Synechocystis ferredoxin/ferredoxin-NADP⁺-reductase/NADP⁺ complex: Structural model obtained by NMR-restrained docking

P. Nuno Palma⁎, Bernard Lagoutte⁎, Ludwig Krippahl⁎, José J.G. Moura⁎, Françoise Guerlesquin⁎,⁎

⁎ REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2859-516 Caparica, Portugal
⁎ Service de Bioénergétique, URA 2096, CNRS, Département de Biologie Joliot Curie, CEA Saclay, 91911 Gif sur Yvette Cedex, France
⁎ Unité de Bioénergétique et Ingénierie des Protéines, IBSM-CNRS, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France

Received 16 May 2005; revised 27 June 2005; accepted 5 July 2005
Available online 8 August 2005
Edited by Miguel De la Rosa

Abstract Ferredoxin (Fd) and ferredoxin-NADP⁺-reductase (FNR) are two terminal physiological partners of the photosynthetic electron transport chain. Based on a nuclear magnetic resonance (NMR)-restrained-docking approach, two alternative structural models of the Fd–FNR complex in the presence of NADP⁺ are proposed. The protein docking simulations were performed with the software BiGGER. NMR titration revealed a 1:1 stoichiometry for the complex and allowed the mapping of the interacting residues at the surface of Fd. The NMR chemical shifts were encoded into distance constraints and used with theoretically calculated electronic coupling between the redox cofactors to propose experimentally validated docked complexes. © 2005 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.

Keywords: Ferredoxin; Ferredoxin NADP⁺-reductase; Complex; Docking and NMR

1. Introduction

Short-lived non-covalent complexes formed between electron-transfer proteins are essential for the function of energy conserving systems such as photosynthesis and respiration. The molecular recognition process involves sequential steps: formation of a transient complex, electron transfer, dissociation and diffusion. The active sites must come in close contact to produce an efficient electron-transfer device, being the specificity and the efficiency of the electron transfer dictated and controlled by the details of the non-covalent interactions. While the three-dimensional (3D) structures as well as a wealth of information are available for many redox proteins, very few structures of electron-transfer complexes have been solved to date. Due to the low affinity constants, it is difficult to obtain co-crystals of these transient complexes. However, two structures of the FNR/ferredoxin (Fd) complexes from Z. Maize and *Anabaena* PCC7119 have been solved by crystallography [1,2]. In order to give a model of the ternary NADP/FNR/Fd complex, we have used in the present paper a nuclear magnetic resonance (NMR)-restrained docking approach [3–5]. Ferredoxin-NADP⁺-reductases (FDN) are flavine adenine dinucleotide (FAD) flavoproteins that catalyze the reduction of nicotinamide adenine dinucleotide phosphate (NADP⁺) to NADPH during photosynthesis in plant, algae or cyanobacteria [6]. The electron transfer from photosystem I to FNR is mediated by a (2Fe–2S) Fd [7]. Fd is a small ubiquitous soluble protein involved in many cellular processes from prokaryotes to eukaryotes [8]. NMR allowed us to investigate the formation of a complex between FNR and Fd from *Synechocystis* sp. PCC 6803 (*Synechocystis*), in the presence or the absence of NADP. On the basis of sequence alignment (Fig. 1), a structural model of FNR has been obtained, and NMR-restrained docking enables us to propose two structural working models of the Fd/FNR/NADP⁺ ternary complex.

2. Materials and methods

2.1. Expression and purification of the 15N labeled Fd

The petF gene was PCR amplified, cloned and used for overexpression as previously reported [9]. The minimal medium (M9) was supplemented with 15N ammonium sulfate (ISOTEC Inc., Matheson company, Miamisburg, USA). Purification of Fd was essentially as previously described [10] with an additional last step using hydrophobic chromatography (HiLoad phenyl Sepharose 16/10 from Pharmacia) eluted using a reverse gradient of ammonium sulfate (2.5–0 M) in 60 mM tricine buffer at pH 7.8. The final 422–276 OD ratio was 0.86. Fd was equilibrated in 10 mM phosphate buffer and concentrated by ultrafiltration up to 4 mM as measured at 222 nm using an extinction coefficient of 9.68 mM⁻¹ cm⁻¹.

2.2. Expression and purification of FNR

The plasmid encoding a truncated form of the petH gene was a gift of Dr. J. van Thor, modified in order to start translation at the codon 113 of the original gene [11]. Purification procedure of *Synechocystis* FNR followed a similar scheme as for Fd. Overexpressed FNR was precipitated between 55% and 70% ammonium sulfate saturation and solubilized in 20 mM tricine, pH 7.8. The protein sample first loaded on a Hitrap Q Sepharose HP column (Pharmacia) was further purified on a phenyl Sepharose matrix (HiLoad phenyl Sepharose 16/10 from Pharmacia) eluted by a reverse ammonium sulfate gradient (1.0–0 M in tricine 80 mM, pH 7.8). Pure FNR was eluted at 0.85 M salt. The 460–274 OD ratio after dialysis against 10 mM phosphate, pH 6.5, was 0.14. The protein concentration for NMR studies was estimated based on an extinction coefficient of 10.8 mM⁻¹ cm⁻¹ at 460 nm.
2.3. Nuclear magnetic resonance

NMR experiments were carried out on a Bruker DRX500 spectrometer at 293 K. 2D 1H–15N heteronuclear single quantum coherence (HSQC) spectra were recorded using a watergate pulse sequence in the TPPI mode. The spectral widths are 2500 Hz for 1H and 2027 Hz for 15N. 1024 data points in t_2 and 64 transients for each 128 t_1 were used. The 1H and 15N chemical shifts of the free-Fd were found in agreement with those previously reported [12]. Two sets of NMR titration experiments were performed with Fd samples, respectively, at 0.05 and 0.1 mM concentrations, in 10 mM phosphate buffer, pH 6.5, 10% D2O. Small amounts of either FNR or FNR–NADP+ (1:1) complex (2 mM concentration) were added to the Fd sample to obtain 0.12, 0.25, 0.5, 1, 2 or 5 M equivalents to Fd concentration.

2.4. Modeling

The structure of Synechocystis FNR was obtained by homology modeling using the X-ray structure (as template) of the homologous protein from Anabaena (sequence homology between the two proteins is 65%). The sequences were aligned (Fig. 1A) with the program ClustalW (http://www.ebi.ac.uk/clustalw) and that of the target molecule was overlaid on the 3D structure of the template protein. Since 1QUE lacks the structure of NADP+, the atomic coordinates of the co-substrate were taken from the 3D structure of Pea FNR (pdb:1QFY) and merged into the final Synechocystis structure. Note that the residues of the co-substrate binding pocket are extremely conserved; of the 23 residues that make close contacts (<4 Å) with NADP+ in the Pea FNR structure, 18 are conserved, 4 show conservative mutations and only the C-terminal Ser308 is substituted by a non-equivalent Tyrosine residue in Synechocystis. Therefore, it is fair to assume that the two proteins may stabilize the substrate in the same conformation. A coarse structure prediction was first performed at the Swiss-Model web server [13] and the final model was optimized by energy minimization with the MMFF94 force field, as implemented in the molecular modeling package Sybyl (Tripos Inc., 1699 South Hanley Rd., St. Louis, MO 63144, USA.).

A structure of Synechocystis Fd is available from NMR, but lacks well resolved coordinates around the region of the FeS cluster. Therefore, a new model of the Fd was generated by overlaying the amino acid sequence of the Synechocystis protein onto the X-ray structure of the homologous Fd from Anabaena (pdb:1QT9, 1.3 Å) (sequence homology is 70%, Fig. 1B), followed by structure refinement, as described above.

2.5. Docking

Molecular interaction simulations were performed using the protein-docking algorithm BiGGER v.1.0 [5,14], and the entire molecular surfaces were searched, therefore, assuming no prior knowledge of the interacting surface regions.

2.6. NMR filtering

The perturbations of NMR chemical shifts of Fd caused by the presence of FNR can be used to probe the amino acids more closely involved in the formation of the complex. Once assigned to specific amino acids, these chemical shift perturbations may be translated into distance constraints, assuming that a nucleus is affected if it is within an arbitrary distance of 8 Å from any atom of the other partner. Only those solutions that minimize the number of constraint violations are retained for subsequent analysis.
2.7. Electron tunneling pathway filtering

The first-order rate constant for electron transfer k_{et} between a donor and an acceptor at fixed distance and orientation may be generally described by Marcus theory [15]. In the case of the electron-transfer reaction between the redox centers of two interacting proteins, k_{et} depends essentially on temperature, ΔG^0 (determined by the difference in redox potentials), the reorganization energy and the electronic coupling between the two redox centers. This last parameter is approximated by a decay function which is influenced by the distance and nature of the intervening medium, i.e., the nature of the putative electron-transfer pathway. For the purpose of comparing alternative binding orientations between two proteins, the first three contribution terms of k_{et} may be considered approximately constant and therefore, the structures presenting higher electronic coupling values should also allow for faster electron-transfer rates.

3. Results and discussion

3.1. NMR titration

15N–1H HSQC experiments carried out on 15N labeled Fd in the presence of FNR alone or NADP$^+$-bound FNR revealed identical modifications of 12 resonances of the Fd. Among the 76 assigned residues of the Fd [12], 7 residues (L25, L35, R40, G49, L64, H90 and K91) were found substantially affected during the complex formation, in both cases (Fig. 2A). These resonances, corresponding to residues close to the FeS center of the Fd, are broaden in the spectrum of the free-Fd and progressively disappeared during the complex formation with FNR. However, the shifts of these resonances, still observable at low FNR concentrations indicate that the corresponding amino acids are at the interacting site and that the complex is in fast exchange at the NMR time scale. Five other resonances, assigned to residues D26, G32, Y80, D84 and Y96, shifting more than 0.2 ppm for 15N during the complex formation (Fig. 2B), were also selected. These 12 residues fairly dispersed through the Fd surface that surrounds the FeS center were used to define distance constraints to filter the docking results.

As attested by the saturation curves obtained from the Y96 chemical shift variations (Fig. 2C), the stoichiometry of the Fd/FNR and Fd/FNR–NADP$^+$ complexes was found to be 1:1. This stoichiometry is in agreement with gel filtration experiments (data not shown and [16]). The titration curves show that the affinity of the two proteins is slightly increased by the presence of NADP$^+$ (Fig. 2C). For this reason, we have investigated the docking of the two proteins in the presence of NADP$^+$.

3.2. Docking experiments

It is now generally assumed that transient complexes such as the ones formed between electron-transfer proteins have typically low association constants and are driven by long-range electrostatic interactions that favor the dynamic nature of their formation and dissociation. Due to the particular nature of such interaction, reliable docking simulations of electron-transfer complexes are more difficult to accomplish using general purpose docking algorithms. Instead, we have previously developed a successfully constrained docking hybrid methodology [3–5], which enriches the docking search space with solutions that are compatible with experimental evidence.

![Figure 2](image-url)
to generate and rank 5000 hypothetical docked structures, based on geometric surface complementarity and empirically based inter-residue affinity terms \[5,14\]. After a filtering step using NMR derived distance constraints, none of 5000 hypothetical docked structures fulfilled these 12 constraints. Indeed, D84 of Fd, whose \(^{15}\)N resonance shifts about 0.2 ppm during complex formation, is located at the surface of Fd but, in contrast with all other selected residues, seats at the opposite side of the protein, relative to the FeS cluster. Therefore, it is not physically possible to have all marked residues simultaneously within 8 Å from the FNR partner and the target complex should be sought amongst the ones that minimize the number of NMR constraint violations. Seven hypothetical docked complexes fulfill 11 NMR constraints imposed and Fig. 3A represents their geometrical distribution. All seven complexes possess approximately the same interacting surface patches, with FAD and FeS cofactors separated by no more than 7.8 Å (between the C8M atom of isoalloxazine and the closest Iron atom). These models differ by varying degrees of rotation and translation along the inter-molecular axis.

To discriminate between those putative solutions, the initial 5000 docked structures were also evaluated for the theoretical electronic coupling constants, calculated between the corresponding redox cofactors (Section 2). The 50 top-scoring complexes which present the shortest electron tunneling pathlengths, were selected (Fig. 3B). As can be observed in Fig. 3, the NMR- and the electron tunneling-filtered docked solutions roughly share the same interacting regions. Three models are thus selected when applying simultaneously the two filters (Fig. 4A). Two of the three structures are very similar to each other (RMS deviation between \(\alpha\)-carbons is 0.96 Å) and represent virtually the same solution.

From the results above, we were able to propose two alternative working models of the Synechocystis Fd/FNR/NADP\(^+\) complex (Fig. 4B, models 1 and 2), which equally fulfill both experimental and theoretical constraints. The interaction scores computed with BiGGER algorithm are also very similar for the two structures. However, our current experimental or theoretical knowledge of this complex does not allow us to conclude which of them is more likely to represent the native complex.

3.3. Analysis of the structural models of Synechocystis Fd/FNR/NADP\(^+\) complex

The two models of the complex differ from each other by 3.7 Å RMSD (\(\alpha\)-carbons), resulting from a slight rotation of the Fd molecule and a translation of around 6.5 Å along the surface of FNR. They share 19 common residues at the surface of Fd and only 11 on FNR, but interestingly, the molecular interfaces of the two model complexes show very similar percentages of non-polar atoms (about 60% in Fd and FNR). Model 1 is stabilized by three intermolecular salt-bridges (residues D11, D60 and E92 from Fd with K75, K264 and K77 from FNR, respectively) and three potential hydrogen bonds, involving S38, R40 and T46 from Fd, besides several hydrophobic contacts. Interactions in model 2 are less numerous with salt bridges and hydrogen bonds only between E29, G32 and E92 from Fd and K80, K77 and R21, respectively, from FNR. The interface areas...
of models 1 and 2 are 1530 and 2030 Å², respectively, which are within the most common range of 1600 ± 400 Å² for protein-protein complexes [17]. These values also compare well with the observed interface area (1600 Å²) of the crystallographic 1:1 FNR/Fd complex from Z. Maize (pdb 1GAQ), even though the two models differ from that structure by as much as 8.0 and 8.6 Å RMSD, respectively. The interfaces of the two models are fairly compact, possessing a slightly smaller gap volume than that observed for the Z. Maize complex (7100 Å³ versus 7800 Å³). The crystallographic structure of the Anabaena complex shows, on the other hand, different characteristics. For comparison, the RMSD (α-carbon) between Anabaena complex and Z. Maize complex or Synechocystis models 1 and 2 are 7.5, 4.0 and 4.7 Å, respectively. The apparent heterogeneity of binding modes between Fd and FNR from different species may be a consequence of the low affinity of these transient complexes, mostly optimized for an efficient electron-transfer turnover. These data are in agreement with the NMR mapping of the Maize Fd interacting site [2] which is significantly different of that we found for Synechocystis system (Fig. 1).

A detailed analysis of the electron-transfer site shows that in both Synechocystis models, the two cofactors and NADP⁺ substrate are in close proximity: the FeS–FAD distance is approximately 6.0 Å, and the FAD–NADP⁺ distance is 2.3 Å. As represented in Fig. 5, these models suggest that Fd C39 has an essential role in electron transfer. C39 is one of the ligands of the FeS center and is positioned at the complex interface, inaccessible to water molecules and at 3.8 or 3.4 Å distance from the FAD (in models 1 or 2, respectively). The cysteine side chain therefore provides a potential bridge for the electron transfer, between the redox centers of the two proteins. In a similar way, it was proposed that C44 of Maize Fd is involved in a direct electron transfer through space between the prosthetic groups [2]. The involvement of C39 in Synechocystis complex or C44 in the Maize complex is certainly due to the different orientations of the two molecules in the complexes. In the current models of Synechocystis complex, like it was described in the crystallographic structure of Maize complex [2], the aromatic residue F63 of Fd, as well as Y37 are found at the interface, bordering the solvent excluded interface patch. However, their distances to the FeS cluster or the FAD group are higher than the FeS–FAD linear distance. It is therefore difficult to rationalize that these aromatic residues would provide a more efficient electron-transfer pathway than the direct through-bond pathway provided by C39. Indeed,
NADP$^+$ is relatively buried inside FNR and the structural models suggest the absence of direct interactions between Fd and NADP$^+$.

Acknowledgments: The authors thank Michel Frey for helpful discussion on Anabaena FNR/Fd system. This work was supported by Fundação para a Ciência e Tecnologia, the French Embassy and ICCTI (no. 316C2) and the PICS program from CNRS and ICCTI (no. 1392). The starting pET vector for over-expression of the truncated petH gene was a kind gift of Dr. J. van Thor.

References

