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Abstract (100 words maximum)

Banco Invest offers various over-the-counter (OTC) derivatives to institutional clients as part
of its structured investment solutions. These derivatives are managed within the bank’s
Proprietary Trading Book. The focus of this consulting project is developing a Delta-Gamma
Value-at-Risk (VaR) model that Banco Invest can implement to actively manage its equity
derivative portfolio’s underlying risks. The first part contains the estimation of the portfolio
delta and gamma. The second part consists of the quadratic approximation to calculate the
portfolio standard deviation. In the last section, the authors calculate the Delta-Gamma Value-

at-Risk and provide recommendations to Banco Invest.
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1 Value-at-Risk — Group part

Market risk describes the risk of a possible loss in a risk position due to collective adverse
movements of market rates and prices. It is one of the most critical risks for institutions that
actively trade in financial markets; quantifying and monitoring this risk is crucial for allocating
capital and reserves needed to cover potential losses and assess their overall solvency. Market
risks are determined by institutions using standard procedures or internal risk models; one of

these procedures is the Value-at-Risk model. (Deutsche Bundesbank 2022)
1.1 Defining Value-at-Risk

The Value-at-Risk expresses the maximum potential loss, in absolute terms or as a percentage
in the respective currency the asset is held, that results under normal market conditions from an
adverse movement in the relevant market of an investment over a specified time horizon (H) at
a given degree of confidence («) during a fixed holding period of a risk position. The estimated
maximum potential loss of the model, the VaR estimate, is only expected to be exceeded (1-
a) % of the time. (Castellacci and Siclari 2003, pp. 531-532) (Fallon 1996, p. 2) The time
horizon of interest for a VaR estimate can be one day or even months and is determined by the
nature of the portfolio. The horizon should correspond to the most prolonged period needed for
an orderly liquidation or the time to hedge an investment portfolio. (Bodie, Kane, and Marcus
2021, p. 138) The VaR estimate's horizon is determined by the liquidity profile of the assets in
the underlying investment portfolio; the length relates to the time needed to sell these assets at
average transaction volumes so that they have little impact on the market. Since the market
impact of the liquidation scenario is not disregarded when choosing the horizon, the VaR
estimate will be an estimate of a realizable loss and not only a loss on paper. (Wilmott 1998, p.
548) The confidence (o) level for a VaR estimate corresponds to the institution's risk profile,

determined by its degree of risk aversion or regulatory requirements. (Fallon 1996, p. 2)
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Figure 1: Development of VaR over time horizon H (Jorion 2007, p. 118)

A VaR calculation applies to all types of risky assets and can be applied to a single position and
a whole portfolio of risky assets. Assessing VaR helps institutions evaluate the profitability of
an investments in relation to the risk and identify investments with a higher-than-acceptable
risk profile, allowing them to make changes or liquidate such investments. The VaR is used for
active and passive risk measurement and defensive risk control. Ideally, it suits financial and
non-financial institutions that engage in proprietary trading with significant exposure to market
risks. (Jorion 2007, pp. 379-389) VaR estimates typically focus on 'tail events' where liquidity
and large jumps are essential, as illustrated in Appendix 1 below. (Wilmott 1998, p. 337)
Therefore, confidence levels are typically set at 95%, 97.5%, and 99%. (Wilmott 1998, p. 547)
An overview of which confidence levels translate into which z statics of the confidence interval
can be found in Appendix 2. The VAR statistic on portfolio losses is defined as a one-sided
confidence interval:

Prob [AP(At,A%) > —VAR]=1—«a (1)

In the above equation, AP(At, A%) stands for the change in the value of a portfolio that results
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from a function consisting of the forecasting period At and the vector AX of the random
variables, with a being the confidence level. The equation can be interpreted as the portfolio's
value will not fall by more than VAR over At number of trading days with a % confidence.
(Fallon 1996, p. 2) The degree of complexity and the computational requirements of the
calculation of a VaR estimate depends in particular on how the price of the instrument changes
in relation to the underlying. Appendix 3 depicts the two different relationships. (Romano 2017)
The calculation of a VaR estimate for non-linear (i.e., derivatives) assets is more complex than
for a linear asset (i.e., a stock or bond). In the context of an option: nonlinearity implies that a
price movement in the underlying asset causes a non-linear change in the option price. There
are three major methodologies to calculate Value-at-Risk, the historical approach, the
parametric or model-building approach, and performing a Monte Carlo simulation. Figure 2

below provides an overview of the different methodologies and their advantages and

disadvantages. (Hull 2021, pp. 293-297 & 317-340)

Type Description Advantages Disadvantages

- Easy way to calculate VaR - Assumes future returns dependend on the past
Estimates VaR using past distribution of

refurns to predict future refurns

- Takes into account possible skeweness and fat tails
- Accurate for non-linear products
- No disfributional assumptions necessary

(impractical)
- Large amount of daily rate history required
- Slow reaction to recent market events

Historical

Estimates VaR using prespecified variables
(volatility & correlation)

Parametric

- Quick and easy to compute
- Accurate for simple & Linear products

- Assumption of normal distribution impractical
- Less quick and accurate for non-linear derivatives

Estimates VaR by simulating random
scenarios

- Accurate for linear & non-linear products

- Flexibility to choose different distributions

- Flexibilty on the choice of variables

- Outputs full distribution of potential product values

- Massive computational power required fo revalue

the portfolio in each scenario

- Accuracy dependend on number of simulation

performed

Figure 2: Overview of different approaches for VaR calculation (Hull 2021, pp. 293-297 & 317-340)

1.2 Pitfalls and limitations of Value at Risk

Despite the widespread use of the Value-at-Risk model, it has several drawbacks that will be




N.OVA

briefly discussed in the following. First and foremost, all methods require making assumptions
and using them as inputs for the mode; this can result in different outcomes even if the same
modelling approach is used. Assumptions have to be made, e. g. about the applicable horizon
and confidence level and the appropriate number of simulations. (Jorion 2007, pp. 542-557)
Furthermore, all methods rely to some extent on historical data as a proxy to forecast future
estimates. What has happened in the past does not necessarily imply that it will happen again
in the future, so that estimation can be Inaccurate. (Jorion 2007, pp. 542-557) Second, there is
yet to be an industry-wide standard to model VVaR. The different approaches and models to
calculate VaR can also lead to different estimates for the same portfolio. Hence, the correct
interpretation is vital. (Jorion 2007, pp. 542-557) This brings us to the next limitation: a VaR
estimate is calculated assuming normal market conditions, meaning extreme and rare events,
such as so-called black swans, are not considered by the estimate. Because VaR only allows the
risk manager to make statements about which value will not be exceeded with what degree of
certainty, it does not tell anything about the worst outcome in case the VaR number is ex (Hull
2018, pp. 273-274) Additionally, the traditional VaR disregards intervening losses. These occur
when the portfolio’s value falls below VaR during the time horizon but eventually rises above
it at the end of it. This can be an essential aspect for management if the portfolio is marked to
market daily and faces potential margin calls that could result in liquidation in the worst-case
scenario. (Jorion 2007, pp. 117-119) A VaR estimate provides the “big picture” of what is at
risk regarding market risk effects. However, as it only accounts for this specific risk type, it has
a narrow focus on what is really at risk. There are also risks which are not incorporated in the
VaR framework, commonly referred to as “risks not in Value-at-risk” (RNIV): This can result
in the actual Value at Risk of an investment being much higher than what the VaR model is
predicting when capturing many of the other existing risk variables such as (geo-)political risks,

liquidity risks, and regulatory risk. (Jorion 2007, pp. 542-557)
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2 The “Greeks” - Group part

In option pricing, as well as for other derivatives, the "Greeks" are commonly used to measure
the sensitivity of a derivative's value to factors that might affect the price of an options contract.
Appendix 4 gives an overview of the existing Greeks and their definitions. (Leoni 2014) Within
the frame of this work, the focus will be set on two risk metrics, delta (Chapter 3.1) and gamma

(Chapter 3.2) risk, in relation to option pricing, as they are the most fundamental.
2.1 Delta Risk

The delta, designated with the symbol A, is the first-order partial derivative of the option pricing
function ¢ with respect to the underlying asset S. Therefore, it expresses the sensitivity of the
option contract’s price to changes in the price of the underlying asset while leaving all else
constant (ceteris paribus). (Taleb 1997, p. 224) (Bouzoubaa and Osseiran 2010, p. 66)

dc

A= —
aS

()

For vanilla options, the delta for long calls and short puts on standard options varies between 0
and 1. Vice versa, short calls and long puts have a delta ranging between 0 and -1. Graphically
expressed is it the slope of the curve that links the option price to the underlying asset price.
The higher the slope, the higher the delta and the more the derivative contract will change in
response to price fluctuations of the underlying asset. Figure 3 below depicts the change in
delta with respect to the Strike price K and the time to maturity T for a European call option.
With the option increasingly getting out of the money (OTM), a higher Strike K, and/or the
option approaching its maturity date T, the delta tends to move towards 0. Conversely, with
lower Strike K, the option being more in the money (ITM), and/or longer time until maturity T,
delta approaches 1. (Hilpisch 2015, p. 78) The most significant change in delta can be observed

with the option being at the money (ATM), S = K, close to its maturity date T. This is because
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theoretically, with the option being ATM a few seconds before it matures, one small move in

either direction would result in the option being either in the money or out of the money, hence

the considerable variation in delta. (Hilpisch 2015, p. 78)

=
delta(k, n

Strike z-

Figure 3: Delta of a European Call Option (Hilpisch 2015, p. 78)

Delta risk can be hedged to obtain a neutral position (A = 0). How this can be achieved for a

portfolio of derivatives will be explained in more detail in section 3.3, Hedging the Greeks.

2.2 Gamma Risk

For minor variations in the price of the underlying asset, delta proves to be good at estimating

the change in the option’s price. However, as soon as price changes become more severe, delta

is extremely sensitive to changes in the underlying asset’s price. This is because delta
graphically represents a linear estimate for a non-linear option function. Hence, the actual
option value might significantly differ from the proportion predicted by delta. (de Weert 2008,
pp. 14-16) Gamma, I', measures by how much or how often a position or a portfolio of options
needs to be re-hedged to maintain a delta-neutral position: it expresses by how much the Delta

might change if the price of the underlying changes. It is the second-order derivative of the
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option pricing function ¢ with respect to the underlying asset S.

0%c

The more curvature the option function entails, the higher the gamma and the more sensitive
the delta is towards changes in the underlying’s price. An increase in the underlying’s price
could significantly increase the delta and vice versa for a low gamma. Considering plain vanilla
options, the gamma is always positive for long positions, whereas for short positions, it is
negative. (Bouzoubaa and Osseiran 2010, p. 72) Figure 4 below shows that the gamma value
Is stable for most of the option's life as it hovers near zero. The most notable value changes in
gamma happen around ATM options close to maturity. As previously stated in the preceding
section, it is for at-the-money options close to maturity where one move in either direction has
the most significant influence on delta as it determines whether the option is exercised. Hence,

the high value in gamma. (Yen Jerome and Lai 2015, pp. 84-85).

gamma(K, T)

Figure 4: Gamma of a European Call option (Hilpisch 2015, p. 79)

How gamma is incorporated when hedging the respective portfolio’s VaR will be explained in

more detail in the next section.

10



N.OVA

2.3 Hedging the Greeks

As previously described, a portfolio’s sensitivity to such is captured by the “Greek letters”. The
risk framework captures thresholds for each to ensure that these risks stay within the company's
tolerance. Exceeding the limits initializes a process known as hedging. This is where counter
positions in the market are established to ensure that the exposure to a particular risk factor
stays within its predefined limit. In the following, it will be presented how a portfolio is hedged
against delta and gamma. (Hull 2018, p. 161) Hedging delta consists of establishing a counter
position equal to A amount of the underlying. By combining the existing portfolio and the
hedging trade, the new portfolio’s exposure to delta is neutralized. (Hull 2018, pp. 161-162)
For linear products, hedging delta turns out to be static as it protects against both small and
large changes in the value of the underlying. Further, once a linear hedge is implemented, there
IS no need to adjust it over time. The delta for a linear portfolio stays constant. (Hull 2018, pp.
163-164) Neutralizing delta exposure for non-linear products such as options proves to be a
more complex procedure due to the non-linear relationship between the price of the underlying
and the options contract. As mentioned earlier in this work, eliminating a portfolio’s delta only
offers protection from small fluctuations in the price of the underlying. Additionally, once it is
set up, the delta hedge has to be adjusted frequently, also known as dynamic hedging or
"rebalancing”. This is because Delta constantly evolves throughout a non-linear product's
lifetime. (Hull 2018, pp. 165-168) In practice, rebalancing is costly as, e.g., hedging a long
position on an option involves buying the underlying when its price increased and selling it
when it dropped to consistently create a synthetical position opposite of that to neutralize the
option’s delta. This is usually reflected in the premiums that option buyers have to pay. (Hull
2018, p. 169) With more significant changes in the prices of the underlyings, a portfolio’s
gamma comes into play. There are two ways of adjusting for the additional gamma exposure of
a non-linear portfolio that will be briefly described below. (Hull 2018, pp. 169-170) Firstly, the

11
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portfolio is made gamma neutral by trading options with opposite gammas on the same
underlyings as the options in the existing portfolio. Non-linear products are needed as linear
products do not have exposure to gamma. By doing this, the new and combined portfolio’s delta
also changes and would have to be re-adjusted by trading opposite positions in the underlyings
(Hull 2018, pp. 170-171) Implementing this in practice can be challenging as trading non-linear
derivatives in the amounts needed often is impossible. Further, re-adjusting for the new delta
of the combined portfolio is costly as it involves many transactions. (Hull 2018, p. 177)
However, as described earlier, it makes economically more sense to see the gamma as a
determinant of how often a portfolio needs to be re-hedged. In general, a portfolio with larger
gamma would imply more frequent delta neutralization, whereas a smaller gamma results in
less often adjustments to the portfolio, as changes in delta only tend to be small. (Hull 2018,
pp. 169-170) Banco Invest hedges its equity derivatives portfolio with underlyings (delta
neutralization) rather than options (gamma neutralization). The Bank does not take directional
market risk, keeping the difference between the deltas (theoretical quantities) and the quantities
held in the portfolio as close to zero as possible. These portfolio quantities are adjusted daily,
at 30-minute intervals, based on market conditions, namely the evolution of the underlying

shares.
3 Value-at-Risk for a Derivatives Portfolio - Group part

To begin with, calculating Value-at-Risk for a single asset is a straightforward process.
Assuming linearity in the change of the portfolio’s value to changes in the underlying and

normally distributed returns, VaR is calculated as follows:
1
VaR = w;S; | u 6t — g; (6t2) a(1 —c) 4)

where w; is the quantity of the asset i owned with price S;. This is multiplied by the asset’s drift

over a predefined time horizon &t, with a(1 — ¢) being the inverse cumulative distribution

12
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function of the standard normal distribution. This process is called delta approximation.
(Wilmott 1998, pp. 548-550) Regarding a portfolio of assets, the calculation of VaR becomes
more complex. First, the volatilities and covariances of all assets in the portfolio have to be
computed. If this is done, the formula to calculate the VVaR of a portfolio with M assets

consisting of w; amount of asset i and w; amount of asset j is:

M M
1
VaRPortfolio =-M| a(1- C)(Stf) z z W;W;0,0;p;; (5)

i=1 j=1
with g; being the volatility of asset i and p;; the correlation between asset i and j. (Wilmott
1998, pp. 551) Estimating VaR for a portfolio of derivatives, as mentioned earlier, the delta
approximation would only be sufficient for portfolios where the underlyings show small
movements in price. This is because the relationship between the portfolio's value and price
changes in the underlyings can no longer be regarded as linear. For non-linear portfolios, the
sensitivity to gamma additionally has to be considered. This is visually demonstrated in Figure
5 below. It depicts the relationship between the price of an underlying asset to the corresponding
value of a long call option on the same. While the underlying’s price function is normally
distributed, the option has a positively skewed probability distribution with a smaller tail on the
left. (Hull 2018, pp. 333-334) This violates the initial premise that probabilities are normally
distributed. If VaR were calculated based on this assumption, it would be excessively high. As
a result, approximations for the portfolio's sensitivity to changes in the underlyings need to be

reevaluated. (Wilmott 1998, pp. 550-551)

13
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Figure 5: Translation of an Asset's normal probability distribution into that of a long call option (Hull 2018, p. 333)

To recapture, with larger swings in the prices of the underlyings of an options portfolio, the
previous delta approximation to calculate VaR turns out to be inappropriate. A better estimation
is achieved by incorporating the portfolio’s sensitivity to gamma. Gamma exposure is
particularly challenging as a second-order approximation is required. (Wilmott 1998, p. 551)
This will be shown below. Assume a portfolio M consisting of a single option on an asset with
price S. The change in the value of the portfolio §M compared to changes in the price of the
underlying &S can be expressed as follows:

oP 192P )
M = — 65 + = = (85)? + o

= 35%° 172 352 Ot+ - ©)

This can ultimately be reformulated into:
1 1
SM = AcS 5tz ¢ + 6t (Aus + EF0252¢2 + @) + . (7)

where 0 is the time drift of the option (Theta). (Wilmott 1998, p. 551) The quadratic term, the

portfolio's exposure to gamma, is of specific interest above. Figure 6 shows three different

1
distribution functions. The distribution of the underlying with a standard deviation of ¢S dtz is

considered to be normal. The projected distribution for the change in the value of the options

14
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portfolio according to the delta approximation. It is normally distributed with a standard

1
deviation of AgS dtz. Finally, the options portfolio’s distribution using the delta-gamma

approximation. (Wilmott 1998, pp. 551-552)

35

distribution of option
portfolio, delta

/ approximation

distribution of option

portfolio, ——— -
delta’/gamma
approximation

distribution of underlying

-0.1 —0.08 —-0.086 -0.04 —0.02 0 0.02 0.04 0.06 008 0.1

Figure 6: Relationship of an asset price’s normal distribution to the distribution of an option portfolio according to the delta
as well as the delta-gamma approximation (Wilmott 1998, p. 552)

By looking at the three different distributions, it is evident that the one for the delta-gamma
approximation is not normally distributed compared to the other two. (Wilmott 1998, pp. 551-

552)
4 Methodology used in Python - Group part

In the following, the Assumptions used to calculate the Delta-Gamma VaR in Python, as well
as the fundamental parts of the code, are presented and explained. As the basis for all
calculations of the various input statistics of the VaR model, the authors assume one year
consisting of 252 trading days. Because of their ease of use for time series modelling, such as
symmetry, time-additivity, and the log-normal distribution assumption, the various underlyings
performances are transformed into logarithmic returns. Next, each option's volatility is

calculated using equally weighted implied volatilities of the option's underlyings. In the absence

15
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of implied volatility, the underlying’s historical volatility on a 30-day basis is used.
Furthermore, to determine the correlation, variance, and covariance of the different underlyings,
a maximum lookback window of 2 years is assumed, the same as the option’s time to maturity
on the trade date. From there on, for each day that has progressed, the option’s remaining time
to maturity is used to calculate the above statistics until a predefined minimum of 30 days was
reached. Below this, correlation, variance, and covariance are calculated on a 30-day basis until
the option matures. At this point, it is referred to Appendix 5-6 for the code example. The
options in Banco Invest’s portfolio are valued as of 30/06/2022 using Monte Carlo simulations.
The first step of Monte Carlo involved calculating the geometric Brownian Motion. In finance,
this is a stochastic process to model random behavior over a specific time frame (6t) that
consists of two main components, drift, and a randomly generated variable. (Yan 2017, pp.
421-428) Drift indicates the direction of an asset’s historical returns, allowing predictions on
an asset’s expected return. It is calculated as shown in equation (8) using the same receding
time horizon as explained for the underlying’s statistics, except for the time series’ minimum

requirement of 30 days.

(8)

] Variance (stock returns)
Drift = | Mean (stock returns) — * Ot

2

Where underlyings are expected to pay dividends, the drift is adjusted further, as demonstrated
in Appendix 7. The next step is to obtain a random number by multiplying an asset’s historical

standard deviation with a random, standard normally distributed variable (Z ([Rand (0;1)])).

Random variable = (Std. Dev. * Z([Rand(0; 1)])) x /6t 9)

As a result, the equation for predicting the future value of an asset (St+1) sums up to the

following:

Drift + Random variable

Sty1 =St *e (10)

However, when pricing options comprised of baskets of underlyings, Cholesky Decomposition

16
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is performed as an extension of the Monte Carlo simulation to account for the correlation
aspects between the various reference assets. A brief explanation of an example decomposition
will be provided below. Appendix 8 contains the code for the Cholesky decomposition
performed for the different options. Assume a 2 = 2 symmetric, positive definite correlation

matrix X, where p is the correlation between X; and Xo.

(3 4

The correlation matrix can then be decomposed into a 2 * 2 lower triangular matrix L, where

LLT = X. (Wilmott 1998, pp. 682-683) This appears to be as follows:

L=<;1) 1(ip2> 12

Following the generation of L, the random variables with desired correlation can be expressed

as LZ, where Z is a column vector of the independent standard normal random variables:
Z;
z=(%) (13)
As a result, by setting XL = Z, we can sample from a bivariate normal distribution, indicating

that: (Yen Jerome and Lai 2015, pp. 99-100)

N1=24 (14)

Xo=p*Zi+1—-p*=Z, (15)

To generate a sufficient sample of possible future asset values for the different underlyings to
calculate the option's payoffs appropriately, 200.000 simulations are run. Following this, the
averaged payoffs are discounted using the respective’s maturity Euribor 3-month forward.
Where no forward for the maturity of the option’s payoffs is readily available, linear
interpolation is performed to compute the discount rate for the respective maturity’s payoff, as
shown in Appendix 9-10. Further, each underlying’s delta is estimated by changing its price by

1%, while leaving the other’s prices constant, and calculating the new price of the option. The

17
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difference in both derivative prices is then divided by the relative changes in the prices of the
underlying. The option’s delta is estimated as the weighted average of the underlying’s deltas,
assuming an equally weighted portfolio of underlyings. To calculate gamma, the above
calculation is done a second time to get the change in delta. The difference in both deltas is then
divided by the relative adjustment to obtain the gamma value. The equations used and the
respective code for this can be found in Appendix 12-26. In terms of VVaR, the confidence level
was set to 99,9 %. Calculations are performed initially for a one-day time horizon and then later
multiplied by the square root of 252 to get the annualized VaR, as this is the requirement from
the risk management department at Banco Invest. Detailed calculations performed for this in

Python can be found in Appendix 26.
5 Indicap - Individual part (Christopher Carl Saidowsky)

The product name Indicap refers to a structured product written by Banco Invest, specified by
the Bank under the category of a structured deposit. A structured deposit is a term deposit with
guaranteed capital: the deposit is not withdrawable before the defined maturity date of the
options contract and with a yield indexed to the price performance of one or more financial

assets (Banco Invest 2022, p.1)

Banco Invests Indicap product is an exotic equity basket option derivative, the name of product
is the Banks internal name which refers to a single option contract that embodies a similar
payoff profile structure of a 2-options contract bull call spread strategy on five different
underlying’s. The Option is a product with guaranteed capital that offers a well-defined risk
and reward profile: Potential profits and losses are limited by a predetermined maximum loss

the options floor and by a predetermined maximum gain, the options cap.

18
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With this option, investors have the possibility to earn a higher yield than currently offered in
the market. The option does not grant the owner the right to buy the underlying basket, instead
it gives the holder a chance to participate in the appreciation of the value of the underlying
basket. The Options Remuneration is based on the average variation of the five different
underlying’s. It can be calculated as follows, taking into consideration the defined option cap

and floor. (Banco Invest 2022, p.4).

Remuneration = Deposit Amount x Max(Floor; Min(Cap; 100% x Basket Return) 22)
The deposit amount is multiplied either by the floor, 100% x basket return resulting from a
minimization problem between cap and the basket return x 100%. The cap sets the upper limit
for the profit. Even if the yield from the share price is higher than the cap, remuneration is only

paid at the cap.

Second, you have a maximization problem between the floor, the lower bound, and previous
minimization problems. The floor is always greater than or equal to zero and depends on the
funding costs of Banco Invest. When interest rates rise, the funding costs rise and so does the
floor. When interest rates fall everything is exactly the opposite. The maximization problem

ensures that the investor still achieves the maximum profit.

The Basket Return, Formula (23), is the average variation in the return on equity of the
underlying assets. If the return on equity of i has a negative value, a zero is inserted in the
formula. If it is positive, the value is adopted. Thus, the basket return can only take positive

values or zero.

" rRet OnEquity;
BasketReturn = Z [ ok st (23)

i=1 n
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The return of equity is the result of a mathematical minimization problem of the fixed option

cap and the return of the underlying asset.

' Equitylg?inal . Equitylfinal
(Mm(Cap;m— A w120
, quity; Equity;
ReturnOnEquity; = EquﬁyFmal (24)
i
0 o1 E : Inilfial_1 <0
quity;

The translation of the formulas (22), (23), (24) into python code can be found in the appendix

101-107.

The maximum remuneration occurs when all five underlying’s are quoted at or above the
determined price level of the cap. As illustrated in Figure 21, the maximum remuneration is

the spread between the cap and the floor.

Spread = Cap - Floor

Max Profit = Cap §

Price at
Floor

Max Loss = Floar | I Underlying Price

Price at
Cap

Figure 21: Overview of the profit and loss distribution of an Indicap option as of 30/06/2022 (Own lllustration)

The product is designed for investors who do not want to take any capital risk over the term of
the options contract. The maximum loss that can be realized with this product is the amount of
the option premium that an investor pays to the bank. For this case to occur all five underlying

have to be quoted on the expiration date at the price level of the floor or even lower. Investors
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reach the break-even point from an Investor P/L standpoint when the remuneration equals the

premium paid for the structured deposit.

Since the Indicap product is an option that benefits from rising prices of the underlying’s in the
market, it is referred to as an option with a "net positive delta": The price of the option rises
with rising prices of the underlying’s, and vice versa falls when they fall. The Indicap strategy,
like all vertical spread strategies, is "near-zero-gamma': which means that the directionality,
the delta of an Indicap option, is not significantly affected by changes in the underlying market

prices.

The portfolio of Indicap options used in this work project has a total notional of EUR
65,213,085. This represents about 41,52% of the total value of derivatives contained in the

Banks Portfolio and contains 14 different Indicap products, which are shown in Figure 22.

Portfolio - Payoff Type: Indicap

Product ID Name Notional Effective date Maturity date Cap Floor
1031 BIC Acgdes Europa Jul-20 | EUR 4,808,018 7/16/20 7/22/22 1.70% 0%
1067 BIC Alimentagdo Out-20 EUR 4,179,983 10/16/20 10/24/22 1.50% 0%
1106 BIC Cabaz Mundo Dez-20 | EUR 3,954,436 12/16/20 12/23/22 1.30% 0%
1125 BIC Infraestruturas Jan-21 | EUR 2,999,983 1/18/21 1/25/23 1.70% 0%
1179 BIC Mix Global Mai-21 EUR 4,688,499 5/17/21 5/24/23 1.20% 0%
1200 BIC Alemanha Jul-21 EUR 4,614,403 7/16/21 7/24/23 1.20% 0%
1213 BIC Autos Set-21 EUR 4,754,681 9/16/21 9/25/23 1.20% 0%
1233 BIC Energia Verde Out-21 | EUR 4,362,795 10/18/21 10/25/23 1.20% 0%
1286 BIC Tech Dez-21 EUR 4,567,972 12/16/21 12/26/23 1.20% 0%
1306 BIC Retalho Jan-22 EUR 5,401,178 1/18/22 1/24/24 1.20% 0%
1342 BIC Fintech Fev-22 EUR 5,237,164 2/16/22 2/23/24 1.20% 0%
1399 BIC Dividendos Abr-22 EUR 5,698,103 4/19/22 4/26/24 1.20% 0%
1416 BIC Blockchain Mai-22 EUR 4,987,314 5/16/22 5/23/24 1.20% 0%
1447 BIC Healthcare Jun-22 EUR 4,958,556 6/17/22 6/24/24 1.20% 0%

Figure 22: Overview of the Indicap Options portfolio

Figure 23 shows e.g., in detail, the structure of an Indicap product (Product ID 1067). All
Indicap products have five different equity underlying’s from a thematic investment universe:
every options investment universe can be derived from the name of the option All Indicap

products of and their corresponding underlying’s can be viewed in detail in appendix 79-91.
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lndicap Product ID 1067 - BIC Alimentagio Dut-20

Underying 1D  Bloomberg Ticker AssetClmss  Price as of effective date  Floor (=]

1 73 KD US Equity Equity 50.03 0% | 150%
2 185 | MESN 5w Equity Equity 107 86 0% | 150%
F 797 BN FP Equity Equity 5313 0% | 150%
4 1203 | G5 US Bquity Equity 6237 0% | 150%
5 1230 | D NA Bquity Equity 2535 0% | 150%

Figure 23: Overview of the structure of an Indicap product

5.1 Portfolio Delta

The delta of the Indicap derivative portfolio was calculated by summing the individual Indicap

options deltas in the portfolio:

by:

for a portfolio of 14 Indicap, the delta of the portfolio is given

n
A= WiAi (25)
2,

The deltas below have been calculated assuming a long position in the option from Banco

Invest's point of view. Since a

bank is short when selling the indicap option, these values must

be considered negative when hedging.

Delta (A) - Indicap Products

Product ID wi Delta (A) Numerical value (€)
1031 7.37% 0.0129 | EUR 62,025
1067 6.41% 0.0290 | EUR 121,179
1106 6.06% 0.0200 | EUR 79,236
1125 4.60% 0.0218 [ EUR 65,283
1179 7.19% 0.0121 | EUR 56,595
1200 7.08% 0.0085 | EUR 39,045
1213 7.29% 0.0085 | EUR 45,135
1233 6.69% 0.0057 | EUR 24,694
1286 7.00% 0.0068 | EUR 31,206
1306 8.28% 0.0088 | EUR 47,302
1342 8.03% 0.0055 | EUR 28,837
1399 8.74% 0.0074 | EUR 42,155
1416 7.65% 0.0072 | EUR 36,038
1447 7.60% 0.0119 EUR 59,234

Delta (A) - Aggregated Indicap Portfolio
Product Type Notional Delta (A) Numerical value (€)
Indicap 65,213,085.62 € 0.0113 | EUR 737,965
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Figure 24: Overview of the deltas of the individual indicap products and the aggregated portfolio

As of 30/06/2022 the Delta of the aggregated Indicap options portfolio is 0.1265: Buying a
basket consisting of the underlying’s with a value of EUR 737,965 would neutralize the
portfolio delta. Figure 24 shows the delta values of the individual products ranked according
to their maturity date: Product 1031 has the closest maturity date to the observation date

(30/06/2022) of this work, and 1447 is the furthest.

0,0400
0,0350
0,0300

0,0250

0,0200
0,0150

0,0100
0,0000
1031 1067 1106 1125 1179 1200 1213 1233 1286 1306 1342 1399 1416 1447

Figure 25: Overview of the deltas of the individual indicap products and the aggregated portfolio

5.2 Portfolio Gamma

The Gamma of the indicap derivative portfolio can be calculated by summing the individual
Indicap options Gammas in the portfolio: for a portfolio 14 indicap, the delta of the portfolio is

given by:
r= WiAi (26)
2,

As of 30/06/2022, the gamma value of the aggregated Indicap options portfolio is 0.1265.
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Gamma (I) - Indicap Products
Product ID wi Gamma (I)

1031 7.37% 0.5867
1067 6.41% 0.1228
1106 6.06% 0.2828
1125 4.60% 0.0081
1179 7.19% 0.0074
1200 7.08% 0.0053
1213 7.29% 0.0712
1233 6.69% 0.1592
1286 7.00% 0.2209
1306 8.28% 0.0975
1342 8.03% 0.0222
1399 8.74% 0.0353
1416 7.65% 0.1073
1447 7.60% 0.0587

Gamma Aggregated Indica

Product Type

Indicap 65,213,085.62 € 0.1265

Figure 26: Overview of the gammas of the individual indicap products and the aggregated portfolio

Figure 26 shows the gamma values of the individual products ranked according to their
maturity date: Product 1031 has the closest maturity date to the observation date (30/06/2022)

of this work, and 1447 is the furthest.

0,7000
0,6000
0,5000
0,4000

0,3000

0,2000

0,1000 I I I I
0,0000 AN - [
1031 1067 1106 1125 1179 1200 1213 1233 1286 1306 1342 1399 1416 1447

Figure 27: Overview of the gammas of the individual indicap products and the aggregated portfolio
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As mentioned in chapter 8, the Indicap Product is a "near-zero-gamma" basket option. The
respective gammas all have values which are close to zero. Figure 27 represents well that:
Gamma has a higher value for options that are close to their maturity date (1031, 1067, 1106)
than for options that are further away from their maturity date and increases as well with the

options contract’s degree of moneyness (1031, 1067, 1106, 1213, 1233, 1286, 1306, 1416).
5.3 Non-linear Delta-Gamma-VaR

The Value-at-Risk of the individual Indicap options got calculated as described in Chapter 3
with formula (3), the results were summed to obtain an undiversified VaR estimate. The Value-
at-Risk for the aggregated Indicap portfolio, which is a result of the risks contributed by every
Indicap option contained in the portfolio was calculated as outlined in chapter 3, with formula

(4), and is provided an estimate of the diversified VaR. In Figure 28 the results can be reviewed:

Value-at-Risk (1d, 99,9%) - Indicap Products

! VaRin%  Numerical value (€)
1031 EUR _ 4,808,018 0.0018 EUR 8,533
1067 EUR 4,179,983 0.0193 EUR 80,582
1106 EUR 3,954,436 0.0119 EUR 46,922
1125 EUR 2,999,983 0.0180 EUR 54,150
1179 EUR 4,688,499 0.0134 EUR 62,961
1200 EUR 4,614,403 0.0086 EUR 39,907
1213 EUR 4,754,681 0.0087 EUR 41,403
1233 EUR 4,362,795 0.0121 EUR 52,672
1286 EUR 4,567,972 0.0014 EUR 6,609
1306 EUR 5,401,178 0.0092 EUR 49,534
1342 EUR 5,237,164 0.0098 EUR 51,083
1399 EUR 5,698,103 0.0013 EUR 7,219
1416 EUR 4,987,314 0.0017 EUR 8,494
1447 EUR 4,958,556 0.0020 EUR 9,937

e EUR 520,007

Value-at-Risk (1d, 99,9%) - Aggregated Indicap Portfolio
Product Type Notional VaR Diversified VaR
Indicap 65,213,085.62 € 0.0019 EUR 123,950

Figure 28: Overview of the value-at-risk estimates for the individual products and the Indicap portfolio
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As of 30/06/2022 the undiversified Value-at-Risk was estimated to be EUR 520.007 for the
next trading day at a confidence interval of 99.9%: The maximum potential loss of the next
trading day of EUR 520.007 is only expected to be exceeded in 0.01% of all cases. The estimate
of the Diversified Value-at-Risk for the entire Indicap portfolio at the same confidence level
for the next trading day, is much lower at EUR 123.950 due to diversification: The diversified

VaR estimate is also expected to be exceeded in only 0.01% of all cases.

6 Recommendation - Group part

This chapter address how the bank's management should deal with the risk associated with the
derivatives Portfolio. Figure 35 below summarizes the delta, gamma, and Delta-Gamma Value-
at-Risk for Banco Invest’s overall options portfolio. The total derivatives portfolio of the bank
has a notional of EUR 157.067.916, consisting of 53 different options. The 1-day Value-at-Risk
at 99,9% confidence level for the bank's overall derivatives portfolio is EUR 372.773, implying

a 99,9 % probability the portfolio will not lose more over the next trading day.

Banco Invest - Aggregated Derivatives Portfolio

Motional 157.067.916,00 €

MNo. of option positions 53
Delta (A) 0,0163
Gamma (I 0,3166
Volatility 4,91%
VaR (1d, @ 99,9%) 0,24%
VaR (1d, @ 99,9%) 372.773,00 €

Figure 35: Aggregated Portfolio Delta-Gamma VaR

As the bank does not take a directional risk on the market, the delta on combined option’s
portfolio must be neutralized with an appropriate hedging strategy. All five option types in the
Banco Invest derivatives portfolio are basket options. The challenge of hedging, when facing

options with a basket of underlying’s, becomes evident in their correlated structure. This makes
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the evaluation of the contract's price but also the risks, e.g., delta, gamma, and their hedging a
complex procedure. (Su 2006, pp. 3-5) This is because it is difficult to detangle the underlying
basket’s distribution. The correlation between the underlying tends to be volatile and can only
be estimated. This further complicates the "perfect” hedging of basket options. As a result, in
many cases, only a part of the underlying basket is used for hedging, or the payoffs of the basket
are replicated "super-hedged". (Su 2008, pp. 19-23) Another difficulty arises from the number
of underlying assets: When following a standard dynamic hedging strategy, a hedging portfolio
for the basket options should be related to the underlying assets in the basket. The larger the
amount of underlying’s the more difficult it is to implement such a dynamic strategy and the
larger the transactions cost, caused by the continuous rebalancing, become. Since most of the
options are "near-zero-gamma", which means that the directionality, the delta of the option is
not greatly affected by changes in the underlying market prices, a dynamic hedging strategy
can be implemented as major changes in the delta are not expected to be caused by changes in
the underlying market prices. Transaction costs for rebalancing will occur but will be
manageable as they do not occur very frequently. Lamberton and Lapeyre (1992) showed that
a dynamic hedge on even a subset of the underlying's works well: they developed a method
using multiple regression analysis to create a dynamic approximate hedging portfolio of plain-
vanilla options on only a subset of the underlying's. For our "near-zero-gamma" options, such
a dynamic hedge could further reduce the already low cost of rebalancing. A static hedging
strategy has the advantage that transaction costs caused by continuous rebalancing can be
avoided, and therefore this strategy could have a better hedging performance. (Su 2008, pp 2-
4) Su (2006) used the Principal Components Analysis (PCA) to demonstrate that also a static
hedge on a subset of the underlying's performs well: The PCA was used to determine a dominant
subset of assets of the basket. Since a dynamic hedge of a basket option often only approximates

the optimal hedge, the complete neutralization of the delta can only be achieved by a static
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hedge. Since Banco Invest instructs it takes no directional risk in the market, the only hedging
strategy that fits this case is a static strategy as described above. Moreover, since the assets in
the respective basket options are all in the same thematic investment universe, it is worthwhile
to follow the approach of Su (2006) to determine whether it is sufficient to apply a static hedge

only to a subset of the underlying assets, due to the high correlation between them.
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Appendix

Tail events

Normal events

/
/

Figure 27.1 ‘Normal events’ and ‘tail events’.

Appendix 1: Value-at-Risk distribution showing possible tail events (Wilmott 1998, p. 338)

Cl Z
80% 1,282
85% 1,440
90% 1,645
95% 1,960
99% 2,576
99,5% 2,807
99,9% 3,291

Appendix 2: Overview of most common z-statistic for VaR calculation
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Linear payoff (example) Non-linear payoff (example)

PNL PNL
A A
0 » Price > Price
Linear vs. Non-linear payoff
Appendix 3: Linear / Non-linear VaR (Romano 2017)
Name  Symbol Derivative Measures Definition
dc Measures how much an option's price is estimated to shift
Delta A s Equity Exposure in response to a change of a one unit in the underlying
security
d*c . . .
r - - . Measures the amount of change in Delta if the price of the
Gamma d2s Payout Convexity

underlying security changes by one unit

dc
3] — . Measures the change in the option price induced by the
Theta aT Time Decay g p . p .y
decrease of 1 day of the remaining time to maturity
v dc Measures how much an option's price will change in
Vega e Volatility Exposure response to a 1% change in the volatility of the underlying
securities
dc .
P — Measures how much the value of an option changes based
Rho ar Interest Rate Exposure

on a 1% change in the interest rate

Appendix 4: Overview Greeks — In accordance with (Leoni 2014, pp. 85-97)
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drift_calc(data, return_type="
if return_type == 'log
1Ir = log returns(data)
elif reutrn_type ‘simple”:
r N data)

var = lr.var()
drift = u-(@.5%var)

drift = drift calc(modified data)
div = portfolio[self.id][ div"]

if div » @:
drift = drift - div

Appendix 5: Drift calculation in Python

covar = log ret.cov()

chol = np.linalg.cholesky(covar)

uncorr_x = norm.ppf(np.random.rand(num_stocks, simulated days))
corr_x = np.dot(chol, uncorr x)

corr 2 = np.zeros_like(corr x)

for 1 in ra um_stocks):
corr 2[i] = np.exp(drift[i] + corr x[i])

corr_2[@]

stocke = pd.DataFrame()
for s in range(len(ticks)):
ret reshape = corr 2[s]
ret reshape = ret reshape.reshape(simulated days)
price list = np.zeros like(ret reshape)
price list[e] = data.iloc[-1, s]
for t in range(1, simulated days):
price list[t] = price list[t-1]*ret reshape[t]

Appendix 6: Cholesky decomposition in Python
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get vola(portfolio, volatility file, stock file):
for a in range(2):
or 1 in portfolio.keys():
ticks = portfolio[i][ underl
today 30-06- 2
today = pd.to datetime(today)
end = today

vola = "VOLATILITY
stock vola =

if portfolio[i]["vol
ids = portfolio[i][
for underlying in ids:
underlying vola = volatility file. get value(vola, underlying)
stock vola.append(underlying vola) |
vol = (sum(stock vola)/len(stock vola))
portfolio[i]["vol"] = vol

it math.isnan(vol) =
portfolio[i]["vol ty

Appendix 7: Volatility calculation in Python (1/2)

else:
portfolio[i][
vola data(tickers):
vol data = pd.DataFrame()
for t in tickers:
vol data[t] = stock file[t].iloc[1:]
return(vol data)

data ticks = vola data(ticks)
end date = len(data ticks.loc|[:end])
start_date = end date - 3@

used data = data ticks.iloc[start date:end date]

log returns(data):
return (np.log(1l+data.pct _change()))
stdev = log returns(used data).std().values

monthly vol = sum(stdev)/len(stdev)
vol = monthly vol * sqrt(12)
portfolio[i]["vol"] = vol

get vola(options portfolio, file wvola, file stocks)

Appendix 8: Volatility calculation in Python (2/2)
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interpolation(rates, maturity date):
today = "36-06-2022"

today = pd.to datetime(today)

today = today.to pydatetime().date()

maturity day = maturity date.day
maturity month = maturity date.month
maturity year = maturity date.year
name = rates.columns[@]

for a in range(len(rates)-1):
rate _date = rates.index[a]
prev_date = rates.index[a-1]
next date = rates.index[a+1]
rate day = rates.index[a].day
rate_month = rates.index[a].month
rate year = rates.index[a].year

it rate date == maturity date:
= rates. get value(rate date, name)

Appendix 9: Linear interpolation in Python to get discount rates for Option payoffs (1/2)

elif rate month == maturity month rate year == maturity_ year:
if rate day < maturity day:
ri rates. get value(rate date, name)
r2 Pates._get_value(next_Late, name )
t1 abs(rate_date.to pydatetime().date() - today)

t2 abs(next_date.to pydatetime().date() - today)

tn abs(today - maturity date.to pydatetime().date())

ri + (r2-r1)/((tz-t1).days)*((tn-t1) .days)

= rates. get value(prev_date, name)

= rates. get value(rate date, name)
abs(prev_date.to pydatetime().date() - today)

= abs(rate date.to pydatetime().date() - today)
abs(today - maturity date.to pydatetime().date())

ri + (r2-r1)/((tz-t1).days)*((tn-t1) .days)
return r

Appendix 10: Linear interpolation in Python to get discount rates for Option payoffs (2/2)
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Appendix 11: Equations used for Delta/Gamma calculation

for 1 in options portfolio.keys():

print(i)

r = interpolation(swaps, options_portfolio[i][ "matL

ticks = options_portfolio[i][’

start = options_portfolio[i]['e

S = options_portfolio[i][’ '
options portfolio[i][’stri

today 30-06-2022
today = datetime.strptime(today, '%d- ).date()

T = options portfolio[i][ ‘maturity’].to pydatetime().date() - today
T = T.days/365

div = options_portfolio[i][ di

vol = options portfolio[i][

price=e
delta=0

sym delta = @
delta 2=0
delta 3-0

Appendix 12: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (1/15)
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if options_portfolio[i]["payoff id"] == 2:

altiplano = Altiplano(options_portfolio,i)
payoffs = altiplano.payoff()

price = payoffs[@] * math.exp(-r*T)

pos price = payoffs[1l] * math.exp(-r*T)

neg price = payoffs[2] * math.exp(-r*T)

delta = (pos_price - price) / (percentage change)

sym delta = (pos price - neg price)/(2*percentage change)

pos_price2 = payoffs[3] * math.exp(-r*T)
neg price2 = payoffs[4] * math.exp(-r*T)
delta 2 = (pos_price2 - pos price) / (percentage change)
delta 3 = (neg price2 - neg price) / (percentage change)

delta dif = delta 2 - delta
g = abs(delta dif)/percentage change

var = (delta*3.291%np.sqrt(1/252)*vol - g/2*(3.291%np.sqrt(1/252)*vol)**2)*np.sqrt(252)

Appendix 13: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (2/15)

elif options_portfolio[i]["payoff id"] == 4:
auto = Autocall(options portfolio, i)
payoffs = auto.payoff()

price = payoffs[@] * math.exp(-r*1)

pos_price = payoffs[1] * math.exp(-r*T)

neg price = payoffs[2] * math.exp(-r*T)

delta = (pos price - price) / (percentage change)

sym delta = (pos_price-neg price)/(2*percentage change)

pos price2 = payoffs[3] * math.exp(-r*T)
neg price2 = payoffs[4] * math.exp(-r*T)
delta 2 = (pos_price2 - pos _price) / (percentage change)
delta 3 = (neg price2 - neg price2) / (percentage change)

delta dif = delta 2 - delta
g = abs(delta dif)/percentage change

var = (delta*3.291%np.sqrt(1/252)*vol - g/2%*(3.291%*np.sqrt(1/252)*vol)**2)*np.sqrt(252)
Appendix 14: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (3/15)




elif options_portfolio[i]["payoff id"] == 6:
digi = Ccall Digital(options_portfolio, 1)
payoffs = digi.payoff()

price = payoffs[@] * math.exp(-r*T)

pos_price = payoffs[1] * math.exp(-r*T)

neg price = payoffs[2] * math.exp(-r*T)

delta = (pos_price - price) / (percentage change)

sym _delta = (pos_price-neg_price)/(2*percentage change)

pos_price2 = payoffs[3] * math.exp(-r*T)
neg_price2 = payoffs[4] * math.exp(-r*T)
delta 2 = (pos price2 - pos price) / (percentage change)
delta 3 = (neg price2 - neg price2) / (percentage change)

delta dif = delta 2 - delta
g = abs(delta_dif)/percentage change

var = (delta*3.291*np.sqrt(1/252)*vol - g/2*(3.291*np.sqrt(1/252)*vol)**2)*np.sqrt(252)

Appendix 15: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (4/15)

elif options_portfolio[i]["payoff_ id"] == 11:
indi = Indicap(options_portfolio,i)
payoffs = indi.payoft()

price = payoffs[@] * math.exp(-r*T)

pos_price = payoffs[1] * math.exp(-r*T)

neg_price = payoffs[2] * math.exp(-r*T)

delta = (pos_price - price) /[ (percentage change)
sym_delta = (pos_price-neg price)/(2*percentage change)

pos price2 = payoffs[3] * math.exp(-r*T)
neg price2 = payoffs[4] * math.exp(-r*T)
delta 2 = (pos price2 - pos price) / (percentage change)
delta_3 = (neg_price2 - neg_price2) / (percentage_change)

delta_dif = delta 2 - delta
g = abs(delta dif)/percentage change

var = (delta*3.291%np.sqrt(1/252)*vol - g/2*(3.291%*np.sqrt(1/252)*vol)**2)*np.sqrt(252)

Appendix 16: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (5/15)




NOv,

capprotect = Capital Protected(options portfolio,i)
payoffs = capprotect.payoff()

price = payoffs[@] * math.exp(-r*T)

pos_price = payoffs[1] * math.exp(-r*T)

neg price = payoffs[2] * math.exp(-r*T)

delta = (pos_price - price) / (percentage change)

sym delta = (pos price-neg price)/(2*percentage change)

pos_price2 = payofts[3] * math.exp(-r*T)
neg price2 = payoffs[4] * math.exp(-r*T)
delta_2 = (pos_price2 - pos_price) / (percentage_change)
delta_3 = (neg_price2 - neg price2) / (percentage_change)

delta dif = delta 2 - delta
g = abs(delta dif)/percentage change

var = (delta*3.291%*np.sqrt(1/252)*vol - g/2*(3.291*np.sqrt(1/252)*vol)**2)*np.sqrt(252)

Appendix 17: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (6/15)

options_portfolio[i price’] = price
options portfolio[i elta

options portfolio[i ta"] = sym delta
options portfolio[i ] ! delta 2

options portfolio[i delta 3
options_portfolio[i
options_portfolio[i

Appendix 18: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (7/15)
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Per Option Type: Delta, Second Delta, Gamma and VaR

Weights

alti_notional =

auto_notional

digi_notional

indi notional = @

capprotect notional =

sum_notional =

for key in options portfolio.keys():

if options_portfolio[key][“payoff id"] ==
notional = options portfolio[key]["notional™]
auto notional += notional
sum_notional += notional

elif options_portfolio[key][“payoff id"] == 4:
notional = options_portfolio[key]["notional™]
options_portfolio[key]["weight_type”] = notional/auto_notional
options_portfolio[key][“weight total”] = notional/sum notional

options_portfolio[key]["weighted delta type™] options_portfolio[key][ “weight type"”]*options portfolio[key]["delta”]
options_portfolio[key]["weighted gamma type™ options_portfolio[key][ “weight type"]¥options portfolio[key]["g"]

options_portfolio[key][“weighted delta total™] options_portfolio[key]["weight total™]*options_portfolio[key]["delta"]
options_portfolio[key]["weighted_gamma_total™] = options_portfolio[key][" ght_total"]*options_portfolio[key]["g"]

-

options_type = {"Altiplano™: {}, "Autocall™: {}, "call Digital": {}, "Indicap": {}, "Capital_Protect™: {}
options_type[“Altiplano™]["notional”] = alti notional

options_type[“Autocall”]["notional™] = auto notional

options_type[“cCall Digital™]["notional”] = digi notional

options_type[“Indicap™]["notional”™] = indi_notional

options_type[“Capital Protect™]["notional™] = capprotect_notional

Appendix 19: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (8/15)

alti delta = ©
auto delta = ©
digi delta = ©
indi delta = ©
capprotect delta

alti gamma = ©
auto_gamma = ©
digi gamma = ©
indi gamma = ©
capprotect gamma

for key in options portfolio.keys():
if options_portfolio[key]["payoff id"] =

auto _delta += optlons_portfollo[key][ wei ghted delta t
auto gamma += options_portfolio[key]["weighted gamma

type”]
type”]

options type["Altiplano”]["delta"] = alti delta
options_ type["Autocall™]["delta”] = auto _delta
options type["Call Digital™]["delta”] = digi delta
options type["Indicap"]["delta”] = indi_delta

[

options_type["Capital Protect"]["delta"] = capprotect delta

options_ type["Altiplano’ ][‘vamma"] = alti_gamma
options type["Autocall™]["gamma"”] = auto_gamma
options type["Call Digital"]["gamma”] = digi gamma
[
[

options type["Indicap"]["gamma”] = indi gamma
options type["Capital Protect”]["gamma"] = capprotect gamma

Appendix 20: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (9/15)




alti underlyings
auto underlyings
digi_underlyings
indi_underlyings
capprotect underlyings = []

alti_underlyings_weights = []
auto_underlyings_weights = []
digi underlyings weights = []
indi_underlyings_weights = []
capprotect underlyings weights = []

today = "30-086-2022"
for key in options_portfolio.keys():

if options portfolio[key]["payoff id"] == 4:
underlyings 1 = options_portfolio[key]["underlyings”]
for underlyings in underlyings 1:
single weight = (1/5) * options portfolio[key]["weight type™]
auto underlyings weights.append(single weight)
auto_underlyings.append(underlyings)

alti_underlyings_weights = np.array(alti_underlyings_weights)
auto_underlyings weights = np.array(aute underlyings weights)
digi_underlyings_weights = np.array(digi_underlyings_weights)
indi underlyings weights = np.array(indi underlyings weights)
capprotect_underlyings_weights = np.array(capprotect_underlyings_weights)

options_type["Autocall”]["underlyings"] = auto_underlyings
options type["Autocall™]["weights"] = auto underlyings weights

Appendix 21: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (10/15)

For the whole Portfolio: Delta, Second Delta, Gamma and VaR

total _delta
total_gamma

for key in options portfolio.keys():

total_delta += options_portfolio[key][ "weighted delta total™]
total gamma += options portfolio[key]["weighted gamma total™]

total portfolio = {}

total_portfolio[ “noticnal™] = sum_notional
total_portfolio["delta"] = total_delta
total_portfolio["gamma"] = total_gamma

Appendix 22: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (11/15)

Weights of the underlyings

list underlyings = []
weights = []
today = "30-86-2022"
for key in options portfolio.keys()
underlyings 1 = options_portfolio[key]["underlyings™]
for underlyings in underlyings 1:
single weight = (1/5) * options portfolio[key]["weight total"]
weights.append(single weight)
list underlyings.append(underlyings)

weights = np.array(weights)
total portfolio["underlyings”] = list underlyings
total portfolio[ "weights™] = weights

Appendix 23: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (12/15)




NOVA

weights = np.array(weights)

vola data(tickers):
vol_data = pd.DataFrame(columns=tickers)
for t in tickers:
vol data[t] = file stocks[t].iloc[1:]
rn(vol_data)

tickerrs = list_underlyingq

data_ticks = vola_data(tickerrs)

end_date = len(data_ticks.loc[:today])
start_date = end_date - 3@

used_data = data_ticks.iloc[start_date:end_date]
log returns(data):
rn (np.log(1+data.pct _change()))

returns = log_returns(used_data)
covar = returns.cov() * 12

vol = np.sgrt(np.dot(weights.T, np.dot(covar, weights)))

total portfolio[”

Appendix 24: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (13/15)

var = (total delta®3.291*np.sqrt(1/252)*vol - total gamma/2*(3.291*np.sqrt(1/252)*vol)**2)*np.sqrt(252)

elif key = 117
notional = options_type[key][
tickerrs = options_type[key]["unt
weights ptions type[key][
data_ticks = vola_data(tickerrs)
end_date = len(data_ticks.loc[:today])
start_date = end_date - 30
used_data = data ticks.iloc[start date:end date]

returns = log returns(used_data)
covar = returns.cov() * 12

vol = np.sqrt(np.dot(weights.T, np.dot(covar, weights)))
options_type[key][" ] = vol

delta = options_type[key]["
g = options_type[key][

var = (delta*3.291%np.sqrt(1/252)*vol - g/2%(3.291%np.sqrt(1/252)*vol)**2)*np.sqrt(252)

options_type[key][ ] = var

Appendix 26: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (15/15)
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NOv

1 178 IRE SM Equity Equity 11.04 0% | 170%
2 748 | INGA NA Equity Equity 6.673 0% | 170%
3 797 BN FP Equity Equity 60.24 0% | 170%
4 798 | UNANAEguity Equity 46.99 0% | 170%
5 1362 | RETLN Equity Equity 7710 0% | 170%

Appendix 79: Overview of the structure of an Indicap product — Product 1031

1 73 %0 US Equity Equity 50.03 0% | 150%
2 185 | WESH SW Equity Equity 107 85 0% | 150%
3 797 BM FP Equity Equity 533 0% | 150%
4 1203 | GEUS Equity Equity §2.37 0% | 150%
5 1230 | AD MA Equity Equity 2525 0% | 150%

Appendix 80: Overview of the structure of an Indicap product — Product 1067

Indicap Praduct ID 1106 - BIC Cabaz Mundo Dez-20
Underdying 1D  Bloomberng Ticker AssetClass  Price a3 of effective date  Floor Cap

1 64 T US Equity Equity 228622 0% | 130%
2 73 K0 US Equity Equity 53 106 0% | 130%
3 a3 IN] US Equity Equity 149 57 0% | 130%
4 104 | BAYN GY Equity Equity 493 0% | 130%
5 798 | UNA WA Equity Equity 485 0% | 130%

Appendix 81: Overview of the structure of an Indicap product — Product 1106

Indicap Product ID 1125 -BIC Infraestruturas Jan-21
Underhying 1D  Bloombeng Ticker MAdsetClass  Price a8 of effective date  Floor Cap

1 209 | EMEL M EBquity Equity 8574 0% | 170%
2 778 | ENGIFP Bquity Equity 13.58 0% | 170%
3 964 | NG/LN Equity Equity 87838 0% | 170%
4 1347 | coius equity Equity 159.39 0% | 170%
5 1432 | FERSM Equity Equity 20.98 0% | 170%

Appendix 82: Overview of the structure of an Indicap product — Product 1125




Indicap Product ID 1179 -BiC Mix Global Mai-21
Underhing 1D  Bloomberg Ticker MAddet Class Price & of effective date  Floor Cap

1 SHELL NA Equity Equity 16.73 1.20%
2 31 TTE FP Equity Equity 39.81 ﬂ'ﬂ 1.20%
3 164 | VALEUS Equity Equity 2159 0% | 120%
4 180 | ORAFP Equity Equity 10.684 0% | 120%
5 1347 | Cous Equity Equity 182 0% | 120%

Appendix 83: Overview of the structure of an Indicap product — Product 1179

Indicap Product ID 1200 -BIC Aemanha Jul-21
Undedying 1D  Bloombeng Ticker MAddetCless  Price &8 of effective date  Floor Cap

1 EOAMN GY Equity Equity 10.414 120%
2 395 | BAS GYEquity Equity 67.01 0% | 120%
3 712 | WNAGY Equity Equity 54 859 o% | 120%
4 745 | MUVZ GY Equity Equity 2281 o% | 120%
5 14387 | DPW GY Equity Equity 58.09 0% | 120%

Appendix 84: Overview of the structure of an Indicap product — Product 1200

Indicap Product ID 1213 -BIC Autos Set-21
Underying ID  Bloomberg Ticker MAdsetClms Price & of effective date  Floor Cap

1 TELA US Equity Equity 756.99 1.20%
2 31? VOW GY Equity Equity 2782 ﬂ-a-: 1.20%
3 449 | TM US Equity Equity 18194 0% | 120%
4 1207 | MLFP Equity Equity 338125 0% | 120%
5 1492 | HOG US Equity Equity 3827 0% | 120%

Appendix 85: Overview of the structure of an Indicap product — Product 1213

Indicap Product ID 1233 -BIC Energia Verde Out-21
Underhing 10  Bloomberng Ticker MAdsetClos  Price &8 of effective date  Floor Cap

1 CV US Equity Equity 14537 120%
2 11?1 MEE US Equity Equity 20.99 ﬂ'ﬂ 120%
3 1434 | MO US Equity Equity 3961 0% | 120%
4 1436 | SEDG US Equity Equity 306.08 0% | 120%
5 1437 | IKS US Equity Equity 53.36 0% | 120%

Appendix 85: Overview of the structure of an Indicap product — Product 1233

Indicap Product ID 1286 -BiC Tech Dez-21
Underhing ID  Bloombeng Ticker MAssetClass  Price a3 of effective date  Floor Cap

1 116 | 1BM US Equity Equity 12593 1.20%
2 760 | INPR US Equity Equity 33.47 ﬂ-a: 1.20%
3 1011 | ABBN SW Equity Equity 3454 0% | 120%
4 1026 | WVDA US Equity Equity 283 87 0% | 120%
5 1521 | MLOK US Equity Equity 25.52 0% | 120%

Appendix 86: Overview of the structure of an Indicap product — Product 1286




Indicap Product ID 1506 -BIC Retalho Jan-22
Underling ID  Bloomberng Ticker MAssetCless  Price a3 of effective date  Floor Cap

1 66 | AMIN US Equity Equity 158.018 0% | 120%
2 113 | 'WMTUS Equity Equity 14252 0% | 120%
3 1533 [ M US Bquity Equity 2522 0% | 120%
4 1534 | K55 US Equity Equity 49.75 0% | 120%
5 1535 | ¥R US Equity Equity 4859 0% | 120%

Appendix 87: Overview of the structure of an Indicap product — Product 1306

Indicap Product ID 1342 -BIC Fintech Few-22
Underying ID  Bloombeng Ticker MAddetClass  Price &8 of effective date  Floor Cap

1 70 | saN sM Equity Equity 3.379 0% | 120%
2 748 | INGANA Equity Equity 12.942 0% | 120%
3 1110 |  S0US Bquity Equity 109 0% | 120%
4 1144 | PYPLUS Equity Equity 110.54 0% | 120%
5 1557 | ADYEN MAEquity | Equity 2032 0% | 120%

Appendix 88: Overview of the structure of an Indicap product — Product 1342

Indicap Product ID 13949 -BIC Divide ndos Ahe-23
Underying ID  Bloomberg Ticker Adset Class  Price a3 of effective date  Floor Cap

1 59 | BEVASM Equity Equity 5.082 0% | 120%
2 95 | BMW GY Equity Equity 78.02 0% | 120%
3 1241 | PHIA NA Equity Equity 27.395 0% | 120%
4 1325 | MRK GY Equity Equity 179.95 0% | 120%
5 1512 | LUMMN US Equity | Equity 1153 0% | 120%

Appendix 89: Overview of the structure of an Indicap product — Product 1399

Indicap Product ID 1416 -BIC Blockchain IMai-22
Underhing 10  Bloomberng Tieker MAddetClass Price &8 of effective date  Floor Cap

1 115 | MSFTUS Equity Equity 2615 0% | 120%
2 116 | 1BM US Equity Equity 13503 0% | 120%
3 149 [ BNPFP Equity Equity 5231 0% | 120%
4 165 | META US Bquity Equity 200.04 0% | 120%
5 1597 | RIOTUS Equity Equity 7.19 0% | 120%

Appendix 90: Overview of the structure of an Indicap product — Product 1416

Indicap Praduct ID 1447 -BIC Healthcare Jun-22
Underhing 10  Bloombeng Ticker AddetClas Price &8 of effective date  Floor Cap

1 a2 SAN FP Equity Equity 94.17 0% | 120%
2 103 | G5k LN Equity Equity 1683.6 0% | 120%
3 1434 | MANA US Equity Equity 128.03 0% | 120%
4 1529 | WBA US Equity Equity 39.32 0% | 120%
5 1606 |  C1US Equity Equity 24452 0% | 120%

Appendix 91: Overview of the structure of an Indicap product — Product 1447




