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ABSTRACT

The field of geospatial data quality assessment is critical for ensuring the reliability and utility of Digital
Elevation Models (DEM). DEM provide detailed elevation information, impacting various Earth
sciences applications, including hydrology, geomorphology, environmental monitoring, land-use
planning, and disaster management. However, uncertainties in DEM can propagate to derived
products, which may lead to inaccurate predictions and decisions. This research addresses a significant
knowledge gap in the field, particularly in understanding how terrain characteristics influence DEM
vertical accuracy and how this impact varies across different spatial scales. The main objectives of this
research are to investigate the vertical uncertainty of four open-source DEM, classify them according
to cartographic standards, explore the correlation between DEM vertical error and terrain
characteristics, provide a better understanding of error factors, identify local factors affecting DEM
vertical accuracy, and investigate how terrain characteristics relate to altimetric error at different
spatial scales. To achieve these objectives, we employed advanced geospatial techniques, including
Geographically Weighted Regression (GWR) and Multiscale Geographically Weighted Regression
(MGWR) to analyse local relationships and spatial variability in DEM altimetric errors. Our research
reveals that elevation and slope impact DEM vertical accuracy, with higher altitudes and steeper
terrains corresponding to increased altimetric errors. Furthermore, Land Use and Land Cover (LULC)
also influence altimetric errors, particularly in areas with artificial structures and forest vegetation. The
major contributions of this work include a nuanced understanding of DEM vertical accuracy and the
role of terrain characteristics, emphasizing the importance of addressing spatial non-stationarity in
DEM vertical accuracy assessments. Our research highlights the significance of terrain characteristics
on DEM vertical error at different spatial scales and offers valuable guidance for researchers and
practitioners working with these data. By enhancing the understanding of these influences, this
research advances the field of geospatial data quality assessment, leading to better-informed decisions
in several applications relying on these products.
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RESUMO

O campo da avaliacdo da qualidade dos dados geoespaciais é fundamental para garantir a
confiabilidade e a utilidade dos Modelos Digitais de Elevacdo (MDE). O MDE fornece informacgdes
detalhadas de elevagao, impactando diversas aplicacGes de ciéncias da Terra, incluindo hidrologia,
geomorfologia, monitoramento ambiental, planejamento do uso da terra e gestdao de desastres. No
entanto, as incertezas nos MDE podem propagar-se em seus produtos derivados, o que pode levar a
previsdes e decisGes imprecisas. Esta pesquisa aborda uma lacuna significativa de conhecimento na
area, particularmente na compreensao de como as caracteristicas do terreno influenciam a acuracia
vertical do MDE e como esse impacto varia em diferentes escalas espaciais. Os principais objetivos
desta pesquisa sdo investigar a incerteza vertical de quatro MDE de cédigo aberto, classifica-los de
acordo com padrdes cartograficos, explorar a correlacdo entre o erro vertical do MDE e as
caracteristicas do terreno, fornecer uma melhor compreensao dos fatores de erro, identificar fatores
locais que afetam a acurdcia vertical do MDE e investigar como as caracteristicas do terreno se
relacionam com o erro altimétrico em diferentes escalas espaciais. Para atingir esses objetivos,
empregamos técnicas geoespaciais avangadas, incluindo Regressdo Geograficamente Ponderada
(GWR) e Regressdo Geograficamente Ponderada Multiescala (MGWR) para analisar as relagGes locais
e a variabilidade espacial em erros altimétricos nos MDE. Nossa pesquisa revela que a elevacdo e a
inclinagdo impactam a acurdcia vertical do MDE, com altitudes mais altas e terrenos mais ingremes
correspondendo a maiores erros altimétricos. Além disso, o uso e cobertura da terra (LULC) também
influencia os erros altimétricos, particularmente em areas com estruturas artificiais e vegetacao
florestal. As principais contribuicGes deste trabalho incluem uma compreensdo diferenciada da
acuracia vertical do MDE e do papel das caracteristicas do terreno, enfatizando a importancia de
abordar a ndo-estacionariedade espacial nas avaliagdes de acurdcia vertical do MDE. Nossa pesquisa
destaca a importancia das caracteristicas do terreno no erro vertical em MDE em diferentes escalas
espaciais e oferece orientagao valiosa para pesquisadores e profissionais que trabalham com esses
dados. Ao melhorar a compreensdo destas influéncias, esta pesquisa avanga no campo da avaliagdo
da qualidade de dados geoespaciais, permitindo decisGes mais bem informadas em diversas aplicacGes
que dependem destes produtos.
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Voronoi; Acuracia Vertical
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1 INTRODUCTION

A Digital Elevation Model (DEM) is a raster representation of the Earth's surface topography
where each cell (pixel) contains information about the elevation (height) of the terrain
(Abrams et al., 2020; Chaplot et al., 2006; Chen & Yue, 2010; Guth, 2006; Hirt et al., 2010;
Smith et al., 2022). Generating a DEM involves collecting tree-dimensional data from the
ground surface using miscellaneous technologies, namely, photogrammetry, Interferometric
Synthetic Aperture Radar (InSAR), Light Detection and Ranging (LiDAR), Airborne Laser
Scanning (ALS) and field surveying (Chang et al., 2004; Hodgson et al., 2003; Miller et al., 2022;
Mondal et al., 2017).

Considering that DEM provide detailed three-dimensional information about the terrestrial
surface (Guth et al., 2021), they have become valuable tools for Earth sciences applications
concerning hydrology (Roostaee & Deng, 2020; Tran et al., 2023; Wechsler, 2007; Zhang &
Montgomery, 1994), geomorphology (Dhont & Chorowicz, 2006; Hancock et al., 2006; S. Li et
al., 2020; Walker & Willgoose, 1999; Xiong et al., 2021), environmental monitoring (Ahmad,
2018; Carrol & Morse, 1996; Florinsky, 1998; Mansour et al., 2020), land-use planning
(Hammer et al., 1995; Munoth & Goyal, 2020; Tan et al., 2020; Tang et al., 2020), and disaster
management (Demirkesen, 2012; Griffin et al., 2015; Manfreda & Samela, 2019; Naderpour
et al.,, 2019; Saleem et al.,, 2019). However, it is improbable that DEM provide a perfect
representation of the Earth's surface owing to various sources of uncertainty related to
sampling, topographic complexity, geodetic control, survey point accuracy, processing

techniques, interpolation, and resolution (Williams, 2012).

A DEM is an approximation representing an actual terrain surface and, inherently, includes a
level of uncertainty that can affect DEM derivatives (i.e., slope, aspect, curvature, etc.), which
may lead to an imprecise representation of terrain features (Aerts et al., 2003; Darnell et al.,
2008; Zhou & Liu, 2002). Since some products derived from DEM, such as slope and aspect,
are key parameters influencing landscape natural processes, DEM accuracy may affect
predictions involving natural hazards, land-use potential, and environmental planning (Gonga-
Saholiariliva et al., 2011). Hence, a better understanding of these models’ errors is crucial to
reduce the potential error propagation, given that the greater the vertical error of a DEM, the

greater the error in their derived products (Oksanen, 2006). Nonetheless, developing a



comprehensive error model for DEM uncertainty has proven to be challenging due to the

complexity of the rigorous analysis of error propagation (Oksanen & Sarjakoski, 2006).

The essential role of DEM in supporting decision-making processes justifies the critical
importance of assessing the uncertainties of these products (Altunel, 2019; Oksanen, 2006;
Soliman & Han, 2019; Wechsler, 2003) because the outcomes from DEM applications are
directly influenced by their quality, which is affected mainly by their vertical accuracy and
spatial resolution (Soliman & Han, 2019). Thereupon, quantifying a DEM accuracy can be
challenging due to the absence of an absolute "true" reference, leading to uncertainty and
subjectivity when evaluating the correctness and quality of these models (Zhou & Liu, 2002),
not to mention that the primary indicator of DEM quality should not only rely on the absolute

accuracy of elevation values within a sample (Reuter et al., 2009).

DEM vertical accuracy is typically assessed using metrics that do not incorporate spatial
dimensions, such as the mean error (ME), mean absolute error (MAE), and root mean square
error (RMSE) (Chaplot et al., 2006; Erdogan, 2010; J. Li et al., 2020; Thomas et al., 2014). RMSE
is the parameter most used to assess DEM accuracy (Mesa-Mingorance & Ariza-Lopez, 2020;
Nadi et al., 2020), but it offers a generalized overview of the error, lacking the capability to
differentiate areas with varying levels of uncertainty (Aerts et al., 2003). These metrics are
typically obtained by comparing the elevations extracted from the assessed DEM and a
reference dataset acquired from a more accurate data source (Mesa-Mingorance & Ariza-

Lépez, 2020; Polidori & El Hage, 2020; Temme et al., 2009).

DEM error metrics (i.e., ME, MAE and RMSE) provide an overall assessment of their accuracy
(Erdogan, 2010). However, spatial aspects of DEM error are constantly overlooked (Oksanen
& Sarjakoski, 2006), and thus, users have to consider the assumption that error rates remain
homogeneous everywhere in the DEM (Erdogan, 2010). Therefore, modelling the DEM error
magnitude is fundamental in overall surface characteristics production (Ehlschlaeger, 2002),
as it can offer assessments of the potential impacts of data quality, allowing users to make
informed judgments about the appropriateness of spatial data for particular tasks (Fisher,
1998). In this way, extensive research in uncertainty analysis has yielded a wide array of

methods for exploring DEM errors and their propagation (Darnell et al., 2008) once a more



comprehensive explanation of the errors facilitates a deeper understanding of DEM quality

and its level of uncertainty when applied to analytical scenarios (Erdogan, 2010).

DEM errors, arising from sampling, measurement, and interpolation processes, are often
considered to have no spatial distribution and to be statistically stationary over a region, but
both are unrealistic assumptions (Fisher, 1998). Hence, deep investigation is needed to
identify the optimal statistical representation for errors in specific applications, as different

applications require tailored statistical combinations (EhIschlaeger, 2002).

Regression modelling may be a good approach as it has the potential to generate error
surfaces considering spatial non-stationarity, spatial correlation, and heteroscedasticity
(Carlisle, 2005). Generally, DEM error varies spatially across an area (spatial variability) besides
being sometimes related to errors from neighbouring cells (spatial autocorrelation) (Carlisle,
2005; Darnell et al., 2008; Williams, 2012). Accordingly, a global model, such as Ordinary Least
Squares (OLS), may not accurately represent spatial non-stationarity relationships and can be
highly misleading locally (Erdogan, 2010; Fotheringham et al., 2002) because even when the
global average DEM error is small, local error values can exhibit significant magnitudes as well

as present spatial correlations among them (Holmes et al., 2000).

Despite being a linear regression model, the OLS technique considers the investigated
processes to be constant across space, which is often an invalid assumption (Erdogan, 2010).
Thus, to overcome this issue, Geographically Weighted Regression (GWR) was developed as
an alternative approach for analysing local relationships within multivariate datasets

(Fotheringham et al., 2002).

GWR investigates the potential spatial variability in relationships and offers insight into the
spatial scale at which processes operate by identifying an optimal bandwidth, presuming that
all variables operate at the same spatial scale (Fotheringham et al., 2017). On the other hand,
Multiscale Geographically Weighted Regression (MGWR) explores spatial heterogeneity by
identifying the spatial scale at which different processes operate (Fotheringham et al., 2017).
In other words, it allows us to identify if the relationships between dependent and
independent variables occur at local, regional, or global scales. Given these considerations and

the factors above-mentioned, there is a compelling opportunity to investigate the global and



local processes influencing the quality of DEM to ensure the reliability and utility of these

products.

1.1 RESEARCH QUESTIONS
The hypotheses under the research are the following:
e Can the terrain characteristics explain the altimetric error in a DEM?

e What are the spatial variations in the magnitude of the relationship between altimetric
error and terrain characteristics?

e What are the spatial scales over which terrain characteristics affect local variations in
DEM vertical errors?

1.2 RESEARCH OBJECTIVES

The main goal of our study is to provide a better understanding of the global and local
processes influencing the quality of DEM products. To accomplish the overall goal, we had to

divide our research into some specific objectives, as follows:

e Toinvestigate the vertical uncertainty of four open-source DEM.

e To classify four open-source DEM according to the Brazilian Cartographic Accuracy
Standard.

e Toinvestigate the correlation between DEM vertical error and terrain characteristics.

e To provide a better comprehension of DEM vertical error influencing factors.

e Toidentify the local factors that may explain the vertical error of an open-source DEM.

e To investigate if the relationship between terrain characteristics and altimetric error
operates at different spatial scales.

1.3 RESEARCH METHODOLOGY

The research methodology for the DEM vertical accuracy analysis carried out in this

dissertation is summarized in Figure 1.1.
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1.4 DISSERTATION STRUCTURE

This dissertation is organized into five chapters, which include three research articles. The first
chapter is an introduction section that addresses the background contextualization, research

guestions, objectives and the research path performed.

Regarding the research path, the first paper (Ferreira & Cabral, 2021) was published in the 7t
International Conference on Geographical Information Systems Theory, Applications and
Management (GISTAM 2021). Since this study won the GISTAM 2021 Best Student Paper
Award, it was invited for a conference post-publication. Therefore, the second chapter of this
dissertation refers to the second paper (full version) published in the International Journal of
Geo-Information (Ferreira & Cabral, 2022), which incorporated the first article. The third
chapter refers to the article published in the European Journal of Remote Sensing (Ferreira et
al., 2023). The fourth chapter summarizes the main findings of our study, whereas the fifth
chapter brings some limitations of this research and recommendations for future works. Table

1.1 shows how this dissertation is organized.

Table 1.1 — Dissertation structure

Chapter Title Status Journal Ranking?

1 Introduction N/A N/A

Published in the 7t
International Conference on

Vertical accuracy assessment of ALOS . .
Geographical Information

PALSAR, GMTED2010, SRTM and - N/A
Topodata Digital Elevation Models? Systems Theory, Applications
and Management (GISTAM
2 2021)
A comparative study abqut vertl.cafl Published in the International
accuracy of four freely available Digital .
. ) Journal of Geo-Information Scopus — Q1
Elevation Models: A case study in the (ISPRS)
Balsas River Watershed, Brazil®
Analysing the spatial context of the
altimetric error pattern of a digital Published in the European
3 . . . . Scopus —Q1
elevation model using multiscale Journal of Remote Sensing
geographically weighted regression
4 Final Considerations N/A N/A

L. . . 1
c imitations and recommendations for N/A N/A
future works

!Journal ranking at the submission date.
2This paper won the GISTAM 2021 Best Student Paper Award and it was invited for a conference post-publication.
3This paper is the full version of the special issue of the conference post-publication.



2 A COMPARATIVE STUDY ABOUT VERTICAL ACCURACY OF FOUR FREELY
AVAILABLE DIGITAL ELEVATION MODELS: A CASE STUDY IN THE BALSAS
RIVER WATERSHED, BRAZIL!

Abstract: Digital Elevation Models (DEM) provide important support to research since these
data are freely available for almost all areas of the terrestrial surface. Thus, it is important to
assess their accuracy for correct applicability regarding the correct use scale. This paper aims
to assess the vertical accuracy of ALOS PALSAR, GMTED2010, SRTM and Topodata DEM
according to the Brazilian Cartographic Accuracy Standard through the official high accuracy
network data of the Brazilian Geodetic System. This study also seeks to investigate whether
the altimetric error is correlated with altitude and slope in the study area. Our results showed
that the four assessed DEM in this study demonstrated satisfactory accuracy to provide
mappings in scales up to 1: 100,000 because more than 90% of the extracted points presented
altimetric errors of less than 25 meters when compared to the reference points from the high
accuracy network of the Brazilian Geodetic System. Regarding the altimetric error, we could
not find a significant correlation coefficient with altitude or slope in the study area. In this
sense, future DEM assessments should be based on the investigation of other factors that may

influence altimetric error.

2.1 INTRODUCTION

Digital Elevation Models (DEM) provide an important topographic product that is fundamental
for many scientific and commercial applications (Rizzoli et al., 2017; Uysal et al., 2015).
However, traditional methods to acquire information for DEM generation are often expensive
and time-consuming due to land surveying necessity (Uysal et al., 2015). On the other hand,
several DEM products from many sources have been made freely available to geoinformation
users in the last decade, so it is important to investigate their possible applications by

assessing their accuracy (Moura et al., 2014).

! The text from this chapter has been published in the International Journal of Geo-Information (ISPRS).
https://doi.org/10.3390/ijgi11020106.
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DEM products accuracy has been regularly investigated to evaluate their applicative
potentialities thus improving the mapping methods (Polidori et al., 2014). Most of these
experiments are performed by comparing the extracted data from DEM to a set of reference
data, i.e., control points, through accuracy statistical indicators, such as mean difference,

standard deviation or root mean square error (Polidori et al., 2014).

DEM accuracy assessment requires further attention considering that, despite technological
advances in the creation and availability of these products, there are still no specific
standardized guidelines regarding this assessment process (Mesa-Mingorance & Ariza-Ldpez,
2020). Nonetheless, in Brazil, there is a decree that regulates the quality of cartographic
products by establishing instructions for the technical standards of national cartography. The
Decree n° 89,817/1984 determines criteria for cartographic products classification regarding
their accuracy and the distribution of errors using a statistical indicator of positional quality
named Cartographic Accuracy Standard (Padrdo de Exatiddo Cartogrdfica - PEC). Therefore,
90% of the extracted points from the cartographic product must not present errors higher
than those predicted in the PEC when their coordinates are compared with those from

surveyed points in the field through a high accuracy method (Brazil, 1984, 2016).

There are a lot of studies on DEM accuracy assessment (Hu et al., 2017; Jain et al., 2018;
Mouratidis & Ampatzidis, 2019; Varga & Basi¢, 2015; Wessel et al., 2018), but none assessed
the vertical accuracy of the ALOS PALSAR, GMTED2010, SRTM and Topodata DEM according
to the Brazilian Cartographic Accuracy Standard (PEC). Thus, the purpose of this study is to
assess the vertical accuracy of the above-mentioned DEM by using the official high accuracy
network data of the Brazilian Geodetic System. This study also seeks to investigate whether
the altimetric error is correlated with altitude and slope in the study area. We expect that
results contribute to the correct applicability of the analysed DEM according to an appropriate

use scale in Brazil and other places dealing with the same problem context.



2.2 MATERIALS AND METHODS

2.2.1 Study area

The Balsas River watershed covers thirteen municipalities and its area is 12,352.50 km?,
corresponding to nearly 4.5% of the State of Tocantins (Figure 2.1) (Brazil, 2012). Its altitudes
are approximately between 200 and 800 meters considering the sea level and inside this area,
we can find 105 stations of the official Brazilian geodetic network situated along the main
highways of the region (Figure 2.2). It is worth noting the absence of high accuracy three-
dimensional data available for free to the community in various regions of the planet. In this
sense, the Balsas River watershed was selected due to the lack of accurate three-dimensional

data available for this area.
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Figure 2.1 — Study area
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Figure 2.2 — Hypsometric maps of Balsas River watershed derived from: (a) ALOS PALSAR, (b)
GMTED2010, (c) SRTM and (d) Topodata

2.2.2 Data

In this accuracy assessment, we compared the extracted points from the four DEM with the
official network data of the Brazilian Geodetic System. This network is composed of geodesic
stations located along the main highways throughout the Brazilian territory which was
implemented in 1945 through the high accuracy geometric levelling method (IBGE, 2019).
Since then, these altitudes are regularly recalculated owing to the addition of new geometric
levelling lines, development of new data measurement and processing techniques, where new
observations of geometric levelling and gravimetry are added aiming to ensure the integrity,
consistency, and reliability of the information from the Geodetic Database. According to the
quality assessment of these altimetric data performed in 2018, 87.5% of the adjusted
geopotential values presented standard deviations between 6 and 10 centimetres in absolute

terms (IBGE, 2019).
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The Advanced Land Observing Satellite "DAICHI" (ALOS) was designed to supply land coverage
mapping, resource surveying and disaster monitoring (JAXA, 2020b). It was launched on
January 24, 2006, from the Tanegashima Space Center with three sensors onboard namely
Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM), Advanced Visible and
Near Infrared Radiometer type 2 (AVNIR-2), and Phased Array type L-band Synthetic Aperture
Radar (PALSAR). ALOS mission was completed on May 12, 2011, but during its 5-years
operation, it shot 6.5 million scenes around the Earth, which have been used in many fields,
such as agriculture, natural environment maintenance, forest monitoring and disaster
mitigation (JAXA, 2020b). The PRISM sensor is a panchromatic radiometer and has three sets
of optical systems with 2.5 meters spatial resolution at nadir, the AVNIR-2 sensor is a visible
and near-infrared radiometer that provides 10 meters spatial resolution images and PALSAR
is an active microwave sensor that uses L-band frequency to obtain cloud-free and day-and-

night land observation (JAXA, 2020a, 2020b).

The acquired data during the ALOS mission were geometrically and radiometrically corrected.
Firstly, the geometric distortions were corrected using some DEM, then the radiometry
correction was executed by adjusting the brightness of the individual SAR image pixels in the
affected foreshortening and layover regions (Gens, 2015; Laurencelle et al., 2015). Succeeding
the radiometric terrain correction, these products were distributed at two resolutions, 12.5
and 30 meters pixel size generated from high-resolution (NED13) and mid - resolution DEM

(SRTM30, NED1 and NED2), respectively (Gens, 2015).

The Shuttle Radar Topography Mission (SRTM) is an international project developed by the
National Aeronautics and Space Administration (NASA) and the National Geospatial-
Intelligence Agency (NGA). This mission started on February 11, 2000, and during 10 days,
SRTM acquired data over approximately 80 percent of Earth's land surface through two radar
antennas to create the first near-global data set of land elevations (NASA, 2020). Initially,
SRTM data were made publicly available at 3 arc-seconds resolution, or 90 meters of pixel size,
for regions outside the United States. However, in 2014, the topographic data were released
globally with the full resolution originally measured, that is 1 arc-second (30 meters) (NASA,

2020).
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The Topodata project is a topographic database generated from the refinement of SRTM data.
Due to the general lack of topographic data at adequate scales in some Brazilian regions, this
project was released in 2008 aiming to refine SRTM data from the 3 arc-seconds to 1 arc-
second resolution through kriging techniques as well as to provide the derivation of
geomorphometric data for the whole Brazilian territory (Valeriano, 2008; Valeriano & Rossetti,
2012). The Topodata project resulted in an extensive structured database freely available for
the scientific community which offers several products such as slope, slopes orientation,
horizontal curvature, vertical curvature, inputs for the drainage structure design among others

(Valeriano, 2008).

The Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) was developed by the
United States Geological Survey (USGS) in partnership with the National Geospatial-
Intelligence Agency (NGA) to replace the Global 30 Arc-Second Elevation (GTOPO30) as the
elevation dataset for global and continental scale applications (Danielson & Gesch, 2011).
GMTED2010 was elaborated using derived data from 11 raster-based elevation sources (Table
2.1), which provides global coverage from latitude 84°N to 56°S for most products at three
different resolutions 7.5, 15 and 30 arc-seconds, that corresponds to nearly 250, 500 and
1,000 meters of pixel size, respectively (Danielson & Gesch, 2011). In this study, we selected
the GMTED2010 product available in 7.5 arc-seconds resolution, which is widely used in
several scientific studies (Amatulli et al., 2018; Athmania, 2014; Janiec, 2020; Pakoksung,
2021; Tan et al., 2015; Thomas et al., 2014; Thomas et al., 2015; Varga & Basi¢, 2015) despite
its bigger pixel size when compared with SRTM, for instance. Table 2.2 presents the original

main characteristics of the four DEM assessed in this study.
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Table 2.1 — GMTED2010 - Input source data characteristics adapted from Danielson & Gesch (2011)

Dataset Resolution  Horizontal unit Horizontal
datum
SRTM DTED® 2 1 Arc-second WGS 84
DTED® 1 3 Arc-second WGS 84
CDED1 0.75 Arc-second NAD 83
CDED3 3 Arc-second NAD 83
15-arc-second SPOT 5 Reference3D 0.00416666 Decimal degree WGS 84
NED 0.00027777 Decimal degree NAD 83
NED — Alaska 0.00055555 Decimal degree NAD 83
GEODATA 9 second DEM version 2 0.0025 Decimal degree GDA 94
Greenland satellite radar altimeter DEM 1,000 Meter WGS 84
Antarctica satellite radar and laser altimeter DEM 1,000 Meter WGS 84
GTOPO30 0.00833333 Decimal degree WGS 84

(DTED®, Digital Terrain Elevation Data; WGS 84, World Geodetic System 1984; CDED, Canadian Digital Elevation
Data; NAD 83, North American Datum of 1983; SPOT, Satellite Pour I'Observation de la Terre; NED, National
Elevation Dataset; DEM, digital elevation model; GDA 94, Geocentric Datum of Australia 1994; GTOPO30, Global
30-Arc-Second Elevation Dataset).

Table 2.2 — Original characteristics of the four assessed DEM

Coordinate  Horizontal Vertical . . Radiometric
DEM Pixel Size .
System Datum Reference Resolution
ALOS . 16 bits
PALSAR Y WGS 84 Ellipsoid 12.5 meters (signed integer)
. Geoid 231 meters 16 bits
GMTED2010  Geographic WGS 84 (EGM96) (7.5 arc-seconds) (signed integer)
. Geoid 30 meters 16 bits
SRTM Geographic WGS 84 (EGM96) (1 arc-second) (signed integer)
Geoid 30 meters 32 bits
T hi W 4
opodata Geographic GS8 (EGM96) (1 arc-second) (floating point)

*The orthometric heights with EGM96 vertical datum were converted to ellipsoid heights using the ASF
MapReady tool named “geoid_adjust” (Laurencelle et al., 2015).

2.2.3 Methods

Figure 2.3 summarizes the methodology used in this study. Firstly, we downloaded the data
from the study area, such as raster DEM and Brazilian official geodetic network points. Then,
we proceeded with the radiometric resolution conversion of the Topodata DEM from 32 bits
(floating point) to 16 bits (signed integer) to standardize the data. The following step was to
extract the altitudes of the ALOS PALSAR, GMTED2010, SRTM and Topodata DEM at the same

coordinates of the reference points from the official geodetic network. However, we needed
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to convert the ellipsoidal altitudes of the ALOS PALSAR DEM to orthometric altitudes (geoid)
since the GMTED2010, SRTM and Topodata DEM were available with altitudes referenced to
the geoid (EGM96). For this conversion process, we used the MAPGEO2015 software (IBGE,
2015) developed by the Instituto Brasileiro de Geografia e Estatistica (IBGE) in collaboration

with the Escola Politécnica da Universidade de Séo Paulo.

Data download from study area |.... »| Radiometric resolution
conversion (Topodata)

.
Extraction of DEMs altitudes at Conversion to orthometric
the reference points altitudes (ALOS PALSAR)

A

Statistical analysis

A

DEMs classification (PEC)

Figure 2.3 — Flowchart of methodology

Afterwards, accuracy statistical indicators were calculated such as Altimetric Error (HE) (1),
Mean Error (ME) (2), Mean Absolute Error (MAE) (3) and Root Mean Square Error (RMSE) (4),
as performed in some previous studies (Jain et al., 2018; Varga & Basi¢, 2015; Wessel et al.,
2018). We also analysed the correlation between the altimetric error and altitude/slope in the
study area through the coefficient of determination (R?) (5). Finally, we could classify the four

DEM according to the Brazilian Cartographic Accuracy Standard (PEC) (lorio et al., 2012; Moura
et al,, 2014).
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He = Hrer- Hpem (1)

n

1
ME = — Z(HREF — HDEM) (2)
n i=1
1 n
MAE = — Z |HREF — HDEM]| (3)
n i=1
(4)

n
1
RMSE = |~ Z(HE — ME)?
i=1

RSS

2 _ I
R*=1 - 753 (5)

where He = altimetric error; Hrer = reference point altitude from Brazilian geodetic system official altimetric
network; Hpem = altitude extracted from DEM at reference point coordinates; ME = Mean Error; MAE = Mean
Absolute Error; RMSE = Root Mean Square Error; n = number of reference points; R? = coefficient of
determination; RSS = sum of squares of residuals; and TSS = total sum of squares.

2.3 RESULTS

Results show that regarding the mean error and mean absolute error, the values of the
statistical analysis are similar for the four DEM (Table 2.3). Actually, we observe that ALOS
PALSAR, SRTM and Topodata DEM present similarity in all statistical indicators, as well as it is
possible to notice that GMTED2010 shows the worst performance mainly when we consider
the RMSE (7.48 m) and the error range (54.00 m), i.e., the difference between the minimum

and maximum altimetric errors.

Table 2.3 — Statistical metrics of the altitude difference between control points and DEM

ALOS PALSAR GMTED2010 SRTM Topodata
ME (m) 12.70 13.31 12.82 12.87
MAE (m) 12.88 13.86 12.96 13.22
RMSE (m) 4.95 7.48 4.76 5.38
He min (m) -3.58 -14.22 -3.21 -6.17
He max (m) 22.04 39.78 20.93 23.60
Error Range (m) 25.62 54.00 24.14 29.77
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Figure 2.4 presents the histogram of the altimetric error of each DEM where we can see a

positive distortion in all four DEM and higher variability of the errors in the GMTED2010

product. Nevertheless, we can also notice a very strong correlation between the altitudes of

the reference points from the Brazilian official network and the altitudes extracted from the

assessed DEM, where it is possible to verify a determination coefficient (R?) of approximately

0.99 in all of them (Figure 2.5).
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Figure 2.5 —Linear correlation between the reference points altitudes of the Brazilian geodetic network
and altitudes extracted from each DEM: ALOS PALSAR (a), GMTED2010 (b), SRTM (c) and Topodata (d)

Aiming to investigate whether there is a correlation between slope and altimetric error, slope
maps of the Balsas River watershed were generated from each DEM, where six slope classes

were established according to IBGE (IBGE, 2007) (Figure 2.6).
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Figure 2.6 — Slope map for ALOS PALSAR (a), GMTED2010 (b), SRTM (c) and Topodata (d)

The spatial distribution of each slope class in the Balsas River watershed can be seen in Table
2.4, where we observe that the four DEM presented approximated values regarding the
second slope class (3 to 8%). However, the first class (0 to 3%) shows that the values differ
importantly and that SRTM and Topodata presented more similar values in this slope class
than the other DEM. Concerning the other slope classes, ALOS PALSAR, SRTM and Topodata
presented similar results but the GMTED2010 showed very different results, what was

expected, due to its pixel size.
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Table 2.4 — Spatial distribution of each slope class of the Balsas River watershed

ALOS PALSAR GMTED2010 SRTM Topodata

Slope Area(Km?) % Area(Km?) % Area(Km?) % Area(Km?) %

Oto3% 992.55 8.04 4,103.36 33.22 1,776.15 14.38 2,297.57 18.60

3to8%  5,459.72 44.20 5,881.54 47.61 5,155.10 41.73 5,295.32 42.87

8to20% 3,879.34 31.41 2,075.17 16.80 3,579.51 28.98 3,222.54 26.09

20to45% 1,813.29 14.68 292.36 237 1,696.15 13.73 1,45433 11.77

45to0 75%  200.78 1.63 0.07 0.00 142.65 1.15 82.15 0.67

>75% 6.83 0.06 0.00 0.00 2.94 0.02 0.59 0.00

Total 12,352.50 100.00 12,352.50 100.00 12,352.50 100.00 12,352.50 100.00

In this analysis, no significant correlation coefficient was observed between slope and
altimetric error (Table 2.5). Nonetheless, it is possible to notice that the RMSE increases as the

slope increases in all DEM except in the ALOS PALSAR DEM.
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Table 2.5 — Statistical analysis of altimetric error regarding slope classes

ALOS DEM

Slope ME (m) MAE (m) RMSE(m) R?  Points

Oto3% 13.89 13.89 3.81 0.0004 17

3to8% 1294 13.21 5.03 0.0005 62

>8% 11.61 11.64 4.71 0.0088 26

S =105

GMTED2010 DEM

Slope ME (m) MAE (m) RMSE (m) R? Points

Oto3% 1242 13.24 6.45 0.0000 54

3to8% 13.19 14.59 9.10 0.0014 43

>8%  13.45  20.96 17.57 0.0278 8

3 =105

SRTM DEM

Slope ME (m) MAE(m) RMSE (m) R?  Points

Oto3% 1444 14.44 2.86 0.0005 28

3to8% 12.43 12.52 4.86 0.0175 52

>8% 1246  12.61 5.13 0.0206 25

S =105

Topodata DEM

Slope ME (m) MAE (m) RMSE (m) R?  Points

Oto3% 14.71 14.71 2.75 0.0250 38

3to8% 13.01 13.29 5.13 0.0003 47

>8% 8.88 10.01 7.06 0.0024 20

5 =105
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We also did not find a significant correlation coefficient between altimetric error and altitude,
although we have noticed a higher value in R? for all assessed DEM considering the altitudes
above 550 meters, except for GMTED2010, as can be seen in Table 2.6. Regarding ME and

MAE, we observe that all DEM also present the highest values in this same altitude class.

Table 2.6 — Statistical analysis of altimetric error as regarding altitude

ALOS PALSAR DEM

Altitude (m) ME (m) MAE (m) RMSE (m) R? Points

250-350  12.10 12.10 421  0.0395 20

350-450  13.51  13.62 456 01384 53

450-550  11.52  11.99 592  0.0040 25

>550 13.48  13.48 237 02223 7
3 =105

GMTED2010 DEM

Altitude (m) ME (m) MAE (m) RMSE (m) R? Points

250-350 11.00 14.34 11.10 0.1037 20

350-450  12.92  14.40 879  0.0002 53
450-550  12.58  13.36 6.52  0.0092 25
>550 18.01  18.01 773  0.0615 7
3 =105
SRTM DEM

Altitude (m) ME (m) MAE (m) RMSE (m) R  Points

250-350 12.00 12.00 4.00 0.0411 20
350-450 13.72 13.78 4.45 0.0971 53
450-550 1194 1214 5.36 0.0002 25

>550 13.86  13.86 191 0.3375 7

21



s =105

Topodata DEM

Altitude (m) ME (m) MAE (m) RMSE (m) R  Points

250-350  11.45  12.03 546  0.0345 20
350-450  13.47 13.79 500  0.0870 53
450-550  12.18  12.46 6.06  0.0034 25
>550 14.44  14.44 250  0.2060 7
3 =105

The interpolated surface of the altimetric error (Figure 2.7) does not show correlation
between altimetric error and slope or altitude when we compare it with Figures 2.2 and 2.6.
In fact, Figure 2.7 shows very similar surfaces for the SRTM and Topodata DEM and allows us
to verify that the highest altimetric errors coincide with the coordinates of the samples from
the Brazilian official network in the central area and that negative errors are concentrated in

the southwest region of the watershed.
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Figure 2.7 — Spatial distribution of the altimetric error for ALOS PALSAR (a), GMTED2010 (b), SRTM (c)
and Topodata (d) elaborated through the Inverse Distance Weighting (IDW) method

To classify each DEM product according to the appropriate application scale, we used the
altimetric cartographic accuracy standard for digital cartographic product development (Table
2.7), which determines that 90% of point errors collected in the cartographic product must

present the same values or less than those predicted in each class.
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Table 2.7 — Altimetric Cartographic Accuracy Standard of the Elevation Points and the Digital Terrain
Model, Digital Elevation Model and Digital Surface Model for Digital Cartographic Products production
(Brazil, 2016)

SCALE  1:25,000 1:50,000 1:100,000 1:250,000

PEC PEC* RMSE PEC* RMSE PEC* RMSE PEC* RMSE

Class (m) (m) (m) (m) (m) (m)  (m) (m)

A 270 167 550 333 13.70 833 27.00 16.67

B 5.00 3.33 10.00 6.66 25.00 16.66 50.00 33.33

C 6.00 4.00 12.00 8.00 30.00 20.00 60.00 40.00

D 7.50 5.00 15.00 10.00 37.50 25.00 75.00 50.00

*90% of point errors collected in the cartographic product must have the same values or less than the
predicted when compared with the ones surveyed in the field by a high-precision method.

Analysing Table 2.8, we can verify that the four assessed DEM can be included in Class B for
the 1:100,000 scale and in Class A for the 1:250,000 scale (Table 2.9) because more than 90%
of the extracted points from them had altimetric errors of less than 25 meters when compared
to the reference points from the Brazilian geodetic network. In addition, the four DEM also

presented the RMSE less than 16.66 meters as predicted in Table 2.7.

Table 2.8 — Extracted points from the DEM which had altimetric errors less than 15 and 25 meters

He < 15m He < 25m
DEM
Points %  Points % RMSE (m)
ALOS PALSAR 71 67.6 105 100 4.95
SRTM 69 65.7 105 100 4.76
Topodata 63 60.0 105 100 5.38

GMTED2010 62 59.0 101 96.2 6.54
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Table 2.9 — DEM classification according to Altimetric Cartographic Accuracy Standard for Digital
Cartographic Products

Scale ALOS PALSAR GMTED2010 SRTM Topodata

1:100,000 B B B B

1:250,000 A A A A

2.4 DISCUSSION

We assessed the vertical accuracy of the ALOS PALSAR, GMTED2010, SRTM and Topodata DEM
and could classify them according to the Brazilian cartographic accuracy standard. Our results
showed that more than 90% of the extracted points from the four DEM presented altimetric
errors less than 25 meters when compared to the reference points from the Brazilian geodetic
network. Indeed, ALOS PALSAR, SRTM and Topodata DEM presented 100% of altimetric errors
less than 25 meters and only GMTED2010 DEM presented 3.8% of altimetric errors higher
than 25 meters. Therefore, the four analysed DEM demonstrated satisfactory accuracy in

providing mappings in scales up to 1:100,000.

Regarding the statistical indicators, we can see that ALOS PALSAR and SRTM demonstrated
the best performance since ALOS PALSAR had the lowest ME and MAE, while the SRTM
showed the lowest RMSE and the smallest error range. The Topodata product presented
slightly larger errors when compared to these two DEM, which can be interpreted as a
satisfactory performance since this is a refinement of the SRTM data at 3 arc-seconds (90
meters). On the other hand, the GMTED2010 demonstrated the worst accuracy, probably due
to its pixel size (231 meters), even though, it also could be classified in the same accuracy

category according to the Brazilian PEC.

According to some studies (Arabameri et al.,, 2019; Rabby et al.,, 2020), ALOS PALSAR
demonstrated a better performance when compared to SRTM and the Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER), but in others, when some specific
parameters were compared, the SRTM performance was better than ALOS PALSAR (Andrades
Filho & Rossetti, 2012), ASTER and GMTED2010 (Thomas et al., 2014; Thomas et al., 2015).

Nonetheless, the Topodata product demonstrated better accuracy in the characterization of
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drainage networks and watershed vectors when compared with SRTM and ASTER (Mantelli et

al., 2011).

Although our results have indicated compatibility of the four assessed DEM with a scale of 1:
100,000 regarding the Brazilian cartographic accuracy standard, Moura et al. (2014) stated
that Topodata, SRTM and ASTER are compatible with the scale of 1:50,000 in watersheds with
little rugged relief. But, in watersheds with higher slopes and higher drainage density, their

results also showed compatibility with scales up to 1:100,000 (Moura et al., 2014).

The above-mentioned findings may indicate that some terrain physical characteristics might
influence the results of the DEM accuracy assessment. Although some studies have found a
strong correlation between slope and altimetric error (Gorokhovich & Voustianiouk, 2006;
Satgé et al., 2015; Varga & Basi¢, 2015), no significant correlation coefficient was observed

between these variables in this analysis.

2.5 CONCLUSIONS

The acquisition of three-dimensional data from the Earth's surface in the field is a process that
requires appropriate equipment and qualified professionals. Furthermore, this process can be
expensive and time-consuming depending on the type of methodology used. In this sense,
using DEM is an attractive alternative for many researchers, consequently, it is very important
to assess their accuracy to ensure their correct applicability concerning the appropriate use
scale. Nevertheless, a limitation for assessing the accuracy of DEM is the absence of accurate
data freely available, making fieldwork essential, which makes the assessment process difficult

and expensive.

Even though some authors have stated the absence of specific standardized guidelines for
DEM accuracy assessment, in Brazil, the Cartographic Accuracy Standard regulates the quality
of cartographic products and according to this regulation the four assessed DEM in this study
can supply mappings in scales up to 1: 100,000. Regarding the altimetric error, we could not
find a significant correlation coefficient with altitude or slope though some authors have

found such a correlation in other studies.
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A limitation found in this study is that there were few control points from the Brazilian
geodetic network inside the Balsas River watershed, and they were badly distributed in the
study area because they were located on the banks of the highways. However, the availability
of these free data makes possible DEM accuracy assessment through an accurate data analysis
without the need for fieldwork. We suggest that future similar studies be based on the
accuracy of a specific application as well in the investigation about other factors that may

influence altimetric error, such as watershed roughness, vegetal coverage and/or land use.
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3 ANALYSING THE SPATIAL CONTEXT OF THE ALTIMETRIC ERROR PATTERN
OF A DIGITAL ELEVATION MODEL USING MULTISCALE GEOGRAPHICALLY
WEIGHTED REGRESSION?

Abstract: Many freely available Digital Elevation Models (DEM) have increasingly been used
worldwide due to the difficulty in acquiring accurate elevation data in some regions,
emphasizing the need to investigate their accuracy and the factors that may influence their
uncertainties. We performed an accuracy analysis of the Topodata DEM in the hydrographic
region of Uruguay (Brazil) assuming that its vertical accuracy may be related to terrain
characteristics. Multiscale Geographically Weighted Regression (MGWR) was applied to
investigate the spatial scales over which terrain characteristics affect local variations in
altimetric errors. MGWR outperformed Ordinary Least Squares (OLS) and Geographically
Weighted Regression (GWR). MGWR results also showed that aspect, curvature, and artificial
areas operate at much smaller scales than elevation and have a higher influence in areas with
high positive altimetric errors. The model explains about 41% of the total variation of the
altimetric error of the Topodata DEM in the study area. Our findings enrich the understanding
of the global and local processes affecting the accuracy of the Topodata DEM and shed light

on the importance of local terrain characteristics in effective DEM product development.

Key policy highlights

=  DEM products provide fundamental information for several research areas.

=  OLS, GWR and MGWR were applied to identify the factors explaining the altimetric error
of a DEM.

=  MGWR investigated the spatial scales over which terrain characteristics affect local
variations in altimetric errors.

=  MGWR outperformed OLS and GWR proving that terrain characteristics operate at

different scales.

2 The text from this chapter has been published in the European Journal of Remote Sensing.
https://doi.org/10.1080/22797254.2023.2260092.
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3.1 INTRODUCTION

Products extracted from Digital Elevation Models (DEM) are an important data source on the
physical characteristics of the terrestrial surface since these data are the primary means of
visualizing terrain texture and relief classification that should be observed in essential research
topics (Xu et al.,, 2021). DEM products provide fundamental information for several
approaches, such as precipitation estimation (Chen et al., 2021; Taheri et al., 2020; Xu et al.,
2015), landslide susceptibility (Bui et al., 2020; Bui et al., 2016; Chen & Chen, 2021; Merghadi
et al., 2020; Saleem et al., 2019), flood prediction (Sarma et al., 2020; Suliman et al., 2021;
Vignesh et al., 2021), and geomorphometric analysis (Abdelkarim et al., 2020; Gorini & Mota,
2016; Lindsay, 2016; Pipaud et al., 2015; Sdnchez-Guillamén et al., 2018). Furthermore, they

are extremely important in risk assessment of natural disasters (Saleem et al., 2019).

Although traditional methods to generate DEM are expensive and time-consuming (Uysal et
al., 2015), Earth's surface analysis is becoming increasingly viable due to the rising availability
of DEM products at different spatial resolutions (Dragut & Eisank, 2011). Moreover, due to
the lack of more accurate three-dimensional data for geographic studies at a regional scale,
freely available DEM are frequently used in several scientific applications which evidences the
need to investigate the accuracy of DEM products (Liu et al., 2020). Approaches regarding the
assessment of DEM quality are usually based on altimetric discrepancies between the DEM
and the reference data, which must present reasonable density and be well-distributed in the
study area (Polidori & El Hage, 2020). In addition, it is essential that these reference data have
greater accuracy than the evaluated DEM to ensure a relevant statistical analysis as well as a

spatial error analysis (Polidori & El Hage, 2020).

In recent decades, many technological advances in the creation and in the process of making
available DEM products have been made, despite there are not enough specific guidelines yet
regarding the assessment of the accuracy nor a perspective of suitability for the use of these
products (Mesa-Mingorance & Ariza-Lépez, 2020). In this sense, scale effects modelling has
been considered an important research topic since there are not many studies dealing with
the potential influence that such effects may have on some factors' modelling related to
hydrology, soil science and geomorphology (Chang et al., 2019; Dragut & Eisank, 2011).
Moreover, mathematical modelling of the predicted DEM error as a function of the landscape

characteristics is also a promising research path (Polidori & El Hage, 2020).
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Many studies have addressed the vertical accuracy of DEM (Hawker et al., 2019; Hirano et al.,
2003; Hladik & Alber, 2012; Wessel et al., 2018; Weydahl et al., 2007) through external and
internal quality assessment, i.e., with or without reference data, respectively (Polidori & El
Hage, 2020). The vertical accuracy is often assessed through the comparison of the elevation
of the DEM product with a reference elevation collected from a greater accuracy source where
parameters such as mean, standard deviation and root mean square error (RMSE) are
obtained to analyse the elevation discrepancies (Mesa-Mingorance & Ariza-Lépez, 2020; Wise,

2000).

The most common parameter to assess the vertical accuracy of a DEM is the RMSE (Mesa-
Mingorance & Ariza-Lépez, 2020) but, it is also possible to use information entropy (Wise,
2012) as well as geomorphometric analyses to measure the quality of a DEM (Pipaud et al.,
2015; Szyputa, 2019; Temme et al., 2009). Furthermore, some studies have addressed spatial
statistics techniques such as Ordinary Least Squares (OLS) and Geographically Weighted
Regression (GWR) to model errors in DEM (Carlisle, 2005; DeWitt et al., 2015; Erdogan, 2010;
Gallay et al., 2010).

OLS is a technique used to estimate the parameters of multiple linear regression models,
which is based on the principle of minimizing the sum of squared differences between the
observed dependent variable values and the predicted values (Brunsdon et al., 1996;
Hutcheson, 2011). OLS assumes that the relationship between variables is constant across the
entire study area, disregarding any spatial variations. On the other hand, GWR (Brunsdon et
al.,, 1996; Fotheringham et al., 2002) and MGWR — Multiscale Geographically Weighted
Regression (Fotheringham et al., 2017) are both spatial regression techniques that explicitly
account for spatial heterogeneity by estimating relationships locally, allowing for spatially
varying coefficients. GWR operates at a local scale, where the relationships between variables
are estimated for each individual location within the study area, while MGWR simultaneously
estimates the relationships at different scales. This allows MGWR to capture variations in
relationships at local, regional, and global scales. Thereby, MGWR can model the relationship
between the dependent and the independent variables considering the geographic scale at
which processes occur, allowing it to differentiate spatial homogeneous and heterogeneous
relationships that may influence the dependent variable at different locations (Fotheringham

et al., 2017). Hence, it is possible to identify if an explanatory factor of the altimetric error
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operates locally, regionally, or globally in the study area. However, there is still no evidence of

studies that have modelled the pattern of the altimetric error through MGWR.

Our study performs a vertical accuracy analysis using MGWR, aiming to identify the local
factors that may explain the altimetric error of the Topodata DEM in the hydrographic region
of Uruguay (Brazil), accounting for possible different spatial scales in the relationship between
such local factors and the altimetric error. Accordingly, this research study aims to investigate
not only if the vertical accuracy of DEM products is related to local terrain characteristics but
also if there are spatial variations in the magnitude of those relationships. Additionally, this
study aims to determine if the relationships between the terrain characteristics and the
altimetric error operate at different spatial scales. Besides MGWR, two additional models

were used for comparison purposes, namely OLS and GWR.

Our findings are expected to provide a better understanding of the global and local processes
influencing the quality of Topodata products and highlight the importance of terrain
characteristics in effective DEM product development, besides shedding light on some
limitations of regression modelling applications. Providing a further understanding of the
features influencing DEM vertical accuracy may also contribute to improving the applications

that rely on the altimetric data extracted from DEM.

3.2 MATERIALS
3.2.1 Study area

The Uruguay River watershed is approximately 385,000 km? with 174,412 km? of this area
placed in the southern part of Brazil, covering 2% of the national territory, which is named in
the hydrographic region of Uruguay (Brazil, 2006). The study area’s altimetry ranges from 32

to 1822 meters above sea level (Figure 3.1).
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Figure 3.1 — Study area and reference points in the hydrographic region of Uruguay (Brazil)

3.2.2 Data and preprocessing

3.2.2.1 SRTMGL1v003 DEM and Topodata DEM

Shuttle Radar Topography Mission (SRTM) was released in 2000 onboard the Space Shuttle
Endeavour aiming to generate a near-global DEM of the Earth through radar interferometry
(NASA, 2013). Initially, SRTM data was made available with a resolution of 1 arc-second for
the United States territory and with 3 arc-seconds for other regions of the world. In 2015, the
data with full resolution (1 arc-second) was released globally (NASA, 2022). In this context, the
Topodata project was developed by the Brazilian National Institute for Space Research
(Instituto Nacional de Pesquisas Espaciais - INPE) to refine, through kriging techniques, SRTM
data from the resolution of 3 arc-seconds (= 90 meters) into 1 arc-second (= 30 meters) over
the Brazilian territory (Valeriano & Rossetti, 2012). This project also derived geomorphometric
data from SRTM products providing information, such as slope, aspect, and curvatures, ready
for use by the scientific community (Valeriano, 2008; Valeriano & Rossetti, 2008). Despite

there being other DEM with better resolution, SRTM-90 (90-meter pixel) and Topodata are
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highly applied in research over the Brazilian territory (Silva et al., 2022). Moreover, Topodata
DEM is still widely used due to the unavailability of cartographic products in suitable scales for

some Brazilian regions (Ferreira & Cabral, 2022).

Topodata DEM was released in 2008 and had been revised regularly by INPE (INPE, 2008).
SRTM datasets most recent version (SRTMGL1v003) eliminated voids that were present in
previous versions of SRTM products by using data from ASTER Global Digital Elevation Model
(GDEM) Version 2.0, the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010),
and the National Elevation Dataset (NED) (NASA, 2013).

3.2.2.2 Brazilian Geodetic Network

The accuracy analysis in this study is based on official data from the Brazilian Geodetic System
(IBGE, 2022a). The Brazilian Geodetic Network (BGN) contains geodesic stations implemented
throughout the national territory with essential planimetric, altimetric and gravimetric
information used as a reference in positioning activities as well as for correction and
verification of Brazilian territory images (IBGE, 2019, 2022a). Most stations are materialized
through concrete landmarks with a metal plate on the top, identifying their coordinates,
altitudes and gravity obtained by using high-precision geodetic procedures and models (IBGE,
2022a). A total of 1,068 reference points from the BGN are present in the hydrographic region
of Uruguay (Figure 3.1) georeferenced to the Geocentric Reference System for the Americas
(SIRGAS2000 - horizontal datum) and Imbituba (vertical datum). It is important to mention
that the Imbituba datum is defined by the calculated middle level of the sea with data from a
tide gauge station and then propagating it throughout the Brazilian territory by high-precision
geometric levelling (IBGE, 2019). The main characteristics of BGN, SRTM and Topodata DEM

are shown in Table 3.1.
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Table 3.1 — Main characteristics of BGN (IBGE, 2019), SRTM (NASA, 2013) and Topodata DEM
(Garofalo & Liesenberg, 2015; Miceli et al., 2011; Valeriano, 2008)

Coordinate Horizontal Vertical . . Radiometric .
DEM Pixel Size . Extension
System Datum Datum Resolution
BGN Geographic SIRGAS2000"  Imbituba™" - - SHP
SRTMGL1 " . 30 meters 16 bits
Geographic WGS 84 EGM-96 HGT
v003 (1 arc-second) (signed integer)
" een 30m 32 bits
Topodata Geographic WGS 84 EGM-96 TIF

(1 arc-second)  (floating point)

*Sistema de Referéncia Geocéntrico para as Américas (Geocentric Reference System for the Americas); **World
Geodetic System 1984; *** Brazilian official vertical datum; **** Earth Gravitational Model 1996.

3.2.2.3 Independent variables

Aiming to investigate the factors that may explain the altimetric error of Topodata DEM in the
hydrographic region of Uruguay, the following candidate explanatory variables were chosen
according to previous studies: altitude/elevation (Das et al., 2016; Gonzdalez-Moradas &
Viveen, 2020; Szyputa, 2019), aspect (Dong & Shortridge, 2019; Gorokhovich & Voustianiouk,
2006; Leon et al., 2014; Sharma et al., 2021; Szyputa, 2019), curvature (plan/profile) (Leon et
al., 2014; Sharma et al., 2021; Szyputa, 2019), distance to rivers (Mahalingam & Olsen, 2016;
Yap et al., 2019), drainage density (Das et al., 2016; Shaikh et al., 2021), land use/land cover
(LULC) (Dong & Shortridge, 2019; Leon et al., 2014; Satgé et al., 2015; Yap et al., 2019), relative
relief (Das et al., 2016; Ganie et al., 2023), roughness (Habib, 2021; L. Li et al., 2020; Schwendel
& Milan, 2020), slope (Das et al., 2016; Dong & Shortridge, 2019; Gonzéalez-Moradas & Viveen,
2020; Gorokhovich & Voustianiouk, 2006; Habib, 2021; Leon et al., 2014; L. Li et al., 2020;
Satgé et al., 2015; Sharma et al., 2021; Szyputa, 2019; Yap et al., 2019), terrain ruggedness
index (TRI) (Dong & Shortridge, 2019; Leon et al., 2014), topographic position index (TPI) (Dong
& Shortridge, 2019; Leon et al., 2014) and vector ruggedness measure (VRM) (Leon et al.,
2014; Pipaud et al., 2015).
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The variables aspect, curvature (plan/profile), elevation, relative relief, roughness, slope, TPI,
TRI and VRM were derived from the SRTM DEM (NASA, 2013) to ensure that their values are
independent of the altimetric error derived from the Topodata DEM. If we used the same DEM
to derive the explanatory variables, then their values would be a function of the values of the
dependent variable. Hence, the regression model would not be correctly specified (i.e., it
would be an inappropriate model). On the other hand, distance to rivers and drainage density
were derived from the drainage data of the National Water and Sanitation Agency (Agéncia

Nacional de Aguas e Saneamento Bdsico - ANA) (ANA, 2022).

Aspect measures the orientation of the slope for each location on which the compass direction
ranges from 0° to 360° clockwise, where 0°, 90°, 180° and 270° correspond to north, east,

south, and west, respectively (Kaliraj et al., 2015; Lei et al., 2022).

Curvature is one of the most relevant parameters to be considered when analysing the land
surface topography (Krebs et al., 2015). Curvature refers to a morphological measure of the
terrain topography, where positive values mean that the surface is upwardly convex, negative
values reveal an upwardly concave whereas zero values indicate that the surface is flat (Lee &
Sambath, 2006). Through different methodologies, it is possible to compute the curvature in
the horizontal plane (plan curvature) or in the vertical plane (profile curvature) for every single

cell of a digital elevation model (DEM) (Krebs et al., 2015; Ohlmacher, 2007).

It is crucial to consider functional distances based on hydrology in environmental analysis
since the physical attributes of the stream network offer valuable insights into environmental
conditions, especially at unobserved locations (Peterson et al., 2007). In this sense, distance

to rivers was also included in this analysis.

Drainage density is a key characteristic of natural landscapes and serves as a fundamental
indicator that reflects local climate, topography, geological composition, and other pertinent
variables (Tucker et al., 2001). It is defined by the length of rivers per unit of area (Horton,

1932).

Relative relief is a metric used for analysing the morphological features of the terrain, given
by the difference value between the highest and lowest altitude in a region (Das et al., 2016;

Mustak et al., 2012; Smith, 1935).
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Roughness denotes the slope variability of terrain and reveals the undulating nature of its
relief (Samadrita Mukherjee et al., 2013). Higher roughness values are typical of hilly or rocky
areas, meaning that these places have increased surface runoff, reduced water percolation,

and groundwater recharge (Mukherjee & Singh, 2020).

The slope is useful in characterizing and delimiting geomorphological units and regions since
it represents the variation in terrain gradients, where lower values indicate flatter terrain and

higher values indicate steeper terrain (IBGE, 2009).

The Terrain Ruggedness Index (TRI) computes the sum variation in elevation between a cell
and its neighbouring cells within a DEM, providing a quantitative magnitude estimative of the

topographic heterogeneity of an area (Riley et al., 1999).

The Topographic Position Index (TPI) evaluates the elevation of each cell in a DEM relative to
the average elevation of a given neighbourhood, with positive values indicating elevations
higher than the surrounding average (ridges), negative values indicating lower elevations
(valleys), and values close to zero signifying either flat areas or regions with a consistent slope

(Weiss, 2001).

The Vector Ruggedness Measure (VRM) gauges the ruggedness of the terrain by assessing the
variability in the three-dimensional orientations of grid cells within a given neighbourhood
(Arosio et al., 2023). VRM offers a more direct measurement of terrain heterogeneity less
dependent on slope than TRI, allowing the treatment of terrain components as distinct

variables during the landscape analysis (Sappington et al., 2007).

The LULC mapping was performed by the Brazilian Institute of Geography and Statistics
(Instituto Brasileiro de Geografia e Estatistica - IBGE) based on images from the Moderate-
Resolution Imaging Spectroradiometer (MODIS) sensor and from LANDSAT-5 and LANDSAT-7
satellites, with a spatial resolution of 250m, 30m and 30m, respectively. In addition, the
technical review process also involved the incorporation of polygons from the vegetation
maps and auxiliary information from the Continuous Cartographic Base of Brazil at a scale of
1:250,000 (IBGE, 2017, 2022b). Since SRTM data were collected in the year 2000, we use the

LULC data from the same year trying to be as faithful as possible to the reality of the terrestrial
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surface at the mission's time. The following LULC classes are found in the hydrographic region

of Uruguay (IBGE, 2017):

1. Artificial area — characterized by urban use, structured by buildings and road systems,

where non-agricultural artificial surfaces predominate.

2. Agricultural area — characterized by temporary and permanent crops, irrigated or not, with
the land used for food production, fibre, and agribusiness commodities. It includes all
cultivated land, which may be planted or fallow, and cultivated wetlands. It can be

represented by heterogeneous agricultural zones or extensive areas of plantations.

3. Pasture — area intended for the grazing of cattle and other animals, with cultivated
herbaceous vegetation or natural grassland vegetation, both presenting high-intensity

anthropic interference.

4. Mosaic of agriculture and forest remnants — area characterized by the mixed occupation
of agriculture, pasture and forestry associated with forest remnants. Other plant formations

(herbaceous and shrubby) may occur to a lesser extent.

5. Forestry — area characterized by forest plantations of exotic and/or native species as

monocultures.

6. Forest vegetation — area occupied by forests. Trees taller than 5 meters are considered
forest formations, including areas of dense forest, open forest, and seasonal forest, in addition

to the mixed ombrophiles forest.

7. Grassland — area characterized by natural grassland vegetation subject to grazing and other

low-intensity anthropic interference.

8. Mosaic of anthropic areas and grassland — area characterized by the mixed occupation of
agriculture, pasture and/or forestry with remnants of grassland vegetation. Arboreal plant

formations may occur to a lesser extent proportion.

9. Water body — It includes all inland waters such as rivers, streams, canals, and other linear
bodies of water. It also encompasses naturally closed bodies of water (natural lakes) and

artificial reservoirs (artificial water dams built for irrigation, flood control, water supply and
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electricity generation). Figure 3.2 and Table 3.2 show the spatial distribution of each LULC

class.
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Figure 3.2 — LULC in the hydrographic region of Uruguay
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Table 3.2 — Spatial distribution of LULC classes in the hydrographic region of Uruguay

LULC Classes Area (km?) Area (%)
Grassland 59,715.43 34.24
Agricultural area 54,391.06 31.19
Mosaic of agriculture and forest remnants 42,126.07 24.15
Forest vegetation 7,922.46 4.54
Mosaic of anthropic areas and grassland 5,081.91 291
Forestry 2,751.47 1.58
Pasture 928.31 0.53
Artificial area 783.03 0.45
Water body 712.26 0.41
Total 174,412.00 100.00

To include the LULC classes in the regression modelling, it was necessary to consider an area
around each reference point from the BGN. For this purpose, we considered the average
distance parameter obtained through the “Calculate Distance Band from Neighbour Count”
tool (ArcGIS Desktop software - version 10.8.2) which returns the average distance to the N
nearest neighbour (Esri, 2022). Since this result was 5,438 meters, we defined the buffer
radius value as 5,500 meters in this analysis. Then, the independent variables of the regression
models were computed as the area of each LULC class inside the buffer at each location. This
approach guaranteed that the scale of analysis used to compute the independent variables
derived from the LULC classes was the same, regardless of the spatial distribution of the BGN

points which are not regularly distributed.

3.2.3 Methods

SRTM and Topodata DEM are referenced to the EGM-96 geoid. So, we had to compute the
geoidal undulation through the “Geoid Height Calculator” (UNAVCO, 2022) to transform their
original geoidal into ellipsoidal altitudes (WGS 84) (Elkhrachy, 2018; Orlando, 2019). Then, it
was necessary to convert these ellipsoidal altitudes into physical altitudes compatible with the
Brazilian vertical datum (Imbituba) (Bettiol et al., 2021; Rodrigues et al., 2011) by using the
hgeoHNOR2020 model (IBGE, 2019). We also had to convert the SRTM and Topodata
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horizontal data from WGS 84 into the Brazilian official horizontal datum (SIRGAS2000) through

ArcGIS Desktop software — version 10.8.2.

To derive the altimetric errors, we followed the methodology applied by Satge et al. (2016)
and Shean et al. (2016). Negative altimetric errors mean that the DEM analysed overestimates
the elevation and positive errors underestimate the elevation at each verified point

(Brasington et al., 2003; Holmes et al., 2000).

Terrain analysis was carried out by generating maps of the following input candidate
explanatory variables: aspect, curvature, distance to rivers, drainage density, roughness,
relative relief, slope, TPI, TRl and VRM. Then, statistical analysis was made through the
accuracy indicators calculation (Moura et al., 2014; Satge et al., 2016; Shean et al., 2016),
namely the altimetric error (Ag) (1), mean error (ME) (2), mean absolute error (MAE) (3), and

root mean square error (RMSE) (4).

Ae = Arer — Apem (1)
n
1
ME = 1—1 Z(AREF — Apgm) (2)
i=1
n
1
MAE = 1—1 Z |Arer — Apeml (3)
i=1
L& (4)
RMSE = |- Z(AE — ME)?
i=1

where Aggris the altitude of the reference point from the BGN, Apen is the altitude extracted from
Topodata DEM, and n is the number of reference points.

The MAE is a statistical measure that computes the average absolute difference between the
value considered the true (BGN) and the value extracted from the Topodata DEM. The RMSE
measures the uncertainty in the computed values, defining the degree of correspondence
between the reference values and those extracted from the DEM. Thus, lower MAE and RMSE

values indicate better results (Rawat et al., 2019).
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We performed the Exploratory Spatial Data Analysis (ESDA) through Voronoi tessellation, Hot
Spot Analysis (Getis & Ord, 1992), and Local and Global Moran's | statistics (Anselin, 1995;
Moran, 1950). Finally, the altimetric error modelling was performed using OLS, GWR
(Brunsdon et al., 1996; Fotheringham et al., 2002) and MGWR (Fotheringham et al., 2017) on
the 1,068 reference points from the BGN (Figure 3.1). A 5% significance level was considered

in all statistical tests, otherwise stated.

Voronoi tessellation is a concept proposed by Georgy Voronoi in 1907 based on a
computational geometry data structure that has been applied in many scientific areas
(Kastrisios & Tsoulos, 2018). Voronoi maps or Voronoi diagrams are built from polygons
generated around a sample point. Each Voronoi polygon is obtained by intersecting
perpendicular bisectors of adjacent points, where the nearest neighbour of any point inside
the polygon is the sample point (i.e., the generator of the polygon) (Nene & Nayar, 1997; Safar,
2005).

Hot spot analysis is a spatial analysis technique used to identify statistically significant clusters
of high (hot spots) or low values (cold spots) within a dataset using the Getis-Ord Gi* statistic

(Getis & Ord, 1992).

The Global Moran's | is an inferential statistic used to measure the spatial autocorrelation in a
dataset and to test whether the observed spatial patternin the dataset is randomly distributed
(null hypothesis) or spatially autocorrelated (alternative hypothesis). A significant positive
index reveals evidence of spatial clustering of similar values, and a negative one provides
evidence of a dispersion pattern of dissimilar values (Moran, 1950; Prasannakumar et al.,
2011). The Local Moran's | examines the significance of local spatial autocorrelation by
calculating the Moran's | statistic for each location using neighbouring values to identify local
clusters or spatial outliers (Anselin, 1995). Clusters with high or low values are defined as high-
high (HH) or low-low (LL), respectively, and correspond to statistically significant positive
spatial autocorrelation. A high-low (HL) outlier corresponds to a high value correlated with
surrounding low values, and a low value correlated with surrounding high values is defined as
a low-high (LH) outlier. Spatial outliers correspond to statistically significant negative spatial

autocorrelation (Anselin et al., 2007).
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OLS, GWR and MGWR are linear regression models, but each one operates at different spatial
scales and makes different assumptions regarding the spatial heterogeneity of the data set.
OLS is a global model assuming a single coefficient to explain the relationship between each
explanatory and the altimetric error in the whole study area, whereas GWR and MGWR are
local regression models that allow the coefficients to vary in space. Moreover, MGWR also

allows each independent variable to adopt a different spatial scale of analysis.

ArcGlIS Desktop software (version 10.8.2) was used to run the ESDA and OLS analysis. We
investigated all possible combinations of the 22 independent variables in 539,909 exploratory
OLS models considering their statistical significance, the variance inflation factors (VIF), and
the models’ Adjusted R%. The OLS model which has presented the highest Adjusted R?, without
multicollinearity issues, included four significant variables: aspect (X;), curvature (X,),
elevation (X3) and LULC_1 (artificial area) (X4). These variables were then included in the GWR

and MGWR models that were estimated using the MGWR 2.2 software (Oshan et al., 2019).

All variables in the MGWR model were standardized to increase the interpretability of the
bandwidths of the spatial kernel. An adaptive bisquare kernel was applied in both GWR and
MGWR models as the distance-weighting function to control the optimal number of nearest

neighbours to be included in the local model fitting (5) (Fotheringham et al., 2017):

2
Wij = [1 - (dij/bi)z] if d;j < b;; w;; = 0 otherwise (5)

where w;; is the weight between points i and j, d;; is the Euclidean distance between points i and j,
and the bandwidth b; is the distance from focal point i to its M" nearest neighbor. The optimal number
of neighbours (M) is determined by the lowest corrected Akaike's Information Criterion (AlCc) that is
obtained from multiple comparisons. The MGWR model is formulated in Equation 6.

Y = Bowo Wi, vi) + Bow1 (Wi, vi)Xi1 + Bowz (Ui i) Xiz + Bows (wi, vi) X3
+ Bowa (U, i) Xis + & (6)

where bwk denotes the specific optimal bandwidth used in the calibration of the intercept and kt"
conditional relationship (k = 1, ..., 4), and (u;, v;) are location coordinates for each focal point i (i =
1,...,1068). Model diagnostics and inference-related diagnostics are computed for local parameter
estimates (Fotheringham et al., 2019; Yu et al., 2020).
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In the GWR model, the notation bwk was removed because the optimal bandwidth used is
the same for the intercept and all k conditional relationships. That notation was also removed
from the OLS model, as well as the (u;, v;) location coordinates because the OLS (global)
model is specified using a single regression equation: the [y parameters (k =0, 1, ...,4) are
the same for all locations and they are estimated using the whole data set. For further details

see Fotheringham et al. (2002).

3.3 RESULTS

3.3.1 Statistical analysis

The altimetric errors of the Topodata DEM range from -36.68 to 39.23 meters, and 75% of
them are smaller than 1.22 meters (Table 3.3). There is very a strong correlation between the
elevations extracted from SRTM and Topodata DEM when they are compared with the
reference points from the BGN as the coefficient of determination (R2) of a simple linear

regression is higher than 0.99 in both cases (Appendix A1/A2).

Table 3.3 — Statistical accuracy indicators of the Topodata DEM

Indicators Aemin Aemax ME MAE RMSE ER* Q1 Q2" Q3"

(m) -36.68 39.23 -0.73 4.26 6.46 7591 -3.73 -148 1.22

ok ok sk sk ok

“Error range; * 1st quartile; " 2" quartile (median); " 3rd quartile.

The histogram indicates that the altimetric errors are negatively biased (overestimated) which
is reinforced by the median value already shown in Table 3.3. Despite that, they present a

distribution a little close to a normal curve (Appendix A3).

The boxplots of the elevation differences are shown in Appendix A4, where it is possible to
notice that the SRTM and Topodata elevation are very similar to the BGN altitudes and that
more than 50% of the altitudes are below 500 meters, an expected fact since Brazil is
considered a low-lying country being 41% of its territory below 200 meters and barely 7%
above 800 meters (Alvares et al., 2013). Even though it can be observed in Appendix A4 that

almost 25% of the point altitudes are above 800 meters.
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The altimetric errors are higher in areas with slopes above 30% (Appendix B1). Furthermore,
we observe that the MAE and the RMSE increase as the slope also increases. Likewise, the
altimetric errors are higher in places where the elevation is higher than 1,200 meters
(Appendix B2), despite the altimetric errors being also higher in regions where elevation is
between 900 and 1,200 meters when compared with places lower than 900 meters. Regarding
the LULC, the classes that presented the highest altimetric errors were ‘forest vegetation’ and
‘artificial area’ (Appendix B3). The Pearson’s correlation coefficient between elevation and
altimetric error is approximately 0.22. The correlation matrix of all the candidate explanatory
variables (Appendix C) shows that some of them are significantly correlated with each other,

such as relative relief, VRM, and TPI.

3.3.1.1 Spatial effects in altimetric errors

The Voronoi map of the altimetric error shows that most samples (82%) present altimetric
errors between -6.46 and 6.46 meters and that they are evenly distributed (Figure 3.3). There

is no apparent trend of the altimetric error over the study area.
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Figure 3.3 — Voronoi map of the altimetric error

The Global Moran’s | statistic revealed that the altimetric error did not have a significant
spatial autocorrelation (index = 0.02; p-value = 0.98), thus the altimetric error pattern does

not appear to be significantly different from random.

Anselin’s Local Moran's |, represented in Figure 3.4a, shows that 23 of the 1,068 points (= 2%)
have significant positive (15 high-high and 3 low-low clusters) and negative (3 low-high and 2
high-low outliers) spatial autocorrelation. The high-high clusters (high altimetric errors
surrounded by high altimetric errors) are in the upper watershed course, and 2 of the 3 low-
low clusters (low altimetric errors surrounded by low altimetric errors) are in the middle
watershed course. Figure 3.4a also shows that 3 low-high outliers (low altimetric errors
surrounded by high altimetric errors) are in the upper watershed course whereas there is 1

high-low outlier in the upper watershed course and 1 in the middle watershed course.
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Figure 3.4 — Local Moran’s | statistic (a) and Hot Spot Analysis (b) of the altimetric error

Hot Spot Analysis (Getis—Ord Gi* statistic) reveals both high altimetric errors (hot spot) and

low altimetric errors (cold spot) values clustered spatially (Figure 3.4b). In this analysis, results

demonstrate the existence of 7 hot spots in the upper region, 5 in the middle and lower region

of the watershed at the 1% significance level, 6 in the upper and 1 in the middle part of the

watershed at the 5% significance level, and 2 in the upper region of the watershed at the 10%

significance level. In addition, this analysis also shows cold spots in the upper region (3 points)

and 1 in the middle region of the watershed at 1% and 5% significance levels, respectively

(Figure 3.4b).
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3.3.2 Models’ performance and diagnostics

3.3.2.1 OLS results

The summary of OLS results in Table 3.4 shows that all variables have a statistically significant

coefficient. Furthermore, the low VIF values indicate that there is no evidence of redundancy

among the explanatory variables.

Table 3.4 — Parameter estimates for the OLS model

) . Robust Robust Robust
Variable Coefficient VIF
standard error t-value p-value
Intercept -1.042677 0.399711 -2.608579  0.009213*  --—-----
Aspect -0.011987 0.001704 -7.034715 0.000000* 1.003166
Curvature 4.057187 0.702850 5.772483 0.000000* 1.012770
Elevation 0.003335 0.000616 5.411528 0.000000* 1.010463
LULC_1 (artificial area) 0.000000 0.000000 3.542069 0.000429*  1.001225

*Statistically significant coefficient

3.3.2.2 GWR and MGWR results

Results of the MGWR model executed with the same variables as the OLS and GWR models

show an improvement of the proposed model since it had a higher Adjusted R? (0.41) and a

lower AlCc (2,602.14) than the OLS and GWR models (Table 3.5). It was also noticed a decrease

in the residual sum of squares (RSS).

Table 3.5 — Metrics of OLS, GWR and MGWR models

R2 Adj. R2 AIC AlCc RSS
oLS 0.18 0.18 - 6,812.44 873.921
GWR 0.40 0.35 2,639.44 2,651.28 642.014
MGWR 0.47 0.41 2,577.98 2,602.14 571.794

Given the spatially varying nature of MGWR, the map of the Local R? (Figure 3.5a) highlights

the areas where the local regressions have a better goodness-of-fit and provides insights on

the locations where important variables may be missing. The Local R? ranges from 0.18 to 0.74
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(Figure 3.5a). Low values of the Local R? in the flatter regions located in the middle of the study
domain indicate that other factors may affect the altimetric error besides aspect and
elevation, which have significant coefficients in that region (Figure 3.6a and Figure 3.6c). The
Local R2 was higher than 0.5 in approximately 25% of the local regressions obtained with the
MGWR model (Table 3.6). These areas, where the Local R? ranges from 0.50 to 0.74, overlap
with the areas where the curvature presents significant local coefficients (Figure 3.6b).
Therefore, the inclusion of curvature contributed to improving the goodness-of-fit of the

MGWR model in the northern and southern parts of the study domain.

(a) i (b) dx

Local R? Local CN
H0.18-0.29 W1.14-1.45
[00.30-0.39 H1.46-1.75
[00.40-0.49 [11.76-2.06
0 50100 200 0 50100 200
—_p— H0.50-0.59 —— [2.07-2.37
Km H0.60-0.74 Km W2.38 - 2.67

Figure 3.5 — Voronoi map of the Local R? (a) and Local Condition Number (b) of the MGWR model
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Figure 3.6 — Voronoi map of the spatial distribution of MGWR local coefficients: (a) aspect, (b)
curvature, (c) elevation, (d) LULC (class 1 — Artificial area)
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Table 3.6 — Frequency distribution of Local R2 values of the MGWR model

Local R? Count Percentage
0.18-0.29 324 30.34
0.30-0.39 375 35.11
0.40-0.49 105 9.83
0.50-0.59 118 11.05
0.60-0.74 146 13.67

Total 1,068 100%

There is no evidence of spatial autocorrelation in the residuals of the MGWR model over the
study area because the value of the Global Moran’s | statistic was equal to —-0.01, and it was
not statistically different from zero (z-score = -0.01; p-value = 0.99). Hence, the spatial pattern

of the residuals does not appear to be significantly different from random.

A Local Condition Number (Local_CN) greater than 30 indicates that there might be a
multicollinearity problem in the model (Oshan et al., 2019). In this way, there is also no
evidence of multicollinearity among the independent variables because the Local_CNs range

from 1.14 to 2.67 (Figure 3.5b).

3.3.2.3 Spatial pattern analysis of the coefficients

The optimal bandwidths of the coefficients obtained from GWR and MGWR models are shown
in Table 3.7. The GWR model presented a very restrictive bandwidth (173) compared with the
bandwidth of the MGWR model since it is approximately half of the average bandwidth of the
MGWR model (337). Furthermore, GWR assumes that the aspect, curvature, elevation and
LULC_1 (artificial area) influence the altimetric error on the same scale, which is refuted by
MGWR model results. The MGWR bandwidth of the curvature variable with 102 nearest
neighbours indicates that this variable operates on a local scale. The MGWR bandwidths of
the LULC_1 (artificial area) and aspect variables show that these variables operate on a
regional scale. The MGWR bandwidth of the elevation variable reveals that this variable
influences the altimetric error on a global scale because its bandwidth is exactly the possible

maximum number of neighbours (1,067).
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Table 3.7 — Summary of local regression results

Optimal Bandwidths Statistics for MGWR parameter estimates
Variable GWR MGWR Mean STD® Min Median Max
Intercept 173 52 -0.019 0.426 -1.415 -0.101 1.246
Curvature 173 102 0.170 0.184 -0.197 0.126 0.640
LULC_1 173 222 0.107 0.118 -0.131 0.080 0.577
Aspect 173 242 -0.187 0.077 -0.345 -0.191 0.043
Elevation 173 1067 0.433 0.008 0.420 0.438 0.441

" Standard deviation

The MGWR bandwidth and the standard deviation parameter estimates of the variables are
inversely related because a large bandwidth of a variable influences the dependent variable
on a large scale which means small heterogeneity and, consequently, a small standard
deviation of parameter estimates (Fotheringham et al., 2019). Likewise, a short bandwidth
influences the dependent variable on a local scale where the standard deviation of the local

parameter is large (Table 3.7).

MGWR local coefficients of each explanatory variable are shown in Figure 3.6, where blank
areas indicate that the coefficients are not significantly different from zero. Hence, the
explanatory variable does not significantly affect the altimetric error in those locations. The
significant coefficients of the aspect variable are all negative and appear in the upper and
middle course of the hydrographic region of Uruguay (Figure 3.6a). On the other hand, the
non-significant coefficients of this variable are mostly in the lower part of the study area.
Therefore, the explanatory variable does not significantly correlate with the altimetric error
in those locations. Figure 3.6b shows the variation of the curvature local parameters where
the coefficients are all positive in parts of the upper and lower course of the watershed,
considering only regions with significant values. Figure 3.6c reveals that the elevation variable
significantly influences the altimetric error at a global scale and its coefficients are very similar
across the whole study area, as they range from 0.42 to 0.45. All significant coefficients of the
LULC_1 (artificial area) variable also presented positive values, and they are mainly in the

lower course of the watershed (Figure 3.6d).

The percentage of locations with significant coefficients (p<0.05 of t-test) of aspect, curvature,

elevation, and LULC_1 were 82%, 36%, 100%, and 18%, respectively (Appendix D).
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3.4 DISCuSSION

Despite covering 2% of Brazil’s territory, the area of the Brazilian part of the Uruguay River
watershed is approximately equal to double the area of some countries such as Azerbaijan
(86,600 km2), Hungary (93,030 km2) or Portugal (92,212 km2). Other regions of the Brazilian
territory were discarded, and that area was chosen because of the reasonable coverage of
points from the BGN, where we could identify 1,068 reference points satisfactorily distributed
over the study domain. Being the Topodata model exclusively developed for the Brazilian
territory, it is expected that the altimetric range of the study area (32 to 1822 meters above

sea level) may adequately represent the average of the national territory elevation.

The statistical analysis results demonstrated that the elevation and slope variables affect the
accuracy of the Topodata DEM because higher places and steeper areas presented higher
altimetric errors. In fact, the highest altimetric error residuals are related to the highest slope
classes, and this result was also observed in similar studies (Gdulova et al., 2020; Gonzalez-
Moradas & Viveen, 2020; Gorokhovich & Voustianiouk, 2006; Sandip Mukherjee et al., 2013;
Varga & Basi¢, 2015). Additionally, altimetric errors are higher on higher-elevation surfaces,
which was also found by Mukherjee et al. (2013) and Pandey et al. (2017). Nevertheless, some
authors did not find a significant relationship between altimetric error and elevation

(Gonzélez-Moradas & Viveen, 2020; Varga & Basi¢, 2015).

There is evidence of the influence of LULC on altimetric errors of the Topodata DEM since the
artificial areas and forest vegetation presented higher altimetric errors when compared with
the other classes as shown in the statistical analysis. Previous studies have already verified the
LULC effect on altimetric error (Satgé et al., 2015; Yap et al., 2019), especially in vegetated
areas (Dong & Shortridge, 2019; Gdulova et al., 2020; Leon et al., 2014) but such effect was
also found in artificial areas (Dong & Shortridge, 2019; Gonzéalez-Moradas & Viveen, 2020),
although smaller altimetric errors have been observed in built and homogeneous
environments such as houses, roads and bare land (Leon et al., 2014). Despite the statistical
analysis having shown some influence of the forest vegetation class on the altimetric error,
this variable was not included in the local regression models because it was only significant in
0.02% of all the exploratory OLS investigated models. The best OLS regression model identified
in this analysis included aspect, curvature, elevation and LULC_1 (artificial area) as explanatory

variables of the altimetric error in the Topodata DEM. Nonetheless, Random Forest Regression
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(Breiman, 2001) could be considered in future studies for the selection of a reduced number

of factors from a large set of potential explanatory variables.

The analysis of spatial effects in altimetric errors highlighted the pattern of spatial
heterogeneity of the altimetric error. Generally, GWR outperforms global regression models
because of its capability to deal with spatial non-stationarity. However, GWR uses a single
optimized bandwidth for all independent variables to define the local neighbourhoods, thus
assuming that all relationships vary at the same spatial scale across all covariates
(Fotheringham et al., 2002; Fotheringham et al., 2019). Nevertheless, we assume that they
may operate at different scales. In this sense, the MGWR approach is more appropriate since
it computes an optimal bandwidth for each independent variable (Fotheringham et al., 2017).
In fact, MGWR outperforms GWR because it allows examining the spatial scales in different
processes by enabling the optimization of covariate-specific bandwidths (Fotheringham et al.,

2019; Yu et al., 2020).

GWR and MGWR models were estimated using the same covariates of the best OLS model
previously identified. Regression analysis results based on the Adjusted R? and AlCc values
proved that the MGWR outperforms the OLS and GWR models as expected. Moreover, our
findings allow us to state that GWR may not be suitable for modelling the altimetric errors of
a DEM because not all the explanatory variables influence the altimetric error on the same
scale. Our results confirm the hypothesis that each explanatory variable operates on a
different scale as the curvature variable affects the altimetric error on a local scale, the LULC_1
(artificial area) and aspect on a regional scale, and the elevation influences the dependent

variable on a global scale.

MGWR local coefficients of different variables can be directly compared because the
dependent and independent variables were standardized. MGWR coefficients analysis
showed that high positive altimetric errors are mainly where the aspect and curvature
variables coefficients are significant. Most of the highest positive altimetric errors (high-high
clusters/hot spots) are placed in regions with the lowest coefficients of the aspect variable,
which exhibits a negative relationship with the altimetric error. On the other hand, the
curvature coefficients showed a positive relationship. Therefore, as the curvature values

increase, so do the altimetric errors. However, it is possible to verify a (low-low) cluster of
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points with negative altimetric errors overlapping regions with the highest values of the
curvature coefficients. Negative altimetric errors (low-low clusters) are mostly in the middle
region of the study area, where only aspect and elevation variables have significant
coefficients. Furthermore, negative errors occurred almost exclusively where the LULC_1

coefficients are not significant.

One of the limitations of this study is the use of the SRTM DEM to derive some explanatory
variables as this product also has accuracy issues (Weydahl et al., 2007). Nevertheless, future
work should consider the development of algorithms capable of dealing with the error arising
from some of the explanatory variables addressed in this study aiming to reduce altimetric

discrepancies in the DEM products.

3.5 CONCLUSION

This study performed a vertical accuracy analysis of the Topodata DEM in the hydrographic
region of Uruguay assuming the hypothesis that its vertical accuracy would be related to
terrain characteristics. The results of the statistical analysis showed that the MAE and RMSE
values are sensitive to elevation, slope and some LULC classes, namely forest vegetation and
artificial area. We performed a linear regression analysis through OLS, GWR and MGWR
models to identify the factors that may explain the spatial patterns in the altimetric error of
the Topodata DEM. The MGWR model showed better results than OLS and GWR because it
models the relationship between the altimetric error and the factors influencing DEM vertical
accuracy considering the geographic scale at which individual process occurs. The aspect,
curvature, and artificial areas variables operate at much smaller scales than elevation which
influences the altimetric error on a global scale. This implies that elevation is more relevant
throughout the whole study area, whilst the other variables are relevant in certain areas since

they operate on local or regional scales.

Our findings proved that different terrain characteristics operate at different scales and their
relationships with altimetric error vary in space. In this way, this research provides a better
understanding of the global and local processes influencing the quality of Topodata products
and highlights the importance of terrain characteristics in effective DEM product

development, besides shedding light on some limitations of regression modelling applications.
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4 FINAL CONSIDERATIONS

The primary objective of this study is to enhance the comprehension of both the global and
local factors that impact the quality of DEM products. In this regard, Chapter 2 presents a
comprehensive assessment of the vertical accuracy of four DEM, namely ALOS PALSAR,
GMTED2010, SRTM, and Topodata, with the primary goal of classifying their accuracy
according to the Brazilian cartographic standard. This chapter’s outcomes establish the
suitability of these DEM for mapping at scales up to 1:100,000, in compliance with the Brazilian

cartographic accuracy standard.

Notably, ALOS PALSAR and SRTM emerged as the top performers in the analysis. ALOS PALSAR
exhibited the lowest Mean Error (ME) and Mean Absolute Error (MAE), while SRTM showcased
the lowest Root Mean Square Error (RMSE) and the smallest error range. Topodata, a
refinement of the SRTM data, demonstrated slightly larger errors when compared to ALOS
PALSAR and SRTM. The primary reason for the less favourable performance of the
GMTED2010, despite its potential compatibility with the same scale according to the Brazilian

PEC standard, was attributed to its larger pixel size of 231 meters.

Through the categorization of DEM accuracy in alignment with the Brazilian cartographic
accuracy standard, this chapter emphasises the importance of adhering to quality assurance
guidelines to ensure that DEM accurately represent the Earth's surface, enhancing our

comprehension of their suitability for a wide range of mapping applications.

This analysis raised questions about the influence of terrain characteristics on DEM accuracy.
While some prior studies have identified a strong correlation between elevation/slope and
altimetric error, our results did not reveal significant correlation coefficients between these
variables. These observations underscore the intricacies involved in assessing DEM accuracy
and highlight that while terrain characteristics are a contributing factor, their effects can vary.
The findings of this chapter not only contribute to the understanding of DEM accuracy but also
shed light on the implications of terrain characteristics and the potential limitations in

assessing DEM accuracy.

In Chapter 3 of this dissertation, a meticulous analysis of the vertical accuracy of the Topodata

DEM was conducted in the hydrographic region of Uruguay, with a focus on terrain
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characteristics and their role in influencing DEM accuracy. The findings of this chapter unveil
significant insights into the intricate relationship between topographic characteristics, LULC,

and DEM accuracy.

The study area, comprising the Brazilian part of the Uruguay River watershed, may constitute
only 2% of Brazil's vast territory, but its geographic significance and the presence of 1,068
adequately distributed reference points from the Brazilian geodetic network provided a
robust database for analysis. Given that the Topodata model was exclusively designed for the
Brazilian landscape, it was anticipated that this area would offer a representative altimetric
range, spanning from 32 to 1822 meters above sea level, thereby reflecting the national

elevation average.

A valuable revelation of this study is the impact of elevation and slope on Topodata DEM
accuracy since higher elevations and steeper terrains consistently corresponded with
increased altimetric errors. This finding helps us to answer our first research question and
underscores the importance of considering terrain characteristics in DEM vertical accuracy
assessments. In addition, Chapter 3 also provides compelling evidence of the LULC's influence
on altimetric errors in the Topodata DEM. Noticeably, areas characterized by artificial
structures and forest vegetation exhibited higher altimetric errors compared to other LULC
classes. This observation aligns with prior research that has highlighted the effect of LULC on
DEM accuracy, especially in vegetated regions. These findings also accentuate the necessity

of accounting for LULC when assessing DEM accuracy.

The research conducted in this chapter also underscores the importance of DEM error spatial
variation analysis. By employing GWR and MGWR models, we discovered that not all
explanatory variables exert the same influence on altimetric error. These results accentuate
the significance of addressing error spatial non-stationarity in the context of DEM accuracy
assessment and cover our second research question since the spatial analysis of DEM

uncertainties revealed the presence of spatial heterogeneity in altimetric errors.

GWR and MGWR models were employed to account for the spatial non-stationarity of
Topodata DEM error. The results underscored that terrain characteristics operate at different

scales and exhibit varying relationships with altimetric error. While GWR has proven utility in
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addressing spatial non-stationarity, the MGWR approach emerged as more suitable for

examining the distinct spatial scales at which each explanatory variable operates.

It was further demonstrated that elevation operates on a global scale, affecting altimetric
error uniformly across the study area. In contrast, the aspect, curvature, and LULC_1 (artificial
area) variables operate at different local and regional scales. These results respond to our
third research question, reiterating the importance of considering the geographic scale at

which each variable impacts altimetric error.

The detailed analysis of MGWR coefficients provided a nuanced understanding of how terrain
characteristics influence altimetric errors at the local scale. It was observed that high altimetric
errors were primarily associated with areas where aspect and curvature variables exhibited
significant coefficients. In this way, this study enhances our understanding of the DEM

altimetric errors, highlighting some particularities of their spatial patterns.

In summary, this chapter presents a substantial contribution to the understanding of DEM
accuracy and the role of terrain characteristics in shaping it. The results not only provide
insights into the spatial variations of DEM accuracy but also underscore the importance of
employing appropriate geospatial techniques to address this variability. As the field of
geospatial analysis continues to evolve, the findings here offer valuable guidance for
researchers, practitioners, and decision-makers working with DEM, ultimately enhancing the
effective use of geospatial data in diverse applications. By highlighting the significance of
terrain characteristics and the challenges related to spatial heterogeneity, this research
contributes valuable insights to the field of geospatial data quality assessment, ultimately

enabling better-informed decisions in various applications that rely on DEM data.
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5 LIMITATIONS AND RECOMMENDATIONS FOR FUTURE WORKS

Recognizing that DEM accuracy assessment relies heavily on the availability of accurate data
and specific standardized guidelines, the study calls attention to the critical role of DEM in
enabling efficient mapping and geospatial analysis. The Chapter 2 findings, despite being quite
informative, are constrained by the limited distribution of control points from the Brazilian

geodetic network within the Balsas River watershed since they are primarily along highways.

To address this limitation and further advance research in this field, future studies are
encouraged to delve into the accuracy of DEM in other areas considering specific applications.
In addition, exploration into other factors that may influence altimetric errors, such as
watershed roughness, vegetation coverage, and land use, is recommended. By refining the
understanding of DEM accuracy and the impacts of terrain characteristics, researchers can
better harness these essential tools for geospatial applications, supporting informed decision-

making in various domains.

The limitations of Chapter 3, including the use of SRTM DEM data to derive some explanatory
variables, were acknowledged, and the need for addressing such limitations was highlighted.
This Chapter's outcomes point to avenues for future research, particularly in the development
of algorithms capable of mitigating errors introduced by certain explanatory variables.
Furthermore, it is advisable to employ algorithms that can efficiently choose a limited set of
factors from a vast array of potential explanatory variables while also addressing the issue of

multicollinearity among these factors.
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APPENDICES

APPENDIX A1/A2 — CORRELATION BETWEEN THE ELEVATION OF THE REFERENCE POINTS (BGN) AND

THE ELEVATION
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Figure A1/ A 2 — Correlation between the elevation of the reference points (BGN) and the elevation
extracted from SRTM (A1) and Topodata (A2)
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APPENDIX A3 — HISTOGRAM OF THE ALTIMETRIC ERROR
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Figure A 3 — Histogram of the altimetric error
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APPENDIX A4 — BOXPLOTS OF THE ELEVATION DIFFERENCES
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Figure A 4 — Boxplots of the elevation differences (BGN, SRTM and Topodata)
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APPENDIX B — STATISTICAL ANALYSIS OF THE ALTIMETRIC ERROR
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Figure B 1/B2/B3 - Statistical analysis of the altimetric error regarding slope (B1), elevation (B2) and LULC class (B3)
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APPENDIX C — CORRELATION MATRIX OF THE CANDIDATE EXPLANATORY VARIABLES

Correlation Matrix
Alt Error  Aspect Curv Plan  Curv Profi Curvature Dist River Drain Dens Elevation Rel Relief Roughness Slope TRI ™ VRM  LULC 1 Lwic 2 LuLC 3 LWLC4 LULCS LWICE LULCT wics  Lco
Alt_Error Pearson’s 1 -
p-value -
Aspect Pearson's r 018" -
p-value <.001 -
CurvPlan  Pearson'sr 027" 006 -
p-value <.001 0056 —
Curv_Profi  Pearson'sr 026"  -003 -058 -
p-value <001 0362 <001 -
Curvature  Pearson'sr 030" 005 087™* 090" -
p-value <.001 0.120 <.001 <.001 —
DistRiver  Pearson'sr  0.11"  -0.00 001 -0.07* 005 -
p-value <.001 0951 0.780 0.018 0.100 =
Drain_Dens Pearson'sr  -0.06 002 -001 0.07* -005 -084™ —
p-value 0056 0526 0729 0.026 0112 <001 —
Blevation  Pearson'sr 022" 002 010" -0.09%* 010" 029" 044™* —
p-value <001 0590 0001 0.005 <001 <001 <001 —
Rel Relief  Pearson'sr 010" 004 007" -0.02 0.05 -033* 056" 075" -
p-value <001 0237 0.020 0.518 0112 <.001 <001 <.001 -
Roughness  Pearson'sr 0.02 004 000 0.03 -001 -0.00 003 -0.03 001 =
p-value 049 0178 092 0413 0661 0982 0341 0335 0769 —
Slope Pearson’sr 006 005 (75 - g 015" 016™ 017 020" 030" 035" (0 —
p-value 0066 0127 <001 <.001 <001 <001 <001 <.001 <.001 0.681 -
TRI Pearson's 1 -0.01 003 0.01 0.04 -0.02 001 002 -0.05 -0.04 063" 001 =
p-value 0731 0284 0859 0.209 0510 05661 0610 0.087 0239 <001 0.865 -
™ Pearson'sr 0.02 004 001 0.02 -0.01 -0.00 003 -0.03 0.01 100" 001 0.63*** -
p-value 0463 0177 0.852 0.468 0737 0992 0347 0343 0.765 <001 0.665 <.001 —
VRM Pearson’st 001 004 000 003 -002 003 001 -0.06" -002 o 001 og™ o™ -
p-value 0802 0160 0967 0.286 0509 0362 0.710 0.048 0428 <001 0.808 <.001 <001 —
LuLC 1 pearson'st 013" 003 -001 0.02 -002 006" -005 -0.01 -003 -0.05 001 0.01 -0.05 001 —
p-value <001 0388 0748 0.420 0530 0037 0.110 0703 0217 0.098 0852 0735 0098 0678 -
LLc 2 Pearson'sr  -0.12"* 003 -003 0.0 -002 010" 026" 027" -040™ 003 016" 003 003 004 003 -
p-value <.001 0307 0.258 0.801 0469 0.001 <001 <.001 <.001 0.399 <001 0323 0404 0190 0304 -
wic 3 Pearson's r 006 000 -002 -0.02 0.00 -0.00 009" on*" 013*™ 0.01 002 0.01 001 0.01 -001 -0.05 —
p-value 0059 0959 0612 051 0899 0900 0.002 <.001 <.001 0.797 0423 0.865 0795 0842 0674 0.139 —
wic_4 Pearson's r 047 002 013" ke 0.14* 009* 010" (R L 024* 0.03 0.9 0.02 003 003 0ie™ a4t oar™* —
p-value <001 0497 <001 <.001 <.001 0004 <001 <.001 <.001 0279 < 001 0.448 0268 0403 <.001 <.001 <001 -
WiLC s Pearson's r oo7" 000 006 011" 009" 009" 022" o' 000" 001 008" 0.01 0.01 -0.00 0.05 013" 006" 016" -
p-value 0022 0905 0065 <.001 0003 0003 <001 <.001 0.004 0.870 0,006 0.765 0858 0997  0.116 <.001 0.045 <001 -
WLC_6 Pearson'st 001 001 002 -0.04 003 007" -005 0.03 009" 002 004 0.01 002 002  -002 013*" 001 016" 005 -
p-value 0678 0674 0454 0.212 0257 0022 0119 02719 0,003 0470 0.221 0.660 0468 0588  0.608 <.001 0770 <001 0.085 -
wic 7 pearson'st 012" 001 002 -0.07" 006 020" 019" 00t o2 000 on™ 003 000 001 -004 022" 001 027" 007" 005 —
p-value <001 0767 0428 0.029 0072 <001 <001 <.001 <.001 0939 < 001 0.312 0931 0675 0.156 <.001 0826 <001 0033 0107 -
wic e Pearson's r 006 -001 000 -0.07* 0.04 0.06 -0.04 0.00 003 0.00 005 0.02 0.00 002 020" o0n* 001 -0.03 010" 008" 018" -
p-value 0061 0.748 0.988 0.029 0.188 0051 0212 0.872 0.281 0.887 0.132 0.603 0879 0543  <.001 <.001 0722 0314 0.002 0.008 <.001 =
WIC 9 Pearson's r 006" 001 000 0.01 -0.01 006" -0.05 012" 006" 001 003 0.01 001 001 007" 0.04 -0.02 012"™  -002 0.02 002 001 -
p-value 0036 0763 0875 0.666 0834 0035 0.102 <.001 0042 0.749 0404 0.849 0750 0805 0017 0.146 0592 <001 0597 0526 0434 0707 -
Note.* p < 05, ** p < .01,**p<.001

Figure C — Correlation matrix of the candidate explanatory variables
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APPENDIX D — STATISTICS OF SIGNIFICANT COEFFICIENT ESTIMATES (MGWR)

Table D - Statistics of significant coefficient estimates (p<0.05 of t-test) for the MGWR model of
altimetric error

Variables Minimum Maximum Median Mean Standard Deviation Percentage of points

Intercept -1.424 1.251 -0.312  0.023 0.675 35%
Aspect -0.345 -0.123 -0.200 -0.213 0.052 82%
Curvature 0.126 0.639 0.345 0.368 0.134 36%
Elevation 0.426 0.447 0.444  0.439 0.008 100%
LULC=1 0.083 0.577 0.278 0.291 0.130 18%
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