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Abstract (100 words maximum) 

 

Banco Invest offers various over-the-counter (OTC) derivatives to institutional clients as part 

of its structured investment solutions. These derivatives are managed within the bank’s 

Proprietary Trading Book. The focus of this consulting project is developing a Delta-Gamma 

Value-at-Risk (VaR) model that Banco Invest can implement to actively manage its equity 

derivative portfolio`s underlying risks. The first part contains the estimation of the portfolio 

delta and gamma. The second part consists of the quadratic approximation to calculate the 

portfolio standard deviation. In the last section, the authors calculate the Delta-Gamma Value-

at-Risk and provide recommendations to Banco Invest. 
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1 Value-at-Risk – Group part 

Market risk describes the risk of a possible loss in a risk position due to collective adverse 

movements of market rates and prices. It is one of the most critical risks for institutions that 

actively trade in financial markets; quantifying and monitoring this risk is crucial for allocating 

capital and reserves needed to cover potential losses and assess their overall solvency. Market 

risks are determined by institutions using standard procedures or internal risk models; one of 

these procedures is the Value-at-Risk model. (Deutsche Bundesbank 2022) 

1.1 Defining Value-at-Risk 

The Value-at-Risk expresses the maximum potential loss, in absolute terms or as a percentage 

in the respective currency the asset is held, that results under normal market conditions from an 

adverse movement in the relevant market of an investment over a specified time horizon (H) at 

a given degree of confidence (𝛼) during a fixed holding period of a risk position. The estimated 

maximum potential loss of the model, the VaR estimate, is only expected to be exceeded (1-

𝛼) % of the time. (Castellacci and Siclari 2003, pp. 531-532) (Fallon 1996, p. 2) The time 

horizon of interest for a VaR estimate can be one day or even months and is determined by the 

nature of the portfolio. The horizon should correspond to the most prolonged period needed for 

an orderly liquidation or the time to hedge an investment portfolio. (Bodie, Kane, and Marcus 

2021, p. 138) The VaR estimate's horizon is determined by the liquidity profile of the assets in 

the underlying investment portfolio; the length relates to the time needed to sell these assets at 

average transaction volumes so that they have little impact on the market. Since the market 

impact of the liquidation scenario is not disregarded when choosing the horizon, the VaR 

estimate will be an estimate of a realizable loss and not only a loss on paper. (Wilmott 1998, p. 

548) The confidence (α) level for a VaR estimate corresponds to the institution's risk profile, 

determined by its degree of risk aversion or regulatory requirements. (Fallon 1996, p. 2) 
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Figure 1: Development of VaR over time horizon H (Jorion 2007, p. 118) 

 

A VaR calculation applies to all types of risky assets and can be applied to a single position and 

a whole portfolio of risky assets. Assessing VaR helps institutions evaluate the profitability of 

an investments in relation to the risk and identify investments with a higher-than-acceptable 

risk profile, allowing them to make changes or liquidate such investments. The VaR is used for 

active and passive risk measurement and defensive risk control. Ideally, it suits financial and 

non-financial institutions that engage in proprietary trading with significant exposure to market 

risks. (Jorion 2007, pp. 379-389) VaR estimates typically focus on 'tail events' where liquidity 

and large jumps are essential, as illustrated in Appendix 1 below. (Wilmott 1998, p. 337) 

Therefore, confidence levels are typically set at 95%, 97.5%, and 99%. (Wilmott 1998, p. 547)  

An overview of which confidence levels translate into which z statics of the confidence interval 

can be found in Appendix 2. The VAR statistic on portfolio losses is defined as a one-sided 

confidence interval:  

𝑃𝑟𝑜𝑏 [Δ𝑃̃(∆𝑡, ∆𝑥̃) >  −𝑉𝐴𝑅] = 1 − 𝛼 (1) 

In the above equation, Δ𝑃̃(∆𝑡, ∆𝑥̃) stands for the change in the value of a portfolio that results 
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from a function consisting of the forecasting period ∆𝑡 and the vector ∆𝑥̃ of the random 

variables, with 𝛼 being the confidence level. The equation can be interpreted as the portfolio's 

value will not fall by more than VAR over ∆t number of trading days with α % confidence. 

(Fallon 1996, p. 2) The degree of complexity and the computational requirements of the 

calculation of a VaR estimate depends in particular on how the price of the instrument changes 

in relation to the underlying. Appendix 3 depicts the two different relationships. (Romano 2017) 

The calculation of a VaR estimate for non-linear (i.e., derivatives) assets is more complex than 

for a linear asset (i.e., a stock or bond). In the context of an option: nonlinearity implies that a 

price movement in the underlying asset causes a non-linear change in the option price. There 

are three major methodologies to calculate Value-at-Risk, the historical approach, the 

parametric or model-building approach, and performing a Monte Carlo simulation. Figure 2 

below provides an overview of the different methodologies and their advantages and 

disadvantages. (Hull 2021, pp. 293-297 & 317-340) 

 

 

Figure 2: Overview of different approaches for VaR calculation (Hull 2021, pp. 293-297 & 317-340) 

 

1.2 Pitfalls and limitations of Value at Risk 

Despite the widespread use of the Value-at-Risk model, it has several drawbacks that will be 
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briefly discussed in the following. First and foremost, all methods require making assumptions 

and using them as inputs for the mode; this can result in different outcomes even if the same 

modelling approach is used. Assumptions have to be made, e. g. about the applicable horizon 

and confidence level and the appropriate number of simulations. (Jorion 2007, pp. 542-557) 

Furthermore, all methods rely to some extent on historical data as a proxy to forecast future 

estimates. What has happened in the past does not necessarily imply that it will happen again 

in the future, so that estimation can be Inaccurate. (Jorion 2007, pp. 542-557) Second, there is 

yet to be an industry-wide standard to model VaR. The different approaches and models to 

calculate VaR can also lead to different estimates for the same portfolio. Hence, the correct 

interpretation is vital. (Jorion 2007, pp. 542-557) This brings us to the next limitation: a VaR 

estimate is calculated assuming normal market conditions, meaning extreme and rare events, 

such as so-called black swans, are not considered by the estimate. Because VaR only allows the 

risk manager to make statements about which value will not be exceeded with what degree of 

certainty, it does not tell anything about the worst outcome in case the VaR number is ex (Hull 

2018, pp. 273-274) Additionally, the traditional VaR disregards intervening losses. These occur 

when the portfolio’s value falls below VaR during the time horizon but eventually rises above 

it at the end of it. This can be an essential aspect for management if the portfolio is marked to 

market daily and faces potential margin calls that could result in liquidation in the worst-case 

scenario. (Jorion 2007, pp. 117-119) A VaR estimate provides the “big picture” of what is at 

risk regarding market risk effects. However, as it only accounts for this specific risk type, it has 

a narrow focus on what is really at risk. There are also risks which are not incorporated in the 

VaR framework, commonly referred to as “risks not in Value-at-risk” (RNIV): This can result 

in the actual Value at Risk of an investment being much higher than what the VaR model is 

predicting when capturing many of the other existing risk variables such as (geo-)political risks, 

liquidity risks, and regulatory risk. (Jorion 2007, pp. 542-557) 
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2 The “Greeks” - Group part 

In option pricing, as well as for other derivatives, the "Greeks" are commonly used to measure 

the sensitivity of a derivative's value to factors that might affect the price of an options contract. 

Appendix 4 gives an overview of the existing Greeks and their definitions. (Leoni 2014) Within 

the frame of this work, the focus will be set on two risk metrics, delta (Chapter 3.1) and gamma 

(Chapter 3.2) risk, in relation to option pricing, as they are the most fundamental.  

2.1 Delta Risk 

The delta, designated with the symbol Δ, is the first-order partial derivative of the option pricing 

function c with respect to the underlying asset S. Therefore, it expresses the sensitivity of the 

option contract’s price to changes in the price of the underlying asset while leaving all else 

constant (ceteris paribus). (Taleb 1997, p. 224) (Bouzoubaa and Osseiran 2010, p. 66) 

∆ =  
𝜕𝑐

𝜕𝑆
 (2) 

For vanilla options, the delta for long calls and short puts on standard options varies between 0 

and 1. Vice versa, short calls and long puts have a delta ranging between 0 and -1. Graphically 

expressed is it the slope of the curve that links the option price to the underlying asset price. 

The higher the slope, the higher the delta and the more the derivative contract will change in 

response to price fluctuations of the underlying asset. Figure 3 below depicts the change in 

delta with respect to the Strike price K and the time to maturity T for a European call option. 

With the option increasingly getting out of the money (OTM), a higher Strike K, and/or the 

option approaching its maturity date T, the delta tends to move towards 0. Conversely, with 

lower Strike K, the option being more in the money (ITM), and/or longer time until maturity T, 

delta approaches 1. (Hilpisch 2015, p. 78) The most significant change in delta can be observed 

with the option being at the money (ATM), S = K, close to its maturity date T. This is because 
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theoretically, with the option being ATM a few seconds before it matures, one small move in 

either direction would result in the option being either in the money or out of the money, hence 

the considerable variation in delta. (Hilpisch 2015, p. 78) 

 

 

Figure 3: Delta of a European Call Option (Hilpisch 2015, p. 78) 

 

Delta risk can be hedged to obtain a neutral position (Δ = 0). How this can be achieved for a 

portfolio of derivatives will be explained in more detail in section 3.3, Hedging the Greeks. 

2.2 Gamma Risk 

For minor variations in the price of the underlying asset, delta proves to be good at estimating 

the change in the option’s price. However, as soon as price changes become more severe, delta 

is extremely sensitive to changes in the underlying asset’s price. This is because delta 

graphically represents a linear estimate for a non-linear option function. Hence, the actual 

option value might significantly differ from the proportion predicted by delta. (de Weert 2008, 

pp. 14-16) Gamma, Γ, measures by how much or how often a position or a portfolio of options 

needs to be re-hedged to maintain a delta-neutral position: it expresses by how much the Delta 

might change if the price of the underlying changes. It is the second-order derivative of the 
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option pricing function c with respect to the underlying asset S. 

Γ =  
𝜕2𝑐

𝜕2𝑆
 (3) 

The more curvature the option function entails, the higher the gamma and the more sensitive 

the delta is towards changes in the underlying’s price. An increase in the underlying’s price 

could significantly increase the delta and vice versa for a low gamma. Considering plain vanilla 

options, the gamma is always positive for long positions, whereas for short positions, it is 

negative. (Bouzoubaa and Osseiran 2010, p. 72) Figure 4 below shows that the gamma value 

is stable for most of the option's life as it hovers near zero. The most notable value changes in 

gamma happen around ATM options close to maturity. As previously stated in the preceding 

section, it is for at-the-money options close to maturity where one move in either direction has 

the most significant influence on delta as it determines whether the option is exercised. Hence, 

the high value in gamma. (Yen Jerome and Lai 2015, pp. 84-85). 

 

 

Figure 4: Gamma of a European Call option (Hilpisch 2015, p. 79) 

 

How gamma is incorporated when hedging the respective portfolio’s VaR will be explained in 

more detail in the next section. 
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2.3 Hedging the Greeks 

As previously described, a portfolio’s sensitivity to such is captured by the “Greek letters”. The 

risk framework captures thresholds for each to ensure that these risks stay within the company's 

tolerance. Exceeding the limits initializes a process known as hedging. This is where counter 

positions in the market are established to ensure that the exposure to a particular risk factor 

stays within its predefined limit. In the following, it will be presented how a portfolio is hedged 

against delta and gamma. (Hull 2018, p. 161) Hedging delta consists of establishing a counter 

position equal to ∆ amount of the underlying. By combining the existing portfolio and the 

hedging trade, the new portfolio’s exposure to delta is neutralized. (Hull 2018, pp. 161-162) 

For linear products, hedging delta turns out to be static as it protects against both small and 

large changes in the value of the underlying. Further, once a linear hedge is implemented, there 

is no need to adjust it over time. The delta for a linear portfolio stays constant. (Hull 2018, pp. 

163-164) Neutralizing delta exposure for non-linear products such as options proves to be a 

more complex procedure due to the non-linear relationship between the price of the underlying 

and the options contract. As mentioned earlier in this work, eliminating a portfolio’s delta only 

offers protection from small fluctuations in the price of the underlying. Additionally, once it is 

set up, the delta hedge has to be adjusted frequently, also known as dynamic hedging or 

"rebalancing". This is because Delta constantly evolves throughout a non-linear product's 

lifetime. (Hull 2018, pp. 165-168) In practice, rebalancing is costly as, e.g., hedging a long 

position on an option involves buying the underlying when its price increased and selling it 

when it dropped to consistently create a synthetical position opposite of that to neutralize the 

option’s delta. This is usually reflected in the premiums that option buyers have to pay. (Hull 

2018, p. 169) With more significant changes in the prices of the underlyings, a portfolio’s 

gamma comes into play. There are two ways of adjusting for the additional gamma exposure of 

a non-linear portfolio that will be briefly described below. (Hull 2018, pp. 169-170) Firstly, the 
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portfolio is made gamma neutral by trading options with opposite gammas on the same 

underlyings as the options in the existing portfolio. Non-linear products are needed as linear 

products do not have exposure to gamma. By doing this, the new and combined portfolio’s delta 

also changes and would have to be re-adjusted by trading opposite positions in the underlyings 

(Hull 2018, pp. 170-171) Implementing this in practice can be challenging as trading non-linear 

derivatives in the amounts needed often is impossible. Further, re-adjusting for the new delta 

of the combined portfolio is costly as it involves many transactions. (Hull 2018, p. 177) 

However, as described earlier, it makes economically more sense to see the gamma as a 

determinant of how often a portfolio needs to be re-hedged. In general, a portfolio with larger 

gamma would imply more frequent delta neutralization, whereas a smaller gamma results in 

less often adjustments to the portfolio, as changes in delta only tend to be small. (Hull 2018, 

pp. 169-170) Banco Invest hedges its equity derivatives portfolio with underlyings (delta 

neutralization) rather than options (gamma neutralization). The Bank does not take directional 

market risk, keeping the difference between the deltas (theoretical quantities) and the quantities 

held in the portfolio as close to zero as possible. These portfolio quantities are adjusted daily, 

at 30-minute intervals, based on market conditions, namely the evolution of the underlying 

shares. 

3 Value-at-Risk for a Derivatives Portfolio - Group part 

To begin with, calculating Value-at-Risk for a single asset is a straightforward process. 

Assuming linearity in the change of the portfolio’s value to changes in the underlying and 

normally distributed returns, VaR is calculated as follows: 

𝑉𝑎𝑅 = 𝑤𝑖𝑆𝑖 (𝜇 𝛿𝑡 − 𝜎𝑖  (𝛿𝑡
1
2) 𝛼(1 − 𝑐)) (4) 

where 𝑤𝑖 is the quantity of the asset i owned with price 𝑆𝑖. This is multiplied by the asset’s drift 

over a predefined time horizon 𝛿𝑡, with 𝛼(1 − 𝑐) being the inverse cumulative distribution 
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function of the standard normal distribution. This process is called delta approximation. 

(Wilmott 1998, pp. 548-550) Regarding a portfolio of assets, the calculation of VaR becomes 

more complex. First, the volatilities and covariances of all assets in the portfolio have to be 

computed. If this is done, the formula to calculate the VaR of a portfolio with M assets 

consisting of 𝑤𝑖 amount of asset i and 𝑤𝑗 amount of asset j is: 

𝑉𝑎𝑅𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 = −𝑀 (𝛼(1 − 𝑐)(𝛿𝑡
1
2)√∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑖𝜎𝑗𝜌𝑖𝑗  

𝑀

𝑗=1

𝑀

𝑖=1

) (5) 

with 𝜎𝑖 being the volatility of asset i and 𝜌𝑖𝑗 the correlation between asset i and j. (Wilmott 

1998, pp. 551) Estimating VaR for a portfolio of derivatives, as mentioned earlier, the delta 

approximation would only be sufficient for portfolios where the underlyings show small 

movements in price. This is because the relationship between the portfolio's value and price 

changes in the underlyings can no longer be regarded as linear. For non-linear portfolios, the 

sensitivity to gamma additionally has to be considered. This is visually demonstrated in Figure 

5 below. It depicts the relationship between the price of an underlying asset to the corresponding 

value of a long call option on the same. While the underlying’s price function is normally 

distributed, the option has a positively skewed probability distribution with a smaller tail on the 

left. (Hull 2018, pp. 333-334) This violates the initial premise that probabilities are normally 

distributed. If VaR were calculated based on this assumption, it would be excessively high. As 

a result, approximations for the portfolio's sensitivity to changes in the underlyings need to be 

reevaluated. (Wilmott 1998, pp. 550-551) 

 



   

14 
 

 

Figure 5: Translation of an Asset's normal probability distribution into that of a long call option (Hull 2018, p. 333) 

 

To recapture, with larger swings in the prices of the underlyings of an options portfolio, the 

previous delta approximation to calculate VaR turns out to be inappropriate. A better estimation 

is achieved by incorporating the portfolio’s sensitivity to gamma. Gamma exposure is 

particularly challenging as a second-order approximation is required. (Wilmott 1998, p. 551) 

This will be shown below. Assume a portfolio M consisting of a single option on an asset with 

price S. The change in the value of the portfolio 𝛿𝑀 compared to changes in the price of the 

underlying 𝛿𝑆 can be expressed as follows: 

𝛿𝑀 =
𝜕𝑃

𝜕𝑆
𝛿𝑆 +

1

2
 
𝜕2𝑃

𝜕𝑆2
(𝛿𝑆)2 +

𝜕𝑃

𝜕𝜎
𝛿𝑡 + ⋯ (6) 

This can ultimately be reformulated into: 

𝛿𝑀 = ∆𝜎𝑆 𝛿𝑡
1
2 𝜙 + 𝛿𝑡 (∆𝜇𝑆 +

1

2
Γ𝜎2𝑆2𝜙2 + Θ) + ⋯ (7) 

where Θ is the time drift of the option (Theta). (Wilmott 1998, p. 551)  The quadratic term, the 

portfolio's exposure to gamma, is of specific interest above. Figure 6 shows three different 

distribution functions. The distribution of the underlying with a standard deviation of 𝜎𝑆 𝜕𝑡
1

2 is 

considered to be normal. The projected distribution for the change in the value of the options 
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portfolio according to the delta approximation. It is normally distributed with a standard 

deviation of ∆𝜎𝑆 𝜕𝑡
1

2. Finally, the options portfolio’s distribution using the delta-gamma 

approximation. (Wilmott 1998, pp. 551-552) 

 

 

Figure 6: Relationship of an asset price’s normal distribution to the distribution of an option portfolio according to the delta 
as well as the delta-gamma approximation (Wilmott 1998, p. 552) 

 

By looking at the three different distributions, it is evident that the one for the delta-gamma 

approximation is not normally distributed compared to the other two. (Wilmott 1998, pp. 551-

552) 

4 Methodology used in Python - Group part 

In the following, the Assumptions used to calculate the Delta-Gamma VaR in Python, as well 

as the fundamental parts of the code, are presented and explained. As the basis for all 

calculations of the various input statistics of the VaR model, the authors assume one year 

consisting of 252 trading days. Because of their ease of use for time series modelling, such as 

symmetry, time-additivity, and the log-normal distribution assumption, the various underlyings 

performances are transformed into logarithmic returns. Next, each option's volatility is 

calculated using equally weighted implied volatilities of the option's underlyings. In the absence 
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of implied volatility, the underlying’s historical volatility on a 30-day basis is used. 

Furthermore, to determine the correlation, variance, and covariance of the different underlyings, 

a maximum lookback window of 2 years is assumed, the same as the option’s time to maturity 

on the trade date. From there on, for each day that has progressed, the option’s remaining time 

to maturity is used to calculate the above statistics until a predefined minimum of 30 days was 

reached. Below this, correlation, variance, and covariance are calculated on a 30-day basis until 

the option matures. At this point, it is referred to Appendix 5-6 for the code example. The 

options in Banco Invest’s portfolio are valued as of 30/06/2022 using Monte Carlo simulations. 

The first step of Monte Carlo involved calculating the geometric Brownian Motion. In finance, 

this is a stochastic process to model random behavior over a specific time frame (𝛿t) that 

consists of two main components, drift, and a randomly generated variable.  (Yan 2017, pp. 

421-428) Drift indicates the direction of an asset’s historical returns, allowing predictions on 

an asset’s expected return. It is calculated as shown in equation (8) using the same receding 

time horizon as explained for the underlying’s statistics, except for the time series’ minimum 

requirement of 30 days.  

𝐷𝑟𝑖𝑓𝑡 = (𝑀𝑒𝑎𝑛 (𝑠𝑡𝑜𝑐𝑘 𝑟𝑒𝑡𝑢𝑟𝑛𝑠) −  
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑠𝑡𝑜𝑐𝑘 𝑟𝑒𝑡𝑢𝑟𝑛𝑠)

2
) ∗  𝛿𝑡 (8) 

Where underlyings are expected to pay dividends, the drift is adjusted further, as demonstrated 

in Appendix 7. The next step is to obtain a random number by multiplying an asset’s historical 

standard deviation with a random, standard normally distributed variable (Z ([Rand (0;1)])). 

𝑅𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = (𝑆𝑡𝑑. 𝐷𝑒𝑣.  ∗  𝑍([𝑅𝑎𝑛𝑑(0; 1)])) ∗ √𝛿𝑡 (9) 

As a result, the equation for predicting the future value of an asset (St+1) sums up to the 

following:  

𝑆𝑡+1 = 𝑆𝑡 ∗ 𝑒𝐷𝑟𝑖𝑓𝑡 + 𝑅𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒  (10) 

However, when pricing options comprised of baskets of underlyings, Cholesky Decomposition 
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is performed as an extension of the Monte Carlo simulation to account for the correlation 

aspects between the various reference assets. A brief explanation of an example decomposition 

will be provided below. Appendix 8 contains the code for the Cholesky decomposition 

performed for the different options. Assume a 2 ∗ 2 symmetric, positive definite correlation 

matrix Σ, where 𝜌 is the correlation between X1 and X2. 

Σ = (
 1 𝜌
 𝜌 1

 ) (11) 

The correlation matrix can then be decomposed into a 2 ∗ 2 lower triangular matrix L, where 

𝐿𝐿𝑇 = Σ. (Wilmott 1998, pp. 682-683) This appears to be as follows: 

𝐿 = ( 
1 0

𝜌 √1 − 𝜌2 ) (12) 

Following the generation of L, the random variables with desired correlation can be expressed 

as LZ, where Z is a column vector of the independent standard normal random variables: 

𝑍 = (
𝑍1

 𝑍2
) (13) 

As a result, by setting 𝑋𝐿 = 𝑍, we can sample from a bivariate normal distribution, indicating 

that: (Yen Jerome and Lai 2015, pp. 99-100) 

𝑋1 = 𝑍1 
(14) 

𝑋2 = 𝜌 ∗ 𝑍1 + √1 − 𝜌2 ∗ 𝑍2 (15) 

To generate a sufficient sample of possible future asset values for the different underlyings to 

calculate the option's payoffs appropriately, 200.000 simulations are run. Following this, the 

averaged payoffs are discounted using the respective’s maturity Euribor 3-month forward. 

Where no forward for the maturity of the option’s payoffs is readily available, linear 

interpolation is performed to compute the discount rate for the respective maturity’s payoff, as 

shown in Appendix 9-10. Further, each underlying’s delta is estimated by changing its price by 

1%, while leaving the other’s prices constant, and calculating the new price of the option. The 
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difference in both derivative prices is then divided by the relative changes in the prices of the 

underlying. The option’s delta is estimated as the weighted average of the underlying’s deltas, 

assuming an equally weighted portfolio of underlyings. To calculate gamma, the above 

calculation is done a second time to get the change in delta. The difference in both deltas is then 

divided by the relative adjustment to obtain the gamma value. The equations used and the 

respective code for this can be found in Appendix 12-26. In terms of VaR, the confidence level 

was set to 99,9 %. Calculations are performed initially for a one-day time horizon and then later 

multiplied by the square root of 252 to get the annualized VaR, as this is the requirement from 

the risk management department at Banco Invest. Detailed calculations performed for this in 

Python can be found in Appendix 26. 

5 Autocall option – Individual part (Yannik Peters) 

Autocallables are an exotic barrier option that automatically triggers an event if prespecified 

conditions are satisfied. Gaining popularity after the 2008 financial crisis, they offer investors 

the possibility of yield enhancement in a low-yield environment based on the performance of 

underlying assets such as equities, commodities, or currencies, whether as a single asset or a 

basket of reference assets. (Guillaume 2015b, pp. 1-3) With this option, investors have the 

possibility to earn a higher coupon than currently offered in the market or face the risk of not 

receiving any coupon at all. This is contingent on the underlyings crossing a so-called coupon 

barrier level, and as the name already indicates, these options are automatically exercised once 

the autocall barrier is concurrently broken by the basket of underlying assets. Characteristics 

for Autocallables vary across the market. While some have differing coupon and autocall 

thresholds, others have them set to the same. A separate autocall and coupon barrier level 

implies that if the underlyings cross the latter but stay below the autocall threshold, a coupon is 

paid to the investor while the option remains in place and proceeds to the next observation date. 
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Only in case the autocall barrier is crossed, the option is exercised, and the investor receives 

the principal amount invested plus a coupon. In a scenario where both thresholds are equal, 

upon crossing the autocall level, the investor receives the initial amount invested and the coupon 

and the option cease to exist. (Z. Tong 2019, pp. 440-441) Autocalls can further be 

differentiated in being capital protected, investor’s initial investment is guaranteed to be paid 

back at maturity, or not. The latter, also called down-and-in feature, results in the investor’s 

redemption amount being linked to the worst-performing stock of the basked of underlyings. If 

the underlying’s value declines by more than x %, the investor will face losses to the initial 

investment amount. (Bouzoubaa and Osseiran 2010, pp. 198-202) In terms of observation dates, 

the trigger levels are either observed continuously or discrete, meaning that for the latter, the 

underlyings performances are assessed on prespecified dates. If no early redemption occurs at 

an observation date, the option proceeds to the next date, where it is again assessed. Continuous 

Autocallables will be exercised at any time during their lifespan once the underlyings 

simultaneously cross the autocall barrier. This implies that discrete Autocallables are less likely 

to be called than continuous ones, leaving everything else constant. (Deng, Mallett, and 

McCann 2011, pp. 327-328)  Some Autocallables come with an embedded memory function 

for coupon payments. A memory function guarantees that an investor receives all past coupons 

not paid on previous observation dates if all of the underlyings are above the autocall barrier on 

subsequent observation dates. (Guillaume 2015, pp. 73-74)  The Autocallables offered by 

Banco Invest, and at the same time focus of this work, are capital-protected multi-asset equity 

options. The options in the bank’s portfolio have a maximum maturity of two years with 

discrete, semi-annual coupon dates. While the potential coupon payments are designed to 

increase gradually with successive observation dates, Banco Invest’s options do not have an 

embedded memory function. Autocall and coupon barrier are equal at 100 % of the strike price, 

meaning that only in the event of an Autocall does the investor receive the coupon plus the 
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initial investment. Table 1 shows the different possible payoff scenarios for an example 

Autocall option. Under the assumption that one year consists of 252 trading days, the first 

observation date is set exactly 126 trading days, the second one 252 trading days, the third 378 

trading days, and the final observation date 504 trading days after the effective start date of the 

option. For simplicity reasons, the time value of money is not considered for this example. In 

the first scenario, the basket of underlyings breaches the autocall barrier on the first observation 

date after six months, resulting in the payment of the coupon of 0,30 % plus the initial 

investment and the option is exercised. The following scenario involves breaking the autocall 

level on the third observation date. The investor receives an increased coupon of 0,90 % on the 

initially invested amount after 18 months, and the option is then terminated. 

Table 1: Payoff scenarios for a 2-year Autocall option with gradually increasing coupons 

Payoff at observation date: Scenario 1 Scenario 2 Scenario 3 Scenario 4 

1. 6 months 100,30 % 0,00 % 0,00 % 0,00 % 

2. 12 months - 0,00 % 0,00 % 0,00 % 

3. 18 months - 100,90 % 0,00 % 0,00 % 

4. 24 months - - 101,95 % 100,00 % 

 

In scenarios three and four, the option remains in place until the final observation date. The 

underlyings do not breach the barrier level in scenario four, and the investor only receives back 

the original investment. Scenario three includes the underlyings triggering the autocall event 

on the final observation date after 24 months, with the investor receiving a coupon of 1,95 % 

and the principal amount invested. (Bouzoubaa and Osseiran 2010, pp. 187-189) Autocall 

options are highly innovative and customizable instruments attractive for investors looking for 

specific equity exposure while enjoying the benefits of capital protection and the possibility of 

attractive yields. While the investor favors a redemption earliest possible (1st observation date), 

the bank would like the underlyings to stay below the autocall barrier. The preferred scenario 

for the investor would earn him an above-market yield on a very short-term product in a rallying 
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market. He could then re-deploy the initial investment he receives back from the bank into other 

products that are more bullish to participate in the market’s upcycle fully. On the other hand, 

the bank would have been provided with interest-free capital from the investor and earned a 

premium from selling the option in their preferred case. Figure 7 below provides a brief 

overview of Banco Invest’s portfolio of fifteen Autocall options. The class created in Python to 

calculate each option’s payoff can be found in Appendix 27-39. On the right, the different 

coupons for the first, second, and third observation date, as well as Floor and Cap, are given. 

The latter two refer to the minimum and maximum possible return of each option in case the 

underlyings simultaneously do not exceed their strike during the option’s life, respectively do 

so on the last observation date, which is also the maturity date of the option. 

 

 

Figure 7: Autocall portfolio overview of Banco Invest 

 

On the right, the option’s ID and name are given. As indicated by their respective names, Banco 

Invest categorizes each Autocall option into a different industry, from which the underlyings 

are composed. Appendix 40-54 provides an overview of the different option’s underlyings and 

their correlations within Banco Invest’s portfolio. Correlation is measured one year prior to the 

respective option basket's setup until the option's trade date. It can be seen that the different 
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stocks within an option are positively correlated with one another. Selling the options, Banco 

Invest is “short on the correlation” between the reference assets. With a lower correlation, the 

possibility of all five stocks ending above the autocall barrier will likely decrease. This is in 

favor of Banco Invest as it results in the bank not having to pay the coupons agreed. 

5.1 Portfolio Delta 

When Banco Invest sells Autocall options to its investors, the bank is short on the underlying. 

Assuming the market rises, the deltas of the bank’s Autocall options would also rise, as the 

likelihood of the underlyings reaching their strikes would increase. Hence, hedging the spot risk 

in the form of the delta is a top priority. In order to neutralize the portfolio against delta, the 

bank would have to be buy the underlyings. Figure 8 below summarizes the calculated delta of 

each Autocall option and the overall portfolio of Autocall options at Banco Invest. Furthermore, 

the notional value of the delta was also calculated to estimate the EUR amount that every option 

and the overall portfolio would have to be hedged with. Attention is drawn to the fact that the 

below deltas were calculated assuming a long position on the option, hence from the perspective 

of Banco Invest, they have to be taken as negative values. Looking at the figure below, it is 

noticeable that four deltas are at zero. This is, for example, the case for the delta for Autocall ID 

1015. Considering, at the time of pricing, the option only had five trading days left until its 

maturity date (Figure 7) and additionally looking at the strike prices of each underlying in 

relation to the prices the underlyings were trading as of 30/06/2022 (Appendix 40), the chances 

of the underlying SAP GY Equity ending up above its strike under normal market conditions 

are close to zero, hence the delta value. 
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Figure 8: Delta (Δ) of Banco Invest's Autocall options portfolio 

 

The same can be said for the other IDs where the delta is estimated to be zero. In each case, 

either one or multiple underlyings are too far away from their respective strike price, implying 

the likelihood of the option being auto-called is close to zero. The highest delta can be observed 

for option ID 1152 (0,0215) and 1130 (0,0118), respectively. Both the option’s underlyings are 

reasonably close to reaching their strikes, increasing the likelihood of the option being auto-

called. In terms of the overall portfolio delta, multiplying each option's weight with its 

respective delta it was estimated to be 0,0052. Hence, buying the different underlyings worth a 

total of 172.382,82 € would neutralize the portfolio’s delta. However, the deltas estimated are 

still very low compared to plain vanilla or other exotic options. This is because of the partly 

quite high strikes for some of the underlyings but can change pretty quickly around observation 

dates. Autocall options show discontinuities in their payoff profile on these dates, resulting in 

the “Greeks” and, in particular, delta being unstable and explosive, which makes hedging more 

challenging to maintain. Delta must be closely watched at these dates to avoid suddenly trading 

large quantities of the underlyings. Further, hedging delta on a daily basis avoids being forced 
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to buy large quantities of the underlying when it’s trading around the autocall barrier close to 

an observation date. This could push the price of the underlying unintendedly above its strike. 

Generally, it can be said that the closer to the observation date or maturity the options are, the 

more frequently it is advised to adjust the hedging. By buying the underlyings to hedge the 

Autocall portfolio’s delta, Banco Invest is also long on dividends. In general, the more 

dividends are expected to be paid by the underlying, the more it will profit the bank on its hedge. 

However, as explained before, the drift is also adjusted for this, lowering the expected future 

movement of an underlying over the course of the option’s life. Most dividend are announced 

for longer terms in the future, but only voted on once it gets close to the actual payout date. 

Close attention must therefore be paid to dividend announcements, especially companies 

lowering their dividend projections for the future. Ignoring this would falsely imply calculating 

the option’s price on the basis of a lower expected movement in the underlying’s price. This 

would ultimately result in a lower than usual Autocall option price or the strikes of the 

respective underlying being set too low. Maintaining delta neutrality for an individual option 

on an asset would be prohibitively expensive if the asset was traded daily. However, doing so 

for a portfolio of several options is feasible. This is because profits from a variety of trades 

offset the cost of daily rebalancing. Hence, there are significant economies of scale in trading 

derivatives. 

5.2 Portfolio Gamma 

In Figure 9 below, the gamma for each option and also for the whole portfolio of Autocall 

options is summarized. As already seen for the deltas for Autocalls with IDs 1015, 1041, 1204, 

and 1260, their gammas are also zero. The options are deep out of the money, so it is not 

surprising as even bigger moves in the underlying’s prices wouldn’t impact the deltas of the 

options by much. In terms of rebalancing, these options do not frequently need to be delta 
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hedged to neutralize directional exposure in the market. The biggest gamma value can be 

observed for the Autocall with ID 1392. This is due to all of the option’s underlyings being 

close to or above their respective strike price with the option approaching its first observation 

date, hence a move in the price of the underlying significantly impacts the value of delta. This 

also means that this option has to be delta re-hedged the most frequent, in relative terms, as of 

30/06/2022. For the overall portfolio, the gamma, calculated by taking the weighted average, 

was estimated to be 0,1963. 

 

 

Figure 9: Gamma (Γ) of Banco Invest's Autocall options portfolio 

 

5.3 Non-linear Delta-Gamma-VaR 

Figure 10 below summarizes the VaR for each Autocall option and the combined VaR for the 

undiversified and diversified portfolios. The diversified portfolio is expected to not lose more 

than EUR 23.173,93 over the course of one trading day with 99,9 % confidence. The 
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undiversified VaR is almost three times higher as it calculated by adding the fifteen individual 

VaR numbers for each option. For the diversified VaR, the diversification effects of the 

different option’s underlyings are additionally considered for the estimation. This is done by 

incorporating the variance-covariance matrix of the total portfolio’s underlyings. Each option 

itself is focused on a specific industry, so individual VaR tends to be relatively high. It entails 

lump risk. Therefore, the portfolio VaR will always be smaller than summing up the individual 

VaR numbers of each position.  

 

 

Figure 10: Delta-Gamma VaR for the Autocall options portfolio of Banco Invest 

 

Considering a mix of these different industries in the overall Autocall options portfolio, the 

combined VaR is much lower. The estimated undiversified VaR above is almost three times 

larger than the diversified one, implying that, looking at the bigger picture, diversification is 

critical in limiting downside risk. 
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10 Recommendation - Group part 

This chapter address how the bank's management should deal with the risk associated with the 

derivatives Portfolio. Figure 35 below summarizes the delta, gamma, and Delta-Gamma Value-

at-Risk for Banco Invest’s overall options portfolio. The total derivatives portfolio of the bank 

has a notional of EUR 157.067.916, consisting of 53 different options. The 1-day Value-at-Risk 

at 99,9% confidence level for the bank's overall derivatives portfolio is EUR 372.773, implying 

a 99,9 % probability the portfolio will not lose more over the next trading day. 

 

 

Figure 35: Aggregated Portfolio Delta-Gamma VaR 

 

As the bank does not take a directional risk on the market, the delta on combined option’s 

portfolio must be neutralized with an appropriate hedging strategy. All five option types in the 

Banco Invest derivatives portfolio are basket options. The challenge of hedging, when facing 

options with a basket of underlying’s, becomes evident in their correlated structure. This makes 

the evaluation of the contract's price but also the risks, e.g., delta, gamma, and their hedging a 

complex procedure. (Su 2006, pp. 3-5) This is because it is difficult to detangle the underlying 

basket’s distribution. The correlation between the underlying tends to be volatile and can only 

be estimated. This further complicates the "perfect" hedging of basket options. As a result, in 

many cases, only a part of the underlying basket is used for hedging, or the payoffs of the basket 

are replicated "super-hedged". (Su 2008, pp. 19-23) Another difficulty arises from the number 

of underlying assets: When following a standard dynamic hedging strategy, a hedging portfolio 
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for the basket options should be related to the underlying assets in the basket. The larger the 

amount of underlying’s the more difficult it is to implement such a dynamic strategy and the 

larger the transactions cost, caused by the continuous rebalancing, become. Since most of the 

options are "near-zero-gamma", which means that the directionality, the delta of the option is 

not greatly affected by changes in the underlying market prices, a dynamic hedging strategy 

can be implemented as major changes in the delta are not expected to be caused by changes in 

the underlying market prices. Transaction costs for rebalancing will occur but will be 

manageable as they do not occur very frequently. Lamberton and Lapeyre (1992) showed that 

a dynamic hedge on even a subset of the underlying's works well: they developed a method 

using multiple regression analysis to create a dynamic approximate hedging portfolio of plain-

vanilla options on only a subset of the underlying's. For our "near-zero-gamma" options, such 

a dynamic hedge could further reduce the already low cost of rebalancing. A static hedging 

strategy has the advantage that transaction costs caused by continuous rebalancing can be 

avoided, and therefore this strategy could have a better hedging performance. (Su 2008, pp 2-

4) Su (2006) used the Principal Components Analysis (PCA) to demonstrate that also a static 

hedge on a subset of the underlying's performs well: The PCA was used to determine a dominant 

subset of assets of the basket. Since a dynamic hedge of a basket option often only approximates 

the optimal hedge, the complete neutralization of the delta can only be achieved by a static 

hedge. Since Banco Invest instructs it takes no directional risk in the market, the only hedging 

strategy that fits this case is a static strategy as described above. Moreover, since the assets in 

the respective basket options are all in the same thematic investment universe, it is worthwhile 

to follow the approach of Su (2006) to determine whether it is sufficient to apply a static hedge 

only to a subset of the underlying assets, due to the high correlation between them. 
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Appendix 

 

Appendix 1: Value-at-Risk distribution showing possible tail events (Wilmott 1998, p. 338)  

 

 

Appendix 2: Overview of most common z-statistic for VaR calculation 
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Appendix 3: Linear / Non-linear VaR (Romano 2017) 

 

 

Appendix 4: Overview Greeks – In accordance with (Leoni 2014, pp. 85-97) 
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Appendix 5: Drift calculation in Python 

 

 

Appendix 6: Cholesky decomposition in Python 
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Appendix 7: Volatility calculation in Python (1/2) 

 

  
Appendix 8: Volatility calculation in Python (2/2) 
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Appendix 9: Linear interpolation in Python to get discount rates for Option payoffs (1/2) 

 

 

Appendix 10: Linear interpolation in Python to get discount rates for Option payoffs (2/2) 
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Δ =
𝑆𝑡(𝜀) − 𝑆𝑡

𝜀
 (18) 

Γ =
Δ𝑡(𝜀) − Δ𝑡

𝜀
 

(19) 

Appendix 11: Equations used for Delta/Gamma calculation 

 

 
Appendix 12: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (1/15) 
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Appendix 13: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (2/15) 

 

  
Appendix 14: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (3/15) 
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Appendix 15: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (4/15) 

 

 
Appendix 16: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (5/15) 
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Appendix 17: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (6/15) 

 

 
Appendix 18: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (7/15) 
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Appendix 19: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (8/15) 

 

  
Appendix 20: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (9/15) 
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Appendix 21: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (10/15) 

 

  
Appendix 22: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (11/15) 

 

  
Appendix 23: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (12/15) 
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Appendix 24: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (13/15) 

 

 
Appendix 25: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (14/15) 

 

 
Appendix 26: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (15/15) 
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Appendix 27: Autocall class in Python (1/13) 

 

Appendix 28: Autocall class in Python (2/13) 
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Appendix 29: Autocall class in Python (3/13) 

 

 

Appendix 30: Autocall class in Python (4/13) 
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Appendix 31: Autocall class in Python (5/13) 

 

 

Appendix 32: Autocall class in Python (6/13) 
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Appendix 33: Autocall class in Python (7/13) 

 

 

Appendix 34: Autocall class in Python (8/13) 
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Appendix 35: Autocall class in Python (9/13) 
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Appendix 36: Autocall class in Python (10/13) 

 

 

Appendix 37: Autocall class in Python (11/13) 
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Appendix 38: Autocall class in Python (12/13) 
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Appendix 39: Autocall class in Python (13/13) 

 

 

 

 

Appendix 40: Overview example Autocall option (ID 1015) 
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Appendix 41: Overview example Autocall option (ID 1033) 

 

 

Appendix 42: Overview example Autocall option (ID 1041) 

 

 

Appendix 43: Overview example Autocall option (ID 1130) 
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Appendix 44: Overview example Autocall option (ID 1152) 

 

 

Appendix 45: Overview example Autocall option (ID 1190) 

 

 

Appendix 46: Overview example Autocall option (ID 1203) 
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Appendix 47: Overview example Autocall option (ID 1204) 

 

 

Appendix 48: Overview example Autocall option (ID 1229) 

 

 

Appendix 49: Overview example Autocall option (ID 1244) 
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Appendix 50: Overview example Autocall option (ID 1260) 

 

 

Appendix 51: Overview example Autocall option (ID 1348) 

 

 

Appendix 52: Overview example Autocall option (ID 1392) 
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Appendix 53: Overview example Autocall option (ID 1429) 

 

 

Appendix 54: Overview example Autocall option (ID 1455) 


