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Abstract (100 words maximum) 

 

Banco Invest offers various over-the-counter (OTC) derivatives to institutional clients as part 

of its structured investment solutions. These derivatives are managed within the bank’s 

Proprietary Trading Book. The focus of this consulting project is developing a Delta-Gamma 

Value-at-Risk (VaR) model that Banco Invest can implement to actively manage its equity 

derivative portfolio`s underlying risks. The first part contains the estimation of the portfolio 

delta and gamma. The second part consists of the quadratic approximation to calculate the 

portfolio standard deviation. In the last section, the authors calculate the Delta-Gamma Value-

at-Risk and provide recommendations to Banco Invest. 
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1 Value-at-Risk – Group part 

Market risk describes the risk of a possible loss in a risk position due to collective adverse 

movements of market rates and prices. It is one of the most critical risks for institutions that 

actively trade in financial markets; quantifying and monitoring this risk is crucial for allocating 

capital and reserves needed to cover potential losses and assess their overall solvency. Market 

risks are determined by institutions using standard procedures or internal risk models; one of 

these procedures is the Value-at-Risk model. (Deutsche Bundesbank 2022) 

1.1 Defining Value-at-Risk 

The Value-at-Risk expresses the maximum potential loss, in absolute terms or as a percentage 

in the respective currency the asset is held, that results under normal market conditions from an 

adverse movement in the relevant market of an investment over a specified time horizon (H) at 

a given degree of confidence (𝛼) during a fixed holding period of a risk position. The estimated 

maximum potential loss of the model, the VaR estimate, is only expected to be exceeded (1-

𝛼) % of the time. (Castellacci and Siclari 2003, pp. 531-532) (Fallon 1996, p. 2) The time 

horizon of interest for a VaR estimate can be one day or even months and is determined by the 

nature of the portfolio. The horizon should correspond to the most prolonged period needed for 

an orderly liquidation or the time to hedge an investment portfolio. (Bodie, Kane, and Marcus 

2021, p. 138) The VaR estimate's horizon is determined by the liquidity profile of the assets in 

the underlying investment portfolio; the length relates to the time needed to sell these assets at 

average transaction volumes so that they have little impact on the market. Since the market 

impact of the liquidation scenario is not disregarded when choosing the horizon, the VaR 

estimate will be an estimate of a realizable loss and not only a loss on paper. (Wilmott 1998, p. 

548) The confidence (α) level for a VaR estimate corresponds to the institution's risk profile, 

determined by its degree of risk aversion or regulatory requirements. (Fallon 1996, p. 2) 
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Figure 1: Development of VaR over time horizon H (Jorion 2007, p. 118) 

 

A VaR calculation applies to all types of risky assets and can be applied to a single position and 

a whole portfolio of risky assets. Assessing VaR helps institutions evaluate the profitability of 

an investments in relation to the risk and identify investments with a higher-than-acceptable 

risk profile, allowing them to make changes or liquidate such investments. The VaR is used for 

active and passive risk measurement and defensive risk control. Ideally, it suits financial and 

non-financial institutions that engage in proprietary trading with significant exposure to market 

risks. (Jorion 2007, pp. 379-389) VaR estimates typically focus on 'tail events' where liquidity 

and large jumps are essential, as illustrated in Appendix 1 below. (Wilmott 1998, p. 337) 

Therefore, confidence levels are typically set at 95%, 97.5%, and 99%. (Wilmott 1998, p. 547)  

An overview of which confidence levels translate into which z statics of the confidence interval 

can be found in Appendix 2. The VAR statistic on portfolio losses is defined as a one-sided 

confidence interval:  

𝑃𝑟𝑜𝑏 [Δ𝑃̃(∆𝑡, ∆𝑥̃) >  −𝑉𝐴𝑅] = 1 − 𝛼 (1) 

In the above equation, Δ𝑃̃(∆𝑡, ∆𝑥̃) stands for the change in the value of a portfolio that results 
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from a function consisting of the forecasting period ∆𝑡 and the vector ∆𝑥̃ of the random 

variables, with 𝛼 being the confidence level. The equation can be interpreted as the portfolio's 

value will not fall by more than VAR over ∆t number of trading days with α % confidence. 

(Fallon 1996, p. 2) The degree of complexity and the computational requirements of the 

calculation of a VaR estimate depends in particular on how the price of the instrument changes 

in relation to the underlying. Appendix 3 depicts the two different relationships. (Romano 2017) 

The calculation of a VaR estimate for non-linear (i.e., derivatives) assets is more complex than 

for a linear asset (i.e., a stock or bond). In the context of an option: nonlinearity implies that a 

price movement in the underlying asset causes a non-linear change in the option price. There 

are three major methodologies to calculate Value-at-Risk, the historical approach, the 

parametric or model-building approach, and performing a Monte Carlo simulation. Figure 2 

below provides an overview of the different methodologies and their advantages and 

disadvantages. (Hull 2021, pp. 293-297 & 317-340) 

 

 

Figure 2: Overview of different approaches for VaR calculation (Hull 2021, pp. 293-297 & 317-340) 

 

1.2 Pitfalls and limitations of Value at Risk 

Despite the widespread use of the Value-at-Risk model, it has several drawbacks that will be 
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briefly discussed in the following. First and foremost, all methods require making assumptions 

and using them as inputs for the mode; this can result in different outcomes even if the same 

modelling approach is used. Assumptions have to be made, e. g. about the applicable horizon 

and confidence level and the appropriate number of simulations. (Jorion 2007, pp. 542-557) 

Furthermore, all methods rely to some extent on historical data as a proxy to forecast future 

estimates. What has happened in the past does not necessarily imply that it will happen again 

in the future, so that estimation can be Inaccurate. (Jorion 2007, pp. 542-557) Second, there is 

yet to be an industry-wide standard to model VaR. The different approaches and models to 

calculate VaR can also lead to different estimates for the same portfolio. Hence, the correct 

interpretation is vital. (Jorion 2007, pp. 542-557) This brings us to the next limitation: a VaR 

estimate is calculated assuming normal market conditions, meaning extreme and rare events, 

such as so-called black swans, are not considered by the estimate. Because VaR only allows the 

risk manager to make statements about which value will not be exceeded with what degree of 

certainty, it does not tell anything about the worst outcome in case the VaR number is ex (Hull 

2018, pp. 273-274) Additionally, the traditional VaR disregards intervening losses. These occur 

when the portfolio’s value falls below VaR during the time horizon but eventually rises above 

it at the end of it. This can be an essential aspect for management if the portfolio is marked to 

market daily and faces potential margin calls that could result in liquidation in the worst-case 

scenario. (Jorion 2007, pp. 117-119) A VaR estimate provides the “big picture” of what is at 

risk regarding market risk effects. However, as it only accounts for this specific risk type, it has 

a narrow focus on what is really at risk. There are also risks which are not incorporated in the 

VaR framework, commonly referred to as “risks not in Value-at-risk” (RNIV): This can result 

in the actual Value at Risk of an investment being much higher than what the VaR model is 

predicting when capturing many of the other existing risk variables such as (geo-)political risks, 

liquidity risks, and regulatory risk. (Jorion 2007, pp. 542-557) 
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2 The “Greeks” - Group part 

In option pricing, as well as for other derivatives, the "Greeks" are commonly used to measure 

the sensitivity of a derivative's value to factors that might affect the price of an options contract. 

Appendix 4 gives an overview of the existing Greeks and their definitions. (Leoni 2014) Within 

the frame of this work, the focus will be set on two risk metrics, delta (Chapter 3.1) and gamma 

(Chapter 3.2) risk, in relation to option pricing, as they are the most fundamental.  

2.1 Delta Risk 

The delta, designated with the symbol Δ, is the first-order partial derivative of the option pricing 

function c with respect to the underlying asset S. Therefore, it expresses the sensitivity of the 

option contract’s price to changes in the price of the underlying asset while leaving all else 

constant (ceteris paribus). (Taleb 1997, p. 224) (Bouzoubaa and Osseiran 2010, p. 66) 

∆ =  
𝜕𝑐

𝜕𝑆
 (2) 

For vanilla options, the delta for long calls and short puts on standard options varies between 0 

and 1. Vice versa, short calls and long puts have a delta ranging between 0 and -1. Graphically 

expressed is it the slope of the curve that links the option price to the underlying asset price. 

The higher the slope, the higher the delta and the more the derivative contract will change in 

response to price fluctuations of the underlying asset. Figure 3 below depicts the change in 

delta with respect to the Strike price K and the time to maturity T for a European call option. 

With the option increasingly getting out of the money (OTM), a higher Strike K, and/or the 

option approaching its maturity date T, the delta tends to move towards 0. Conversely, with 

lower Strike K, the option being more in the money (ITM), and/or longer time until maturity T, 

delta approaches 1. (Hilpisch 2015, p. 78) The most significant change in delta can be observed 

with the option being at the money (ATM), S = K, close to its maturity date T. This is because 



   

9 
 

theoretically, with the option being ATM a few seconds before it matures, one small move in 

either direction would result in the option being either in the money or out of the money, hence 

the considerable variation in delta. (Hilpisch 2015, p. 78) 

 

 

Figure 3: Delta of a European Call Option (Hilpisch 2015, p. 78) 

 

Delta risk can be hedged to obtain a neutral position (Δ = 0). How this can be achieved for a 

portfolio of derivatives will be explained in more detail in section 3.3, Hedging the Greeks. 

2.2 Gamma Risk 

For minor variations in the price of the underlying asset, delta proves to be good at estimating 

the change in the option’s price. However, as soon as price changes become more severe, delta 

is extremely sensitive to changes in the underlying asset’s price. This is because delta 

graphically represents a linear estimate for a non-linear option function. Hence, the actual 

option value might significantly differ from the proportion predicted by delta. (de Weert 2008, 

pp. 14-16) Gamma, Γ, measures by how much or how often a position or a portfolio of options 

needs to be re-hedged to maintain a delta-neutral position: it expresses by how much the Delta 

might change if the price of the underlying changes. It is the second-order derivative of the 
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option pricing function c with respect to the underlying asset S. 

Γ =  
𝜕2𝑐

𝜕2𝑆
 (3) 

The more curvature the option function entails, the higher the gamma and the more sensitive 

the delta is towards changes in the underlying’s price. An increase in the underlying’s price 

could significantly increase the delta and vice versa for a low gamma. Considering plain vanilla 

options, the gamma is always positive for long positions, whereas for short positions, it is 

negative. (Bouzoubaa and Osseiran 2010, p. 72) Figure 4 below shows that the gamma value 

is stable for most of the option's life as it hovers near zero. The most notable value changes in 

gamma happen around ATM options close to maturity. As previously stated in the preceding 

section, it is for at-the-money options close to maturity where one move in either direction has 

the most significant influence on delta as it determines whether the option is exercised. Hence, 

the high value in gamma. (Yen Jerome and Lai 2015, pp. 84-85). 

 

 

Figure 4: Gamma of a European Call option (Hilpisch 2015, p. 79) 

 

How gamma is incorporated when hedging the respective portfolio’s VaR will be explained in 

more detail in the next section. 
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2.3 Hedging the Greeks 

As previously described, a portfolio’s sensitivity to such is captured by the “Greek letters”. The 

risk framework captures thresholds for each to ensure that these risks stay within the company's 

tolerance. Exceeding the limits initializes a process known as hedging. This is where counter 

positions in the market are established to ensure that the exposure to a particular risk factor 

stays within its predefined limit. In the following, it will be presented how a portfolio is hedged 

against delta and gamma. (Hull 2018, p. 161) Hedging delta consists of establishing a counter 

position equal to ∆ amount of the underlying. By combining the existing portfolio and the 

hedging trade, the new portfolio’s exposure to delta is neutralized. (Hull 2018, pp. 161-162) 

For linear products, hedging delta turns out to be static as it protects against both small and 

large changes in the value of the underlying. Further, once a linear hedge is implemented, there 

is no need to adjust it over time. The delta for a linear portfolio stays constant. (Hull 2018, pp. 

163-164) Neutralizing delta exposure for non-linear products such as options proves to be a 

more complex procedure due to the non-linear relationship between the price of the underlying 

and the options contract. As mentioned earlier in this work, eliminating a portfolio’s delta only 

offers protection from small fluctuations in the price of the underlying. Additionally, once it is 

set up, the delta hedge has to be adjusted frequently, also known as dynamic hedging or 

"rebalancing". This is because Delta constantly evolves throughout a non-linear product's 

lifetime. (Hull 2018, pp. 165-168) In practice, rebalancing is costly as, e.g., hedging a long 

position on an option involves buying the underlying when its price increased and selling it 

when it dropped to consistently create a synthetical position opposite of that to neutralize the 

option’s delta. This is usually reflected in the premiums that option buyers have to pay. (Hull 

2018, p. 169) With more significant changes in the prices of the underlyings, a portfolio’s 

gamma comes into play. There are two ways of adjusting for the additional gamma exposure of 

a non-linear portfolio that will be briefly described below. (Hull 2018, pp. 169-170) Firstly, the 
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portfolio is made gamma neutral by trading options with opposite gammas on the same 

underlyings as the options in the existing portfolio. Non-linear products are needed as linear 

products do not have exposure to gamma. By doing this, the new and combined portfolio’s delta 

also changes and would have to be re-adjusted by trading opposite positions in the underlyings 

(Hull 2018, pp. 170-171) Implementing this in practice can be challenging as trading non-linear 

derivatives in the amounts needed often is impossible. Further, re-adjusting for the new delta 

of the combined portfolio is costly as it involves many transactions. (Hull 2018, p. 177) 

However, as described earlier, it makes economically more sense to see the gamma as a 

determinant of how often a portfolio needs to be re-hedged. In general, a portfolio with larger 

gamma would imply more frequent delta neutralization, whereas a smaller gamma results in 

less often adjustments to the portfolio, as changes in delta only tend to be small. (Hull 2018, 

pp. 169-170) Banco Invest hedges its equity derivatives portfolio with underlyings (delta 

neutralization) rather than options (gamma neutralization). The Bank does not take directional 

market risk, keeping the difference between the deltas (theoretical quantities) and the quantities 

held in the portfolio as close to zero as possible. These portfolio quantities are adjusted daily, 

at 30-minute intervals, based on market conditions, namely the evolution of the underlying 

shares. 

3 Value-at-Risk for a Derivatives Portfolio - Group part 

To begin with, calculating Value-at-Risk for a single asset is a straightforward process. 

Assuming linearity in the change of the portfolio’s value to changes in the underlying and 

normally distributed returns, VaR is calculated as follows: 

𝑉𝑎𝑅 = 𝑤𝑖𝑆𝑖 (𝜇 𝛿𝑡 − 𝜎𝑖  (𝛿𝑡
1
2) 𝛼(1 − 𝑐)) (4) 

where 𝑤𝑖 is the quantity of the asset i owned with price 𝑆𝑖. This is multiplied by the asset’s drift 

over a predefined time horizon 𝛿𝑡, with 𝛼(1 − 𝑐) being the inverse cumulative distribution 
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function of the standard normal distribution. This process is called delta approximation. 

(Wilmott 1998, pp. 548-550) Regarding a portfolio of assets, the calculation of VaR becomes 

more complex. First, the volatilities and covariances of all assets in the portfolio have to be 

computed. If this is done, the formula to calculate the VaR of a portfolio with M assets 

consisting of 𝑤𝑖 amount of asset i and 𝑤𝑗 amount of asset j is: 

𝑉𝑎𝑅𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 = −𝑀(𝛼(1 − 𝑐)(𝛿𝑡
1
2)√∑∑𝑤𝑖𝑤𝑗𝜎𝑖𝜎𝑗𝜌𝑖𝑗  

𝑀

𝑗=1

𝑀

𝑖=1

) (5) 

with 𝜎𝑖 being the volatility of asset i and 𝜌𝑖𝑗 the correlation between asset i and j. (Wilmott 

1998, pp. 551) Estimating VaR for a portfolio of derivatives, as mentioned earlier, the delta 

approximation would only be sufficient for portfolios where the underlyings show small 

movements in price. This is because the relationship between the portfolio's value and price 

changes in the underlyings can no longer be regarded as linear. For non-linear portfolios, the 

sensitivity to gamma additionally has to be considered. This is visually demonstrated in Figure 

5 below. It depicts the relationship between the price of an underlying asset to the corresponding 

value of a long call option on the same. While the underlying’s price function is normally 

distributed, the option has a positively skewed probability distribution with a smaller tail on the 

left. (Hull 2018, pp. 333-334) This violates the initial premise that probabilities are normally 

distributed. If VaR were calculated based on this assumption, it would be excessively high. As 

a result, approximations for the portfolio's sensitivity to changes in the underlyings need to be 

reevaluated. (Wilmott 1998, pp. 550-551) 
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Figure 5: Translation of an Asset's normal probability distribution into that of a long call option (Hull 2018, p. 333) 

 

To recapture, with larger swings in the prices of the underlyings of an options portfolio, the 

previous delta approximation to calculate VaR turns out to be inappropriate. A better estimation 

is achieved by incorporating the portfolio’s sensitivity to gamma. Gamma exposure is 

particularly challenging as a second-order approximation is required. (Wilmott 1998, p. 551) 

This will be shown below. Assume a portfolio M consisting of a single option on an asset with 

price S. The change in the value of the portfolio 𝛿𝑀 compared to changes in the price of the 

underlying 𝛿𝑆 can be expressed as follows: 

𝛿𝑀 =
𝜕𝑃

𝜕𝑆
𝛿𝑆 +

1

2
 
𝜕2𝑃

𝜕𝑆2
(𝛿𝑆)2 +

𝜕𝑃

𝜕𝜎
𝛿𝑡 + ⋯ (6) 

This can ultimately be reformulated into: 

𝛿𝑀 = ∆𝜎𝑆 𝛿𝑡
1
2 𝜙 + 𝛿𝑡 (∆𝜇𝑆 +

1

2
Γ𝜎2𝑆2𝜙2 + Θ) +⋯ (7) 

where Θ is the time drift of the option (Theta). (Wilmott 1998, p. 551)  The quadratic term, the 

portfolio's exposure to gamma, is of specific interest above. Figure 6 shows three different 

distribution functions. The distribution of the underlying with a standard deviation of 𝜎𝑆 𝜕𝑡
1

2 is 

considered to be normal. The projected distribution for the change in the value of the options 
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portfolio according to the delta approximation. It is normally distributed with a standard 

deviation of ∆𝜎𝑆 𝜕𝑡
1

2. Finally, the options portfolio’s distribution using the delta-gamma 

approximation. (Wilmott 1998, pp. 551-552) 

 

 

Figure 6: Relationship of an asset price’s normal distribution to the distribution of an option portfolio according to the delta 
as well as the delta-gamma approximation (Wilmott 1998, p. 552) 

 

By looking at the three different distributions, it is evident that the one for the delta-gamma 

approximation is not normally distributed compared to the other two. (Wilmott 1998, pp. 551-

552) 

4 Methodology used in Python - Group part 

In the following, the Assumptions used to calculate the Delta-Gamma VaR in Python, as well 

as the fundamental parts of the code, are presented and explained. As the basis for all 

calculations of the various input statistics of the VaR model, the authors assume one year 

consisting of 252 trading days. Because of their ease of use for time series modelling, such as 

symmetry, time-additivity, and the log-normal distribution assumption, the various underlyings 

performances are transformed into logarithmic returns. Next, each option's volatility is 

calculated using equally weighted implied volatilities of the option's underlyings. In the absence 
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of implied volatility, the underlying’s historical volatility on a 30-day basis is used. 

Furthermore, to determine the correlation, variance, and covariance of the different underlyings, 

a maximum lookback window of 2 years is assumed, the same as the option’s time to maturity 

on the trade date. From there on, for each day that has progressed, the option’s remaining time 

to maturity is used to calculate the above statistics until a predefined minimum of 30 days was 

reached. Below this, correlation, variance, and covariance are calculated on a 30-day basis until 

the option matures. At this point, it is referred to Appendix 5-6 for the code example. The 

options in Banco Invest’s portfolio are valued as of 30/06/2022 using Monte Carlo simulations. 

The first step of Monte Carlo involved calculating the geometric Brownian Motion. In finance, 

this is a stochastic process to model random behavior over a specific time frame (𝛿t) that 

consists of two main components, drift, and a randomly generated variable.  (Yan 2017, pp. 

421-428) Drift indicates the direction of an asset’s historical returns, allowing predictions on 

an asset’s expected return. It is calculated as shown in equation (8) using the same receding 

time horizon as explained for the underlying’s statistics, except for the time series’ minimum 

requirement of 30 days.  

𝐷𝑟𝑖𝑓𝑡 = (𝑀𝑒𝑎𝑛 (𝑠𝑡𝑜𝑐𝑘 𝑟𝑒𝑡𝑢𝑟𝑛𝑠) − 
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑠𝑡𝑜𝑐𝑘 𝑟𝑒𝑡𝑢𝑟𝑛𝑠)

2
) ∗  𝛿𝑡 (8) 

Where underlyings are expected to pay dividends, the drift is adjusted further, as demonstrated 

in Appendix 7. The next step is to obtain a random number by multiplying an asset’s historical 

standard deviation with a random, standard normally distributed variable (Z ([Rand (0;1)])). 

𝑅𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = (𝑆𝑡𝑑. 𝐷𝑒𝑣.  ∗  𝑍([𝑅𝑎𝑛𝑑(0; 1)])) ∗ √𝛿𝑡 (9) 

As a result, the equation for predicting the future value of an asset (St+1) sums up to the 

following:  

𝑆𝑡+1 = 𝑆𝑡 ∗ 𝑒
𝐷𝑟𝑖𝑓𝑡 + 𝑅𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒  (10) 

However, when pricing options comprised of baskets of underlyings, Cholesky Decomposition 
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is performed as an extension of the Monte Carlo simulation to account for the correlation 

aspects between the various reference assets. A brief explanation of an example decomposition 

will be provided below. Appendix 8 contains the code for the Cholesky decomposition 

performed for the different options. Assume a 2 ∗ 2 symmetric, positive definite correlation 

matrix Σ, where 𝜌 is the correlation between X1 and X2. 

Σ = (
 1 𝜌
 𝜌 1

 ) (11) 

The correlation matrix can then be decomposed into a 2 ∗ 2 lower triangular matrix L, where 

𝐿𝐿𝑇 = Σ. (Wilmott 1998, pp. 682-683) This appears to be as follows: 

𝐿 = ( 
1 0

𝜌 √1 − 𝜌2
 ) (12) 

Following the generation of L, the random variables with desired correlation can be expressed 

as LZ, where Z is a column vector of the independent standard normal random variables: 

𝑍 = (
𝑍1
 𝑍2
) (13) 

As a result, by setting 𝑋𝐿 = 𝑍, we can sample from a bivariate normal distribution, indicating 

that: (Yen Jerome and Lai 2015, pp. 99-100) 

𝑋1 = 𝑍1 
(14) 

𝑋2 = 𝜌 ∗ 𝑍1 +√1 − 𝜌2 ∗ 𝑍2 (15) 

To generate a sufficient sample of possible future asset values for the different underlyings to 

calculate the option's payoffs appropriately, 200.000 simulations are run. Following this, the 

averaged payoffs are discounted using the respective’s maturity Euribor 3-month forward. 

Where no forward for the maturity of the option’s payoffs is readily available, linear 

interpolation is performed to compute the discount rate for the respective maturity’s payoff, as 

shown in Appendix 9-10. Further, each underlying’s delta is estimated by changing its price by 

1%, while leaving the other’s prices constant, and calculating the new price of the option. The 
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difference in both derivative prices is then divided by the relative changes in the prices of the 

underlying. The option’s delta is estimated as the weighted average of the underlying’s deltas, 

assuming an equally weighted portfolio of underlyings. To calculate gamma, the above 

calculation is done a second time to get the change in delta. The difference in both deltas is then 

divided by the relative adjustment to obtain the gamma value. The equations used and the 

respective code for this can be found in Appendix 12-26. In terms of VaR, the confidence level 

was set to 99,9 %. Calculations are performed initially for a one-day time horizon and then later 

multiplied by the square root of 252 to get the annualized VaR, as this is the requirement from 

the risk management department at Banco Invest. Detailed calculations performed for this in 

Python can be found in Appendix 26. 

5 Indicap – Individual part (Christopher Carl Saidowsky) 

The product name Indicap refers to a structured product written by Banco Invest, specified by 

the Bank under the category of a structured deposit. A structured deposit is a term deposit with 

guaranteed capital: the deposit is not withdrawable before the defined maturity date of the 

options contract and with a yield indexed to the price performance of one or more financial 

assets (Banco Invest 2022, p.1) 

Banco Invests Indicap product is an exotic equity basket option derivative, the name of product 

is the Banks internal name which refers to a single option contract that embodies a similar 

payoff profile structure of a 2-options contract bull call spread strategy on five different 

underlying’s. The Option is a product with guaranteed capital that offers a well-defined risk 

and reward profile: Potential profits and losses are limited by a predetermined maximum loss 

the options floor and by a predetermined maximum gain, the options cap.  
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With this option, investors have the possibility to earn a higher yield than currently offered in 

the market. The option does not grant the owner the right to buy the underlying basket, instead 

it gives the holder a chance to participate in the appreciation of the value of the underlying 

basket. The Options Remuneration is based on the average variation of the five different 

underlying’s. It can be calculated as follows, taking into consideration the defined option cap 

and floor. (Banco Invest 2022, p.4). 

𝑅𝑒𝑚𝑢𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝐷𝑒𝑝𝑜𝑠𝑖𝑡 𝐴𝑚𝑜𝑢𝑛𝑡 𝑥 𝑀𝑎𝑥(𝐹𝑙𝑜𝑜𝑟;𝑀𝑖𝑛(𝐶𝑎𝑝; 100% 𝑥 𝐵𝑎𝑠𝑘𝑒𝑡 𝑅𝑒𝑡𝑢𝑟𝑛) 
(22) 

The deposit amount is multiplied either by the floor, 100% x basket return resulting from a 

minimization problem between cap and the basket return x 100%. The cap sets the upper limit 

for the profit. Even if the yield from the share price is higher than the cap, remuneration is only 

paid at the cap.  

Second, you have a maximization problem between the floor, the lower bound, and previous 

minimization problems. The floor is always greater than or equal to zero and depends on the 

funding costs of Banco Invest. When interest rates rise, the funding costs rise and so does the 

floor. When interest rates fall everything is exactly the opposite. The maximization problem 

ensures that the investor still achieves the maximum profit. 

The Basket Return, Formula (23), is the average variation in the return on equity of the 

underlying assets. If the return on equity of i has a negative value, a zero is inserted in the 

formula. If it is positive, the value is adopted. Thus, the basket return can only take positive 

values or zero. 

𝐵𝑎𝑠𝑘𝑒𝑡𝑅𝑒𝑡𝑢𝑟𝑛 =∑ [
𝑅𝑒𝑡𝑢𝑟𝑛𝑂𝑛𝐸𝑞𝑢𝑖𝑡𝑦𝑖

𝑛
]

𝑛

𝑖=1
 (23) 
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The return of equity is the result of a mathematical minimization problem of the fixed option 

cap and the return of the underlying asset. 

𝑅𝑒𝑡𝑢𝑟𝑛𝑂𝑛𝐸𝑞𝑢𝑖𝑡𝑦𝑖 =

{
 
 

 
 𝑀𝑖𝑛 (𝐶𝑎𝑝;

𝐸𝑞𝑢𝑖𝑡𝑦𝑖
𝐹𝑖𝑛𝑎𝑙

𝐸𝑞𝑢𝑖𝑡𝑦𝑖
𝐼𝑛𝑖𝑡𝑖𝑎𝑙

− 1)     , 𝑖𝑓
𝐸𝑞𝑢𝑖𝑡𝑦𝑖

𝐹𝑖𝑛𝑎𝑙

𝐸𝑞𝑢𝑖𝑡𝑦𝑖
𝐼𝑛𝑖𝑡𝑖𝑎𝑙

− 1 ≥ 0

0                                                           , 𝑖𝑓 
𝐸𝑞𝑢𝑖𝑡𝑦𝑖

𝐹𝑖𝑛𝑎𝑙

𝐸𝑞𝑢𝑖𝑡𝑦𝑖
𝐼𝑛𝑖𝑡𝑖𝑎𝑙

− 1 < 0

 (24) 

The translation of the formulas (22), (23), (24) into python code can be found in the appendix 

101-107. 

The maximum remuneration occurs when all five underlying’s are quoted at or above the 

determined price level of the cap. As illustrated in Figure 21, the maximum remuneration is 

the spread between the cap and the floor. 

 
Figure 21: Overview of the profit and loss distribution of an Indicap option as of 30/06/2022 (Own Illustration) 

 

The product is designed for investors who do not want to take any capital risk over the term of 

the options contract. The maximum loss that can be realized with this product is the amount of 

the option premium that an investor pays to the bank. For this case to occur all five underlying 

have to be quoted on the expiration date at the price level of the floor or even lower. Investors 
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reach the break-even point from an Investor P/L standpoint when the remuneration equals the 

premium paid for the structured deposit.  

Since the Indicap product is an option that benefits from rising prices of the underlying’s in the 

market, it is referred to as an option with a "net positive delta": The price of the option rises 

with rising prices of the underlying’s, and vice versa falls when they fall. The Indicap strategy, 

like all vertical spread strategies, is "near-zero-gamma": which means that the directionality, 

the delta of an Indicap option, is not significantly affected by changes in the underlying market 

prices. 

The portfolio of Indicap options used in this work project has a total notional of EUR 

65,213,085. This represents about 41,52% of the total value of derivatives contained in the 

Banks Portfolio and contains 14 different Indicap products, which are shown in Figure 22. 

 

Figure 22: Overview of the Indicap Options portfolio 

 

Figure 23 shows e.g., in detail, the structure of an Indicap product (Product ID 1067). All 

Indicap products have five different equity underlying’s from a thematic investment universe: 

every options investment universe can be derived from the name of the option All Indicap 

products of and their corresponding underlying’s can be viewed in detail in appendix 79-91. 
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.  

Figure 23: Overview of the structure of an Indicap product 

 

5.1 Portfolio Delta 

The delta of the Indicap derivative portfolio was calculated by summing the individual Indicap 

options deltas in the portfolio: for a portfolio of 14 Indicap, the delta of the portfolio is given 

by: 

∆ =∑𝑤𝑖∆𝑖

𝑛

𝑖=1

 (25) 

The deltas below have been calculated assuming a long position in the option from Banco 

Invest's point of view. Since a bank is short when selling the indicap option, these values must 

be considered negative when hedging. 
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Figure 24: Overview of the deltas of the individual indicap products and the aggregated portfolio 

 

As of 30/06/2022 the Delta of the aggregated Indicap options portfolio is 0.1265: Buying a 

basket consisting of the underlying’s with a value of EUR 737,965 would neutralize the 

portfolio delta. Figure 24 shows the delta values of the individual products ranked according 

to their maturity date: Product 1031 has the closest maturity date to the observation date 

(30/06/2022) of this work, and 1447 is the furthest.  

Figure 25: Overview of the deltas of the individual indicap products and the aggregated portfolio 

5.2 Portfolio Gamma 

The Gamma of the indicap derivative portfolio can be calculated by summing the individual 

Indicap options Gammas in the portfolio: for a portfolio 14 indicap, the delta of the portfolio is 

given by: 

𝛤 =∑𝑤𝑖∆𝑖

𝑛

𝑖=1

 (26) 

As of 30/06/2022, the gamma value of the aggregated Indicap options portfolio is 0.1265. 
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Figure 26: Overview of the gammas of the individual indicap products and the aggregated portfolio 

 

Figure 26 shows the gamma values of the individual products ranked according to their 

maturity date: Product 1031 has the closest maturity date to the observation date (30/06/2022) 

of this work, and 1447 is the furthest.  

 

Figure 27: Overview of the gammas of the individual indicap products and the aggregated portfolio 
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As mentioned in chapter 8, the Indicap Product is a "near-zero-gamma" basket option. The 

respective gammas all have values which are close to zero. Figure 27 represents well that: 

Gamma has a higher value for options that are close to their maturity date (1031, 1067, 1106) 

than for options that are further away from their maturity date and increases as well with the 

options contract’s degree of moneyness (1031, 1067, 1106, 1213, 1233, 1286, 1306, 1416).  

5.3 Non-linear Delta-Gamma-VaR 

The Value-at-Risk of the individual Indicap options got calculated as described in Chapter 3 

with formula (3), the results were summed to obtain an undiversified VaR estimate. The Value-

at-Risk for the aggregated Indicap portfolio, which is a result of the risks contributed by every 

Indicap option contained in the portfolio was calculated as outlined in chapter 3, with formula 

(4), and is provided an estimate of the diversified VaR. In Figure 28 the results can be reviewed:  

 

Figure 28: Overview of the value-at-risk estimates for the individual products and the Indicap portfolio 
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As of 30/06/2022 the undiversified Value-at-Risk was estimated to be EUR 520.007 for the 

next trading day at a confidence interval of 99.9%: The maximum potential loss of the next 

trading day of EUR 520.007 is only expected to be exceeded in 0.01% of all cases. The estimate 

of the Diversified Value-at-Risk for the entire Indicap portfolio at the same confidence level 

for the next trading day, is much lower at EUR 123.950 due to diversification: The diversified 

VaR estimate is also expected to be exceeded in only 0.01% of all cases. 

6 Recommendation - Group part 

This chapter address how the bank's management should deal with the risk associated with the 

derivatives Portfolio. Figure 35 below summarizes the delta, gamma, and Delta-Gamma Value-

at-Risk for Banco Invest’s overall options portfolio. The total derivatives portfolio of the bank 

has a notional of EUR 157.067.916, consisting of 53 different options. The 1-day Value-at-Risk 

at 99,9% confidence level for the bank's overall derivatives portfolio is EUR 372.773, implying 

a 99,9 % probability the portfolio will not lose more over the next trading day. 

 

 

Figure 35: Aggregated Portfolio Delta-Gamma VaR 

 

As the bank does not take a directional risk on the market, the delta on combined option’s 

portfolio must be neutralized with an appropriate hedging strategy. All five option types in the 

Banco Invest derivatives portfolio are basket options. The challenge of hedging, when facing 

options with a basket of underlying’s, becomes evident in their correlated structure. This makes 
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the evaluation of the contract's price but also the risks, e.g., delta, gamma, and their hedging a 

complex procedure. (Su 2006, pp. 3-5) This is because it is difficult to detangle the underlying 

basket’s distribution. The correlation between the underlying tends to be volatile and can only 

be estimated. This further complicates the "perfect" hedging of basket options. As a result, in 

many cases, only a part of the underlying basket is used for hedging, or the payoffs of the basket 

are replicated "super-hedged". (Su 2008, pp. 19-23) Another difficulty arises from the number 

of underlying assets: When following a standard dynamic hedging strategy, a hedging portfolio 

for the basket options should be related to the underlying assets in the basket. The larger the 

amount of underlying’s the more difficult it is to implement such a dynamic strategy and the 

larger the transactions cost, caused by the continuous rebalancing, become. Since most of the 

options are "near-zero-gamma", which means that the directionality, the delta of the option is 

not greatly affected by changes in the underlying market prices, a dynamic hedging strategy 

can be implemented as major changes in the delta are not expected to be caused by changes in 

the underlying market prices. Transaction costs for rebalancing will occur but will be 

manageable as they do not occur very frequently. Lamberton and Lapeyre (1992) showed that 

a dynamic hedge on even a subset of the underlying's works well: they developed a method 

using multiple regression analysis to create a dynamic approximate hedging portfolio of plain-

vanilla options on only a subset of the underlying's. For our "near-zero-gamma" options, such 

a dynamic hedge could further reduce the already low cost of rebalancing. A static hedging 

strategy has the advantage that transaction costs caused by continuous rebalancing can be 

avoided, and therefore this strategy could have a better hedging performance. (Su 2008, pp 2-

4) Su (2006) used the Principal Components Analysis (PCA) to demonstrate that also a static 

hedge on a subset of the underlying's performs well: The PCA was used to determine a dominant 

subset of assets of the basket. Since a dynamic hedge of a basket option often only approximates 

the optimal hedge, the complete neutralization of the delta can only be achieved by a static 
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hedge. Since Banco Invest instructs it takes no directional risk in the market, the only hedging 

strategy that fits this case is a static strategy as described above. Moreover, since the assets in 

the respective basket options are all in the same thematic investment universe, it is worthwhile 

to follow the approach of Su (2006) to determine whether it is sufficient to apply a static hedge 

only to a subset of the underlying assets, due to the high correlation between them. 
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Appendix 

 

Appendix 1: Value-at-Risk distribution showing possible tail events (Wilmott 1998, p. 338)  

 

 

Appendix 2: Overview of most common z-statistic for VaR calculation 
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Appendix 3: Linear / Non-linear VaR (Romano 2017) 

 

 

Appendix 4: Overview Greeks – In accordance with (Leoni 2014, pp. 85-97) 
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Appendix 5: Drift calculation in Python 

 

 

Appendix 6: Cholesky decomposition in Python 
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Appendix 7: Volatility calculation in Python (1/2) 

 

  
Appendix 8: Volatility calculation in Python (2/2) 
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Appendix 9: Linear interpolation in Python to get discount rates for Option payoffs (1/2) 

 

 

Appendix 10: Linear interpolation in Python to get discount rates for Option payoffs (2/2) 
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Δ =
𝑆𝑡(𝜀) − 𝑆𝑡

𝜀
 (18) 

Γ =
Δ𝑡(𝜀) − Δ𝑡

𝜀
 

(19) 

Appendix 11: Equations used for Delta/Gamma calculation 

 

 
Appendix 12: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (1/15) 
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Appendix 13: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (2/15) 

 

  
Appendix 14: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (3/15) 
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Appendix 15: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (4/15) 

 

 
Appendix 16: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (5/15) 
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Appendix 17: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (6/15) 

 

 
Appendix 18: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (7/15) 
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Appendix 19: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (8/15) 

 

  
Appendix 20: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (9/15) 
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Appendix 21: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (10/15) 

 

  
Appendix 22: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (11/15) 

 

  
Appendix 23: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (12/15) 
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Appendix 24: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (13/15) 

 
Appendix 25: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (14/15) 

 

 
Appendix 26: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (15/15) 
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Appendix 79: Overview of the structure of an Indicap product – Product 1031 
 

 
Appendix 80: Overview of the structure of an Indicap product – Product 1067 
 

 
Appendix 81: Overview of the structure of an Indicap product – Product 1106 
 

 

 
Appendix 82: Overview of the structure of an Indicap product – Product 1125 
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Appendix 83: Overview of the structure of an Indicap product – Product 1179 

 

 
Appendix 84: Overview of the structure of an Indicap product – Product 1200 
 
 

 
Appendix 85: Overview of the structure of an Indicap product – Product 1213 

 
 

 
Appendix 85: Overview of the structure of an Indicap product – Product 1233 

 
Appendix 86: Overview of the structure of an Indicap product – Product 1286 
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Appendix 87: Overview of the structure of an Indicap product – Product 1306 

 

 
Appendix 88: Overview of the structure of an Indicap product – Product 1342 

 

 
Appendix 89: Overview of the structure of an Indicap product – Product 1399 

 
Appendix 90: Overview of the structure of an Indicap product – Product 1416 

 

 
Appendix 91:  Overview of the structure of an Indicap product – Product 1447 

 
 
 
 


