAGO
SUB_P$|$8908 | 61 | $TAG2
SUB_P$|$891$|$61$ | $TAG3
SUB_P$|$892$ | 61 | $TAG6
SUB_P$|$893$ | 61 | $TAG7
SUB_P$|$894% | 62 | $TAG2
SUB_P$|$895% | 62 | $TAG3
SUB_P$|$896% | 62 | $TAG7
SUB_P$|$897%|63 | $TAGO
SUB_P$|$898$ | 63 | $TAG2
SUB_P$|$899% | 63 | $TAG3
SUB_P$|$9008 | 63 | $TAG4
SYNC$|$1021$|$

99

© 0 N OO g o~ W N =

Annex I1

System Reactivity Trace

NODE$ | 0 | $0

NODE$ |1|$1
NODE$ | 2 | $2
NODE$ | 3 | $3
NODE$ | 4 | $4
NODE$ | 5 | $5
NODE$ | 6 | $6
NODE$ | 7|$7
NODE$ | 8 | $8
NODE$ | 9 | $9
NODE$ | 10|$10

NODE$ |11|$11
SUB_F$|$42$|$0$| $TAGO
SUB_F$|$43%|1| $TAGO
SUB_F$|$44$|$2%| $TAGO
SUB_F$|$45$|$3%| $TAGO
SUB_F$|$46$|$4$| $TAGO
SUB_F$|$47$|$5%| $TAGO
SUB_F$|$48%|$6%| $TAGO
SUB_F$|$49%|7 | $TAGO
SUB_F$|$50$|$8%| $TAGO
SUB_F$|$51$|$9% | $TAGO
SUB_F$|$52$|$10$ | $TAGO
SUB_F$|$53%|0|$TAG1
SUB_F$|$54$|$1$ | $TAG1
SUB_F$|$55$|$2%| $TAG1
SUB_F$|$56$|$3$ | $TAG1
SUB_F$|$57$|$4% | $TAG1
SUB_F$|$58%|$5%| $TAG1
SUB_F$|$59$|$6% | $TAG1
SUB_F$|$60$|$7$|$TAG1
SUB_F$|$61$|$8% | $TAG1
SUB_F$|$62$|$9% | $TAG1
SUB_F$|$63$|$10$|$TAG1
SUB_F$|$64$|$0$ | $TAG2

101

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

ANNEX II. SYSTEM REACTIVITY TRACE

SUB_F$|$65$|$1$|$TAG2
SUB_F$|$66$|$2%| $TAG2
SUB_F$|$67$|$3%| $TAG2
SUB_F$|$68%|4| $TAG2
SUB_F$|$69%|$5%| $TAG2
SUB_F$|$70$|$6%| $TAG2
SUB_F$|$71$|$7$|$TAG2
SUB_F$|$72$|$8%| $TAG2
SUB_F$|$73$|$9% | $TAG2
SUB_F$|$74$|$10$ | $TAG2
SUB_F$|$75$|$0$| $TAG3
SUB_F$|$76$|$1$|$TAG3
SUB_F$|$77$|$2%| $TAG3
SUB_F$|$78$|$3% | $TAG3
SUB_F$|$79$|$4%|$TAG3
SUB_F$|$80$|$5%| $TAG3
SUB_F$|$81$|$6% | $TAG3
SUB_F$|$82$|$7$| $TAG3
SUB_F$|$83$|$8% | $TAG3
SUB_F$|$84$|$9% | $TAG3
SUB_F$|$85$|$10$|$TAG3
SUB_F$|$86$|$0$ | $TAG4
SUB_F$|$87$|$1$|$TAGA
SUB_F$|$88%|$2%| $TAG4
SUB_F$|$89%|3 | $TAG4
SUB_F$|$90$ | $4%| $TAG4
SUB_F$|$91$|$5% | $TAG4
SUB_F$|$92$|$6% | $TAG4
SUB_F$|$93$|$7%| $TAG4
SUB_F$|$94$|$8% | $TAG4
SUB_F$|$95$|$9% | $TAG4
SUB_F$|$96$|$10$ | $TAGA
SUB_F$|$97$|$0% | $TAGS
SUB_F$|$98%|1|$TAGS
SUB_F$|$99%|2| $TAGS
SUB_F$|$100$|$3$ | $TAGS
SUB_F$|$101$|$4$ | $TAGS
SUB_F$|$102$ | $5% | $TAGS
SUB_F$|$103$|$6$ | $TAGS
SUB_F$|$104%|7|$TAGS
SUB_F$|$105$|$8% | $TAGS
SUB_F$|$106$|$9% | $TAGS

SUB_F$|$107$|$10$| $TAGS

SUB_F$|$1088$ | 0 | $TAGE
SUB_F$|$109$|$1$ | $TAGE
SUB_F$|$110$|$2%| $TAG6
SUB_F$|$111$|$3$ | $TAGE
SUB_F$|$112$|$4$ | $TAGE
SUB_F$|$113$|$5% | $TAG6
SUB_F$|$114$ | $6% | $TAGE

102

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

105
106
107
108
109
110
111
112
113
114
115
116
17
118
119
120

122
123
124
125
126
127
128
129
130
131
132
133
134
135

SUB_F$|$115%|$7% | $TAGE
SUB_F$|$116$|$8%| $TAG6
SUB_F$|$117$|$9$ | $TAG6
SUB_F$|$118%|10 | $TAGE
SUB_F$|$119$|$0$| $TAG7
SUB_F$|$120$|$1$|$TAG7
SUB_F$|$121$|$2$| $TAG7
SUB_F$|$122$|$3$ | $TAG7
SUB_F$|$123%|4| $TAG?
SUB_F$|$124%|$5%| $TAG7
SUB_F$|$125%|6 | $TAG7
SUB_F$|$126$|$7$| $TAG?
SUB_F$|$127$|$8$ | $TAG7
SUB_F$|$128%|$9%| $TAGY
SUB_F$|$129%|10 | $TAG7
SUB_F$|$130%|0 | $TAGS
SUB_F$|$131$|$1$|$TAGS
SUB_F$|$1328 | 2 | $TAGS
SUB_F$|$133$|$3$ | $TAGS
SUB_F$|$134$|$4$ | $TAGS
SUB_F$|$135%|5 | $TAGS
SUB_F$|$136$|$6$ | $TAGS
SUB_F$|$137$|$7$| $TAGS
SUB_F$|$138%|$8% | $TAGS
SUB_F$|$139$|$9$ | $TAGS
SUB_F$|$140$|$10$|$TAGS
SUB_F$|$141$|$0$ | $TAGY
SUB_F$|$142$|$1$| $TAGY
SUB_F$|$143%|2 | $TAGY
SUB_F$|$144$|$3$| $TAGY
SUB_F$|$145$|$4$ | $TAGY
SUB_F$|$146$|$5%| $TAGY
SUB_F$|$147$|$6$| $TAGI
SUB_F$|$148%|7|$TAGY
SUB_F$|$149%|$8%|$TAGY
SUB_F$|$150$|$9% | $TAGY
SUB_F$|$151$|$10$ | $TAGY
SUB_F$|$152$|$0$ | $TAG10
SUB_F$|$153$|$1$|$TAG10
SUB_F$|$154%|$2% | $TAG10
SUB_F$|$155$|$3$|$TAG10
SUB_F$|$156$|$4$|$TAG10
SUB_F$|$157$|$5$ | $TAG10
SUB_F$|$158%|6| $TAG10
SUB_F$|$159%|7|$TAG10
SUB_F$|$160%|8|$TAG10
SUB_F$|$161$|$9$|$TAG10
SUB_F$|$162$|$10$|$TAG10
SUB_F$|$163$|$0$ | $TAG11
SUB_F$|$164$|$1$|$TAG11

103

136
137
138
139
140

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

168
169
170

172
173
174
175
176
177
178
179
180

ANNEX II.

SYSTEM REACTIVITY TRACE

SUB_F$|$165$|$2$|$TAG11
SUB_F$|$166$|$3$|$TAGT1
SUB_F$|$167$|$4$|$TAGT1
SUB_F$|$168%|$5%|$TAGT1
SUB_F$|$169$|$6$|$TAGT1
SUB_F$|$170$|$7$|$TAG11
SUB_F$|$171$|$8%| $TAG11
SUB_F$|$172$|$9$|$TAG11
SUB_F$|$173$|$10$ | $TAG11
SUB_F$|$174%|11| $TAGT 1
PUB$|$185$|$0$|$185%|$0bject
PUB$|$186$|$1$|$187$|$0bject
PUB$|$187$|$2$|$189%|$0bject
PUBS$|$188%|3|191|$0bject
PUB$|$189$|$4$|$193%|$0bject
PUBS$|$190$|$5$|$195$|$0bject
PUB$|$191$|$6$|$197$|$0bject
PUB$|$192$|$7$|$199$ | $0bject
PUBS$|$193$|$8$|$201$|$0bject
PUB$|$194$|$9%|$203%|$0bject

PUB$ | 195|10|205 | $0bject 205$|$Published by 10$|$TAGI0

PUB$ | 206 | 0|$206%|$0bject
PUB$ | 207|1|$208%|$0bject
PUB$ | $208%|$2$|$210$|$0bject
PUB$ | 209|$38|$2128|$0bject
PUB$|$210$|$4$|$214$|$0bject
PUB$|$211$]$5$|$216$|$0bject
PUBS$ | 212|6|$218%|$0bject
PUB$ |213|7|$220%$|$0bject
PUBS$ | 214|$8%|$2228|$0bject
PUB$|$215$|$9%|224|$0bject

PUB$|$216$|$10$|$226$|$0bject 226$|$Published by 10$|$TAGT1
PUB$|$217$|$11$]$228$|$0bject 228$|$Published by 11$|$TAGT1

SUB_P$ | $338% | 11| $TAGO
SUB_P$ | $349% | 11| $TAG1
SUB_P$ | $359% | 11| $TAG2
SUB_P$ | $368% | 11|$TAG3
SUB_P$|$376%|11 | $TAG4
SUB_P$ | $383% | 11| $TAGS
SUB_P$|$389%|11 | $TAGE
SUB_P$ | 394 | 11| $TAG7
SUB_P$ | $398% | 11| $TAGS
SUB_P$|$401$|$11$|$TAGY
SUB_P$|$403$|$11$|$TAG10
SYNC$ | 414|$

185% | $Published
187$ | $Published
189% | $Published
191$|$Published
193$ | $Published
195% | $Published
197$ | $Published
199% | $Published
201$|$Published
203$|$Published

206$ | $Published
208$ | $Published
210$|$Published
212$|$Published
214$|$Published
216$ | $Published
218$|$Published
220$|$Published
222$|$Published
224$|$Published

by
by
by
by
by
by
by
by
by
by

by
by
by
by
by
by
by
by
by
by

0$ | $TAGO
1$|$TAG1
2$|$TAG2
3$|$TAG3
4$ | $TAGH
5$ | $TAG5
6$|$TAGE
7$| $TAG7
8% | $TAG8
9$ | $TAGI

0$|$TAG11
1$|$TAG11
2$|$TAG11
3$|$TAGT1
4$|$TAG11
5$|$TAG11
6$|$TAG11
7$|$TAG11
8% | $TAGT1
9% | $TAG11

104

© 0 N OO g o~ W N =

Annex II1

System Overhead Trace

NODE$ | 0 | $0

NODE$ |1|$1
NODE$ | 2 | $2
NODE$ | 3 | $3
NODE$ | 4 | $4
NODE$ | 5 | $5
NODE$ | 6 | $6
NODE$ | 7|$7
NODE$ | 8 | $8
NODE$ | 9 | $9
NODE$ | 10|$10

NODE$ |11|$11

NODE$ |12|$12
NODE$ | 13|$13
NODE$|$14$|$14
NODE$ | 15|$15
SUB_F$|$46$|$1$| $TAGO
SUB_F$|$47$|$4%|$TAGO
SUB_F$|$48%|$6%| $TAGO
SUB_F$|$49$|$8%| $TAGO
SUB_F$|$50$ | $9% | $TAGO
SUB_F$|$51$|$10$ | $TAGO
SUB_F$|$52$|$12$ | $TAGO
SUB_F$|$53$|$13$|$TAGO
SUB_F$|$54$|$15$ | $TAGO
SUB_F$|$55$|$0$ | $TAG1
SUB_F$|$56$|$3$ | $TAG1
SUB_F$|$57$|$6% | $TAG1
SUB_F$|$58%|$8%| $TAG1
SUB_F$|$59$|$11$ | $TAG1
SUB_F$|$60$|$13% | $TAG1
SUB_F$|$61$|$14$ | $TAG1
SUB_F$|$62$|$2% | $TAG2
SUB_F$|$63$|$3%| $TAG2
SUB_F$|$64$|$4$| $TAG2

105

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

ANNEX III. SYSTEM OVERHEAD TRACE

SUB_F$|$65$|$7%|$TAG2
SUB_F$|$66$|$8% | $TAG2
SUB_F$|$67$|$9% | $TAG2
SUB_F$|$68%|$12% | $TAG2
SUB_F$|$69%|14|$TAG2
SUB_F$|$70$|$15%| $TAG2
SUB_F$|$71$|$0$ | $TAG3
SUB_F$|$72$|$3% | $TAG3
SUB_F$|$73$|$4%|$TAG3
SUB_F$|$74$|$5%| $TAG3
SUB_F$|$75$|$9% | $TAG3
SUB_F$|$76$|$115|$TAG3
SUB_F$|$77$|$128| $TAG3
SUB_F$|$78%|$13% | $TAG3
SUB_F$|$79$|$1$ | $TAG4
SUB_F$|$80$|$4$ | $TAGA
SUB_F$|$81$|$7%8|$TAG4
SUB_F$|$82$|$9% | $TAG4
SUB_F$|$83$|$10% | $TAG4
SUB_F$|$84$|$12$ | $TAG4
SUB_F$|$85%|$13% | $TAG4
SUB_F$|$86$|$15% | $TAG4
SUB_F$|$87$|$8%|$TAGS
SUB_F$|$88$|$10$|$TAGS
SUB_F$|$89%|$115|$TAGS
SUB_F$|$90$|$12%| $TAGS
SUB_F$|$91$|$15% | $TAGS
SUB_F$|$92$|$1$|$TAGE
SUB_F$|$93$|$2$ | $TAG6
SUB_F$|$94$|$3%| $TAGE
SUB_F$|$95$|$5% | $TAG6
SUB_F$|$96%|$6% | $TAG6
SUB_F$|$97$|$9% | $TAGE
SUB_F$|$98$|$10$| $TAG6
SUB_F$|$99%|$12% | $TAG6
SUB_F$|$100$|$14$| $TAGE
SUB_F$|$101$|$155| $TAGE
SUB_F$|$102$|$0$ | $TAG7
SUB_F$|$103$|$1$|$TAG7
SUB_F$|$104$|$3$|$TAG7
SUB_F$|$105$|$6$ | $TAG7
SUB_F$|$106$|$8% | $TAG7
SUB_F$|$107$|$11$|$TAGY
SUB_F$|$108$|$12$| $TAGY
SUB_F$|$109$|$15% | $TAGY

PUB$ |$1108]$0$|$110$|$0bject
PUB$[$111$]$15]112|$0bject
PUB$ |$1128]$3$|$115$|$0bject
PUB$ |113|$6%|$119$|$0bject
PUB$ |114|$9%|$123$ | $0bject

110$ | $Published by 0$|$TAGO
112$|$Published by 1$|$TAGO
115$|$Published by 3$|$TAGO
119$|$Published by 6$|$TAGO
123$|$Published by 9%|$TAGO

106

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

105
106
107
108
109
110
111
112
113
114
115
116

118
119
120

122
123
124
125
126
127
128
129
130
131
132
133
134
135

PUB$|$115$|$10$|$125%|$0bject 125%|$Published by 10$|$TAGO
PUB$|$116$|$12$|$128%|$0bject 128%|$Published by 12$|$TAGO
PUB$|$117$|$13$|$130$|$0bject 130$|$Published by 13$|$TAGO

PUB$|$118$|$4$|$122$|$0bject
PUB$|$119$|$7$|$126%|$0bject
PUB$|$120$|$12$|$132%|$0bject
PUB$|$121$|$13$|$134$|$0bject
PUBS$ |122|0|$1228|$0bject
PUB$|$123$|$2$|$125$|$0bject
PUB$ | 124|3|127|$0bject
PUB$ |125|$4%$|$129%|$0bject
PUBS$|$126$|$78|$1338|$0bject
PUB$|$127$]|$9%|136|$0bject
PUBS$|$128$|$10$|$138%|$0bject
PUBS$|$129$|$11$|$140$|$0bject
PUBS$|$130$|$12$|$142$|$0bject
PUB$|$131$|$0$|$131$|$0bject
PUB$|$132$|$2$|$134$|$0bject
PUB$|$133$|$3%|$136%|$0bject
PUB$|$134$|$4$|$138$|$0bject
PUB$|$135$|$6%|141|$0bject
PUB$|$136$|$7$|$143$|$0bject
PUBS$ | 137|$8%|$145%|$0bject
PUBS$|$138$|$10$|$148%|$0bject
PUBS$|$139$|$11$|$150$|$0bject
PUB$|$140$|$14$|$154%|$0bject
PUBS$|$141$|$15$|$156%|$0bject
PUBS$ | 142|3|$145%|$0bject
PUBS$ |143|$8%|$151$|$0bject

122$|$Published by 4$|$TAG1
126$|$Published by 7$|$TAG1
132$ |$Published by 12$|$TAG1
134$|$Published by 13$|$TAG1
122$|$Published by 0%|$TAG2
125$|$Published by 2$|$TAG2
127$|$Published by 3$|$TAG2
129$ | $Published by 4$|$TAG2
133$|$Published by 7$|$TAG2
136$|$Published by 9%|$TAG2
138% |$Published by 10$|$TAG2
140$|$Published by 11$|$TAG2
142$|$Published by 12$|$TAG2
131$|$Published by 0$|$TAG3
134$|$Published by 2%|$TAG3
136$|$Published by 3$|$TAG3
138$ |$Published by 4$|$TAG3
141$|$Published by 6%$|$TAG3
143$|$Published by 7$|$TAG3
145$|$Published by 8$%|$TAG3
148% |$Published by 10$|$TAG3
150$ | $Published by 11$|$TAG3
154$|$Published by 14$|$TAG3
156$ | $Published by 15$|$TAG3
145$|$Published by 3$|$TAGS
151$|$Published by 8%|$TAG4

PUB$|$144$|$11$|$155$|$0bject 155$|$Published by 11$|$TAG4S
PUB$|$145$|$13$|$158%|$0bject 158$|$Published by 13$|$TAG4S
PUB$|$146$|$15$|$161$|$0bject 161$|$Published by 15$|$TAG4

PUB$|$147$]$2$|$149$|$0bject
PUB$|$148$|$38|151|$0bject
PUB$|$149$|$4$|$153%|$0bject
PUB$|$150$|$6$|$156$|$0bject
PUB$|$151$|$8%|$159%|$0bject
PUB$|$152$|$9$|$161$|$0bject

149% | $Published
151§ |$Published
153$ | $Published
156$ | $Published
159% | $Published
161$ | $Published

by
by
by
by
by
by

2% | $TAGS
3$|$TAGS
4% | $TAGS
6% | $TAGS
8% | $TAGS
9% | $TAGS

PUB$|$153$|$11$|$164%|$0bject 164$|$Published by 11$|$TAGS
PUB$|$154$|$12$|$166$|$0bject 166$|$Published by 12$|$TAGS
PUB$|$155$|$15$|$170$|$0bject 170$|$Published by 15$|$TAGS

PUB$ |$156% | $0%| $156% | $0bject
PUB$ |$1578|$25|159 | $0bject
PUB$ |$158%|$5%| 163|$0bject
PUB$|$159% | 6|$165%|$0bject

156$ | $Published by 0% |$TAG6
159$ | $Published by 2$|$TAG6
163$|$Published by 5%|$TAG6
165% | $Published by 6%|$TAG6

PUB$|$160$|$11$|$171$|$0bject 171$|$Published by 11$|$TAGE
PUB$|$161$|$12$|$173$|$0bject 173%|$Published by 12$|$TAGE
PUB$|$162$|$15$|$177$|$0bject 177$|$Published by 15$|$TAG6
PUB$|$163$|$0$|$163$|$0bject 163$|$Published by 0$|$TAG7
PUB$|$164$|$1$|$165%|$0bject 165$|$Published by 1$|$TAGT

107

136
137
138
139
140

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

168
169
170

172
173
174
175
176
177
178
179
180
181
182
183
184
185

ANNEX III. SYSTEM OVERHEAD TRACE

PUB$|$165$|$2$|$167$|$0bject 167$|$Published by 2$|$TAG7
PUB$|$166$|$3$|$169%|$0bject 169$%|$Published by 3$|$TAG7
PUB$|$167$|$4$|$171$|$0bject 171$|$Published by 4$|$TAG7
PUB$|$168$|$5$|$173$|$0bject 173$|$Published by 5% |$TAG7
PUB$|$169%|$8%|$177$|$0bject 177$|$Published by 8$|$TAG7
PUB$|$170$|$9$|$179%|$0bject 179$|$Published by 9$|$TAG7
PUB$|$171$|$12$|$183$|$0bject 183$|$Published by 12$|$TAG7
PUB$|$172$]$13$|$185%|$0bject 185%|$Published by 13$|$TAG7
PUB$|$173$|$14$|$187$|$0bject 187$|$Published by 14$|$TAG7
SUB_P$|$174$|$0$ | $TAGO

SUB_P$|$175$|$0$ | $TAG2

SUB_P$|$176$|$0$ | $TAG4

SUB_P$|$177$|$1$ | $TAG2

SUB_P$|$178%|1|$TAG3

SUB_P$|$179%|2 | $TAGO

SUB_P$|$180$|$2$ | $TAG1

SUB_P$|$181$|$2$ | $TAG3

SUB_P$|$182$|$2% | $TAG4

SUB_P$|$183$|$2$ | $TAGS

SUB_P$|$184$|$3$ | $TAGO

SUB_P$|$185$|$3$ | $TAGS

SUB_P$|$186% | $4% | $TAGT

SUB_P$|$187$|$4%$ | $TAGS

SUB_P$|$188$|$4$ | $TAG6

SUB_P$|$189%|4 | $TAG7

SUB_P$|$190$|$5% | $TAG1

SUB_P$|$191$|$5% | $TAG2

SUB_P$|$192$ | $5% | $TAG4

SUB_P$|$193$|$5% | $TAGS

SUB_P$|$194$|$6% | $TAG2

SUB_P$|$195$|$6$ | $TAG3

SUB_P$|$196%|$6% | $TAGS

SUB_P$|$197$|$7$ | $TAGO

SUB_P$|$198$|$7$ | $TAG1

SUB_P$|$199% | 7 | $TAG3

SUB_P$|$200$|$7$ | $TAGS

SUB_P$|$201$|$7$ | $TAG6

SUB_P$|$202$|$7$ | $TAG7

SUB_P$|$203$|$8% | $TAG3

SUB_P$|$204$|$8$ | $TAG4

SUB_P$|$205$ | $8% | $TAG6

SUB_P$|$206$ | $9% | $TAG1

SUB_P$|$207$|$10$ | $TAG1

SUB_P$|$208$|$10$| $TAG2

SUB_P$|$209$|$10$| $TAG3

SUB_P$|$210$|$10$ | $TAG7

SUB_P$|$211$|$11$| $TAGO

SUB_P$|$212$|$11$| $TAG2

SUB_P$|$213$|$11$| $TAGA

SUB_P$|$214$|$12$ | $TAG1

108

186
187
188
189
190
191
192
193
194
195

SUB_P$|$215$|$13$ | $TAG2
SUB_P$|$216$|$13$| $TAGS
SUB_P$|$217$|$13$ | $TAG6
SUB_P$|$218$|$13$| $TAG7
SUB_P$|$219$|$14$ | $TAG3
SUB_P$|$220%|14 | $TAG4
SUB_P$|$221$|$14$ | $TAG7
SUB_P$|$222$|$15$ | $TAG1
SUB_P$|$223%|15| $TAG3
SYNC$ | 284|$

109

	List of Figures
	Acronyms
	Introduction
	Context and Motivation
	Mobile Edge Computing
	Problem
	Solution
	Contributions
	Document Structure

	Related Work
	Dynamic Replica Selection
	Overview
	C3
	L2
	NetRS
	Data Grids
	Final Considerations

	Replicated Storage at the Edge Systems
	Mobile-to-mobile Communication
	Final Remarks

	Thyme
	Thyme
	Gardenbed
	Thyme Gardenbed
	Final Remarks

	Proposed Solution
	Overview
	Proposed Framework Architecture
	Server-Side Components
	Client-Side Components
	Summary

	Replica Selection Strategy for MEC Systems
	Picking a baseline
	Remaining Challenges
	Proposed Algorithm

	Integration with Thyme GardenBed
	System Architecture
	Integration
	Dealing with Early Hotspots

	Final Remarks

	Evaluation
	Goals
	Methodology
	Experimental Setup
	Simulator
	Traces
	Hardware

	Results
	Replica Selection Quality
	System Reactivity
	System Overhead

	Final Remarks

	Conclusions
	Conclusions
	System Improvements and Research Opportunities
	Exploring Alternative Communication Protocols
	Metric Dissemination Overhead

	Bibliography
	Annexes
	Replica Selection Quality Trace
	System Reactivity Trace
	System Overhead Trace

