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Resumo 

A parede celular de Staphylococcus aureus é uma rede extremamente complexa composta 

maioritariamente por peptidoglicano (PG) com alto teor em pontes interpeptidicas e ácidos teicóicos 

(TAs), ambos importantes para a manutenção da integridade e viabilidade celular da bactéria. As 

proteínas de ligação à penicilina (PBP), que catalisam a fase final da biossíntese do PG, são alvos dos 

antibióticos β –lactâmicos e como tal têm sido um dos principais focos da investigação antibacteriana. 

S. aureus tem quatro PBPs nativas, PBP1 – 4, que estão presentes quer nas estirpes sensíveis á meticilina 

(MSSA), quer nas resistentes (MRSA). PBP4 cataliza a formação de ligações interpetidicas do 

peptidoglicano e, como demonstrado recentemente, é essencial para a expressão da resistência aos 

antibióticos β - lactâmicos em estirpes adquiridas na comunidade (CA-MRSA). Esta proteína, em S. 

aureus, localiza-se no septo celular, localização esta que parece ser espacialmente e temporalmente 

regulada por um intermediário, ainda não identificado, da biossíntese dos ácidos teicoícos da parede 

(WTA). Neste sentido, se a síntese dos WTA é comprometida, a PBP4 perde a sua localização septal e 

surge dispersa por toda a membrana celular. O objetivo deste projeto foi identificar o precursor da síntese 

dos WTA responsável pelo recrutamento septal da PBP4. Foram construídos mutantes indutíveis de dois 

genes essenciais para esta via de síntese, o tarB e tarL, utilizando a estirpe NCTCPBP4 – YFP (que 

expressa um derivado fluorescente da PBP4), o que nos permite estudar a localização da PBP4 na 

presença e ausência da expressão destes genes. Em conclusão, com este trabalho, fomos capazes de 

mostrar que a ausência destas duas proteínas, TarB e TarL, levam à deslocalização da PBP4, indicando 

que provavelmente a proteína TarL ou uma proteína ou precursores da síntese WTA dependente de 

TarL, é responsáveis pelo recrutamento de PBP4. 

Palavras-chave: Staphylococcus aureus; Parede celular; Resistência aos antibióticos β – 

lactâmicos; Biossíntese dos ácidos teicoícos; Proteínas de ligação à penicilina; localização de proteínas. 
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Abstract 

The cell wall of Staphylococcus aureus is a highly complex network mainly composed of highly 

cross-linked peptidoglycan (PG) and teichoic acids (TAs), both important for the maintenance of the 

integrity and viability of bacteria. The penicillin binding proteins (PBPs), which catalyse the final stage 

of PG biosynthesis, are targets of β-lactam antibiotics and have been a key focus of antibacterial 

research. S. aureus has four native PBPs, PBP1-4 carried by both methicillin-sensitive (MSSA) and –

resistant (MRSA) strains. PBP4 is required for the synthesis of the highly cross-linked PG and, as shown 

in recent studies, is essential for the expression of β-lactam resistance in community-acquired strains 

(CA-MRSA). This protein has a septal localization that seems to be spatially and temporally regulated 

by an unknown intermediate of the wall teichoic acids (WTA) biosynthesis pathway. Therefore, if WTA 

synthesis is compromised, PBP4 becomes dispersed throughout the entire cell membrane. The aim of 

this project was to identify the WTA precursor responsible for the septal recruitment of PBP4. In order 

to do so, inducible mutants of tarB and tarL genes in the background of NCTCPBP4-YFP were 

constructed allowing for the study of PBP4 localization in the presence and absence of these specific tar 

genes.With this work we were able to show that the absence of TarB or TarL leads to the delocalization 

of PBP4, indicating that TarL or a protein/WTA precursor whose localization/synthesis is dependent on 

TarL is responsible for the recruitment of PBP4. 

Keywords: Staphylococcus aureus; cell wall; β-lactam resistance; wall teichoic acids 

biosynthesis; penicillin-binding proteins, protein localization  
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Introduction 
 

Staphylococcus aureus as an antibiotic resistant pathogen. 

 The gram-positive cocci Staphylococcus aureus is a common commensal organism of the skin 

and mucosal surfaces, but it is also an important opportunistic pathogen responsible for a wide range of 

nosocomial and community-acquired infections, such as skin and ocular infections, pneumonia, 

septicemia, endocarditis and osteomyelitis (Archer, 1998; Diekema et al., 2001). This organism lives as 

a persistent commensal on 20% of the human population, preferentially on the skin and nasopharynx, 

and it is intermittently carried by a further 60% of individuals (Edwards et al., 2012; Foster, 2005). 

Colonization is normally asymptomatic, but clearly increases the risk for subsequent infection, as if the 

skin barrier or the mucous membranes are breached S. aureus can enter into the soft tissues and establish 

an invasive infection. Colonization also allows the transmission of S. aureus by skin-to-skin contact 

between individuals or contaminated objects (Archer, 1998; Miller and Diep, 2008; Wertheim et al., 

2005). The success of S. aureus as a virulent pathogen and its ability to cause a large spectrum of 

infections are due to the expression of several virulence factors, such as surface-attached proteins and 

secreted enzymes, that allow the adherence to and invasion of human tissues, impart resistance to innate 

immune defences and act as toxins (Archer, 1998; Edwards et al., 2012; Gordon and Lowy, 2008).  

Antibiotic resistance in S. aureus is also a serious health-care problem due to its remarkable 

ability to develop new mechanisms to resist the effects of antimicrobial agents. The introduction of the 

β-lactam penicillin in the early 1940s, the first effective drug against S. aureus, produced in 1928 by the 

Scottish microbiologist Alexander Fleming, dramatically improved the prognostic of patients with 

staphylococcal infections (Plord and Sherris, 1974). However, in 1942, as a consequence of the 

remarkable adaptive efficiency of S. aureus, penicillin-resistant staphylococci were recognized, first in 

hospitals and then in the community. By the late 1960s, more than 80 % of both community- and 

hospital-acquired staphylococcal isolates were resistant to penicillin (Lowy, 2003; Swoboda et al., 2010; 

Swoboda et al., 2009; Szweda et al., 2012). The resistance of these strains was conferred by the presence 

of a plasmid containing the blaZ gene that encodes a β-lactamase (called first penicillinase), an 

extracellular enzyme synthetized when staphylococci are exposed to β-lactam antibiotics. The enzyme 

functions to hydrolyse the β-lactam ring of penicillin, thus rendering the antibiotic inactive (Lowy, 

2003). In the sixties, a semisynthetic β-lactamase-resistant penicillin called methicillin was developed 

to treat the infections caused by these penicillin-resistant S. aureus strains (Barber, 1961; Parker and 

Hewitt, 1970). However, soon after methicillin therapy in hospitals began, methicillin resistant 

Staphylococcus aureus (MRSA) strains were isolated, initially from patients in a hospital in Colindale, 

UK. Through the late 1960s and early 1970s, MRSA strains were reported, with increasing frequency, 

in others countries all over the world, such as Australia, Belgium, Denmark, France, India, Poland, 

Switzerland and United States of America (Chambers, 1988; Jevons et al., 1963; Lyon and Skurray, 
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1987; Szweda et al., 2012). Nowadays, MRSA strains are one of the leading causes of nosocomial 

infections worldwide (Chambers and Deleo, 2009). Recent studies show that in the United States the 

number of deaths caused by MRSA infections is higher than those related to HIV/AIDS and tuberculosis 

combined (Boucher and Corey, 2008). Reports from The European Centre of Disease Prevention and 

Control (ECDC) show that in recent years the percentage of methicillin-resistant S. aureus isolates has 

increased dramatically. For example in Portugal more than 50% of isolates are now resistant to 

methicillin. 

For the first three decades after their appearance, MRSA strains were known only as hospital-

acquired pathogens (HA-MRSA). Then, in the early nineties, with an unpredicted epidemiological turn, 

MRSA strains also began to appear in the community among healthy people, who had no symptoms or 

risk factors for such infections. These strains, called community-acquired MRSA (CA-MRSA) (Okuma 

et al., 2002; Rice, 2006; Saravolatz et al., 1982),  are less resistant to most antibiotics, other than β-

lactams, but exhibit a major virulence potential, and are consequently capable of causing infections in 

healthy individuals (Szweda et al., 2012). The spread of such a dangerous pathogen to the community 

is recognized as a disturbing reality and a huge concern in many countries. It also highlights the 

requirement for an increase in our knowledge about the resistance mechanisms in S. aureus to aid in the 

development of new therapies against these infections. 

 

Cell wall biosynthesis and β-lactam resistance. 

The cell wall, the external layer of bacterial cells, is very important for the integrity and viability 

of bacteria, as it provides physical protection, determines the cell shape and is the principal stress-

bearing element, which makes it an ideal target for antibiotics (Scheffers and Pinho, 2005). In Gram-

positive bacteria such as S. aureus the cell wall is composed of surface proteins, teichoic acids and a 

thick layer of peptidoglycan (PG). Peptidoglycan, also called murein, is a heteropolymer composed of 

long glycan chains, made up of alternating β-1,4-linked N-acetylglucosamine (GlcNAc) and N-

acetylmuramic acid (MurNAc) subunits, which are cross-linked by flexible peptide bridges to form a 

strong but flexible structure (Beeby et al., 2013; Scheffers and Pinho, 2005; Schleifer and Kandler, 

1972; Szweda et al., 2012). Peptidoglycan is present in almost all bacteria, except in Mycoplasma and 

a few other species that lack detectable cell walls. Attached to the carboxyl group of each MurNAc 

residue are stem peptides that, unlike glycan chains, have varying composition between different 

species. In S. aureus the stem peptides are composed of the sequentially added L-Alanine (L-Ala), D-

Glutamic acid (D-Glu), L-Lysine (L-Lys), D-Alanine (D-Ala), D-Ala amino acids. The interpeptide 

bridges, created by the addition of five glycine residues to the L-Lys residue, allow for the cross-linking 

between different layers of PG (Kopp et al., 1996; Schleifer and Kandler, 1972; Vollmer et al., 2008).  

Peptidoglycan synthesis is a major target of some of the most successful classes of antibiotics, 

including the β-lactams such as penicillin or methicillin (Popham, 2013). The biosynthesis of PG can be 

divided into three different stages, as shown in Figure1.1 (Heijenoort, 1998, 2001). The first stage 
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involves the cytoplasmic synthesis of the nucleotide sugar-linked precursors UDP-N-acetylmuramyl-

pentapeptide (UDP-MurNAc-pentapeptide) and UDP-N-acetylglucosamine (UDP-GlcNAc). In the 

second stage, which takes place at the inner side of the cytoplasmic membrane, MraY transfers the 

phospho-MurNAc-pentapeptide moiety of UDP-MurNAc-pentapeptide to the membrane acceptor 

bactoprenol, generating lipid I [MurNAc-(pentapeptide)-pyrophosphoryl-undecaprenol]. MurG then 

promotes the β-1,4 linkage between UDP-GlcNAc and lipid I, yielding the final PG precursor, lipid II 

[GlcNAc-β- (1,4)-MurNAc- (pentapeptide)-pyrophosphoryl-undecaprenol]. Before its translocation to 

the outer side of the cytoplasmic membrane, the lipid II is modified by a family of peptidyltransferases 

(FemX, FemA and FemB), which promote the sequential addition of five glycines to the L-Lys residue, 

creating a pentaglycine bridge peptide for the cross-linking of PG in the cell wall. It has been proposed 

that the export of the fully modified PG lipid II precursor is catalyzed by a flippase (Roemer et al., 2013; 

Typas et al., 2012) . The third and final stage of PG biosynthesis, that takes place at the outer surface of 

the cytoplasmic membrane, consists on the polymerization of the newly synthesized disaccharide–

peptide units and its incorporation into the growing PG, by elongation (transglycosylation) and peptide 

cross-linking (transpeptidation) between glycan strands (Heijenoort, 1998, 2001; Llarrull et al., 2009; 

Scheffers and Pinho, 2005; Typas et al., 2012; Vollmer et al., 2008). These reactions, which occur 

mainly at the division septum of S. aureus, are catalyzed by the penicillin‐binding proteins (PBPs) and 

monofunctional transglycosylases (Pinho and Errington, 2003). PBPs are membrane-associated 

proteins, anchored to the cytoplasmic membrane facing the extracellular surface, which can be classified 

as low-molecular-weight (LMW) and high-molecular-weight (HMW) proteins (Ghuysen, 1991; Goffin 

and Ghuysen, 1998). LMW PBPs are enzymes that only have a penicillin binding domain, that exhibit 

a DD- carboxypeptidase leading to the removal of terminal D-aminoacids from the PG muropeptides or 

transpeptidase activity leading to the formation of the cross‐links between the peptides strands of PG. 

HMW PBPs are enzymes composed of two modules located on the outer side of cytoplasm membrane 

and an N-terminal anchored to the cytoplasmic membrane. The C‐terminal is the penicillin binding 

domain, with transpetpidasse (TP) activity responsible for the cross-linking of the PG peptides. The N-

terminal domain allows, depending on its primary structure and catalytic activity, the classification of 

HMW PBPs into two major classes: A and B (Ghuysen, 1991; Goffin and Ghuysen, 1998). The N-

terminal domain of class A PBPs has a glycosyltransferase activity, catalyzing the elongation of glycan 

strands. The N-terminal domain of HMW class B PBPs have a non-penicillin-binding domain of 

unknown function, that has been suggested to have a role in cell morphogenesis (Scheffers and Pinho, 

2005). 
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Since their discovery as targets of β-lactam antibiotics, PBPs have been a key focus of 

antibacterial research. β-lactam antibiotics bind irreversibly to the transpeptidase active site of PBPs. 

Through the formation of an acyl-enzyme complex, they act as pseudosubstrates causing the inhibition 

of synthesis and cross-linking of PG, resulting in the weakening of the cell wall and leading to eventual 

cell lysis (Llarrull et al., 2009; Zapun et al., 2008). S. aureus have four native PBPs, PBP1-4 carried by 

both methicillin-sensitive and –resistant strains, to which most β-lactam antibiotics bind (Pereira et al., 

2009; Pinho et al., 1998; Zapun et al., 2008). The first three are HMW PBPs, while PBP4, a non-

essential protein, is a LMW PBP that has transpeptidase activity performing secondary cross-linking of 

the PG and therefore leading to the high degree of cross‐linking characteristic of the S. aureus PG (Leski 

and Tomasz, 2005; Memmi et al., 2008). Recent studies have also shown that PBP4, is essential for the 

expression of β-lactam resistance in CA-MRSA (Memmi et al., 2008). MRSA strains encode an 

Figure 1.1. Cell wall biosynthesis in S. aureus. The image represents the three stages of cell wall synthesis: 

(i) cytoplasmic synthesis of the UDP-MurNAc-pentapeptide and the UDP-GlcNAc; (ii) inner membrane 

biosynthesis of the lipid II precursor and (iii) outer membrane polymerization of glycan chains and peptide 

crosslinking. The chemical structure of a muropeptide and the enzymes which catalyze each biosynthetic step 

are also represented (reproduced from Pinho (2008)). 
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additional PBP, PBP2A, the expression of which is responsible for the resistance of these strains to β-

lactam antibiotics. This enzyme is encoded by the mecA gene that is situated in the chromosome in a 

genomic island designated staphylococcal cassette chromosome mec (SCCmec) (Berger-Bächi et al., 

1992; de Lencastre et al., 2007; de Lencastre and Tomasz, 1994; Verghese et al., 2012). The mecA gene 

is not native to S. aureus, but was acquired by lateral transfer, possibly from others related organisms, 

like Staphylococcus sciuri or Staphylococcus fleurettii (Couto et al., 1996; Crisostomo et al., 2001; de 

Lencastre et al., 2007). PBP2A has a remarkably low affinity for all β-lactams, and in their presence 

performs all of the transpeptidase activity, in cooperation with the glycosyltransferase activity of PBP2, 

ensuring continued cell wall synthesis (Pinho et al., 2001a; Pinho et al., 2001b; Pinho et al., 1997).  

 

Wall teichoic acid biosynthesis and β-lactam resistance. 

 In addition to peptidoglycan, an important class of cell surface glycopolymers in Gram‐positive 

bacteria are the phosphate rich teichoic acids (TAs). These molecules play a role in a large variety of 

functions, such as in maintaining the physicochemical properties of the cell surface, cation homeostasis, 

resistance to antimicrobial peptides and lytic enzymes, acting as phage receptors, in cell division, biofilm 

formation and host adhesion (Figure 1.2). There are two types of TAs, distinguished by the way they 

are covalently linked to the surface, the lipo- teichoic acids (LTAs), which are anchored to the 

cytoplasmic membrane, extending from the cell into the peptidoglycan layer, and the wall teichoic acids 

(WTAs), which are covalently attached to the peptidoglycan layers and extend beyond them (Figure 

1.2). Together, the LTAs and the WTAs, create a negative gradient that goes from the bacterial cell 

surface until the outer most layers of the PG (Morath et al., 2005; Pasquina et al., 2013; Swoboda et al., 

2010; Weidenmaier and Peschel, 2008).   

 

 

 

 

 

 

 

 

 

 

  

Figure 1.2. Simplified illustration of Gram-positive bacterial cell envelope and the TAs functions. A) 

Representation of the Gram-positive bacterial cell wall. This image does not show proteins, which are also an 

important element of the cell wall, in order to simplify the scheme. LTA: lipo-teichoic acid; WTA: wall teichoic 

acid. (Adapted from Swoboda et al. 2010); B) Representation of the functions of teichoic acid, which are involved 

in cell division, charge homeostasis and infection. (Adapted from Pasquina et al. 2013). 

B A 
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 It has been shown that the expression of WTAs is critical for the pathogenicity of S. aureus 

strains, so a detailed study of WTA biosynthesis is important for a better understanding of their roles in 

bacterial physiology and to evaluate their potential as antibacterial targets (Weidenmaier et al., 2005). 

The chemical structure of WTAs vary among Gram‐positive bacteria, but the most common structures 

are composed of a β‐(1,4)‐linked N‐acetylmannosamine (ManNAc) and N‐ acetylglucosamine 

(GlcNAc), attached by a phosphodiester linkage to the C6 hydroxyl of MurNAc residue of PG, followed 

by two glycerol  phosphate  units  which  are  linked  to  a  chain  of glycerol- or ribitol phosphate repeats 

(Lazarevic et al., 2002; Sanderson et al., 1962). S. aureus WTAs contain polyribitol phosphate (poly‐

RboP) units with GlcNAc and cationic D‐alanine esters substituents at their hydroxyl group (Figure 1.3) 

(Brown et al., 2010; Weidenmaier and Peschel, 2008) 

 

 

 

 

 

 

 

 

  

 

The biosynthesis of WTAs (shown in Figure 1.4) in S. aureus is catalysed by the tar genes (for teichoic 

acid ribitol) whose function has been established based mostly on sequence homology to the tag genes 

(for teichoic acid glycerol) involved in the production of WTAs of the well-studied model organism 

Bacillus subtilis  (Lazarevic et al., 2002; Qian et al., 2006). This biosynthesis pathway begins in the 

cytoplasm, at the wall-membrane interface, with the transfer of GlcNAc-1-P from UDP‐GlcNAc to the 

membrane-anchored undecaprenyl phosphate carrier lipid, an intermediate also used in the PG 

biosynthesis. This first step is a reversible reaction catalysed by TarO, which is a N‐acetylglucosamine‐

1‐phosphate transferase that belongs to the glycosyltransferase family, which also includes the enzyme 

MraY, required for PG biosynthesis (Anderson et al., 1978; Brown et al., 2008; Soldo et al., 2002). The 

first irreversible step in WTA biosynthesis is catalysed by an N‐acetylmannosaminyl transferase, TarA, 

that transfers a ManNAc residue from the UDP‐ManNAc to the C4 hydroxyl of GlcNAc forming a β‐

linked disaccharide (Yokoyama et al., 1989; Zhang et al., 2006). Following the formation of the 

ManNAc(β1-4)GlcNAc disaccharide, the synthesis continues with the addition of two glycerol‐3‐

phosphate units, by TarB and TarF glycerolphosphate transferases (Brown et al., 2008). The glycerol‐

Figure 1.3. Chemical structure of wall teichoic acids (WTAs) in Staphylococcus 

aureus. RboP: ribitol-phosphate; y = 1–2, z = 20–40 (Adapted from Brown et al. 2010). 
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3‐phosphate derived from CDP‐glycerol is a nucleotide‐activated precursor of TarD, a 

cytidylyltransferase (Park et al., 1993). In S. aureus the assembly of the WTA main chain (a poly-ribitol-

5-P chain), requires a bi‐functional poly‐ribitol primase/polymerase, TarL, which transfers a single 

ribitol phosphate residue to the linkage unit and then attaches more than forty ribitol-5-P units to 

complete the polymer (Brown et al., 2008; Meredith et al., 2008). The ribitol-5-P is derived from CDP-

Ribitol, in a reaction performed by the combined action of TarI, a cytidylyltransferase, and TarJ, an 

alcohol dehydrogenase (Pereira and Brown, 2004). All S. aureus strains contain an apparent duplication 

of the chromosomal region containing the tarIJL genes, this second set of genes is designated tarI’J’K. 

The significance of these duplications is still unclear, and it was already shown that the tarK gene is 

highly homologous to the tarL gene and consequently their encoded enzymes have similar functions. 

TarL has a polymerase function that catalyses the formation of a primary TarL-directed WTA polymer 

(L-WTA) while TarK it’s a primase makes a secondary TarK-directed WTA polymer (K-WTA) 

(Meredith et al., 2008; Pereira et al., 2008; Swoboda et al., 2010). The WTA glycosylation occurs in 

the cytoplasm, following polymer synthesis, through the addition of α‐GlcNAc, by TarM, and β‐

GlcNAc, by TarS (Brown et al., 2012; Xia et al., 2010). The WTA polymer is then translocated to the 

external side of the membrane by the ABC transporter complex composed of TarH and TarG. This WTA 

transporter consists of an ATPase domain, the TarH, which provides the necessary energy to catalyse a 

conformational change in the transmembrane component, and a transmembrane domain, the TarG, a 

channel that facilitates the translocation across the membrane (Schirner et al., 2011; Seeger and van 

Veen, 2009). Once the WTA polymer is outside of the cell, it has to be incorporated into the PG, by a 

phosphodiester linkage between the polymer and the C6 hydroxyl of the PG MurNAc residue. This 

reaction is catalysed by unknown proteins, presumably homologous to the TagTUV enzymes (Brown et 

al., 2013). The D‐alanylation of WTAs is another important mechanism, because it allows bacteria 

modulate their surface charge. This process, which occurs outside the cell, involves the attachment of 

D-alanine esters to WTAs and is catalysed by four enzymes encoded in the dltABCD operon (Kovacs et 

al., 2006). Although this reaction is not completely understood, it is believed that the DltA, an D‐alanyl 

carrier protein ligase, activates D‐alanine as an AMP ester and then, with the help of the membrane‐

anchored DltD protein, transfers the aminoacyl adenylate to the carrier protein DltC (Heaton and 

Neuhaus, 1992, 1994). The DltB protein is an uncharacterized transmembrane protein of the membrane-

bound-O-acetyltransferase (MBOAT) family, that has been suggested to be involved in the translocation 

of the D‐alanine-charged DltC across the cytoplasmic membrane, where D‐alanine is then transferred 

to the WTA backbone (Brown et al., 2013). These final steps of the synthesis pathway are illustrated in 

Figure 1.5.  

WTAs are not essential for S. aureus viability, since tarO and tarA can be deleted and the mutant 

strains survive (although their growth and virulence are impaired) (D'Elia et al., 2006a). In contrast, the 

deletion of genes involved in downstream reactions of the WTAs biosynthesis pathway results in a lethal 

phenotype, indicating that these are conditionally essential genes. The lethal phenotype can be rescued 
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in a ΔtarO or ΔtarA background, suggesting that lethality can be due to the accumulation of toxic 

intermediates in the cell or depletion of cellular undecaprenyl phosphate, an intermediate shared with 

the PG biosynthesis (D'Elia et al., 2006b; Swoboda et al., 2010). 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

The role of WTA in β-lactam resistance of MRSA strains has remained elusive for a long time. 

In 1994, Maki et al identified the llm gene, through transposon insertional inactivation as playing an 

important role in methicillin resistance of MRSA strains. Although  its  molecular function  was  

unknown, llm mutants had a profoundly restored β-lactam susceptibility in a wide range of MRSA 

clinical isolates studied (Maki et al., 1994). Recent studies showed, by sequence comparison, that llm is 

the same as tarO, the gene encoding the first enzyme in wall teichoic acid (WTA) biosynthesis pathway 

in S. aureus (Campbell et al., 2010).  

A. 

B. 

Figure 1.4. Genes and proteins involved in the primary Staphylococcus aureus WTA biosynthetic 

pathway. A) Genetic organization of wall teichoic acid biosynthetic genes in S. aureus; tar: teichoic acid 

ribitol (//: number of nucleic acids between genes if >120 base pairs); B) Depiction of the primary S. aureus 

WTA biosynthetic (L-WTA) pathway. After the intracellular production, the poly-ribitol-phosphate polymer 

is translocated to the outside of the membrane by a two-component ABC transporter, TarGH, and then 

incorporated into the PG. The green section represents the non-essential WTA pathway enzymes. 

Conditionally essential enzymes are coloured red, whose deletion is lethal in a wild-type background but 

permitted in a ΔtarO or ΔtarA background. Adapted from Swoboda et al. 2009 and Swoboda et al. 2010. 
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Figure 1.5. Staphylococcus aureus WTA biosynthetic pathway, with potential antibiotic targets. The image 

shows, in boxes with different colours, the three possible types of antibacterial targets in the S. aureus WTA 

pathway: traditional antibiotic targets (Brown), β-lactam potentiators (blue) and antivirulence antimicrobial targets 

(green). The three chemical structures represented are small molecules known to inhibit the WTA enzymes TarO, 

TarG, and DltA; GlcNAc: N-acetylglucosamine; ManNAc: N-acetylmannosamine; TFA: trifluoroacetic acid 

(Brown et al., 2013). 

 

 

 

 



Chapter 1 – Introduction 

10 
 

The role of WTA in expression of β-lactam resistance was confirmed with the identification of 

drugs that targets WTA synthesis and have a synergistic effect with β-lactams. One of these drugs is 

tunicamycin, a naturally produced inhibitor of a family of enzymes that, in S. aureus, includes the TarO 

and MraY, an essential enzyme involved in PG biosynthesis (Campbell et al., 2010; Campbell et al., 

2012). Although tunicamycin inhibits both enzymes, TarO is inhibited at much lower concentrations 

(Campbell et al., 2010). The use of tunicamycin in conditions that specifically inhibit TarO has shown 

that the absence of WTAs caused MRSA strains to become more susceptible to β-lactams. 

Unfortunately, this compound is highly cytotoxic to mammals because it inhibits GPT, an essential 

phosphotransferase involved in eukaryotic N-linked glycan biosynthesis (Price and Tsvetanova, 2007; 

Roemer et al., 2013). 

  

 A second drug that targets WTA synthesis is targocil, a synthetic small molecule that, through 

drug resistant mutant isolation, was shown to inhibit TarG, an essential subunit of the WTA ABC 

transporter (Swoboda et al., 2009; Wang et al., 2013). Resistance to targocil is achieved by loss-of-

function mutations in tarO or tarA, given that in these conditions WTAs become dispensable, and the 

frequency of resistance (FOR) is high. However, when targocil is used in combination with oxacillin, 

β-lactam resistance of MRSA strains is impaired and the FOR for targocil mutants is greatly reduced 

(Campbell et al., 2010; Lee et al., 2010).These findings suggest that WTA inhibitors could work as β-

lactam combination agents against MRSA (Roemer et al., 2013; Wang et al., 2013).Given that β-lactams 

are broad spectrum and safe and the most used class of antibiotics, the study and development of new 

therapeutic agents that restore β-lactam sensitivity to resistant microorganisms is of great importance 

(Brown et al., 2013). 

The WTA biosynthetic pathway is thus an important target for new antibacterial drugs to treat 

MRSA infections, given that different Tar enzymes can be considered antivirulence targets, essential 

targets and β-lactam potentiator targets (Figure 1.5) (Brown et al., 2013). Antivirulence targets do not 

affect essential genes but disturb the pathogenicity of the cell. The enzymes of the dlt operon are an 

example of such targets, as strains without teichoic acid D-alanine esters are strongly attenuated in 

animal infection models and yet show minimal growth defects under laboratory growth conditions. In 

2005, the 5’-O-[N- (D-alanyl)-sulfamoyl] adenosine molecule, was described as a DltA inhibitor, but 

remains to be optimized and is likely not specific (Brown et al., 2013; May et al., 2005). 

 

 

 

 

 

 



Chapter 1 – Introduction 

11 
 

Connection between WTA and PG biosynthesis in S. aureus 

 In 2010, J. Campbell and colleagues, showed that tunicamycin, which blocks the first and non-

essential step in the WTA pathway, caused profound morphological defects, even though it did not 

significantly affect growth rates and had only a modest effect on gene expression (Campbell et al., 2010; 

Campbell et al., 2012). The morphological defects included aberrations in septal placement, a high 

frequency of duplicate septa and an inability to separate daughter cells following the completion of new 

septa. These defects demonstrate that WTAs play a fundamentally important role for properly 

coordinated cell division and suggest a link between PG and WTA biosynthesis (Campbell et al., 2010).  

In 2010 M. Atilano and colleagues discovered that WTAs modulate the degree of PG cross-

linking by temporally and spatially regulating the recruitment of PBP4 to the site of cell-wall synthesis, 

the division septum (Atilano et al., 2010). PBP4, the enzyme responsible for the high degree of PG 

cross-linking in S. aureus, localizes to the septum in wild type strains. However, in ΔtarO mutants, in 

which the level of PG cross-linking was shown to be severely decreased, the PBP4 protein no longer 

accumulates specifically at the septum, but instead is dispersed over the entire cell membrane. These 

observations suggested that the septal recruitment of PBP4 was dependent upon the synthesis of WTAs 

(Atilano et al., 2010). The recruitment of PBP4 was shown not to occur via direct protein-protein 

interaction with TarO, which reinforces the idea that this recruitment is dependent of the septal synthesis 

of WTA. A delocalized PBP4 is unable to perform its function, a fact that may be due to the substrate 

being found only at the septum or to the lateral PG exhibiting a different structure to the septal PG, 

which may not allow the addition of further cross-links between the glycan strands (Atilano et al., 2010). 

On the basis of these findings, the authors suggested a model, represented in the figure 1.6, in which the 

initial cell-wall synthetic machinery is recruited to the division septum in the early stages of its 

formation. TarO, together with others enzymes involved in WTA biosynthesis, are then recruited to the 

septum and initiate the WTA synthesis pathway, which functions as a temporal indication that early PG 

biosynthesis is complete and that PG can be further processed to become highly cross-linked. PBP4 

subsequently arrives at the septum, where it catalyzes the last steps of PG synthesis, performing the high 

cross-linking of the PG mesh.  

Importantly, it is likely that recruitment of PBP4 is mediated by an immature form of WTA 

corresponding to an intermediate of the WTA biosynthesis pathway, which is encountered only at the 

septum, since the fully synthesized/mature WTAs are present throughout the entire surface of S. aureus 

(Atilano et al., 2010) but this intermediate remains unknown. The objective of this work is to answer to 

the question “Which is the WTA precursor responsible for the septal recruitment of PBP4?” by studying 

the localization of S. aureus PBP4 in presence and absence of specific tar genes. This question is of 

particular importance, not only to gain further insight into a fundamental process of the synthesis of the 

bacterial cell surface, but also due to the essential role of PBP4 in the expression of β-lactam resistance 

in CA-MRSA. Understanding how PBP4 localizes is required to fully understand its role in β-lactam 

resistance.  
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Figure 1.6. Model for the role of teichoic acids synthesis in PBP4 recruitment to the septum. The initial 

cell-wall synthetic machinery arrives to the division site, leading to the synthesis of new PG, with low levels of 

crosslinking (Left). TagO, and the remaining enzymes involved in WTA biosynthesis, are recruited to the 

septum, by an unknown mechanism, and there initiate the synthesis of intermediate molecules in TA 

biosynthesis (Centre). These intermediates (or another cellular components dependent on TA biosynthesis) 

function as a temporal and spatial cue for PBP4 recruitment to the division septum, allowing the synthesis of 

highly cross-linked PG to occur in a regulated manner (Right) (Atilano et al., 2010) 
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Materials and Methods 

Bacterial strains and growth conditions 

The bacterial strains and plasmids used and constructed during this study are listed in Tables 

2.1 and 2.2.  E. coli strain Dc10B was grown on Luria-Bertani agar (LA; Difco) or Luria-Bertani broth 

(LB; Difco) medium, supplemented with ampicillin (100 µg/ml) as required. S. aureus strains were 

grown at 37 ºC, with aeration, in tryptic soy broth medium (TSB; Difco) or in tryptic soy agar (TSA; 

Difco). The medium was supplemented, when required, with erythromycin 10µg/ml (Ery10; Sigma) 

and/or chloramphenicol 10 µg/ml (Cm10; Sigma), 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside 

100 µg/ml (X-Gal; Apollo Scientific) and isopropyl-D-thiogalactopyranoside (IPTG; Apollo Scientic). 

General procedures 

DNA purification and manipulation. In order to obtain S. aureus genomic DNA cells were incubated 

overnight on TSA plates at 37 ºC. Cells were scraped from confluent growth and re-suspended in 100 

µl of 50 mM Ethylenediaminetetraacetic acid (EDTA). Lysostaphin 10 µg/mL (Sigma) and RNase 20 

µg/mL (Sigma) were added to degrade the cell wall and RNA respectively, followed by 30 minutes 

incubation at 37ºC. 400 µL of 50 mM EDTA and 500 µl of Nuclei Lysis Solution (Promega) were added 

to cells and samples were incubated for 5 minutes at 80 ºC. The samples were then cooled to room 

temperature before the addition of 200 µl of Protein Precipitation Solution (Promega). Samples were 

vortexed vigorously then incubated on ice for 10 minutes. DNA was precipitated with isopropanol, 

washed with 70% ethanol and re-suspended in sterile water. Purified genomic DNA was used as 

template for the amplification of genes of interest via PCR reactions, using Phusion polymerase 

(Finnyzymes- Thermo Scientific Molecular Biology), following the manufacturer’s instructions. 

Plasmid DNA was purified from E. coli DC10B using the Wizard SV Plus Miniprep kit 

(Promega) according to the manufacturers protocols. All DNA digests were performed with fast 

restriction enzymes acquired from Fermentas- Thermo Scientific Molecular Biology, following the 

manufacturer’s guidelines. DNA ligations were performed following standard molecular biology 

techniques using T4 DNA ligase (Fermentas). PCR colony screening was performed using GoTaq 

polymerase (Promega) and all clones were sequenced (Macrogen). All primers used are listed in Table 

2.2. 

 

 

E. coli transformation. E. coli competent cells were prepared according to the Rubidium Chloride 

protocol as previously described (Sambrook 1989). In order to propagate the plasmid DNA of interest, 

10 µl of ligated DNA or 1 µl of extracted plasmid DNA, was added to 50 µl of competent cells, incubated 

on ice for 15 minutes, incubated for 1 minute at 42 ºC, returned to ice for more 5 minutes and rescued 



Chapter2- Materials and Methods 

14 
 

in 1 ml of LB. After 60 minutes incubation at 37 ºC with aeration, the cells were spreaded on LA plates 

containing ampicillin (100 µg/ml). Positive clones were identified by PCR colony screening. Plasmids 

were extracted and the insert sequenced.  

S. aureus transformation. RN4220 electro-competent cells were prepared as previously described 

(Kraemer & Iandolo, 1990). For transformation, 0.5µg of purified DNA were mixed with 50µl of 

RN4220 competent cells, transferred to a 0.2 cm BioRad Gene Pulser cuvette and incubated on ice for 

5 minutes. Electroporation of the cells was performed in a gene pulser xcell (Bio-Rad) using the 

following conditions: 2.5 kV; 25 µF and 100Ω. Immediately after electroporation cells were rescued in 

1 ml of TSB and incubated at 30 ºC for 2 hours with aeration, before plating on TSA supplemented with 

Ery10 (Sigma). 

S. aureus transduction. Transductions were performed using phage 80α as previously described 

(Oshida and Tomasz, 1992). In order to prepare the phage lysates, cells of the donor strain were scraped 

from plates and re-suspended in 1 ml of TSB containing 5 mM of CaCl2. Serial dilutions of 80α phage 

to 10-7 were made in Phage Buffer (MgSO4 1mM, CaCl2 4 mM, Tris-HCl 50 mM pH 7.8, NaCl 5.9 g/L, 

gelatin 1 g/L). CaCl2 was added to a final concentration of 5 mM to phage top agar (casamino acids 3 

g/l, Difco; yeast extract 3 g/L, Difco; sodium chloride 5.9 g/L, Sigma; agar 5 g/L, Difco; pH 7.8) that 

was kept in the water-bath for 60 minutes at 45 ºC before being mixed with 10 µl of donor strain and 10 

µl of each phage dilution. The mixtures were poured onto previously prepared plates of phage bottom 

agar (the same composition as the phage top agar but containing 15 g/L of agar) containing CaCl2 5 mM 

and incubated at 30 ºC overnight. To the plates showing confluent lysis phage buffer was added (3-4 

ml) and incubated for 1 hour at 4 ºC, for the phage to be transferred to the phage buffer. The top agar 

and phage buffer were then collected to a 50 mL centrifuge tube, vortexed to disrupt the phage top agar 

and incubated at 4 ºC for 1 hour. The tubes were then centrifuged at 3000 rpm for 15 minutes at 4 ºC. 

The supernatant was recovered and filtered with a 0.45 µm sterile filter.  

For transduction the cells of the recipient strain were scraped from confluent growth and re-

suspended in 1 ml of TSB containing CaCl2 5mM. A volume of 100 µl of this cell suspension was mixed 

with a range of different volumes of phage lysate (0.1 µl, 1 µl, 10 µl, 100 µl) and 100 µl of phage buffer 

containing CaCl2 5 mM. A control sample in which no phage lysate was added was also prepared. The 

samples were incubated for 20 minutes at 30 ºC. The mixtures were then added to the 0.3 GL top agar 

(casaminoacids 3 g/L; yeast extract 3 g/L; NaCl 5.9 g/L; sodium lactate 60% syrup 3.3 ml/L, Sigma; 

glycerol 50%, 2 ml/L, Sigma; Tri-sodium citrate 0.5 g/L, Sigma; agar 7,5 g/L; pH 7.8) previously left 

in the water-bath for 60 minutes at 45 ºC. These samples were poured onto pre-prepared plates (used 

within an hour of preparation) containing a 10 mL layer of 0.3 GL bottom agar (the same as the 0.3 GL 

top agar but containing 15 g/L of agar) supplemented with 30 µg/mL of appropriate antibiotic and a 20 

mL layer of 0.3 GL bottom agar without antibiotic. The plates were incubated for 48 hours at 30 ºC. 

When needed, the medium was supplemented with IPTG. 
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Table 2.1. Bacterial strains used and constructed in this study 

Name Relevant characteristics 
Source or 

reference 

 

E. coli 
  

DC10B 

E. coli cloning strain, chromosomal genotype: F-mcrA Δ (mrr-

hsdRMS-mcrBC) Φ80dlacZΔM15 ΔlacX74 endA1 recA1 deoR Δ 

(ara, leu) 7697 araD139 galU galK nupG rpsL λ- 

Lab stock 

S. aureus   

RN4220 
MSSA strain. Restriction-deficient derivative of S. aureus 

NCTC8325-4, which accepts foreign DNA. 
R. Novick 

RNpEzrA-CFP 
RN4220 with integrated pEzrA-CFP plasmid encoding C-terminal 

EzrA-CFP fusion; Eryr 

(Pereira et 

al., 2007) 

NCTC8325-4  MSSA strain R. Novick 

NCTCPBP4-YFP 
NCTC8325-4 with integrated pMad plasmid encoding a pbp4-yfp C-

terminal fusion; 
Lab stock 

NCTCΔpbp4 NCTC8325-4 pbp4 null mutant Lab stock 

NCTCΔspa::tarB NCTC8325-4 pbp4::pbp4-YFPΔspa::Pspac-tarB-lacI This study 

NCTCΔspa::tarL NCTC8325-4 pbp4::pbp4-YFPΔspa::Pspac-tarL-lacI This study 

NCTCΔspa::tarBΔtarB NCTC8325-4 pbp4::pbp4-YFPΔspa::Pspac-tarB-lacIΔtarB This study 

NCTCΔspa::tarLΔtarL NCTC8325-4 pbp4::pbp4-YFPΔspa::Pspac-tarL-lacIΔtarL This study 

NCTCΔspa::tarBi 
NCTC8325-4 pbp4::pbp4-YFPΔspa::Pspac-tarB-lacIΔtarB lacImC; 

Cmr 
This study 

NCTCΔspa::tarLi 
NCTC8325-4 pbp4::pbp4-YFPΔspa::Pspac-tarL-lacIΔtarL lacImC ; 

Cmr 
This study 

NCTCEzrA-CFP 
NCTC8325-4 with with integrated pEzrA-CFP plasmid encoding C-

terminal EzrA-CFP fusion; Eryr 
Lab stock 

NCTCΔspa::tarBi EzrA-

cfp 

NCTC8325-4 pbp4::pbp4-YFPΔspa::Pspac-tarB-lacIΔtarB lacImC 

ezrA::ezrA-cfp; Cmr; Eryr 
This study 

NCTCΔspa::tarLi EzrA-

cfp 

NCTC8325-4 pbp4::pbp4-YFPΔspa::Pspac-tarL-lacIΔtarL lacImC 

ezrA::ezrA-cfp ; Cmr ; EryR 
This study 

abbreviations: Eryr – Erythromycin resistant; Cmr – Chloramphenicol resistant; lacI mc – cells expressing multiple copies of the lacI gene 

(encoded by pMGPII);  
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Table 2.2. Plasmids used and constructed in this study 

Name Relevant characteristics 
Source or 

reference 

pMAD 
E. coli – S. aureus shuttle  vector   with  a  thermosensitive origin of 

replication for Gram-positive bacteria; Ampr; Eryr; LacZ+  

(Arnaud et al., 

2004) 

pBCB13 
pMAD derivative with up- and downstream regions of spa gene and 

Pspac-lacI region from pDH88; Ampr, Eryr 

(Pereira et al., 

2010) 

pMGPII Plasmid encoding lacI gene; Cmr 
(Pinho et al., 

2001) 

pEzrA-CFP  Plasmid encoding C-terminal EzrA-CFP fusion; Ampr Eryr 
(Pereira et al., 

2010) 

pBCB13tarB pBCB13 derivative containing Pspac-tarB-lacI This study 

pBCB13tarL pBCB13 derivative containing Pspac-tarL-lacI This study 

pMADtarBKO pMAD derivative containing the up-and downstream regions of tarB This study 

pMADtarLKO pMAD derivative containing the up-and downstream regions of tarL This study 

abbreviations: Ampr – Ampicillin resistant; Eryr – Erythromycin resistant; Cmr – Chloramphenicol resistant; lacI mc – cells expressing 

multiple copies of the lacI gene (encoded by pMGPII); 

Mutant construction 

To investigate the localization of S. aureus PBP4 in presence and absence of specific tar genes, 

we constructed inducible mutants of these genes in  the  background  of NCTC8325-4 PBP4-YFP. In 

order to construct an inducible mutant, a full copy of the interest gene was first placed in the spa locus 

under the control of the Pspac promoter and, subsequently, while in the presence of IPTG, was deleted 

from its native chromosomal locus. Sequences of the primers used in this study are listed in Table 2.3. 

 

Table 2.3. Primers used in this study 

Primer Name Primer Sequence (5’- 3’)* 

pSpaTarB3-P1  TACCCGGGACATATTAAGTTGGTG 

pSpaTarB-P2   TACTCGAGTCAGTAGAACCACCATC 

pTarB-KO-P1 ACGAGAATTCAGTGTGGTTTAATGGAATG 

pTarB-KO-P2 GTCACCATCTTATCTATATAAATACACCAACTTAATATG 

pTarB-KO-P3 AGTTGGTGTATTTATATAGATAAGATGGTGAC 

pTarB-KO-P4 ACTGGATCCGCAGTTTATGGTCATCAATG 

pTarB-KO-P5  ATGACGAAACCCCGCTAACC 

pTarB-KO-P6  TGTCGTGTGCGTTACTGCTGGGTG 

tarBchrom TCAGAGTGGGTGTTTTGACAC 

pSpaTarL-P1   ATTACCCGGGTGAAGCAGACCTGTC 

pSpaTarL-P2  ATACTCGAGTACCTCTCCCACTTTGAC 

pTarL-KO-P1 ACGAGAATTCAGTTGAATGGAGGAAG 
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Primer Name Primer Sequence (5’- 3’)* 

pTarL-KO-P2 TGACTACTATATAAACCGTTAATTCATCC 

pTarL-KO-P3  AGGATGAATTAACGGTTTATATAGTAGTCAAAGTGGGAGAG 

pTarL-KO-P4   TCGCA GGATCC TCATGTTGGCTCACAATG 

pTarL-KO-P5   TCACCAGAAGGAAGCATTGCACTG 

pTarL-KO-P6  ACGCCACATTTCTAGGTTTACCTGG 

tarLchrom  AGAAGATGGACAAGCGTCACAACG 

pMADI CTCCTCCGTAACAAATTGAGG 

pMADII CGTCATCTACCTGCCTGGAC 

Spa_p1_BamHI TGAGGATCCCCAGCTTGTTGTTGTCTTC 

Spa_p4_NcoI TGCAGTCCATGGTTGAAAAAGAAAAACATTTATTC 

Pspac_p1_pDH88EcoRI GCTGAATTCTTCTACACAGCCCAGTCCAGAC 

* Underlined  sequences  correspond  to  restriction  sites 

 

 

Construction of a tarB inducible mutant. To clone the tarB gene, in the ectopic spa locus of S. aureus 

strain NCTCPBP4-YFP, under the control of the IPTG inducible/lacI-repressible Pspac promoter 

(Yansura and Henner, 1984), the entire tarB gene, including the RBS sequence, was amplified by PCR 

from NCTC8325-4 genomic DNA using the primers pSpaTarB3-P1 and pSpaTarB-P2. The resulting 

PCR product was digested with SmaI and XhoI fast restriction enzymes and ligated into pBCB13 

plasmid digested with the same enzymes, giving rise to pBCB13 tarB. E. coli DC10B competent cells 

were then transformed with this plasmid and after its purification, the insert in pBCB13tarB was 

confirmed by enzymatic digestion and sequencing. The plasmid pBCB13tarB was transferred to 

RN4220 by electroporation (selection with erythromycin) and subsequently transduced to NCTCPBP4-

YFP using phage 80α as previously described (Oshida and Tomasz, 1992).  

In order to integrate the pBCB13tarB plasmid into the chromosome, an erythromycin resistant 

colony was inoculated into fresh TSB containing Ery10 and incubated at 30 ºC overnight. The overnight 

culture was diluted 1:1000 into fresh TSB with Ery10, incubated at 30 ºC for 8 hours, then diluted again 

into the same media and incubated overnight at 43 ºC, a non-permissive temperature that prevents the 

plasmid replication due to the thermosensitive origin of replication and allows, in presence of 

erythromycin, the selection of recombinants in which the plasmid had integrated into the chromosome. 

The overnight culture was serially diluted and 100 µL of each of the 10-4, 10-5 and 10-6 dilutions were 

plated on TSA containing Ery10 and X-GAL 100 µg/mL at 43 ºC. Several light blue colonies were 

chosen and re-streaked in the same conditions. The integration of pBCB13tarB plasmid into the 

chromosome can occur via the upstream or downstream regions of the gene encoded in the plasmid, so 

the integration by upstream region was confirmed by PCR using primers pMADII and spa_p4_NcoI, 

while the downstream region was confirmed using primers spa_p1_BamHI and pMADI. Two clones 

with the plasmid integrated into the chromosome, via the up and downstream regions, were inoculated 
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in TSB at 30 ºC overnight. The overnight culture was diluted 1:500 in the same conditions, incubated at 

30 ºC for 8 hours, serially diluted (10-4, 10-5 and 10-6) and then plated on TSA containing X-GAL 100 

µg/mL at 43 ºC. White colonies that represent candidates for the loss of the plasmid, were chosen and 

re-streaked on TSA X-GAL 100 µg/mL and TSA Ery10 X-GAL 100 µg/mL through replica plating. 

The white and erythromycin sensitive colonies were screened by PCR, to confirm the substitution of the 

spa gene by tarB using primers Pspac_p1_pDH88EcoRI and pSpaTarB-P2 and for the wild type 

phenotype (presence of spa gene in spa locus) using primers Spa_p1_BamHI and Spa_p4_NocI. The 

resulting strain, which has two copies of tarB gene, one in the native locus and the other in the spa locus 

under the control of Pspac promoter was named NCTCΔspa::tarB.  

Subsequently, to delete tarB from its normal locus in the background of strain NCTCΔspa::tarB, 

a PCR fragment containing the upstream and downstream regions of the sequence, approximately 1 Kb 

each, were amplified from NCTC8325-4 genomic DNA, in two sequential PCR steps. First, the 

upstream region, that contains the upstream region of tarB until the start codon, as amplified using 

primers pTarB-KO-P1 and pTarB-KO-P2, and the downstream region, containing the downstream 

region of tarB including the 3´end, was amplified using the primers pTarB-KO-P3 and pTarB-KO-P4. 

These two amplified products were then purified and joined by an overlap PCR reaction, using primers 

pTarB-KO-P1 and pTarB-KO-P4. The final PCR product was digested with EcoRI and BamHI and 

cloned into pMAD plasmid, giving rise to pMADtarBKO. The presence of the cloned insert was verified 

by enzymatic digestion and sequencing. The pMADtarBKO plasmid was electroporated into RN4220 

(selection with erythromycin), transduced to NCTCΔspa::tarB by phage transduction and subsequently, 

integrated and excised, as described above. The deletion of the tarB gene from the native locus was 

confirmed by PCR using primers pTarB-KO-P5 and pTarB-KO-P6, resulting in NCTCΔspa::tarBΔtarB 

strain.  

The pMGPII plasmid (Pinho et al., 2001), which encodes the lacI gene, was also transduced into 

NCTCΔspa::tarBΔtarB, to ensure tight regulation of tarB expression. The resultant strain was named 

NCTCΔspa::tarBi. As a control, we also transduced pEzrA-CFP into this strain, which resulted in 

NCTCΔspa::tarBi EzrA-cfp strain. 

 

Construction of a tarL inducible mutant. The construction of this inducible mutant was performed as 

described above for the construction of tarB inducible mutant. The entire tarL gene, including the RBS 

sequence, was amplified by PCR from NCTC8325-4 genomic DNA using the primers pSpaTarL-P1 and 

pSpaTarL-P2, digested with SmaI and XhoI fast restriction enzymes and cloned into pBCB13 plasmid, 

giving rise to pBCB13tarL. The insert in pBCB13tarL was confirmed by enzymatic digestion and 

sequencing. The plasmid pBCB13tarL was electroporated into RN4220 (selection with erythromycin) 

and subsequently transduced to NCTCPBP4-YFP. The integration and excision of the plasmid into the 

chromosome was performed as described above, to check the integration by upstream region we made 

a PCR using primers pMADII and spa_p4_NcoI, while the downstream region was confirmed using 
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primers spa_p1_BamHI and pMADI. Substitution of the spa gene by tarL was confirmed by PCR colony 

screening using primers Pspac_p1_pDH88EcoRI and pSpaTarL-P2 and for the wild type phenotype 

using primers Spa_p1_BamHI and Spa_p4_NocI. The resulting strain, which has two copies of tarL 

gene, one in the native locus and the other in the ectopic spa locus under the control of Pspac promoter 

was named NCTCΔspa::tarL.  

Subsequently, to delete tarL from its native locus in the NCTCΔspa::tarL background, the 

pMADtarLKO plasmid was transduced into this strain and, after an integration and excision events, the 

gene deletion was confirmed by PCR using primers pTarL-KO-P5 and pTarL-KO-P6, resulting in 

NCTCΔspa::tarLΔtarL strain, expressing a single copy of tarL from the spa locus, under the control of 

Pspac promoter.  

In order to ensure tight regulation of tarL expression the pMGPII plasmid, which expresses the 

Pspac repressor lacI, was also transduced into NCTCΔspa::tarLΔtarL strain, giving rise to a new strain 

named NCTCΔspa::tarLi. As a control, we also transduced pEzrA-CFP into this last strain which 

resulted in NCTCΔspa::tarLi EzrA-cfp strain. 

 

Growth analysis of S. aureus strains 

 The growth of the S. aureus strains was  analyzed  by  measuring,  at regular intervals, the optical 

density at 600nm (OD600nm) of the liquids cultures. For that, an overnight culture of parental strain 

NCTCPBP4-YFP was  diluted  (1:200)  into  fresh  TSB  media  and incubated  at  37 ᵒC  with  aeration, 

while the inducible mutants were grown overnight, in the same conditions, in TSB medium 

supplemented with 10 μg/ml of chloramphenicol (Cm10) and 0.5mM of IPTG, then the overnight 

cultures were harvested, washed three times with fresh TSB and re-inoculated (with a 1:200 dilution) in  

media  with  and  without  IPTG. The inducible mutants were also tested on solid media (TSA) 

supplemented with chloramphenicol 10 µg/ml (Cm10) with or without 0.5 mM IPTG. 

 

Fluorescence Microscopy  

 S.  aureus strains were grown overnight, in TSB at 37 ºC, with appropriate antibiotic selection 

and, the next day, were diluted (1:400) in 50 ml of fresh TSB supplemented with 0.5 mM IPTG and 

grown until OD600nm 0.2. Cultures were then harvested, washed three times with fresh TSB and split 

into two 25ml cultures of fresh TSB with and without IPTG. To visualize the localization of PBP4 and 

EzrA, cultures were incubated for at least one hour after the washes, and thereafter at regulated intervals 

we took the samples to be observed by fluorescence microscopy. For that the samples were centrifuged, 

re-suspended in 20 µl of 1X Phosphate Buffered Saline (PBS) and 1 µl was placed on a thin film of 1% 

agarose in 1X PBS. Fluorescence microscopy was performed using a  Zeiss  Axio  Observer.Z1  

microscope  equipped  with  a  Photometrics  CoolSNAP  HQ2 camera  (Roper  Scientific),  using  

Metamorph  software  (Molecular  devices).  Analysis of fluorescence images was performed using 

Metamorph and ImageJ software. 
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Analysis of the expression of fluorescent proteins in S. aureus 

In order to confirm whether the pbp4-YFP fusion protein was being cleaved in strains 

NCTCPBP4-YFP, NCTCΔspa::tarBi and NCTCΔspa::tarLi the length of the band relative to YFP was 

analysed by SDS-PAGE using a Fuji FLA 5100 laser scanner (Fuji Photo Film) to detect the fluorescent 

protein. For that purpose, the strains were grown overnight in TSB medium supplemented with 

appropriate antibiotics and 0.5 mM IPTG, when required. To prepare total protein extracts from each 

strain, the overnight cultures were diluted 1:200 into fresh TSB (supplemented with the same antibiotics) 

incubated at 37 oC until an O.D600nm of 0.8. Cells were harvested by centrifugation, re-suspended in 1X 

PBS and disrupted with 250 µl glass beads in a Fast Prep FP120 (Thermo Electro Corporation). The 

protein extracts were separated from glass beads by centrifugation (4200 x g, 1 minute at 4 ºC). The 

total protein content of the extracts was quantified by the Bradford method, using bovine serum albumin 

as a standard (BCA protein assay kit, Pierce) and equal amounts of protein, from each sample, were 

loaded in a 10% SDS-PAGE gel and separated at 120V. Gel images were acquired on a Fuji FLA 5100 

laser scanner (Fuji Photo Film) using 473 nm laser for YFP. 

 

Western blot analysis 

 To analyze if the pbp4-YFP fusion was being cleaved, western blots were performed using a 

polyclonal anti-PBP4 and anti-GFP antibody. The protein extracts of NCTC8325-4, NCTCΔpbp4, 

NCTCPBP4-YFP, NCTCΔspa::tarBi and NCTCΔspa::tarLi strains and the quantification of total 

protein content of the extracts were performed as described above. Equal amounts of protein, from each 

sample, were heated to 100 ºC for 5 minutes, loaded onto a 10% SDS-PAGE gel and separated at 120V. 

Proteins were then transferred to a Hybond-P Polyvinylidene fluoride (PVDF) membrane (GE 

Healthcare) using a semidry transfer cell (Bio-Rad) according to standard western blotting techniques 

(Burnette,W.N., 1980). The membranes were blocked with blocking buffer (PBS, 5% milk, 5% Tween 

20), as previously described (Jonhson, D.A. et al, 1984), for 1 hour and, after washed three times the 

membranes with 0.5% of Tween 20 in PBS, were incubated with a polyclonal anti-PBP4 antibody (1/100 

dilution in blocking buffer) or an anti-GFP antibody (1/500 dilution in blocking buffer) overnight at 4 

ºC. The following day membranes were washed three times with 1 x PBS-T and incubated with 

secondary antibodies diluted 1/100000 in blocking buffer. The detection was performed using ECL Plus 

Western blotting detection system from Amersham according to the manufacturers guidelines.  
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Results 
 

Construction of TarB and TarL inducible mutants 

In order to study the localization of S. aureus PBP4 in the presence and absence of specific tar 

genes we constructed inducible mutants of these genes in the background of NCTCPBP4-YFP strain 

(Figure 3.1). For that purpose we replaced the spa gene by a full copy of the gene of interest, under the 

control of IPTG inducible / LacI repressible Pspac promoter, and subsequently, while in the presence of 

IPTG, deleted the gene from its native chromosomal locus (Yansura and Henner, 1984).  

 

Figure 3.1. Schematic representation of the inducible mutant constructs. A. S. aureus strain with inducible 

tarB gene NCTCΔspa::tarBi; B. S. aureus strain with inducible tarL gene NCTCΔspa::tarLi; The tarB and tarL 

genes were cloned at the ectopic spa locus, under the control of the Pspac promoter, and were subsequently deleted 

from their native loci. The pMGPII plasmid, encoding the LacI repressor protein was transduced into these strains 

in order to ensure tight regulation from Pspac. 

Most of the tar genes, involved in WTA biosynthesis, can not be deleted in a wild type S. 

aureus strain and are encoded within operons, as shown in the figure 1.4.A. Therefore deletion of genes 

such as tarB or tarL, can have lethal effects and their placement under the control of an inducible 

promoter at the wild type locus can have deleterious polar effects on downstream essential genes 

(Swoboda et al., 2010). These facts were taken in account during the construction of the inducible 

mutant strains, NCTCΔspa::tarBi and NCTCΔspa::tarLi. For the construction of these strains, a copy 

of the tarB or tarL gene was placed in the spa locus under the control of Pspac.The lacI gene, encoding 

the repressor protein LacI was also placed at the spa locus, to repress the Pspac promoter. The tarB or 

tarL genes were then deleted from their native chromosomal locus. The process for placing the tar genes 

in the spa locus is shown in Figure 3.2. A similar process was used for their deletion from the native 

chromosomal locus, using the pMAD vector containing only the up and downstream regions of the gene 

of interest. Importantly, deletion of tar genes was performed in the presence of IPTG to induce 

expression of the essential gene from the Pspac promoter, at the spa locus, and thus avoid cell damage 

or the appearance of suppressor mutations.  
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Figure 3.2. Schematic representation of the spa gene replacement by an gene of interest. This process, to 

place tarB or tarL under the control of Pspac promoter in the spa locus, involves the integration and excision of 

a plasmid encoding the gene of interest and lacI between the up- and downstream regions of the spa gene, by 

homologous recombination, into the parental strain NCTCPBP4-YFP; A. Integration through the homologous 

region 1; B. Integration through the homologous region 2. 
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Although the inducible mutants have a copy of lacI in the spa locus, we transduced into the 

mutants the multicopy pMGPII plasmid (Pinho et al., 2001b), which encodes the lacI gene, to ensure 

tight regulation of expression of the tar genes from the Pspac promoter. It has been previously shown 

that, in S. aureus, expression of the lacI gene from a multicopy plasmid is required for the tight 

regulation of genes under the control of the Pspac promoter (Jana et al., 2000).  The resulting strains 

NCTCΔspa::tarBi and NCTCΔspa::tarLi strains allowed for the study of the localization of PBP4 in the 

presence and absence of tarB and tarL, by growing them with and without IPTG, respectively. When 

the strains were plated on TSA in the presence of IPTG (and therefore in the presence of the tar gene) 

both strains displayed normal growth. In contrast, in the absence of IPTG, and thus the absence of TarB 

or TarL, cells failed to grow indicating the essentiality of these gene products for viability (Figure 3.3).   

 

Growth of the inducible tar mutants was also analysed in liquid culture in the presence and 

absence of IPTG and compared with the parental strain NCTCPBP4-YFP, as shown in Figures 3.4 and 

3.5. In the absence of IPTG, the NCTCΔspa::tarBi and NCTCΔspa::tarLi strains grow slower than the 

parental strain, NCTCPBP4-YFP. However in the presence of IPTG, even at low concentrations such 

0.1 mM, the growth rates are like the parental strain. These observations show that the ectopic expression 

of tarB or tarL from the spa locus, in the presence of IPTG, enabled cells to recover the levels of these 

proteins and grow like the wild-type cells (Figure 3.4 and 3.5). As the results presented in Figures 3.4 

Figure 3.3. Growth of S. aureus in the presence or in the absence of TarB and TarL. A) 

NCTCΔspa::tarBΔtarBi; B) NCTCΔspa::tarLΔtarLi; The strains with tarB and tarL under control of 

theIPTG incudible Pspac promoter were grown overnight at 37ºC on TSA plates with 

chloramphenicol (10 µg/mL) supplemented (left plate) or not (right plate) with 0.5 mM IPTG. 
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and 3.5 show, in order to achieve total suppression of the Pspac promoter a second dilution of the culture 

lacking IPTG was necessary.    

 

 

 

Figure 3.4. Growth analysis of NCTCΔspa::tarBi. The NCTCΔspa::tarBi  culture was grown overnight in TSB, 

Cm 10 µg/mL and 0.5 mM IPTG at 37ºC, washed three times with TSB and re-inoculated in fresh TSB without 

IPTG or with 0.1, 0.25, 0.5, or 1 mM IPTG. Compared to the parental strain, NCTCPBP4-YFP, the tarB depletion 

affects growth of the inducible mutant, which is restored to parental like levels by the addition of IPTG. Panel A. 

shows the growth curves obtained through regular measurements of absorbance at OD600nm. The black arrow 

indicates the point at which a sample of NCTCΔspa::tarBi, without IPTG, was re-inoculated in fresh TSB without 

and with 1 mM IPTG, resulting in the growth curves shown in panel B. 
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Figure 3.5. Growth analysis of NCTCΔspa::tarLi. The NCTCΔspa::tarLi culture was grown overnight in 

TSB, Cm 10 µg/mL and 0.5 mM IPTG at 37ºC, washed three times with TSB and re-inoculated in fresh TSB 

without IPTG or TSB with 0.1, 0.25, 0.5, or 1 mM IPTG. Compared to the parental strain, NCTCPBP4-YFP, 

the tarL depletion affects growth of the inducible mutant, which is restored to parental like levels by the addition 

of IPTG. Panel A. shows the growth curves obtained through regular measurements of absorbance at OD600nm. 

The black arrow indicates the point at which a sample of NCTCΔspa::tarLi, without IPTG, was re-inoculated 

in fresh TSB without and with 1 mM IPTG, resulting in the growth curves shown in panel B. 
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Then we grew the S. aureus strains (NCTCPBP4-YFP, NCTCΔspa::tarBi or NCTCΔspa::tarLi without 

and with several IPTG conditions) in liquid medium the cells tend to form clusters at cell densities 

corresponding to OD600nm values of 1 or 2. This results in inaccurate OD600nm values and, consequently, 

in fluctuations in the growth curves, as can be seen in figure 3.5.A. However this phenomenon did not 

affect our downstream experiments as cultures used for microscopy analysis hadOD600nm values lower 

than 1.   

 

Deletion of tarB or tarL leads to delocalization of PBP4. 

In 2010 M. Atilano and colleagues discovered that the deletion of the tarO gene, the first gene 

in the WTAs synthesis pathway in S. aureus, resulted in the delocalization of PBP4. The recruitment of 

PBP4 to its normal septal location was shown not to occur via direct interaction between these two 

proteins, implying that PBP4 is likely recruited by an intermediate in WTA biosynthesis. Using the tarB 

and tarL inducible mutants described above, we wanted to test if PBP4 localization was dependent on 

intermediates that are downstream, in the WTA biosynthesis pathway, the reaction catalyzed by TarB 

and TarL. 

 

Depletion of TarB causes delocalization of PBP4. 

When the PBP4–YFP fusion was expressed in the NCTC parental strain NCTCPBP4-YFP and 

in the tarB inducible strain NCTCΔspa::tarBi in the presence of IPTG, it localized to the division septum 

(Figure 3.7) where cell-wall synthesis has been reported to take place in S. aureus (Atilano et al., 2010; 

Pinho and Errington, 2003). However, when the same fusion was expressed in NCTCΔspa::tarBi in the 

absence of IPTG and thus depleted for TarB, PBP4 became delocalized, appearing all around the cellular 

membrane, with no specific accumulation at the division septum (Figure 3.6). To quantify the 

delocalization of PBP4 in the absence of the TarB protein, we calculated the ratio of fluorescence 

measured at the septum versus the fluorescence measured at the “lateral” wall. If the fluorescent protein 

is specifically accumulated at the division septum (which contains two membranes) then the 

fluorescence ratio should be higher than two, however if  it is delocalized and homogeneously dispersed 

over the entire cell membrane, the intensity of the fluorescent signal at the septum should be 

approximately twice the fluorescence at the lateral membrane. When this ratio was calculated for PBP4–

YFP in the parental strain NCTCPBP4-YFP we obtained an average value of 3.2±0.98 and a value of 

3.3±1.07 for the NCTCΔspa::tarBi plus IPTG, a condition that allows the mutant strain to recover and 

grow like the parental strain. A value of 1.9±0.47 was obtained for the tarB inducible mutant 

NCTCΔspa::tarBi grown in the absence of IPTG, indicating that the absence of the TarB protein leads 

to a loss of the specific accumulation of PBP4 at the septum. 
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Figure 3.6. Septal localization of PBP4 is lost in absence of TarB in the NCTCΔspa::tarBi inducible 

strain. A) Microscopy images showing cells of NCTCPBP4-YFP and NCTCΔspa::tarBi, grown in the 

presence or absence of IPTG. Panels on the left show the phase-contrast image and panels on the right show 

the localization PBP4-YFP fusion; B) Quantification of septum (S) versus lateral membrane (L) 

fluorescence (fluorescence ratio, FR) of PBP4–YFP in a parental background (NCTCPBP4YFP), in a tarB 

inducible background (NCTCΔspa::tarBi) with or without IPTG. Quantification was performed in 200 

cells displaying closed septa for each strain/condition. Horizontal lines correspond to average FR values. 

FR values above 2 indicate septal localization, whereas FR values equal to or under 2 indicate that the 

protein is distributed over the entire cell surface. P< 0.001. All images are false‐coloured. Scale bar: 1µm. 
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Depletion of TarL causes delocalization of PBP4. 

When the PBP4–YFP fusion was expressed in the NCTC parental strain, NCTCPBP4-YFP, and 

in the tarL inducible strain, NCTCΔspa::tarLi, in the presence of IPTG, it localized to the division 

septum (Figure 3.7) as expected (Atilano et al., 2010; Pinho and Errington, 2003). However, when the 

same fusion was expressed in the strain NCTCΔspa::tarLi in the absence of IPTG (and therefore of 

TarL), PBP4 is delocalized, appearing all around the cellular membrane with no specific accumulation 

at the division septum (Figure 3.7). To quantify the delocalization of PBP4 in the absence of the TarL 

protein, we calculated the fluorescence ratio as descrived above, and obtained an average value of 

3.1±0.98 for NCTCPBP4-YFP and of 3.7±1.39 for the NCTCΔspa::tarLi plus IPTG,  whereas a value 

of 1.8±0.30 was obtained for the tarL inducible mutant NCTCΔspa::tarLi. These results indicate that 

the absence of the TarL protein leads to the delocalization of PBP4 from the septum.  
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Figure 3.7. Septal localization of PBP4 is lost in absence of TarL in the NCTCΔspa::tarLi inducible 

strain. A) Microscopy images showing cells of NCTCPBP4-YFP and NCTCΔspa::tarLi, grown in the 

presence or absence of IPTG. Panels on the left show the phase-contrast image and panels on the right show 

the localization PBP4-YFP fusion; B) Quantification of septum (S) versus lateral membrane (L) 

fluorescence (fluorescence ratio, FR) of PBP4–YFP in a parental background (NCTCPBP4YFP), in a tarL 

inducible background (NCTCΔspa::tarLi) with or without IPTG. Quantification was performed in 200 cells 

displaying closed septa for each strain/condition. Horizontal lines correspond to average FR values. FR 

values above 2 indicate septal localization, whereas FR values equal to or under 2 indicate that the protein 

is distributed over the entire cell surface. P< 0.001. All images are false‐coloured. Scale bar: 1µm. 
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Statistical analysis. 

Statistical analysis was performed to assess the significance of the differences between PBP4 

localization in the parental strain NCTCPBP4-YFP and in the inducible strains NCTCΔspa::tarBi and 

NCTCΔspa::tarLi grown in the presence of IPTG, and between these two strains grown in the presence 

or in the absence of IPTG. For that purpose, we performed the statistical significance tests Kruskal-

Wallis and Dunn's Multiple Comparison tests, and calculated the p-value, with a confidence level of 

0.001. The results obtained for the TarB mutant, presented in Figure 3.6, showed no significant 

difference between PBP4 localization in the parental strain and in the inducible strain grown in the 

presence of IPTG, however a significant difference was observed between tarB inducible mutant grown 

in the absence and in the presence of IPTG, indicating that lack of tarB causes delocalization of PBP4. 

Regarding TarL, a significant difference was also noticed between the inducible strain lacking tarL and 

the parental strain, indicating that lack of tarL also causes delocalization of PBP4 (Figure 3.7). However, 

in this case, a difference was also observed between the parental strain NCTCPBP4-YFP and the 

inducible strain NCTCΔspa::tarLi grown with IPTG, which surprisingly has a higher value for PBP4-

YFP fluorescence in the septum than the parental strain. 

 

The PBP4-YFP fusion is not cleaved. 

 In some of the microscopy images showing PBP4-YFP fluorescence many cells show a greater 

degree of cytoplasmic signal than that previously observed in the NCTCPBP4-YFP strain (Atilano et 

al., 2010).  One possible explanation for this signal would be the cleavage of the PBP4-YFP fusion. In 

order to address this and to be sure that the PBP4-YFP fusion is not degraded in our mutant strains we 

analysed the presence of the PBP4-YFP fusion in the NCTCΔspa::tarBi and NCTCΔspa::tarLi mutants 

strains by SDS-PAGE followed by imaging in a fluorescent image analyzer and western blotting, using 

a polyclonal anti-PBP4 antibody, as described in the materials and methods. The cell extracts of the wild 

type strain NCTC8325-4, the parental strain NCTCPBP4-YFP and the null mutant NCTCΔpbp4 were 

used as controls. The results, shown in Figure 3.8, show that the PBP4-YFP fusion is not cleaved in the 

tar inducible strains, because only one band is present, corresponding to the molecular weight of this 

fusion (Figure 3.8 A) instead of one band with lower weight which would result from cleavage of the 

fusion protein. The western blots (Figure 3.8 B), show the presence of the PBP4 band only in the wild-

type strain NCTC8325-4 as expected. Additionally, one band corresponding to the PBP4-YFP fusion 

was observed for the NCTCΔspa::tarBi and NCTCΔspa::tarLi mutants strains.  
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Figure 3.8. The PBP4-YFP fusion is not cleaved in NCTCPBP4-YFP, NCTCΔspa::tarBi and 

NCTCΔspa::tarLi strains. A) Analysis of protein bands by fluorescence imaging detected intact PBP4-

YFP fusion in strains NCTCPBP4-YFP, NCTCΔspa::tarBΔtarBi and NCTCΔspa::tarLΔtarLi. B) Western 

blot analysis, using an anti-PBP4 specific antibody, of NCTC8325-4, NCTCΔpbp4, NCTCPBP4-YFP, 

NCTCΔspa::tarBΔtarBi and NCTCΔspa::tarLΔtarLi (from left to right). The band that appear in all strains, 

between the PBP4 band and PBP4-YFP band, is a nonspecific band, as it appears in the NCTCΔpbp4 strain 

lacking PBP4. 
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Delocalization of PBP4 in the absence of TarL or Tar B is not due to cell death. 

 Bacterial cell division is a highly regulated process during which cells undergo a series of 

temporally and spatially controlled events that result in the generation of two identical daughter cells 

(Adams and Errington, 2009; Jorge et al., 2011). In almost all bacteria, this process begins with the 

polymerization of a tubulin-like protein, FtsZ, into a ring-like structure located at the future division 

septum, which serves as a scaffold for the recruitment of other proteins that together form a multi-protein 

complex called the divisome (Adams and Errington, 2009). One of these proteins is EzrA, a 

transmembrane protein that acts as a negative regulator of Z-ring assembly, preventing FtsZ assembly 

at inappropriate locations different from the mid-cell (Jorge et al., 2011). In S. aureus, EzrA localizes 

to the division septum in dividing cells (Jorge et al., 2011).  

 When cells are unhealthy and begin to die, the divisome is not assembled and consequently there 

is a loss of septal localization of proteins involved in its formation (Jorge et al., 2011). PBP4 normally 

has a septal localization, so in order to ensure that its delocalization observed in the mutant strains, 

NCTCΔspa::tarBi and NCTCΔspa::tarLi, is due to the absence of the Tar proteins and not due to cell 

death, we localized EzrA in the same strains. EzrA has previously been shown to delocalize from its 

normal septal location prior to cell death (Jorge et al., 2011). For that purpose we transduced an 

integrative plasmid encoding EzrA-CFP to the tarB and tarL inducible mutants, resulting in the strains 

NCTCΔspa::tarBi ezrA-cfp and NCTCΔspa::tarLi ezrA-cfp. These new mutant strains allowed us to 

quantify the PBP4 and EzrA localization in the same cells and to determine if the delocalization of PBP4 

was part of general protein delocalization upon cell death or if it was specifically due to lack of the TarL 

and TarB proteins. However, these strains displayed a distinct phenotype, even in the presence of IPTG 

and therefore of the Tar proteins forming clusters (shown in Figure 3.9) not previously seen in the strains 

lacking the EzrA-cfp fusion.  This phenomenon limited our ability to correctly quantify the localization 

of PBP4 as in the cell aggregates it was difficult to measure the PBP4-YFP fluorescence at the septum 

and “lateral” wall. In contrast to the initial mutant strains, NCTCΔspa::tarBi and NCTCΔspa::tarLi, 

these strains have an additional erythromycin resistant marker. We studied the effect of expression of 

erythromycin resistance on the strains to determine whether it was responsible for the observed 

phenotype, perhaps interfering with cell growth and causing the formation of cell aggregates. As shown 

in figure 3.11 the presence or absence of erythromycin (10 ug/mL) had no effect upon the formation of 

cell aggregates in strains carrying the EzrA-CFP fusion. Given that the control strain, NCTCEzrA-CFP, 

does not show as many aggregates, this phenotype may be caused by the co-expression of the two fusion 

proteins (PBP4-YFP and EzrA-CFP) in the same cells. We therefore decided to analyse separately the 

effect of TarB and TarL depletion on ErzA and PBP4 localization, instead of doing the analysis in the 

same cells, as initially planned. 
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Figure 3.9. Strains NCTCΔspa::tarBΔtarBi EzrA-cfp and NCTCΔspa::tarLΔtarLi EzrA-cfp form 

aggregates. The microscopy images show cell aggregates of NCTCΔspa::tarBΔtarBi EzrA-cfp and 

NCTCΔspa::tarLΔtarLi EzrA-cfpin the presence of IPTG. Panels from top to the bottom show phase-

contrast image, PBP4-YFP fusion fluorescence, EzrA-CFP fusion fluorescence and the overlay between 

PBP4-YFP and EzrA-CFP images. Scale bars 1 µm. All images are false‐colored. 
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Figure 3.10. The presence of Erythromycin does not affect the formation of cell aggregates in 

tarB and tar inducible strains. The microscopy images show cells of NCTCΔspa::tarBΔtarBi EzrA-

cfp (A) and NCTCΔspa::tarLΔtarLi EzrA-cfp (B) strains grown in the presence of IPTG and with or 

without Ery 10. Panels from left to right show phase-contrast image, PBP4-YFP fusion fluorescence, 

EzrA-CFP fusion fluorescence. Scale bars 1 µm. All images are false‐colored. 



Chapter3- Results 

36 
 

 

 

When the EzrA-CFP fusion was expressed in the NCTCΔspa::tarBi and NCTCΔspa::tarLi 

strains, with and without IPTG the protein localized to the division septum (Figure 3.12) as expected 

(Jorge et al., 2011). However, as stated above, when the PBP4-YFP fusion was expressed in the same 

background causing the formation of cell clusters we could not accurately quantify the localization of 

this protein. Therefore we used the strains NCTCΔspa::tarBi EzrA-cfp and NCTCΔspa::tarLi EzrA-cfp 

to quantify the localization of EzrA at the same time points at which we analysed PBP4-YFP localization 

in strains NCTCΔspa::tarBi and NCTCΔspa::tarLi. In this way we were able to determine whether 

delocalization of PBP4 occurs before or simultaneously with the delocalization of EzrA, the later of 

which would indicate that PBP4 could be delocalizing, not specifically due to lack of TarB or TarL, but 

rather as part of general protein delocalization in cells dying because of the lack of essential Tar proteins. 

To quantify the localization of EzrA in the presence and absence of the TarB and TarL proteins, we 

calculated the fluorescence ratio, obtaining average values of 3.7±0.98 and 3.9±1.08 for 

NCTCΔspa::tarBi EzrA-cfp strain in the presence and absence of IPTG, respectively, and average values 

of 4.2±1.28 and 4.2±1.34 for the NCTCΔspa::tarLi EzrA-cfp strain in the same conditions. These results 

indicate that, in the absence of the TarB or TarL proteins, EzrA remains localized to the septum, 

indicating that the divisome is correctly assembled and there is no general protein delocalization. 

Therefore, the observed delocalization of PBP4 was most likely due to lack of TarB and TarL.  

 

 

 

Figure 3.11. Morphology of NCTCEzrA-CFP cells. The microscopy images show cells of 

NCTCEzrA-CFP which do not form large clusters. Scale bars 1 µm. All images are false‐colored. 
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Statistical analyses were performed to assess if the differences between the quantifications of 

EzrA-CFP localization in the strains NCTCΔspa::tarBi EzrA-cfp and NCTCΔspa::tarLi EzrA-cfp, with 

and without IPTG were significant. Mann Whitney tests were performed and the p-values calculated, 

with a confidence level of 99.9%. The results obtained for the TarB and TarL mutants (Figures 3.11 and 

3.12) showed that a significant difference did not exist indicating that EzrA-Cfp localization remained 

unchanged in upon depletion of either of the Tar proteins. 

Figure 3.12. Septal localization of EzrA is not lost in the absence of TarB or TarL. Quantification of 

septum (S) versus lateral membrane (L) fluorescence (fluorescence ratio, FR) of EzrA in A) 

NCTCΔspa::tarBΔtarBi EzrA-cfp or B) NCTCΔspa::tarLΔtarLi EzrA-cfp strains in the presence or 

absence of IPTG, with the respective microscopy images. Quantification was performed in 100 cells 

displaying closed septa for each strain. Horizontal lines correspond to average FR values.  FR values above 

2 indicate a preferential septal localization, whereas FR values equal to or under 2 indicate that a protein is 

distributed over the entire cell surface. P< 0.001. All images are false‐colored. Scale bar: 1µm. 
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Discussion 
 

The cell wall is very important for the integrity and viability of bacteria, as it provides physical 

protection, determines the cell shape and is the principal stress-bearing element, which makes it an ideal 

target for antibiotics (Scheffers and Pinho, 2005). In Gram-positive bacteria, such as S. aureus, the cell 

wall is composed of surface proteins, teichoic acids and a thick layer of peptidoglycan (PG), whose 

synthesis is a major target of some of the most successful classes of antibiotics, including the β-lactams 

such as penicillin or methicillin (Popham, 2013). The peptidoglycan requires a complex process of 

synthesis that involves the elongation (transglycosylation) and peptide cross-linking (transpeptidation) 

of glycan strands, which occurs mainly at the division septum of S. aureus and is catalyzed by the 

penicillin binding proteins (PBPs) (Scheffers and Pinho, 2005). Recent studies have shown that the 

PBP4 is essential for the expression of β-lactam resistance in CA-MRSA strains (Memmi et al., 2008). 

This protein has a septal localization and is responsible for the high degree of PG cross-linking notable 

in S. aureus. The localization of PBP4 has recently been shown to be spatially and temporally regulated 

by an unknown intermediate of the WTA biosynthesis pathway (Atilano et al., 2010). In this work we 

aimed to identify the WTA precursor responsible for the septal recruitment of PBP4. We constructed 

inducible mutants of specific tar genes in the background of NCTCPBP4-YFP, a strain expressing a 

fluorescent derivative of PBP4, that allowed us to study its localization in the presence and absence of 

tarB and tarL genes. 

Deletion of tarO and the use of tunicamycin, which blocks the first and non-essential step in the 

WTA pathway by the inhibiting TarO, have been shown to cause profound morphological defects in S. 

aureus, such as aberrations in septal placement, a high frequency of double septa and an inability to 

separate daughter cells following the completion of new septa (Atilano et al., 2010; Campbell et al., 

2010; Campbell et al., 2012). In both the absence of TarO and in the presence of tunicamycin, the PBP4 

protein is dispersed over the entire cell membrane instead of displaying its normal septal localization, 

indicating that PBP4 is recruited by the TarO protein or the product of a downstream reaction  in the 

WTA biosynthesis pathway (Atilano et al., 2010; Roemer et al., 2013). However, Atilano et al have 

shown that the recruitment of PBP4 does not occur via direct protein–protein interaction with TarO 

because these two proteins did not interact in a bacterial two-hybrid screening, did not colocalize in 49% 

of the cells in the early stages of septum synthesis and PBP4 did not retain its septal localization in the 

presence of an inactive TarO protein properly localized at the septum (Atilano et al., 2010). Therefore 

it is more likely that PBP4 is recruited by a WTA synthesis intermediate. The use of a second drug, 

targocil, which inhibits the TarG WTA ABC transporter, demonstrated that the PBP4 is recruited by a 

precursor of the WTA biosynthesis pathway present inside the membrane. In the presence of this drug 

PBP4 remains specifically at the division septum which shows that the steps after the WTA translocation 

to the outside membrane are not involved in the recruitment of PBP4 (Roemer et al., 2013). Based upon 
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these results we chose to study the tarB and tarL genes, which catalyze the addition of one glycerol‐3‐

phosphate unit and the addition of a ribitol phosphate residue chain, respectively (Figure 1.4). 

 In this work, we have shown that in parental strain NCTCPBP4-YFP, PBP4 can be found at the 

septum of S. aureus. However, in the inducible tar mutant strains depleted for TarB and TarL (when 

grown without IPTG), PBP4 no longer accumulates specifically at the division septum, but instead is 

dispersed over the entire cell membrane (Figures 3.6 and 3.7). There is no statistically significant 

difference in the PBP4-YFP localization between parental NCTCPBP4-YFP PBP4 strain and the 

NCTCΔspa::tarBi strain plus IPTG, which means the inducible strain behaves as expected in the 

presence of IPTG, i.e. the expression of tarB from the spa locus or from its native locus is similar for 

the purpose of PBP4 localization. However, in the case of NCTCΔspa::tarLi there was a significant 

difference between PBP4 localization in this strain, in the presence of IPTG, and in the parental strain 

with the former having a higher fluorescence ratio for PBP4 localization, i.e., more PBP4 protein 

localized at the septum. This observation  can be explained by two hypotheses (1) expression of tarL in 

the conditions used to grow the inducible strain, NCTCΔspa::tarLi, in the presence of IPTG, could lead 

to an overexpression of TarL with a consequent increase in the number of precursors that recruit the 

PBP4 and therefore an increase in the septal signal of the PBP4; (2) by cloning the tarL in the spa locus, 

separating it from its operon, we could be changing the regulation network of the teichoic acids 

synthesis, which could also affect the pathways for cell wall synthesis, including PBP4 production, given 

that the two pathways have common substrates. Overexpression of PBP4 could therefore be the reason 

for the increased fluorescence ratio observed in the TarL inducible strain in the presence of IPTG.  

We determined PBP4 localization on cells depleted for TarB and TarL for 1 hour and 45 

minutes. However, TarB and TarL depletion eventually leads to cell death, which can be accompanied 

by general protein delocalization. It was therefore important to determine if PBP4 delocalization was 

part of general protein delocalization in cells approaching death, or if PBP4 was specifically delocalizing 

in the absence of TarB and TarL, in conditions where other proteins remain properly localized. Given 

that PBP4 localizes to the septum, we used a divisome protein, EzrA, as a control and determined the 

effect of TarB and TarL depletion of EzrA septal localization. For that purpose we used a EzrA-CFP 

fusion as the fluorescence emitted by CFP does not overlap the fluorescence emitted by YFP fused to 

PBP4, i.e., the emission maxima of the two fluorophores are sufficiently apart to be separated using 

appropriate filters (Pereira et al., 2010). The strains simultaneously expressing PBP4-YFP and EzrA-

CFP, with either tarB or tarL under the control of the inducible promoter Pspac, NCTCΔspa::tarBi EzrA-

cfp and NCTCΔspa::tarLi EzrA-cfp, should have enabled us to quantify the localization of PBP4 and 

EzrA in the same cells and confirm if the delocalization of PBP4 is accompanied or not by changes in 

the localization of EzrA. Unfortunately these strains formed cell clusters which did not permit the correct 

quantification of PBP4-YFP localization, as we cannot correctly measure the fluorescence at the septum 

and at the “lateral” wall for calculation of the fluorescence ratio. As an alternative, we quantified EzrA 

and PBP4 localization in separate strains but under the same TarB/TarL depletion conditions. The 
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obtained results shown in Figure 3.12 confirm that PBP4 delocalization did not occur as part of general 

protein delocalization, as EzrA-CFP remained localized at the septum in the absence of TarB/TarL while 

PBP4-YFP was dispersed throughout the cell membrane.  

 In this work we were able to determine that in the absence of TarB or TarL, PBP4 loses 

its normal septal localization and becomes dispersed all around the cell membrane. With these results 

we can suggest two hypotheses:  

(1) The TarL protein itself recruits PBP4 to the division septa. In this case, once the TarL 

catalyses one of the last steps of the WTA biosynthesis occurring in the inner side of the 

cytoplasmic membrane (Figure 1.4 and 1.5 in the introduction) and the absence of TarO, 

the first protein in this synthesis pathway, also leads to PBP4 delocalization, then TarL 

localization should be dependent on the substrate. Therefore, blocking TarO protein would 

deplete subsequent intermediates in WTA synthesis, which would in turn affect TarL and 

PBP4 localization; 

(2) PBP4 is recruited by a substrate of the WTA synthetic pathway whose presence is dependent 

on TarL. In this case, the absence of an earlier protein in the WTA biosynthetic pathway, 

such as TarO or TarB, would deplete the substrate for TarL, which would therefore be 

unable to make its product.   

In conclusion, these results indicate that the molecule responsible for PBP4 recruitment is 

probably one involved in the last steps in WTA synthesis pathway at the inner side of the 

membrane. To prove that hypothesis and identify the intermediate responsible for PBP4 

localization, we look for PBP4 interaction partners by a bacterial two-hybrid screening, namely 

to see if the PBP4 interacts with TarL, TarH and/or TarG. We will also study of the localization 

of S. aureus PBP4 in the absence of TarH and TarG by using tarH and tarG inducible mutants. 

Although PBP4 maintains its septal localization in the presence of the antibiotic targocil, which 

blocks the activity of TarG, we do not know if TarH or TarG physically interact with PBP4 to 

recruit it to the septa. Uncovering the mode of recruitment of PBP4 is not only important to gain 

knowledge into the fundamental process of bacterial cell wall synthesis, but also into the 

essential role of PBP4 in the expression of β-lactam resistance in CA-MRSA strains. For this 

purpose we have already started to construct the strains to reproduce our studies in the CA-

MRSA strain MW2, an understanding of how PBP4 localizes is required to fully understand its 

role in β-lactam resistance.  
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