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ABSTRACT 

The field of geospatial data quality assessment is critical for ensuring the reliability and utility of Digital 

Elevation Models (DEM). DEM provide detailed elevation information, impacting various Earth 

sciences applications, including hydrology, geomorphology, environmental monitoring, land-use 

planning, and disaster management. However, uncertainties in DEM can propagate to derived 

products, which may lead to inaccurate predictions and decisions. This research addresses a significant 

knowledge gap in the field, particularly in understanding how terrain characteristics influence DEM 

vertical accuracy and how this impact varies across different spatial scales. The main objectives of this 

research are to investigate the vertical uncertainty of four open-source DEM, classify them according 

to cartographic standards, explore the correlation between DEM vertical error and terrain 

characteristics, provide a better understanding of error factors, identify local factors affecting DEM 

vertical accuracy, and investigate how terrain characteristics relate to altimetric error at different 

spatial scales. To achieve these objectives, we employed advanced geospatial techniques, including 

Geographically Weighted Regression (GWR) and Multiscale Geographically Weighted Regression 

(MGWR) to analyse local relationships and spatial variability in DEM altimetric errors. Our research 

reveals that elevation and slope impact DEM vertical accuracy, with higher altitudes and steeper 

terrains corresponding to increased altimetric errors. Furthermore, Land Use and Land Cover (LULC) 

also influence altimetric errors, particularly in areas with artificial structures and forest vegetation. The 

major contributions of this work include a nuanced understanding of DEM vertical accuracy and the 

role of terrain characteristics, emphasizing the importance of addressing spatial non-stationarity in 

DEM vertical accuracy assessments. Our research highlights the significance of terrain characteristics 

on DEM vertical error at different spatial scales and offers valuable guidance for researchers and 

practitioners working with these data. By enhancing the understanding of these influences, this 

research advances the field of geospatial data quality assessment, leading to better-informed decisions 

in several applications relying on these products. 
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RESUMO 

O campo da avaliação da qualidade dos dados geoespaciais é fundamental para garantir a 

confiabilidade e a utilidade dos Modelos Digitais de Elevação (MDE). O MDE fornece informações 

detalhadas de elevação, impactando diversas aplicações de ciências da Terra, incluindo hidrologia, 

geomorfologia, monitoramento ambiental, planejamento do uso da terra e gestão de desastres. No 

entanto, as incertezas nos MDE podem propagar-se em seus produtos derivados, o que pode levar a 

previsões e decisões imprecisas. Esta pesquisa aborda uma lacuna significativa de conhecimento na 

área, particularmente na compreensão de como as características do terreno influenciam a acurácia 

vertical do MDE e como esse impacto varia em diferentes escalas espaciais. Os principais objetivos 

desta pesquisa são investigar a incerteza vertical de quatro MDE de código aberto, classificá-los de 

acordo com padrões cartográficos, explorar a correlação entre o erro vertical do MDE e as 

características do terreno, fornecer uma melhor compreensão dos fatores de erro, identificar fatores 

locais que afetam a acurácia vertical do MDE e investigar como as características do terreno se 

relacionam com o erro altimétrico em diferentes escalas espaciais. Para atingir esses objetivos, 

empregamos técnicas geoespaciais avançadas, incluindo Regressão Geograficamente Ponderada 

(GWR) e Regressão Geograficamente Ponderada Multiescala (MGWR) para analisar as relações locais 

e a variabilidade espacial em erros altimétricos nos MDE. Nossa pesquisa revela que a elevação e a 

inclinação impactam a acurácia vertical do MDE, com altitudes mais altas e terrenos mais íngremes 

correspondendo a maiores erros altimétricos. Além disso, o uso e cobertura da terra (LULC) também 

influencia os erros altimétricos, particularmente em áreas com estruturas artificiais e vegetação 

florestal. As principais contribuições deste trabalho incluem uma compreensão diferenciada da 

acurácia vertical do MDE e do papel das características do terreno, enfatizando a importância de 

abordar a não-estacionariedade espacial nas avaliações de acurácia vertical do MDE. Nossa pesquisa 

destaca a importância das características do terreno no erro vertical em MDE em diferentes escalas 

espaciais e oferece orientação valiosa para pesquisadores e profissionais que trabalham com esses 

dados. Ao melhorar a compreensão destas influências, esta pesquisa avança no campo da avaliação 

da qualidade de dados geoespaciais, permitindo decisões mais bem informadas em diversas aplicações 

que dependem destes produtos. 
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1 INTRODUCTION 

A Digital Elevation Model (DEM) is a raster representation of the Earth's surface topography 

where each cell (pixel) contains information about the elevation (height) of the terrain 

(Abrams et al., 2020; Chaplot et al., 2006; Chen & Yue, 2010; Guth, 2006; Hirt et al., 2010; 

Smith et al., 2022). Generating a DEM involves collecting tree-dimensional data from the 

ground surface using miscellaneous technologies, namely, photogrammetry, Interferometric 

Synthetic Aperture Radar (InSAR), Light Detection and Ranging (LiDAR), Airborne Laser 

Scanning (ALS) and field surveying (Chang et al., 2004; Hodgson et al., 2003; Miller et al., 2022; 

Mondal et al., 2017).  

Considering that DEM provide detailed three-dimensional information about the terrestrial 

surface (Guth et al., 2021), they have become valuable tools for Earth sciences applications 

concerning hydrology (Roostaee & Deng, 2020; Tran et al., 2023; Wechsler, 2007; Zhang & 

Montgomery, 1994), geomorphology (Dhont & Chorowicz, 2006; Hancock et al., 2006; S. Li et 

al., 2020; Walker & Willgoose, 1999; Xiong et al., 2021), environmental monitoring (Ahmad, 

2018; Carrol & Morse, 1996; Florinsky, 1998; Mansour et al., 2020), land-use planning 

(Hammer et al., 1995; Munoth & Goyal, 2020; Tan et al., 2020; Tang et al., 2020), and disaster 

management (Demirkesen, 2012; Griffin et al., 2015; Manfreda & Samela, 2019; Naderpour 

et al., 2019; Saleem et al., 2019). However, it is improbable that DEM provide a perfect 

representation of the Earth's surface owing to various sources of uncertainty related to 

sampling, topographic complexity, geodetic control, survey point accuracy, processing 

techniques, interpolation, and resolution (Williams, 2012).  

A DEM is an approximation representing an actual terrain surface and, inherently, includes a 

level of uncertainty that can affect DEM derivatives (i.e., slope, aspect, curvature, etc.), which 

may lead to an imprecise representation of terrain features (Aerts et al., 2003; Darnell et al., 

2008; Zhou & Liu, 2002). Since some products derived from DEM, such as slope and aspect, 

are key parameters influencing landscape natural processes, DEM accuracy may affect 

predictions involving natural hazards, land-use potential, and environmental planning (Gonga-

Saholiariliva et al., 2011). Hence, a better understanding of these models’ errors is crucial to 

reduce the potential error propagation, given that the greater the vertical error of a DEM, the 

greater the error in their derived products (Oksanen, 2006). Nonetheless, developing a 
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comprehensive error model for DEM uncertainty has proven to be challenging due to the 

complexity of the rigorous analysis of error propagation (Oksanen & Sarjakoski, 2006). 

The essential role of DEM in supporting decision-making processes justifies the critical 

importance of assessing the uncertainties of these products (Altunel, 2019; Oksanen, 2006; 

Soliman & Han, 2019; Wechsler, 2003) because the outcomes from DEM applications are 

directly influenced by their quality, which is affected mainly by their vertical accuracy and 

spatial resolution (Soliman & Han, 2019). Thereupon, quantifying a DEM accuracy can be 

challenging due to the absence of an absolute "true" reference, leading to uncertainty and 

subjectivity when evaluating the correctness and quality of these models (Zhou & Liu, 2002), 

not to mention that the primary indicator of DEM quality should not only rely on the absolute 

accuracy of elevation values within a sample (Reuter et al., 2009).  

DEM vertical accuracy is typically assessed using metrics that do not incorporate spatial 

dimensions, such as the mean error (ME), mean absolute error (MAE), and root mean square 

error (RMSE) (Chaplot et al., 2006; Erdoğan, 2010; J. Li et al., 2020; Thomas et al., 2014). RMSE 

is the parameter most used to assess DEM accuracy (Mesa-Mingorance & Ariza-López, 2020; 

Nadi et al., 2020), but it offers a generalized overview of the error, lacking the capability to 

differentiate areas with varying levels of uncertainty (Aerts et al., 2003). These metrics are 

typically obtained by comparing the elevations extracted from the assessed DEM and a 

reference dataset acquired from a more accurate data source (Mesa-Mingorance & Ariza-

López, 2020; Polidori & El Hage, 2020; Temme et al., 2009).  

DEM error metrics (i.e., ME, MAE and RMSE) provide an overall assessment of their accuracy 

(Erdoğan, 2010). However, spatial aspects of DEM error are constantly overlooked (Oksanen 

& Sarjakoski, 2006), and thus, users have to consider the assumption that error rates remain 

homogeneous everywhere in the DEM (Erdoğan, 2010). Therefore, modelling the DEM error 

magnitude is fundamental in overall surface characteristics production (Ehlschlaeger, 2002), 

as it can offer assessments of the potential impacts of data quality, allowing users to make 

informed judgments about the appropriateness of spatial data for particular tasks (Fisher, 

1998). In this way, extensive research in uncertainty analysis has yielded a wide array of 

methods for exploring DEM errors and their propagation (Darnell et al., 2008) once a more 
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comprehensive explanation of the errors facilitates a deeper understanding of DEM quality 

and its level of uncertainty when applied to analytical scenarios (Erdoğan, 2010).  

DEM errors, arising from sampling, measurement, and interpolation processes, are often 

considered to have no spatial distribution and to be statistically stationary over a region, but 

both are unrealistic assumptions (Fisher, 1998). Hence, deep investigation is needed to 

identify the optimal statistical representation for errors in specific applications, as different 

applications require tailored statistical combinations (Ehlschlaeger, 2002). 

Regression modelling may be a good approach as it has the potential to generate error 

surfaces considering spatial non-stationarity, spatial correlation, and heteroscedasticity 

(Carlisle, 2005). Generally, DEM error varies spatially across an area (spatial variability) besides 

being sometimes related to errors from neighbouring cells (spatial autocorrelation) (Carlisle, 

2005; Darnell et al., 2008; Williams, 2012). Accordingly, a global model, such as Ordinary Least 

Squares (OLS), may not accurately represent spatial non-stationarity relationships and can be 

highly misleading locally (Erdoğan, 2010; Fotheringham et al., 2002) because even when the 

global average DEM error is small, local error values can exhibit significant magnitudes as well 

as present spatial correlations among them (Holmes et al., 2000).  

Despite being a linear regression model, the OLS technique considers the investigated 

processes to be constant across space, which is often an invalid assumption (Erdoğan, 2010). 

Thus, to overcome this issue, Geographically Weighted Regression (GWR) was developed as 

an alternative approach for analysing local relationships within multivariate datasets 

(Fotheringham et al., 2002). 

GWR investigates the potential spatial variability in relationships and offers insight into the 

spatial scale at which processes operate by identifying an optimal bandwidth, presuming that 

all variables operate at the same spatial scale (Fotheringham et al., 2017). On the other hand, 

Multiscale Geographically Weighted Regression (MGWR) explores spatial heterogeneity by 

identifying the spatial scale at which different processes operate (Fotheringham et al., 2017). 

In other words, it allows us to identify if the relationships between dependent and 

independent variables occur at local, regional, or global scales. Given these considerations and 

the factors above-mentioned, there is a compelling opportunity to investigate the global and 
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local processes influencing the quality of DEM to ensure the reliability and utility of these 

products.  

1.1 RESEARCH QUESTIONS 

The hypotheses under the research are the following: 

• Can the terrain characteristics explain the altimetric error in a DEM? 

• What are the spatial variations in the magnitude of the relationship between altimetric 

error and terrain characteristics? 

• What are the spatial scales over which terrain characteristics affect local variations in 

DEM vertical errors? 

 

1.2 RESEARCH OBJECTIVES 

The main goal of our study is to provide a better understanding of the global and local 

processes influencing the quality of DEM products. To accomplish the overall goal, we had to 

divide our research into some specific objectives, as follows: 

• To investigate the vertical uncertainty of four open-source DEM. 

• To classify four open-source DEM according to the Brazilian Cartographic Accuracy 

Standard. 

• To investigate the correlation between DEM vertical error and terrain characteristics. 

• To provide a better comprehension of DEM vertical error influencing factors. 

• To identify the local factors that may explain the vertical error of an open-source DEM. 

• To investigate if the relationship between terrain characteristics and altimetric error 

operates at different spatial scales. 

 

1.3 RESEARCH METHODOLOGY  

The research methodology for the DEM vertical accuracy analysis carried out in this 

dissertation is summarized in Figure 1.1. 
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Figure 1.1 – Research methodology 
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1.4 DISSERTATION STRUCTURE  

This dissertation is organized into five chapters, which include three research articles. The first 

chapter is an introduction section that addresses the background contextualization, research 

questions, objectives and the research path performed.  

Regarding the research path, the first paper (Ferreira & Cabral, 2021) was published in the 7th 

International Conference on Geographical Information Systems Theory, Applications and 

Management (GISTAM 2021). Since this study won the GISTAM 2021 Best Student Paper 

Award, it was invited for a conference post-publication. Therefore, the second chapter of this 

dissertation refers to the second paper (full version) published in the International Journal of 

Geo-Information (Ferreira & Cabral, 2022), which incorporated the first article. The third 

chapter refers to the article published in the European Journal of Remote Sensing (Ferreira et 

al., 2023). The fourth chapter summarizes the main findings of our study, whereas the fifth 

chapter brings some limitations of this research and recommendations for future works. Table 

1.1 shows how this dissertation is organized. 

 

Table 1.1 – Dissertation structure 

Chapter Title Status Journal Ranking1 

1  Introduction N/A   N/A 

2 

Vertical accuracy assessment of ALOS 
PALSAR, GMTED2010, SRTM and 

Topodata Digital Elevation Models2 

  Published in the 7th 
International Conference on 

Geographical Information 
Systems Theory, Applications 
and Management (GISTAM 

2021) 

N/A 

A comparative study about vertical 
accuracy of four freely available Digital 
Elevation Models: A case study in the 

Balsas River Watershed, Brazil3 

Published in the International 
Journal of Geo-Information 

(ISPRS) 
Scopus – Q1 

3 

Analysing the spatial context of the 
altimetric error pattern of a digital 
elevation model using multiscale 

geographically weighted regression 

 Published in the European 
Journal of Remote Sensing 

Scopus – Q1 

4 Final Considerations N/A N/A 

5 
Limitations and recommendations for 

future works 
N/A N/A 

1 Journal ranking at the submission date. 
2 This paper won the GISTAM 2021 Best Student Paper Award and it was invited for a conference post-publication. 
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2 A COMPARATIVE STUDY ABOUT VERTICAL ACCURACY OF FOUR FREELY 

AVAILABLE DIGITAL ELEVATION MODELS: A CASE STUDY IN THE BALSAS 

RIVER WATERSHED, BRAZIL1 

Abstract: Digital Elevation Models (DEM) provide important support to research since these 

data are freely available for almost all areas of the terrestrial surface. Thus, it is important to 

assess their accuracy for correct applicability regarding the correct use scale. This paper aims 

to assess the vertical accuracy of ALOS PALSAR, GMTED2010, SRTM and Topodata DEM 

according to the Brazilian Cartographic Accuracy Standard through the official high accuracy 

network data of the Brazilian Geodetic System. This study also seeks to investigate whether 

the altimetric error is correlated with altitude and slope in the study area. Our results showed 

that the four assessed DEM in this study demonstrated satisfactory accuracy to provide 

mappings in scales up to 1: 100,000 because more than 90% of the extracted points presented 

altimetric errors of less than 25 meters when compared to the reference points from the high 

accuracy network of the Brazilian Geodetic System. Regarding the altimetric error, we could 

not find a significant correlation coefficient with altitude or slope in the study area. In this 

sense, future DEM assessments should be based on the investigation of other factors that may 

influence altimetric error. 

 

2.1  INTRODUCTION 

Digital Elevation Models (DEM) provide an important topographic product that is fundamental 

for many scientific and commercial applications (Rizzoli et al., 2017; Uysal et al., 2015). 

However, traditional methods to acquire information for DEM generation are often expensive 

and time-consuming due to land surveying necessity (Uysal et al., 2015). On the other hand, 

several DEM products from many sources have been made freely available to geoinformation 

users in the last decade, so it is important to investigate their possible applications by 

assessing their accuracy (Moura et al., 2014).  

 
 

1 The text from this chapter has been published in the International Journal of Geo-Information (ISPRS). 
https://doi.org/10.3390/ijgi11020106.  

https://doi.org/10.3390/ijgi11020106
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DEM products accuracy has been regularly investigated to evaluate their applicative 

potentialities thus improving the mapping methods (Polidori et al., 2014). Most of these 

experiments are performed by comparing the extracted data from DEM to a set of reference 

data, i.e., control points, through accuracy statistical indicators, such as mean difference, 

standard deviation or root mean square error (Polidori et al., 2014).  

DEM accuracy assessment requires further attention considering that, despite technological 

advances in the creation and availability of these products, there are still no specific 

standardized guidelines regarding this assessment process (Mesa-Mingorance & Ariza-López, 

2020). Nonetheless, in Brazil, there is a decree that regulates the quality of cartographic 

products by establishing instructions for the technical standards of national cartography. The 

Decree n° 89,817/1984 determines criteria for cartographic products classification regarding 

their accuracy and the distribution of errors using a statistical indicator of positional quality 

named Cartographic Accuracy Standard (Padrão de Exatidão Cartográfica - PEC). Therefore, 

90% of the extracted points from the cartographic product must not present errors higher 

than those predicted in the PEC when their coordinates are compared with those from 

surveyed points in the field through a high accuracy method (Brazil, 1984, 2016). 

There are a lot of studies on DEM accuracy assessment (Hu et al., 2017; Jain et al., 2018; 

Mouratidis & Ampatzidis, 2019; Varga & Bašić, 2015; Wessel et al., 2018), but none assessed 

the vertical accuracy of the ALOS PALSAR, GMTED2010, SRTM and Topodata DEM according 

to the Brazilian Cartographic Accuracy Standard (PEC). Thus, the purpose of this study is to 

assess the vertical accuracy of the above-mentioned DEM by using the official high accuracy 

network data of the Brazilian Geodetic System. This study also seeks to investigate whether 

the altimetric error is correlated with altitude and slope in the study area. We expect that 

results contribute to the correct applicability of the analysed DEM according to an appropriate 

use scale in Brazil and other places dealing with the same problem context. 
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2.2 MATERIALS AND METHODS 

2.2.1 Study area 

The Balsas River watershed covers thirteen municipalities and its area is 12,352.50 km², 

corresponding to nearly 4.5% of the State of Tocantins (Figure 2.1) (Brazil, 2012). Its altitudes 

are approximately between 200 and 800 meters considering the sea level and inside this area, 

we can find 105 stations of the official Brazilian geodetic network situated along the main 

highways of the region (Figure 2.2). It is worth noting the absence of high accuracy three-

dimensional data available for free to the community in various regions of the planet. In this 

sense, the Balsas River watershed was selected due to the lack of accurate three-dimensional 

data available for this area.   

 

Figure 2.1 – Study area 
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Figure 2.2 – Hypsometric maps of Balsas River watershed derived from: (a) ALOS PALSAR, (b) 
GMTED2010, (c) SRTM and (d) Topodata 

 

2.2.2 Data 

In this accuracy assessment, we compared the extracted points from the four DEM with the 

official network data of the Brazilian Geodetic System. This network is composed of geodesic 

stations located along the main highways throughout the Brazilian territory which was 

implemented in 1945 through the high accuracy geometric levelling method (IBGE, 2019). 

Since then, these altitudes are regularly recalculated owing to the addition of new geometric 

levelling lines, development of new data measurement and processing techniques, where new 

observations of geometric levelling and gravimetry are added aiming to ensure the integrity, 

consistency, and reliability of the information from the Geodetic Database. According to the 

quality assessment of these altimetric data performed in 2018, 87.5% of the adjusted 

geopotential values presented standard deviations between 6 and 10 centimetres in absolute 

terms (IBGE, 2019). 
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The Advanced Land Observing Satellite "DAICHI" (ALOS) was designed to supply land coverage 

mapping, resource surveying and disaster monitoring (JAXA, 2020b). It was launched on 

January 24, 2006, from the Tanegashima Space Center with three sensors onboard namely 

Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM), Advanced Visible and 

Near Infrared Radiometer type 2 (AVNIR-2), and Phased Array type L-band Synthetic Aperture 

Radar (PALSAR). ALOS mission was completed on May 12, 2011, but during its 5-years 

operation, it shot 6.5 million scenes around the Earth, which have been used in many fields, 

such as agriculture, natural environment maintenance, forest monitoring and disaster 

mitigation (JAXA, 2020b). The PRISM sensor is a panchromatic radiometer and has three sets 

of optical systems with 2.5 meters spatial resolution at nadir, the AVNIR-2 sensor is a visible 

and near-infrared radiometer that provides 10 meters spatial resolution images and PALSAR 

is an active microwave sensor that uses L-band frequency to obtain cloud-free and day-and-

night land observation (JAXA, 2020a, 2020b). 

The acquired data during the ALOS mission were geometrically and radiometrically corrected. 

Firstly, the geometric distortions were corrected using some DEM, then the radiometry 

correction was executed by adjusting the brightness of the individual SAR image pixels in the 

affected foreshortening and layover regions (Gens, 2015; Laurencelle et al., 2015). Succeeding 

the radiometric terrain correction, these products were distributed at two resolutions, 12.5 

and 30 meters pixel size generated from high-resolution (NED13) and mid‐resolution DEM 

(SRTM30, NED1 and NED2), respectively (Gens, 2015). 

The Shuttle Radar Topography Mission (SRTM) is an international project developed by the 

National Aeronautics and Space Administration (NASA) and the National Geospatial-

Intelligence Agency (NGA). This mission started on February 11, 2000, and during 10 days, 

SRTM acquired data over approximately 80 percent of Earth's land surface through two radar 

antennas to create the first near-global data set of land elevations (NASA, 2020). Initially, 

SRTM data were made publicly available at 3 arc-seconds resolution, or 90 meters of pixel size, 

for regions outside the United States. However, in 2014, the topographic data were released 

globally with the full resolution originally measured, that is 1 arc-second (30 meters) (NASA, 

2020). 
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The Topodata project is a topographic database generated from the refinement of SRTM data. 

Due to the general lack of topographic data at adequate scales in some Brazilian regions, this 

project was released in 2008 aiming to refine SRTM data from the 3 arc-seconds to 1 arc-

second resolution through kriging techniques as well as to provide the derivation of 

geomorphometric data for the whole Brazilian territory (Valeriano, 2008; Valeriano & Rossetti, 

2012). The Topodata project resulted in an extensive structured database freely available for 

the scientific community which offers several products such as slope, slopes orientation, 

horizontal curvature, vertical curvature, inputs for the drainage structure design among others 

(Valeriano, 2008). 

The Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) was developed by the 

United States Geological Survey (USGS) in partnership with the National Geospatial-

Intelligence Agency (NGA) to replace the Global 30 Arc-Second Elevation (GTOPO30) as the 

elevation dataset for global and continental scale applications (Danielson & Gesch, 2011). 

GMTED2010 was elaborated using derived data from 11 raster-based elevation sources (Table 

2.1), which provides global coverage from latitude 84°N to 56°S for most products at three 

different resolutions 7.5, 15 and 30 arc-seconds, that corresponds to nearly 250, 500 and 

1,000 meters of pixel size, respectively (Danielson & Gesch, 2011). In this study, we selected 

the GMTED2010 product available in 7.5 arc-seconds resolution, which is widely used in 

several scientific studies (Amatulli et al., 2018; Athmania, 2014; Janiec, 2020; Pakoksung, 

2021; Tan et al., 2015; Thomas et al., 2014; Thomas et al., 2015; Varga & Bašić, 2015) despite 

its bigger pixel size when compared with SRTM, for instance. Table 2.2 presents the original 

main characteristics of the four DEM assessed in this study. 
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Table 2.1 – GMTED2010  – Input source data characteristics adapted from Danielson & Gesch (2011) 

Dataset Resolution Horizontal unit 
Horizontal 

datum 

SRTM DTED® 2 1 Arc-second WGS 84 

DTED® 1  3 Arc-second WGS 84 

CDED1 0.75 Arc-second NAD 83 

CDED3 3 Arc-second NAD 83 

15-arc-second SPOT 5 Reference3D 0.00416666 Decimal degree WGS 84 

NED 0.00027777 Decimal degree NAD 83 

NED – Alaska 0.00055555 Decimal degree NAD 83 

GEODATA 9 second DEM version 2 0.0025 Decimal degree GDA 94 

Greenland satellite radar altimeter DEM 1,000 Meter WGS 84 

Antarctica satellite radar and laser altimeter DEM 1,000 Meter WGS 84 

GTOPO30 0.00833333 Decimal degree WGS 84 

(DTED®, Digital Terrain Elevation Data; WGS 84, World Geodetic System 1984; CDED, Canadian Digital Elevation 

Data; NAD 83, North American Datum of 1983; SPOT, Satellite Pour l’Observation de la Terre; NED, National 

Elevation Dataset; DEM, digital elevation model; GDA 94, Geocentric Datum of Australia 1994; GTOPO30, Global 

30-Arc-Second Elevation Dataset). 

 

Table 2.2 – Original characteristics of the four assessed DEM 

DEM 
Coordinate    

System 
Horizontal   

Datum 
Vertical          

Reference 
Pixel Size 

Radiometric    
Resolution 

ALOS  
PALSAR 

UTM WGS 84 Ellipsoid* 12.5 meters 
16 bits  

(signed integer) 

GMTED2010 Geographic WGS 84 
Geoid 

(EGM96) 
231 meters  

(7.5 arc-seconds) 
16 bits 

(signed integer) 

SRTM Geographic WGS 84 
Geoid 

(EGM96) 
30 meters  

(1 arc-second) 
16 bits 

(signed integer) 

Topodata Geographic WGS 84 
Geoid 

(EGM96) 
 30 meters  

(1 arc-second) 
32 bits 

(floating point) 
*The orthometric heights with EGM96 vertical datum were converted to ellipsoid heights using the ASF 

MapReady tool named “geoid_adjust” (Laurencelle et al., 2015). 

 

2.2.3 Methods 

Figure 2.3 summarizes the methodology used in this study. Firstly, we downloaded the data 

from the study area, such as raster DEM and Brazilian official geodetic network points. Then, 

we proceeded with the radiometric resolution conversion of the Topodata DEM from 32 bits 

(floating point) to 16 bits (signed integer) to standardize the data. The following step was to 

extract the altitudes of the ALOS PALSAR, GMTED2010, SRTM and Topodata DEM at the same 

coordinates of the reference points from the official geodetic network. However, we needed 
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to convert the ellipsoidal altitudes of the ALOS PALSAR DEM to orthometric altitudes (geoid) 

since the GMTED2010, SRTM and Topodata DEM were available with altitudes referenced to 

the geoid (EGM96). For this conversion process, we used the MAPGEO2015 software (IBGE, 

2015) developed by the Instituto Brasileiro de Geografia e Estatística (IBGE) in collaboration 

with the Escola Politécnica da Universidade de São Paulo.  

 

 

Figure 2.3 – Flowchart of methodology 

 

Afterwards, accuracy statistical indicators were calculated such as Altimetric Error (HE) (1), 

Mean Error (ME) (2), Mean Absolute Error (MAE) (3) and Root Mean Square Error (RMSE) (4), 

as performed in some previous studies (Jain et al., 2018; Varga & Bašić, 2015; Wessel et al., 

2018). We also analysed the correlation between the altimetric error and altitude/slope in the 

study area through the coefficient of determination (R²) (5). Finally, we could classify the four 

DEM according to the Brazilian Cartographic Accuracy Standard (PEC) (Iorio et al., 2012; Moura 

et al., 2014).  
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HE = HREF - HDEM (1) 

 

ME =
1

𝑛
 ∑(H𝑅𝐸𝐹 −  H𝐷𝐸𝑀)

𝑛

𝑖=1

 (2) 

 

MAE =
1

𝑛
 ∑ |H𝑅𝐸𝐹 −  H𝐷𝐸𝑀|

𝑛

𝑖=1

 (3) 

 

RMSE = √
1

𝑛
 ∑(HE −  ME)2

𝑛

𝑖=1

 

(4) 

𝑅2 = 1 −  
RSS

TSS
 

 

(5) 

where HE = altimetric error; HREF = reference point altitude from Brazilian geodetic system official altimetric 

network; HDEM = altitude extracted from DEM at reference point coordinates; ME = Mean Error; MAE = Mean 

Absolute Error; RMSE = Root Mean Square Error; n = number of reference points; R² = coefficient of 

determination; RSS = sum of squares of residuals; and TSS = total sum of squares. 

2.3 RESULTS 

Results show that regarding the mean error and mean absolute error, the values of the 

statistical analysis are similar for the four DEM (Table 2.3). Actually, we observe that ALOS 

PALSAR, SRTM and Topodata DEM present similarity in all statistical indicators, as well as it is 

possible to notice that GMTED2010 shows the worst performance mainly when we consider 

the RMSE (7.48 m) and the error range (54.00 m), i.e., the difference between the minimum 

and maximum altimetric errors.    

Table 2.3 – Statistical metrics of the altitude difference between control points and DEM 

 ALOS PALSAR GMTED2010 SRTM Topodata 

ME (m) 12.70 13.31 12.82 12.87 

MAE (m) 12.88 13.86 12.96 13.22 

RMSE (m) 4.95 7.48 4.76 5.38 

HE min (m) -3.58 -14.22 -3.21 -6.17 

HE max (m) 22.04 39.78 20.93 23.60 

Error Range (m) 25.62 54.00 24.14 29.77 
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Figure 2.4 presents the histogram of the altimetric error of each DEM where we can see a 

positive distortion in all four DEM and higher variability of the errors in the GMTED2010 

product. Nevertheless, we can also notice a very strong correlation between the altitudes of 

the reference points from the Brazilian official network and the altitudes extracted from the 

assessed DEM, where it is possible to verify a determination coefficient (R²) of approximately 

0.99 in all of them (Figure 2.5). 

 

Figure 2.4 – Histogram of the altimetric error for ALOS PALSAR (a), GMTED2010 (b), SRTM (c) and 
Topodata (d) 
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Figure 2.5 – Linear correlation between the reference points altitudes of the Brazilian geodetic network 
and altitudes extracted from each DEM: ALOS PALSAR (a), GMTED2010 (b), SRTM (c) and Topodata (d) 

 

Aiming to investigate whether there is a correlation between slope and altimetric error, slope 

maps of the Balsas River watershed were generated from each DEM, where six slope classes 

were established according to IBGE (IBGE, 2007) (Figure 2.6). 
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Figure 2.6 – Slope map for ALOS PALSAR (a), GMTED2010 (b), SRTM (c) and Topodata (d) 

 

The spatial distribution of each slope class in the Balsas River watershed can be seen in Table 

2.4, where we observe that the four DEM presented approximated values regarding the 

second slope class (3 to 8%). However, the first class (0 to 3%) shows that the values differ 

importantly and that SRTM and Topodata presented more similar values in this slope class 

than the other DEM. Concerning the other slope classes, ALOS PALSAR, SRTM and Topodata 

presented similar results but the GMTED2010 showed very different results, what was 

expected, due to its pixel size. 
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Table 2.4 – Spatial distribution of each slope class of the Balsas River watershed 

 
ALOS PALSAR GMTED2010 SRTM Topodata 

Slope Area (Km²) % Area (Km²) % Area (Km²) % Area (Km²) % 

0 to 3% 992.55 8.04 4,103.36 33.22 1,776.15 14.38 2,297.57 18.60 

3 to 8% 5,459.72 44.20 5,881.54 47.61 5,155.10 41.73 5,295.32 42.87 

8 to 20% 3,879.34 31.41 2,075.17 16.80 3,579.51 28.98 3,222.54 26.09 

20 to 45% 1,813.29 14.68 292.36 2.37 1,696.15 13.73 1,454.33 11.77 

45 to 75% 200.78 1.63 0.07 0.00 142.65 1.15 82.15 0.67 

>75% 6.83 0.06 0.00 0.00 2.94 0.02 0.59 0.00 

Total 12,352.50 100.00 12,352.50 100.00 12,352.50 100.00 12,352.50 100.00 

 

In this analysis, no significant correlation coefficient was observed between slope and 

altimetric error (Table 2.5). Nonetheless, it is possible to notice that the RMSE increases as the 

slope increases in all DEM except in the ALOS PALSAR DEM. 
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Table 2.5 – Statistical analysis of altimetric error regarding slope classes 

ALOS DEM 

Slope ME (m) MAE (m) RMSE (m) R² Points 

0 to 3% 13.89 13.89 3.81 0.0004 17 

3 to 8% 12.94 13.21 5.03 0.0005 62 

>8% 11.61 11.64 4.71 0.0088 26 

     ∑ = 105 

GMTED2010 DEM 

Slope ME (m) MAE (m) RMSE (m) R² Points 

0 to 3% 12.42 13.24 6.45 0.0000 54 

3 to 8% 13.19 14.59 9.10 0.0014 43 

>8% 13.45 20.96 17.57 0.0278 8 

     ∑ = 105 

SRTM DEM 

Slope ME (m) MAE (m) RMSE (m) R² Points 

0 to 3% 14.44 14.44 2.86 0.0005 28 

3 to 8% 12.43 12.52 4.86 0.0175 52 

>8% 12.46 12.61 5.13 0.0206 25 

     ∑ = 105 

Topodata DEM 

Slope ME (m) MAE (m) RMSE (m) R² Points 

0 to 3% 14.71 14.71 2.75 0.0250 38 

3 to 8% 13.01 13.29 5.13 0.0003 47 

>8% 8.88 10.01 7.06 0.0024 20 

     ∑ = 105 
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We also did not find a significant correlation coefficient between altimetric error and altitude, 

although we have noticed a higher value in R² for all assessed DEM considering the altitudes 

above 550 meters, except for GMTED2010, as can be seen in Table 2.6. Regarding ME and 

MAE, we observe that all DEM also present the highest values in this same altitude class. 

Table 2.6 – Statistical analysis of altimetric error as regarding altitude 

ALOS PALSAR DEM 

Altitude (m) ME (m) MAE (m) RMSE (m) R² Points 

250-350 12.10 12.10 4.21 0.0395 20 

350-450 13.51 13.62 4.56 0.1384 53 

450-550  11.52 11.99 5.92 0.0040 25 

>550 13.48 13.48 2.37 0.2223 7 

     
∑ = 105 

GMTED2010 DEM 

Altitude (m) ME (m) MAE (m) RMSE (m)  R² Points 

250-350 11.00 14.34 11.10 0.1037 20 

350-450 12.92 14.40 8.79 0.0002 53 

450-550  12.58 13.36 6.52 0.0092 25 

>550 18.01 18.01 7.73 0.0615 7 

     
∑ = 105 

SRTM DEM 

Altitude (m) ME (m) MAE (m) RMSE (m) R² Points 

250-350 12.00 12.00 4.00 0.0411 20 

350-450 13.72 13.78 4.45 0.0971 53 

450-550  11.94 12.14 5.36 0.0002 25 

>550 13.86 13.86 1.91 0.3375 7 
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∑ = 105 

Topodata DEM 

Altitude (m) ME (m) MAE (m) RMSE (m) R² Points 

250-350 11.45 12.03 5.46 0.0345 20 

350-450 13.47 13.79 5.00 0.0870 53 

450-550  12.18 12.46 6.06 0.0034 25 

>550 14.44 14.44 2.50 0.2060 7 

     
∑ = 105 

 

The interpolated surface of the altimetric error (Figure 2.7) does not show correlation 

between altimetric error and slope or altitude when we compare it with Figures 2.2 and 2.6. 

In fact, Figure 2.7 shows very similar surfaces for the SRTM and Topodata DEM and allows us 

to verify that the highest altimetric errors coincide with the coordinates of the samples from 

the Brazilian official network in the central area and that negative errors are concentrated in 

the southwest region of the watershed. 
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Figure 2.7 – Spatial distribution of the altimetric error for ALOS PALSAR (a), GMTED2010 (b), SRTM (c) 
and Topodata (d) elaborated through the Inverse Distance Weighting (IDW) method 

 

To classify each DEM product according to the appropriate application scale, we used the 

altimetric cartographic accuracy standard for digital cartographic product development (Table 

2.7), which determines that 90% of point errors collected in the cartographic product must 

present the same values or less than those predicted in each class. 
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Table 2.7 – Altimetric Cartographic Accuracy Standard of the Elevation Points and the Digital Terrain 
Model, Digital Elevation Model and Digital Surface Model for Digital Cartographic Products production 
(Brazil, 2016) 

SCALE  1:25,000  1:50,000 1:100,000 1:250,000 

PEC  

Class 

PEC* 

(m) 

RMSE 

(m) 

PEC* 

(m) 

 RMSE  

(m) 

PEC*  

(m) 

RMSE  

(m) 

PEC* 

(m) 

RMSE 

(m) 

A 2.70 1.67 5.50 3.33 13.70 8.33 27.00 16.67 

B 5.00 3.33 10.00 6.66 25.00 16.66 50.00 33.33 

C 6.00 4.00 12.00 8.00 30.00 20.00 60.00 40.00 

D 7.50 5.00 15.00 10.00 37.50 25.00 75.00 50.00 

*90% of point errors collected in the cartographic product must have the same values or less than the 

predicted when compared with the ones surveyed in the field by a high-precision method. 

 

Analysing Table 2.8, we can verify that the four assessed DEM can be included in Class B for 

the 1:100,000 scale and in Class A for the 1:250,000 scale (Table 2.9) because more than 90% 

of the extracted points from them had altimetric errors of less than 25 meters when compared 

to the reference points from the Brazilian geodetic network. In addition, the four DEM also 

presented the RMSE less than 16.66 meters as predicted in Table 2.7. 

Table 2.8 – Extracted points from the DEM which had altimetric errors less than 15 and 25 meters 

DEM 
HE < 15m  HE < 25m  

Points % Points % RMSE (m) 

ALOS PALSAR 71 67.6 105 100 4.95 

SRTM 69 65.7 105 100 4.76 

Topodata 63 60.0 105 100 5.38 

GMTED2010 62 59.0 101 96.2 6.54 
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Table 2.9 – DEM classification according to Altimetric Cartographic Accuracy Standard for Digital 
Cartographic Products 

Scale ALOS PALSAR GMTED2010 SRTM Topodata 

1:100,000 B B B B 

1:250,000 A A A A 

 

2.4 DISCUSSION 

We assessed the vertical accuracy of the ALOS PALSAR, GMTED2010, SRTM and Topodata DEM 

and could classify them according to the Brazilian cartographic accuracy standard. Our results 

showed that more than 90% of the extracted points from the four DEM presented altimetric 

errors less than 25 meters when compared to the reference points from the Brazilian geodetic 

network. Indeed, ALOS PALSAR, SRTM and Topodata DEM presented 100% of altimetric errors 

less than 25 meters and only GMTED2010 DEM presented 3.8% of altimetric errors higher 

than 25 meters. Therefore, the four analysed DEM demonstrated satisfactory accuracy in 

providing mappings in scales up to 1:100,000.  

Regarding the statistical indicators, we can see that ALOS PALSAR and SRTM demonstrated 

the best performance since ALOS PALSAR had the lowest ME and MAE, while the SRTM 

showed the lowest RMSE and the smallest error range. The Topodata product presented 

slightly larger errors when compared to these two DEM, which can be interpreted as a 

satisfactory performance since this is a refinement of the SRTM data at 3 arc-seconds (90 

meters). On the other hand, the GMTED2010 demonstrated the worst accuracy, probably due 

to its pixel size (231 meters), even though, it also could be classified in the same accuracy 

category according to the Brazilian PEC. 

According to some studies (Arabameri et al., 2019; Rabby et al., 2020), ALOS PALSAR 

demonstrated a better performance when compared to SRTM and the Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER), but in others, when some specific 

parameters were compared, the SRTM performance was better than ALOS PALSAR (Andrades 

Filho & Rossetti, 2012), ASTER and GMTED2010 (Thomas et al., 2014; Thomas et al., 2015). 

Nonetheless, the Topodata product demonstrated better accuracy in the characterization of 
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drainage networks and watershed vectors when compared with SRTM and ASTER (Mantelli et 

al., 2011).   

Although our results have indicated compatibility of the four assessed DEM with a scale of 1: 

100,000 regarding the Brazilian cartographic accuracy standard, Moura et al. (2014) stated 

that Topodata, SRTM and ASTER are compatible with the scale of 1:50,000 in watersheds with 

little rugged relief. But, in watersheds with higher slopes and higher drainage density, their 

results also showed compatibility with scales up to 1:100,000 (Moura et al., 2014).  

The above-mentioned findings may indicate that some terrain physical characteristics might 

influence the results of the DEM accuracy assessment. Although some studies have found a 

strong correlation between slope and altimetric error (Gorokhovich & Voustianiouk, 2006; 

Satgé et al., 2015; Varga & Bašić, 2015), no significant correlation coefficient was observed 

between these variables in this analysis. 

 

2.5 CONCLUSIONS 

The acquisition of three-dimensional data from the Earth's surface in the field is a process that 

requires appropriate equipment and qualified professionals. Furthermore, this process can be 

expensive and time-consuming depending on the type of methodology used. In this sense, 

using DEM is an attractive alternative for many researchers, consequently, it is very important 

to assess their accuracy to ensure their correct applicability concerning the appropriate use 

scale. Nevertheless, a limitation for assessing the accuracy of DEM is the absence of accurate 

data freely available, making fieldwork essential, which makes the assessment process difficult 

and expensive. 

Even though some authors have stated the absence of specific standardized guidelines for 

DEM accuracy assessment, in Brazil, the Cartographic Accuracy Standard regulates the quality 

of cartographic products and according to this regulation the four assessed DEM in this study 

can supply mappings in scales up to 1: 100,000. Regarding the altimetric error, we could not 

find a significant correlation coefficient with altitude or slope though some authors have 

found such a correlation in other studies. 
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A limitation found in this study is that there were few control points from the Brazilian 

geodetic network inside the Balsas River watershed, and they were badly distributed in the 

study area because they were located on the banks of the highways. However, the availability 

of these free data makes possible DEM accuracy assessment through an accurate data analysis 

without the need for fieldwork. We suggest that future similar studies be based on the 

accuracy of a specific application as well in the investigation about other factors that may 

influence altimetric error, such as watershed roughness, vegetal coverage and/or land use.
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3 ANALYSING THE SPATIAL CONTEXT OF THE ALTIMETRIC ERROR PATTERN 

OF A DIGITAL ELEVATION MODEL USING MULTISCALE GEOGRAPHICALLY 

WEIGHTED REGRESSION2 

Abstract: Many freely available Digital Elevation Models (DEM) have increasingly been used 

worldwide due to the difficulty in acquiring accurate elevation data in some regions, 

emphasizing the need to investigate their accuracy and the factors that may influence their 

uncertainties. We performed an accuracy analysis of the Topodata DEM in the hydrographic 

region of Uruguay (Brazil) assuming that its vertical accuracy may be related to terrain 

characteristics. Multiscale Geographically Weighted Regression (MGWR) was applied to 

investigate the spatial scales over which terrain characteristics affect local variations in 

altimetric errors. MGWR outperformed Ordinary Least Squares (OLS) and Geographically 

Weighted Regression (GWR). MGWR results also showed that aspect, curvature, and artificial 

areas operate at much smaller scales than elevation and have a higher influence in areas with 

high positive altimetric errors. The model explains about 41% of the total variation of the 

altimetric error of the Topodata DEM in the study area. Our findings enrich the understanding 

of the global and local processes affecting the accuracy of the Topodata DEM and shed light 

on the importance of local terrain characteristics in effective DEM product development. 

Key policy highlights 

▪ DEM products provide fundamental information for several research areas. 

▪ OLS, GWR and MGWR were applied to identify the factors explaining the altimetric error 

of a DEM. 

▪ MGWR investigated the spatial scales over which terrain characteristics affect local 

variations in altimetric errors. 

▪ MGWR outperformed OLS and GWR proving that terrain characteristics operate at 

different scales. 

 

 
 

2 The text from this chapter has been published in the European Journal of Remote Sensing. 
https://doi.org/10.1080/22797254.2023.2260092. 

https://doi.org/10.1080/22797254.2023.2260092
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3.1 INTRODUCTION 

Products extracted from Digital Elevation Models (DEM) are an important data source on the 

physical characteristics of the terrestrial surface since these data are the primary means of 

visualizing terrain texture and relief classification that should be observed in essential research 

topics (Xu et al., 2021). DEM products provide fundamental information for several 

approaches, such as precipitation estimation (Chen et al., 2021; Taheri et al., 2020; Xu et al., 

2015), landslide susceptibility (Bui et al., 2020; Bui et al., 2016; Chen & Chen, 2021; Merghadi 

et al., 2020; Saleem et al., 2019), flood prediction (Sarma et al., 2020; Suliman et al., 2021; 

Vignesh et al., 2021), and geomorphometric analysis (Abdelkarim et al., 2020; Gorini & Mota, 

2016; Lindsay, 2016; Pipaud et al., 2015; Sánchez-Guillamón et al., 2018). Furthermore, they 

are extremely important in risk assessment of natural disasters (Saleem et al., 2019).  

Although traditional methods to generate DEM are expensive and time-consuming (Uysal et 

al., 2015), Earth's surface analysis is becoming increasingly viable due to the rising availability 

of DEM products at different spatial resolutions (Drăguţ & Eisank, 2011). Moreover, due to 

the lack of more accurate three-dimensional data for geographic studies at a regional scale, 

freely available DEM are frequently used in several scientific applications which evidences the 

need to investigate the accuracy of DEM products (Liu et al., 2020). Approaches regarding the 

assessment of DEM quality are usually based on altimetric discrepancies between the DEM 

and the reference data, which must present reasonable density and be well-distributed in the 

study area (Polidori & El Hage, 2020). In addition, it is essential that these reference data have 

greater accuracy than the evaluated DEM to ensure a relevant statistical analysis as well as a 

spatial error analysis (Polidori & El Hage, 2020). 

In recent decades, many technological advances in the creation and in the process of making 

available DEM products have been made, despite there are not enough specific guidelines yet 

regarding the assessment of the accuracy nor a perspective of suitability for the use of these 

products (Mesa-Mingorance & Ariza-López, 2020). In this sense, scale effects modelling has 

been considered an important research topic since there are not many studies dealing with 

the potential influence that such effects may have on some factors' modelling related to 

hydrology, soil science and geomorphology (Chang et al., 2019; Drăguţ & Eisank, 2011). 

Moreover, mathematical modelling of the predicted DEM error as a function of the landscape 

characteristics is also a promising research path (Polidori & El Hage, 2020). 
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Many studies have addressed the vertical accuracy of DEM (Hawker et al., 2019; Hirano et al., 

2003; Hladik & Alber, 2012; Wessel et al., 2018; Weydahl et al., 2007) through external and 

internal quality assessment, i.e., with or without reference data, respectively (Polidori & El 

Hage, 2020). The vertical accuracy is often assessed through the comparison of the elevation 

of the DEM product with a reference elevation collected from a greater accuracy source where 

parameters such as mean, standard deviation and root mean square error (RMSE) are 

obtained to analyse the elevation discrepancies (Mesa-Mingorance & Ariza-López, 2020; Wise, 

2000). 

The most common parameter to assess the vertical accuracy of a DEM is the RMSE (Mesa-

Mingorance & Ariza-López, 2020) but, it is also possible to use information entropy (Wise, 

2012) as well as geomorphometric analyses to measure the quality of a DEM (Pipaud et al., 

2015; Szypuła, 2019; Temme et al., 2009). Furthermore, some studies have addressed spatial 

statistics techniques such as Ordinary Least Squares (OLS) and Geographically Weighted 

Regression (GWR) to model errors in DEM (Carlisle, 2005; DeWitt et al., 2015; Erdoğan, 2010; 

Gallay et al., 2010). 

OLS is a technique used to estimate the parameters of multiple linear regression models, 

which is based on the principle of minimizing the sum of squared differences between the 

observed dependent variable values and the predicted values (Brunsdon et al., 1996; 

Hutcheson, 2011). OLS assumes that the relationship between variables is constant across the 

entire study area, disregarding any spatial variations. On the other hand, GWR (Brunsdon et 

al., 1996; Fotheringham et al., 2002) and MGWR – Multiscale Geographically Weighted 

Regression (Fotheringham et al., 2017) are both spatial regression techniques that explicitly 

account for spatial heterogeneity by estimating relationships locally, allowing for spatially 

varying coefficients. GWR operates at a local scale, where the relationships between variables 

are estimated for each individual location within the study area, while MGWR simultaneously 

estimates the relationships at different scales. This allows MGWR to capture variations in 

relationships at local, regional, and global scales. Thereby, MGWR can model the relationship 

between the dependent and the independent variables considering the geographic scale at 

which processes occur, allowing it to differentiate spatial homogeneous and heterogeneous 

relationships that may influence the dependent variable at different locations (Fotheringham 

et al., 2017). Hence, it is possible to identify if an explanatory factor of the altimetric error 
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operates locally, regionally, or globally in the study area. However, there is still no evidence of 

studies that have modelled the pattern of the altimetric error through MGWR. 

Our study performs a vertical accuracy analysis using MGWR, aiming to identify the local 

factors that may explain the altimetric error of the Topodata DEM in the hydrographic region 

of Uruguay (Brazil), accounting for possible different spatial scales in the relationship between 

such local factors and the altimetric error. Accordingly, this research study aims to investigate 

not only if the vertical accuracy of DEM products is related to local terrain characteristics but 

also if there are spatial variations in the magnitude of those relationships. Additionally, this 

study aims to determine if the relationships between the terrain characteristics and the 

altimetric error operate at different spatial scales. Besides MGWR, two additional models 

were used for comparison purposes, namely OLS and GWR. 

Our findings are expected to provide a better understanding of the global and local processes 

influencing the quality of Topodata products and highlight the importance of terrain 

characteristics in effective DEM product development, besides shedding light on some 

limitations of regression modelling applications. Providing a further understanding of the 

features influencing DEM vertical accuracy may also contribute to improving the applications 

that rely on the altimetric data extracted from DEM. 

 

3.2 MATERIALS 

3.2.1 Study area 

The Uruguay River watershed is approximately 385,000 km2 with 174,412 km2 of this area 

placed in the southern part of Brazil, covering 2% of the national territory, which is named in 

the hydrographic region of Uruguay (Brazil, 2006). The study area’s altimetry ranges from 32 

to 1822 meters above sea level (Figure 3.1). 
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Figure 3.1 – Study area and reference points in the hydrographic region of Uruguay (Brazil) 

 

3.2.2 Data and preprocessing 

3.2.2.1 SRTMGL1v003 DEM and Topodata DEM  

Shuttle Radar Topography Mission (SRTM) was released in 2000 onboard the Space Shuttle 

Endeavour aiming to generate a near-global DEM of the Earth through radar interferometry 

(NASA, 2013). Initially, SRTM data was made available with a resolution of 1 arc-second for 

the United States territory and with 3 arc-seconds for other regions of the world. In 2015, the 

data with full resolution (1 arc-second) was released globally (NASA, 2022). In this context, the 

Topodata project was developed by the Brazilian National Institute for Space Research 

(Instituto Nacional de Pesquisas Espaciais - INPE) to refine, through kriging techniques, SRTM 

data from the resolution of 3 arc-seconds (≈ 90 meters) into 1 arc-second (≈ 30 meters) over 

the Brazilian territory (Valeriano & Rossetti, 2012). This project also derived geomorphometric 

data from SRTM products providing information, such as slope, aspect, and curvatures, ready 

for use by the scientific community (Valeriano, 2008; Valeriano & Rossetti, 2008). Despite 

there being other DEM with better resolution, SRTM-90 (90-meter pixel) and Topodata are 
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highly applied in research over the Brazilian territory (Silva et al., 2022). Moreover, Topodata 

DEM is still widely used due to the unavailability of cartographic products in suitable scales for 

some Brazilian regions (Ferreira & Cabral, 2022). 

Topodata DEM was released in 2008 and had been revised regularly by INPE (INPE, 2008). 

SRTM datasets most recent version (SRTMGL1v003) eliminated voids that were present in 

previous versions of SRTM products by using data from ASTER Global Digital Elevation Model 

(GDEM) Version 2.0, the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010), 

and the National Elevation Dataset (NED) (NASA, 2013).  

 

3.2.2.2 Brazilian Geodetic Network 

The accuracy analysis in this study is based on official data from the Brazilian Geodetic System 

(IBGE, 2022a). The Brazilian Geodetic Network (BGN) contains geodesic stations implemented 

throughout the national territory with essential planimetric, altimetric and gravimetric 

information used as a reference in positioning activities as well as for correction and 

verification of Brazilian territory images (IBGE, 2019, 2022a). Most stations are materialized 

through concrete landmarks with a metal plate on the top, identifying their coordinates, 

altitudes and gravity obtained by using high-precision geodetic procedures and models (IBGE, 

2022a). A total of 1,068 reference points from the BGN are present in the hydrographic region 

of Uruguay (Figure 3.1) georeferenced to the Geocentric Reference System for the Americas 

(SIRGAS2000 - horizontal datum) and Imbituba (vertical datum). It is important to mention 

that the Imbituba datum is defined by the calculated middle level of the sea with data from a 

tide gauge station and then propagating it throughout the Brazilian territory by high-precision 

geometric levelling (IBGE, 2019). The main characteristics of BGN, SRTM and Topodata DEM 

are shown in Table 3.1. 
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Table 3.1 – Main characteristics of BGN (IBGE, 2019), SRTM (NASA, 2013) and Topodata DEM 
(Garofalo & Liesenberg, 2015; Miceli et al., 2011; Valeriano, 2008) 

DEM 
Coordinate 

System 

Horizontal 

Datum 

Vertical 

Datum 
Pixel Size 

Radiometric 

Resolution 
Extension 

BGN Geographic SIRGAS2000* Imbituba*** - - SHP 

SRTMGL1 

v003 
Geographic WGS 84** EGM-96**** 

30 meters 

(1 arc-second) 

16 bits 

(signed integer) 
HGT 

Topodata Geographic WGS 84** EGM-96**** 
30 m 

(1 arc-second) 

32 bits 

(floating point) 
TIF 

*Sistema de Referência Geocêntrico para as Américas (Geocentric Reference System for the Americas); **World 
Geodetic System 1984; *** Brazilian official vertical datum; **** Earth Gravitational Model 1996.  

 

3.2.2.3 Independent variables 

Aiming to investigate the factors that may explain the altimetric error of Topodata DEM in the 

hydrographic region of Uruguay, the following candidate explanatory variables were chosen 

according to previous studies: altitude/elevation (Das et al., 2016; González-Moradas & 

Viveen, 2020; Szypuła, 2019), aspect (Dong & Shortridge, 2019; Gorokhovich & Voustianiouk, 

2006; Leon et al., 2014; Sharma et al., 2021; Szypuła, 2019), curvature (plan/profile) (Leon et 

al., 2014; Sharma et al., 2021; Szypuła, 2019), distance to rivers (Mahalingam & Olsen, 2016; 

Yap et al., 2019), drainage density (Das et al., 2016; Shaikh et al., 2021), land use/land cover 

(LULC) (Dong & Shortridge, 2019; Leon et al., 2014; Satgé et al., 2015; Yap et al., 2019), relative 

relief (Das et al., 2016; Ganie et al., 2023), roughness (Habib, 2021; L. Li et al., 2020; Schwendel 

& Milan, 2020), slope (Das et al., 2016; Dong & Shortridge, 2019; González-Moradas & Viveen, 

2020; Gorokhovich & Voustianiouk, 2006; Habib, 2021; Leon et al., 2014; L. Li et al., 2020; 

Satgé et al., 2015; Sharma et al., 2021; Szypuła, 2019; Yap et al., 2019), terrain ruggedness 

index (TRI) (Dong & Shortridge, 2019; Leon et al., 2014), topographic position index (TPI) (Dong 

& Shortridge, 2019; Leon et al., 2014) and vector ruggedness measure (VRM) (Leon et al., 

2014; Pipaud et al., 2015). 
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The variables aspect, curvature (plan/profile), elevation, relative relief, roughness, slope, TPI, 

TRI and VRM were derived from the SRTM DEM (NASA, 2013) to ensure that their values are 

independent of the altimetric error derived from the Topodata DEM. If we used the same DEM 

to derive the explanatory variables, then their values would be a function of the values of the 

dependent variable. Hence, the regression model would not be correctly specified (i.e., it 

would be an inappropriate model). On the other hand, distance to rivers and drainage density 

were derived from the drainage data of the National Water and Sanitation Agency (Agência 

Nacional de Águas e Saneamento Básico - ANA) (ANA, 2022). 

Aspect measures the orientation of the slope for each location on which the compass direction 

ranges from 0° to 360° clockwise, where 0°, 90°, 180° and 270° correspond to north, east, 

south, and west, respectively (Kaliraj et al., 2015; Lei et al., 2022).  

Curvature is one of the most relevant parameters to be considered when analysing the land 

surface topography (Krebs et al., 2015). Curvature refers to a morphological measure of the 

terrain topography, where positive values mean that the surface is upwardly convex, negative 

values reveal an upwardly concave whereas zero values indicate that the surface is flat (Lee & 

Sambath, 2006). Through different methodologies, it is possible to compute the curvature in 

the horizontal plane (plan curvature) or in the vertical plane (profile curvature) for every single 

cell of a digital elevation model (DEM) (Krebs et al., 2015; Ohlmacher, 2007). 

It is crucial to consider functional distances based on hydrology in environmental analysis 

since the physical attributes of the stream network offer valuable insights into environmental 

conditions, especially at unobserved locations (Peterson et al., 2007).  In this sense, distance 

to rivers was also included in this analysis. 

Drainage density is a key characteristic of natural landscapes and serves as a fundamental 

indicator that reflects local climate, topography, geological composition, and other pertinent 

variables (Tucker et al., 2001). It is defined by the length of rivers per unit of area (Horton, 

1932). 

Relative relief is a metric used for analysing the morphological features of the terrain, given 

by the difference value between the highest and lowest altitude in a region (Das et al., 2016; 

Mustak et al., 2012; Smith, 1935). 
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Roughness denotes the slope variability of terrain and reveals the undulating nature of its 

relief (Samadrita Mukherjee et al., 2013). Higher roughness values are typical of hilly or rocky 

areas, meaning that these places have increased surface runoff, reduced water percolation, 

and groundwater recharge (Mukherjee & Singh, 2020). 

The slope is useful in characterizing and delimiting geomorphological units and regions since 

it represents the variation in terrain gradients, where lower values indicate flatter terrain and 

higher values indicate steeper terrain (IBGE, 2009). 

The Terrain Ruggedness Index (TRI) computes the sum variation in elevation between a cell 

and its neighbouring cells within a DEM, providing a quantitative magnitude estimative of the 

topographic heterogeneity of an area (Riley et al., 1999).  

The Topographic Position Index (TPI) evaluates the elevation of each cell in a DEM relative to 

the average elevation of a given neighbourhood, with positive values indicating elevations 

higher than the surrounding average (ridges), negative values indicating lower elevations 

(valleys), and values close to zero signifying either flat areas or regions with a consistent slope 

(Weiss, 2001). 

The Vector Ruggedness Measure (VRM)  gauges the ruggedness of the terrain by assessing the 

variability in the three-dimensional orientations of grid cells within a given neighbourhood 

(Arosio et al., 2023). VRM offers a more direct measurement of terrain heterogeneity less 

dependent on slope than TRI, allowing the treatment of terrain components as distinct 

variables during the landscape analysis (Sappington et al., 2007). 

The LULC mapping was performed by the Brazilian Institute of Geography and Statistics 

(Instituto Brasileiro de Geografia e Estatística - IBGE) based on images from the Moderate-

Resolution Imaging Spectroradiometer (MODIS) sensor and from LANDSAT-5 and LANDSAT-7 

satellites, with a spatial resolution of 250m, 30m and 30m, respectively. In addition, the 

technical review process also involved the incorporation of polygons from the vegetation 

maps and auxiliary information from the Continuous Cartographic Base of Brazil at a scale of 

1:250,000 (IBGE, 2017, 2022b). Since SRTM data were collected in the year 2000, we use the 

LULC data from the same year trying to be as faithful as possible to the reality of the terrestrial 
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surface at the mission's time. The following LULC classes are found in the hydrographic region 

of Uruguay (IBGE, 2017): 

1. Artificial area – characterized by urban use, structured by buildings and road systems, 

where non-agricultural artificial surfaces predominate. 

2. Agricultural area – characterized by temporary and permanent crops, irrigated or not, with 

the land used for food production, fibre, and agribusiness commodities. It includes all 

cultivated land, which may be planted or fallow, and cultivated wetlands. It can be 

represented by heterogeneous agricultural zones or extensive areas of plantations. 

3. Pasture – area intended for the grazing of cattle and other animals, with cultivated 

herbaceous vegetation or natural grassland vegetation, both presenting high-intensity 

anthropic interference. 

4. Mosaic of agriculture and forest remnants – area characterized by the mixed occupation 

of agriculture, pasture and forestry associated with forest remnants. Other plant formations 

(herbaceous and shrubby) may occur to a lesser extent. 

5. Forestry – area characterized by forest plantations of exotic and/or native species as 

monocultures. 

6. Forest vegetation – area occupied by forests. Trees taller than 5 meters are considered 

forest formations, including areas of dense forest, open forest, and seasonal forest, in addition 

to the mixed ombrophiles forest. 

7. Grassland – area characterized by natural grassland vegetation subject to grazing and other 

low-intensity anthropic interference. 

8. Mosaic of anthropic areas and grassland – area characterized by the mixed occupation of 

agriculture, pasture and/or forestry with remnants of grassland vegetation. Arboreal plant 

formations may occur to a lesser extent proportion. 

9. Water body – It includes all inland waters such as rivers, streams, canals, and other linear 

bodies of water. It also encompasses naturally closed bodies of water (natural lakes) and 

artificial reservoirs (artificial water dams built for irrigation, flood control, water supply and 
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electricity generation). Figure 3.2 and Table 3.2 show the spatial distribution of each LULC 

class. 

 

Figure 3.2 – LULC in the hydrographic region of Uruguay 
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Table 3.2 – Spatial distribution of LULC classes in the hydrographic region of Uruguay 

LULC Classes Area (km2) Area (%) 

Grassland  59,715.43 34.24 

Agricultural area 54,391.06 31.19 

Mosaic of agriculture and forest remnants 42,126.07 24.15 

Forest vegetation 7,922.46 4.54 

Mosaic of anthropic areas and grassland 5,081.91 2.91 

Forestry 2,751.47 1.58 

Pasture 928.31 0.53 

Artificial area 783.03 0.45 

Water body 712.26 0.41 

Total 174,412.00 100.00 

 

To include the LULC classes in the regression modelling, it was necessary to consider an area 

around each reference point from the BGN. For this purpose, we considered the average 

distance parameter obtained through the “Calculate Distance Band from Neighbour Count” 

tool (ArcGIS Desktop software - version 10.8.2) which returns the average distance to the N 

nearest neighbour (Esri, 2022). Since this result was 5,438 meters, we defined the buffer 

radius value as 5,500 meters in this analysis. Then, the independent variables of the regression 

models were computed as the area of each LULC class inside the buffer at each location. This 

approach guaranteed that the scale of analysis used to compute the independent variables 

derived from the LULC classes was the same, regardless of the spatial distribution of the BGN 

points which are not regularly distributed. 

 

3.2.3 Methods 

SRTM and Topodata DEM are referenced to the EGM-96 geoid. So, we had to compute the 

geoidal undulation through the “Geoid Height Calculator” (UNAVCO, 2022) to transform their 

original geoidal into ellipsoidal altitudes (WGS 84) (Elkhrachy, 2018; Orlando, 2019). Then, it 

was necessary to convert these ellipsoidal altitudes into physical altitudes compatible with the 

Brazilian vertical datum (Imbituba) (Bettiol et al., 2021; Rodrigues et al., 2011) by using the 

hgeoHNOR2020 model (IBGE, 2019). We also had to convert the SRTM and Topodata 
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horizontal data from WGS 84 into the Brazilian official horizontal datum (SIRGAS2000) through 

ArcGIS Desktop software – version 10.8.2. 

To derive the altimetric errors, we followed the methodology applied by Satge et al. (2016) 

and Shean et al. (2016). Negative altimetric errors mean that the DEM analysed overestimates 

the elevation and positive errors underestimate the elevation at each verified point 

(Brasington et al., 2003; Holmes et al., 2000). 

Terrain analysis was carried out by generating maps of the following input candidate 

explanatory variables: aspect, curvature, distance to rivers, drainage density, roughness, 

relative relief, slope, TPI, TRI and VRM. Then, statistical analysis was made through the 

accuracy indicators calculation (Moura et al., 2014; Satge et al., 2016; Shean et al., 2016), 

namely the altimetric error (AE) (1), mean error (ME) (2), mean absolute error (MAE) (3), and 

root mean square error (RMSE) (4). 

 

AE = AREF  − ADEM (1) 

 

ME =
1

𝑛
 ∑(𝐴𝑅𝐸𝐹  −  𝐴𝐷𝐸𝑀)

𝑛

𝑖=1

 (2) 

 

MAE =
1

𝑛
 ∑ |𝐴𝑅𝐸𝐹 −  𝐴𝐷𝐸𝑀|

𝑛

𝑖=1

 (3) 

 

RMSE = √
1

𝑛
 ∑(𝐴𝐸  −  ME)2

𝑛

𝑖=1

 

(4) 

where AREF is the altitude of the reference point from the BGN, ADEM is the altitude extracted from 

Topodata DEM, and n is the number of reference points. 

The MAE is a statistical measure that computes the average absolute difference between the 

value considered the true (BGN) and the value extracted from the Topodata DEM. The RMSE 

measures the uncertainty in the computed values, defining the degree of correspondence 

between the reference values and those extracted from the DEM. Thus, lower MAE and RMSE 

values indicate better results (Rawat et al., 2019). 
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We performed the Exploratory Spatial Data Analysis (ESDA) through Voronoi tessellation, Hot 

Spot Analysis (Getis & Ord, 1992), and Local and Global Moran's I statistics (Anselin, 1995; 

Moran, 1950). Finally, the altimetric error modelling was performed using OLS, GWR 

(Brunsdon et al., 1996; Fotheringham et al., 2002) and MGWR (Fotheringham et al., 2017) on 

the 1,068 reference points from the BGN (Figure 3.1). A 5% significance level was considered 

in all statistical tests, otherwise stated. 

Voronoi tessellation is a concept proposed by Georgy Voronoi in 1907 based on a 

computational geometry data structure that has been applied in many scientific areas 

(Kastrisios & Tsoulos, 2018). Voronoi maps or Voronoi diagrams are built from polygons 

generated around a sample point. Each Voronoi polygon is obtained by intersecting 

perpendicular bisectors of adjacent points, where the nearest neighbour of any point inside 

the polygon is the sample point (i.e., the generator of the polygon) (Nene & Nayar, 1997; Safar, 

2005). 

Hot spot analysis is a spatial analysis technique used to identify statistically significant clusters 

of high (hot spots) or low values (cold spots) within a dataset using the Getis-Ord Gi* statistic 

(Getis & Ord, 1992). 

The Global Moran's I is an inferential statistic used to measure the spatial autocorrelation in a 

dataset and to test whether the observed spatial pattern in the dataset is randomly distributed 

(null hypothesis) or spatially autocorrelated (alternative hypothesis). A significant positive 

index reveals evidence of spatial clustering of similar values, and a negative one provides 

evidence of a dispersion pattern of dissimilar values (Moran, 1950; Prasannakumar et al., 

2011). The Local Moran's I examines the significance of local spatial autocorrelation by 

calculating the Moran's I statistic for each location using neighbouring values to identify local 

clusters or spatial outliers (Anselin, 1995). Clusters with high or low values are defined as high-

high (HH) or low-low (LL), respectively, and correspond to statistically significant positive 

spatial autocorrelation. A high-low (HL) outlier corresponds to a high value correlated with 

surrounding low values, and a low value correlated with surrounding high values is defined as 

a low-high (LH) outlier. Spatial outliers correspond to statistically significant negative spatial 

autocorrelation (Anselin et al., 2007). 
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OLS, GWR and MGWR are linear regression models, but each one operates at different spatial 

scales and makes different assumptions regarding the spatial heterogeneity of the data set. 

OLS is a global model assuming a single coefficient to explain the relationship between each 

explanatory and the altimetric error in the whole study area, whereas GWR and MGWR are 

local regression models that allow the coefficients to vary in space. Moreover, MGWR also 

allows each independent variable to adopt a different spatial scale of analysis. 

ArcGIS Desktop software (version 10.8.2) was used to run the ESDA and OLS analysis. We 

investigated all possible combinations of the 22 independent variables in 539,909 exploratory 

OLS models considering their statistical significance, the variance inflation factors (VIF), and 

the models’ Adjusted R2. The OLS model which has presented the highest Adjusted R2, without 

multicollinearity issues, included four significant variables: aspect (𝑋1), curvature (𝑋2), 

elevation (𝑋3) and LULC_1 (artificial area) (𝑋4). These variables were then included in the GWR 

and MGWR models that were estimated using the MGWR 2.2 software (Oshan et al., 2019). 

All variables in the MGWR model were standardized to increase the interpretability of the 

bandwidths of the spatial kernel. An adaptive bisquare kernel was applied in both GWR and 

MGWR models as the distance-weighting function to control the optimal number of nearest 

neighbours to be included in the local model fitting (5) (Fotheringham et al., 2017): 

 

𝑤𝑖𝑗 = [1 − (𝑑𝑖𝑗/𝑏𝑖)
2

]
2

 if  𝑑𝑖𝑗 < 𝑏𝑖 ;   𝑤𝑖𝑗 = 0 otherwise (5) 

where 𝑤𝑖𝑗 is the weight between points i and j, 𝑑𝑖𝑗  is the Euclidean distance between points i and j, 

and the bandwidth 𝑏𝑖 is the distance from focal point i to its 𝑀𝑡ℎ nearest neighbor. The optimal number 

of neighbours (M) is determined by the lowest corrected Akaike's Information Criterion (AICc) that is 

obtained from multiple comparisons. The MGWR model is formulated in Equation 6. 

 

𝑌𝑖 = 𝛽𝑏𝑤0(𝑢𝑖 , 𝑣𝑖) + 𝛽𝑏𝑤1(𝑢𝑖, 𝑣𝑖)𝑋𝑖1 + 𝛽𝑏𝑤2(𝑢𝑖, 𝑣𝑖)𝑋𝑖2 + 𝛽𝑏𝑤3(𝑢𝑖, 𝑣𝑖)𝑋𝑖3

+ 𝛽𝑏𝑤4(𝑢𝑖, 𝑣𝑖)𝑋𝑖4 + 𝜀𝑖  (6) 

where 𝑏𝑤k denotes the specific optimal bandwidth used in the calibration of the intercept and 𝑘𝑡ℎ 

conditional relationship (𝑘 = 1, … , 4), and (𝑢𝑖, 𝑣𝑖) are location coordinates for each focal point i (𝑖 =

1, … ,1068). Model diagnostics and inference-related diagnostics are computed for local parameter 

estimates (Fotheringham et al., 2019; Yu et al., 2020). 
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In the GWR model, the notation 𝑏𝑤k was removed because the optimal bandwidth used is 

the same for the intercept and all 𝑘 conditional relationships. That notation was also removed 

from the OLS model, as well as the (𝑢𝑖, 𝑣𝑖) location coordinates because the OLS (global) 

model is specified using a single regression equation: the 𝛽k parameters (𝑘 = 0, 1, … , 4) are 

the same for all locations and they are estimated using the whole data set. For further details 

see Fotheringham et al. (2002). 

 

3.3 RESULTS 

3.3.1 Statistical analysis 

The altimetric errors of the Topodata DEM range from −36.68 to 39.23 meters, and 75% of 

them are smaller than 1.22 meters (Table 3.3). There is very a strong correlation between the 

elevations extracted from SRTM and Topodata DEM when they are compared with the 

reference points from the BGN as the coefficient of determination (R2) of a simple linear 

regression is higher than 0.99 in both cases (Appendix A1/A2). 

 Table 3.3 – Statistical accuracy indicators of the Topodata DEM 

Indicators AE min  AE max  ME MAE  RMSE ER* Q1** Q2*** Q3**** 

(m) −36.68 39.23 −0.73 4.26 6.46 75.91 −3.73 −1.48 1.22 

* Error range; ** 1st quartile; *** 2nd quartile (median); **** 3rd quartile. 

 

The histogram indicates that the altimetric errors are negatively biased (overestimated) which 

is reinforced by the median value already shown in Table 3.3. Despite that, they present a 

distribution a little close to a normal curve (Appendix A3). 

The boxplots of the elevation differences are shown in Appendix A4, where it is possible to 

notice that the SRTM and Topodata elevation are very similar to the BGN altitudes and that 

more than 50% of the altitudes are below 500 meters, an expected fact since Brazil is 

considered a low-lying country being 41% of its territory below 200 meters and barely 7% 

above 800 meters (Alvares et al., 2013). Even though it can be observed in Appendix A4 that 

almost 25% of the point altitudes are above 800 meters. 
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The altimetric errors are higher in areas with slopes above 30% (Appendix B1). Furthermore, 

we observe that the MAE and the RMSE increase as the slope also increases. Likewise, the 

altimetric errors are higher in places where the elevation is higher than 1,200 meters 

(Appendix B2), despite the altimetric errors being also higher in regions where elevation is 

between 900 and 1,200 meters when compared with places lower than 900 meters. Regarding 

the LULC, the classes that presented the highest altimetric errors were ‘forest vegetation’ and 

‘artificial area’ (Appendix B3). The Pearson’s correlation coefficient between elevation and 

altimetric error is approximately 0.22. The correlation matrix of all the candidate explanatory 

variables (Appendix C) shows that some of them are significantly correlated with each other, 

such as relative relief, VRM, and TPI. 

 

3.3.1.1 Spatial effects in altimetric errors 

The Voronoi map of the altimetric error shows that most samples (82%) present altimetric 

errors between −6.46 and 6.46 meters and that they are evenly distributed (Figure 3.3). There 

is no apparent trend of the altimetric error over the study area. 
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Figure 3.3 – Voronoi map of the altimetric error 

 

The Global Moran’s I statistic revealed that the altimetric error did not have a significant 

spatial autocorrelation (index ≈ 0.02; p-value = 0.98), thus the altimetric error pattern does 

not appear to be significantly different from random. 

Anselin’s Local Moran's I, represented in Figure 3.4a, shows that 23 of the 1,068 points (≈ 2%) 

have significant positive (15 high-high and 3 low-low clusters) and negative (3 low-high and 2 

high-low outliers) spatial autocorrelation. The high-high clusters (high altimetric errors 

surrounded by high altimetric errors) are in the upper watershed course, and 2 of the 3 low-

low clusters (low altimetric errors surrounded by low altimetric errors) are in the middle 

watershed course. Figure 3.4a also shows that 3 low-high outliers (low altimetric errors 

surrounded by high altimetric errors) are in the upper watershed course whereas there is 1 

high-low outlier in the upper watershed course and 1 in the middle watershed course. 
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Figure 3.4 – Local Moran’s I statistic (a) and Hot Spot Analysis (b) of the altimetric error 

 

Hot Spot Analysis (Getis–Ord Gi* statistic) reveals both high altimetric errors (hot spot) and 

low altimetric errors (cold spot) values clustered spatially (Figure 3.4b). In this analysis, results 

demonstrate the existence of 7 hot spots in the upper region, 5 in the middle and lower region 

of the watershed at the 1% significance level, 6 in the upper and 1 in the middle part of the 

watershed at the 5% significance level, and 2 in the upper region of the watershed at the 10% 

significance level. In addition, this analysis also shows cold spots in the upper region (3 points) 

and 1 in the middle region of the watershed at 1% and 5% significance levels, respectively 

(Figure 3.4b). 
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3.3.2 Models’ performance and diagnostics 

3.3.2.1 OLS results 

The summary of OLS results in Table 3.4 shows that all variables have a statistically significant 

coefficient. Furthermore, the low VIF values indicate that there is no evidence of redundancy 

among the explanatory variables.  

Table 3.4 – Parameter estimates for the OLS model 

Variable Coefficient 
Robust 

standard error 

Robust 

t-value 

Robust 

p-value 
VIF 

Intercept −1.042677 0.399711 −2.608579 0.009213* -------- 

Aspect −0.011987 0.001704 −7.034715 0.000000* 1.003166 

Curvature 4.057187 0.702850 5.772483 0.000000* 1.012770 

Elevation 0.003335 0.000616 5.411528 0.000000* 1.010463 

LULC_1 (artificial area) 0.000000 0.000000 3.542069 0.000429* 1.001225 

*Statistically significant coefficient 

 

3.3.2.2 GWR and MGWR results 

Results of the MGWR model executed with the same variables as the OLS and GWR models 

show an improvement of the proposed model since it had a higher Adjusted R2 (0.41) and a 

lower AICc (2,602.14) than the OLS and GWR models (Table 3.5). It was also noticed a decrease 

in the residual sum of squares (RSS). 

 

Table 3.5 – Metrics of OLS, GWR and MGWR models 

 R2 Adj. R2 AIC AICc RSS 

OLS 0.18 0.18 - 6,812.44 873.921 

GWR 0.40 0.35 2,639.44 2,651.28 642.014 

MGWR 0.47 0.41 2,577.98 2,602.14 571.794 

 

Given the spatially varying nature of MGWR, the map of the Local R2 (Figure 3.5a) highlights 

the areas where the local regressions have a better goodness-of-fit and provides insights on 

the locations where important variables may be missing. The Local R2 ranges from 0.18 to 0.74 
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(Figure 3.5a). Low values of the Local R2 in the flatter regions located in the middle of the study 

domain indicate that other factors may affect the altimetric error besides aspect and 

elevation, which have significant coefficients in that region (Figure 3.6a and Figure 3.6c). The 

Local R2 was higher than 0.5 in approximately 25% of the local regressions obtained with the 

MGWR model (Table 3.6). These areas, where the Local R² ranges from 0.50 to 0.74, overlap 

with the areas where the curvature presents significant local coefficients (Figure 3.6b). 

Therefore, the inclusion of curvature contributed to improving the goodness-of-fit of the 

MGWR model in the northern and southern parts of the study domain. 

 

 

Figure 3.5 – Voronoi map of the Local R2 (a) and Local Condition Number (b) of the MGWR model 
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Figure 3.6 – Voronoi map of the spatial distribution of MGWR local coefficients: (a) aspect, (b) 
curvature, (c) elevation, (d) LULC (class 1 – Artificial area) 
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Table 3.6 – Frequency distribution of Local R2 values of the MGWR model 

Local R2 Count Percentage 

0.18 - 0.29 324 30.34 

0.30 - 0.39 375 35.11 

0.40 - 0.49 105 9.83 

0.50 - 0.59 118 11.05 

0.60 - 0.74 146 13.67 

Total 1,068 100% 

 

There is no evidence of spatial autocorrelation in the residuals of the MGWR model over the 

study area because the value of the Global Moran’s I statistic was equal to −0.01, and it was 

not statistically different from zero (z-score = −0.01; p-value = 0.99). Hence, the spatial pattern 

of the residuals does not appear to be significantly different from random. 

A Local Condition Number (Local_CN) greater than 30 indicates that there might be a 

multicollinearity problem in the model (Oshan et al., 2019). In this way, there is also no 

evidence of multicollinearity among the independent variables because the Local_CNs range 

from 1.14 to 2.67 (Figure 3.5b). 

 

3.3.2.3 Spatial pattern analysis of the coefficients 

The optimal bandwidths of the coefficients obtained from GWR and MGWR models are shown 

in Table 3.7. The GWR model presented a very restrictive bandwidth (173) compared with the 

bandwidth of the MGWR model since it is approximately half of the average bandwidth of the 

MGWR model (337). Furthermore, GWR assumes that the aspect, curvature, elevation and 

LULC_1 (artificial area) influence the altimetric error on the same scale, which is refuted by 

MGWR model results. The MGWR bandwidth of the curvature variable with 102 nearest 

neighbours indicates that this variable operates on a local scale. The MGWR bandwidths of 

the LULC_1 (artificial area) and aspect variables show that these variables operate on a 

regional scale. The MGWR bandwidth of the elevation variable reveals that this variable 

influences the altimetric error on a global scale because its bandwidth is exactly the possible 

maximum number of neighbours (1,067). 
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Table 3.7 – Summary of local regression results 

 Optimal Bandwidths Statistics for MGWR parameter estimates 

Variable GWR MGWR Mean STD* Min Median Max 

Intercept 173 52 -0.019 0.426 -1.415 -0.101 1.246 

Curvature 173 102 0.170 0.184 -0.197 0.126 0.640 

LULC_1 173 222 0.107 0.118 -0.131 0.080 0.577 

Aspect 173 242 -0.187 0.077 -0.345 -0.191 0.043 

Elevation 173 1067 0.433 0.008 0.420 0.438 0.441 
* Standard deviation 

 

The MGWR bandwidth and the standard deviation parameter estimates of the variables are 

inversely related because a large bandwidth of a variable influences the dependent variable 

on a large scale which means small heterogeneity and, consequently, a small standard 

deviation of parameter estimates (Fotheringham et al., 2019). Likewise, a short bandwidth 

influences the dependent variable on a local scale where the standard deviation of the local 

parameter is large (Table 3.7). 

MGWR local coefficients of each explanatory variable are shown in Figure 3.6, where blank 

areas indicate that the coefficients are not significantly different from zero. Hence, the 

explanatory variable does not significantly affect the altimetric error in those locations. The 

significant coefficients of the aspect variable are all negative and appear in the upper and 

middle course of the hydrographic region of Uruguay (Figure 3.6a). On the other hand, the 

non-significant coefficients of this variable are mostly in the lower part of the study area. 

Therefore, the explanatory variable does not significantly correlate with the altimetric error 

in those locations. Figure 3.6b shows the variation of the curvature local parameters where 

the coefficients are all positive in parts of the upper and lower course of the watershed, 

considering only regions with significant values. Figure 3.6c reveals that the elevation variable 

significantly influences the altimetric error at a global scale and its coefficients are very similar 

across the whole study area, as they range from 0.42 to 0.45. All significant coefficients of the 

LULC_1 (artificial area) variable also presented positive values, and they are mainly in the 

lower course of the watershed (Figure 3.6d). 

The percentage of locations with significant coefficients (p≤0.05 of t-test) of aspect, curvature, 

elevation, and LULC_1 were 82%, 36%, 100%, and 18%, respectively (Appendix D). 
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3.4 DISCUSSION 

Despite covering 2% of Brazil’s territory, the area of the Brazilian part of the Uruguay River 

watershed is approximately equal to double the area of some countries such as Azerbaijan 

(86,600 km2), Hungary (93,030 km2) or Portugal (92,212 km2). Other regions of the Brazilian 

territory were discarded, and that area was chosen because of the reasonable coverage of 

points from the BGN, where we could identify 1,068 reference points satisfactorily distributed 

over the study domain. Being the Topodata model exclusively developed for the Brazilian 

territory, it is expected that the altimetric range of the study area (32 to 1822 meters above 

sea level) may adequately represent the average of the national territory elevation. 

The statistical analysis results demonstrated that the elevation and slope variables affect the 

accuracy of the Topodata DEM because higher places and steeper areas presented higher 

altimetric errors. In fact, the highest altimetric error residuals are related to the highest slope 

classes, and this result was also observed in similar studies (Gdulová et al., 2020; González-

Moradas & Viveen, 2020; Gorokhovich & Voustianiouk, 2006; Sandip Mukherjee et al., 2013; 

Varga & Bašić, 2015). Additionally, altimetric errors are higher on higher-elevation surfaces, 

which was also found by Mukherjee et al. (2013) and Pandey et al. (2017). Nevertheless, some 

authors did not find a significant relationship between altimetric error and elevation 

(González-Moradas & Viveen, 2020; Varga & Bašić, 2015). 

There is evidence of the influence of LULC on altimetric errors of the Topodata DEM since the 

artificial areas and forest vegetation presented higher altimetric errors when compared with 

the other classes as shown in the statistical analysis. Previous studies have already verified the 

LULC effect on altimetric error (Satgé et al., 2015; Yap et al., 2019), especially in vegetated 

areas (Dong & Shortridge, 2019; Gdulová et al., 2020; Leon et al., 2014) but such effect was 

also found in artificial areas (Dong & Shortridge, 2019; González-Moradas & Viveen, 2020), 

although smaller altimetric errors have been observed in built and homogeneous 

environments such as houses, roads and bare land (Leon et al., 2014). Despite the statistical 

analysis having shown some influence of the forest vegetation class on the altimetric error, 

this variable was not included in the local regression models because it was only significant in 

0.02% of all the exploratory OLS investigated models. The best OLS regression model identified 

in this analysis included aspect, curvature, elevation and LULC_1 (artificial area) as explanatory 

variables of the altimetric error in the Topodata DEM. Nonetheless, Random Forest Regression 
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(Breiman, 2001) could be considered in future studies for the selection of a reduced number 

of factors from a large set of potential explanatory variables. 

The analysis of spatial effects in altimetric errors highlighted the pattern of spatial 

heterogeneity of the altimetric error. Generally, GWR outperforms global regression models 

because of its capability to deal with spatial non-stationarity. However, GWR uses a single 

optimized bandwidth for all independent variables to define the local neighbourhoods, thus 

assuming that all relationships vary at the same spatial scale across all covariates 

(Fotheringham et al., 2002; Fotheringham et al., 2019). Nevertheless, we assume that they 

may operate at different scales. In this sense, the MGWR approach is more appropriate since 

it computes an optimal bandwidth for each independent variable (Fotheringham et al., 2017). 

In fact, MGWR outperforms GWR because it allows examining the spatial scales in different 

processes by enabling the optimization of covariate‐specific bandwidths (Fotheringham et al., 

2019; Yu et al., 2020). 

GWR and MGWR models were estimated using the same covariates of the best OLS model 

previously identified. Regression analysis results based on the Adjusted R2 and AICc values 

proved that the MGWR outperforms the OLS and GWR models as expected. Moreover, our 

findings allow us to state that GWR may not be suitable for modelling the altimetric errors of 

a DEM because not all the explanatory variables influence the altimetric error on the same 

scale. Our results confirm the hypothesis that each explanatory variable operates on a 

different scale as the curvature variable affects the altimetric error on a local scale, the LULC_1 

(artificial area) and aspect on a regional scale, and the elevation influences the dependent 

variable on a global scale. 

MGWR local coefficients of different variables can be directly compared because the 

dependent and independent variables were standardized. MGWR coefficients analysis 

showed that high positive altimetric errors are mainly where the aspect and curvature 

variables coefficients are significant. Most of the highest positive altimetric errors (high-high 

clusters/hot spots) are placed in regions with the lowest coefficients of the aspect variable, 

which exhibits a negative relationship with the altimetric error. On the other hand, the 

curvature coefficients showed a positive relationship. Therefore, as the curvature values 

increase, so do the altimetric errors. However, it is possible to verify a (low-low) cluster of 
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points with negative altimetric errors overlapping regions with the highest values of the 

curvature coefficients. Negative altimetric errors (low-low clusters) are mostly in the middle 

region of the study area, where only aspect and elevation variables have significant 

coefficients. Furthermore, negative errors occurred almost exclusively where the LULC_1 

coefficients are not significant. 

One of the limitations of this study is the use of the SRTM DEM to derive some explanatory 

variables as this product also has accuracy issues (Weydahl et al., 2007). Nevertheless, future 

work should consider the development of algorithms capable of dealing with the error arising 

from some of the explanatory variables addressed in this study aiming to reduce altimetric 

discrepancies in the DEM products. 

3.5 CONCLUSION 

This study performed a vertical accuracy analysis of the Topodata DEM in the hydrographic 

region of Uruguay assuming the hypothesis that its vertical accuracy would be related to 

terrain characteristics. The results of the statistical analysis showed that the MAE and RMSE 

values are sensitive to elevation, slope and some LULC classes, namely forest vegetation and 

artificial area. We performed a linear regression analysis through OLS, GWR and MGWR 

models to identify the factors that may explain the spatial patterns in the altimetric error of 

the Topodata DEM. The MGWR model showed better results than OLS and GWR because it 

models the relationship between the altimetric error and the factors influencing DEM vertical 

accuracy considering the geographic scale at which individual process occurs. The aspect, 

curvature, and artificial areas variables operate at much smaller scales than elevation which 

influences the altimetric error on a global scale. This implies that elevation is more relevant 

throughout the whole study area, whilst the other variables are relevant in certain areas since 

they operate on local or regional scales. 

Our findings proved that different terrain characteristics operate at different scales and their 

relationships with altimetric error vary in space. In this way, this research provides a better 

understanding of the global and local processes influencing the quality of Topodata products 

and highlights the importance of terrain characteristics in effective DEM product 

development, besides shedding light on some limitations of regression modelling applications. 
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4 FINAL CONSIDERATIONS 

The primary objective of this study is to enhance the comprehension of both the global and 

local factors that impact the quality of DEM products. In this regard, Chapter 2 presents a 

comprehensive assessment of the vertical accuracy of four DEM, namely ALOS PALSAR, 

GMTED2010, SRTM, and Topodata, with the primary goal of classifying their accuracy 

according to the Brazilian cartographic standard. This chapter’s outcomes establish the 

suitability of these DEM for mapping at scales up to 1:100,000, in compliance with the Brazilian 

cartographic accuracy standard.  

Notably, ALOS PALSAR and SRTM emerged as the top performers in the analysis. ALOS PALSAR 

exhibited the lowest Mean Error (ME) and Mean Absolute Error (MAE), while SRTM showcased 

the lowest Root Mean Square Error (RMSE) and the smallest error range. Topodata, a 

refinement of the SRTM data, demonstrated slightly larger errors when compared to ALOS 

PALSAR and SRTM. The primary reason for the less favourable performance of the 

GMTED2010, despite its potential compatibility with the same scale according to the Brazilian 

PEC standard, was attributed to its larger pixel size of 231 meters. 

Through the categorization of DEM accuracy in alignment with the Brazilian cartographic 

accuracy standard, this chapter emphasises the importance of adhering to quality assurance 

guidelines to ensure that DEM accurately represent the Earth's surface, enhancing our 

comprehension of their suitability for a wide range of mapping applications. 

This analysis raised questions about the influence of terrain characteristics on DEM accuracy. 

While some prior studies have identified a strong correlation between elevation/slope and 

altimetric error, our results did not reveal significant correlation coefficients between these 

variables. These observations underscore the intricacies involved in assessing DEM accuracy 

and highlight that while terrain characteristics are a contributing factor, their effects can vary. 

The findings of this chapter not only contribute to the understanding of DEM accuracy but also 

shed light on the implications of terrain characteristics and the potential limitations in 

assessing DEM accuracy.   

In Chapter 3 of this dissertation, a meticulous analysis of the vertical accuracy of the Topodata 

DEM was conducted in the hydrographic region of Uruguay, with a focus on terrain 
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characteristics and their role in influencing DEM accuracy. The findings of this chapter unveil 

significant insights into the intricate relationship between topographic characteristics, LULC, 

and DEM accuracy. 

The study area, comprising the Brazilian part of the Uruguay River watershed, may constitute 

only 2% of Brazil's vast territory, but its geographic significance and the presence of 1,068 

adequately distributed reference points from the Brazilian geodetic network provided a 

robust database for analysis. Given that the Topodata model was exclusively designed for the 

Brazilian landscape, it was anticipated that this area would offer a representative altimetric 

range, spanning from 32 to 1822 meters above sea level, thereby reflecting the national 

elevation average. 

A valuable revelation of this study is the impact of elevation and slope on Topodata DEM 

accuracy since higher elevations and steeper terrains consistently corresponded with 

increased altimetric errors. This finding helps us to answer our first research question and 

underscores the importance of considering terrain characteristics in DEM vertical accuracy 

assessments. In addition, Chapter 3 also provides compelling evidence of the LULC's influence 

on altimetric errors in the Topodata DEM. Noticeably, areas characterized by artificial 

structures and forest vegetation exhibited higher altimetric errors compared to other LULC 

classes. This observation aligns with prior research that has highlighted the effect of LULC on 

DEM accuracy, especially in vegetated regions. These findings also accentuate the necessity 

of accounting for LULC when assessing DEM accuracy. 

The research conducted in this chapter also underscores the importance of DEM error spatial 

variation analysis. By employing GWR and MGWR models, we discovered that not all 

explanatory variables exert the same influence on altimetric error. These results accentuate 

the significance of addressing error spatial non-stationarity in the context of DEM accuracy 

assessment and cover our second research question since the spatial analysis of DEM 

uncertainties revealed the presence of spatial heterogeneity in altimetric errors.  

GWR and MGWR models were employed to account for the spatial non-stationarity of 

Topodata DEM error. The results underscored that terrain characteristics operate at different 

scales and exhibit varying relationships with altimetric error. While GWR has proven utility in 
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addressing spatial non-stationarity, the MGWR approach emerged as more suitable for 

examining the distinct spatial scales at which each explanatory variable operates.  

It was further demonstrated that elevation operates on a global scale, affecting altimetric 

error uniformly across the study area. In contrast, the aspect, curvature, and LULC_1 (artificial 

area) variables operate at different local and regional scales. These results respond to our 

third research question, reiterating the importance of considering the geographic scale at 

which each variable impacts altimetric error. 

The detailed analysis of MGWR coefficients provided a nuanced understanding of how terrain 

characteristics influence altimetric errors at the local scale. It was observed that high altimetric 

errors were primarily associated with areas where aspect and curvature variables exhibited 

significant coefficients. In this way, this study enhances our understanding of the DEM 

altimetric errors, highlighting some particularities of their spatial patterns. 

In summary, this chapter presents a substantial contribution to the understanding of DEM 

accuracy and the role of terrain characteristics in shaping it. The results not only provide 

insights into the spatial variations of DEM accuracy but also underscore the importance of 

employing appropriate geospatial techniques to address this variability. As the field of 

geospatial analysis continues to evolve, the findings here offer valuable guidance for 

researchers, practitioners, and decision-makers working with DEM, ultimately enhancing the 

effective use of geospatial data in diverse applications. By highlighting the significance of 

terrain characteristics and the challenges related to spatial heterogeneity, this research 

contributes valuable insights to the field of geospatial data quality assessment, ultimately 

enabling better-informed decisions in various applications that rely on DEM data. 
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5 LIMITATIONS AND RECOMMENDATIONS FOR FUTURE WORKS 

Recognizing that DEM accuracy assessment relies heavily on the availability of accurate data 

and specific standardized guidelines, the study calls attention to the critical role of DEM in 

enabling efficient mapping and geospatial analysis. The Chapter 2 findings, despite being quite 

informative, are constrained by the limited distribution of control points from the Brazilian 

geodetic network within the Balsas River watershed since they are primarily along highways. 

To address this limitation and further advance research in this field, future studies are 

encouraged to delve into the accuracy of DEM in other areas considering specific applications. 

In addition, exploration into other factors that may influence altimetric errors, such as 

watershed roughness, vegetation coverage, and land use, is recommended. By refining the 

understanding of DEM accuracy and the impacts of terrain characteristics, researchers can 

better harness these essential tools for geospatial applications, supporting informed decision-

making in various domains. 

The limitations of Chapter 3, including the use of SRTM DEM data to derive some explanatory 

variables, were acknowledged, and the need for addressing such limitations was highlighted. 

This Chapter's outcomes point to avenues for future research, particularly in the development 

of algorithms capable of mitigating errors introduced by certain explanatory variables. 

Furthermore, it is advisable to employ algorithms that can efficiently choose a limited set of 

factors from a vast array of potential explanatory variables while also addressing the issue of 

multicollinearity among these factors. 
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APPENDICES 

APPENDIX A1/A2 – CORRELATION BETWEEN THE ELEVATION OF THE REFERENCE POINTS (BGN) AND 

THE ELEVATION  

 

Figure A 1 / A 2 – Correlation between the elevation of the reference points (BGN) and the elevation 
extracted from SRTM (A1) and Topodata (A2) 
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APPENDIX A3 – HISTOGRAM OF THE ALTIMETRIC ERROR 

 

Figure A 3 – Histogram of the altimetric error 

 

 

 

 

 

 

 

 

 

 

 

 



82 
 

APPENDIX A4 – BOXPLOTS OF THE ELEVATION DIFFERENCES 

 

Figure A 4 – Boxplots of the elevation differences (BGN, SRTM and Topodata) 
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APPENDIX B – STATISTICAL ANALYSIS OF THE ALTIMETRIC ERROR 

 
Figure B 1/B2/B3 - Statistical analysis of the altimetric error regarding slope (B1), elevation (B2) and LULC class (B3) 
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APPENDIX C – CORRELATION MATRIX OF THE CANDIDATE EXPLANATORY VARIABLES 

 
Figure C – Correlation matrix of the candidate explanatory variables
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APPENDIX D – STATISTICS OF SIGNIFICANT COEFFICIENT ESTIMATES (MGWR) 

 

Table D - Statistics of significant coefficient estimates (p≤0.05 of t-test) for the MGWR model of 
altimetric error 

Variables Minimum Maximum Median Mean Standard Deviation Percentage of points 

Intercept −1.424 1.251 −0.312 0.023 0.675 35% 

Aspect −0.345 −0.123 −0.200 -0.213 0.052 82% 

Curvature 0.126 0.639 0.345 0.368 0.134 36% 

Elevation 0.426 0.447 0.444 0.439 0.008 100% 

LULC_1 0.083 0.577 0.278 0.291 0.130 18% 
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