
João Pedro Monteiro Morgado Dias

Bachelor in Computer Science

Adaptive Replica Selection in Mobile Edge
Networks

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Engineering

Adviser: Hervé Paulino, Associate Professor, NOVA School
of Science and Technology, Universidade NOVA de
Lisboa

Examination Committee

Chair: João Moura Pires, Associate Professor, NOVA
School of Science and Technology, Universidade
NOVA de Lisboa

Members: Luís Veiga, Associate Professor, Instituto Superior
Técnico, Universidade de Lisboa
Hervé Paulino, Associate Professor, NOVA School
of Science and Technology, Universidade NOVA
de Lisboa

November, 2020

Adaptive Replica Selection in Mobile Edge Networks

Copyright © João Pedro Monteiro Morgado Dias, NOVA School of Science and Technology,

NOVA University Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based on the NOVAthesis template, developed at the Dep. Informática of FCT-NOVA by João
M. Lourenço.

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt
https://docentes.fct.unl.pt/joao-lourenco
https://docentes.fct.unl.pt/joao-lourenco

To my unconditionally supporting family.

Acknowledgements

My most profound gratitude goes towards p Prof. Hervé Paulino who has guided me

throughout this journey, as well as prof. João Silva who has been as-present during the

elaboration of the project.

Also, to the people who are closest to me and never failed to provide clarity during

the time that I’ve been juggling my academic, professional and personal life.

This dissertation was written in the context of Project DeDuCe

(PTDC/CCI-COM/32166/2017), financed by Fundação para a Ciência e Tecnologia.

vii

Abstract

With the ongoing increase in mobile devices and the application’s growing reliance on the

cloud, these infrastructures have become centralized hubs of computational processing

and storage. With so much traffic being generated to - and from - these centralized in-

frastructures, network congestion and delays start to become more evident. Furthermore,

having messages travel back and forth to a location that is physically distant from the

user severely punishes applications with low latency or high bandwidth demands. Mobile

Edge Computing (MEC) is a paradigm that aims to solve these limitations by bringing

cloud services closer to mobile clients, effectively reducing end-to-end delays and saving

backbone bandwidth.

As in a cloud environment, these applications are starting to make use of replication

to enhance their quality of service. Because content generated by mobile devices has a

localized interest at first, data starts by getting replicated between these devices and only

when it starts to get popular is it eventually replicated (cached) in edge servers. The

problem arises though, when there is no replica selection mechanism for data retrieval.

The resulting herd behavior causes the computational load on the network to be poorly

distributed, which combined with the unreliable wireless communication channels cause

these systems to under-perform.

In thesis we propose Wasabi, an adaptive replica selection algorithm for MEC envi-

ronments with the aim of decreasing latency and boosting both throughput and energy
efficiency in MEC systems. Furthermore, we develop a whole replica selection framework

to support Wasabi and its integration with Thyme GardenBed [14].

From our experimental results, we conclude that Wasabi performs better in dynamic

environments than any of the presented baselines, including the cloud algorithm C3 [17]

and its MEC variant, which make use of a similar set of metrics.

Keywords: Mobile Edge Computing, Replica Selection, Mobile-to-mobile, Mobile-to-

edge

ix

Resumo

Com o número de dispositivos móveis a crescer e as aplicações cada vez mais dependen-

tes da cloud, estas infraestruturas têm-se tornado pontos centralizados de computação

e armazenamento. Devido à quantidade de tráfego que é gerado - e recebido - nestas

infraestruturas centralizadas, o congestionamento e atrasos na rede começam a torna-se

evidentes. Além disso, a considerável distância física entre estas infraestruturas e os utili-

zadores inviabiliza algumas das aplicações com maiores exigências a nível de largura de

banda e latência. Mobile Edge Computing (MEC) é um paradigma que procura resolver

estas limitações trazendo os serviços cloud para mais próximo dos dispositivos móveis, de

forma a reduzir a latência e poupar largura de banda no canal de comunicação principal.

Tal como nos ambientes cloud, estas aplicações começam a fazer uso de replicação

para melhorar a sua qualidade de serviço. Como o conteúdo gerado pelos dispositivos

móveis tem inicialmente um interesse localizado, os dados começam por ser replicados

entre os dispositivos móveis e só mais tarde, quando se começam a tornar populares, é

que são eventualmente replicados (cached) em servidores edge. No entanto, o problema

surge quando não existe qualquer tipo de mecânismo de seleção de réplicas para des-

carregar esses dados. Pela ausência de tal mecânismo, é costume observar-se um mau

balanceamento de carga entre as réplicas disponíveis, o que combinado com canais de

comunicação instáveis, degrada a performance destes sistemas.

Com esta tese nós propomos Wasabi, um algoritmo de seleção de réplicas adaptativo

no âmbito de sistemas MEC, com o objetivo de diminuir latências e melhorar ambos o

throughput e a eficiência energética destes sistemas. Dos nossos desenvolvimentos resulta

também uma framework para desenvolver mecânismos de seleção de réplicas e sobre a

qual construímos a integração do Wasabi com o sistema Thyme GardenBed [14].

Através dos nossos resultados experimentais fomos capazes de concluir que o nosso

algoritmo faz melhores seleções em ambientes dinâmicos que qualquer outra baseline
definida para efeitos de comparação, incluíndo o algoritmo cloud C3 [17] e a sua variante

MEC, e que usam um conjunto de réplicas semelhante às do Wasabi.

Palavras-chave: Mobile Edge Computing, Seleção de Réplicas, Mobile-to-mobile, Mobile-

to-edge

xi

xii

Contents

List of Figures xv

Acronyms xix

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Mobile Edge Computing . 2

1.3 Problem . 4

1.4 Solution . 4

1.5 Contributions . 5

1.6 Document Structure . 5

2 Related Work 7

2.1 Dynamic Replica Selection . 7

2.1.1 Overview . 7

2.1.2 C3 . 9

2.1.3 L2 . 10

2.1.4 NetRS . 11

2.1.5 Data Grids . 12

2.1.6 Final Considerations . 13

2.2 Replicated Storage at the Edge Systems . 13

2.3 Mobile-to-mobile Communication . 15

2.4 Final Remarks . 15

3 Thyme 17

3.1 Thyme . 17

3.2 Gardenbed . 20

3.3 Thyme Gardenbed . 23

3.4 Final Remarks . 24

4 Proposed Solution 27

4.1 Overview . 27

4.2 Proposed Framework Architecture . 29

xiii

CONTENTS

4.2.1 Server-Side Components . 29

4.2.2 Client-Side Components . 32

4.2.3 Summary . 38

4.3 Replica Selection Strategy for MEC Systems 39

4.3.1 Picking a baseline . 39

4.3.2 Remaining Challenges . 41

4.3.3 Proposed Algorithm . 43

4.4 Integration with Thyme GardenBed . 46

4.4.1 System Architecture . 46

4.4.2 Integration . 48

4.4.3 Dealing with Early Hotspots . 53

4.5 Final Remarks . 55

5 Evaluation 57

5.1 Goals . 57

5.2 Methodology . 58

5.3 Experimental Setup . 60

5.3.1 Simulator . 60

5.3.2 Traces . 61

5.3.3 Hardware . 63

5.4 Results . 63

5.4.1 Replica Selection Quality . 63

5.4.2 System Reactivity . 75

5.4.3 System Overhead . 76

5.5 Final Remarks . 77

6 Conclusions 79

6.1 Conclusions . 79

6.2 System Improvements and Research Opportunities 80

6.2.1 Exploring Alternative Communication Protocols 80

6.2.2 Metric Dissemination Overhead . 80

Bibliography 81

Annexes 85

I Replica Selection Quality Trace 85

II System Reactivity Trace 101

III System Overhead Trace 105

xiv

List of Figures

1.1 Mobile Edge Computing Topology . 2

1.2 Mobile Edge Computing: Application Classes 3

3.1 Example of Thyme’s publish and subscribe operations 18

3.2 Application in the context of a football stadium 20

3.3 Global P/S execution process . 22

4.1 Replica Selection Feedback System as an Application/Network middleware . 28

4.2 Replica Selection Feedback System Client . 29

4.3 Inside the server-side module . 29

4.4 Inside the client-side module . 32

4.5 Replica Selection framework architecture diagram 39

4.6 Thyme’s Architecture . 47

4.7 GardenBed’s Architecture . 48

4.8 Server-side metrics collection sequence . 49

4.9 Client-side metrics collection and recording sequence 50

5.1 Replica Selection Benchmark for the Random Selection Strategy 65

5.2 Percentage of replicas available in the download notification comparing to the

actual number of nodes that already has the object in its storage. 65

5.3 Ratio between the select replica score and the actual best replica score for the

given download. 66

5.4 Replica Selection Benchmark for the Infrastructure First Strategy 67

5.5 Replica Selection Benchmark with extra allowed concurrency for the Infras-

tructure First Strategy. 69

5.6 Ratio between the select replica score and the actual best replica score for the

given download. 69

5.7 Replica Selection Benchmark for C3 in a MEC environment. 70

5.8 Replica Selection Benchmark for C3 in a MEC environment with increased

client concurrency. 71

5.9 Ratio between the select replica score and the actual best replica score for the

given download. 72

xv

LIST OF FIGURES

5.10 Ratio between the select replica score and the actual best replica score for the

given download. 73

5.11 Replica Selection Benchmark for Wasabi . 74

5.12 Bytes sent during simulation: no replica selection vs replica selection 77

xvi

List of Listings

4.1 MetricCollector . 30

4.2 SampleMetricCollector . 30

4.3 AverageMetricCollector . 31

4.4 MetricsAggregator . 31

4.5 ReplicaClassifier . 32

4.6 MetricObserver . 34

4.7 ResponseTimeObserver . 35

4.8 MetricHolder . 36

4.9 ReplicaScoringAlgorithm . 36

4.10 C3Algorithm . 37

4.11 ClusterLogic . 38

xvii

Acronyms

AP Access Point

API Application Programming Interface

AR Augmented Reality

DHT Distributed Hash Table

EWMA Exponentially Weighted Moving Average

IoT Internet of Things

JVM Java Virtual Machine

MEC Mobile Edge Computing

TDLS Tunneled Direct Link Setup

TTL Time to Live

UUID Universally Unique Identifier

VR Virtual Reality

xix

Chapter 1

Introduction

We start this work with its context and motivation. We then move to introducing the

Mobile Edge Computing (MEC) [1] paradigm, followed by a brief description of the

problem and its manifestation in a particular publish-subscribe (PS) system. We then

discuss our proposed solution before ending the chapter with a structure overview for

the remainder of the document.

1.1 Context and Motivation

In recent years, users have been increasingly adopting smartphones as their primary

internet-enabled device. In 2016, analysts disclosed the first report stating that mobile

devices surpassed desktop in terms of internet usage worldwide [15]. Also, the advent of

IoT and wearable devices has been contributing to this trend.

Nowadays, many mobile applications rely on services hosted in the cloud. In most

cases, all data traffic is routed through the core network to a base station which delivers

the content to mobile devices. Even though smartphones’ hardware capabilities have

been greatly increasing year after year, mobile communications still remain a bottleneck

for most applications.

All the network requests generating from these internet-enabled devices, as well as

desktop computers, are being processed by the same cloud infrastructure in a centralized

fashion. And even though geo-replication mitigates this scalability issue, the number

of concurrent network requests is so big that they are still competing for the servers’

processing power and channel throughput.

This reliance on a cloud data center is specially not feasible for applications that

require end-to-end delays to be tightly controlled. This is the case for the newer emerging

types of applications with high bandwidth demands (such as AR and VR).

Additionally, wireless communication technologies used in mobile environments -

such as Wi-Fi, Bluetooth and 3G - are unreliable, slow and congestion-prone by nature

when compared to the wired medium counterpart [21].

1

CHAPTER 1. INTRODUCTION

Figure 1.1: Mobile Edge Computing Topology: 1) Mobile end users using User Equipment
(UE), 2) Network operators owning, managing, and operating base stations, MEC servers,
and the mobile core network, 3) Internet infrastructure providers (InPs) maintaining
Internet routers, 4) Application service providers (ASPs) hosting applications within data
centers and content delivery networks (CDN).

All the previous have been the catalyst to the introduction of Edge Network. In the

context of this work, when referring to the Edge, we’ll be talking about Mobile Edge

Computing (MEC).

1.2 Mobile Edge Computing

MEC brings cloud services closer to the mobile clients, i.e. the edge of the network,

by leveraging on the storage and processing power of smaller computational servers

that are deployed in the base stations of cellular networks. By being closer to the data

sources, MEC servers effectively reduce end-to-end delays and save backbone bandwidth

for those cases that strictly need to reach the main infrastructure. This paradigm allows

for the removal of network bottlenecks and the support of previously mentioned emerging

applications with strict end-to-end delay requirements. Furthermore, other iterations are

moving away from single node access points towards using the client’s mobile devices

as actual Edge nodes, harnessing their processing, storage and routing/communication

capabilities, in order to create a complete local system [21]. Fig. 1 depicts the MEC

ecosystem and the integration of MEC servers into the mobile network topology.

Another interesting point for our work is that by being placed at the mobile edge, MEC

servers are capable of collecting real-time network data like cell congestion, subscriber

locations and movement directions [2].

Regarding the applications that take advantage of the MEC, these can fit into one or

more of the application classes in Fig. 2. We will be focusing on Edge Content Delivery,

using metrics like Power Consumption, Delay and Bandwidth to evaluate each solution.

2

1.2. MOBILE EDGE COMPUTING

Figure 1.2: Mobile Edge Computing: Application Classes

In spite of both processing and battery capacity increases that we’ve been seeing in

mobile devices over the years, for most use cases it is still considered a good practice

to offload resource- or power-intensive tasks to remote services. We should delegate

computation to external services when we either can’t execute those computation in time

with our local resources or such practice will noticeably favour battery life. If no MEC

server is available, mobile devices can downgrade to a more distant MEC server, the main

servers or fallback to local computations. Also, mobile applications have to be aware of

the fact that MEC servers are deployed in a centralized way and, since the mobile user

might move from its current geographical position, connectivity between MEC servers

and mobile device is constrained. Thus, applications that rely on MEC services have to

be mobility-aware [2].

Edge Content Delivery refers to the fact that MEC servers can operate as local content

delivery nodes and serve cached content. This caching mechanism can be Transparent,
that is, neither the mobile device nor the service are aware it; Proactive, meaning that the

service provider will have some content already cached on their MEC servers under the

expectation that such content would otherwise create a heavy load on the network; and

Preload, which is the act of caching data before it is (potentially) requested by the end

user. In contrast to proactive caching, it is the end users’ actions that determine whether

(and which) content gets upper handedly cached in the MEC servers. In the context of

Mobile Edge Computing, pre-loading is shifted from mobile devices to MEC servers in

order to decrease power consumption.

To sum up, the introduction of MEC servers in the initial network scheme is motivated

by end users’ benefits from reduced communication delays. Due to their proximity to end

users, MEC servers allow for new kinds of applications to be considered. Also, service

providers can now host their services at the edge, effectively scaling their services and

saving backbone bandwidth. It also enables the integration of additional, congestion- or

user-related information into the traffic flow.

3

CHAPTER 1. INTRODUCTION

1.3 Problem

Because in a typical MEC system nodes don’t dispose of many hardware resources and

communication channels are somewhat unreliable compared to a cloud environment,

slowdown effects due to congestion or computational load might still be felt. Furthermore,

metrics like power efficiency have to be taken into account when dealing with mobile

devices. To meet applications’ low-bandwidth demands, intelligent resource management

processes have to be in place. This is specially true for MEC applications that employ

replication to enhance their quality of service by offering better availability, scalability

and reliability. This, however, can do more harm than good if there’s no proper replication

and replica selection strategy to store and retrieve data. In the scope of this thesis, we

focus on MEC systems already employing some kind of replication technique to answer

the following question: "Where should I retrieve the data from?".

Some edge-enabled peer-to-peer architectures that allow the creation of collaborative

storage systems in bound-restricted geographical areas have recently emerged. Thyme

GardenBed [14] is such an example. Thyme presents a novel time-aware approach to Pub-

lish/Subscribe systems for inherently mobile devices where the publish and subscription

brokers are the clients themselves. Thyme relies entirely on P2P communication means,

which are limited in range. Gardenbed, an edge infrastructure service that combines

device-to-device and device-to-edge interactions, with the goal of optimizing access to

popular data and allow such data to be available not only to users inside the same local
area but also the same local region. Different local areas can access each others’ popular

data by having their infrastructure nodes (MEC servers) connected. Whenever a mobile

clients wants to retrieve a popular item, it will always try to do so from the infrastructure.

The combination of device-to-device and device-to-edge interactions presents alterna-

tive channels for data retrieval. How can we leverage such channels to avoid bottlenecks?

Can we fallback from requesting content from the infrastructure to requesting it from

peer devices? When should we do it? And what if the problem doesn’t lie within the MEC

server but rather in the local area’s access point? Can we drop Wi-Fi communications

altogether?

1.4 Solution

Considering the problem presented in the previous section, we think such systems can

benefit from a service that uses network and computational-load metrics in order to

predict the best replica(s) to contact. Thus, our aim was to implement a system-agnostic

decision mechanism to determine the best data-fetching strategy in order to avoid over-

saturated channels and preserve battery capacity whenever possible.

With this thesis we propose a low-profile replica selection framework consisting of

the following high-level components:

4

1.5. CONTRIBUTIONS

1. A server-side metrics aggregation component that collects system metrics on de-

mand;

2. A metric collector component that is programmatically configured to collect a met-

ric value on demand and can be hooked into the aggregator;

3. A client-side replica classifier component that consumes metrics and is able to sort

a set of nodes from most to least reliable according to the configured scoring logic;

4. A client-side metric observer component that can reactively compute metric values

from system events.

We then propose an algorithm that takes predefined network, resource-usage and

device-specific metrics to predict with a high degree of certainty which is the best replica

to contact.

And finally, we use Thyme GardenBed [14] as an integrating system to evaluate our

solution.

1.5 Contributions

Throughout the development of this thesis we made the following contributions:

1. A low-profile replica selection framework that is system agnostic;

2. The integration of this framework within Thyme GardenBed;

3. Test results obtained through simulation that compare latencies, energy efficiency

and throughput from the current Thyme GardenBed implementation to the one

with our module integrated an using different baselines/algorithms.

1.6 Document Structure

The remainder of this document is structured as follows:

• Chapter 2 - Related Work: Here we start by analysing replica selection algorithms in

general. We focus on algorithms that are currently being used in practice, classifying

them on the metrics they use and how that information is available to the client.

Then we look at MEC systems, how they replicate and their replica selection process.

And finally we look at different device-to-device communication protocols.

• Chapter 3 - Thyme: In this chapter we look at Thyme, GardenBed and finally its

joint implementation, Thyme GardenBed [14].

• Chapter 4 - Proposed Solution: This chapter goes in detail into the architecture of

our replica selection framework and how its components can be composed to easily

5

CHAPTER 1. INTRODUCTION

and flexibly bring replica selection capabilities to any application. We also detail

how we have integrated it into Thyme GardenBed [14].

• Chapter 5 - Evaluation: In this chapter we show some test results and explain how

we’ve evaluated our module integration with Thyme GardenBed [14].

• Chapter 6 - Conclusions: And finally we close with some final thoughts and sugges-

tions for further work and investigation.

6

Chapter 2

Related Work

In this chapter we will be looking at already developed work regarding dynamic replica

selection. We focus on replica selection algorithms towards distributed key-value stores

for cloud computing because, despite MEC environments being more volatile in compar-

ison to the cloud, their replication models fundamentally impose similar challenges. We

also look at other scenarios such as grid computing, and understand how general these al-

gorithms can be. Following the approach of [3], we start by summarizing current replica

selection algorithms and classifying them into three categories: information-agnostic,

client-independence and feedback.

Then, we take a look at some MEC systems to understand how they replicate data and

how they choose replicas to retrieve data.

Finally, we do a brief comparison of existing direct-channel communication protocols

for mobile-to-device interactions.

2.1 Dynamic Replica Selection

2.1.1 Overview

Nowadays, data is usually replicated and distributed across servers for parallel access

and scalability. Thus, several replica servers might be available for the service. Two

important challenges in data replication techniques are: (i) replica placement and (ii)

replica selection. Replica placement is the problem of placing duplicate copies of data in

the most appropriate node; Replica selection is the problem of selecting the best replica

site for users to access the required data during execution. Although both play a big role

in the overall system performance, the focus of our work is on replica selection.

In a key-value store environment, the value of each key is typically replicated and

distributed across a group of replica servers. A client can select any one of these replica

servers for each key-value access. On the other side, servers receive keys from different

clients. When the server is busy, the newcome keys will be put into the waiting queue.

After a key is served, the corresponding value will be returned back to the client. This

7

CHAPTER 2. RELATED WORK

pattern is very identical for other scenarios which makes it easy to extrapolate to those.

To avoid these waiting queues, the client must be able to select the proper replica server.

We will now classify the most common algorithms and replica selection mechanisms

in the context of key-value stores:

Information-Agnostic: These are algorithms that pick a replica in an uninformed

way, not taking into account any extra information or external metrics. Examples of

such algorithms are Fixed, Random and Round Robin. Fixed always targets the same

replica, only taking into account any of the others if the fixed one is unavailable;

Random, as the name suggests, randomly selects a replica from the available pool

and finally Round Robin continuously iterates through the replica set, picking a

different one for each access. Although Round Robin is more load conscious from

the client’s perspective, neither of these algorithms take into account any external

information or measured metrics, which might results in recurrent bad decisions

specially for volatile scenarios like the ones we target.

Client-Independence: In these category, algorithms take into account metrics inde-

pendently measured by the client, without any aid from the servers. According to

the authors of [3] and further studied related work [17] [16], some classic helpful

metrics are:

– The round trip time (RTT) of network;

– The response time (RPT) of each key-value access, which involves not only the

RTT of network but also the service time and the waiting time at server;

– The outstanding keys (OSK), which has been sent out to replica server but the

corresponding value has not been received.

We can use any of these metrics directly to choose an appropriate replica or compute

some probabilistic measure with the combination of various metrics. For example,

Riak [10] algorithm lets the client choose the server with the least number of OSK.

There’s also the two choices way [7], where client chooses two replica servers ran-

domly at first, and then chooses one of these two replica servers according to above

information. MongoDB has a similar approach, where it selects the nearest replica

servers by RTT at first, and then randomly chooses one of them [8]. One downside

for this category is that the available information such as RTT and RPT may not be

fresh at the time of picking a replica. This can happen simply to the lack of interac-

tions of the client with the system within a certain time frame, which will yield no

metrics for that period. This is also something that is brought to our attention by

the authors of C3 [17] and will be further discussed in the bellow section dedicated

to this state-of-the-art [16] algorithm.

• Feedback: This category builds on top of the previous one by adding pigggybacked
information with the returned values from the server, which means that both clients

8

2.1. DYNAMIC REPLICA SELECTION

and servers form a feedback system. A great example is C3, which observes that

the fastest replica server is not only determined by its load or the observed latency,

but also depends on the performance of that replica server, and thus piggybacks

the service time of each key to adapt with the time-varying performance of replica

servers. We will be discussing C3 more in-depth in the following section. The

authors of [3] also propose L2, which yields similar performance compared to C3 in

simulation results, but is much simpler. We will also be discussing this algorithm

in sequence with C3.

Finally, we would like to mention some additional methods to reduce data-access

latency, such as request duplication and reissue. These can be effective in some cases

but are overall more hurtful when there’s no proper replica selection algorithm in place.

Reissuing requests but selecting poorly-performing nodes to process them increases sys-

tem utilization in exchange for limited benefits and is the cause for more herd-behavior.

We argue that these techniques can be effective as a complement to replica selection

algorithms.

The following sections further describe the most relevant algorithms and mechanisms

for dynamic replica selection.

2.1.2 C3

C3 [17] is an adaptive replica selection mechanism that is robust in the face of fluctua-

tions in system performance. Because servers exhibit performance fluctuations over time,

replica selection needs to quickly adapt to changing system dynamics. This is where most

replica selection algorithms (e.g. Cassadra’s Dynamic Snitching strategy, which computes

replica scores at fixed discrete intervals) fail to deliver: they do not implement a reactive

solution. Thus, C3 combines two mechanisms in order to carefully manage tail latencies

in a distributed system: (i) a load-balancing, replica ranking scheme that is informed

by a continuous stream of in-band feedback about a server’s load, and (ii) distributed

rate-control and backpressure.

With replica ranking, clients individually rank servers according to a scoring function,

with the scores serving as a proxy for the latency to expect from the corresponding server.

Servers piggyback information about their queue size and approximate service time on

each response to a client, and clients maintain a weighted moving average of these metrics.

There’s also a concurrency compensation that is calculated to account for both the existence

of other clients in the system and the number of requests that are potentially in flight.

If concurrency compensation is not taken into account for the estimation of each server’s

queue-size, replica selection gets prone to herd behaviors. The number of requests that

a client has pending over a given server also weights on the server’s score. It was also

decided to penalize scores over queue sizes using a non-linear function. This is because

for a given server A with a service time n times faster than server B, such server would

be able to get the same score as server B while holding a queue n times longer if we were

9

CHAPTER 2. RELATED WORK

to use a linear function such as multiplying the two values. If the service time of A then

increases due to an unpredictable event such as a garbage collection pause, all requests

in its queue would incur higher waiting times.

Because replica selection alone cannot ensure that the combined demands of all clients

on a single server remain within that server’s capacity, clients rate-limit requests to in-

dividual servers. If the rates of all candidate servers for a request are saturated, clients

retain the request in a backlog queue until a server is within its rate limit again. Every

client maintains a rate-limiter for each server, which limits the number of requests sent

to a server within a specified time window. Such limit is called sending rate. They also

track the number of responses being received from a server in an interval of the same

length (receive rate) and then the rate-adaptation algorithms tries to match both rates.

Upon receiving a response from a server s, the client compares the current sending and

receive rates for s. If the client’s sending rate is lower that the receive rate, it increases

its rate according to a cubic function. At any time, if the algorithm perceives itself to be

exceeding the server’s capacity, it will reduce its sending rate. Lastly, given that multiple

clients may potentially be adjusting their rates simultaneously, the step sizes of the rate

increase is capped.

The C3 replica selection process is as follow: When a request is issued at a client, it is

directed to a replica selection scheduler. The scheduler uses the scoring function to order

the subset of servers that can handle the request, that is, the replica group. It then iterates

through the list of replicas and selects the first server s that is within the rate as defined

by the local rate limiter for s. If all replicas have exceeded their rate limits, the request

is enqueued into a backlog queue. The scheduler then waits until at least one replica is

within its rate before repeating the procedure. When a response for a request arrives, the

client records the feedback metrics from the server and adjusts its sending rate for that

server.

We consider C3 to be a good base approach for our problem because it can easily

be adapted to MEC environments and does not introduce any extra messages in the

network nor requires heavy computations that would otherwise clog the nodes and system

progression.

2.1.3 L2

Based on the insights obtained from their performance analysis, the authors of [3] propose

a new algorithm: L2. From their simulations, the authors concluded that:

• RPT is useful for the selection of fastest replica server, but may lead to the herd

behaviors;

• OSK is helpful to both the selection of the fastest replica server and the avoidance

of the herd behaviors to some extent.

10

2.1. DYNAMIC REPLICA SELECTION

Similar to Riak’s algorithm, L2 first selects the replica servers with the least number

of OSK, and then sorts this subset of replica servers according to their response times.

From the resulting set, the replica with the smallest RPT and the least number of OSK,

in total, will be picked. In this way, L2 gives consideration to both the selecting of the

fastest replica server and the load balance among replica servers.

L2 is simpler than C3, as it doesn’t need any feedback information or the rate control

mechanism. However, L2 can achieve a similar best performance in terms of tail latency

like C3. The authors conclude that the complicate rate control mechanism of C3 itself is

not helpful to reduce the tail latency. Moreover, L2 can also avoid the herd behaviors like

C3, with the help of the OSK. Therefore, L2 might also be an interesting baseline for our

solution.

2.1.4 NetRS

The conventional scheme we’ve seen so far is each client being a Replica Selection Node

(RSNode). A RSNode independently selects replicas for requests based on its local in-

formation, including the data collected by itself (e.g. the number of pending requests)

and/or the server status in responses. This approach, however, has some pitfalls:

• Considering that one client typically sees a small portion of the traffic, they are

likely to select a poorly-performing server for a request due to its inaccurate estima-

tion of server status;

• Servers may suffer from load oscillations due to "herd behavior"(multiple RSNodes

simultaneously choosing replica), which is positively correlated to the number of

independent RSNodes.

NetRS [16] is a framework that enables in-network replica selection for key-value

stores in data centers. To overcome such pitfalls, NetRS offloads tasks of replica selection

to programmable network devices. Because these devices are much fewer than the end

hosts, they tend to process more messages and thus have fresher and more abundant

network information. This also minimizes the "herd behavior"since now one single device

can select replicas for multiple clients. There’s also attention in minimizing the number

of RSNodes.

There are two main components:

• The NetRS monitor which collects traffic statistics;

• And the NetRS controller which receives such statistics and periodically generates

a placement plan for the RSNodes which then gets deployed.

The traffic metrics are extracted/computed from message packets metadata encoded

in custom headers which is an agreed format within all intervening components (servers,

clients, switches, etc.). The authors decided to make the format flexible to diverse replica

11

CHAPTER 2. RELATED WORK

selection algorithms. One interesting header is the Server Status which characterizes the

replica’s computational load. these headers are also used to distinguish between key-

value store traffic and others, which is not a problem in our case. With the gathered

information, a selector will look into an incoming request and to the pool of replicas and

perform a best match.

Although the introduction of newer in-networking hardware and the offloading of

replica selection might make sense in a cloud-based environment where nodes are sta-

tionary, connected to reliable communication channels, usually organized in racks and

following a hierarchical topology, it is not suitable for A MEC environment. We have to

keep in mind that communication channels might not be wired and thus the introduced

network hops would be more harmful than good. Moreover, we do not expect data center

grade hardware at the edge, which implies that the cost of these in-networking devices

would probably not be supported.

Therefore, we aim at the conventional scheme where each client can independently

select a replica and make a request in a single hop.

2.1.5 Data Grids

Just like in MEC, dynamic grid architecture can have nodes join and leave the grid at

anytime. This is a factor that is not considered in the previously analysed algorithms.

There are several replica selection algorithms directed towards dynamic grids, each

basing its decisions on different sets of parameters. We start with replica selection tech-

niques based on round trip time or distance. Under this category, we have Rigel [4] which

selects the replica with smallest RTT. The system makes use of an NC Calculation System

so that the nodes can periodically calculate their virtual coordinates and then these are

stored with the node identified in a DHT so every node in the system has access to it.

These virtual coordinates allow nodes to estimate their RTT to every replica without ac-

tually ever measuring them (i.e. issuing a request and waiting for a response). Although

interesting, it is still a heavier solution than the ones previously analysed. Also, as we’ve

seen before, "periodically"is the enemy of fresh and accurate.

For replica selection techniques based on response time, we have GRESS [22]. The

response time is calculated based on the network parameters such as bandwidth and

access latency. The best replica is predicted using historical log file that contains file

transfer time, network status, server load and disk I/O information. Best replica is the one

with minimum response time. The proposed lightweight replica selection module is based

on Instance Based Learning (IBL) technology. IBL replica selection module consists of

four processes, namely parameter setting, initialization of case-base, IBL replica selection,

and update of case-base. During parameter setting, weights are assigned and contents

of historical log file stored during initialization. IBL replica selection predicts which

server is the best whenever a file is requested. The last process is used to update the case-

base periodically. Again, this solution is too heavy for a MEC network and the necessary

12

2.2. REPLICATED STORAGE AT THE EDGE SYSTEMS

information would take too long to spread.

There are also replica selection techniques based on some properties of the service

such as Availability and Security, and others based on job time. These make heavy use

of machine learning algorithms and thus are not even considered due to our battery

constrained clients.

2.1.6 Final Considerations

Most replica selection algorithms directed towards distributed key-value stores posed as

good candidates for MEC architectures for being lightweight and easy to operate on top

of existing systems. There are some more naive and others more advanced. We decided

to take a deeper look into C3 because it looks like the most complete and reliable of the

group.

C3 is coined by some authors [3, 16] as the state-of-the-art algorithm for distributed

key-value store replica selection. It is way more effective at reducing tail latencies com-

pared to its competition, very efficient at preventing herd behaviors and very robust to

performance fluctuations in the system. The C3 mechanism, however, is not trivial to

understand and in spite of its major gains in tail latency, even the authors say that there’s

still a lot of room for improvement. Ultimately, it can be perfectly adapted to a MEC

system and thus makes it a strong candidate for the baseline of our work.

L2 was also seen as an interesting alternative to C3. It is able to achieve similar results

to C3 and is a lot simpler.

NetRS raised the bar once again, proving that there really is a lot of room for improve-

ment on top of C3. Although attractive, we’ve seen that the algorithm is not suited for

our target environments and that despite the improvements, C3 still poses as the most

appropriate solution.

We’ve also looked at replica selection algorithms in the context of grid computing,

where we’ve concluded that those algorithms are too computationally demanding for our

needs.

In conclusion, C3 is what comes closer to what we are aiming to build. Even still,

neither C3 nor any other algorithm we’ve seen account for mobile nodes where parameters

such as battery percentage should weight on replica selection, as well as the possibility

of intermittent availability or even sudden unavailability caused by churn. Also, because

most of these algorithms assume reliable (wired) communication channels, they do not

account for other bottlenecks that might arise in MEC environments, such as the AP being

overloaded.

2.2 Replicated Storage at the Edge Systems

With the rise of the MEC paradigm and with data availability in mind, replicated storage

systems started to emerge. Such replication might happen through various stationary

13

CHAPTER 2. RELATED WORK

Table 2.1: Comparing Dynamic Replica Selection in Cloud Environments

C3 L2 NetRS

Performance Good Good Very Good
Complexity High Low High
Uses Client-Observed Metrics Yes Yes Yes
Uses Server-Sent Metrics Yes No Yes
Uses Special Networking Hardware No No Yes
Clients Can Select Replicas Independently Yes Yes No

edge servers, the mobile clients themselves or even both. An example of such system is

Thyme GardenBed [14], which actively replicates data objects through mobile devices in

the same cell, passively replicates the same objects through mobile devices that download

them from others cells, and such objects can even be replicated in the infrastructure

servers if they become popular. Subscriptions are also replicated within the cells and the

infrastructure. Regarding replica selection for data retrieval, however, Thyme GardenBed

will always default to the infrastructure if the item is popular. Otherwise, the native

Thyme methodology is used: iterating the list of replicas by their order of arrival, without

any special criteria. Bellow we discuss some of the MEC systems we analyzed and a direct

comparison can be found on Table 2.2.

EPHESUS [12], an ephemeral distributed data storage system for networks of hand-

held mobile devices, is inspired by use cases similar to Thyme’s. This system doesn’t

employ edge servers and its storage substrate is restricted to mobile devices. It makes

internal use of a Distributed Hash Table (DHT) to replicate the data so that content

doesn’t become unavailable as soon as their publisher leaves the network. To retrieve the

data, the system first checks if it is already replicating such data, thus not needing to

retrieve it from a peer; in case it doesn’t, a system-wide (i.e. flood) search is performed.

This is obviously not an optimal solution for our case because we are already considering

one-hop messages.

MobiTribe [18, 19] makes use of an edge server as a proxy to redirect data requests.

Since it is single-handedly managing the network traffic, it can redirect requests taking

parameters such as load into account. However, this indirection already introduces extra

latency to the network and the way it uses the edge server poses some serious scalability

issues.

From the studied systems, none employed a sophisticated replica selection mechanism

that takes into account network, load or device-specific metrics, either transmitted by the

server or observed by the client, and that allows it to make an isolated pondered decision

of which replica should be contacted.

14

2.3. MOBILE-TO-MOBILE COMMUNICATION

Table 2.2: Mobile Edge Systems w/ Replication

Thyme GB Ephesus GHT [9] TOTA [5] MobiTribe

Par./Full Replication Partial Partial Partial Full Partial
Act./Pass. Replication Both Both Active Active Both
Requires Infra. Yes No No No Yes
Range 1-Hop 1-Hop Multi-Hop Multi-Hop Multi-Hop
Network Structure DHT DHT DHT Unstruct. Unstruct.
Rep. Select. Strategy Static Static Static Static Dynamic

2.3 Mobile-to-mobile Communication

As mentioned previously, in case of congestion due to computational load, the load might

not be on the replicas/servers but rather on the AP. In such cases, it might be attractive

to open a direct communication channel between mobile devices, avoiding the infrastruc-

ture altogether. To this end, we’ve looked at possible communication protocols that cover

this use-case and two stood out: TDLS and WiFi-Direct.

Although both of these protocols allow for mobile devices to establish direct links

between them, they are not the same thing. TDLS requires that the devices are con-

nected to the AP so that they can negotiate the direct connection. The protocol itself

has mechanisms to evaluate if a better connection would result from opening this direct

tunnel. TDLS operates in the background of the network and might automatically make

the connection switch if it detects a performance increase. WiFi-Direct, on the other hand,

enables a direct channel to be established while no WiFi network is available. It is similar

to establishing a Bluetooth connection. WiFi-Direct is newer and struck us as being more

programmer friendly.

2.4 Final Remarks

In this chapter we have looked into other computation environments, such as the cloud, to

understand how their replicated systems adapt to the environment conditions and strive

to select the replica that most positively impacts the overall system liveness for their data

retrievals. From this analysis we have highlighted a particular Feedback algorithm, C3,

which seems to be suited as the baseline for our developments.

We have then discussed some existing MEC systems which already employ replication

to enhance their quality of service. When analysing their replica selection mechanism,

however, we have seen that most employ a very naive strategy which never adapts to

the system’s and environment’s variable conditions. The only exception to this rule was

MobiTribe [18, 19] which uses a dynamic replica selection strategy; however, this strategy

is coupled to a centralized piece of the system, the infrastructure, which is by itself a

hotspot and single point of failure. Moreover, many of the discussed systems did not have

a supporting infrastructure, which would make it impossible to adopt such strategy.

15

CHAPTER 2. RELATED WORK

Finally, we have looked into alternative communication channels as a complementary

solution to replica selection when constrains are detected in the communication medium,

which is something to be expected more often than in cloud environments for instance,

where communication channels are more reliable. From our brief discussion, WiFi-Direct

poses as an attractive protocol.

In the next chapter we discuss Thyme GardenBed [14], the system we aim to enhance

with our solution for experimental evaluation purposes.

16

Chapter 3

Thyme

3.1 Thyme

Thyme [11] is a time-aware reactive data storage system for wireless edge networks, that

exploits synergies between the storage substrate and the publish/subscribe paradigm [13].

It combines the storage and P/S interfaces making their operations intertwined: for in-

stance, the insert and publish operations are combined into one. Queries are in the form of

subscriptions that have a specific time scope defining when they are active. Their active

time-span can target the future, the present or even the past, expanding on the usual

concept of subscription in a P/S system. Also, the reactive interaction model supporting

the storage substrate avoids peers having to proactively search for content. Instead, it

allows applications to react to new data being generated and stored. On the one hand, the

storage substrate leverages the P/S abstraction to provide a reactive interaction model

whereby users register their interests through subscriptions and are notified as relevant

data is generated. On the other hand, the P/S abstraction takes advantage of the storage

substrate to provide persistent publications, enabling the time-awareness concept and

providing full time decoupling [13]. Because of time decoupling, custom operations were

also added to this framework, such as the ability for a node to unpublish a previously

shared item.

An asynchronous model comprised of mobile devices is considered. Nodes communi-

cate by exchanging messages through a wireless medium and should be able to establish

communication with their one-hop neighbors. Each node has a globally unique identifier.

Nodes’ clocks are also assumed to be synchronized (with a negligible skew).

Nodes are considered to be functionally symmetric, sharing the same responsibili-

ties and having no particular roles, meaning that there are no centralized or specialized

components, and each node can be a publisher, a subscriber, or both. Moreover, the area

covered by the system is divided into square-shaped cells and all nodes inside a given

cell collaborate with each other to form a virtual node. Cells can store (replicate) data

items, metadata and subscriptions, thus acting as virtual P/S brokers. Over this network

topology is the implementation of a DHT.

17

CHAPTER 3. THYME

hash(“beach”)

hash(“summer”)

publish(, “beach.jpg”,

<“beach”, “summer”>)
13

5

2
hash(“beach”)

subscribe((“sun” & “sand”) | “beach”,

tsstart, tsend)

hash(“sun”)

Figure 3.1: Example of Thyme’s publish and subscribe operations. The tags’ hashing
determines the cells responsible for managing the object metadata (cells 2 and 5) and
the subscription (cells 2 and 13). If a subscription has overlapping tags with a publica-
tion (and vice versa) it will also have overlapping (responsible) cells, guaranteeing the
matching and sending of notifications to the subscriber. Adapted from [13].

Below we cover Thyme’s main features:

• Inserting / Publishing Data: As stated before, the insert and publish operations are

merged together. Each inserted data object has associated metadata. This metadata

consists of:

– the object identifier;

– a set of tags related to the object (like hashtags in social networks);

– a summary of the object (e.g. a thumbnail in case of a photo sharing applica-

tion);

– the insertion timestamp;

– and the owner’s node identifier.

Thyme runs each tag though a hash function to determine which cell(s) should

receive the object metadata. It then sends the metadata information to each of

the determined cells, which will also be holding any subscription to those topics

(tags). This way, the insertion of a data object into storage may trigger the sending

of notifications to subscribers. Only the metadata is sent to save bandwidth and

overall resources since the metadata tends to be much smaller than the actual data

object. The data object is replicated by all the nodes of the publisher/owner’s cell.

• Replicating Data: In order to provide data availability, Thyme has two replication

mechanisms in place:

– Active replication: Upon the insertion of a data object, said object is dissemi-

nated inside the owner’s cell. From that point onward, every node inside the

cell should be able to serve the data. This gives us the guarantee that the object

will remain in the system even after the owner leaves. Furthermore, it allows

for load balancing inside the virtual node. The object metadata is replicated in

the same way inside the corresponding cell(s).

18

3.1. THYME

– Passive replication: Nodes outside the owner’s cell that retrieve the data object

will also be replicating it (in a passive way) from the moment they receive it.

This offers a better data availability and scatters the objects across the network.

To fully take advantage of both mechanisms, Thyme adds a list of the object’s repli-

cas in the metadata.

• Deleting Data: The delete operation removes the object metadata indexed by the

responsible cells, as well as the active replicas in the system. This causes the data

object to be inaccessible to future subscriptions. This way, subscriptions targeting

the past will not see deleted objects, even if these were initially available in the

subscription’s time frame.

• Subscribing: A subscription contains: its unique identifier, a query which is a logic

formula composed of conjunctions and disjunctions of literals (that will match the

tags), a timestamp indicating the beginning of the time frame for the subscription,

another timestamp indicating the upper bound of the time frame for the subscrip-

tion, the identifier of the node making the subscription and the identifier of the

cell where the owner is located. Following the same method as in the insertion, the

tags (this time inside the query) are hashed to obtain the corresponding responsible

cells. The subscription will be registered within those cells, effectively triggering

data notification(s) if there are already data objects with corresponding tags and

the subscription spans to the past (far enough to cover the matching data objects’

timestamp). From this point onward, when the cells responsible for the subscrip-

tion receive object metadata that matches it, they will send such metadata to the

subscription owner. The subscription owner will be responsible to retrieve the data

object from one of the replicas listed in the metadata or ignore the subscription alto-

gether. The unsubscribe operation is as simple as a message asking the responsible

cell(s) to delete the stored subscription.

• Retrieving Data: The client will choose a node from all the replicas in the repli-

cation list and send a retrieve request for the desired object. If a negative reply is

received, the requester proceeds and tries the next replica in the list (until no more

options are available, or a maximum of retries is reached). If the maximum number

of tries is reached trying passive replicas, it will try to force the download from the

active replica before as a last resort.

A node with the intention of joining the system will wait a configurable amount of

time for a beacon sent by a neighbor in the same cell. If such beacon is received, it can be

used as an entry point. At this point the node will send a join request and, if successful, it

will receive the cell state. If a maximum number of retries is reached, the node assumes

it is alone in the cell, and starts operating normally.

19

CHAPTER 3. THYME

Figure 3.2: Application in the context of a football stadium. Adapted from [14].

3.2 Gardenbed

Gardenbed [14] is a framework that leverages stationary nodes within the edge infras-

tructure to provide a persistent publish/subscribe system to a set of mobile devices, dis-

tributed across multiple network regions. It leverages both device-to-device and device-

to-edge interactions with the goal of optimizing access to popular data, and allow such

data to be available to all users, hence creating a persistent and global end-to-end storage

and dissemination network.

Infrastructure-wise, each edge server can be connected to multiple wireless access

points, each of which is responsible for managing its own region. Each AP can connect

only to one server. Moreover, each mobile node belongs to a single region, even though it

may be in range of multiple APs. This is depicted in Fig. 2. These servers connect multiple

regions through a caching and prefetching mechanism. Therefore, mobile nodes are able

to retrieve data that was generated in others regions. However, nodes from different

regions won’t have access to all the data in the other region: there will be popularity

metrics in place to decide which data gets exposed. These servers also allow for the

mobile nodes to offload some of their management responsibilities in their region.

Gardenbed offers an interface to the mobile nodes to communicate with the servers,

comprised of the following main operations: publish, unpublish, subscribe, unsub-

scribe and download. There are additional operations such as isOnTheEdge, which

indicates if a given data object is being cached by the edge server. Clients map their

operations into operations of this API and the data-related operations performed within

the region will be periodically batch-disseminated to the server. On the other side, the

20

3.2. GARDENBED

server will be notifying clients of newer data or other changes. Mobile nodes should listen

to the following commands from the server:

• notification of a new publication from a remote region;

• update of a given object’s metadata to keep it consistent with the server;

• download of a given object the client is holding, in order for the server to cache or

serve it to a client in another region;

• unpublish of a given object so that it is effectively removed from the system.

Gardenbed supports the idea of clusters (which can be seen as a virtual node com-

prised of several mobile nodes). In these cases, the interaction from client to server can

be delegated to the cluster-head node. To define a cluster-head, the Gardenbed server API

also offers the setClusterHead operation.

The framework offers some hooks for the programmer to register their logic. One such

case is the Popularity algorithm, which determines what data items must be uploaded

to Gardenbed. Gardenbed asynchronously collects and caches the most popular items

within the region, according to the injected popularity algorithm. Items downloaded

and cached in this fashion are stored in the Local Popularity Cache (LPC). With this,

we get to 1) serve subscriptions from other regions and 2) same region nodes can grab

the data directly from the edge instead of requesting it from their peers, which drops

the number of download requests to mobile clients effectively saving battery life. The

item will now be registered as being on the edge and is up to the cluster-head node to

disseminate the information to its peers. This process is run periodically and thus, the

LPC will continuously be updated with what is most popular.

Another piece of logic that can be registered by the programmer is the Matching

Logic algorithm, which will tell Gardenben how to match publications with subscriptions.

With this, the server will match every subscribe operation retrieved from the cluster
data against the data in its caches. For every match, it will trigger a notification to the

subscriber. Because the subscriptions are potentially relayed and stored in both the

region peers and the server, data might flow from both ends. To avoid duplicates and

other shortcomings, the programmer should also register a Notification Priority Policy

algorithm that determines whether a notification should be sent by the edge, by the

underlying system or by both.

The subscribe operations extracted from the cluster data are also used to build the

subscription catalog, which consists in a set of subscriptions from the region that will be

sent to other regions so these know their interests. This catalog is periodically recomputed,

avoiding the need for the server to keep state information about individual nodes. Fig. 3

depicts this cross-region P/S process.

This cross-region process makes use of two other caches:

21

CHAPTER 3. THYME

S

S

S = Subscription Needs
C = Consumption Notification

S

Prefetch
Cache

Global
Cache

C

Figure 3.3: Global P/S execution process. Adapted from [14].

• Prefetch Cache: Stores data and metadata from other regions. The turnover rate

of the contents in this cache is expected to be quite high, increasing with the total

number of nodes in the system;

• Global Cache: Stores entries from the prefetch cache that were specifically down-

loaded (i.e. considered relevant), so that these are stored in a more persistent way

and available to other users. This is an optimization done under the assumption

that geographically-adjacent users share similar interests to some degree.

The process happens in three steps (Fig. 3):

• Dissemination of Subscription Catalog: As stated before, each server periodically

broadcasts its clients’ subscription catalog to other regions’ servers.

• Provisioning the Subscription Catalog: The server looks at the received subscrip-
tion catalog and its own LPC, and tries to match cache entries to the remote sub-

scriptions. If there are any matches, the data and metadata will be sent in batches.

Although this means that only popular data is transmitted to other regions, it trans-

lates to great bandwidth savings. Moreover, it makes use of additional information

that comes attached to the subscription catalog in order to make this step much

more efficient in terms of network utilization. When matching LPC entries to the

subscription catalog, the Matching Logic algorithm is once again applied so we are

sure that only the relevant matches are considered.

• Notification of Remote Publications: Upon the reception of a periodic data provi-
sioning message, a server notifies the corresponding subscribers of the arrival of the

data, and stores the received items in its Prefetch Cache. These will remain there

until they are moved to the Global Cache or evicted by the arrival of new data.

22

3.3. THYME GARDENBED

To retrieve content, a client sends a download message to the server. The operation

will explicitly state if it’s a local or remote download (the information can be retrieved

from the metadata). For a local download, either the server serves the item from one of

its caches or it forwards the request to the mobile replicas within the region. For a remote

download, the server will first look for the item in its Prefetch and Global caches. If the

item is found it is send to the client, otherwise the server will reroute the request to the

source region. There, that region’s server will look for the item within its caches and, if

it isn’t there it will forward the request to the mobile replicas within the region. When

a server receives the reply to a remote download with data from another region, before

routing the requested item to the end-user, it will proactively cache the incoming data in

its Global Cache.

Unpublish operations have a global scope, since the item to unpublish may have

crossed the boundaries of the current region, and may be cached in several servers or even

be indexed in multiple regions. Thus, whenever a server receives an unpublish operation

it deletes the entries associated to the referenced item in all of its caches (if present).

Moreover, except the server of the region emitting the operation, they also propagates

the operation to the cluster-head responsible for handling the item’s metadata, for it to

execute the operation locally [14].

3.3 Thyme Gardenbed

GardenBed is able to enhance Thyme in a way that allows for inter-region communication

(something that is not possible using Thyme as a standalone system). Fig. 2 greatly

illustrates the concept.

A Thyme cell can be seen as a cluster for GardenBed. By leveraging on this orga-

nization, a cluster-head is picked per cell, making it responsible for interacting with

GardenBed. All traffic targeting a cell is sent to the cell’s cluster-head, and then dissem-

inated inside the cell. This approach trades-off the over-utilization of a single node’s

resources within each cell for the resources needed to proactively keep cell membership

in the server. To elect the cluster-head, a stability index is calculated. This index is derived

from local hardware information such as battery percentage and represents the probabil-

ity of a node leaving the network either by leaving the covered geographical area or by

shutting down. Each node is capable of comparing its index to its neighbours and if is the

one with higher stability it will take the initiative. Note that a new cluster-head might be

elected at each data dissemination cycle.

The metadata for the objects is also extended to contain the boolean flag onTheEdge,

which is set when the object is uploaded to the server and updated when proper.

Following the above section, when an object that originated in region A is downloaded

for the first time in region B, the item will be moved from the server’s Prefetch Cache to

the Global Cache, which will guarantee its availability for all other mobile nodes in region

B. The object is also indexed in Thyme so that it can be retrieved from other devices.

23

CHAPTER 3. THYME

Regarding the matching logic, it is two-fold:

• Matching subscriptions against publications: all cache entries related with the sub-

scription tags are retrieved and then filtered to keep only those within the subscrip-

tion time frame;

• Matching publications against subscriptions: Filters the subscriptions list to retrieve

only those matching the publication.

The configured notification priority policy is to always prioritize the usage of the

edge servers in favor of the mobile clients, meaning that whenever a subscription is

matched for an object which metadata is flagged onTheEdge, the cell trusts that the edge

server will send the notification and will thus refrain from sending one itself to avoid any

duplicates. This strategy is aimed at reducing battery consumption because now mobile

devices will only trigger notifications of data not available in any of the server’s caches

(i.e. not popular).

Finally, the replica selection policy follows the same logic as the notification prior-

ity policy, which is to favor the edge servers in order to preserve the battery capacity of

mobile nodes. If the object is onTheEdge, then the mobile devices will always favor the

edge server over the mobile replicas. This seems like a decent strategy and is most likely

the easiest to implement, but it can ultimately incur in higher latencies and system con-

gestion depending on network load. If we consider that the majority of traffic generated

in the system is related to the most popular content, then it’s easy to understand that the

higher the mobile nodes count in the system, the faster the edge server’s and network

devices’ resources will get saturated. If nodes could share information between them

and the edge which would allow them to detect or even prevent these scenarios, then

such information could be used to make better informed replica selections and allow the

system to scale more gracefully. With this thesis we understand and decide on these met-

rics, and take them into account to enable mobile nodes to independently decide which

might be the best replica to download the object from. This is done in order to minimize

communication latencies and effectively distributing load whilst being conscious about

mobile devices power consumption.

3.4 Final Remarks

In this chapter we have discussed Thyme, a time-aware reactive data storage system

for wireless edge networks. We have described Thyme’s replica selection policy, which

iterates through the available replicas in no logical order; when the selected replica fails

to provide the desired file, it tries the next one until it has tried a maximum number of

passive replicas, and then makes a last attempt by contacting the cell or if it has previously

tried the cell and it failed to provide the file, which the node assumes is permanently gone

from the system. The idea is that we should try to move the load away from the active

24

3.4. FINAL REMARKS

replication cluster as it most likely serves the most downloads regarding that file. Also,

files that cannot be found in their active replication cluster are assumed to be unpublished.

We have also discussed GardenBed, a framework that leverages stationary nodes

within the edge infrastructure to provide a persistent publish/subscribe system to a

set of mobile devices, and Thyme GardenBed, where Thyme is enhanced by GardenBed’s

infrastructure server. Here, the replica selection policies shifts to give preference to the

infrastructure. If the infrastructure is not available, or fails to provide the required file,

we fallback into Thyme’s replica selection policy. The idea is that the infrastructure server

is a more powerful node which is not power constrained, thus it should serve most of

the downloads. This is a valid strategy which yields interesting results compared to its

implementation complexity; however, it is still not flexible (dynamic) and all nodes will

follow these rules independently of system performance and network congestion, which

might severely degrade the quality of service in some scenario where it would have been

preferable to trade some of the mobile devices’ battery capacity for liveness.

In the following chapter we present Wasabi, our replica selection algorithm that is

tailored for MEC systems. With this, we discuss each of the concerns raised by the practice

of replica selection and in special, those that are characteristic of MEC environments and

how we tackle each of them. We also present the replica selection behind it and how

the programmer can integrate it within their system. Moreover, we discuss how we have

integrated Wasabi into Thyme GardenBed.

25

Chapter 4

Proposed Solution

As we have introduced in Section 1.4, to accurately answer the question "Where should I
retrieve the object from?", given a set of available replicas, we need to have fresh informa-

tion about those replicas’ state and potentially even be able to predict network conditions.

To have such information available to us, we need a pluggable system that can put and

retrieve these metrics to and from the transport layer, ideally in a non-evasive fashion.

In this chapter we first give a detailed overview of the designed replica selection

framework. Then, we explain the replica selection strategy/algorithm we found to be

optimal for MEC systems. And lastly, we describe our framework integration with Thyme

GardenBed [14].

4.1 Overview

Starting our design we understood that, in essence, the problem boils down to a client

having interest over a piece of data that is owned by one or more servers, independently.

We have seen from Section 2.1 that there are three categories of replica selection algo-

rithms and that these build on top of each other. Feedback is the most comprehensive

because it makes use of both metrics sent by the servers and metrics perceived by the

client. We have thus decided to design a system that enables Feedback strategies for replica

selection, as it in turn enables us to build any of the others as well simply by omitting

unnecessary components (e.g. not sending any metrics from servers and only consider-

ing metrics measured by the client, which classifies the underlying ranking algorithm as

Client-Independent).

Feedback strategies also bring another performance idea to the table, which is that

the extra information sent by the servers to the clients through the transport layer does

not necessarily need to generate new messages within the system. Instead, it can use

already existing messages and piggyback metrics onto those. This is what we have done

with Thyme GardenBed [14], as we will explain later in this chapter.

Our first step was thus to split our architecture in two independent parts: client-side

and server-side. Each part provides a disjoint set of components and these can coexist at

27

CHAPTER 4. PROPOSED SOLUTION

Figure 4.1: Replica Selection Feedback System as an Application/Network middleware.
The server sends extra information regarding its internal status with the system messages
and the client stores those metrics plus some extra observed information. The client will
then use this information to pick the most appropriate replica for each of its operations
with a certain degree of certainty.

the same runtime without any conflict - this is to cover the scenarios where the mobile

nodes are functionally symmetric (both client and server), as is the case with Thyme [13].

Then we had to think about component placement. From the beginning of this docu-

ment we have proposed a middleware service that could seat between the Network and

Application layers to transparently include and consume the included metrics packets on

the server- and client-side, respectively. Figure 4.1 shows how the metric dissemination

flow of a system integrating our framework should unfold. In a nutshell, the server-side

component will proxy the Network layer (1), trapping all messages ready to be sent in

order to include extra information (its metrics) (2). It will then forward the message to

the network (3). On the client-side, there’s another module now proxying the Applica-

tion layer which will first pre-process the delivered messages to extract the previously

injected metrics (7). It should also take the opportunity to take some measurements on

the network behavior, update some existing state related to that server or generate any

other metric value that is required by the replica selection algorithm (8). Finally, the

original message is delivered to the Application layer.

We also need to look at it from the opposite direction, that is, a client request to a

server. Whenever we need to contact a server and are presented with multiple options,

we should make use of the previously gathered metrics to decide which server to contact.

Figure 4.2 depicts this flow: the application dispatches the request which is proxied by

the client-side module (1) to add the destination address, which will be the replica we

perceived as being the most favourable (2). The request is now redirected to the Network

Layer (3) as it was intended to be sent to the selected server.

28

4.2. PROPOSED FRAMEWORK ARCHITECTURE

Figure 4.2: Replica Selection Feedback System as an Application/Network middleware.
The client relies on the Replica Selection module to pick a request target before pushing
such request into the Network.

4.2 Proposed Framework Architecture

Having an high-level overview of how the framework should operate, we will now dive

in detail into each of the modules’ components, the available interfaces as well as some

out-of-the-box implementations and how the programmer can use them.

4.2.1 Server-Side Components

Figure 4.3: Inside the server-side module

4.2.1.1 Metric Collector

A Metric Collector is a small footprint component that contains the necessary logic to

read or compute a system metric. This logic is to be provided by the developer. As a basic

- and most common - use case, a Metric Collector will be a purely functional component,

i.e., it will perform stateless computations to produce a value. For such scenarios we

can directly create instances of the interface in Listing 4.1, which are inherently thread-

safe. However, for more complex scenarios where we might want to provide a stateful

implementation, care should be taken to avoid concurrency problems. One use case that

we have found to be common is to have a Collector that stores value samples and returns a

29

CHAPTER 4. PROPOSED SOLUTION

value based on the stored samples when queried for it. For these we also offer the class in

Listing 4.2. This class already offers a synchronized implementation of the collect method

(Line 9), as well as a synchronized method to add sample values (Line 18). And finally, as

the example of a concrete implementation, we have the class in Listing 4.3 which should

be used when we want to compute the average of the stored values and use it as the metric

value.

public interface MetricCollector {

Double collect();

}

Listing 4.1: MetricCollector

1 public abstract class SampleMetricCollector<T extends Number> extends

SynchronizedMetricCollector {↪→

2 private final Number[] samples; // Sample vector

3 private final int maxSize;

4 private int currentIndex = 0;

5 private int sampleCount = 0;

6 private final T defaultValue;

7

8 @Override

9 protected synchronized Double collect() {

10 Number[] currentSamples = sampleCount >= maxSize ? samples :

Arrays.copyOfRange(samples, 0, currentIndex);↪→

11 DoubleStream samplesStream =

Stream.of(currentSamples).mapToDouble(Number::doubleValue);↪→

12 return aggregateSamples(samplesStream)

13 .orElse(defaultValue.doubleValue());

14 }

15

16 protected abstract OptionalDouble aggregateSamples(DoubleStream samples);

17

18 public synchronized void addSample(T sample) {

19 samples[currentIndex] = sample;

20 currentIndex = (currentIndex + 1) % maxSize;

21 sampleCount++;

22 }

23 }

Listing 4.2: SampleMetricCollector

30

4.2. PROPOSED FRAMEWORK ARCHITECTURE

public class AverageMetricCollector<T extends Number> extends

SampleMetricCollector<T> {↪→

public AverageMetricCollector(int maxSize, Number defaultValue) {

super(maxSize, defaultValue);

}

@Override

protected OptionalDouble aggregateSamples(DoubleStream samples) {

return samples.average();

}

}

Listing 4.3: AverageMetricCollector

4.2.1.2 Metrics Aggregator

The Metrics Aggregator is the component that aggregates all the metric values produced

by Metric Collectors. To be able to collect their values, Metric Collectors have to be

registered into the Metrics Aggregator in association with the respective Metric label.

When queried, the Metrics Aggregator will poll the Metric Collectors for their values and

will store them in a key/value data structure to which it will then return a reference. This

data structure is already the format expected to be processed by the client-side. Listing

4.4 represents the public interface for the Metrics Aggregator component.

The programmer should first register the Collectors at bootstrap time. The Metrics

bundle should be retrieved any time we want to send metrics to the client, as shown

in Figure 4.1. Although we offer simple implementations for the MetricsAggregator

interface, we do not offer any component that automatically performs the concatenation

of the message with the metrics and serialization of such.

public interface MetricsAggregator<Metric extends Enum<Metric>> {

Metrics getMetrics();

void addCollector(Metric metric, MetricCollector collector);

}

Listing 4.4: MetricsAggregator

To sum up, the programmer should:

1. Create a MetricsAggregator component specifying the metric enumeration;

2. Create a MetricCollector for each server-side metric and register it with the respec-

tive Metric within the MetricsAggregator;

3. Join the application serializable message with Metrics in order to serialize every-

thing according to the marshalling protocol in place and send it to the network.

31

CHAPTER 4. PROPOSED SOLUTION

4.2.2 Client-Side Components

Figure 4.4: Inside the client-side module

4.2.2.1 Replica Classifier

The Replica Classifier is the central piece on the client-side. As the name indicates, it is

responsible for classifying the available replicas for any given operation. It does so by

taking a set of replicas and sorting them from best to worst using the collected metrics.

The certainty on that ordering is proportional to how many metrics we have over that set

of replicas and how fresh that information is. But the Classifier does more than this. It

stores the metric values for each (already) known node with different retention, batching

and even decaying policies.

1 public interface ReplicaClassifier<Replica extends Comparable<Replica>, Metric

extends Enum<Metric>> {↪→

2

3 Set<Replica> sort(Collection<Replica> replicas);

4

5 void record(Replica replica, Metrics metrics);

6

7 void record(Replica replica, Metric metric, double value);

8

9 void addMetric(Metric metric, Class<? extends MetricHolder> metricHolder);

10

11 void addMetric(Metric metric, Class<? extends MetricHolder> metricHolder,

MetricDecayFunction decayFunction);↪→

12

13 }

Listing 4.5: ReplicaClassifier

Listing 4.5 contains the public interface for the Replica Classifier. Other than sorting

a collection of replicas, it allows for the record of individual or bundled metrics, to con-

figure how the values are stored internally (e.g. only keep last, keep a moving average,

32

4.2. PROPOSED FRAMEWORK ARCHITECTURE

etc) and to define a decaying policy for the metric. It is important to note the generic

types declared on the interface. The Replica generic placeholder represents the nodes’

identifier, i.e., what identifies an individual node/server. Here we can use any kind of

comparable data structure and it will be used to index information on that node, retrieve

it and guarantee that we do not consider the same node more than once. This can also be

exploited for more complex use cases, for instance, we could identify a node within the

module not only by its id but rather by the combination of its id and the communication

protocol. This would allow for the same node to be considered more than once but each

time with a different protocol. This can be useful to explore the alternative channels

proposed in Section 2.3.

The Metric generic will usually match the metrics’ set representation of the server-

side module. However, because in a distributed system sometimes there’s different node

versions and even different types of servers, the client-side module will simply ignore

any metric that it does not recognize. Moreover, we can have different Replica Classifier

instances in the client in case we have interest in different kinds of servers which emit

different sets of metrics.

We already offer an out-of-the-box standard implementation of this interface, Stan-

dardReplicaClassifier, which should fit most use cases and already uses data structures

from Java’s concurrent package to avoid unwanted interference. However, if there is any

required customization for this component, then the programmer will still be able to

easily extend either the provided implementation, since its internal state and important

inner methods are all accessible to extending classes, or the provided interface if they

required a fundamental change in the functionality.

The Replica Classifier sorts the replicas based on their score, using a custom Com-

parator that sorts elements from highest to lowest score. The score is calculated by the

underlying Scoring Algorithm which contains the formula that is applied over the metric

values. We will cover this component, as well as the Cluster Logic in further sections.

These can be ignored for now. However, it makes sense to discuss the Decay Function in

this context.

Line 11 of Listing 4.5 shows that we can also register a MetricDecayFunction for a

given Metric. This decay function will take into consideration the elapsed time since we

have last record a value for the given Metric and will penalize the metric according to

said time. Because the Scoring Algorithm always has a scale (i.e. it only produces scores

between a configurable minimum and highest value), there is also the concept of the

neutral value, which usually will translate to the middle value on the scale. This value is

used as the score for the replicas we do not know anything about (i.e. to which we still

hold no metrics). This is a way to neither penalize nor favor unknown outcomes. Having

this into consideration, we felt like we needed to addresses the cases where we would

score a replica above the neutral score if no decay were applied to its metrics, but, with

decay, it goes bellow said threshold. In that situation, we consider the neutral score as

the replica’s score instead. Otherwise, we always consider the decay score. And, when no

33

CHAPTER 4. PROPOSED SOLUTION

decay function is applied, there is no change to any metrics’ value over time. This is our

integrated mechanism to deal with metrics freshness.

The Replica Classifier does not hold the metrics directly but rather stores them within

containers (Metric Holders) that deals with further concerns regarding the stored value.

To be able to consider a given metric, we must register it at bootstrap time using the

addMetric method (Listing 4.5, line 9 and 11) where we provide the reference to an

implementation of MetricHolder.

In conclusion, the programmer should create the Classifier at system bootstrap time

specifying the node’s identifier type (the Replica generic), the Metric enumeration, and

configure it with a Scoring Algorithm, Cluster Logic, Metric Holders and Decay Functions,

when applicable. Some of these components still were not discussed, so that is what we

will keeping doing throughout this section.

4.2.2.2 Metric Observer

In spite of having Metric Collectors on the server-side, we still need a mechanism to

produce metrics on the client-side. We thought about using Metric Collectors for this

purpose as well, however, Collectors are pull-based and we required push-based com-

ponent. Hence, we have introduced Metric Observers, which, like Collectors do hold

programmer-provided logic to compute a metric value in the system. The difference is

that these do not need to be registered within the framework. Instead, these require a

reference to the Replica Classifier in order to push their readings. The push model is

required to update the stored information regarding a given node on system events, such

as network activity. One simple example extracted from C3 metrics is the measurement

of the server response time, to which we first need to save the request id with a timestamp

and, when we eventually receive a response, we measure the elapsed time and push this

value to the Classifier (Listing 4.7).

1 @RequiredArgsConstructor

2 public class MetricObserver<Replica extends Comparable<Replica>, Metric

extends Enum<Metric>> {↪→

3

4 protected final Metric metric;

5 protected final ReplicaClassifier<Replica, Metric> replicaClassifier;

6

7 protected final void updateMetric(Replica replica, double value) {

8 replicaClassifier.record(replica, metric, value);

9 }

10 }

Listing 4.6: MetricObserver

For this component(s) we provide a base class (Listing 4.6) that should be extended by

34

4.2. PROPOSED FRAMEWORK ARCHITECTURE

the developer. As with the Replica Classifier, we need to provide the actual type definition

for the nodes’ identifier and the metrics enumeration. Additionally to the Response Time

Observer, we also offer the Outstanding Requests Observer out-of-the-box to track how

many requests we have outgoing to a server and to which we have not received a response

yet.

1 public class ResponseTimeObserver<Replica extends Comparable<Replica>> extends

MetricObserver<Replica, C3Metric> {↪→

2

3 private final Map<Replica, Map<Object, Long>>

replicaRequestIssuingTimestamps = new ConcurrentHashMap<>();↪→

4

5 public void registerRequest(Replica replica, Object request) {

6 Map<Object, Long> timestamps =

replicaRequestIssuingTimestamps.computeIfAbsent(replica, r -> new

ConcurrentHashMap<>());

↪→

↪→

7 timestamps.put(request, System.currentTimeMillis());

8 }

9

10 public void computeResponseTime(Replica replica, Object request) {

11 Map<Object, Long> timestamps =

replicaRequestIssuingTimestamps.computeIfAbsent(replica, r -> new

ConcurrentHashMap<>());

↪→

↪→

12 Long timestamp = timestamps.remove(request);

13 Optional.ofNullable(timestamp).ifPresent(startTime -> {

14 long latency = System.currentTimeMillis() - startTime;

15 updateMetric(replica, latency);

16 });

17 }

18 }

Listing 4.7: ResponseTimeObserver

4.2.2.3 Metric Holder

A Metric Holder (Listing 4.8) is simply a container for the metric current value. These

are needed because different metrics require different ways to be stored; we might just

want to keep a discrete value or we might need to keep something more complex such

as a moving average. We already offer a variety of Metric Holders out-of-the-box. These

are used to configure the value storing policy for each metric on the Replica Classifier

(method addMetric in Listing 4.5).

35

CHAPTER 4. PROPOSED SOLUTION

public interface MetricHolder {

Double getValue();

void put(double value);

Long lastRecordedTimestamp();

}

Listing 4.8: MetricHolder

4.2.2.4 Replica Scoring Algorithm

The Replica Scoring Algorithm is the component that contains the ranking formula. It

takes the set of metrics and computes a score. As a guideline, the better the metrics, the

higher the score should be. The Scoring Algorithm component consists of the interface

on Listing 4.9. As mentioned in one of the previous sections, the algorithm should

produce scores within a scale (i.e. only produces scores between a configurable minimum

and highest values). For this, the programmer should follow the formula below when

implementing the score method:

score = min(MAX_SCORE, max(MIN_SCORE, formula(metrics)))

We also offer an abstract class with this implemented out-of-the-box, AbstractScoringAl-

gorithm, which might be easier to extend. Still, this is just a guideline and not required

for the system to function properly. In some cases it might not even make sense to set

score bounds and thus we still offer the interface. Aside from this, we also offer some

implemented scoring formulas, such as C3 (Listing 4.10) and our own formula which

deals with more MEC specific concerns and which we will cover in a section ahead.

public interface ReplicaScoringAlgorithm {

double score(Metrics metrics);

double getMinScoreValue();

double getNeutralScoreValue();

double getMaxScoreValue();

}

Listing 4.9: ReplicaScoringAlgorithm

36

4.2. PROPOSED FRAMEWORK ARCHITECTURE

public class C3Algorithm extends AbstractScoringAlgorithm {

// omitted source code...

@Override

public double algorithm(Metrics metrics) {

Double queueSizeBoxed =

metrics.stringifyKeyAndGet(C3Metric.QUEUE_SIZE);↪→

Double serviceTimeBoxed =

metrics.stringifyKeyAndGet(C3Metric.SERVICE_TIME);↪→

if (queueSizeBoxed == null || serviceTimeBoxed == null) {

return neutralScoreValue;

}

double queueSize = queueSizeBoxed;

double serviceTime = serviceTimeBoxed;

double outstandingRequests = Optional.ofNullable(

metrics.stringifyKeyAndGet(C3Metric.OUTSTANDING_REQUESTS))↪→

.orElse(0.0);

double responseTime = Optional

.ofNullable(

metrics.stringifyKeyAndGet(C3Metric.RESPONSE_TIME))

.orElse(serviceTime);

double concurrencyCompensation = outstandingRequests *

concurrencyWeight;↪→

double queueSizeEstimate = pow((1 + concurrencyCompensation +

queueSize), QUEUE_FACTOR);↪→

double latency = (responseTime - serviceTime) + (queueSizeEstimate *

serviceTime);↪→

return maxScoreValue - latency;

}

}

Listing 4.10: C3Algorithm

To use the algorithm the programmer simply has to wire it through constructor in-

jection if they are using the Standard Replica Classifier, or make sure they sure the score
method of the Scoring Algorithm to compute a score for the replica and use that value

to sort the available replicas. As a final note regarding implementation details, it should

be noted that even though we operate with Java Enums regarding metrics, which does

not allow us to extend a set of existing metrics, we can still circumvent this because the

37

CHAPTER 4. PROPOSED SOLUTION

Replica Classifier should use the String version of the enumeration items to communicate

the metrics to the Scoring Algorithm, which means that we can use already implemented

algorithms that use a given Enum underneath by simply declaring the same items with

the exact same name on our new Enum (e.g. if we create a new metrics Enum with the

same items as C3Metric in Listing 4.10: QUEUE_SIZE, SERVICE_TIME, etc, then we can

use the existing C3 algorithm implementation).

4.2.2.5 Cluster Logic

Finally, because some systems might have the need to tell apart cluster nodes from single

nodes when scoring them, we have introduced the Cluster Logic component. These

systems can be, for instance, cluster-based DHTs on which clusters of nodes act as virtual

nodes with their own role in the system.

This is a component that hooks into the Replica Classifier and requires two developer-

provided functions:

1. A predicate that indicates whether or not the current node is a cluster;

2. A function that retrieves the cluster nodes from the known replica set on the Clas-

sifier.

This is an optional component. However, if provided when using the Standard Replica

Classifier, it will classify a cluster with the average score of all its composing (known)

replicas.

To register the Cluster Logic the programmer should implement the interface in List-

ing 4.11 and then inject it into the Replica Classifier through constructor injection when

using the Standard Replica Classifier or, when using a custom implementation, simply

make use of it to compute the clusters’ score.

public interface ClusterLogic<Replica> {

boolean isCluster(Replica replica);

Set<Replica> findClusterNodes(Replica cluster, Collection<Replica>

replicas);↪→

}

Listing 4.11: ClusterLogic

4.2.3 Summary

In this chapter we have presented our replica selection framework architecture. We have

separated it in two modules: server- and client-side; and described each of the modules

38

4.3. REPLICA SELECTION STRATEGY FOR MEC SYSTEMS

Figure 4.5: Replica Selection framework architecture diagram. The server produces a
metrics bundle that is sent over the network to the client. The client forwards this bundle
to the classifier to store information about this server. The metric holders will store the
value of the corresponding metric. Metric Observers also produce individual metrics, on
the client. When we need to sort a set of replicas we pass the stored information on each
replica to the scoring algorithm which in turn will produce scores. The replicas are sorted
by their descending scores.

components in detail and what role they play in the system. We have also discussed

how these components should be placed. We explained how these components could be

used and the available APIs. Furthermore, we have discussed some component specific

challenges such as how to deal with concurrency and freshness, and presented some

of our out-of-the-box implementations. Additionally, we have discussed some possible

scenarios and advanced usages show as how the framework could be harnessed to support

multiple (alternative) communication channels. Figure 4.5 gives the full picture of the

framework.

4.3 Replica Selection Strategy for MEC Systems

4.3.1 Picking a baseline

From our analysis on Section 2.1, two options stood out as possible baselines to our work:

C3 (Section 2.1.2) and L2 (Section 2.1.3). We first looked at L2 and soon realized it is

not a suitable baseline for our work because it only takes into consideration client-side

measured metrics: the outstanding requests to a server and the perceived response time.

Even though L2 can achieve a similar best performance comparatively to C3 in cloud

environments, as concluded by the authors of [3], MEC environments are in contrast

more volatile and present additional challenges. Here, communication channels are less

reliable and the available replicas are constantly varying. Therefore, it is best to use a

Feedback algorithm when considering a replica selection strategy for a MEC system, in

order to get information both from the client-side as well as the server-side. This allows

us to not only decide upon the explicit values but also infer new information, e.g., we

can compare reported server-side values with perceived client-side values to be able to

distinguish server resource saturation from a network congestion and thus be able to

39

CHAPTER 4. PROPOSED SOLUTION

consider alternative communication channels. C3 is thus a better baseline for our use

case.

C3 is a state-of-the-art [16] Feedback algorithm that combines a replica ranking scheme

with rate-control and backpressure. The replica ranking scheme is a mathematical for-

mula that computes a server’s expected latency given the server’s reported queue size and

average service time, the client’s pending requests and the observed server response time.

The formula is as follows:

ψs = Rs −
1
µ̄s

+
(q̂s)3

µ̄s

where ψs is the expected latency for server s, q̂s = 1+oss ·w+q̄s is the queue-size estimation,

oss is the number of pending requests the client has to s, w is a configurable concurrency

weight number that represents the potential number of clients in the system (in a cloud

system this might be an exact number, like the number of nodes in a cluster, but in a

MEC system it has to be a sensibly configured parameter since it will remain a static

value but the number of connected mobile nodes will vary fairly often over time), Rs, q̄s
and 1

µ̄s
are Exponentially Weighted Moving Averages (EWMAs) of the observed response

time, queue-size and service time of s, respectively. The queue-size estimation grows

at a cubic rate to punish higher queue sizes. If it grew at a linear rate then it would be

possible for a server s1 with service time n times lower than s2 to hold a queue n times

bigger than s2 and still have the same expected latency. As explained by the authors of

[17] such scenario would be problematic if s1 suddenly slowed down or even ran into

a halt. Finally, the term oss ·w is also known as a concurrency compensation, which is

the term that weights the most in the queue-size estimation and it encourages clients

to better distribute their requests through the available replicas, effectively achieving a

load-balanced system.

The rate control and backpressure module is used in C3 because, according to the

authors, replica selection alone cannot ensure that the combined demands of all clients

on a single server remain within that server’s capacity. On the other hand, the authors

of [3] conclude that the complicated rate control mechanism of C3 itself is not helpful

to reduce tail latency. Our conclusion is that, although such component might have

a positive impact on systems such as the Cassandra Cluster presented for evaluation

purposes in [17], where all nodes are continuously engaged in high throughput / high

bandwidth operations, for most systems that will not be the case, especially in MEC

environments where nodes are power constrained. Also, we already have the concurrency
compensation baked into the replica selection algorithm to prevent saturating a specific

server; And finally, although we understand how this client-side component protects the

whole system, we argue that it might not be so interesting and even hurt latencies more

than it helps on systems where there might not be many available replicas to start with,

because if a low sending rate threshold was to be configured we could easily hit the quota

on all replicas and incur in unnecessary waiting times imposed by the client itself. For

these reasons, we decided to discard the rate control and backpressure component.

40

4.3. REPLICA SELECTION STRATEGY FOR MEC SYSTEMS

4.3.2 Remaining Challenges

With C3 ranking scheme as the basis for our algorithm, we have enough information to

understand servers’ resources occupation and network conditions, as well as the ability

to avoid herd behaviors. We also get intrinsic load-balancing. But there are additional

challenges related to MEC environments, namely churn, power efficiency, metrics fresh-

ness and a dynamic set of replicas which is not known at start time and evolves over time

(nodes join and leave). Also, nodes’ computational capacity is linked to the available

battery capacity, which drops at a probably non-linear rate over time.

4.3.2.1 Churn

Churn refers to the movement of system nodes. In a cloud environment nodes have a

static physical position (usually machines in racks within a data center) and are wired

to the network infrastructure which provides highly reliable and high bandwidth con-

nections. On the other hand, MEC systems present a more volatile environment with

wireless communication medium that might degrade with physical distance and other en-

vironment related variables, as well as mobile nodes which often experiment movement,

effectively shifting their physical location. Regarding nodes’ movement, there are two

possible scenarios:

1. either these nodes move within range of the beacon for the wireless medium (e.g.

the AP);

2. or they cross the range boundary, effectively leaving or rejoining the system.

For the first scenario, and because we are using C3 as a basis, we already have what we

need to detect nodes’ movement. A server’s network latency should be directly influenced

by their distance to the connected network device. This means that the clients’ perceived

response time will increase or decrease when the server gets closed or further to the

beacon, respectively, and directly impact the computed score.

For the second scenario, however, this might not be of much help. If we consider the

scenario where a node leaves the system, the outgoing requests to it will be left hanging.

Here we can try to leverage the error conditions. If the application implements some

sort of timeouts around the request, we can stop tracking the request upon a timeout

and use the configured timeout value as the perceived response time, which penalizes

the score as intended. Another more penalizing factor in this case would be the outgoing

requests count to that server, which could potentially never decrease; this would greatly

increase the chances that the node would not be picked again as the designated replica

but, if the node rejoins the system, it would still keep a perpetual penalty. With this, we

think it is important for MEC systems to have a request timeout policy in place in order

to react and adapt to these situations. As suggested, a timeout would be a great place to

adapt client-side metrics. For C3 metrics we can take the chance to register a very high

41

CHAPTER 4. PROPOSED SOLUTION

response time and also discount the timed-out outgoing request. To complement this

practice, however, we think we should also have a way to explicitly penalize the score.

The most direct way to do this is to inform the algorithm to return only a percentual part

of the computed score. This way we could penalize the replica on timeout - or whenever

it made sense - by asking the algorithm to, for instance, only consider 80% of the the

computed score. We could then raise this back to 100% once we were confident enough

that the node was back online.

4.3.2.2 Power Efficiency

Power efficiency refers to how much regard the system gives to the power consumption

of power constrained devices. In a Cloud environment, computing nodes are usually

plugged to an energy source with no hard limits to its capacity, and therefore this is not

a concern. In a MEC environment, however, mobile devices have very specific power

restrictions. All mobile nodes are limited by their battery capacity and some have higher

capacity than others. It is also likely that nodes will be joining the system will only a

percentage of their total battery capacity and that this remaining capacity has to be shared

between our application and others. It is of the system’s interest to keep the maximum

number of nodes online for as long as possible. Thus, our replica selection strategy also

has to score replicas according to their remaining battery capacity. Furthermore, it might

be interest to observe how a device’s battery evolves over time [6, 20]. Devices’ batteries

drop at different rates and some might even be increasing.

4.3.2.3 Freshness

Freshness refers to how much time has passed since we have registered a given metric

value. The longer we hold onto that value the less fresh it will be, or in other words, the

less likely it is that it still represents the reality of the system. We argue that the impor-

tance of this concept depends on the metric at hand. There is also a set of assumptions

we might be able to make depending on the metric.

Server-side metrics tend to be more impacted by freshness as they report a server’s

state at a given point in time. For instance, a server’s reported queue size tells us how

many requests it still has to process at a given point in time; the longer it has been since

we received that value, the more likely it is it is not true anymore. However, we cannot

make any assumption about the evolution of the queue-size; at most we can either be

optimistic or pessimistic and assume it has decreased or increased, respectively, or we

can try to use past readings to predict the curvature of the value. Although these are all

valid techniques, they might introduce entropy and have a harmful effect to the system.

For metrics such as battery percentage, however, it could be possible to make accurate

predictions of the current value using past reading to understand at which rate it was

decreasing, or even in certain cases, increasing, which is possible if people are carrying

powerbanks or have other sources of energy available.

42

4.3. REPLICA SELECTION STRATEGY FOR MEC SYSTEMS

For client-side metrics such as perceived latencies we might not be able to make any

assumptions as well. For others, such as outstanding requests, we always know the exact

value. Still, there might be systems that introduce other kinds of client-side metrics.

We see freshness as a concern that should be evaluated for each metric individually.

With this kind of granularity we can better fine tune our system. Also, we take into

account the possibility that, for some systems, metrics’ readings might reach the client or

be computed in an asynchronous fashion and, therefore, there is not only no guarantee

that there is a value for each considered metric at the same time, but it also implies that

some metrics might have fresher values than others.

There are multiple possibilities to implement this. We could easily define a TTL for

each metric and, once that TTL was reached we could disregard the value for that metric.

There is also the possibility to define a decay function for each metric, effectively adapting
its value over time. This last option seems more attractive to us as it allows for a better

expression of how a metric reading should evolve over time and it still allows for the

implementation of the first option.

4.3.2.4 Unknown Replicas

All the studied Cloud systems consisted of static clusters where, although there could

be some process in place for nodes going offline and coming back online, there was no

need to worry about new nodes other than those configured initially joining the cluster.

In a MEC system, however, nodes are constantly leaving and new nodes joining. Due to

this, more often than usual we might be faced with the situation where we have unknown

servers within the available replicas list. Here we can take one of several approaches:

• we can be pessimistic and always consider these replicas last;

• we can optimistic and favour them;

• or we can try to be impartial and prefer them over the bad replicas but only after

the good ones.

To define what are good or bad replicas we need to define a threshold for the scores.

Furthermore, it is easier to define said threshold if we first define a closed interval for the

possible score values. Given an algorithm that produces replica scores within [0;x], the

neutral score value would be x
2 . We could thus classify the unknown replicas with this

score value and effectively achieve the impartial option listed above.

4.3.3 Proposed Algorithm

Having looked at the additional challenges introduced by the MEC environment, we now

present our proposed algorithm, Algorithm 1.

First, we will look at the scoring formula. As stated before, our proposed algorithm

expands on top of C3. We evaluate a metric on their internal state (queue-size and service

43

CHAPTER 4. PROPOSED SOLUTION

time), on how much demand we already have over that server (outstanding requests) and

on the perceived end-to-end latency (response time). We store the outstanding requests

indexed to the server and request identifiers in order to easily resolve requests as well as

being able to count them. All the other metrics are stored as EWMAs as in the original

C3 paper [17]. We also report the battery capacity from the server-side so we know how

much battery that replica has left. Having the battery capacity and the expected latency

for that replica, we translate these values into the same scale. Now that we have two

distinct values of the same order of magnitude (remaining battery and expected latency),

we attribute a percentage weight to each one to form the final score value.

Algorithm 1 Replica Selection for MEC Systems

1: procedure Score(metrics)
2: if hasEssentialMetrics(metrics) then
3: queueSize← getQueueSize(metrics)
4: serviceTime← getServiceTime(metrics)
5: outstandingRequests← getOutstandingRequests(metrics)
6: responseTime← getResponseTime(metrics)
7: concurrencyCompensation← outstandingRequests ∗CONCURRENCY_WEIGHT
8: queueSizeEstimate← (1 + concurrencyCompensation + queueSize)QUEUE_FACTOR

9: expectedLatency ← (responseTime − serviceTime) + (queueSizeEstimate ∗
serviceTime)

10: latencyScore←MAX_SCORE− expectedLatency
11: battery← getBattery(metrics)
12: score← BATTERY_WEIGHT ∗ battery + (1−BATTERY_WEIGHT) ∗ latencyScore
13: return score
14: end if
15: return NEUTRAL_SCORE
16: end procedure
17: procedure DecayBatteryMetric(recordBatteryValue, recordTimestamp)
18: bytesPerMillisecond← totalTransferredBytes

elapsed time since first message
19: metricValueAge← System.currentTime()− recordTimestamp
20: transferredBytesSinceLastRecord← bytesPerMillisecond ∗metricValueAge
21: concurrencyCompensation ← transferredBytesSinceLastRecord ∗

CONCURRENCY_WEIGHT
22: expectedSpentBattery← concurrencyCompensation ∗BATTERY_PER_BYTE
23: return recordBatteryValue− expectedSpentBattery
24: end procedure
25: procedure OnTimeout(node, requestId)
26: requests← getRequests(node)
27: requests← requests \ {requestId}
28: recordResponseTime(node, TIMEOUT_THRESHOLD)
29: penalizeScoreBy(PENALIZATION_PERCENTAGE)
30: end procedure

When any metric that is essential to the calculations is missing, or when there are no

metrics at all, we fallback to the neutral score, which means that we cannot (yet) classify

44

4.3. REPLICA SELECTION STRATEGY FOR MEC SYSTEMS

that replica according to our parameters. The neutral score is the middlemost value from

the closed interval of possible score values. With this we divide the scale in half, where

the scores falling on the left side of the neutral score are seen as “less good” and the ones

on the right side are seen as “preferable”. As explained in the previous section, this is

because we do not want to take neither an optimistic nor a pessimistic approach towards

the unknown.

Regarding freshness, we consider each metric individually. When considering queue-

size, service time or response time, there is no obvious answer as to how these values

can evolve over time. We found that simpler solutions such as an always optimistic

or pessimistic approach would more than often lead to incorrect predictions. A better

approach would be to apply a statistical prediction function to past data points, such

as a linear regression, in order to predict the current value. For these to be effective,

however, we need a continuous stream of values, and the absence of such stream is why

we might need to deal with freshness in the first place. Since we already keep a EWMA

for each of these metrics, we decided to skip having a decay function for any of them.

The outstanding requests number is an exact number that the client always knows and

does not vary over time without it being registered so, it too dismisses the need for a

decay function. For the battery capacity, however, we keep track of how many bytes are

transferred between the server and the client (upstream and downstream) since we first

connected to the server and create a ratio between those bytes and the elapsed time to

obtain a byte per millisecond rate. We multiply that rate for the last received value’s age

to have a rough estimation of how many bytes might have been transferred, in average,

between that server and any other node. Then we multiply this value by a concurrency
weight just like in C3 to account for the other nodes in the system and obtain some sort

of concurrency compensation. And finally, we multiply this value by a system configured

rate that represents how much battery a node spends when it sends or receives 1 byte.

The produced value from these multiplications represents the battery decay estimation

for the elapsed time since the last feedback. We then subtract this value to the current

value to obtain the final considered battery value. We also make sure that this subtraction

does not go below zero. As discussed in Section 4.3.2.2, there is also the possibility for

the battery to increase if the mobile device gets connected to a power source. However,

considering the curve of the battery instead of (or complementary to) the absolute value

would make our calculations more complex and possibly bias clients to pick that replica.

Instead, we decide to degrade the last received reading over time, with an adjustable

rate. If a node’s battery levels are increasing, we definitely will capture that increase

on sequent readings, which will replace the previous ones. If no updates are received,

we assume the battery level is degrading. In this scenario, given that we only degrade

because we are not receiving metric updates, and metric updates are piggy-backed in all

types of traffic, it means we are receiving no traffic from that node; if no traffic is received

from a given node for a long interval, the decay penalty will not be very steep either. This

ends up being the most simple and elegant solution.

45

CHAPTER 4. PROPOSED SOLUTION

Lastly, when a request to a server times out we adjust the client-side metrics by remov-

ing the outstanding request from the list and recording the configured timeout span as

the response time. However, because this might not be enough to make the client immedi-

ately prefer other replicas, we also apply an explicit penalty. With the explicit penalty we

tell the client to only consider a percentage of the computed score as the effective score to

compare to other replicas’. This penalty can be reverted by the client whenever it makes

sense.

4.4 Integration with Thyme GardenBed

Now that we know how our replica selection module works, we will go over the in-

tegration with Thyme Gardenbed [14]. In this section we will talk about Thyme and

GardenBed’s architectures and then we will show where we have connected the pieces of

our module, as well as discussing some of our decisions.

4.4.1 System Architecture

We thus start by describing Thyme GardenBed’s architecture. This section is adapted

from [21] as it already provides a concise explanation of the whole system architecture.

Here we only take the necessary parts to understand the integration process, omitting

some more detailed information that is irrelevant for this work and would otherwise

overwhelm the reader.

4.4.1.1 Thyme

We present the full architectural picture of Thyme in Fig 4.6. Below we give a brief

explanation of the necessary components.

Time-Aware Publish/Subscribe. This module provides the Time-Aware Publish/-

Subscribe interface to the application in order for the user to be able to persistently share

content between devices. Through this P/S layer it is possible to specify a time interval in

which subscriptions will be active, whether that interval is in the past, present or future.

Furthermore, this layer is responsible for managing the client’s subscription and publish

requests as well as all the notifications associated with them.

Storage. Thyme fuses the Publish/Subscribe infrastructure with the actual storage sys-

tem by using the virtual nodes to store published content and subscriptions, while cells

act as virtual P/S brokers. Upon a notification, the P/S module delegates to the storage

the decision to either download the object or ignore it. This is where the replica selection

process occurs in the context of downloads.

46

4.4. INTEGRATION WITH THYME GARDENBED

Figure 4.6: Thyme’s Architecture

Mobile Nodes Network Layer. This layer allows the communication between mobile

devices running Thyme in their front-most application. It offers a custom node identifi-

cation service that uses logical addresses instead of more classical approaches such as a

TCP/IP address for each device.

Routing. The Routing layer was developed with the goal of managing the transmission

of messages from one point of the system to another, by choosing the most appropriate

dissemination route. It is also this layer that knows how to forward messages to cells/-

clusters.

Infrastructure Network Layer. This component enables the communication with the

nearest infrastructure, if present.

4.4.1.2 GardenBed

Here the only layer we care about is the Network Layer. This is because the supporting

MEC infrastructure nodes only act as servers and therefore our only change here is to

guarantee we piggy-back feedback metrics on each message, as we will explain in the

section ahead. This layer is divided into two parts, the Mobile Nodes and the Infras-

tructure, and has the goal of allowing not only the infrastructure nodes to communicate

47

CHAPTER 4. PROPOSED SOLUTION

Figure 4.7: GardenBed’s Architecture

wirelessly with its mobile clients and through wired links with other base stations, but

also to process incoming messages from those sources. Nonetheless, we leave the full

architecture diagram in Fig 4.7.

4.4.2 Integration

Now that we have looked within Thyme and GardenBed’s architectures, we will discuss

the Replica Selection integration.

4.4.2.1 Server-side

First, we needed to disseminate metrics. Metrics are disseminated by servers and each

node on this system is a server: it is either a mobile node, which is both a server and a

client, or an infrastructure node, which is only a server. Servers piggy-back their metrics

on each sent message. We started by adding a Metrics payload within the application

message. Because we depend on the application’s serialization mechanism, and Thyme

GardenBed makes use of Protocol Buffers, we also had to add the metrics payload to

the message .proto definition and edit the marshalling and unmarshalling logic to map

between the application and proto generated message formats.

On both Thyme and GardenBed we have created a new Metrics Aggregator 4.2.1.2 com-

ponent which sits on both’s Mobile Nodes Network Layer and can thus inject the metrics

into the message before forwarding it. On both cases we used the StandardMetricsAggre-
gator which we provide out-of-the-box and offers the exact expected functionality from

the interface.

The final step needed to successfully disseminate metrics is to actually gather said

metrics. We need to register Metric Collectors 4.2.1.1 into the Metrics Aggregator in order

for it to bundle some metrics. The metrics we want to gather are: request queue-size, service
time and remaining battery.

48

4.4. INTEGRATION WITH THYME GARDENBED

Figure 4.8: Server-side metrics collection sequence

To gather the request queue-size in Thyme, we have enhanced both the Mobile Nodes
Network Layer and the Infrastructure Network Layer to expose the number of requests yet

to be processed. This functionality consists of an atomic integer that keeps track of the

working queue size for each network layer and is exposed to the other layers. We then

create a Metric Collector that gathers and adds these two counters. The pending mobile

requests plus the pending infrastructure requests represent the total number of pending

requests in the Network Layer. The same approach is taken in GardenBed as we enhance

both the Mobile Nodes and Infrastructure components in the Network Layer to report their

queue-sizes as well. With these we can know all the pending mobile requests to that

infrastructure node as well as the inter-infrastructure requests. We then create a similar

Metric Collector that adds both counters.

To gather the service time samples we also had to enhance the Network layer of both

systems. We have created hooks within these layers to be able to tap into and receive

metric reports, such as the service time with represents how long the system took to

process the last request. We then use these hooks to install our ServiceTimeCollector which

we provide out-of-the-box. This will record the service time samples and will return

the average value whenever queried for it. We have also decided to filter the messages

we consider here in order to avoid skewed times between mobiles and infra. Thus, and

because we decided that we would not specifically differentiate between mobiles and

infra, we only consider the common messages, namely the subscriptions and downloads.

49

CHAPTER 4. PROPOSED SOLUTION

Figure 4.9: Client-side metrics collection and recording sequence

Finally, to gather the remaining battery in mobile devices we have created a custom

Metric Collector that queries the Android battery service for such value. To keep the

infrastructure nodes homogeneous with the mobiles, we also report the battery level

from those - even though they are not battery constrained - with the maximum capacity.

This enables the infrastructure nodes to still be preferred power-efficiency-wise but, with

the remaining metrics, they can be considered only after any other available replicas if

the expected latencies differentiate much.

4.4.2.2 Client-side

When talking about clients we will only refer to mobile devices running an instance of

Thyme. GardenBed servers can also be clients (of other infrastructure servers), but it

is out of the scope of our work. Nevertheless, these could also be adapted to use our

framework and form a feedback system between them.

To register the metrics and compute scores for each replica we first need our central

piece, the Replica Classifier 4.2.2.1. Here we use the StandardReplicaClassifier we already

provide out-of-the-box. The first thing we have to define is the replicas’ identifier type.

We chose to use the Address structure that represents the virtual addresses we have ref-

erenced in the previous section. These consist of a UUID and a cell identifier. There is a

reserved UUID to represent cells instead of individual nodes, and we have also defined a

new reserved UUID and combined it with an otherwise invalid cell identifier, -1, to create

50

4.4. INTEGRATION WITH THYME GARDENBED

a static address for the infrastructure server. Then we have injected a custom Cluster
Logic 4.2.2.5 component to be able to identify and correctly score cells, also known as

active replicas, which are always the first storage location for the object within the system.

We identify a cell by the UUID in the virtual address, and we then are able to retrieve all

its known composing nodes by the cell identifier. This will then allow for the classifier

to use the average of the nodes scores to score the cluster. This was explained in greater

detail on Section 4.2.2.5.

We also register the Replica Scoring Algorithm 4.2.2.4 on the bootstrap of this compo-

nent. This is essentially the scoring formula that we have described in Section 4.3.3. Still

on the bootstrap of the Replica Classifier, we register the Metric Holder 4.2.2.3 class for

each metric. We use the ExponentialMovingAvgMetricHolder that is provided out-of-the-

box to hold the values of the queue-size, service time and response time metrics as EWMAs.

For the remaining battery we use a simple RecordMetricHolder which simply holds the last

recorded value; and finally, for the outstanding requests we use a CounterMetricHolder.

When registering the Metric Holder for the remaining battery, we also register a decay

function to account for the value’s age since we might not receive any feedback from that

server for a large time window even though it still is within the system and its remaining

battery will still decay. This function is as explained in Section 4.3.3. For this we needed

to introduce a new component within the Network Layer, which will register a timestamp

for the first transferred byte between the client and the considered server, and will also

keep a registry of how many bytes where sent and received since. The Metric Holders
already keep a timestamp for the last value registry and the concurrency weight used for

the calculations is the same used for the C3 computations. Lastly, the battery per byte
rate is a number that can be configured within Thyme configurations. These are all the

necessary components to compute the decayed battery level. Also, to preserve the correct

state of the system, if the value falls below the scale minimum, it is assumed as the

minimum, which in this case is zero.

This concludes the bootstrap of the Replica Classifier but we still lack a way to capture

client-side metrics. As described in Section 4.2.2, we need Metric Oberservers 4.2.2.2 in

place to be able to keep track of the outstanding requests as well as response times.
The Outstanding Requests Observer is installed on the Network Layer and each time a

request is sent to server s, it notifies the Replica Classifier to increment the counter on the

CounterMetricHolder. Similarly, whenever we receive a response from server s, it notifies

the Replica Classifier to decrement the counter on the CounterMetricHolder. Because not

all outgoing messages are requests and not all incoming messages are responses, we need

to apply message filters to the increment and decrement notifications of the observer,

otherwise we would possibly see incorrect values for the outstanding requests metric.

The Response Time Observer is installed on the Publish/Subscribe and Storage services

to keep track of the outgoing requests and incoming responses. Although all these mes-

sages have to go through the Network Layer, this upper layer was easier to install such

observer as it already tracks requests. When a request is sent, the observer stores the

51

CHAPTER 4. PROPOSED SOLUTION

request identifier alongside the replica identifier and a timestamp. Then, when the re-

quest eventually resolves - either with a response or a timeout - we measure the elapsed

time and notify the Replica Classifier to record that response time sample indexed to the

replica.

The last step to complete this feedback system is to include the Replica Classifier
component in the necessary layers. First, we need to have this component tap into the

Network Layer in the same way that the Metrics Aggregator does; however, instead of

injecting the metrics into the message before it is sent to the Link Layer, now we want to

extract the Metrics bundle from the payload before we forward the message to the upper

layers to be processed. We thus include our Replica Classifier on the Mobile Nodes and

Infrastructure components from the Network Layer and have it pre-process all incoming

messages to consume the included metrics. With this we have finished the setup and can

now make informed decision on which might be the most interesting replica to download

a data object from.

Algorithm 2 Previous Replica Selection Policy

1: retries← 0
2: forced← false
3: procedure processDownload(objectID, replicas)
4: if isInInfra(objectID) AND retries == 0 then
5: downloadFromInfra(objectID)
6: else if retries == MAX_RETRIES then
7: cell← getCellAddress(replicas)
8: download(cell, objectID)
9: forced← true

10: else
11: replica← replicas[0]
12: download(replica, objectID)
13: if isCell(replica) then
14: forced← true
15: end if
16: end if
17: end procedure
18: procedure OnTimeout(request)
19: if retries == MAX_RETRIES OR forced then
20: fail(request.objectID)
21: end if
22: remainingReplicas ← retries == 0 ? request.replicas : request.replicas \
{request.chosenReplica}

23: retries← retries + 1
24: processDownload(request.objectID, remainingReplicas)
25: end procedure

Now we can sort the available replicas for a given download. To do so, we need to

include the Replica Classifier in the Storage Layer which, as stated before, is responsible to

handle a Notification. The Notification data structure includes the metadata for the data

52

4.4. INTEGRATION WITH THYME GARDENBED

object, including the available replicas to serve the object and if a copy of the object exists

in the infrastructure. The Storage layer already had a replica selection policy which is

synthesised in Algorithm 2. The strategy was to always prefer the infrastructure first

in order to conserve the other devices battery as much as possible. If the infrastructure

had already been tried or was never an option, we started visiting the replicas by the

order they appear in the Metadata. We would try at most as many passive replicas as the

possible number of retries before being forced into downloading from the active replica

(the cell). If we ever found the cell in the ordering before running out of retries, it would

still be the last try since it was assumed that if the object did not exist in the active

replica then it had been removed from the system. Thus, if that last resort failed, we

failed the download. The changes we have made in this policy were that, first we are

not immediately considering the infrastructure in the first place anymore; it can still be

the first option, but it is not guaranteed that it will be. Before starting to process the

download, we check if the object is indeed available in the infrastructure. If it is, we add

the reserved infrastructure Address to the metadata replicas list. Then, we use the Replica
Classifier to sort the metadata replicas list and only after start processing the download.

We still keep visiting the replicas by their order but now they are sorted by our criteria.

Furthermore, we keep the timeouts, retries and the forcing of the active replica if we ran

out of options. We can see the revised policy in Algorithm 3.

With this, we finish our integration of our Replica Selection framework and Algo-

rithm 1 with Thyme GardenBed.

4.4.3 Dealing with Early Hotspots

At this point, there is still one problem that remains unsolved. Inspired by Figure 3.2, we

have proposed the following hypothetical scenario: We imagine a football match where

the people in the stadium are using a multimedia sharing application supported by

Thyme. In the beginning of the game, a big part of the users make a future subscription

to the tag goal, spanning the expected duration of the game. Then, at some point during

the game, there is a goal and everyone starts publishing photos and videos to the tag.

What follows is a barrage of notifications from the broker cell to the possibly interested

devices. Then, most of these devices will potentially try to download each of these files

at the same time, resulting in a really high demand over the publishers’ cell.

In this scenario, there is not much a replica selection algorithm can do because there

are no alternative replicas to select from. The only nodes holding these files are the

publishers and eventually their cell peers, meaning that only the active replica will be

listed as the available replica in all those subscription match notifications. Because of this,

the cell will be serving all the downloads resulting from a notification for a file it owns.

This, in turn, results in a steep battery capacity reduction on the cell nodes, which might

ultimately cause them to leave the system. Moreover, because bandwidth and computing

power are specially limited, nodes might start to queue up download requests, causing

53

CHAPTER 4. PROPOSED SOLUTION

Algorithm 3 New Replica Selection Policy

1: retries← 0
2: forced← false
3: procedure beforeStartingToProcessDownload(metadata)
4: if isInInfra(metadata.objectID) then
5: metadata.replicas←metadata.replicas + {INFRA_ADDRESS}
6: end if
7: sort(metadata.replicas)
8: processDownload(metadata.objectID, metadata.replicas)
9: end procedure

10: procedure processDownload(objectID, replicas)
11: if retries == MAX_RETRIES then
12: cell← getCellAddress(replicas)
13: download(cell, objectID)
14: forced← true
15: else
16: replica← replicas[0]
17: download(replica, objectID)
18: if isCell(replica) then
19: forced← true
20: end if
21: end if
22: end procedure
23: procedure OnTimeout(request)
24: if retries == MAX_RETRIES OR forced then
25: fail(request.objectID)
26: end if
27: remainingReplicas← request.replicas \ {request.chosenReplica}
28: retries← retries + 1
29: processDownload(request.objectID, remainingReplicas)
30: end procedure

them to timeout.

From our definition of “popular”, we understand that these files are already popular,

or at least, have the potential to be. However, by the system definition, popularity is a

product of a file’s demand, or in other words, how much they are downloaded. In the

presented scenario, it would be ideal if these files could be served from the infrastructure

right from the beginning; but picking the infrastructure as the target download location

is a concern of the downloading node, and it will not target the infrastructure because

the initial notification states that only the active cell contains the file. Therefore, we need

a way to better preserve the replicating cell without depriving nodes from the requested

files.

One first solution that came up was to delay notifications, or send notifications in

batches. Effectively, if the broker cell did not send all notifications at once, but instead

waited until the first notified nodes downloaded the object and only after notified another

54

4.5. FINAL REMARKS

batch, now with more storage locations, the active replication cell would not be so severely

punished. However, this does not seem like a really good solution because it intentionally

degrades the quality of service for some nodes in favor of others.

Another possible solution, and the one we have picked, is to redirect the download

requests to new replicas. For this, we have introduced a new configurable setting into

the system: the threshold value of concurrent downloads one node can serve. All the

downloads beyond this threshold should be redirected to another replica whenever possi-

ble. To redirect a download to another replica, we have leveraged the existing Download
Fail message, adding a redirection flag. We have also added a section to include the most

up-to-date metadata for the target object, which will include the new storage locations.

Instead of a File Message, the serving node sends a Download Fail message in response to

the download request, containing these extra fields. This gives the downloading node the

possibility to pick a new replica to fetch the file from, now using proper replica selection.

4.5 Final Remarks

In this chapter we started by presenting the framework we have created to be the basis

of our solution for replica selection in MEC systems. We made a deep dive into each

component and saw how the programmer could use them to build a replica selection

mechanism into his system. Then, we went over our proposed algorithm and how it deals

with the extra challenges introduced by the volatility found in MEC environments. And

lastly, we analyzed the integration of our framework and algorithm with the existing MEC

system, Thyme GardenBed.

Now that we have a solution in place we need to assess how effective it is. To this

end, we have designed and ran some scenarios to answer some fundamental questions

regarding the validity of our solution. Next chapter goes over the evaluation process and

presents our experimental results.

55

Chapter 5

Evaluation

In this chapter we will go over the experimental evaluation process we used to validate our

framework and its integration with Thyme GardenBed. We will first discuss which ques-

tions do we want to answer with this evaluation, then we will explain how we can answer

those questions, followed by the necessary experimental setup to apply our methodology.

Having discussed all the preparations, we will then discuss the experimental results, if

they were expected and what did we learn from them. Lastly, we close this chapter by

summing up our findings.

5.1 Goals

Before being able to evaluate anything, we have to decide what to evaluate. Since we have

built a replica selection mechanism and had it integrated within an existing system, the

big question is how much did the system improve? In the broad sense, and as explained

before, our aim was to improve latencies and overall system resources usage (such as

battery capacity), as well as being able to better react to network congestion and system’s

performance degradation. In Chapter 4, Sections 4.3.1 and 4.3.2, we have explained in

detail the faced challenge and in Section 4.3.3 we have explained how these principles

are baked into our work.

Because these concerns are properties (or desired side-effects) of our solution, it would

not make sense to test each of them separately. Thus, we gather them all into a simpler

question: how good is the replica selection process? In other words, do we consistently

pick the best replica amongst the available ones? Ideally, we should be able to compare

our algorithm’s decisions with which would actually had been the best option available

option. With this, we could compute an average error value that represents how accurate

our replica selection strategy is. Furthermore, we could apply the same methodology to

the Thyme’s previous replica selection scheme as well as other baselines that might be

interesting to consider.

Even with the best strategy, the replica selection process can only be as good as the

available information about the replicas. Little information can lead to bad, uninformed

57

CHAPTER 5. EVALUATION

and even arbitrary decisions. Stale information, on the other hand, can lead to confident

bad decisions. Ideally, we would know about any system change as soon as it happens;

however, that is usually (if not always) not the case. Thus, it poses the question: how

fast can we perceive this changes? How quickly can we propagate and perceive this

information? How reactive is our system?

Lastly, we would like to know the overhead introduced by our module. Effectively, we

are introducing more bytes into the network by piggybacking system metrics on existing

messages. Thus, we would like to know how much. In short, we want to know what is the

increase in traffic volume and how does it relate to performance gains.

In summary, we want answers to the following questions:

• How good does our replica selection strategy perform?

• How reactive is our solution?

• How much overhead does it introduce and how does it relate to the results for the

first question?

5.2 Methodology

Now that we know what to evaluate, we are missing how. In this section, we discuss

our experimental methodology and how the produced results answer the questions from

Section 5.1.

To assess whether or not we consistently pick the best replica, we need to know two

things for each download: the chosen replica and the actual best replica. To know which

replica was chosen is just a matter of recording it; to know which would have otherwise

been the best choice, however, requires a bit more effort. To know the latter, we came up

with the idea of an oracle.

The oracle is an extra piece of software that needs to be fed with the whole system

information to be able to answer any question with the highest degree of certainty. It is

composed of two parts:

• an extra persistent logging component that is enabled within the system nodes to

record their state and downloads information;

• a post-processing script which computes metrics (e.g. how good was the replica

selection on each specific download) over the previously collected runtime data.

With this we can now answer our first question, “How good in our replica selection strategy?”.

To start, each node creates a new record for each download, containing the important

information that would impact the replica selection decision, such as the available infor-

mation about the system (i.e. which metrics does it have for each of the nodes it knows

at that point in time), as well as the replica it chose. Furthermore, each nodes records

58

5.2. METHODOLOGY

a snapshot of itself at each second, containing its most up-to-date metrics and stored

(replicated) objects.

Using the download records, we can compute the degree of effectiveness of each

algorithm, i.e., we can assess whether the given algorithm is consistently picking the

replicas which best satisfy our previously established concerns by comparing its results

to the oracle’s and if not, how close it was. We can determine this by comparing the

replicas’ order as sorted by the node to the order as sorted by the oracle. The idea is to

run this test in the exact same conditions for different baselines and use the results as

a base of comparison. Moreover, we use these results to understand the cost/benefit of

more complex solutions - such as ours - compared to simpler solutions such as a random

selection algorithm, or other intermediary solutions such as the C3 algorithm designed

for Cloud environments and a slightly tuned version for MEC environments.

Using the recorded system snapshots, which contains the most up-to-date metrics of

each node and their stored contents at each moment, we can use the oracle to compute

the optimal replica system-wide to the node’s decision. The difference from the previous

measurement is that now we are not evaluating whether the selection scheme made the

best decision with the information it had available at that moment - keep in mind that

even though some algorithms do not use any of our metrics or very few, we assume these

are available to all baselines regardless of utilization - but instead we are considering the

most up-to-date system snapshot, containing not only the replicas presented in the down-

load notification but also replicas that have not yet been registered as being replicating

the target object, or subtracting any node that might have stopped replicating that object;

all the nodes’ metrics considered for the computations are also the most up-to-date to the

download’s moment as reported by the nodes themselves. By being able to sort the whole

replicas in the system using their exact most up-to-date metrics, we are able to determine

just how good a replica selection was system-wide using only the available information in

the node. This can give us a rough estimation of how effective the whole replica selection

module is, as well as a rough estimation of the reactivity of the system. For this test, we

defined the following baselines:

1. Random Selection - The client sorts the available replica in an arbitrary fashion;

2. Infrastructure First - The client always picks the infrastructure whenever it is

available;

3. C3 - The cloud envisioned implementation of C3;

4. MEC C3 - A slight variation of C3 which is more adjusted to MEC environments;

5. Wasabi - Our replica selection algorithm.

Still on the topic of reactivity, we want to have a better estimation of how the system

reacts to change, specially abrupt variations on replica metrics. Our concerns here are

in regards to whether the system re-prioritizes replicas upon one of the preferred ones

59

CHAPTER 5. EVALUATION

becoming a bad choice or even if nodes can get access to such information before it needs

to be put at use (i.e. before trying to perform a bad download). To this end, we can

create a controlled environment where we use the same set of replicas for consecutive

downloads. Then, we can abruptly drop the battery levels of the preferred one(s) which

should cause it to rank worst, and wait a variable amount of time before attempting a new

download. With this, we can see if the downloading node(s) can get the battery metric

updates in time to impact their decision.

And last but not least, we want to measure the overhead of our solution in the inte-

grating system. Specifically, we want to know how the volume of data in transit increases

with the piggybacked metrics. Currently, the nodes already report the amount of bytes

they send over the network. We can aggregate these measurements of each node to know

how many bytes have been in transit for a given test. If we do this for an instance of

the system without our module, and one with it integrated, we can then compute a ratio

of the total bytes transferred to have a value that represents the increase. After, we can

compare this ratio with perceived increase in the quality of the replica selection process

and compare the two to understand if there is a good cost/benefit to our solution.

5.3 Experimental Setup

In this section we discuss our testing environment. Each Thyme node represents a mobile

device in the topology of the system. However, we do not have access to a sufficient

amount of devices to properly set up a real testing environment. Moreover, even if we

did, it would be troublesome to constantly update the application and further manage

each device. Thus, we resort to a simulated environment which allows us to better control

each device and its performed operations, as well as system topology (i.e. how many nodes

to use).

5.3.1 Simulator

The simulator we used is one developer in-house and which utilizes a trace-based simu-

lation framework. We represent our simulated environment with a trace file which lists

the operations we want each node to perform and when, such as going online or offline,

subscribing a tag, publishing to a tag, and so on. The simulation itself is a single process

in a single machine, emulating each mobile device in a separate thread (and from here,

each device can use as many threads as necessary).

Furthermore, the simulator replaces Thyme’s Network Layer to support logical dissem-

ination of messages between any number of virtual nodes. Although the communication

between mobile nodes is now captured in a logical layer that removes the need for the

Link Layer for mobile-to-mobile communication, the communication between mobile

nodes and infrastructure still uses the usual network layer. This is because we do not sim-

ulate the infrastructure. Instead, we run the actual infrastructure server, GardenBed, in a

60

5.3. EXPERIMENTAL SETUP

different process and use socket communication with the usual TCP/IP stack to exchange

messages.

Each operation within the trace will map to an action. An action is the logical repre-

sentation of the operation. Each kind of action has a mapped behavior which represents

the effect the action should cause in the system, and the action itself contains the values

to parameterize such behavior. Furthermore, we have to provide mock implementations

for the runtime components provided by the Android SDK, which let us use and read

information about the underlying hardware, such as battery levels. To control the initial

battery capacity, we have edited the existing NODE action, which spawns a new mobile

device, to contain the initial battery value.

5.3.2 Traces

Now that we have discussed the simulator, it is time to discuss our testing scenarios.

We started by choosing a scenario to evaluate how good the replica selection algorithm

is. To properly evaluate this, we decided to create a scenario with lots of subscriptions and

publications. We also wanted a sufficiently large amount of nodes to be able to span multi-

ple cells. To this end, we have created a script that generates a scenario according to some

specific parameters, namely the number of mobile nodes to spawn and the number of

tags to use for publications and subscriptions. After testing several scenarios, we decided

to go with 64 mobile nodes and 8 distinct tags. Also, as said before, the infrastructure

server is not simulated; Instead, we spawn it in a different process. The virtual devices

are configured to find the infrastructure server through broadcast discovery, which will

allow them to then know the infrastructure address to further open TCP/IP connections.

The generated trace is divided in 4 parts, each representing a phase of our simulated

environment:

1. Spawn all the 64 nodes and let them join the system. Only after all the nodes are

online and ready do we proceed;

2. All nodes have a 50% change of subscribing to each of the available tags. This

will cause some tags to be more subscribed than others, which will cause some

published items to be popular later on. All these subscriptions are spanning into

the future, meaning that from that point onward, each time some node publishes

to one of the subscribed tags, the subscribed devices will all the a notification. We

have configured all devices to download the object upon a notification, in order

to maximize the number of downloads in the simulation and thus have a more

accurate measure of the selection process;

3. After all the future subscriptions comes a barrage of publications. As before, each

node has a 50% chance of making a publication on each tag. This will trigger

several notifications on each publication, which in turn will trigger the same number

of downloads. The most downloaded items might eventually be pushed into the

61

CHAPTER 5. EVALUATION

infrastructure. Because these are all new publications, they will only be available

from the active replica, which means that the cell address will be the only one

available in the list of replicas. This is not very interesting because there is only one

option and thus we are not able to make any kind of selection. However, everything

up to this point serves to the purpose of warming-up the system, from having

nodes contact each other and exchange metrics to giving the possibility to have the

infrastructure as a replica option for the most popular items;

4. In this final step, which spans through most of the simulation, all nodes have a 70%

chance to subscribe to the tags they have not subscribed before. These subscriptions,

however, are spanning to the past, meaning that each of them will pick all the items

published to the same tag on the previous step. In this phase we will continuously

have a high volume of downloads in the system which means that smart replica

selection might play a big part in load balancing and resource management. Most

of the items here will become popular, meaning that as we progress through the

trace, more and more downloads will consider the infrastructure as a possibility as

well.

We use the same trace to run a simulation for each of the baselines outlined in Sec-

tion 5.2. Then we post-process the log files from Thyme and GardenBed using our oracle
to retrieve the necessary data and apply the detailed methodology of Section 5.2.

After these, a different trace is used to test system reactivity. We create a trace with

10 nodes and each makes a future subscription to the same 10 tags. Then, we make each

one of them publish an item for the corresponding tag (e.g. node1 publishes to topic1,

node2 to topic2, and so on). Then, we introduce an extra node and start a warm up phase

to let the nodes know each other. Finally, the extra node starts making subscriptions

into the past to each of the tags and, between each subscription, we abruptly drop the

battery levels of one of the nodes and wait a configured amount of time to perform the

next subscription. Specifically, we subscribe to topic 1, then drop the battery of node 1

and wait 9 seconds before subscribing to topic 2 to see if the node perceived the battery

change of node1. We repeat this process with all nodes and tags, ultimately reaching the 1

second interval between the last two past subscription. The idea is that, since the available

replicas will always be the same 10 nodes, we should compute different orderings of the

same replicas when performing the next download - which will happen in response to

the notification we receive after subscribing to the past - since we are forcing big battery

drops between each download, which should reflect on the affected replica’ score. If such

reordering happens, we know that the metrics update reached the downloading node on

time; if not, we know that the replica selection was made using stale information. there

are some other changes we node to make to the system for this trace execution to work

as expect, namely, we have to force the client to expand the virtual node address into all

the nodes it knows with the same address group. This is because each node is part of the

62

5.4. RESULTS

same cell, and thus the cell address is what is presented as the available replica, not the

actual nodes.

We also introduce a third trace which is a smaller variation of the first, i.e., with

less nodes and less operations. We opted for 16 ran the same script to generate the

trace. The idea is to run this trace twice, with and without our solution. From both

simulation instances we can then compute the total amount of bytes transmitted during

system execution, and finally compute a ratio between the two values to know the total %

increase in bytes caused by our solution. We can also check the % performance different

between our solution and the previous one - Infrastructure First - from the first test, and

finally compare these two values to have an indicator for cost/benefit.

5.3.3 Hardware

To support our simulated scenario, we made use of the computational nodes cluster

available from our college department. We have run the simulator in a AMD EPYC 7281

cpu with 16 cores and 32 threads. The system also had 128 GiB DDR4 2666 MHz of RAM

and a 2 x 10 Gbps.

We have run GardenBed in a second node of the cluster with the same specification.

The communication between simulator and infrastructure was made through the network

connection link while the communication between nodes was made through the logical

layer provided by the simulator.

5.4 Results

In this section we present and interpret the experimental results of our system. We split

the results into sub-sections, one for each of the questions laid out in Section 5.1, which

we answer on the respective section.

5.4.1 Replica Selection Quality

As described in Section 5.2, we have established some baselines to understand how they

compare to our solution and how much it impacts the integrating system, Thyme Gar-

denBed. We sorted each baseline by their implementation complexity, starting from a

totally arbitrary selection, to always giving preference to the infrastructure when it is

available (which was the previously established solution), to making use of feedback met-

rics with the C3 algorithm, followed by a new version of C3 tuned for MEC environments

and finally our solution, Wasabi.

Below we present the same kind of chart for each baseline: the horizontal axis rep-

resenting time, more precisely instants from the trace execution, and the vertical axis

representing, as a percentage, the quality of the replica selection: 0% meaning that the

worst possible choice was made and 100% meaning the best. All the charts have two

plots: blue and orange. The blue plot contains the points representing the quality of the

63

CHAPTER 5. EVALUATION

replica selection for a given download happening at a certain instant, and exclusively

considering the replicas that are listed as copies of the target object within the download

notification. The orange plot contains the points representing the quality of replica selec-

tion for the same download at the same instant, but now considering a global snapshot of

the system where we know the exact metrics for each node at that same moment, as well

as what are the actual replicas for the target object. These evaluation metrics have been

discussed in Section 5.2. For instance, if some other node has the object in its storage

already but is still not in the available replicas list, we still consider it. This is because we

want to understand the real impact each replica selection has on Thyme GardenBed and

how much room there is to improve the feedback system. Even if a node always makes

the best choices with the available information, that information will most likely not be

100% accurate with the current state of the system. These can also help in understanding

the reactivity of the system. This means that for each download in the chart there will be

two points: one in the blue plot and another one in the orange plot.

Moreover, we present additional information regarding how many of the existing

replicas were included in the download notification (i.e., how many replicas of that object

did the system already know), as well as how good is the score of the selected replica

versus the best available option. We compare the computed score for the selected replica

to the score of the actual best option amongst the available ones because we want to have

one more way to compare each baseline to our solution other than just the ordering of the

replicas. Even if a given baseline decides on the second or third replica, it might happen

that their scores are very similar and therefore the difference in the selection might be

negligible.

5.4.1.1 Random Selection

The Random Selection strategy takes a completely uninformed approach towards replica

ranking as it simply shuffles the available list. For this reason, our expectation towards

its benchmark was that it would be the worst performer. And indeed, Figure 5.1 proves

that the quality of the selected replicas is fairly inconsistent. Looking at the blue plot,

even though it takes the best available replica for some of the downloads, these were all

scenarios where the infrastructure was an option and, by chance, it was picked. When

we say by chance though, the odds where actually favourable. Looking at Figure 5.2 we

can see that most downloads are only considering a tiny part of all the existing replicas

for that object. In fact, for this simulation we knew on average about 40% of the existing

replicas on each download. The average number of replicas available on each decision

was around 3.6 replicas. Since we were only considering for statistics the downloads with

3 or more replicas, this absolute number shows that most downloads had only 3 replicas

to pick from. That is a 33% change to pick the infrastructure if it is amongst the available

options. Other than those scenarios, we rarely see any download with a selection score

over 80% and there are more below 40% than on any other baseline.

64

5.4. RESULTS

0%

20%

40%

60%

80%

100%

13
34

13
69

13
74

13
78

13
86

14
65

14
83

15
01

15
11

15
39

15
45

15
50

15
55

15
62

15
75

15
80

15
83

15
86

15
89

15
98

16
02

Re
pl

ic
a

Se
le

ct
io

n
Q

ua
lit

y
Co

m
pa

re
d

to
 O

ra
cl

e

Moment in Simulation

Known Replicas Decision Score Global Decision Score

Figure 5.1: Replica Selection Benchmark for the Random Selection Strategy

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

13
34

13
69

13
74

13
78

13
86

14
65

14
83

15
01

15
11

15
39

15
45

15
50

15
55

15
62

15
75

15
80

15
83

15
86

15
89

15
98

16
02

Pe
rc

en
ta

ge
 o

f K
no

w
n

Re
pl

ic
as

Moment in Simulation

Figure 5.2: Percentage of replicas available in the download notification comparing to the
actual number of nodes that already has the object in its storage.

Looking at the orange plot in Figure 5.1, we can see that the quality of the replica

selections from the perspective of the oracle is not much different. In fact, on average,

this strategy scores 69% for replica selection quality over the known replicas and 68%

looking at the exact snapshot of the system at that moment. It could be argued that

65

CHAPTER 5. EVALUATION

considering more replicas than on the blue plot, the replica selection quality should be

even worst. If we look closely, there are choices which score goes below 20% here, which

means that some choices had a big potential to slow down the system. Still, there are some

instances where the choice was the best possible one, most of these still considering the

infrastructure. It is important to notice that in only very few occasion does the the select

replica represent both the best option amongst the ones available for the download and

amongst all the existing replicas. When the choice represents one of these maximums, it

is usually in an exclusive way. This also hints to the asynchrony between stored metrics

and system state. This, however, is something that has no impact on this strategy given

that it has no logical selection criteria.

0%

20%

40%

60%

80%

100%

13
34

13
69

13
74

13
78

13
86

14
65

14
83

15
01

15
11

15
39

15
45

15
50

15
55

15
62

15
75

15
80

15
83

15
86

15
89

15
98

16
02

Se
le

ct
ed

 R
ep

lic
a

Sc
or

e
/ O

ra
cl

e
Re

pl
ic

a
Sc

or
e

*1
00

Moment in Simulation

Figure 5.3: Ratio between the select replica score and the actual best replica score for the
given download.

Regarding the score difference between the picked replica and the actual best, it also

has the steepest curve amongst all the baselines (Figure 5.3), holding on average 78% of

the best score. This means that there is enough room to make bad decisions that might

slow down the system. Granted, the trace executions for the Random Selection always

yielded less total downloads than any of the others, meaning that some download requests

incurred in big waiting queues.

5.4.1.2 Infrastructure First

Infrastructure-first was the previous solution and possibly the most interesting one to

compare our solution to. The infrastructure is always preferred when it is available,

regardless of load and network conditions. We argue that this creates a major possibility

66

5.4. RESULTS

for a hotspot. When the infrastructure is not available though, it falls back to the order

of the list presented in the download replicas, which should compare to the Random
Selection since there is also no criteria on that ordering.

0%

20%

40%

60%

80%

100%
13

72
14

33
14

54
14

73
14

89
15

04
15

21
15

30
15

41
15

52
15

60
15

68
15

76
15

86
16

00
16

12
16

18
16

30
16

37
16

47
16

54
16

62
16

69
16

79

Re
pl

ic
a

Se
le

ct
io

n
Q

ua
lit

y
Co

m
pa

re
d

to
 O

ra
cl

e

Moment in Simulation

Known Replicas Decision Score Global Decision Score

Figure 5.4: Replica Selection Benchmark for the Infrastructure First Strategy

Figure 5.4 shows a much more consistent replica selection quality towards the bench-

mark, compared to Random Selection. The great majority of downloads were indeed

targeted towards the infrastructure and, to some of our surprise, the oracle agreed on

the infrastructure almost always being the best available option, as depicted from all the

100%’s. After further analysis, we have found that this result was due to several points:

• First, our benchmark was pretty linear and without any artificial network conges-

tion or system pauses introduced. Because the execution environment was a very

controlled one, these phenomenon did not occur by themselves. Thus, mobile nodes

never experienced large latencies from the infrastructure;

• The infrastructure always reports 100% battery capacity, as it is not a battery con-

strained server. As previously explained, this is a design decision to make the

infrastructure server seamless with the mobile ones, although creating a conserva-

tive bias towards it. Because no other device in the simulation started with 100%

battery and, at the moment these downloads occurred the batteries had been slightly

drained already, contributing to the infrastructure bias;

• Moreover, the infrastructure consistently reported service times in the order of 1

millisecond whereas the mobile nodes had, on average, 132 milliseconds of service

time. This can be justified by the fact that we had a dedicated machine for the

67

CHAPTER 5. EVALUATION

GardenBed server, whereas, in spite of the available hardware resources, the mo-

bile devices were all being simulated from the same process and thus had some

limitations such as the number of threads a single process can spawn;

• Lastly, we verified that each node was very limited in the number of concurrent

requests it could make. Adding this to the time interval between each trace action,

the fact that nodes process the simulation trace in a synchronized fashion (nodes

have to wait for the others to finish processing the current action before it can move

to the next one) and the service time of GardenBed, means that the number of

outstanding requests towards the infrastructure would rarely grow. Since this is

the most penalizing metric towards expected latencies, the expected latency for the

infrastructure would always be reasonable.

To sum up, according to the previous points the infrastructure is greatly favoured in

these benchmarks since it reports maximum battery levels at all times and the expected

latencies are very reasonable. However, looking at the actual download conditions (orange

plot) we can see that the infrastructure was rarely the best option. Still, selecting it always

resulted in a selection quality above 60%.

When the infrastructure was not available, however, this strategy falls back to an

arbitrary selection, which results in skewed results compared to the alternative. Most of

the downloads for non-popular objects have much lower replica selection quality, some

even dropping below 40%.

The difference between the selection quality of the available replicas and known met-

rics versus the actual system state stems mostly from the outstanding requests metric, as

explained above. Although each node individually was not sending many concurrent

requests to the infrastructure, the infrastructure was still receiving many requests at the

same time, from different nodes. Thus, each node individually expects a better infrastruc-

ture latency than it can actually provide when considering all system nodes. On average,

the selections had a 96% quality considering the available information and only 68% over

the actual system state. This last percentage is, in fact, very similar to Random Selection’s,

meaning that this baseline has the same potential for decisions that might slowdown the

system.

To compare this scenario with a more download-intensive one, we removed the con-

currency limit of each individual node on the simulator and ran the same trace. Figure 5.5

shows a very different story from the previous benchmark. Raising the number of con-

current requests per node, and therefore the number of outstanding requests towards the

infrastructure, makes the quality of the replica selection drop significantly when priori-

tizing the infrastructure. Here, the quality of replica selection considering the available

information and the global system state dropped to 73% and 53%, respectively. This tells

us that this solution has even more potential for bad decisions than the previous Random

Selection (!). This is because it is intentionally creating a hotspot which, in the face of

infrastructure delays or network congestion can bring the system to a halt.

68

5.4. RESULTS

0%

20%

40%

60%

80%

100%

13
63

13
66

13
75

13
82

13
85

13
98

14
12

14
21

14
31

14
44

14
50

14
64

14
72

14
81

14
85

14
95

15
07

15
36

15
56

15
70

15
76

15
82

15
88

15
99

16
03

16
11

16
20

Re
pl

ic
a

Se
le

ct
io

n
Q

ua
lit

y
Co

m
pa

re
d

to
 O

ra
cl

e

Moment of Simulation

Known Replicas Decision Score Global Decision Score

Figure 5.5: Replica Selection Benchmark with extra allowed concurrency for the Infras-
tructure First Strategy.

Regarding the percentage of known replicas at download time versus the actual num-

ber of replicas in the system for the given object, it follows the same trend of the Random

Selection benchmark where, on average, nodes had 40% of the existing replicas available

in the download notification. This will keep being a trend throughout all benchmarks

and we discuss it in more detail at the end of this section.

0%

20%

40%

60%

80%

100%

13
72

14
33

14
54

14
73

14
89

15
04

15
21

15
30

15
41

15
52

15
60

15
68

15
76

15
86

16
00

16
12

16
18

16
30

16
37

16
47

16
54

16
62

16
69

16
79

Se
le

ct
ed

 R
ep

lic
a

Sc
or

e
/ O

ra
cl

e
Re

pl
ic

a
Sc

or
e

*1
00

Moment in Simulation

(a) Benchmark 1

0%

20%

40%

60%

80%

100%

13
63

13
66

13
75

13
82

13
85

13
98

14
12

14
21

14
31

14
44

14
50

14
64

14
72

14
81

14
85

14
95

15
07

15
36

15
56

15
70

15
76

15
82

15
88

15
99

16
03

16
11

16
20

Se
le

ct
ed

 R
ep

lic
a

Sc
or

e
/ O

ra
cl

e
Re

pl
ic

a
Sc

or
e

*1
00

Moment of Simulation

(b) Benchmark 2

Figure 5.6: Ratio between the select replica score and the actual best replica score for the
given download.

Finally, regarding absolute score differences, we have two different indicators. On one

hand, looking at the first benchmark (Figure 5.6a) we see that the scores of the replicas

selected by this strategy were very identical to the ones which would have been picked by

69

CHAPTER 5. EVALUATION

Wasabi, with an average of 99.3% score similarity. On the other hand, when we introduce

extra individual request concurrency, this value drops significantly to an average of 83%

(Figure 5.6b), following the trend of the chart in Figure 5.5.

5.4.1.3 C3

C3 was our highlighted replica selection algorithm for cloud environments. Since it

was the starting point to our work, we included it as a baseline to understand how it

performs without being adapted to MEC environments. Figure 5.7 shows that C3 still

had an interesting behavior in a MEC environment. Most choices made using the available

information were spot on, despite having some distinctively bad ones as well. The average

selection quality rate was 93%. The worst choices, mainly the ones we see below 40%

were due to the fact that C3 does not account for battery consumption thus, replicas

that might soon leave the system due to a power shortage are still selected in order to

minimize latencies. Furthermore, C3 does not account for unknown replicas, meaning

that when there is a replica amongst the available set to which we have no metrics, it is

considered only as a last resort. Thus, C3 will pick replicas it knows will perform badly

over replicas it knows nothing about.

0%

20%

40%

60%

80%

100%

13
88

13
96

14
09

14
18

14
31

14
38

14
46

14
53

14
59

14
70

14
88

15
00

15
15

15
25

15
38

15
44

15
51

15
66

15
77

15
83

15
94

16
01

16
16

16
32

16
42

16
52

16
86

Re
pl

ic
a

Se
le

ct
io

n
Q

ua
lit

y
Co

m
pa

re
d

to
 O

ra
cl

e

Moment of Simulation

Known Replicas Decision Score Global Decision Score

Figure 5.7: Replica Selection Benchmark for C3 in a MEC environment.

Regarding the quality of the replica selections according to the global system state,

we see a positive increase compared to the previous baselines, scoring an average of

80%. This is the first baseline to make use of available feedback metrics which means

that having a feedback loop between servers and clients can have a positive impact on

a replicated system. As we can see on the chart, the worst system-wide selections also

70

5.4. RESULTS

match the worst selections made with the available information. Most selections are still

above 80% and, following the trend from the previous baselines’ benchmarks, only about

40% of the existing replicas were available for selection on each download. This means

that the stored replicas metrics on each client were very identical to the actual system

state when performing a download and the gap between both plots can be justified by:

1. The disregard for the battery levels;

2. Considering bad replicas before unknown replicas;

3. Not knowing the best existing replicas on some of the downloads, making it impos-

sible to select them despite selection scheme.

0%

20%

40%

60%

80%

100%

13
48

13
52

13
59

13
85

14
15

14
31

14
45

14
51

14
59

14
68

14
77

14
81

14
94

15
02

15
13

15
23

15
29

15
36

15
46

15
71

15
86

15
92

Re
pl

ic
a

Se
le

ct
io

n
Q

ua
lit

y
Co

m
pa

re
d

to
 O

ra
cl

e

Moment in Simulation

Known Replicas Decision Score Global Decision Score

Figure 5.8: Replica Selection Benchmark for C3 in a MEC environment with increased
client concurrency.

We have also made a second benchmark allowing for more individual client concur-

rency just to guarantee that the results were not overly biased by the infrastructure as in

the Infrastructure First approach. And as shown by Figure 5.8, we can see that they are

not. This is because the algorithm adjusted itself to the circumstances. When using the

Infrastructure First approach, it picked the infrastructure as the target replica if it was

available, disregarding any type of metrics; this led to poor choices on the second bench-

mark where the outstanding requests to the infrastructure tracked by each client rose

and the expected latency was a more pessimistic indicator. In the case of C3, it reacted

to the increased outstanding requests and picked a different replica when the previous

baseline would have decided otherwise.

71

CHAPTER 5. EVALUATION

0%

20%

40%

60%

80%

100%

13
88

13
96

14
09

14
18

14
31

14
38

14
46

14
53

14
59

14
70

14
88

15
00

15
15

15
25

15
38

15
44

15
51

15
66

15
77

15
83

15
94

16
01

16
16

16
32

16
42

16
52

16
86

Se
le

ct
ed

 R
ep

lic
a

Sc
or

e
/ O

ra
cl

e
Re

pl
ic

a
Sc

or
e

*1
00

Moment of Simulation

Figure 5.9: Ratio between the select replica score and the actual best replica score for the
given download.

We can also see the gap closing on the score difference between the picked replica and

the best amongst the available ones, as classifier by our criteria (Figure 5.9). The average

replica selection holds around 95% of the score of the best option.

5.4.1.4 MEC C3

MEC C3 is still the C3 replica ranking scheme, but instead of disregarding unknown

replicas and look at these as a last resort, it scores them with a neutral value (i.e. in the

middle of the scale of possible scores) to try and place them between the best replicas

and the least desirable ones. This allows for possibly better replicas to be picked much

earlier and is thus a preferable behavior in MEC systems.

From Figure 5.10 we can see that this yields some positive results even though not

drastically positive. The average replica selection quality rose from 93 to 95% and the

quality of those selections system-wide kept in the previous 80%. Still, as we have seen

in the previous section, there are additional improvement vectors to C3. We have once

again observed around 40% replica availability on download and the score gaps were also

similar.

We still observe some specially bad replica selections, such as the one at moment 1545.

This is mainly caused by not taking power consumption into consideration. Also, being

unaware of more than half of the existing replicas plays a big part.

72

5.4. RESULTS

0%

20%

40%

60%

80%

100%

13
52

13
59

13
74

13
87

13
91

14
15

14
31

14
44

14
75

14
95

15
09

15
20

15
39

15
46

15
62

15
70

15
82

15
90

16
00

16
08

16
16

16
22

16
28

Re
pl

ic
a

Se
le

ct
io

n
Q

ua
lit

y
Co

m
pa

re
d

to
 O

ra
cl

e

Moment in Simulation

Known Replicas Decision Score Global Decision Score

Figure 5.10: Ratio between the select replica score and the actual best replica score for
the given download.

5.4.1.5 Wasabi

Finally, we present the results to our solution. Up until here we have seen the added

benefit of using client- and server-side metrics to estimate the expected latency from each

replica, which has resulted in more predictable selections. Still, there are several con-

cerns that remain unattended, such as power consumption and metric values decadence.

Wasabi gathers all these concerns into a single replica selection mechanism in order to

improve MEC systems. The results are as presented in Figure 5.11.

First, looking at the replica selection from the available replicas, we see that it con-

sistently picks the best replica. This was expected since the same specification is imple-

mented on the evaluation side (the oracle) and we use the same information as the client

had on its’ state to rank the replicas. This was also a way for us to validate our algorithm:

if the results were inconsistent, we would have to review both implementations. Essen-

tially, this is what we have been comparing the other baselines to. The most interesting

part of the chart is the replica selection quality considering the system snapshot at that

moment. As we can see, not always did our algorithm pick the best replica according

to the exact system state. And this is essentially because the client was not perceiving

the whole system as it actually was. As in the other baselines, this is the common enemy.

There are two important factors at play:

1. The client did not know the exact replicas of the target object at download time;

2. Some of the metrics stored at the client’s selection module were already outdated

or the client was missing some metrics.

73

CHAPTER 5. EVALUATION

0%

20%

40%

60%

80%

100%

13
49

13
56

13
91

14
26

14
41

14
47

14
50

14
56

14
64

14
69

14
73

14
76

14
79

14
85

14
99

15
58

15
77

15
87

16
02

16
10

16
19

Re
pl

ic
a

Se
le

ct
io

n
Q

ua
lit

y
Co

m
pa

re
d

to
 O

ra
cl

e

Moment in Simulation

Known Replicas Decision Score Global Decision Score

Figure 5.11: Replica Selection Benchmark for Wasabi

Regarding 1., we have once again estimated that, on average, the client was presented

with about 40% of the existing replicas for each download. We have seen that it is a

common trend among the simulations and which we will explain in the following section.

Regarding 2., the quality of the selected replicas is directly proportional to the amount

and freshness of the available information. In the best case scenario, the client would

have an omniscient view of the system such as our post-processing tool which is able to

reconstruct the exact system state at a certain moment. However, because we are talking

about a distributed system, all we can do is try to improve the propagation of new metrics

as well as the information about replicas being created or destroyed.

Nevertheless, we argue that the results are satisfactory as this benchmark had more

than twice the number of best selections compared to any other, regarding the current

system state. Also, most selections stayed around 80 to 100% while the remaining choices

did not drop below 40%. On average, the replica selection quality was 82% in spite of

considering only 40% of existing replicas, which is a big improvement compared to the

previous solution in place, Infrastructure First.

5.4.1.6 Closing Remarks

In this section we have benchmarked all proposed baselines regarding their replica se-

lection quality. We have presented the results in order of implementation complexity,

starting from the Random Selection up until our final solution, Wasabi. We have seen

improvements on each baseline over the previous one, the biggest leap being from In-

frastructure First to C3 as it starts to use client- and server-side metrics to make better

informed decisions.

In spite of our solution having by far the best consistency on picking the best replica,

74

5.4. RESULTS

it is still prone to pick a less favourable replica if the client does not have the most up-to-

date information about the current system state. In our benchmarks this was observed

mostly due to the available replicas (i.e. the replicas listed in the download notification)

representing, on average, less than half of the already existing copies of the object. This

phenomenon happened due to the way we wrote our traces, specially in the part of

the past subscriptions. Here, nodes subscribe to the same tag all at once, with almost

negligible intervals between each subscription and start downloading the same objects

almost simultaneously and some are still downloading other objects from the future

subscriptions. This is why most replicas do not appears listed in the available copies of

the object download notification, because they are too recent and that information has

not propagated yet. This can be a whole parallel topic as replica management is out of

the scope of this thesis. In fact, the metadata update policy is something that was are

part of Thyme GardenBed and is something we did not touch. Regardless, a system that

would react that fast to this kinds of updates is probably not achievable. At most, the

notification could also include the currently downloading nodes alongside the effectively

confirmed replicas and the client could then try to be optimistic and contact one of those

instead.

Still on up-to-date information, we have also noticed that already outdated metric

readings we also behind some of the less satisfactory replica selections. This concerns

our feedback mechanism and, just like the information about replica availability, there

were times where our mechanism could not keep up with the pace of the trace execution.

We are totally against adding adding new messages to the system specifically for this pur-

pose and we are already making use of all existing messages to piggyback the necessary

metrics. Thus, if we do not add extra vehicles of information then the solution might be

adding extra information onto the current messages. We will be going through possible

improvements in the next chapter. Nevertheless, we are satisfied by the current results.

5.4.2 System Reactivity

In the previous section we got a rough estimation of how reactive the whole system is.

We have seen that it struggled to keep the list of available replicas up-to-date and some

replica metrics were also outdated for some clients at download time. In this section we

focus on the reactivity of the feedback system, i.e., how fast can a client update its metrics.

To this end, we run the scenario described in Section 5.2 where we have a fixed number

of mobile nodes plus one, replicate a set of objects through those same nodes and use

the other node we left out to download those objects, resulting in multiple downloads

with the same set of replicas. The time intervals between each download get smaller

and smaller, and we abruptly drop the battery of one of the available nodes between

downloads, to understand if the those changes can be perceived within that interval.

To recap on the important details of this test, all nodes start with 100% battery levels.

There is a warm up phase to guarantee that they know each other, specifically to guarantee

75

CHAPTER 5. EVALUATION

that the node which will perform the evaluated downloads can know all its peers. After

each download, we drop the battery levels of one of the replicas. The first two downloads

have a 10 second interval between them, and this interval decreases 1 second on each

consecutive download, being only 1 second between the last two, which was the time

interval used between actions on the previous benchmarks.

What we were able to observe with this test was that, effectively, the downloading

node got the metrics update up until the 2 seconds gap. For the last download, however,

the available replicas were still sorted in the same way as in the previous one, which

means that the update did not go through. Since we are using the system messages as a

vehicle to broadcast these updates, we need to look into the messages exchanged between

downloads. In this case, the only messages exchanged were the Hello messages, which are

broadcast at a configured time rate (1 second in our configuration). This means that if no

other messages are exchanged within the system, there is at least a chance for each client

to update its replica metrics roughly each second. Those changes did not reflect on the

last download because it happened to be processed first.

To confirm our hypothesis we reconfigured the Hello intervals to 5 seconds and indeed,

this time around we only got about 50% success rate on the same test. It would have been

interesting to exchange other kinds of actions between the downloads to see if these

results could improve at the expense of other messages. However, this would make the

test more complex and harder to reason about since these could introduce other delays

and make the intervals between downloads be less accurate. Furthermore, it would be

difficult for us to filter out the target downloads from the collected data.

Our conclusion is that the Hello messages have a great impact on metric updates.

Shorter Hello intervals improve the overall freshness of system metrics. However, very

short intervals on those messages can generate a lot of traffic, create bigger processing

queues on the servers and ultimately punish battery-constrained devices. There should

be a considerate trade-off when configuring the system.

5.4.3 System Overhead

In this section we evaluate the increase in byte count introduced by adding the metrics

section the each system message. We run a decreased version of the first benchmark traces

with only 16 nodes and register all the bytes sent by each node. After, we aggregate all

these values to have a total amount of bytes transferred during the simulation. We run

the simulation for our version of Thyme GardenBed and then repeat the process with a

version that does not have our module integrated. In the end, we compare the two values.

From Figure 5.12 we can see that there is not an enormous overhead in communication

when including the metrics payload in all system messages. Simulating the exact same

scenario, we get an increase of 12% in the amount of bytes transferred. On average, each

metric payload increased the size of each message by about 50 bytes. At this size, the

metrics payload is smaller than any system message. However, it is still a considerable

76

5.5. FINAL REMARKS

5134544

5763053

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

No Metrics With Metrics

Figure 5.12: Bytes sent during simulation: no replica selection vs replica selection

size compared to the simplest messages, such as the Hello message. It is also important to

note that in this trace the transferred files were always 1KB in size. If smaller files were

to be transferred, the metrics payload would represent a slightly bigger percentage of the

overal traffic.

As we have seen from Section 5.4.1, the less biased results for the Infrastructure First

approach have shown that its replica selection quality is only 73% of Wasabi’s when

considering known replica metrics. Moreover, this approach has only scored 53% when

looking at the true system state captured by the runtime snapshots, whereas Wasabi has

scored 82%, which is an overall 29% better replica selection. This is a considerable in-

crease which will reflect in the system’s resource management and liveness. As we have

seen, the cost of this benefit comes at a smaller rate, having the underlying feedback

system increase the overall generated traffic by 12%. Still, the system can be fine-tuned

to decrease this cost by filtering out the messages which less contribute for metrics dis-

semination in the Metrics Aggregator.

5.5 Final Remarks

In this chapter we have discussed what should be evaluated in our work. Then, we have

defined an evaluation strategy which could yield the results we sought. After, we have

discussed our experimental setup: the simulator, the execution traces and why simulation

was required. Finally, we have presented the experimental results.

To understand how good the replica selection process in our solution is, we have

defined some comparison baselines and classified their sorting of available replicas in

two dimensions:

77

CHAPTER 5. EVALUATION

1. how much they tried to preserve and improve the MEC concerns laid out in Chap-

ter 4, which are the foundation for our solution;

2. still with those concerns in mind, how those solutions would actually impact the

real state of the system.

With this we have seen that there is a satisfactory improvement when dropping the

previous solution and adopting Wasabi for selecting download replicas.

Additionally, we have seen that the additional payload injection for replica dissemi-

nation yields a considerable increase in the amount of transferred bytes. This, however,

can be mitigated with a better tuning of the system by removing the metrics from the

messages that less contribute to their dissemination and by decreasing the serialized rep-

resentation of the the metrics payload. Ideally, the improvement yields should as big, or

bigger than the percentage overhead.

78

Chapter 6

Conclusions

6.1 Conclusions

In this dissertation, we set out to build an adaptive replica selection mechanism that is

able to improve MEC systems. We had to deal with the same concerns as the algorithms

tailored for other environments, such as the cloud, but on top of that, we had to address

other new challenges such as dealing with a dynamic set of replicas which is not known at

start and is continuously changing over time. Furthermore, other concerns arose, such as

energy efficiency due to power constrained devices, churn, less reliable communication

and freshness of replica information.

To tackle this need, we have designed and developed Wasabi, an adaptive replica

selection algorithm for MEC environments. To support the development and integration

of Wasabi in existing MEC systems, we have developed a low-profile replica selection

framework. This framework is system-agnostic and can not only be used in MEC systems,

but actually in all kinds of distributed systems. We have also provided an integration of

Wasabi with Thyme GardenBed, where the mobile nodes have symmetric responsibilities

(both servers and clients) and the GardenBed infrastructure server was only integrated as

a server.

From our experimental results we can proudly say that the integration of Wasabi

within Thyme GardenBed, replacing the previous replica selection policy of always pre-

ferring the infrastructure server, has yield significant improvement on the quality of the

selected replicas to retrieve data objects. We have also seen that the integration of the

required feedback system between servers and clients creates a considerable overhead

regarding the amount of data transferred between nodes, but which we believe can be

easily minimized by applying some simple techniques.

Overall, we can say that we have accomplished the objectives for this dissertation.

79

CHAPTER 6. CONCLUSIONS

6.2 System Improvements and Research Opportunities

Because there is always something else that can be added and improved, in this section we

suggest some extensions and improvements to our work, and what kind of investigation

can be conducted from here on.

6.2.1 Exploring Alternative Communication Protocols

This is a topic we have opened up in Section 2.3. Since currently the only communication

medium supported by Thyme is WiFi, this topic arose in response to the question “What
if the congestion is in the AP?”. The idea is that mobile devices may consider alternative

communication channels when they detect that it can improve the quality of service.

In this sense, we have highlighted WiFi-Direct for direct peer-to-peer communication

while offering a decent range of communication. Furthermore, it might be interesting to

consider other protocols depending on device proximity, such as Bluetooth.

In Section 4.2.2.1 we have also suggested that the provided node identifier type when

using our framework could not only be its unique identifier but rather the combination

of the id with the communication protocol. With this, we could consider alternative

communication channels to contact the same server, and even compare it with itself

using different protocols.

The challenge here is in which communication channels should be considered and

when. What to do when the device does not support that technology or protocol, how

do we classify different communication channels and when do we have to establish those

connections. Should we try to open all different channels as soon as possible and strive

to maintain all connections or should these be established ad hoc?

6.2.2 Metric Dissemination Overhead

As seen from the results in Section 5.4.3, the dissemination of replica metrics adds a

non-negligible overhead on the network layer, increasing the observed traffic size by 12%.

Although there is a positive ratio between this increase and the replica selection quality

increase, we believe we can further mitigate this side-effect of the underlying feedback

system.

As it has already been suggested in Section 5.4.3, it could be interesting to understand

how much each message type contributes for the dissemination of metrics and its impact

in replica selection performance. We believe some messages could be filtered out of

this process since they add little value to keep the overall system up-to-date but still

contribute to the bandwidth penalties. We could even try to keep just the Hello messages

as the vehicle for metrics dissemination, since we have seen from Section 5.4.2 that these

alone were able to provide a high degree of freshness. Still, this freshness is tightly

coupled with the periodicity of the Hello messages and the more frequent these are, the

higher the overall byte count will be.

80

Bibliography

[1] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie. “Mobile Edge Computing: A

Survey.” In: IEEE Internet Things J. 5.1 (2018), pp. 450–465. doi: 10.1109/JIOT.

2017.2750180. url: https://doi.org/10.1109/JIOT.2017.2750180.

[2] M. T. Beck, M. Werner, S. Feld, and T. Schimper. “Mobile Edge Computing: A

Taxonomy.” In: AFIN 2014 : The Sixth International Conference on Advances in
Future Internet. 2014, pp. 48–54. isbn: 9781612083773.

[3] W. Jiang, H. Xie, X. Zhou, L. Fang, and J. Wang. “Performance Analysis and Im-

provement of Replica Selection Algorithms for Key-Value Stores.” In: 2017 IEEE
10th International Conference on Cloud Computing (CLOUD), Honolulu, HI, USA,
June 25-30, 2017. Ed. by G. C. Fox. IEEE Computer Society, 2017, pp. 786–

789. isbn: 978-1-5386-1993-3. doi: 10.1109/CLOUD.2017.115. url: https:

//doi.org/10.1109/CLOUD.2017.115.

[4] Y. Lin, Y. Chen, G. Wang, and B. Deng. “Rigel: A Scalable and Lightweight Replica

Selection Service for Replicated Distributed File System.” In: 10th IEEE/ACM Inter-
national Conference on Cluster, Cloud and Grid Computing, CCGrid 2010, 17-20 May
2010, Melbourne, Victoria, Australia. IEEE Computer Society, 2010, pp. 581–582.

doi: 10.1109/CCGRID.2010.51. url: https://doi.org/10.1109/CCGRID.2010.

51.

[5] M. Mamei and F. Zambonelli. “Programming Pervasive and Mobile Computing

Applications with the TOTA Middleware.” In: Proceedings of the Second IEEE In-
ternational Conference on Pervasive Computing and Communications (PerCom 2004),
14-17 March 2004, Orlando, FL, USA. IEEE Computer Society, 2004, pp. 263–276.

doi: 10.1109/PERCOM.2004.1276864. url: https://doi.org/10.1109/PERCOM.

2004.1276864.

[6] G. Metri, A. Agrawal, R. Peri, and W. Shi. “What is eating up battery life on my

SmartPhone: A case study.” In: International Conference on Energy Aware Computing,
ICEAC 2012, Guzelyurt, Cyprus, December 3-5, 2012. IEEE, 2012, pp. 1–6. doi:

10.1109/ICEAC.2012.6471003. url: https://doi.org/10.1109/ICEAC.2012.

6471003.

81

https://doi.org/10.1109/JIOT.2017.2750180
https://doi.org/10.1109/JIOT.2017.2750180
https://doi.org/10.1109/JIOT.2017.2750180
https://doi.org/10.1109/CLOUD.2017.115
https://doi.org/10.1109/CLOUD.2017.115
https://doi.org/10.1109/CLOUD.2017.115
https://doi.org/10.1109/CCGRID.2010.51
https://doi.org/10.1109/CCGRID.2010.51
https://doi.org/10.1109/CCGRID.2010.51
https://doi.org/10.1109/PERCOM.2004.1276864
https://doi.org/10.1109/PERCOM.2004.1276864
https://doi.org/10.1109/PERCOM.2004.1276864
https://doi.org/10.1109/ICEAC.2012.6471003
https://doi.org/10.1109/ICEAC.2012.6471003
https://doi.org/10.1109/ICEAC.2012.6471003

BIBLIOGRAPHY

[7] M. Mitzenmacher. “The Power of Two Choices in Randomized Load Balancing.” In:

IEEE Trans. Parallel Distributed Syst. 12.10 (2001), pp. 1094–1104. doi: 10.1109/

71.963420. url: https://doi.org/10.1109/71.963420.

[8] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B. Chun. “Making Sense

of Performance in Data Analytics Frameworks.” In: 12th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 15, Oakland, CA, USA, May
4-6, 2015. USENIX Association, 2015, pp. 293–307. url: https://www.usenix.

org/conference/nsdi15/technical-sessions/presentation/ousterhout.

[9] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker. “GHT:

a geographic hash table for data-centric storage.” In: Proceedings of the First ACM
International Workshop on Wireless Sensor Networks and Applications, WSNA 2002,
Atlanta, Georgia, USA, September 28, 2002. Ed. by C. S. Raghavendra and K. M.

Sivalingam. ACM, 2002, pp. 78–87. doi: 10.1145/570738.570750. url: https:

//doi.org/10.1145/570738.570750.

[10] Riak Load Balancing and Proxy Configuration. Last visited on July 2019. 2014. url:

http://docs.basho.com/riak/1.4.0/cookbooks/Load-Balancing-and-Proxy-

Configuration/.

[11] J. A. Silva, F. Cerqueira, H. Paulino, J. M. Lourenço, J. Leitão, and N. M. Preguiça.

“It’s about Thyme: On the design and implementation of a time-aware reactive stor-

age system for pervasive edge computing environments.” In: Future Gener. Comput.
Syst. 118 (2021), pp. 14–36. doi: 10.1016/j.future.2020.12.008. url: https:

//doi.org/10.1016/j.future.2020.12.008.

[12] J. A. Silva, R. Monteiro, H. Paulino, and J. M. Lourenço. “Ephemeral Data Storage

for Networks of Hand-Held Devices.” In: 2016 IEEE Trustcom/BigDataSE/ISPA,
Tianjin, China, August 23-26, 2016. IEEE, 2016, pp. 1106–1113. doi: 10.1109/

TrustCom.2016.0182. url: https://doi.org/10.1109/TrustCom.2016.0182.

[13] J. A. Silva, H. Paulino, J. M. Lourenço, J. Leitão, and N. M. Preguiça. “Time-aware

reactive storage in wireless edge environments.” In: MobiQuitous 2019, Proceedings
of the 16th EAI International Conference on Mobile and Ubiquitous Systems: Comput-
ing, Networking and Services, Houston, Texas, USA, November 12-14, 2019. Ed. by

H. V. Poor, Z. Han, D. Pompili, Z. Sun, and M. Pan. ACM, 2019, pp. 238–247. doi:

10.1145/3360774.3360828. url: https://doi.org/10.1145/3360774.3360828.

[14] J. A. Silva, P. Vieira, and H. Paulino. “Data Storage and Sharing for Mobile Devices

in Multi-region Edge Networks.” In: 21st IEEE International Symposium on "A World
of Wireless, Mobile and Multimedia Networks", WoWMoM 2020, Cork, Ireland, August
31 - September 3, 2020. IEEE, 2020, pp. 40–49. isbn: 978-1-7281-7374-0. doi: 10.

1109/WoWMoM49955.2020.00021. url: https://doi.org/10.1109/WoWMoM49955.

2020.00021.

82

https://doi.org/10.1109/71.963420
https://doi.org/10.1109/71.963420
https://doi.org/10.1109/71.963420
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ousterhout
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ousterhout
https://doi.org/10.1145/570738.570750
https://doi.org/10.1145/570738.570750
https://doi.org/10.1145/570738.570750
http://docs.basho.com/riak/1.4.0/cookbooks/Load-Balancing-and-Proxy-Configuration/
http://docs.basho.com/riak/1.4.0/cookbooks/Load-Balancing-and-Proxy-Configuration/
https://doi.org/10.1016/j.future.2020.12.008
https://doi.org/10.1016/j.future.2020.12.008
https://doi.org/10.1016/j.future.2020.12.008
https://doi.org/10.1109/TrustCom.2016.0182
https://doi.org/10.1109/TrustCom.2016.0182
https://doi.org/10.1109/TrustCom.2016.0182
https://doi.org/10.1145/3360774.3360828
https://doi.org/10.1145/3360774.3360828
https://doi.org/10.1109/WoWMoM49955.2020.00021
https://doi.org/10.1109/WoWMoM49955.2020.00021
https://doi.org/10.1109/WoWMoM49955.2020.00021
https://doi.org/10.1109/WoWMoM49955.2020.00021

BIBLIOGRAPHY

[15] R. Simpson. Mobile and tablet internet usage exceeds desktop for first time worldwide.

Last visited on July 2019. StatCounter. 2016. url: http://gs.statcounter.com/

press/mobile-and-tablet-internet-usage-exceeds-desktop-for-first-

time-worldwide.

[16] Y. Su, D. Feng, Y. Hua, Z. Shi, and T. Zhu. “NetRS: Cutting Response Latency in

Distributed Key-Value Stores with In-Network Replica Selection.” In: 38th IEEE
International Conference on Distributed Computing Systems, ICDCS 2018, Vienna,
Austria, July 2-6, 2018. IEEE Computer Society, 2018, pp. 143–153. doi: 10.1109/

ICDCS.2018.00024. url: https://doi.org/10.1109/ICDCS.2018.00024.

[17] P. L. Suresh, M. Canini, S. Schmid, and A. Feldmann. “C3: Cutting Tail Latency in

Cloud Data Stores via Adaptive Replica Selection.” In: 12th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 15, Oakland, CA, USA, May
4-6, 2015. USENIX Association, 2015, pp. 513–527. url: https://www.usenix.

org/conference/nsdi15/technical-sessions/presentation/suresh.

[18] K. Thilakarathna, A. A. A. Karim, H. Petander, and A. Seneviratne. “MobiTribe:

Enabling device centric social networking on smart mobile devices.” In: 10th An-
nual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Commu-
nications and Networks, SECON 2013, New Orleans, LA, USA, 24-27 June, 2013.

IEEE, 2013, pp. 230–232. doi: 10.1109/SAHCN.2013.6644982. url: https:

//doi.org/10.1109/SAHCN.2013.6644982.

[19] K. Thilakarathna, H. Petander, J. Mestre, and A. Seneviratne. “MobiTribe: Cost

Efficient Distributed User Generated Content Sharing on Smartphones.” In: IEEE
Trans. Mob. Comput. 13.9 (2014), pp. 2058–2070. doi: 10.1109/TMC.2013.89.

url: https://doi.org/10.1109/TMC.2013.89.

[20] N. Vallina-Rodriguez, P. Hui, J. Crowcroft, and A. C. Rice. “Exhausting battery

statistics: understanding the energy demands on mobile handsets.” In: Proceedings
of the 2ndt ACM SIGCOMM Workshop on Networking, Systems, and Applications for
Mobile Handhelds, MobiHeld 2010, New Delhi, India, August 30, 2010. Ed. by L. P.

Cox and A. Wolman. ACM, 2010, pp. 9–14. doi: 10.1145/1851322.1851327. url:

https://doi.org/10.1145/1851322.1851327.

[21] P. Vieira. “A Persistent Publish/Subscribe System for Mobile Edge Computing.”

http://hdl.handle.net/10362/71124. Master’s thesis. Faculty of Science and

Technology, NOVA University of Lisbon, 2018.

[22] Y. Zhao and Y. Hu. “GRESS - a Grid Replica Selection Service.” In: Proceedings of the
ISCA 16th International Conference on Parallel and Distributed Computing Systems,
August 13-15, 2003, Atlantis Hotel, Reno, Nevada, USA. Ed. by S. Yoo and H. Y. Youn.

ISCA, 2003, pp. 423–429.

83

http://gs.statcounter.com/press/mobile-and-tablet-internet-usage-exceeds-desktop-for-first-time-worldwide
http://gs.statcounter.com/press/mobile-and-tablet-internet-usage-exceeds-desktop-for-first-time-worldwide
http://gs.statcounter.com/press/mobile-and-tablet-internet-usage-exceeds-desktop-for-first-time-worldwide
https://doi.org/10.1109/ICDCS.2018.00024
https://doi.org/10.1109/ICDCS.2018.00024
https://doi.org/10.1109/ICDCS.2018.00024
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/suresh
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/suresh
https://doi.org/10.1109/SAHCN.2013.6644982
https://doi.org/10.1109/SAHCN.2013.6644982
https://doi.org/10.1109/SAHCN.2013.6644982
https://doi.org/10.1109/TMC.2013.89
https://doi.org/10.1109/TMC.2013.89
https://doi.org/10.1145/1851322.1851327
https://doi.org/10.1145/1851322.1851327
http://hdl.handle.net/10362/71124

Annex I

Replica Selection Quality Trace

1 NODE$|$0$|$0

2 NODE$|$1$|$1

3 NODE$|$2$|$2

4 NODE$|$3$|$3

5 NODE$|$4$|$4

6 NODE$|$5$|$5

7 NODE$|$6$|$6

8 NODE$|$7$|$7

9 NODE$|$8$|$8

10 NODE$|$9$|$9

11 NODE$|$10$|$10

12 NODE$|$11$|$11

13 NODE$|$12$|$12

14 NODE$|$13$|$13

15 NODE$|$14$|$14

16 NODE$|$15$|$15

17 NODE$|$16$|$16

18 NODE$|$17$|$17

19 NODE$|$18$|$18

20 NODE$|$19$|$19

21 NODE$|$20$|$20

22 NODE$|$21$|$21

23 NODE$|$22$|$22

24 NODE$|$23$|$23

25 NODE$|$24$|$24

26 NODE$|$25$|$25

27 NODE$|$26$|$26

28 NODE$|$27$|$27

29 NODE$|$28$|$28

30 NODE$|$29$|$29

31 NODE$|$30$|$30

32 NODE$|$31$|$31

33 NODE$|$32$|$32

34 NODE$|$33$|$33

35 NODE$|$34$|$34

85

ANNEX I. REPLICA SELECTION QUALITY TRACE

36 NODE$|$35$|$35

37 NODE$|$36$|$36

38 NODE$|$37$|$37

39 NODE$|$38$|$38

40 NODE$|$39$|$39

41 NODE$|$40$|$40

42 NODE$|$41$|$41

43 NODE$|$42$|$42

44 NODE$|$43$|$43

45 NODE$|$44$|$44

46 NODE$|$45$|$45

47 NODE$|$46$|$46

48 NODE$|$47$|$47

49 NODE$|$48$|$48

50 NODE$|$49$|$49

51 NODE$|$50$|$50

52 NODE$|$51$|$51

53 NODE$|$52$|$52

54 NODE$|$53$|$53

55 NODE$|$54$|$54

56 NODE$|$55$|$55

57 NODE$|$56$|$56

58 NODE$|$57$|$57

59 NODE$|$58$|$58

60 NODE$|$59$|$59

61 NODE$|$60$|$60

62 NODE$|$61$|$61

63 NODE$|$62$|$62

64 NODE$|$63$|$63

65 SUB_F$|$184$|$1$|$TAG0

66 SUB_F$|$185$|$6$|$TAG0

67 SUB_F$|$186$|$7$|$TAG0

68 SUB_F$|$187$|$12$|$TAG0

69 SUB_F$|$188$|$14$|$TAG0

70 SUB_F$|$189$|$19$|$TAG0

71 SUB_F$|$190$|$21$|$TAG0

72 SUB_F$|$191$|$22$|$TAG0

73 SUB_F$|$192$|$23$|$TAG0

74 SUB_F$|$193$|$25$|$TAG0

75 SUB_F$|$194$|$26$|$TAG0

76 SUB_F$|$195$|$29$|$TAG0

77 SUB_F$|$196$|$30$|$TAG0

78 SUB_F$|$197$|$32$|$TAG0

79 SUB_F$|$198$|$33$|$TAG0

80 SUB_F$|$199$|$34$|$TAG0

81 SUB_F$|$200$|$35$|$TAG0

82 SUB_F$|$201$|$37$|$TAG0

83 SUB_F$|$202$|$38$|$TAG0

84 SUB_F$|$203$|$39$|$TAG0

85 SUB_F$|$204$|$41$|$TAG0

86

86 SUB_F$|$205$|$42$|$TAG0

87 SUB_F$|$206$|$44$|$TAG0

88 SUB_F$|$207$|$45$|$TAG0

89 SUB_F$|$208$|$46$|$TAG0

90 SUB_F$|$209$|$51$|$TAG0

91 SUB_F$|$210$|$54$|$TAG0

92 SUB_F$|$211$|$55$|$TAG0

93 SUB_F$|$212$|$56$|$TAG0

94 SUB_F$|$213$|$60$|$TAG0

95 SUB_F$|$214$|$0$|$TAG1

96 SUB_F$|$215$|$1$|$TAG1

97 SUB_F$|$216$|$2$|$TAG1

98 SUB_F$|$217$|$3$|$TAG1

99 SUB_F$|$218$|$4$|$TAG1

100 SUB_F$|$219$|$5$|$TAG1

101 SUB_F$|$220$|$6$|$TAG1

102 SUB_F$|$221$|$12$|$TAG1

103 SUB_F$|$222$|$13$|$TAG1

104 SUB_F$|$223$|$15$|$TAG1

105 SUB_F$|$224$|$17$|$TAG1

106 SUB_F$|$225$|$19$|$TAG1

107 SUB_F$|$226$|$21$|$TAG1

108 SUB_F$|$227$|$22$|$TAG1

109 SUB_F$|$228$|$24$|$TAG1

110 SUB_F$|$229$|$27$|$TAG1

111 SUB_F$|$230$|$28$|$TAG1

112 SUB_F$|$231$|$30$|$TAG1

113 SUB_F$|$232$|$31$|$TAG1

114 SUB_F$|$233$|$33$|$TAG1

115 SUB_F$|$234$|$36$|$TAG1

116 SUB_F$|$235$|$37$|$TAG1

117 SUB_F$|$236$|$38$|$TAG1

118 SUB_F$|$237$|$42$|$TAG1

119 SUB_F$|$238$|$43$|$TAG1

120 SUB_F$|$239$|$44$|$TAG1

121 SUB_F$|$240$|$45$|$TAG1

122 SUB_F$|$241$|$46$|$TAG1

123 SUB_F$|$242$|$47$|$TAG1

124 SUB_F$|$243$|$50$|$TAG1

125 SUB_F$|$244$|$51$|$TAG1

126 SUB_F$|$245$|$52$|$TAG1

127 SUB_F$|$246$|$54$|$TAG1

128 SUB_F$|$247$|$55$|$TAG1

129 SUB_F$|$248$|$57$|$TAG1

130 SUB_F$|$249$|$58$|$TAG1

131 SUB_F$|$250$|$59$|$TAG1

132 SUB_F$|$251$|$61$|$TAG1

133 SUB_F$|$252$|$62$|$TAG1

134 SUB_F$|$253$|$63$|$TAG1

135 SUB_F$|$254$|$0$|$TAG2

87

ANNEX I. REPLICA SELECTION QUALITY TRACE

136 SUB_F$|$255$|$1$|$TAG2

137 SUB_F$|$256$|$2$|$TAG2

138 SUB_F$|$257$|$4$|$TAG2

139 SUB_F$|$258$|$5$|$TAG2

140 SUB_F$|$259$|$8$|$TAG2

141 SUB_F$|$260$|$12$|$TAG2

142 SUB_F$|$261$|$15$|$TAG2

143 SUB_F$|$262$|$16$|$TAG2

144 SUB_F$|$263$|$18$|$TAG2

145 SUB_F$|$264$|$19$|$TAG2

146 SUB_F$|$265$|$20$|$TAG2

147 SUB_F$|$266$|$21$|$TAG2

148 SUB_F$|$267$|$24$|$TAG2

149 SUB_F$|$268$|$25$|$TAG2

150 SUB_F$|$269$|$26$|$TAG2

151 SUB_F$|$270$|$27$|$TAG2

152 SUB_F$|$271$|$28$|$TAG2

153 SUB_F$|$272$|$29$|$TAG2

154 SUB_F$|$273$|$30$|$TAG2

155 SUB_F$|$274$|$33$|$TAG2

156 SUB_F$|$275$|$34$|$TAG2

157 SUB_F$|$276$|$38$|$TAG2

158 SUB_F$|$277$|$39$|$TAG2

159 SUB_F$|$278$|$46$|$TAG2

160 SUB_F$|$279$|$49$|$TAG2

161 SUB_F$|$280$|$52$|$TAG2

162 SUB_F$|$281$|$53$|$TAG2

163 SUB_F$|$282$|$54$|$TAG2

164 SUB_F$|$283$|$55$|$TAG2

165 SUB_F$|$284$|$56$|$TAG2

166 SUB_F$|$285$|$1$|$TAG3

167 SUB_F$|$286$|$3$|$TAG3

168 SUB_F$|$287$|$5$|$TAG3

169 SUB_F$|$288$|$8$|$TAG3

170 SUB_F$|$289$|$10$|$TAG3

171 SUB_F$|$290$|$11$|$TAG3

172 SUB_F$|$291$|$14$|$TAG3

173 SUB_F$|$292$|$15$|$TAG3

174 SUB_F$|$293$|$16$|$TAG3

175 SUB_F$|$294$|$17$|$TAG3

176 SUB_F$|$295$|$19$|$TAG3

177 SUB_F$|$296$|$27$|$TAG3

178 SUB_F$|$297$|$31$|$TAG3

179 SUB_F$|$298$|$34$|$TAG3

180 SUB_F$|$299$|$36$|$TAG3

181 SUB_F$|$300$|$38$|$TAG3

182 SUB_F$|$301$|$39$|$TAG3

183 SUB_F$|$302$|$40$|$TAG3

184 SUB_F$|$303$|$41$|$TAG3

185 SUB_F$|$304$|$43$|$TAG3

88

186 SUB_F$|$305$|$45$|$TAG3

187 SUB_F$|$306$|$46$|$TAG3

188 SUB_F$|$307$|$47$|$TAG3

189 SUB_F$|$308$|$49$|$TAG3

190 SUB_F$|$309$|$51$|$TAG3

191 SUB_F$|$310$|$52$|$TAG3

192 SUB_F$|$311$|$53$|$TAG3

193 SUB_F$|$312$|$56$|$TAG3

194 SUB_F$|$313$|$59$|$TAG3

195 SUB_F$|$314$|$0$|$TAG4

196 SUB_F$|$315$|$2$|$TAG4

197 SUB_F$|$316$|$4$|$TAG4

198 SUB_F$|$317$|$7$|$TAG4

199 SUB_F$|$318$|$12$|$TAG4

200 SUB_F$|$319$|$16$|$TAG4

201 SUB_F$|$320$|$24$|$TAG4

202 SUB_F$|$321$|$25$|$TAG4

203 SUB_F$|$322$|$26$|$TAG4

204 SUB_F$|$323$|$28$|$TAG4

205 SUB_F$|$324$|$30$|$TAG4

206 SUB_F$|$325$|$32$|$TAG4

207 SUB_F$|$326$|$33$|$TAG4

208 SUB_F$|$327$|$34$|$TAG4

209 SUB_F$|$328$|$36$|$TAG4

210 SUB_F$|$329$|$37$|$TAG4

211 SUB_F$|$330$|$38$|$TAG4

212 SUB_F$|$331$|$39$|$TAG4

213 SUB_F$|$332$|$42$|$TAG4

214 SUB_F$|$333$|$43$|$TAG4

215 SUB_F$|$334$|$44$|$TAG4

216 SUB_F$|$335$|$45$|$TAG4

217 SUB_F$|$336$|$46$|$TAG4

218 SUB_F$|$337$|$47$|$TAG4

219 SUB_F$|$338$|$50$|$TAG4

220 SUB_F$|$339$|$54$|$TAG4

221 SUB_F$|$340$|$55$|$TAG4

222 SUB_F$|$341$|$57$|$TAG4

223 SUB_F$|$342$|$58$|$TAG4

224 SUB_F$|$343$|$60$|$TAG4

225 SUB_F$|$344$|$62$|$TAG4

226 SUB_F$|$345$|$1$|$TAG5

227 SUB_F$|$346$|$4$|$TAG5

228 SUB_F$|$347$|$5$|$TAG5

229 SUB_F$|$348$|$7$|$TAG5

230 SUB_F$|$349$|$11$|$TAG5

231 SUB_F$|$350$|$13$|$TAG5

232 SUB_F$|$351$|$15$|$TAG5

233 SUB_F$|$352$|$17$|$TAG5

234 SUB_F$|$353$|$19$|$TAG5

235 SUB_F$|$354$|$24$|$TAG5

89

ANNEX I. REPLICA SELECTION QUALITY TRACE

236 SUB_F$|$355$|$26$|$TAG5

237 SUB_F$|$356$|$27$|$TAG5

238 SUB_F$|$357$|$29$|$TAG5

239 SUB_F$|$358$|$31$|$TAG5

240 SUB_F$|$359$|$33$|$TAG5

241 SUB_F$|$360$|$36$|$TAG5

242 SUB_F$|$361$|$37$|$TAG5

243 SUB_F$|$362$|$42$|$TAG5

244 SUB_F$|$363$|$43$|$TAG5

245 SUB_F$|$364$|$45$|$TAG5

246 SUB_F$|$365$|$48$|$TAG5

247 SUB_F$|$366$|$49$|$TAG5

248 SUB_F$|$367$|$50$|$TAG5

249 SUB_F$|$368$|$51$|$TAG5

250 SUB_F$|$369$|$52$|$TAG5

251 SUB_F$|$370$|$53$|$TAG5

252 SUB_F$|$371$|$55$|$TAG5

253 SUB_F$|$372$|$56$|$TAG5

254 SUB_F$|$373$|$57$|$TAG5

255 SUB_F$|$374$|$58$|$TAG5

256 SUB_F$|$375$|$59$|$TAG5

257 SUB_F$|$376$|$60$|$TAG5

258 SUB_F$|$377$|$61$|$TAG5

259 SUB_F$|$378$|$62$|$TAG5

260 SUB_F$|$379$|$63$|$TAG5

261 SUB_F$|$380$|$0$|$TAG6

262 SUB_F$|$381$|$3$|$TAG6

263 SUB_F$|$382$|$8$|$TAG6

264 SUB_F$|$383$|$16$|$TAG6

265 SUB_F$|$384$|$19$|$TAG6

266 SUB_F$|$385$|$20$|$TAG6

267 SUB_F$|$386$|$23$|$TAG6

268 SUB_F$|$387$|$24$|$TAG6

269 SUB_F$|$388$|$25$|$TAG6

270 SUB_F$|$389$|$29$|$TAG6

271 SUB_F$|$390$|$30$|$TAG6

272 SUB_F$|$391$|$31$|$TAG6

273 SUB_F$|$392$|$35$|$TAG6

274 SUB_F$|$393$|$36$|$TAG6

275 SUB_F$|$394$|$41$|$TAG6

276 SUB_F$|$395$|$42$|$TAG6

277 SUB_F$|$396$|$43$|$TAG6

278 SUB_F$|$397$|$45$|$TAG6

279 SUB_F$|$398$|$49$|$TAG6

280 SUB_F$|$399$|$50$|$TAG6

281 SUB_F$|$400$|$53$|$TAG6

282 SUB_F$|$401$|$54$|$TAG6

283 SUB_F$|$402$|$55$|$TAG6

284 SUB_F$|$403$|$57$|$TAG6

285 SUB_F$|$404$|$58$|$TAG6

90

286 SUB_F$|$405$|$62$|$TAG6

287 SUB_F$|$406$|$63$|$TAG6

288 SUB_F$|$407$|$3$|$TAG7

289 SUB_F$|$408$|$7$|$TAG7

290 SUB_F$|$409$|$9$|$TAG7

291 SUB_F$|$410$|$11$|$TAG7

292 SUB_F$|$411$|$14$|$TAG7

293 SUB_F$|$412$|$15$|$TAG7

294 SUB_F$|$413$|$19$|$TAG7

295 SUB_F$|$414$|$20$|$TAG7

296 SUB_F$|$415$|$21$|$TAG7

297 SUB_F$|$416$|$22$|$TAG7

298 SUB_F$|$417$|$27$|$TAG7

299 SUB_F$|$418$|$30$|$TAG7

300 SUB_F$|$419$|$31$|$TAG7

301 SUB_F$|$420$|$32$|$TAG7

302 SUB_F$|$421$|$35$|$TAG7

303 SUB_F$|$422$|$41$|$TAG7

304 SUB_F$|$423$|$42$|$TAG7

305 SUB_F$|$424$|$43$|$TAG7

306 SUB_F$|$425$|$45$|$TAG7

307 SUB_F$|$426$|$46$|$TAG7

308 SUB_F$|$427$|$47$|$TAG7

309 SUB_F$|$428$|$50$|$TAG7

310 SUB_F$|$429$|$53$|$TAG7

311 SUB_F$|$430$|$54$|$TAG7

312 SUB_F$|$431$|$55$|$TAG7

313 SUB_F$|$432$|$56$|$TAG7

314 PUB$|$463$|$3$|$466$|$Object 466$|$Published by 3$|$TAG0

315 PUB$|$464$|$7$|$471$|$Object 471$|$Published by 7$|$TAG0

316 PUB$|$465$|$8$|$473$|$Object 473$|$Published by 8$|$TAG0

317 PUB$|$466$|$9$|$475$|$Object 475$|$Published by 9$|$TAG0

318 PUB$|$467$|$11$|$478$|$Object 478$|$Published by 11$|$TAG0

319 PUB$|$468$|$12$|$480$|$Object 480$|$Published by 12$|$TAG0

320 PUB$|$469$|$13$|$482$|$Object 482$|$Published by 13$|$TAG0

321 PUB$|$470$|$15$|$485$|$Object 485$|$Published by 15$|$TAG0

322 PUB$|$471$|$17$|$488$|$Object 488$|$Published by 17$|$TAG0

323 PUB$|$472$|$19$|$491$|$Object 491$|$Published by 19$|$TAG0

324 PUB$|$473$|$21$|$494$|$Object 494$|$Published by 21$|$TAG0

325 PUB$|$474$|$22$|$496$|$Object 496$|$Published by 22$|$TAG0

326 PUB$|$475$|$24$|$499$|$Object 499$|$Published by 24$|$TAG0

327 PUB$|$476$|$29$|$505$|$Object 505$|$Published by 29$|$TAG0

328 PUB$|$477$|$36$|$513$|$Object 513$|$Published by 36$|$TAG0

329 PUB$|$478$|$37$|$515$|$Object 515$|$Published by 37$|$TAG0

330 PUB$|$479$|$40$|$519$|$Object 519$|$Published by 40$|$TAG0

331 PUB$|$480$|$41$|$521$|$Object 521$|$Published by 41$|$TAG0

332 PUB$|$481$|$43$|$524$|$Object 524$|$Published by 43$|$TAG0

333 PUB$|$482$|$45$|$527$|$Object 527$|$Published by 45$|$TAG0

334 PUB$|$483$|$47$|$530$|$Object 530$|$Published by 47$|$TAG0

335 PUB$|$484$|$48$|$532$|$Object 532$|$Published by 48$|$TAG0

91

ANNEX I. REPLICA SELECTION QUALITY TRACE

336 PUB$|$485$|$49$|$534$|$Object 534$|$Published by 49$|$TAG0

337 PUB$|$486$|$52$|$538$|$Object 538$|$Published by 52$|$TAG0

338 PUB$|$487$|$53$|$540$|$Object 540$|$Published by 53$|$TAG0

339 PUB$|$488$|$54$|$542$|$Object 542$|$Published by 54$|$TAG0

340 PUB$|$489$|$63$|$552$|$Object 552$|$Published by 63$|$TAG0

341 PUB$|$490$|$0$|$490$|$Object 490$|$Published by 0$|$TAG1

342 PUB$|$491$|$1$|$492$|$Object 492$|$Published by 1$|$TAG1

343 PUB$|$492$|$3$|$495$|$Object 495$|$Published by 3$|$TAG1

344 PUB$|$493$|$4$|$497$|$Object 497$|$Published by 4$|$TAG1

345 PUB$|$494$|$5$|$499$|$Object 499$|$Published by 5$|$TAG1

346 PUB$|$495$|$7$|$502$|$Object 502$|$Published by 7$|$TAG1

347 PUB$|$496$|$10$|$506$|$Object 506$|$Published by 10$|$TAG1

348 PUB$|$497$|$11$|$508$|$Object 508$|$Published by 11$|$TAG1

349 PUB$|$498$|$12$|$510$|$Object 510$|$Published by 12$|$TAG1

350 PUB$|$499$|$14$|$513$|$Object 513$|$Published by 14$|$TAG1

351 PUB$|$500$|$18$|$518$|$Object 518$|$Published by 18$|$TAG1

352 PUB$|$501$|$20$|$521$|$Object 521$|$Published by 20$|$TAG1

353 PUB$|$502$|$22$|$524$|$Object 524$|$Published by 22$|$TAG1

354 PUB$|$503$|$23$|$526$|$Object 526$|$Published by 23$|$TAG1

355 PUB$|$504$|$25$|$529$|$Object 529$|$Published by 25$|$TAG1

356 PUB$|$505$|$28$|$533$|$Object 533$|$Published by 28$|$TAG1

357 PUB$|$506$|$31$|$537$|$Object 537$|$Published by 31$|$TAG1

358 PUB$|$507$|$34$|$541$|$Object 541$|$Published by 34$|$TAG1

359 PUB$|$508$|$36$|$544$|$Object 544$|$Published by 36$|$TAG1

360 PUB$|$509$|$38$|$547$|$Object 547$|$Published by 38$|$TAG1

361 PUB$|$510$|$39$|$549$|$Object 549$|$Published by 39$|$TAG1

362 PUB$|$511$|$40$|$551$|$Object 551$|$Published by 40$|$TAG1

363 PUB$|$512$|$41$|$553$|$Object 553$|$Published by 41$|$TAG1

364 PUB$|$513$|$42$|$555$|$Object 555$|$Published by 42$|$TAG1

365 PUB$|$514$|$43$|$557$|$Object 557$|$Published by 43$|$TAG1

366 PUB$|$515$|$44$|$559$|$Object 559$|$Published by 44$|$TAG1

367 PUB$|$516$|$49$|$565$|$Object 565$|$Published by 49$|$TAG1

368 PUB$|$517$|$50$|$567$|$Object 567$|$Published by 50$|$TAG1

369 PUB$|$518$|$52$|$570$|$Object 570$|$Published by 52$|$TAG1

370 PUB$|$519$|$53$|$572$|$Object 572$|$Published by 53$|$TAG1

371 PUB$|$520$|$60$|$580$|$Object 580$|$Published by 60$|$TAG1

372 PUB$|$521$|$61$|$582$|$Object 582$|$Published by 61$|$TAG1

373 PUB$|$522$|$62$|$584$|$Object 584$|$Published by 62$|$TAG1

374 PUB$|$523$|$63$|$586$|$Object 586$|$Published by 63$|$TAG1

375 PUB$|$524$|$2$|$526$|$Object 526$|$Published by 2$|$TAG2

376 PUB$|$525$|$3$|$528$|$Object 528$|$Published by 3$|$TAG2

377 PUB$|$526$|$4$|$530$|$Object 530$|$Published by 4$|$TAG2

378 PUB$|$527$|$7$|$534$|$Object 534$|$Published by 7$|$TAG2

379 PUB$|$528$|$8$|$536$|$Object 536$|$Published by 8$|$TAG2

380 PUB$|$529$|$12$|$541$|$Object 541$|$Published by 12$|$TAG2

381 PUB$|$530$|$14$|$544$|$Object 544$|$Published by 14$|$TAG2

382 PUB$|$531$|$15$|$546$|$Object 546$|$Published by 15$|$TAG2

383 PUB$|$532$|$20$|$552$|$Object 552$|$Published by 20$|$TAG2

384 PUB$|$533$|$21$|$554$|$Object 554$|$Published by 21$|$TAG2

385 PUB$|$534$|$22$|$556$|$Object 556$|$Published by 22$|$TAG2

92

386 PUB$|$535$|$24$|$559$|$Object 559$|$Published by 24$|$TAG2

387 PUB$|$536$|$28$|$564$|$Object 564$|$Published by 28$|$TAG2

388 PUB$|$537$|$29$|$566$|$Object 566$|$Published by 29$|$TAG2

389 PUB$|$538$|$33$|$571$|$Object 571$|$Published by 33$|$TAG2

390 PUB$|$539$|$37$|$576$|$Object 576$|$Published by 37$|$TAG2

391 PUB$|$540$|$39$|$579$|$Object 579$|$Published by 39$|$TAG2

392 PUB$|$541$|$43$|$584$|$Object 584$|$Published by 43$|$TAG2

393 PUB$|$542$|$46$|$588$|$Object 588$|$Published by 46$|$TAG2

394 PUB$|$543$|$48$|$591$|$Object 591$|$Published by 48$|$TAG2

395 PUB$|$544$|$51$|$595$|$Object 595$|$Published by 51$|$TAG2

396 PUB$|$545$|$53$|$598$|$Object 598$|$Published by 53$|$TAG2

397 PUB$|$546$|$54$|$600$|$Object 600$|$Published by 54$|$TAG2

398 PUB$|$547$|$55$|$602$|$Object 602$|$Published by 55$|$TAG2

399 PUB$|$548$|$60$|$608$|$Object 608$|$Published by 60$|$TAG2

400 PUB$|$549$|$62$|$611$|$Object 611$|$Published by 62$|$TAG2

401 PUB$|$550$|$63$|$613$|$Object 613$|$Published by 63$|$TAG2

402 PUB$|$551$|$0$|$551$|$Object 551$|$Published by 0$|$TAG3

403 PUB$|$552$|$1$|$553$|$Object 553$|$Published by 1$|$TAG3

404 PUB$|$553$|$7$|$560$|$Object 560$|$Published by 7$|$TAG3

405 PUB$|$554$|$9$|$563$|$Object 563$|$Published by 9$|$TAG3

406 PUB$|$555$|$10$|$565$|$Object 565$|$Published by 10$|$TAG3

407 PUB$|$556$|$15$|$571$|$Object 571$|$Published by 15$|$TAG3

408 PUB$|$557$|$16$|$573$|$Object 573$|$Published by 16$|$TAG3

409 PUB$|$558$|$18$|$576$|$Object 576$|$Published by 18$|$TAG3

410 PUB$|$559$|$20$|$579$|$Object 579$|$Published by 20$|$TAG3

411 PUB$|$560$|$21$|$581$|$Object 581$|$Published by 21$|$TAG3

412 PUB$|$561$|$22$|$583$|$Object 583$|$Published by 22$|$TAG3

413 PUB$|$562$|$23$|$585$|$Object 585$|$Published by 23$|$TAG3

414 PUB$|$563$|$24$|$587$|$Object 587$|$Published by 24$|$TAG3

415 PUB$|$564$|$30$|$594$|$Object 594$|$Published by 30$|$TAG3

416 PUB$|$565$|$31$|$596$|$Object 596$|$Published by 31$|$TAG3

417 PUB$|$566$|$34$|$600$|$Object 600$|$Published by 34$|$TAG3

418 PUB$|$567$|$37$|$604$|$Object 604$|$Published by 37$|$TAG3

419 PUB$|$568$|$43$|$611$|$Object 611$|$Published by 43$|$TAG3

420 PUB$|$569$|$45$|$614$|$Object 614$|$Published by 45$|$TAG3

421 PUB$|$570$|$46$|$616$|$Object 616$|$Published by 46$|$TAG3

422 PUB$|$571$|$50$|$621$|$Object 621$|$Published by 50$|$TAG3

423 PUB$|$572$|$52$|$624$|$Object 624$|$Published by 52$|$TAG3

424 PUB$|$573$|$54$|$627$|$Object 627$|$Published by 54$|$TAG3

425 PUB$|$574$|$55$|$629$|$Object 629$|$Published by 55$|$TAG3

426 PUB$|$575$|$56$|$631$|$Object 631$|$Published by 56$|$TAG3

427 PUB$|$576$|$57$|$633$|$Object 633$|$Published by 57$|$TAG3

428 PUB$|$577$|$58$|$635$|$Object 635$|$Published by 58$|$TAG3

429 PUB$|$578$|$59$|$637$|$Object 637$|$Published by 59$|$TAG3

430 PUB$|$579$|$1$|$580$|$Object 580$|$Published by 1$|$TAG4

431 PUB$|$580$|$3$|$583$|$Object 583$|$Published by 3$|$TAG4

432 PUB$|$581$|$8$|$589$|$Object 589$|$Published by 8$|$TAG4

433 PUB$|$582$|$11$|$593$|$Object 593$|$Published by 11$|$TAG4

434 PUB$|$583$|$12$|$595$|$Object 595$|$Published by 12$|$TAG4

435 PUB$|$584$|$14$|$598$|$Object 598$|$Published by 14$|$TAG4

93

ANNEX I. REPLICA SELECTION QUALITY TRACE

436 PUB$|$585$|$15$|$600$|$Object 600$|$Published by 15$|$TAG4

437 PUB$|$586$|$16$|$602$|$Object 602$|$Published by 16$|$TAG4

438 PUB$|$587$|$17$|$604$|$Object 604$|$Published by 17$|$TAG4

439 PUB$|$588$|$20$|$608$|$Object 608$|$Published by 20$|$TAG4

440 PUB$|$589$|$21$|$610$|$Object 610$|$Published by 21$|$TAG4

441 PUB$|$590$|$23$|$613$|$Object 613$|$Published by 23$|$TAG4

442 PUB$|$591$|$24$|$615$|$Object 615$|$Published by 24$|$TAG4

443 PUB$|$592$|$26$|$618$|$Object 618$|$Published by 26$|$TAG4

444 PUB$|$593$|$28$|$621$|$Object 621$|$Published by 28$|$TAG4

445 PUB$|$594$|$30$|$624$|$Object 624$|$Published by 30$|$TAG4

446 PUB$|$595$|$31$|$626$|$Object 626$|$Published by 31$|$TAG4

447 PUB$|$596$|$34$|$630$|$Object 630$|$Published by 34$|$TAG4

448 PUB$|$597$|$40$|$637$|$Object 637$|$Published by 40$|$TAG4

449 PUB$|$598$|$46$|$644$|$Object 644$|$Published by 46$|$TAG4

450 PUB$|$599$|$48$|$647$|$Object 647$|$Published by 48$|$TAG4

451 PUB$|$600$|$49$|$649$|$Object 649$|$Published by 49$|$TAG4

452 PUB$|$601$|$53$|$654$|$Object 654$|$Published by 53$|$TAG4

453 PUB$|$602$|$54$|$656$|$Object 656$|$Published by 54$|$TAG4

454 PUB$|$603$|$56$|$659$|$Object 659$|$Published by 56$|$TAG4

455 PUB$|$604$|$58$|$662$|$Object 662$|$Published by 58$|$TAG4

456 PUB$|$605$|$59$|$664$|$Object 664$|$Published by 59$|$TAG4

457 PUB$|$606$|$60$|$666$|$Object 666$|$Published by 60$|$TAG4

458 PUB$|$607$|$61$|$668$|$Object 668$|$Published by 61$|$TAG4

459 PUB$|$608$|$62$|$670$|$Object 670$|$Published by 62$|$TAG4

460 PUB$|$609$|$3$|$612$|$Object 612$|$Published by 3$|$TAG5

461 PUB$|$610$|$7$|$617$|$Object 617$|$Published by 7$|$TAG5

462 PUB$|$611$|$9$|$620$|$Object 620$|$Published by 9$|$TAG5

463 PUB$|$612$|$11$|$623$|$Object 623$|$Published by 11$|$TAG5

464 PUB$|$613$|$12$|$625$|$Object 625$|$Published by 12$|$TAG5

465 PUB$|$614$|$13$|$627$|$Object 627$|$Published by 13$|$TAG5

466 PUB$|$615$|$14$|$629$|$Object 629$|$Published by 14$|$TAG5

467 PUB$|$616$|$17$|$633$|$Object 633$|$Published by 17$|$TAG5

468 PUB$|$617$|$25$|$642$|$Object 642$|$Published by 25$|$TAG5

469 PUB$|$618$|$27$|$645$|$Object 645$|$Published by 27$|$TAG5

470 PUB$|$619$|$29$|$648$|$Object 648$|$Published by 29$|$TAG5

471 PUB$|$620$|$34$|$654$|$Object 654$|$Published by 34$|$TAG5

472 PUB$|$621$|$37$|$658$|$Object 658$|$Published by 37$|$TAG5

473 PUB$|$622$|$38$|$660$|$Object 660$|$Published by 38$|$TAG5

474 PUB$|$623$|$41$|$664$|$Object 664$|$Published by 41$|$TAG5

475 PUB$|$624$|$42$|$666$|$Object 666$|$Published by 42$|$TAG5

476 PUB$|$625$|$45$|$670$|$Object 670$|$Published by 45$|$TAG5

477 PUB$|$626$|$52$|$678$|$Object 678$|$Published by 52$|$TAG5

478 PUB$|$627$|$53$|$680$|$Object 680$|$Published by 53$|$TAG5

479 PUB$|$628$|$54$|$682$|$Object 682$|$Published by 54$|$TAG5

480 PUB$|$629$|$55$|$684$|$Object 684$|$Published by 55$|$TAG5

481 PUB$|$630$|$56$|$686$|$Object 686$|$Published by 56$|$TAG5

482 PUB$|$631$|$58$|$689$|$Object 689$|$Published by 58$|$TAG5

483 PUB$|$632$|$59$|$691$|$Object 691$|$Published by 59$|$TAG5

484 PUB$|$633$|$61$|$694$|$Object 694$|$Published by 61$|$TAG5

485 PUB$|$634$|$63$|$697$|$Object 697$|$Published by 63$|$TAG5

94

486 PUB$|$635$|$0$|$635$|$Object 635$|$Published by 0$|$TAG6

487 PUB$|$636$|$1$|$637$|$Object 637$|$Published by 1$|$TAG6

488 PUB$|$637$|$3$|$640$|$Object 640$|$Published by 3$|$TAG6

489 PUB$|$638$|$5$|$643$|$Object 643$|$Published by 5$|$TAG6

490 PUB$|$639$|$14$|$653$|$Object 653$|$Published by 14$|$TAG6

491 PUB$|$640$|$15$|$655$|$Object 655$|$Published by 15$|$TAG6

492 PUB$|$641$|$16$|$657$|$Object 657$|$Published by 16$|$TAG6

493 PUB$|$642$|$17$|$659$|$Object 659$|$Published by 17$|$TAG6

494 PUB$|$643$|$18$|$661$|$Object 661$|$Published by 18$|$TAG6

495 PUB$|$644$|$19$|$663$|$Object 663$|$Published by 19$|$TAG6

496 PUB$|$645$|$23$|$668$|$Object 668$|$Published by 23$|$TAG6

497 PUB$|$646$|$24$|$670$|$Object 670$|$Published by 24$|$TAG6

498 PUB$|$647$|$25$|$672$|$Object 672$|$Published by 25$|$TAG6

499 PUB$|$648$|$26$|$674$|$Object 674$|$Published by 26$|$TAG6

500 PUB$|$649$|$28$|$677$|$Object 677$|$Published by 28$|$TAG6

501 PUB$|$650$|$35$|$685$|$Object 685$|$Published by 35$|$TAG6

502 PUB$|$651$|$37$|$688$|$Object 688$|$Published by 37$|$TAG6

503 PUB$|$652$|$39$|$691$|$Object 691$|$Published by 39$|$TAG6

504 PUB$|$653$|$41$|$694$|$Object 694$|$Published by 41$|$TAG6

505 PUB$|$654$|$42$|$696$|$Object 696$|$Published by 42$|$TAG6

506 PUB$|$655$|$44$|$699$|$Object 699$|$Published by 44$|$TAG6

507 PUB$|$656$|$47$|$703$|$Object 703$|$Published by 47$|$TAG6

508 PUB$|$657$|$50$|$707$|$Object 707$|$Published by 50$|$TAG6

509 PUB$|$658$|$54$|$712$|$Object 712$|$Published by 54$|$TAG6

510 PUB$|$659$|$58$|$717$|$Object 717$|$Published by 58$|$TAG6

511 PUB$|$660$|$59$|$719$|$Object 719$|$Published by 59$|$TAG6

512 PUB$|$661$|$60$|$721$|$Object 721$|$Published by 60$|$TAG6

513 PUB$|$662$|$61$|$723$|$Object 723$|$Published by 61$|$TAG6

514 PUB$|$663$|$62$|$725$|$Object 725$|$Published by 62$|$TAG6

515 PUB$|$664$|$63$|$727$|$Object 727$|$Published by 63$|$TAG6

516 PUB$|$665$|$0$|$665$|$Object 665$|$Published by 0$|$TAG7

517 PUB$|$666$|$1$|$667$|$Object 667$|$Published by 1$|$TAG7

518 PUB$|$667$|$9$|$676$|$Object 676$|$Published by 9$|$TAG7

519 PUB$|$668$|$11$|$679$|$Object 679$|$Published by 11$|$TAG7

520 PUB$|$669$|$12$|$681$|$Object 681$|$Published by 12$|$TAG7

521 PUB$|$670$|$13$|$683$|$Object 683$|$Published by 13$|$TAG7

522 PUB$|$671$|$14$|$685$|$Object 685$|$Published by 14$|$TAG7

523 PUB$|$672$|$15$|$687$|$Object 687$|$Published by 15$|$TAG7

524 PUB$|$673$|$16$|$689$|$Object 689$|$Published by 16$|$TAG7

525 PUB$|$674$|$19$|$693$|$Object 693$|$Published by 19$|$TAG7

526 PUB$|$675$|$20$|$695$|$Object 695$|$Published by 20$|$TAG7

527 PUB$|$676$|$21$|$697$|$Object 697$|$Published by 21$|$TAG7

528 PUB$|$677$|$24$|$701$|$Object 701$|$Published by 24$|$TAG7

529 PUB$|$678$|$25$|$703$|$Object 703$|$Published by 25$|$TAG7

530 PUB$|$679$|$26$|$705$|$Object 705$|$Published by 26$|$TAG7

531 PUB$|$680$|$28$|$708$|$Object 708$|$Published by 28$|$TAG7

532 PUB$|$681$|$35$|$716$|$Object 716$|$Published by 35$|$TAG7

533 PUB$|$682$|$44$|$726$|$Object 726$|$Published by 44$|$TAG7

534 PUB$|$683$|$48$|$731$|$Object 731$|$Published by 48$|$TAG7

535 PUB$|$684$|$51$|$735$|$Object 735$|$Published by 51$|$TAG7

95

ANNEX I. REPLICA SELECTION QUALITY TRACE

536 PUB$|$685$|$52$|$737$|$Object 737$|$Published by 52$|$TAG7

537 SUB_P$|$716$|$0$|$TAG0

538 SUB_P$|$717$|$0$|$TAG3

539 SUB_P$|$718$|$0$|$TAG5

540 SUB_P$|$719$|$0$|$TAG7

541 SUB_P$|$720$|$1$|$TAG4

542 SUB_P$|$721$|$1$|$TAG6

543 SUB_P$|$722$|$1$|$TAG7

544 SUB_P$|$723$|$2$|$TAG5

545 SUB_P$|$724$|$2$|$TAG6

546 SUB_P$|$725$|$2$|$TAG7

547 SUB_P$|$726$|$3$|$TAG0

548 SUB_P$|$727$|$3$|$TAG2

549 SUB_P$|$728$|$3$|$TAG4

550 SUB_P$|$729$|$3$|$TAG5

551 SUB_P$|$730$|$4$|$TAG0

552 SUB_P$|$731$|$4$|$TAG3

553 SUB_P$|$732$|$4$|$TAG6

554 SUB_P$|$733$|$5$|$TAG4

555 SUB_P$|$734$|$5$|$TAG6

556 SUB_P$|$735$|$6$|$TAG4

557 SUB_P$|$736$|$6$|$TAG5

558 SUB_P$|$737$|$6$|$TAG6

559 SUB_P$|$738$|$6$|$TAG7

560 SUB_P$|$739$|$7$|$TAG1

561 SUB_P$|$740$|$8$|$TAG0

562 SUB_P$|$741$|$8$|$TAG1

563 SUB_P$|$742$|$8$|$TAG4

564 SUB_P$|$743$|$8$|$TAG5

565 SUB_P$|$744$|$8$|$TAG7

566 SUB_P$|$745$|$9$|$TAG0

567 SUB_P$|$746$|$9$|$TAG1

568 SUB_P$|$747$|$9$|$TAG4

569 SUB_P$|$748$|$9$|$TAG5

570 SUB_P$|$749$|$10$|$TAG1

571 SUB_P$|$750$|$10$|$TAG4

572 SUB_P$|$751$|$10$|$TAG6

573 SUB_P$|$752$|$10$|$TAG7

574 SUB_P$|$753$|$11$|$TAG4

575 SUB_P$|$754$|$11$|$TAG6

576 SUB_P$|$755$|$12$|$TAG5

577 SUB_P$|$756$|$12$|$TAG7

578 SUB_P$|$757$|$13$|$TAG0

579 SUB_P$|$758$|$13$|$TAG2

580 SUB_P$|$759$|$13$|$TAG3

581 SUB_P$|$760$|$13$|$TAG6

582 SUB_P$|$761$|$13$|$TAG7

583 SUB_P$|$762$|$14$|$TAG1

584 SUB_P$|$763$|$14$|$TAG4

585 SUB_P$|$764$|$14$|$TAG5

96

586 SUB_P$|$765$|$15$|$TAG0

587 SUB_P$|$766$|$15$|$TAG6

588 SUB_P$|$767$|$16$|$TAG0

589 SUB_P$|$768$|$16$|$TAG1

590 SUB_P$|$769$|$16$|$TAG5

591 SUB_P$|$770$|$16$|$TAG7

592 SUB_P$|$771$|$17$|$TAG0

593 SUB_P$|$772$|$17$|$TAG2

594 SUB_P$|$773$|$17$|$TAG7

595 SUB_P$|$774$|$18$|$TAG0

596 SUB_P$|$775$|$18$|$TAG1

597 SUB_P$|$776$|$18$|$TAG3

598 SUB_P$|$777$|$18$|$TAG4

599 SUB_P$|$778$|$18$|$TAG7

600 SUB_P$|$779$|$20$|$TAG0

601 SUB_P$|$780$|$20$|$TAG1

602 SUB_P$|$781$|$20$|$TAG3

603 SUB_P$|$782$|$21$|$TAG4

604 SUB_P$|$783$|$21$|$TAG5

605 SUB_P$|$784$|$22$|$TAG2

606 SUB_P$|$785$|$22$|$TAG4

607 SUB_P$|$786$|$22$|$TAG5

608 SUB_P$|$787$|$22$|$TAG6

609 SUB_P$|$788$|$23$|$TAG1

610 SUB_P$|$789$|$23$|$TAG3

611 SUB_P$|$790$|$23$|$TAG4

612 SUB_P$|$791$|$23$|$TAG5

613 SUB_P$|$792$|$23$|$TAG7

614 SUB_P$|$793$|$24$|$TAG3

615 SUB_P$|$794$|$24$|$TAG7

616 SUB_P$|$795$|$25$|$TAG1

617 SUB_P$|$796$|$25$|$TAG3

618 SUB_P$|$797$|$25$|$TAG5

619 SUB_P$|$798$|$25$|$TAG7

620 SUB_P$|$799$|$26$|$TAG1

621 SUB_P$|$800$|$26$|$TAG3

622 SUB_P$|$801$|$26$|$TAG7

623 SUB_P$|$802$|$27$|$TAG0

624 SUB_P$|$803$|$27$|$TAG6

625 SUB_P$|$804$|$28$|$TAG0

626 SUB_P$|$805$|$28$|$TAG3

627 SUB_P$|$806$|$28$|$TAG5

628 SUB_P$|$807$|$28$|$TAG6

629 SUB_P$|$808$|$28$|$TAG7

630 SUB_P$|$809$|$29$|$TAG1

631 SUB_P$|$810$|$29$|$TAG7

632 SUB_P$|$811$|$30$|$TAG3

633 SUB_P$|$812$|$31$|$TAG2

634 SUB_P$|$813$|$31$|$TAG4

635 SUB_P$|$814$|$32$|$TAG1

97

ANNEX I. REPLICA SELECTION QUALITY TRACE

636 SUB_P$|$815$|$32$|$TAG2

637 SUB_P$|$816$|$32$|$TAG3

638 SUB_P$|$817$|$32$|$TAG5

639 SUB_P$|$818$|$33$|$TAG3

640 SUB_P$|$819$|$33$|$TAG6

641 SUB_P$|$820$|$33$|$TAG7

642 SUB_P$|$821$|$34$|$TAG1

643 SUB_P$|$822$|$34$|$TAG5

644 SUB_P$|$823$|$34$|$TAG6

645 SUB_P$|$824$|$35$|$TAG1

646 SUB_P$|$825$|$35$|$TAG2

647 SUB_P$|$826$|$35$|$TAG3

648 SUB_P$|$827$|$35$|$TAG4

649 SUB_P$|$828$|$35$|$TAG5

650 SUB_P$|$829$|$36$|$TAG0

651 SUB_P$|$830$|$36$|$TAG7

652 SUB_P$|$831$|$37$|$TAG2

653 SUB_P$|$832$|$37$|$TAG3

654 SUB_P$|$833$|$37$|$TAG6

655 SUB_P$|$834$|$38$|$TAG5

656 SUB_P$|$835$|$38$|$TAG7

657 SUB_P$|$836$|$39$|$TAG1

658 SUB_P$|$837$|$40$|$TAG2

659 SUB_P$|$838$|$40$|$TAG4

660 SUB_P$|$839$|$40$|$TAG6

661 SUB_P$|$840$|$40$|$TAG7

662 SUB_P$|$841$|$41$|$TAG1

663 SUB_P$|$842$|$41$|$TAG2

664 SUB_P$|$843$|$41$|$TAG4

665 SUB_P$|$844$|$42$|$TAG2

666 SUB_P$|$845$|$43$|$TAG0

667 SUB_P$|$846$|$43$|$TAG2

668 SUB_P$|$847$|$44$|$TAG2

669 SUB_P$|$848$|$44$|$TAG3

670 SUB_P$|$849$|$44$|$TAG6

671 SUB_P$|$850$|$44$|$TAG7

672 SUB_P$|$851$|$45$|$TAG2

673 SUB_P$|$852$|$47$|$TAG2

674 SUB_P$|$853$|$47$|$TAG5

675 SUB_P$|$854$|$48$|$TAG0

676 SUB_P$|$855$|$48$|$TAG3

677 SUB_P$|$856$|$48$|$TAG4

678 SUB_P$|$857$|$48$|$TAG7

679 SUB_P$|$858$|$49$|$TAG1

680 SUB_P$|$859$|$49$|$TAG4

681 SUB_P$|$860$|$49$|$TAG7

682 SUB_P$|$861$|$51$|$TAG2

683 SUB_P$|$862$|$51$|$TAG4

684 SUB_P$|$863$|$51$|$TAG7

685 SUB_P$|$864$|$52$|$TAG0

98

686 SUB_P$|$865$|$52$|$TAG4

687 SUB_P$|$866$|$52$|$TAG7

688 SUB_P$|$867$|$53$|$TAG0

689 SUB_P$|$868$|$53$|$TAG1

690 SUB_P$|$869$|$53$|$TAG4

691 SUB_P$|$870$|$54$|$TAG3

692 SUB_P$|$871$|$54$|$TAG5

693 SUB_P$|$872$|$55$|$TAG3

694 SUB_P$|$873$|$56$|$TAG6

695 SUB_P$|$874$|$57$|$TAG0

696 SUB_P$|$875$|$57$|$TAG2

697 SUB_P$|$876$|$57$|$TAG7

698 SUB_P$|$877$|$58$|$TAG0

699 SUB_P$|$878$|$58$|$TAG3

700 SUB_P$|$879$|$58$|$TAG7

701 SUB_P$|$880$|$59$|$TAG0

702 SUB_P$|$881$|$59$|$TAG2

703 SUB_P$|$882$|$59$|$TAG4

704 SUB_P$|$883$|$59$|$TAG6

705 SUB_P$|$884$|$59$|$TAG7

706 SUB_P$|$885$|$60$|$TAG1

707 SUB_P$|$886$|$60$|$TAG2

708 SUB_P$|$887$|$60$|$TAG3

709 SUB_P$|$888$|$60$|$TAG7

710 SUB_P$|$889$|$61$|$TAG0

711 SUB_P$|$890$|$61$|$TAG2

712 SUB_P$|$891$|$61$|$TAG3

713 SUB_P$|$892$|$61$|$TAG6

714 SUB_P$|$893$|$61$|$TAG7

715 SUB_P$|$894$|$62$|$TAG2

716 SUB_P$|$895$|$62$|$TAG3

717 SUB_P$|$896$|$62$|$TAG7

718 SUB_P$|$897$|$63$|$TAG0

719 SUB_P$|$898$|$63$|$TAG2

720 SUB_P$|$899$|$63$|$TAG3

721 SUB_P$|$900$|$63$|$TAG4

722 SYNC$|$1021$|$

99

Annex II

System Reactivity Trace

1 NODE$|$0$|$0

2 NODE$|$1$|$1

3 NODE$|$2$|$2

4 NODE$|$3$|$3

5 NODE$|$4$|$4

6 NODE$|$5$|$5

7 NODE$|$6$|$6

8 NODE$|$7$|$7

9 NODE$|$8$|$8

10 NODE$|$9$|$9

11 NODE$|$10$|$10

12 NODE$|$11$|$11

13 SUB_F$|$42$|$0$|$TAG0

14 SUB_F$|$43$|$1$|$TAG0

15 SUB_F$|$44$|$2$|$TAG0

16 SUB_F$|$45$|$3$|$TAG0

17 SUB_F$|$46$|$4$|$TAG0

18 SUB_F$|$47$|$5$|$TAG0

19 SUB_F$|$48$|$6$|$TAG0

20 SUB_F$|$49$|$7$|$TAG0

21 SUB_F$|$50$|$8$|$TAG0

22 SUB_F$|$51$|$9$|$TAG0

23 SUB_F$|$52$|$10$|$TAG0

24 SUB_F$|$53$|$0$|$TAG1

25 SUB_F$|$54$|$1$|$TAG1

26 SUB_F$|$55$|$2$|$TAG1

27 SUB_F$|$56$|$3$|$TAG1

28 SUB_F$|$57$|$4$|$TAG1

29 SUB_F$|$58$|$5$|$TAG1

30 SUB_F$|$59$|$6$|$TAG1

31 SUB_F$|$60$|$7$|$TAG1

32 SUB_F$|$61$|$8$|$TAG1

33 SUB_F$|$62$|$9$|$TAG1

34 SUB_F$|$63$|$10$|$TAG1

35 SUB_F$|$64$|$0$|$TAG2

101

ANNEX II. SYSTEM REACTIVITY TRACE

36 SUB_F$|$65$|$1$|$TAG2

37 SUB_F$|$66$|$2$|$TAG2

38 SUB_F$|$67$|$3$|$TAG2

39 SUB_F$|$68$|$4$|$TAG2

40 SUB_F$|$69$|$5$|$TAG2

41 SUB_F$|$70$|$6$|$TAG2

42 SUB_F$|$71$|$7$|$TAG2

43 SUB_F$|$72$|$8$|$TAG2

44 SUB_F$|$73$|$9$|$TAG2

45 SUB_F$|$74$|$10$|$TAG2

46 SUB_F$|$75$|$0$|$TAG3

47 SUB_F$|$76$|$1$|$TAG3

48 SUB_F$|$77$|$2$|$TAG3

49 SUB_F$|$78$|$3$|$TAG3

50 SUB_F$|$79$|$4$|$TAG3

51 SUB_F$|$80$|$5$|$TAG3

52 SUB_F$|$81$|$6$|$TAG3

53 SUB_F$|$82$|$7$|$TAG3

54 SUB_F$|$83$|$8$|$TAG3

55 SUB_F$|$84$|$9$|$TAG3

56 SUB_F$|$85$|$10$|$TAG3

57 SUB_F$|$86$|$0$|$TAG4

58 SUB_F$|$87$|$1$|$TAG4

59 SUB_F$|$88$|$2$|$TAG4

60 SUB_F$|$89$|$3$|$TAG4

61 SUB_F$|$90$|$4$|$TAG4

62 SUB_F$|$91$|$5$|$TAG4

63 SUB_F$|$92$|$6$|$TAG4

64 SUB_F$|$93$|$7$|$TAG4

65 SUB_F$|$94$|$8$|$TAG4

66 SUB_F$|$95$|$9$|$TAG4

67 SUB_F$|$96$|$10$|$TAG4

68 SUB_F$|$97$|$0$|$TAG5

69 SUB_F$|$98$|$1$|$TAG5

70 SUB_F$|$99$|$2$|$TAG5

71 SUB_F$|$100$|$3$|$TAG5

72 SUB_F$|$101$|$4$|$TAG5

73 SUB_F$|$102$|$5$|$TAG5

74 SUB_F$|$103$|$6$|$TAG5

75 SUB_F$|$104$|$7$|$TAG5

76 SUB_F$|$105$|$8$|$TAG5

77 SUB_F$|$106$|$9$|$TAG5

78 SUB_F$|$107$|$10$|$TAG5

79 SUB_F$|$108$|$0$|$TAG6

80 SUB_F$|$109$|$1$|$TAG6

81 SUB_F$|$110$|$2$|$TAG6

82 SUB_F$|$111$|$3$|$TAG6

83 SUB_F$|$112$|$4$|$TAG6

84 SUB_F$|$113$|$5$|$TAG6

85 SUB_F$|$114$|$6$|$TAG6

102

86 SUB_F$|$115$|$7$|$TAG6

87 SUB_F$|$116$|$8$|$TAG6

88 SUB_F$|$117$|$9$|$TAG6

89 SUB_F$|$118$|$10$|$TAG6

90 SUB_F$|$119$|$0$|$TAG7

91 SUB_F$|$120$|$1$|$TAG7

92 SUB_F$|$121$|$2$|$TAG7

93 SUB_F$|$122$|$3$|$TAG7

94 SUB_F$|$123$|$4$|$TAG7

95 SUB_F$|$124$|$5$|$TAG7

96 SUB_F$|$125$|$6$|$TAG7

97 SUB_F$|$126$|$7$|$TAG7

98 SUB_F$|$127$|$8$|$TAG7

99 SUB_F$|$128$|$9$|$TAG7

100 SUB_F$|$129$|$10$|$TAG7

101 SUB_F$|$130$|$0$|$TAG8

102 SUB_F$|$131$|$1$|$TAG8

103 SUB_F$|$132$|$2$|$TAG8

104 SUB_F$|$133$|$3$|$TAG8

105 SUB_F$|$134$|$4$|$TAG8

106 SUB_F$|$135$|$5$|$TAG8

107 SUB_F$|$136$|$6$|$TAG8

108 SUB_F$|$137$|$7$|$TAG8

109 SUB_F$|$138$|$8$|$TAG8

110 SUB_F$|$139$|$9$|$TAG8

111 SUB_F$|$140$|$10$|$TAG8

112 SUB_F$|$141$|$0$|$TAG9

113 SUB_F$|$142$|$1$|$TAG9

114 SUB_F$|$143$|$2$|$TAG9

115 SUB_F$|$144$|$3$|$TAG9

116 SUB_F$|$145$|$4$|$TAG9

117 SUB_F$|$146$|$5$|$TAG9

118 SUB_F$|$147$|$6$|$TAG9

119 SUB_F$|$148$|$7$|$TAG9

120 SUB_F$|$149$|$8$|$TAG9

121 SUB_F$|$150$|$9$|$TAG9

122 SUB_F$|$151$|$10$|$TAG9

123 SUB_F$|$152$|$0$|$TAG10

124 SUB_F$|$153$|$1$|$TAG10

125 SUB_F$|$154$|$2$|$TAG10

126 SUB_F$|$155$|$3$|$TAG10

127 SUB_F$|$156$|$4$|$TAG10

128 SUB_F$|$157$|$5$|$TAG10

129 SUB_F$|$158$|$6$|$TAG10

130 SUB_F$|$159$|$7$|$TAG10

131 SUB_F$|$160$|$8$|$TAG10

132 SUB_F$|$161$|$9$|$TAG10

133 SUB_F$|$162$|$10$|$TAG10

134 SUB_F$|$163$|$0$|$TAG11

135 SUB_F$|$164$|$1$|$TAG11

103

ANNEX II. SYSTEM REACTIVITY TRACE

136 SUB_F$|$165$|$2$|$TAG11

137 SUB_F$|$166$|$3$|$TAG11

138 SUB_F$|$167$|$4$|$TAG11

139 SUB_F$|$168$|$5$|$TAG11

140 SUB_F$|$169$|$6$|$TAG11

141 SUB_F$|$170$|$7$|$TAG11

142 SUB_F$|$171$|$8$|$TAG11

143 SUB_F$|$172$|$9$|$TAG11

144 SUB_F$|$173$|$10$|$TAG11

145 SUB_F$|$174$|$11$|$TAG11

146 PUB$|$185$|$0$|$185$|$Object 185$|$Published by 0$|$TAG0

147 PUB$|$186$|$1$|$187$|$Object 187$|$Published by 1$|$TAG1

148 PUB$|$187$|$2$|$189$|$Object 189$|$Published by 2$|$TAG2

149 PUB$|$188$|$3$|$191$|$Object 191$|$Published by 3$|$TAG3

150 PUB$|$189$|$4$|$193$|$Object 193$|$Published by 4$|$TAG4

151 PUB$|$190$|$5$|$195$|$Object 195$|$Published by 5$|$TAG5

152 PUB$|$191$|$6$|$197$|$Object 197$|$Published by 6$|$TAG6

153 PUB$|$192$|$7$|$199$|$Object 199$|$Published by 7$|$TAG7

154 PUB$|$193$|$8$|$201$|$Object 201$|$Published by 8$|$TAG8

155 PUB$|$194$|$9$|$203$|$Object 203$|$Published by 9$|$TAG9

156 PUB$|$195$|$10$|$205$|$Object 205$|$Published by 10$|$TAG10

157 PUB$|$206$|$0$|$206$|$Object 206$|$Published by 0$|$TAG11

158 PUB$|$207$|$1$|$208$|$Object 208$|$Published by 1$|$TAG11

159 PUB$|$208$|$2$|$210$|$Object 210$|$Published by 2$|$TAG11

160 PUB$|$209$|$3$|$212$|$Object 212$|$Published by 3$|$TAG11

161 PUB$|$210$|$4$|$214$|$Object 214$|$Published by 4$|$TAG11

162 PUB$|$211$|$5$|$216$|$Object 216$|$Published by 5$|$TAG11

163 PUB$|$212$|$6$|$218$|$Object 218$|$Published by 6$|$TAG11

164 PUB$|$213$|$7$|$220$|$Object 220$|$Published by 7$|$TAG11

165 PUB$|$214$|$8$|$222$|$Object 222$|$Published by 8$|$TAG11

166 PUB$|$215$|$9$|$224$|$Object 224$|$Published by 9$|$TAG11

167 PUB$|$216$|$10$|$226$|$Object 226$|$Published by 10$|$TAG11

168 PUB$|$217$|$11$|$228$|$Object 228$|$Published by 11$|$TAG11

169 SUB_P$|$338$|$11$|$TAG0

170 SUB_P$|$349$|$11$|$TAG1

171 SUB_P$|$359$|$11$|$TAG2

172 SUB_P$|$368$|$11$|$TAG3

173 SUB_P$|$376$|$11$|$TAG4

174 SUB_P$|$383$|$11$|$TAG5

175 SUB_P$|$389$|$11$|$TAG6

176 SUB_P$|$394$|$11$|$TAG7

177 SUB_P$|$398$|$11$|$TAG8

178 SUB_P$|$401$|$11$|$TAG9

179 SUB_P$|$403$|$11$|$TAG10

180 SYNC$|$414$|$

104

Annex III

System Overhead Trace

1 NODE$|$0$|$0

2 NODE$|$1$|$1

3 NODE$|$2$|$2

4 NODE$|$3$|$3

5 NODE$|$4$|$4

6 NODE$|$5$|$5

7 NODE$|$6$|$6

8 NODE$|$7$|$7

9 NODE$|$8$|$8

10 NODE$|$9$|$9

11 NODE$|$10$|$10

12 NODE$|$11$|$11

13 NODE$|$12$|$12

14 NODE$|$13$|$13

15 NODE$|$14$|$14

16 NODE$|$15$|$15

17 SUB_F$|$46$|$1$|$TAG0

18 SUB_F$|$47$|$4$|$TAG0

19 SUB_F$|$48$|$6$|$TAG0

20 SUB_F$|$49$|$8$|$TAG0

21 SUB_F$|$50$|$9$|$TAG0

22 SUB_F$|$51$|$10$|$TAG0

23 SUB_F$|$52$|$12$|$TAG0

24 SUB_F$|$53$|$13$|$TAG0

25 SUB_F$|$54$|$15$|$TAG0

26 SUB_F$|$55$|$0$|$TAG1

27 SUB_F$|$56$|$3$|$TAG1

28 SUB_F$|$57$|$6$|$TAG1

29 SUB_F$|$58$|$8$|$TAG1

30 SUB_F$|$59$|$11$|$TAG1

31 SUB_F$|$60$|$13$|$TAG1

32 SUB_F$|$61$|$14$|$TAG1

33 SUB_F$|$62$|$2$|$TAG2

34 SUB_F$|$63$|$3$|$TAG2

35 SUB_F$|$64$|$4$|$TAG2

105

ANNEX III . SYSTEM OVERHEAD TRACE

36 SUB_F$|$65$|$7$|$TAG2

37 SUB_F$|$66$|$8$|$TAG2

38 SUB_F$|$67$|$9$|$TAG2

39 SUB_F$|$68$|$12$|$TAG2

40 SUB_F$|$69$|$14$|$TAG2

41 SUB_F$|$70$|$15$|$TAG2

42 SUB_F$|$71$|$0$|$TAG3

43 SUB_F$|$72$|$3$|$TAG3

44 SUB_F$|$73$|$4$|$TAG3

45 SUB_F$|$74$|$5$|$TAG3

46 SUB_F$|$75$|$9$|$TAG3

47 SUB_F$|$76$|$11$|$TAG3

48 SUB_F$|$77$|$12$|$TAG3

49 SUB_F$|$78$|$13$|$TAG3

50 SUB_F$|$79$|$1$|$TAG4

51 SUB_F$|$80$|$4$|$TAG4

52 SUB_F$|$81$|$7$|$TAG4

53 SUB_F$|$82$|$9$|$TAG4

54 SUB_F$|$83$|$10$|$TAG4

55 SUB_F$|$84$|$12$|$TAG4

56 SUB_F$|$85$|$13$|$TAG4

57 SUB_F$|$86$|$15$|$TAG4

58 SUB_F$|$87$|$8$|$TAG5

59 SUB_F$|$88$|$10$|$TAG5

60 SUB_F$|$89$|$11$|$TAG5

61 SUB_F$|$90$|$12$|$TAG5

62 SUB_F$|$91$|$15$|$TAG5

63 SUB_F$|$92$|$1$|$TAG6

64 SUB_F$|$93$|$2$|$TAG6

65 SUB_F$|$94$|$3$|$TAG6

66 SUB_F$|$95$|$5$|$TAG6

67 SUB_F$|$96$|$6$|$TAG6

68 SUB_F$|$97$|$9$|$TAG6

69 SUB_F$|$98$|$10$|$TAG6

70 SUB_F$|$99$|$12$|$TAG6

71 SUB_F$|$100$|$14$|$TAG6

72 SUB_F$|$101$|$15$|$TAG6

73 SUB_F$|$102$|$0$|$TAG7

74 SUB_F$|$103$|$1$|$TAG7

75 SUB_F$|$104$|$3$|$TAG7

76 SUB_F$|$105$|$6$|$TAG7

77 SUB_F$|$106$|$8$|$TAG7

78 SUB_F$|$107$|$11$|$TAG7

79 SUB_F$|$108$|$12$|$TAG7

80 SUB_F$|$109$|$15$|$TAG7

81 PUB$|$110$|$0$|$110$|$Object 110$|$Published by 0$|$TAG0

82 PUB$|$111$|$1$|$112$|$Object 112$|$Published by 1$|$TAG0

83 PUB$|$112$|$3$|$115$|$Object 115$|$Published by 3$|$TAG0

84 PUB$|$113$|$6$|$119$|$Object 119$|$Published by 6$|$TAG0

85 PUB$|$114$|$9$|$123$|$Object 123$|$Published by 9$|$TAG0

106

86 PUB$|$115$|$10$|$125$|$Object 125$|$Published by 10$|$TAG0

87 PUB$|$116$|$12$|$128$|$Object 128$|$Published by 12$|$TAG0

88 PUB$|$117$|$13$|$130$|$Object 130$|$Published by 13$|$TAG0

89 PUB$|$118$|$4$|$122$|$Object 122$|$Published by 4$|$TAG1

90 PUB$|$119$|$7$|$126$|$Object 126$|$Published by 7$|$TAG1

91 PUB$|$120$|$12$|$132$|$Object 132$|$Published by 12$|$TAG1

92 PUB$|$121$|$13$|$134$|$Object 134$|$Published by 13$|$TAG1

93 PUB$|$122$|$0$|$122$|$Object 122$|$Published by 0$|$TAG2

94 PUB$|$123$|$2$|$125$|$Object 125$|$Published by 2$|$TAG2

95 PUB$|$124$|$3$|$127$|$Object 127$|$Published by 3$|$TAG2

96 PUB$|$125$|$4$|$129$|$Object 129$|$Published by 4$|$TAG2

97 PUB$|$126$|$7$|$133$|$Object 133$|$Published by 7$|$TAG2

98 PUB$|$127$|$9$|$136$|$Object 136$|$Published by 9$|$TAG2

99 PUB$|$128$|$10$|$138$|$Object 138$|$Published by 10$|$TAG2

100 PUB$|$129$|$11$|$140$|$Object 140$|$Published by 11$|$TAG2

101 PUB$|$130$|$12$|$142$|$Object 142$|$Published by 12$|$TAG2

102 PUB$|$131$|$0$|$131$|$Object 131$|$Published by 0$|$TAG3

103 PUB$|$132$|$2$|$134$|$Object 134$|$Published by 2$|$TAG3

104 PUB$|$133$|$3$|$136$|$Object 136$|$Published by 3$|$TAG3

105 PUB$|$134$|$4$|$138$|$Object 138$|$Published by 4$|$TAG3

106 PUB$|$135$|$6$|$141$|$Object 141$|$Published by 6$|$TAG3

107 PUB$|$136$|$7$|$143$|$Object 143$|$Published by 7$|$TAG3

108 PUB$|$137$|$8$|$145$|$Object 145$|$Published by 8$|$TAG3

109 PUB$|$138$|$10$|$148$|$Object 148$|$Published by 10$|$TAG3

110 PUB$|$139$|$11$|$150$|$Object 150$|$Published by 11$|$TAG3

111 PUB$|$140$|$14$|$154$|$Object 154$|$Published by 14$|$TAG3

112 PUB$|$141$|$15$|$156$|$Object 156$|$Published by 15$|$TAG3

113 PUB$|$142$|$3$|$145$|$Object 145$|$Published by 3$|$TAG4

114 PUB$|$143$|$8$|$151$|$Object 151$|$Published by 8$|$TAG4

115 PUB$|$144$|$11$|$155$|$Object 155$|$Published by 11$|$TAG4

116 PUB$|$145$|$13$|$158$|$Object 158$|$Published by 13$|$TAG4

117 PUB$|$146$|$15$|$161$|$Object 161$|$Published by 15$|$TAG4

118 PUB$|$147$|$2$|$149$|$Object 149$|$Published by 2$|$TAG5

119 PUB$|$148$|$3$|$151$|$Object 151$|$Published by 3$|$TAG5

120 PUB$|$149$|$4$|$153$|$Object 153$|$Published by 4$|$TAG5

121 PUB$|$150$|$6$|$156$|$Object 156$|$Published by 6$|$TAG5

122 PUB$|$151$|$8$|$159$|$Object 159$|$Published by 8$|$TAG5

123 PUB$|$152$|$9$|$161$|$Object 161$|$Published by 9$|$TAG5

124 PUB$|$153$|$11$|$164$|$Object 164$|$Published by 11$|$TAG5

125 PUB$|$154$|$12$|$166$|$Object 166$|$Published by 12$|$TAG5

126 PUB$|$155$|$15$|$170$|$Object 170$|$Published by 15$|$TAG5

127 PUB$|$156$|$0$|$156$|$Object 156$|$Published by 0$|$TAG6

128 PUB$|$157$|$2$|$159$|$Object 159$|$Published by 2$|$TAG6

129 PUB$|$158$|$5$|$163$|$Object 163$|$Published by 5$|$TAG6

130 PUB$|$159$|$6$|$165$|$Object 165$|$Published by 6$|$TAG6

131 PUB$|$160$|$11$|$171$|$Object 171$|$Published by 11$|$TAG6

132 PUB$|$161$|$12$|$173$|$Object 173$|$Published by 12$|$TAG6

133 PUB$|$162$|$15$|$177$|$Object 177$|$Published by 15$|$TAG6

134 PUB$|$163$|$0$|$163$|$Object 163$|$Published by 0$|$TAG7

135 PUB$|$164$|$1$|$165$|$Object 165$|$Published by 1$|$TAG7

107

ANNEX III . SYSTEM OVERHEAD TRACE

136 PUB$|$165$|$2$|$167$|$Object 167$|$Published by 2$|$TAG7

137 PUB$|$166$|$3$|$169$|$Object 169$|$Published by 3$|$TAG7

138 PUB$|$167$|$4$|$171$|$Object 171$|$Published by 4$|$TAG7

139 PUB$|$168$|$5$|$173$|$Object 173$|$Published by 5$|$TAG7

140 PUB$|$169$|$8$|$177$|$Object 177$|$Published by 8$|$TAG7

141 PUB$|$170$|$9$|$179$|$Object 179$|$Published by 9$|$TAG7

142 PUB$|$171$|$12$|$183$|$Object 183$|$Published by 12$|$TAG7

143 PUB$|$172$|$13$|$185$|$Object 185$|$Published by 13$|$TAG7

144 PUB$|$173$|$14$|$187$|$Object 187$|$Published by 14$|$TAG7

145 SUB_P$|$174$|$0$|$TAG0

146 SUB_P$|$175$|$0$|$TAG2

147 SUB_P$|$176$|$0$|$TAG4

148 SUB_P$|$177$|$1$|$TAG2

149 SUB_P$|$178$|$1$|$TAG3

150 SUB_P$|$179$|$2$|$TAG0

151 SUB_P$|$180$|$2$|$TAG1

152 SUB_P$|$181$|$2$|$TAG3

153 SUB_P$|$182$|$2$|$TAG4

154 SUB_P$|$183$|$2$|$TAG5

155 SUB_P$|$184$|$3$|$TAG0

156 SUB_P$|$185$|$3$|$TAG5

157 SUB_P$|$186$|$4$|$TAG1

158 SUB_P$|$187$|$4$|$TAG5

159 SUB_P$|$188$|$4$|$TAG6

160 SUB_P$|$189$|$4$|$TAG7

161 SUB_P$|$190$|$5$|$TAG1

162 SUB_P$|$191$|$5$|$TAG2

163 SUB_P$|$192$|$5$|$TAG4

164 SUB_P$|$193$|$5$|$TAG5

165 SUB_P$|$194$|$6$|$TAG2

166 SUB_P$|$195$|$6$|$TAG3

167 SUB_P$|$196$|$6$|$TAG5

168 SUB_P$|$197$|$7$|$TAG0

169 SUB_P$|$198$|$7$|$TAG1

170 SUB_P$|$199$|$7$|$TAG3

171 SUB_P$|$200$|$7$|$TAG5

172 SUB_P$|$201$|$7$|$TAG6

173 SUB_P$|$202$|$7$|$TAG7

174 SUB_P$|$203$|$8$|$TAG3

175 SUB_P$|$204$|$8$|$TAG4

176 SUB_P$|$205$|$8$|$TAG6

177 SUB_P$|$206$|$9$|$TAG1

178 SUB_P$|$207$|$10$|$TAG1

179 SUB_P$|$208$|$10$|$TAG2

180 SUB_P$|$209$|$10$|$TAG3

181 SUB_P$|$210$|$10$|$TAG7

182 SUB_P$|$211$|$11$|$TAG0

183 SUB_P$|$212$|$11$|$TAG2

184 SUB_P$|$213$|$11$|$TAG4

185 SUB_P$|$214$|$12$|$TAG1

108

186 SUB_P$|$215$|$13$|$TAG2

187 SUB_P$|$216$|$13$|$TAG5

188 SUB_P$|$217$|$13$|$TAG6

189 SUB_P$|$218$|$13$|$TAG7

190 SUB_P$|$219$|$14$|$TAG3

191 SUB_P$|$220$|$14$|$TAG4

192 SUB_P$|$221$|$14$|$TAG7

193 SUB_P$|$222$|$15$|$TAG1

194 SUB_P$|$223$|$15$|$TAG3

195 SYNC$|$284$|$

109

	List of Figures
	Acronyms
	Introduction
	Context and Motivation
	Mobile Edge Computing
	Problem
	Solution
	Contributions
	Document Structure

	Related Work
	Dynamic Replica Selection
	Overview
	C3
	L2
	NetRS
	Data Grids
	Final Considerations

	Replicated Storage at the Edge Systems
	Mobile-to-mobile Communication
	Final Remarks

	Thyme
	Thyme
	Gardenbed
	Thyme Gardenbed
	Final Remarks

	Proposed Solution
	Overview
	Proposed Framework Architecture
	Server-Side Components
	Client-Side Components
	Summary

	Replica Selection Strategy for MEC Systems
	Picking a baseline
	Remaining Challenges
	Proposed Algorithm

	Integration with Thyme GardenBed
	System Architecture
	Integration
	Dealing with Early Hotspots

	Final Remarks

	Evaluation
	Goals
	Methodology
	Experimental Setup
	Simulator
	Traces
	Hardware

	Results
	Replica Selection Quality
	System Reactivity
	System Overhead

	Final Remarks

	Conclusions
	Conclusions
	System Improvements and Research Opportunities
	Exploring Alternative Communication Protocols
	Metric Dissemination Overhead

	Bibliography
	Annexes
	Replica Selection Quality Trace
	System Reactivity Trace
	System Overhead Trace

