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Abstract (100 words maximum)

Banco Invest offers various over-the-counter (OTC) derivatives to institutional clients as part
of its structured investment solutions. These derivatives are managed within the bank’s
Proprietary Trading Book. The focus of this consulting project is developing a Delta-Gamma
Value-at-Risk (VaR) model that Banco Invest can implement to actively manage its equity
derivative portfolio’s underlying risks. The first part contains the estimation of the portfolio
delta and gamma. The second part consists of the quadratic approximation to calculate the
portfolio standard deviation. In the last section, the authors calculate the Delta-Gamma Value-

at-Risk and provide recommendations to Banco Invest.

Keywords: Value-at-Risk, Autocall option, Portfolio Delta, Portfolio Gamma, Delta-Gamma

Value-at-Risk

This work used infrastructure and resources funded by Fundacéo para a Ciéncia e a Tecnologia
(UID/ECO/00124/2013, UID/ECO/00124/2019 and Social Sciences Datalab, Project 22209),
POR Lisboa (LISBOA-01-0145-FEDER-007722 and Social Sciences Datalab, Project 22209)

and POR Norte (Social Sciences Datal.ab, Project 22209).



Contents
1 Value-at-RiSK — GIOUP PAT......cciiieiieriieie e eie e sts ettt ste e sraeste e e snaesteeneesneeneans 4
1.1 Defining ValU-at-RISK.........cccoiiiiiiiiiii i 4
1.2 Pitfalls and limitations of Value at RiSK...........cccceiiiiiiii e, 6
2 The “Greeks” = GrOUP PAIT........oiiiiiiiiiieitiei e nnees 8
2.1 DEITA RISK ... 8
2.2 GAMMA RISK ...ttt bttt bbb r e 9
2.3 Hedging the GIEEKS .......cciiiiiiieieeet bbbt 11
3 Value-at-Risk for a Derivatives Portfolio - Group part..........cccoeeeeeieneiencnenescseeeee, 12
4 Methodology used in Python - Group Part.........ccoeeeeieieneieiineseeeee e 15
5 Autocall option — Individual part (Yannik Peters) .........ccccevvveieiieeieeie e 18
5.1 POIFOHO DEITA ...ttt 22
5.2 POIFOIO GAMIMA ...ttt bbb 24
5.3 Non-linear Delta-Gamma-VaR............occoiiiiiiiiiiie e 25
10 RecommENdation = GrOUP PANT.........ciiiiririieieieiie ettt sttt 27
BIDHOGIAPNY ... bbbt 29
N o] 0T a0 [ OSSPSR 31



N.OVA

1 Value-at-Risk — Group part

Market risk describes the risk of a possible loss in a risk position due to collective adverse
movements of market rates and prices. It is one of the most critical risks for institutions that
actively trade in financial markets; quantifying and monitoring this risk is crucial for allocating
capital and reserves needed to cover potential losses and assess their overall solvency. Market
risks are determined by institutions using standard procedures or internal risk models; one of

these procedures is the Value-at-Risk model. (Deutsche Bundesbank 2022)
1.1 Defining Value-at-Risk

The Value-at-Risk expresses the maximum potential loss, in absolute terms or as a percentage
in the respective currency the asset is held, that results under normal market conditions from an
adverse movement in the relevant market of an investment over a specified time horizon (H) at
a given degree of confidence («) during a fixed holding period of a risk position. The estimated
maximum potential loss of the model, the VaR estimate, is only expected to be exceeded (1-
a) % of the time. (Castellacci and Siclari 2003, pp. 531-532) (Fallon 1996, p. 2) The time
horizon of interest for a VaR estimate can be one day or even months and is determined by the
nature of the portfolio. The horizon should correspond to the most prolonged period needed for
an orderly liquidation or the time to hedge an investment portfolio. (Bodie, Kane, and Marcus
2021, p. 138) The VaR estimate's horizon is determined by the liquidity profile of the assets in
the underlying investment portfolio; the length relates to the time needed to sell these assets at
average transaction volumes so that they have little impact on the market. Since the market
impact of the liquidation scenario is not disregarded when choosing the horizon, the VaR
estimate will be an estimate of a realizable loss and not only a loss on paper. (Wilmott 1998, p.
548) The confidence (o) level for a VaR estimate corresponds to the institution's risk profile,

determined by its degree of risk aversion or regulatory requirements. (Fallon 1996, p. 2)
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Figure 1: Development of VaR over time horizon H (Jorion 2007, p. 118)

A VaR calculation applies to all types of risky assets and can be applied to a single position and
a whole portfolio of risky assets. Assessing VaR helps institutions evaluate the profitability of
an investments in relation to the risk and identify investments with a higher-than-acceptable
risk profile, allowing them to make changes or liquidate such investments. The VaR is used for
active and passive risk measurement and defensive risk control. Ideally, it suits financial and
non-financial institutions that engage in proprietary trading with significant exposure to market
risks. (Jorion 2007, pp. 379-389) VaR estimates typically focus on 'tail events' where liquidity
and large jumps are essential, as illustrated in Appendix 1 below. (Wilmott 1998, p. 337)
Therefore, confidence levels are typically set at 95%, 97.5%, and 99%. (Wilmott 1998, p. 547)
An overview of which confidence levels translate into which z statics of the confidence interval
can be found in Appendix 2. The VAR statistic on portfolio losses is defined as a one-sided
confidence interval:

Prob [AP(At,A%) > —VAR] =1—« (1)

In the above equation, AP(At, A%) stands for the change in the value of a portfolio that results
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from a function consisting of the forecasting period At and the vector AX of the random
variables, with a being the confidence level. The equation can be interpreted as the portfolio's
value will not fall by more than VAR over At number of trading days with a % confidence.
(Fallon 1996, p. 2) The degree of complexity and the computational requirements of the
calculation of a VaR estimate depends in particular on how the price of the instrument changes
in relation to the underlying. Appendix 3 depicts the two different relationships. (Romano 2017)
The calculation of a VaR estimate for non-linear (i.e., derivatives) assets is more complex than
for a linear asset (i.e., a stock or bond). In the context of an option: nonlinearity implies that a
price movement in the underlying asset causes a non-linear change in the option price. There
are three major methodologies to calculate Value-at-Risk, the historical approach, the
parametric or model-building approach, and performing a Monte Carlo simulation. Figure 2

below provides an overview of the different methodologies and their advantages and

disadvantages. (Hull 2021, pp. 293-297 & 317-340)

Type Description Advantages Disadvantages

- Easy way to calculate VaR - Assumes future returns dependend on the past
Estimates VaR using past distribution of

refurns to predict future refurns

- Takes into account possible skeweness and fat tails
- Accurate for non-linear products
- No disfributional assumptions necessary

(impractical)
- Large amount of daily rate history required
- Slow reaction to recent market events

Historical

Estimates VaR using prespecified variables
(volatility & correlation)

Parametric

- Quick and easy to compute
- Accurate for simple & Linear products

- Assumption of normal distribution impractical
- Less quick and accurate for non-linear derivatives

Estimates VaR by simulating random
scenarios

- Accurate for linear & non-linear products

- Flexibility to choose different distributions

- Flexibilty on the choice of variables

- Outputs full distribution of potential product values

- Massive computational power required fo revalue

the portfolio in each scenario

- Accuracy dependend on number of simulation

performed

Figure 2: Overview of different approaches for VaR calculation (Hull 2021, pp. 293-297 & 317-340)

1.2 Pitfalls and limitations of Value at Risk

Despite the widespread use of the Value-at-Risk model, it has several drawbacks that will be
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briefly discussed in the following. First and foremost, all methods require making assumptions
and using them as inputs for the mode; this can result in different outcomes even if the same
modelling approach is used. Assumptions have to be made, e. g. about the applicable horizon
and confidence level and the appropriate number of simulations. (Jorion 2007, pp. 542-557)
Furthermore, all methods rely to some extent on historical data as a proxy to forecast future
estimates. What has happened in the past does not necessarily imply that it will happen again
in the future, so that estimation can be Inaccurate. (Jorion 2007, pp. 542-557) Second, there is
yet to be an industry-wide standard to model VVaR. The different approaches and models to
calculate VaR can also lead to different estimates for the same portfolio. Hence, the correct
interpretation is vital. (Jorion 2007, pp. 542-557) This brings us to the next limitation: a VaR
estimate is calculated assuming normal market conditions, meaning extreme and rare events,
such as so-called black swans, are not considered by the estimate. Because VaR only allows the
risk manager to make statements about which value will not be exceeded with what degree of
certainty, it does not tell anything about the worst outcome in case the VaR number is ex (Hull
2018, pp. 273-274) Additionally, the traditional VaR disregards intervening losses. These occur
when the portfolio’s value falls below VaR during the time horizon but eventually rises above
it at the end of it. This can be an essential aspect for management if the portfolio is marked to
market daily and faces potential margin calls that could result in liquidation in the worst-case
scenario. (Jorion 2007, pp. 117-119) A VaR estimate provides the “big picture” of what is at
risk regarding market risk effects. However, as it only accounts for this specific risk type, it has
a narrow focus on what is really at risk. There are also risks which are not incorporated in the
VaR framework, commonly referred to as “risks not in Value-at-risk” (RNIV): This can result
in the actual Value at Risk of an investment being much higher than what the VaR model is
predicting when capturing many of the other existing risk variables such as (geo-)political risks,

liquidity risks, and regulatory risk. (Jorion 2007, pp. 542-557)
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2 The “Greeks” - Group part

In option pricing, as well as for other derivatives, the "Greeks" are commonly used to measure
the sensitivity of a derivative's value to factors that might affect the price of an options contract.
Appendix 4 gives an overview of the existing Greeks and their definitions. (Leoni 2014) Within
the frame of this work, the focus will be set on two risk metrics, delta (Chapter 3.1) and gamma

(Chapter 3.2) risk, in relation to option pricing, as they are the most fundamental.
2.1 Delta Risk

The delta, designated with the symbol A, is the first-order partial derivative of the option pricing
function ¢ with respect to the underlying asset S. Therefore, it expresses the sensitivity of the
option contract’s price to changes in the price of the underlying asset while leaving all else
constant (ceteris paribus). (Taleb 1997, p. 224) (Bouzoubaa and Osseiran 2010, p. 66)

dc

A= —
as

()

For vanilla options, the delta for long calls and short puts on standard options varies between 0
and 1. Vice versa, short calls and long puts have a delta ranging between 0 and -1. Graphically
expressed is it the slope of the curve that links the option price to the underlying asset price.
The higher the slope, the higher the delta and the more the derivative contract will change in
response to price fluctuations of the underlying asset. Figure 3 below depicts the change in
delta with respect to the Strike price K and the time to maturity T for a European call option.
With the option increasingly getting out of the money (OTM), a higher Strike K, and/or the
option approaching its maturity date T, the delta tends to move towards 0. Conversely, with
lower Strike K, the option being more in the money (ITM), and/or longer time until maturity T,
delta approaches 1. (Hilpisch 2015, p. 78) The most significant change in delta can be observed

with the option being at the money (ATM), S = K, close to its maturity date T. This is because
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theoretically, with the option being ATM a few seconds before it matures, one small move in

either direction would result in the option being either in the money or out of the money, hence

the considerable variation in delta. (Hilpisch 2015, p. 78)

=
delta(k, n

Strike z-

Figure 3: Delta of a European Call Option (Hilpisch 2015, p. 78)

Delta risk can be hedged to obtain a neutral position (A = 0). How this can be achieved for a

portfolio of derivatives will be explained in more detail in section 3.3, Hedging the Greeks.

2.2 Gamma Risk

For minor variations in the price of the underlying asset, delta proves to be good at estimating
the change in the option’s price. However, as soon as price changes become more severe, delta
is extremely sensitive to changes in the underlying asset’s price. This is because delta
graphically represents a linear estimate for a non-linear option function. Hence, the actual
option value might significantly differ from the proportion predicted by delta. (de Weert 2008,
pp. 14-16) Gamma, I', measures by how much or how often a position or a portfolio of options
needs to be re-hedged to maintain a delta-neutral position: it expresses by how much the Delta

might change if the price of the underlying changes. It is the second-order derivative of the
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option pricing function ¢ with respect to the underlying asset S.

d%c

The more curvature the option function entails, the higher the gamma and the more sensitive
the delta is towards changes in the underlying’s price. An increase in the underlying’s price
could significantly increase the delta and vice versa for a low gamma. Considering plain vanilla
options, the gamma is always positive for long positions, whereas for short positions, it is
negative. (Bouzoubaa and Osseiran 2010, p. 72) Figure 4 below shows that the gamma value
Is stable for most of the option's life as it hovers near zero. The most notable value changes in
gamma happen around ATM options close to maturity. As previously stated in the preceding
section, it is for at-the-money options close to maturity where one move in either direction has
the most significant influence on delta as it determines whether the option is exercised. Hence,

the high value in gamma. (Yen Jerome and Lai 2015, pp. 84-85).

gamma(K, T)

Figure 4: Gamma of a European Call option (Hilpisch 2015, p. 79)

How gamma is incorporated when hedging the respective portfolio’s VaR will be explained in

more detail in the next section.

10
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2.3 Hedging the Greeks

As previously described, a portfolio’s sensitivity to such is captured by the “Greek letters”. The
risk framework captures thresholds for each to ensure that these risks stay within the company's
tolerance. Exceeding the limits initializes a process known as hedging. This is where counter
positions in the market are established to ensure that the exposure to a particular risk factor
stays within its predefined limit. In the following, it will be presented how a portfolio is hedged
against delta and gamma. (Hull 2018, p. 161) Hedging delta consists of establishing a counter
position equal to A amount of the underlying. By combining the existing portfolio and the
hedging trade, the new portfolio’s exposure to delta is neutralized. (Hull 2018, pp. 161-162)
For linear products, hedging delta turns out to be static as it protects against both small and
large changes in the value of the underlying. Further, once a linear hedge is implemented, there
IS no need to adjust it over time. The delta for a linear portfolio stays constant. (Hull 2018, pp.
163-164) Neutralizing delta exposure for non-linear products such as options proves to be a
more complex procedure due to the non-linear relationship between the price of the underlying
and the options contract. As mentioned earlier in this work, eliminating a portfolio’s delta only
offers protection from small fluctuations in the price of the underlying. Additionally, once it is
set up, the delta hedge has to be adjusted frequently, also known as dynamic hedging or
"rebalancing”. This is because Delta constantly evolves throughout a non-linear product's
lifetime. (Hull 2018, pp. 165-168) In practice, rebalancing is costly as, e.g., hedging a long
position on an option involves buying the underlying when its price increased and selling it
when it dropped to consistently create a synthetical position opposite of that to neutralize the
option’s delta. This is usually reflected in the premiums that option buyers have to pay. (Hull
2018, p. 169) With more significant changes in the prices of the underlyings, a portfolio’s
gamma comes into play. There are two ways of adjusting for the additional gamma exposure of
a non-linear portfolio that will be briefly described below. (Hull 2018, pp. 169-170) Firstly, the

11
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portfolio is made gamma neutral by trading options with opposite gammas on the same
underlyings as the options in the existing portfolio. Non-linear products are needed as linear
products do not have exposure to gamma. By doing this, the new and combined portfolio’s delta
also changes and would have to be re-adjusted by trading opposite positions in the underlyings
(Hull 2018, pp. 170-171) Implementing this in practice can be challenging as trading non-linear
derivatives in the amounts needed often is impossible. Further, re-adjusting for the new delta
of the combined portfolio is costly as it involves many transactions. (Hull 2018, p. 177)
However, as described earlier, it makes economically more sense to see the gamma as a
determinant of how often a portfolio needs to be re-hedged. In general, a portfolio with larger
gamma would imply more frequent delta neutralization, whereas a smaller gamma results in
less often adjustments to the portfolio, as changes in delta only tend to be small. (Hull 2018,
pp. 169-170) Banco Invest hedges its equity derivatives portfolio with underlyings (delta
neutralization) rather than options (gamma neutralization). The Bank does not take directional
market risk, keeping the difference between the deltas (theoretical quantities) and the quantities
held in the portfolio as close to zero as possible. These portfolio quantities are adjusted daily,
at 30-minute intervals, based on market conditions, namely the evolution of the underlying

shares.
3 Value-at-Risk for a Derivatives Portfolio - Group part

To begin with, calculating Value-at-Risk for a single asset is a straightforward process.
Assuming linearity in the change of the portfolio’s value to changes in the underlying and

normally distributed returns, VaR is calculated as follows:
1
VaR = w;S; | u 8t — o; (6t2) a(1 —c) 4)

where w; is the quantity of the asset i owned with price S;. This is multiplied by the asset’s drift

over a predefined time horizon &t, with a(1 — ¢) being the inverse cumulative distribution

12
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function of the standard normal distribution. This process is called delta approximation.
(Wilmott 1998, pp. 548-550) Regarding a portfolio of assets, the calculation of VaR becomes
more complex. First, the volatilities and covariances of all assets in the portfolio have to be
computed. If this is done, the formula to calculate the VVaR of a portfolio with M assets

consisting of w; amount of asset i and w; amount of asset j is:

M M
1
VaRPortfolio =—-M| a(1l—c)(6t2) 22 WiW;0;0;pij ()

i=1 j=1
with g; being the volatility of asset i and p;; the correlation between asset i and j. (Wilmott
1998, pp. 551) Estimating VaR for a portfolio of derivatives, as mentioned earlier, the delta
approximation would only be sufficient for portfolios where the underlyings show small
movements in price. This is because the relationship between the portfolio's value and price
changes in the underlyings can no longer be regarded as linear. For non-linear portfolios, the
sensitivity to gamma additionally has to be considered. This is visually demonstrated in Figure
5 below. It depicts the relationship between the price of an underlying asset to the corresponding
value of a long call option on the same. While the underlying’s price function is normally
distributed, the option has a positively skewed probability distribution with a smaller tail on the
left. (Hull 2018, pp. 333-334) This violates the initial premise that probabilities are normally
distributed. If VaR were calculated based on this assumption, it would be excessively high. As
a result, approximations for the portfolio's sensitivity to changes in the underlyings need to be

reevaluated. (Wilmott 1998, pp. 550-551)

13
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Figure 5: Translation of an Asset's normal probability distribution into that of a long call option (Hull 2018, p. 333)

To recapture, with larger swings in the prices of the underlyings of an options portfolio, the
previous delta approximation to calculate VaR turns out to be inappropriate. A better estimation
is achieved by incorporating the portfolio’s sensitivity to gamma. Gamma exposure is
particularly challenging as a second-order approximation is required. (Wilmott 1998, p. 551)
This will be shown below. Assume a portfolio M consisting of a single option on an asset with
price S. The change in the value of the portfolio §M compared to changes in the price of the
underlying &S can be expressed as follows:

) 1 92%P oP
M = — 85 + = = (65)? +o

5 > 353 St + -+ (6)

This can ultimately be reformulated into:
1 1
SM = AcS 5tz ¢ + 6t (AuS + §F0252¢2 + @) + e (7)

where 0 is the time drift of the option (Theta). (Wilmott 1998, p. 551) The quadratic term, the

portfolio's exposure to gamma, is of specific interest above. Figure 6 shows three different

1
distribution functions. The distribution of the underlying with a standard deviation of ¢S dtz is

considered to be normal. The projected distribution for the change in the value of the options

14
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portfolio according to the delta approximation. It is normally distributed with a standard

1
deviation of AgS dtz. Finally, the options portfolio’s distribution using the delta-gamma

approximation. (Wilmott 1998, pp. 551-552)

35

distribution of option
portfolio, delta

/ approximation

distribution of option

portfolio, ——— -
delta’/gamma
approximation

distribution of underlying

-0.1 —0.08 —-0.086 -0.04 —0.02 0 0.02 0.04 0.06 008 0.1

Figure 6: Relationship of an asset price’s normal distribution to the distribution of an option portfolio according to the delta
as well as the delta-gamma approximation (Wilmott 1998, p. 552)

By looking at the three different distributions, it is evident that the one for the delta-gamma
approximation is not normally distributed compared to the other two. (Wilmott 1998, pp. 551-

552)
4 Methodology used in Python - Group part

In the following, the Assumptions used to calculate the Delta-Gamma VaR in Python, as well
as the fundamental parts of the code, are presented and explained. As the basis for all
calculations of the various input statistics of the VaR model, the authors assume one year
consisting of 252 trading days. Because of their ease of use for time series modelling, such as
symmetry, time-additivity, and the log-normal distribution assumption, the various underlyings
performances are transformed into logarithmic returns. Next, each option's volatility is

calculated using equally weighted implied volatilities of the option's underlyings. In the absence

15
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of implied volatility, the underlying’s historical volatility on a 30-day basis is used.
Furthermore, to determine the correlation, variance, and covariance of the different underlyings,
a maximum lookback window of 2 years is assumed, the same as the option’s time to maturity
on the trade date. From there on, for each day that has progressed, the option’s remaining time
to maturity is used to calculate the above statistics until a predefined minimum of 30 days was
reached. Below this, correlation, variance, and covariance are calculated on a 30-day basis until
the option matures. At this point, it is referred to Appendix 5-6 for the code example. The
options in Banco Invest’s portfolio are valued as of 30/06/2022 using Monte Carlo simulations.
The first step of Monte Carlo involved calculating the geometric Brownian Motion. In finance,
this is a stochastic process to model random behavior over a specific time frame (6t) that
consists of two main components, drift, and a randomly generated variable. (Yan 2017, pp.
421-428) Drift indicates the direction of an asset’s historical returns, allowing predictions on
an asset’s expected return. It is calculated as shown in equation (8) using the same receding
time horizon as explained for the underlying’s statistics, except for the time series’ minimum

requirement of 30 days.

(8)

] Variance (stock returns)
Drift = [ Mean (stock returns) — * Ot

2

Where underlyings are expected to pay dividends, the drift is adjusted further, as demonstrated
in Appendix 7. The next step is to obtain a random number by multiplying an asset’s historical

standard deviation with a random, standard normally distributed variable (Z ([Rand (0;1)])).

Random variable = (Std.Dev. * Z([Rand(0; 1)])) « /6t 9)

As a result, the equation for predicting the future value of an asset (St+1) sums up to the

following:

Drift + Random variable

Sty1 = Sp* e (10)

However, when pricing options comprised of baskets of underlyings, Cholesky Decomposition

16
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is performed as an extension of the Monte Carlo simulation to account for the correlation
aspects between the various reference assets. A brief explanation of an example decomposition
will be provided below. Appendix 8 contains the code for the Cholesky decomposition
performed for the different options. Assume a 2 = 2 symmetric, positive definite correlation

matrix X, where p is the correlation between X; and Xo.

(3 0

The correlation matrix can then be decomposed into a 2 * 2 lower triangular matrix L, where

LLT = X. (Wilmott 1998, pp. 682-683) This appears to be as follows:

L=(; 1(ip2) 12

Following the generation of L, the random variables with desired correlation can be expressed

as LZ, where Z is a column vector of the independent standard normal random variables:
A
z=(7) (13)
As a result, by setting XL = Z, we can sample from a bivariate normal distribution, indicating

that: (Yen Jerome and Lai 2015, pp. 99-100)

X1 =2 (14)

Xo=p*Zy+1—-p*=Z, (15)

To generate a sufficient sample of possible future asset values for the different underlyings to
calculate the option's payoffs appropriately, 200.000 simulations are run. Following this, the
averaged payoffs are discounted using the respective’s maturity Euribor 3-month forward.
Where no forward for the maturity of the option’s payoffs is readily available, linear
interpolation is performed to compute the discount rate for the respective maturity’s payoff, as
shown in Appendix 9-10. Further, each underlying’s delta is estimated by changing its price by

1%, while leaving the other’s prices constant, and calculating the new price of the option. The

17
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difference in both derivative prices is then divided by the relative changes in the prices of the
underlying. The option’s delta is estimated as the weighted average of the underlying’s deltas,
assuming an equally weighted portfolio of underlyings. To calculate gamma, the above
calculation is done a second time to get the change in delta. The difference in both deltas is then
divided by the relative adjustment to obtain the gamma value. The equations used and the
respective code for this can be found in Appendix 12-26. In terms of VVaR, the confidence level
was set to 99,9 %. Calculations are performed initially for a one-day time horizon and then later
multiplied by the square root of 252 to get the annualized VaR, as this is the requirement from
the risk management department at Banco Invest. Detailed calculations performed for this in

Python can be found in Appendix 26.
5 Autocall option — Individual part (Yannik Peters)

Autocallables are an exotic barrier option that automatically triggers an event if prespecified
conditions are satisfied. Gaining popularity after the 2008 financial crisis, they offer investors
the possibility of yield enhancement in a low-yield environment based on the performance of
underlying assets such as equities, commodities, or currencies, whether as a single asset or a
basket of reference assets. (Guillaume 2015b, pp. 1-3) With this option, investors have the
possibility to earn a higher coupon than currently offered in the market or face the risk of not
receiving any coupon at all. This is contingent on the underlyings crossing a so-called coupon
barrier level, and as the name already indicates, these options are automatically exercised once
the autocall barrier is concurrently broken by the basket of underlying assets. Characteristics
for Autocallables vary across the market. While some have differing coupon and autocall
thresholds, others have them set to the same. A separate autocall and coupon barrier level
implies that if the underlyings cross the latter but stay below the autocall threshold, a coupon is

paid to the investor while the option remains in place and proceeds to the next observation date.

18
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Only in case the autocall barrier is crossed, the option is exercised, and the investor receives
the principal amount invested plus a coupon. In a scenario where both thresholds are equal,
upon crossing the autocall level, the investor receives the initial amount invested and the coupon
and the option cease to exist. (Z. Tong 2019, pp. 440-441) Autocalls can further be
differentiated in being capital protected, investor’s initial investment is guaranteed to be paid
back at maturity, or not. The latter, also called down-and-in feature, results in the investor’s
redemption amount being linked to the worst-performing stock of the basked of underlyings. If
the underlying’s value declines by more than x %, the investor will face losses to the initial
investment amount. (Bouzoubaa and Osseiran 2010, pp. 198-202) In terms of observation dates,
the trigger levels are either observed continuously or discrete, meaning that for the latter, the
underlyings performances are assessed on prespecified dates. If no early redemption occurs at
an observation date, the option proceeds to the next date, where it is again assessed. Continuous
Autocallables will be exercised at any time during their lifespan once the underlyings
simultaneously cross the autocall barrier. This implies that discrete Autocallables are less likely
to be called than continuous ones, leaving everything else constant. (Deng, Mallett, and
McCann 2011, pp. 327-328) Some Autocallables come with an embedded memory function
for coupon payments. A memory function guarantees that an investor receives all past coupons
not paid on previous observation dates if all of the underlyings are above the autocall barrier on
subsequent observation dates. (Guillaume 2015, pp. 73-74) The Autocallables offered by
Banco Invest, and at the same time focus of this work, are capital-protected multi-asset equity
options. The options in the bank’s portfolio have a maximum maturity of two years with
discrete, semi-annual coupon dates. While the potential coupon payments are designed to
increase gradually with successive observation dates, Banco Invest’s options do not have an
embedded memory function. Autocall and coupon barrier are equal at 100 % of the strike price,

meaning that only in the event of an Autocall does the investor receive the coupon plus the
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initial investment. Table 1 shows the different possible payoff scenarios for an example
Autocall option. Under the assumption that one year consists of 252 trading days, the first
observation date is set exactly 126 trading days, the second one 252 trading days, the third 378
trading days, and the final observation date 504 trading days after the effective start date of the
option. For simplicity reasons, the time value of money is not considered for this example. In
the first scenario, the basket of underlyings breaches the autocall barrier on the first observation
date after six months, resulting in the payment of the coupon of 0,30 % plus the initial
investment and the option is exercised. The following scenario involves breaking the autocall
level on the third observation date. The investor receives an increased coupon of 0,90 % on the

initially invested amount after 18 months, and the option is then terminated.

Table 1: Payoff scenarios for a 2-year Autocall option with gradually increasing coupons

Payoff at observation date: Scenariol  Scenario 2 Scenario 3  Scenario 4
1. 6 months 100,30 % 0,00 % 0,00 % 0,00 %
2. 12 months - 0,00 % 0,00 % 0,00 %
3. 18 months - 100,90 % 0,00 % 0,00 %
4, 24 months - - 101,95 % 100,00 %

In scenarios three and four, the option remains in place until the final observation date. The
underlyings do not breach the barrier level in scenario four, and the investor only receives back
the original investment. Scenario three includes the underlyings triggering the autocall event
on the final observation date after 24 months, with the investor receiving a coupon of 1,95 %
and the principal amount invested. (Bouzoubaa and Osseiran 2010, pp. 187-189) Autocall
options are highly innovative and customizable instruments attractive for investors looking for
specific equity exposure while enjoying the benefits of capital protection and the possibility of
attractive yields. While the investor favors a redemption earliest possible (1% observation date),
the bank would like the underlyings to stay below the autocall barrier. The preferred scenario

for the investor would earn him an above-market yield on a very short-term product in a rallying
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market. He could then re-deploy the initial investment he receives back from the bank into other
products that are more bullish to participate in the market’s upcycle fully. On the other hand,
the bank would have been provided with interest-free capital from the investor and earned a
premium from selling the option in their preferred case. Figure 7 below provides a brief
overview of Banco Invest’s portfolio of fifteen Autocall options. The class created in Python to
calculate each option’s payoff can be found in Appendix 27-39. On the right, the different
coupons for the first, second, and third observation date, as well as Floor and Cap, are given.
The latter two refer to the minimum and maximum possible return of each option in case the
underlyings simultaneously do not exceed their strike during the option’s life, respectively do

so on the last observation date, which is also the maturity date of the option.

Coupons on observation dates:

Product ID Effective date Maturity date Cap Floor = 2nd 3rd
1015 |Invest Health & Tech Jun-20 30/06/2020 | 07/07/2022 |2.40%| 0% | 0.60% 1.20% 1.80%
1033  |Invest Personal Care Ago-20 01/09/2020 | 07/09/2022 |2.40%| 0% | 0.60% 1.20% 1.80%
1041  |Invest Back to School Set-20 30/09/2020 | 07/10/2022 |2.80%| 0% | 0.70% 1.40% 2.10%
1130  |Invest Digital 5G Fev-21 26/02/2021 | 06/03/2023 |2.40%| 0% | 0.60% 1.20% 1.80%
1152  |Invest Natural Resources Abr-21 30/04/2021 | 05/05/2023 |2.00%| 0% | 0.50% 1.00% 1.50%
1190  |Invest Fintech Jul-21 30/07/2021 | 07/08/2023 |2.00%| 0% | 0.30% 0.60% 1.20%
1203  |Invest Health Innovation Ago-21 31/08/2021 | 07/09/2023 |2.00%| 0% | 0.30% 0.60% 1.20%
1204  |Invest Back to School Set-21 30/09/2021 | 06/10/2023 |2.00%| 0% | 0.35% 0.70% 1.20%
1229 |Invest Infraestruturas Globais Out-21 29/10/2021 | 06/11/2023 |1.85%| 0% | 0.30% 0.60% 1.05%
1244 |Invest Hydrogen Nov-21 30/11/2021 | 07/12/2023 |1.80%| 0% | 0.25% 0.40% 0.60%
1260 |Invest Communication & Media Dez-21 | 30/12/2021 | 05/01/2024 (2.20%| 0% | 0.40% 0.80% 1.20%
1348  |Invest Metaverse Mar-22 31/03/2022 | 08/04/2024 |1.95%| 0% | 0.30% 0.60% 0.90%
1392  |Invest Basic Resources Abr-22 29/04/2022 | 06/05/2024 |2.00%| 0% | 0.30% 0.60% 0.90%
1429  |Invest Technology Jun-22 30/06/2022 | 08/07/2024 |2.00%| 0% | 0.25% 0.50% 0.75%
1455 |Invest Blockchain Jul-22 29/07/2022 | 05/08/2024 |2.40%| 0% | 0.40% 0.80% 1.20%

Figure 7: Autocall portfolio overview of Banco Invest

On the right, the option’s ID and name are given. As indicated by their respective names, Banco
Invest categorizes each Autocall option into a different industry, from which the underlyings
are composed. Appendix 40-54 provides an overview of the different option’s underlyings and
their correlations within Banco Invest’s portfolio. Correlation is measured one year prior to the

respective option basket's setup until the option's trade date. It can be seen that the different
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stocks within an option are positively correlated with one another. Selling the options, Banco
Invest is “short on the correlation” between the reference assets. With a lower correlation, the
possibility of all five stocks ending above the autocall barrier will likely decrease. This is in

favor of Banco Invest as it results in the bank not having to pay the coupons agreed.
5.1 Portfolio Delta

When Banco Invest sells Autocall options to its investors, the bank is short on the underlying.
Assuming the market rises, the deltas of the bank’s Autocall options would also rise, as the
likelihood of the underlyings reaching their strikes would increase. Hence, hedging the spot risk
in the form of the delta is a top priority. In order to neutralize the portfolio against delta, the
bank would have to be buy the underlyings. Figure 8 below summarizes the calculated delta of
each Autocall option and the overall portfolio of Autocall options at Banco Invest. Furthermore,
the notional value of the delta was also calculated to estimate the EUR amount that every option
and the overall portfolio would have to be hedged with. Attention is drawn to the fact that the
below deltas were calculated assuming a long position on the option, hence from the perspective
of Banco Invest, they have to be taken as negative values. Looking at the figure below, it is
noticeable that four deltas are at zero. This is, for example, the case for the delta for Autocall 1D
1015. Considering, at the time of pricing, the option only had five trading days left until its
maturity date (Figure 7) and additionally looking at the strike prices of each underlying in
relation to the prices the underlyings were trading as of 30/06/2022 (Appendix 40), the chances
of the underlying SAP GY Equity ending up above its strike under normal market conditions

are close to zero, hence the delta value.
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ID Notional Weight Delta Notional value
1015 4.098.767,49 € 12,29% 0,0000 - £
1033 1.809.624,96 € 5,42% 0,0120 21.674,04 €
1041 2.100.436,10 € 6,30% 0,0000 - £
1130 2.339.921,22 € 7,01% 0,0118 27.551,94 €
1152 1.601.003,35 € 4,80% 0,0215 34.355,78 €
1190 2.733.564,22 £ 8,19% 0,0019 5.287,06 €
1203 2.417.800,74 € 7,25% 0,0031 7.402,10 €
1204 1.760.549,78 € 5,28% 0,0000 - £
1229 1.737.793,20€ 5,21% 0,0090 15.601,05 €
1244 2.877.061,96 € 8,62% 0,0044 12.679,22 €
1260 1.622.200,08 € 4,86% 0,0000 - £
1348 2.179.670,84 € 6,53% 0,0091 19.902,81 €
1392 1.925.444 03 € 577% 00,0083 15.911,49 €
1429 2.653.565,40 € 7,95% 0,0024 0.282,54 €
1455 1.500.000,00 € 4,50% 00,0038 5.674,80 €

Delta (A) - Agegregated Autocall options Portfolio

Option type Notional Weight Notional value
Autocall 33.357.503,37 € 100,00% 0,0052 172.382,82 €

Figure 8: Delta (A) of Banco Invest's Autocall options portfolio

The same can be said for the other IDs where the delta is estimated to be zero. In each case,
either one or multiple underlyings are too far away from their respective strike price, implying
the likelihood of the option being auto-called is close to zero. The highest delta can be observed
for option ID 1152 (0,0215) and 1130 (0,0118), respectively. Both the option’s underlyings are
reasonably close to reaching their strikes, increasing the likelihood of the option being auto-
called. In terms of the overall portfolio delta, multiplying each option's weight with its
respective delta it was estimated to be 0,0052. Hence, buying the different underlyings worth a
total of 172.382,82 € would neutralize the portfolio’s delta. However, the deltas estimated are
still very low compared to plain vanilla or other exotic options. This is because of the partly
quite high strikes for some of the underlyings but can change pretty quickly around observation
dates. Autocall options show discontinuities in their payoff profile on these dates, resulting in
the “Greeks” and, in particular, delta being unstable and explosive, which makes hedging more
challenging to maintain. Delta must be closely watched at these dates to avoid suddenly trading

large quantities of the underlyings. Further, hedging delta on a daily basis avoids being forced

23



N.OVA

to buy large quantities of the underlying when it’s trading around the autocall barrier close to
an observation date. This could push the price of the underlying unintendedly above its strike.
Generally, it can be said that the closer to the observation date or maturity the options are, the
more frequently it is advised to adjust the hedging. By buying the underlyings to hedge the
Autocall portfolio’s delta, Banco Invest is also long on dividends. In general, the more
dividends are expected to be paid by the underlying, the more it will profit the bank on its hedge.
However, as explained before, the drift is also adjusted for this, lowering the expected future
movement of an underlying over the course of the option’s life. Most dividend are announced
for longer terms in the future, but only voted on once it gets close to the actual payout date.
Close attention must therefore be paid to dividend announcements, especially companies
lowering their dividend projections for the future. Ignoring this would falsely imply calculating
the option’s price on the basis of a lower expected movement in the underlying’s price. This
would ultimately result in a lower than usual Autocall option price or the strikes of the
respective underlying being set too low. Maintaining delta neutrality for an individual option
on an asset would be prohibitively expensive if the asset was traded daily. However, doing so
for a portfolio of several options is feasible. This is because profits from a variety of trades
offset the cost of daily rebalancing. Hence, there are significant economies of scale in trading

derivatives.
5.2 Portfolio Gamma

In Figure 9 below, the gamma for each option and also for the whole portfolio of Autocall
options is summarized. As already seen for the deltas for Autocalls with IDs 1015, 1041, 1204,
and 1260, their gammas are also zero. The options are deep out of the money, so it is not
surprising as even bigger moves in the underlying’s prices wouldn’t impact the deltas of the

options by much. In terms of rebalancing, these options do not frequently need to be delta
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hedged to neutralize directional exposure in the market. The biggest gamma value can be
observed for the Autocall with ID 1392. This is due to all of the option’s underlyings being
close to or above their respective strike price with the option approaching its first observation
date, hence a move in the price of the underlying significantly impacts the value of delta. This
also means that this option has to be delta re-hedged the most frequent, in relative terms, as of
30/06/2022. For the overall portfolio, the gamma, calculated by taking the weighted average,

was estimated to be 0,1963.

[»] Notional Weight Gamma
1015 4.098.767,49 € 12,29% 0,0000
1033 1.809.624,96 € 5,42% 0,2395
1041 2.100.436,10 € 6,30% 0,0000
1130 2.339.921,22 € 7,01% 0,0000
1152 1.601.003,35 € 4,80% 0,3414
1190 2.733.564,22 € 8,19% 0,1934
1203 2.417.800,74 € 7,25% 0,4244
1204 1.760.549,78 € 5,28% 0,0000
1229 1.737.793,20€ 5,21% 0,2352
1244 2.877.061,96 € 8,62% 0,3257
1260 1.622.300,08 € 4,86% 0,0000
1348 2.179.670,84 € 6,53% 0,4138
1392 1.925.444,03 € 5,77% 0,5699
1429 2.653.565,40 € 7,95% 0,1657
1455 1.500.000,00 € 4,50% 0,1513

Gamma (IN) - Aggregated Autocall options Portfolio

Option type Notional Weight Gamma
Autocall 33.357.503,37 £ 100,00% 0,1963

Figure 9: Gamma (T) of Banco Invest's Autocall options portfolio

5.3 Non-linear Delta-Gamma-VaR

Figure 10 below summarizes the VaR for each Autocall option and the combined VaR for the
undiversified and diversified portfolios. The diversified portfolio is expected to not lose more

than EUR 23.173,93 over the course of one trading day with 99,9 % confidence. The
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undiversified VaR is almost three times higher as it calculated by adding the fifteen individual
VaR numbers for each option. For the diversified VaR, the diversification effects of the
different option’s underlyings are additionally considered for the estimation. This is done by
incorporating the variance-covariance matrix of the total portfolio’s underlyings. Each option
itself is focused on a specific industry, so individual VaR tends to be relatively high. It entails
lump risk. Therefore, the portfolio VaR will always be smaller than summing up the individual

VaR numbers of each position.

ID Notional Weight VELS Notional value
1015 4.098.76749 € 12,29% 0,00% - £
1033 1.809.62496 € 5,42% 0,15% 2.736,75 €
1041 2.100.436,10 £ 6,30% 0,00% - £
1130 2.339.921.22 € 7,01% 0,42% 0.893,21 €
1152 1.601.003,35 € 4,80% 0,88% 14.055,86 €
1190 2.733.564,22 £ 8,19% 0,05% 1.260,01 €
1203 2.417.800,74 £ 7,25% 0,27% 6.434,21 €
1204 1.760.549,78 € 5,28% 0,00% - £
1229 1.737.793,20 € 5,21% 0,45% 7.75849 €
1244 2.877.061,96 € 8,62% 0,09% 2.478,01€
1260 1.622.300,08 € 4,86% 0,00% - £
1348 2.179.670,84 £ 6,53% 0,65% 14.276,33 €
1392 1.925.444,03 € 5,77% 0,21% 3.995,37 €
1429 2.653.565,40 € 7,95% 0,03% 875,87 €
1455 1.500.000,00 € 4,50% 0,23% 3.42730€

Undiversified VaR: 67.191,41 €

1-day VaR @ 99,9 % - Aggregated Autocall options Portfolio

Option type Notional Weight Volatility Diversified VaR
Autocall 33.357.503,37 € 100,00% 0,07% 5,11% 23.173,93 €

Figure 10: Delta-Gamma VaR for the Autocall options portfolio of Banco Invest

Considering a mix of these different industries in the overall Autocall options portfolio, the
combined VaR is much lower. The estimated undiversified VaR above is almost three times
larger than the diversified one, implying that, looking at the bigger picture, diversification is

critical in limiting downside risk.
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10 Recommendation - Group part

This chapter address how the bank's management should deal with the risk associated with the
derivatives Portfolio. Figure 35 below summarizes the delta, gamma, and Delta-Gamma Value-
at-Risk for Banco Invest’s overall options portfolio. The total derivatives portfolio of the bank
has a notional of EUR 157.067.916, consisting of 53 different options. The 1-day Value-at-Risk
at 99,9% confidence level for the bank's overall derivatives portfolio is EUR 372.773, implying

a 99,9 % probability the portfolio will not lose more over the next trading day.

Banco Invest - Aggregated Derivatives Portfolio

Notional 157.067.916,00 €

MNo. of option positions 53
Delta (A) 0,0163
Gamma (I) 0,3166
Volatility 4,91%
VaR (1d, @ 99,9%) 0,24%
VaR (1d, @ 99,9%]) 372.773,00 €

Figure 35: Aggregated Portfolio Delta-Gamma VaR

As the bank does not take a directional risk on the market, the delta on combined option’s
portfolio must be neutralized with an appropriate hedging strategy. All five option types in the
Banco Invest derivatives portfolio are basket options. The challenge of hedging, when facing
options with a basket of underlying’s, becomes evident in their correlated structure. This makes
the evaluation of the contract's price but also the risks, e.g., delta, gamma, and their hedging a
complex procedure. (Su 2006, pp. 3-5) This is because it is difficult to detangle the underlying
basket’s distribution. The correlation between the underlying tends to be volatile and can only
be estimated. This further complicates the "perfect” hedging of basket options. As a result, in
many cases, only a part of the underlying basket is used for hedging, or the payoffs of the basket
are replicated "super-hedged”. (Su 2008, pp. 19-23) Another difficulty arises from the number
of underlying assets: When following a standard dynamic hedging strategy, a hedging portfolio
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for the basket options should be related to the underlying assets in the basket. The larger the
amount of underlying’s the more difficult it is to implement such a dynamic strategy and the
larger the transactions cost, caused by the continuous rebalancing, become. Since most of the
options are "near-zero-gamma", which means that the directionality, the delta of the option is
not greatly affected by changes in the underlying market prices, a dynamic hedging strategy
can be implemented as major changes in the delta are not expected to be caused by changes in
the underlying market prices. Transaction costs for rebalancing will occur but will be
manageable as they do not occur very frequently. Lamberton and Lapeyre (1992) showed that
a dynamic hedge on even a subset of the underlying's works well: they developed a method
using multiple regression analysis to create a dynamic approximate hedging portfolio of plain-
vanilla options on only a subset of the underlying's. For our "near-zero-gamma" options, such
a dynamic hedge could further reduce the already low cost of rebalancing. A static hedging
strategy has the advantage that transaction costs caused by continuous rebalancing can be
avoided, and therefore this strategy could have a better hedging performance. (Su 2008, pp 2-
4) Su (2006) used the Principal Components Analysis (PCA) to demonstrate that also a static
hedge on a subset of the underlying's performs well: The PCA was used to determine a dominant
subset of assets of the basket. Since a dynamic hedge of a basket option often only approximates
the optimal hedge, the complete neutralization of the delta can only be achieved by a static
hedge. Since Banco Invest instructs it takes no directional risk in the market, the only hedging
strategy that fits this case is a static strategy as described above. Moreover, since the assets in
the respective basket options are all in the same thematic investment universe, it is worthwhile
to follow the approach of Su (2006) to determine whether it is sufficient to apply a static hedge

only to a subset of the underlying assets, due to the high correlation between them.

28



N.OVA

Bibliography

Bodie, Zvi, Alex Kane, and Alan J. Marcus. 2021. “Investments.” New York.

Bouzoubaa, Mohamed, and Adel Osseiran. 2010. “Exotic Options and Hybrids.” Chichester.

Castellacci, Giuseppe, and Michael J. Siclari. 2003. “The Practice of Delta—Gamma VaR:
Implementing the Quadratic Portfolio Model.” European Journal of Operational
Research 150 (3): 529-45. https://doi.org/10.1016/S0377-2217(02)00782-8.

Deng, Geng, Joshua Mallett, and Craig McCann. 2011. “Modeling Autocallable Structured
Products.” Journal of Derivatives and Hedge Funds 17 (4): 326-40.
https://doi.org/10.1057/jdhf.2011.25.

Deutsche Bundesbank. 2022. “Deutsche Bundesbank: Marktrisiko.” 2022.
https://www.bundesbank.de/de/aufgaben/bankenaufsicht/einzelaspekte/eigenmittelanford
erungen/marktrisiko/marktrisiko-598476.

Fallon, William. 1996. “Calculating Value-at-Risk.” Philadelphia.
https://www.researchgate.net/publication/2428988_Calculating_Value-at-Risk.

Guillaume, Tristan. 2015a. “Autocallable Structured Products.” THE JOURNAL OF

DERIVATIVES 73. www.iijournals.com.

. 2015b. “Analytical Valuation of Autocallable Notes.” International Journal of
Financial Engineering 02 (02): 1550016. https://doi.org/10.1142/s2424786315500164.

Hilpisch, Yves. 2015. “Derivatives Analytics with Python.” Chichester.

Hull, John C. 2018. “Risk Management and Financial Institutions.” New Y ork.

Hull, John C. 2021. “OPTIONS, FUTURES, AND OTHER DERIVATIVES.” New York.

Jorion, Philippe. 2007. Philippe Jorion - Value at Risk, 3rd Ed._ The New Benchmark for
Managing Financial Risk (2006, McGraw-Hill). Third. The McGraw-Hill Companies,
Inc.

Leoni, Peter. 2014. The Greeks and Hedging Explained.

29



N.OVA

Romano. 2017. “Options Trading.” May 2017. https://romanornr.medium.com/options-
trading-fd4dObffb2c5.
Su, Xia. 2006. “Hedging Basket Options by Using a Subset of Underlying Assets.” 14. Bonn.

https://www.econstor.eu/bitstream/10419/22959/1/bgsel4 2006.pdf.

. 2008. “Essays on Basket Options Hedging and Irreversible Investment Valuation.”
Rheinische Friedrich-Wilhelms-Universitat Bonn. https://bonndoc.ulb.uni-
bonn.de/xmlui/handle/20.500.11811/3322.

Taleb, Nassim Nicholas. 1997. “Dynamic Hedging: Managing Vanilla and Exotic Options.”
New York.

Weert, Frans de. 2008. “Exotic Options Trading.” Chichester.

Wilmott, Paul. 1998. Derivatives : The Theory and Practice of Financial Engineering. John
Wiley & Sons Ltd.

Yan, Yuxing. 2017. Python for Finance : Financial Modeling and Quantitative Analysis
Explained. Birmingham: Packt Publishing.

Yen Jerome, and Kin Keung Lai. 2015. “Emerging Financial Derivatives.” New York.

Z. Tong, Kevin. 2019. “A Recursive Pricing Method for Autocallables under Multivariate
Subordination.” Quantitative Finance and Economics 3 (3): 440-55.

https://doi.org/10.3934/QFE.2019.3.440.

30



N.OVA

Appendix

Tail events

Normal events

/
/

Figure 27.1 ‘Normal events’ and ‘tail events’.

Appendix 1: Value-at-Risk distribution showing possible tail events (Wilmott 1998, p. 338)

Cl Z
80% 1,282
85% 1,440
90% 1,645
95% 1,960
99% 2,576
99,5% 2,807
99,9% 3,291

Appendix 2: Overview of most common z-statistic for VaR calculation
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Linear payoff (example)

, Price
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Non-linear payoff (example)
PNL

A

> Price

Linear vs. Non-linear payoff

Appendix 3: Linear / Non-linear VaR (Romano 2017)

Name  Symbol Derivative Measures Definition
dc Measures how much an option's price is estimated to shift
Delta s Equity Exposure in response to a change of a one unit in the underlying
security
d*c . . .
- - . Measures the amount of change in Delta if the price of the
Gamma d2s Payout Convexity . . .
underlying security changes by one unit
oc M he ch inth i ice induced by th
- easures the change in the option price induced by the
Theta aT Time Decay g p . p .y
decrease of 1 day of the remaining time to maturity
dc Measures how much an option's price will change in
Vega e Volatility Exposure response to a 1% change in the volatility of the underlying
securities
de .
— Measures how much the value of an option changes based
Rho ar Interest Rate Exposure . .
on a 1% change in the interest rate

Appendix 4: Overview Greeks — In accordance with (Leoni 2014, pp. 85-97)
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drift_calc(data, return_type="
if return_type == 'log
1Ir = log returns(data)
elif reutrn_type ‘simple”:
r N data)

var = lr.var()
drift = u-(@.5%var)

drift = drift calc(modified data)
div = portfolio[self.id][ div"]

if div » @:
drift = drift - div

Appendix 5: Drift calculation in Python

covar = log ret.cov()

chol = np.linalg.cholesky(covar)

uncorr_x = norm.ppf(np.random.rand(num_stocks, simulated days))
corr_x = np.dot(chol, uncorr x)

corr 2 = np.zeros_like(corr x)

for 1 in ra um_stocks):
corr 2[i] = np.exp(drift[i] + corr x[i])

corr_2[@]

stocke = pd.DataFrame()
for s in range(len(ticks)):
ret reshape = corr 2[s]
ret reshape = ret reshape.reshape(simulated days)
price list = np.zeros like(ret reshape)
price list[e] = data.iloc[-1, s]
for t in range(1, simulated days):
price list[t] = price list[t-1]*ret reshape[t]

Appendix 6: Cholesky decomposition in Python
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get vola(portfolio, volatility file, stock file):
for a in range(2):
or 1 in portfolio.keys():
ticks = portfolio[i][ underl
today 30-06- 2
today = pd.to datetime(today)
end = today

vola = "VOLATILITY
stock vola =

if portfolio[i]["vol
ids = portfolio[i][
for underlying in ids:
underlying vola = volatility file. get value(vola, underlying)
stock vola.append(underlying vola) |
vol = (sum(stock vola)/len(stock vola))
portfolio[i]["vol"] = vol

it math.isnan(vol) =
portfolio[i]["vol ty

Appendix 7: Volatility calculation in Python (1/2)

else:
portfolio[i][
vola data(tickers):
vol data = pd.DataFrame()
for t in tickers:
vol data[t] = stock file[t].iloc[1:]
return(vol data)

data ticks = vola data(ticks)
end date = len(data ticks.loc|[:end])
start_date = end date - 3@

used data = data ticks.iloc[start date:end date]

log returns(data):
return (np.log(1l+data.pct _change()))
stdev = log returns(used data).std().values

monthly vol = sum(stdev)/len(stdev)
vol = monthly vol * sqrt(12)
portfolio[i]["vol"] = vol

get vola(options portfolio, file wvola, file stocks)

Appendix 8: Volatility calculation in Python (2/2)

34



interpolation(rates, maturity date):
today = "36-06-2022"

today = pd.to datetime(today)

today = today.to pydatetime().date()

maturity day = maturity date.day
maturity month = maturity date.month
maturity year = maturity date.year
name = rates.columns[@]

for a in range(len(rates)-1):
rate _date = rates.index[a]
prev_date = rates.index[a-1]
next date = rates.index[a+1]
rate day = rates.index[a].day
rate_month = rates.index[a].month
rate year = rates.index[a].year

it rate date == maturity date:
= rates. get value(rate date, name)

Appendix 9: Linear interpolation in Python to get discount rates for Option payoffs (1/2)

elif rate month == maturity month rate year == maturity_ year:
if rate day < maturity day:
ri rates. get value(rate date, name)
r2 Pates._get_value(next_Late, name )
t1 abs(rate_date.to pydatetime().date() - today)

t2 abs(next_date.to pydatetime().date() - today)

tn abs(today - maturity date.to pydatetime().date())

ri + (r2-r1)/((tz-t1).days)*((tn-t1) .days)

= rates. get value(prev_date, name)

= rates. get value(rate date, name)
abs(prev_date.to pydatetime().date() - today)

= abs(rate date.to pydatetime().date() - today)
abs(today - maturity date.to pydatetime().date())

ri + (r2-r1)/((tz-t1).days)*((tn-t1) .days)
return r

Appendix 10: Linear interpolation in Python to get discount rates for Option payoffs (2/2)




_ Se(e) =S¢

A (18)
&

YORTY 19)
&

Appendix 11: Equations used for Delta/Gamma calculation

for 1 in options portfolio.keys():

print(i)

r = interpolation(swaps, options_portfolio[i][ "matL

ticks = options_portfolio[i][’

start = options_portfolio[i]['e

S = options_portfolio[i][’ '
options portfolio[i][’stri

today 30-06-2022
today = datetime.strptime(today, '%d- ).date()

T = options portfolio[i][ ‘maturity’].to pydatetime().date() - today
T = T.days/365

div = options_portfolio[i][ di

vol = options portfolio[i][

price=e
delta=0

sym delta = @
delta 2=0
delta 3-0

Appendix 12: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (1/15)
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if options_portfolio[i]["payoff id"] == 2:

altiplano = Altiplano(options_portfolio,i)
payoffs = altiplano.payoff()

price = payoffs[@] * math.exp(-r*T)

pos price = payoffs[1l] * math.exp(-r*T)

neg price = payoffs[2] * math.exp(-r*T)

delta = (pos_price - price) / (percentage change)

sym delta = (pos price - neg price)/(2*percentage change)

pos_price2 = payoffs[3] * math.exp(-r*T)
neg price2 = payoffs[4] * math.exp(-r*T)
delta 2 = (pos_price2 - pos price) / (percentage change)
delta 3 = (neg price2 - neg price) / (percentage change)

delta dif = delta 2 - delta
g = abs(delta dif)/percentage change

var = (delta*3.291%np.sqrt(1/252)*vol - g/2*(3.291%np.sqrt(1/252)*vol)**2)*np.sqrt(252)

Appendix 13: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (2/15)

elif options_portfolio[i]["payoff id"] == 4:
auto = Autocall(options portfolio, i)
payoffs = auto.payoff()

price = payoffs[@] * math.exp(-r*1)

pos_price = payoffs[1] * math.exp(-r*T)

neg price = payoffs[2] * math.exp(-r*T)

delta = (pos price - price) / (percentage change)

sym delta = (pos_price-neg price)/(2*percentage change)

pos price2 = payoffs[3] * math.exp(-r*T)
neg price2 = payoffs[4] * math.exp(-r*T)
delta 2 = (pos_price2 - pos _price) / (percentage change)
delta 3 = (neg price2 - neg price2) / (percentage change)

delta dif = delta 2 - delta
g = abs(delta dif)/percentage change

var = (delta*3.291%np.sqrt(1/252)*vol - g/2%*(3.291%*np.sqrt(1/252)*vol)**2)*np.sqrt(252)
Appendix 14: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (3/15)




elif options_portfolio[i]["payoff id"] == 6:
digi = Ccall Digital(options_portfolio, 1)
payoffs = digi.payoff()

price = payoffs[@] * math.exp(-r*T)

pos_price = payoffs[1] * math.exp(-r*T)

neg price = payoffs[2] * math.exp(-r*T)

delta = (pos_price - price) / (percentage change)

sym _delta = (pos_price-neg_price)/(2*percentage change)

pos_price2 = payoffs[3] * math.exp(-r*T)
neg_price2 = payoffs[4] * math.exp(-r*T)
delta 2 = (pos price2 - pos price) / (percentage change)
delta 3 = (neg price2 - neg price2) / (percentage change)

delta dif = delta 2 - delta
g = abs(delta_dif)/percentage change

var = (delta*3.291*np.sqrt(1/252)*vol - g/2*(3.291*np.sqrt(1/252)*vol)**2)*np.sqrt(252)

Appendix 15: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (4/15)

elif options_portfolio[i]["payoff_ id"] == 11:
indi = Indicap(options_portfolio,i)
payoffs = indi.payoft()

price = payoffs[@] * math.exp(-r*T)

pos_price = payoffs[1] * math.exp(-r*T)

neg_price = payoffs[2] * math.exp(-r*T)

delta = (pos_price - price) /[ (percentage change)
sym_delta = (pos_price-neg price)/(2*percentage change)

pos price2 = payoffs[3] * math.exp(-r*T)
neg price2 = payoffs[4] * math.exp(-r*T)
delta 2 = (pos price2 - pos price) / (percentage change)
delta_3 = (neg_price2 - neg_price2) / (percentage_change)

delta_dif = delta 2 - delta
g = abs(delta dif)/percentage change

var = (delta*3.291%np.sqrt(1/252)*vol - g/2*(3.291%*np.sqrt(1/252)*vol)**2)*np.sqrt(252)

Appendix 16: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (5/15)




NOv,

capprotect = Capital Protected(options portfolio,i)
payoffs = capprotect.payoff()

price = payoffs[@] * math.exp(-r*T)

pos_price = payoffs[1] * math.exp(-r*T)

neg price = payoffs[2] * math.exp(-r*T)

delta = (pos_price - price) / (percentage change)

sym delta = (pos price-neg price)/(2*percentage change)

pos_price2 = payofts[3] * math.exp(-r*T)
neg price2 = payoffs[4] * math.exp(-r*T)
delta_2 = (pos_price2 - pos_price) / (percentage_change)
delta_3 = (neg_price2 - neg price2) / (percentage_change)

delta dif = delta 2 - delta
g = abs(delta dif)/percentage change

var = (delta*3.291%*np.sqrt(1/252)*vol - g/2*(3.291*np.sqrt(1/252)*vol)**2)*np.sqrt(252)

Appendix 17: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (6/15)

options_portfolio[i price’] = price
options portfolio[i elta

options portfolio[i ta"] = sym delta
options portfolio[i ] ! delta 2

options portfolio[i delta 3
options_portfolio[i
options_portfolio[i

Appendix 18: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (7/15)
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Per Option Type: Delta, Second Delta, Gamma and VaR

Weights

alti_notional =

auto_notional

digi_notional

indi notional = @

capprotect notional =

sum_notional =

for key in options portfolio.keys():

if options_portfolio[key][“payoff id"] ==
notional = options portfolio[key]["notional™]
auto notional += notional
sum_notional += notional

elif options_portfolio[key][“payoff id"] == 4:
notional = options_portfolio[key]["notional™]
options_portfolio[key]["weight_type”] = notional/auto_notional
options_portfolio[key][“weight total”] = notional/sum notional

options_portfolio[key]["weighted delta type™] options_portfolio[key][ “weight type"”]*options portfolio[key]["delta”]
options_portfolio[key]["weighted gamma type™ options_portfolio[key][ “weight type"]¥options portfolio[key]["g"]

options_portfolio[key][“weighted delta total™] options_portfolio[key]["weight total™]*options_portfolio[key]["delta"]
options_portfolio[key]["weighted_gamma_total™] = options_portfolio[key][" ght_total"]*options_portfolio[key]["g"]

-

options_type = {"Altiplano™: {}, "Autocall™: {}, "call Digital": {}, "Indicap": {}, "Capital_Protect™: {}
options_type[“Altiplano™]["notional”] = alti notional

options_type[“Autocall”]["notional™] = auto notional

options_type[“cCall Digital™]["notional”] = digi notional

options_type[“Indicap™]["notional”™] = indi_notional

options_type[“Capital Protect™]["notional™] = capprotect_notional

Appendix 19: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (8/15)

alti delta = ©
auto delta = ©
digi delta = ©
indi delta = ©
capprotect delta

alti gamma = ©
auto_gamma = ©
digi gamma = ©
indi gamma = ©
capprotect gamma

for key in options portfolio.keys():
if options_portfolio[key]["payoff id"] =

auto _delta += optlons_portfollo[key][ wei ghted delta t
auto gamma += options_portfolio[key]["weighted gamma

type”]
type”]

options type["Altiplano”]["delta"] = alti delta
options_ type["Autocall™]["delta”] = auto _delta
options type["Call Digital™]["delta”] = digi delta
options type["Indicap"]["delta”] = indi_delta

[

options_type["Capital Protect"]["delta"] = capprotect delta

options_ type["Altiplano’ ][‘vamma"] = alti_gamma
options type["Autocall™]["gamma"”] = auto_gamma
options type["Call Digital"]["gamma”] = digi gamma
[
[

options type["Indicap"]["gamma”] = indi gamma
options type["Capital Protect”]["gamma"] = capprotect gamma

Appendix 20: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (9/15)




alti underlyings
auto underlyings
digi_underlyings
indi_underlyings
capprotect underlyings = []

alti_underlyings_weights = []
auto_underlyings_weights = []
digi underlyings weights = []
indi_underlyings_weights = []
capprotect underlyings weights = []

today = "30-086-2022"
for key in options_portfolio.keys():

if options portfolio[key]["payoff id"] == 4:
underlyings 1 = options_portfolio[key]["underlyings”]
for underlyings in underlyings 1:
single weight = (1/5) * options portfolio[key]["weight type™]
auto underlyings weights.append(single weight)
auto_underlyings.append(underlyings)

alti_underlyings_weights = np.array(alti_underlyings_weights)
auto_underlyings weights = np.array(aute underlyings weights)
digi_underlyings_weights = np.array(digi_underlyings_weights)
indi underlyings weights = np.array(indi underlyings weights)
capprotect_underlyings_weights = np.array(capprotect_underlyings_weights)

options_type["Autocall”]["underlyings"] = auto_underlyings
options type["Autocall™]["weights"] = auto underlyings weights

Appendix 21: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (10/15)

For the whole Portfolio: Delta, Second Delta, Gamma and VaR

total _delta
total_gamma

for key in options portfolio.keys():

total_delta += options_portfolio[key][ "weighted delta total™]
total gamma += options portfolio[key]["weighted gamma total™]

total portfolio = {}

total_portfolio[ “noticnal™] = sum_notional
total_portfolio["delta"] = total_delta
total_portfolio["gamma"] = total_gamma

Appendix 22: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (11/15)

Weights of the underlyings

list underlyings = []
weights = []
today = "30-86-2022"
for key in options portfolio.keys()
underlyings 1 = options_portfolio[key]["underlyings™]
for underlyings in underlyings 1:
single weight = (1/5) * options portfolio[key]["weight total"]
weights.append(single weight)
list underlyings.append(underlyings)

weights = np.array(weights)
total portfolio["underlyings”] = list underlyings
total portfolio[ "weights™] = weights

Appendix 23: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (12/15)




NOVA

weights = np.array(weights)
vola data(tickers):
vol_data = pd.DataFrame(columns=tickers)
for t in tickers:
vol data[t] = file stocks[t].iloc[1:]
rn(vol_data)

tickerrs = list_underlyingq

data_ticks = vola_data(tickerrs)

end_date = len(data_ticks.loc[:today])
start_date = end_date - 3@

used_data = data_ticks.iloc[start_date:end_date]
log returns(data):
rn (np.log(1+data.pct _change()))

returns = log_returns(used_data)
covar = returns.cov() * 12

vol = np.sgrt(np.dot(weights.T, np.dot(covar, weights)))

total portfolio[”

Appendix 24: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (13/15)

var = (total delta*3.291%*np.sqrt(1/252)*vol - total gamma/2*(3.291%np.sqrt(1/252)*vol)**2)*np.sqrt(252)

elif key == 117
notional = options_type[key]
tickerrs = options_type[key][
weights = options_ type[key][
data_ticks = vola_data(tickerrs)
end_date = len(data_ticks.loc[:today])
start_date = end_date - 30
used _data = data ticks.iloc[start date:end date]

returns = log returns(used_data)
covar = returns.cov() * 12

vol = np.sqrt(np.dot(weights.T, np.dot(covar, weights)))
options_type[key][ “vol = vol

delta = options_type[key][
g = options_type[key][

var = (delta*3.291%np.sqrt(1/252)*vol - g/2*(3.291%np.sqrt(1/252)*vol)**2)*np.sqrt(252)
options_type[key]["

Appendix 26: Delta/ gamma & VaR Calculation for each option & overall portfolio in Python (15/15)
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Autocall():

__init_ (self,portfolio,id):
self.id = id
self.portfolio = portfolio

cholesky(self):
import stock data(tickers):
data = pd.DataFrame()
for t in tickers:
return(data)
get timeseries(data frame):
data = data frame
date = self.portfolio[self.id]["effective date"]
row_number = len(data.loc[:date])

maturity date = self.portfolio[self.id]["maturity™]

date = date.strftime("%y-%m-%d")
maturity date = maturity date.strftime("%y-%m-%d")

delta = np.busday count{date, maturity date)

= '2022-06-12°

if delta >= 504:
calc = 504

Appendix 27: Autocall class in Python (1/13)

else:
delta_today = np.busday count(date, today)
days used = 504 - delta today
minimum = 30
calc = max(minimum, days used)
dl = row_number - calc

data = data.iloc[d1:row_number]
return data

ticks = self.portfolio[self.id]["underlyings™]
num_stocks = len(ticks)
data = import_stock data(ticks)

modified data = get timeseries(data)

log returns(data):
return (np.log(l+data.pct change

log return = log returns(data)

Appendix 28: Autocall class in Python (2/13)




drift_calc(data, ret
if return type == °
1r = log_return
elif reutrn_type == '
1r = turns(data)
u = lr.me e
var = lr.var()
drift = u-(@.5%var)

urn drift.values
return drift

drift = drift_calc(modified_data)

if div » @:
drift = drift - div

Appendix 29: Autocall class in Python (3/13)

log ret = log returns(modified data)

stdev = log returns(modified data).std().values
covar = log ret.cov()

chol = np.linalg.cholesky(covar)

uncorr_x = norm.ppf(np.random.rand(num stocks, simulated days

corr_x = np.dot(chol, uncorr_x)

np.zeros_like(corr_x)
nge(num_stocks):
- 2[1] = np.exp(drift[i] + corr_x[i])
corr_2[e]

Appendix 30: Autocall class in Python (4/13)
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stock® = pd.DataFra
for s in ge(len(ticks)):
ret_reshape = corr_2[s]

ret_reshape = ret_reshape.reshape
price list = np.zeros_like(ret_res

price_list[e] = data.iloc[-1, s]
for t in range(1, si :
price list[t] = price list[t-1]*ret_reshape[t]

x = pd.DataFr rice list).iloc[-1]

rice list)
stocke[ticks[s]]=x.loc[:,0]

last_date = data.last valid index()
last_date = pd.Timestamp(last_date)
dates = [last_date]
a=1
while len(stocke) != len(dates):
next_date = last date + timedelta(days = a)
if next date.weekday() < 5:
dates.append(next date)
a+=1
else:

a+=1

Appendix 31: Autocall class in Python (5/13)

stocke[ "] = dates
stock® = stocke.set index("D ")

output_stocks_combined = data.append(stocke[1:])

return output_stocks_combined

Appendix 32: Autocall class in Python (6/13)
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NOVA

autocall(self, first price, second_price, third_price, expiration_price, strikes):

self.id][
first_coupon portfolio 1f.id][
second_coupon [self.id]["
third_coupon por

notional = 1

(len(strikes)):

hasAutoCalled =
if hasAutocCalled:

if first_price[u] >= strikes[u]:
W o+= 1

second price[u] >= strikes[u]:
X +=1

f third price[u] >= strikes[u]:
y += 1

expiration price[u] »>= strikes[u]:
Z += 1

Appendix 33: Autocall class in Python (7/13)

it w == 5
hasAutoCalled =
payoff = notional*(1 first coupon)
eturn payoff

elif x == 5:
hasAutocalled =
payoff = notional*(1 second_coupon)
urn payoff

elif y == 5:
hasAutoCalled =
payoff = notional*(1 + third_coupon)
urn payoff

hasAutocalled =
payoff = notional*(1
payoff

= notional
n payoff

Appendix 34: Autocall class in Python (8/13)
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N.OVA

payoff(self):

ticks = self.portfolio[self.id]["un
maturity date

payoffs = []

payoffs_pos = [
payoffs_pos2 =

payoffs neg = [
payoffs_neg2 =

for 1 inr
output = se

dates to list(data frame):
date 1list = data_frame.index.tolist()
return date_list

observation_dates(date_list):

TirstobservationDate = 126

secondobservationDate = 252

thirdobservationDate = 378

for i in r len(date list)):

if date_list[i] i

firstobservationDate = dates list[i+ fi
secondobservationDate = dates list[i+ secondobservationDate]
thirdobservationDate = dates list[i+ thirdobservationDate]

return firstobservationDate, secondobservationDate, thirdobservationDate

dates list = dates to list(output)
valuation_date = observation_dates(dates_list)

Appendix 35: Autocall class in Python (9/13)
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first stock price = []
second_stock_price = []
third stock price = []
expiration_price =

for k in ticks:
firstobservationDate = valuation_date[eﬂ
first stock = output. get value(firstobservationDate, k)
first stock price.append(first stock)

secondobservationDate = valuation date[1]
second_stock = output. get value(secondobservationDate, k)
second stock price.append(second stock)

thirdobservationDate = valuation_date[2]
third stock = output. get value(thirdobservationDate, k)
third stock price.append(third stock)

maturity value = output. get value(maturity date, k)
expiration_price.append(maturity value)

Appendix 36: Autocall class in Python (10/13)

first stock price pos = []
second_stock price pos = []
third_stock price pos = []
expiration stock price pos = []

first stock price pos2 =
second_stock price pos2
third stock price |
expiration stock p

first stock price neg 1
second_stock price neg = []
third stock price neg = []
expiration stock price neg = []

first stock price neg2 = []
second_stock price neg2 = []
third stock price neg2 = []
expiration stock price neg2 = []

Appendix 37: Autocall class in Python (11/13)
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e(len(ticks)):
first pos = first stock price[k] * (1 + percentage change)
first pos2 = first pos * (1 + en
First_st@ck_price_pos.append(F- st_pos)
first stock price pos2.append(first pos2)

second_pos = second stock price[k] * (1 +
second _pos2 = second pos * (1 +

second stock price pos.append(se ||
second_stock price pos2.append(second pos2)

third _pos = third stock price[k] * (1 + |
third_pos2 = third_pos * (1 + percentage change
thirdistockipriceipos.append(thlrdipos)

third stock price pos2.append(third pos2)

expiration_pos = expiration_price[k] * (1 + percentage change)
expiration _pos2 = expiration pos * (1 + perc N
expiration_stock_price_pos.append(expirati _po
expiration_stock price pos2.append(expiration_pos2)

first_neg = first _stock price[k] * (1 - percentage change)
first_neg2 = first neg * (1 - ) T
first_stock price neg.append( _neg
first_stock price neg2.append(first_neg2)

second neg = second stock price[k] * (1 -

second neg2 = second neg * (1 - percentage
ond stock price neg.append(second neg)

second_stock price neg2.append(second neg2)

third _neg = third stock price[k] * (1 - percentage change)
third_neg2 = third_neg * (1 - percen . N
third_stock_price_neg.append(third_neg)
third_stock_price_neg2.append(third neg2)

Appendix 38: Autocall class in Python (12/13)
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NL2VA

expiration_neg = expiration_price[k] * (1 - percentage change)
expiration_neg2 = expiration_neg * (1 - : b
expiration_stock price_neg.append(expira

expiration stock price neg2. append(explta‘tlon neg2)

normal_payoff = self.autocall(first_stock price, second_stock price, third_ _price,
expiration_price, self.portfolio[self.id]["

payoftfs.append(normal_payoft)

pos payoft = self.autocall(first stock price pos, second stock price pos, third stock price pos,
expiration_stock price_pos, self.portfolio[self.id][
payoffs_pos.append(pos_payoff)

neg_payoff = self.autocall(first_stock_price neg, second_stock_price_neg, third_stock_price_ neg,
expiration stock price neg, self.portfolio[self.id][
payoffs_neg.append(neg_payoff)

pos payoft2 = self.autocall(first stock price pos2, second stock price pos2, ‘thlld stock price pos2,
expiration stock price pos2, self.portfolio[self.id]
payoffs pos2.append(pos payoff2)

neg_payoff2 = self.autocall(first_stock price neg2, second_stock price neg2, thlld stock_price_neg2,
expiration_stock price neg2, self.portfolio[self.id]
payoffs_neg2.append(neg_payoff2)

average payoff = sum(payoffs)/len(payoffs)

average pos = sum(payoffs_pos)/len(payoffs_pos)
average neg = sum(payoffts_neg)/len(payoffs_neg)
average pos2 = sum(payoffs pos2)/len(payoffs pos2)
average neg2 = sum(payoffs_neg2)/len(payoffs_neg2)

return [average payoff, average_pos, average neg, average pos2, average neg2]

Appendix 39: Autocall class in Python (13/13)

Autocall Product ID 1015 -Invest Health & Tech Jun-20

Underlying ID Name Underlying Bloomberg Ticker Industry Asset Class Strike  Price as of 30/06/2022

1 103 GSK PLC GSK LN Equity Health Technology Equity 1.636,60£ 1.786,06 £

2 185 Nestle NESN SW Equity ~ Consumer Non-Durables Equity 104,74 € 11144 €

3 424 SAP SE O.N. SAP GY Equity Technology Services Equity 12432€ 86,93 €

4 750 ASML Holding ASMLNAEquity  Electronic Technology Equity 32690€ 45585€

5 1345 Novo Nordisk NVO US Equity Health Technalogy Equity 65,48 € 11143 €
trade date: 30/06/2020 103 185 424 750 1345
ID| Underlying GSKLNEquity ~ NESN SW Equity SAP GY Equity ASML NA Equity NVO US Equity
103|GSK LN Equity 1,00 0,56 0,39 040 043
185/ NESN SW Equity 0,56 1,00 042 048 041
424|5AP GY Equity 0,39 042 1,00 0,64 0,39
750|ASML NA Equity 040 048 0,64 1,00 0,29
1345|NVO US Equity 043 041 0,39 029 1,00

Appendix 40: Overview example Autocall option (ID 1015)
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Autocall Product ID 1033 -Invest Personal Care Ago-20

Underlying D Name Underlying Bloomberg Ticker Industry Asset Class Strike  Price as of 30/06/2022

1 % British American Tobacco BATS LN Equity Health Technology Equity 2.515,00€ 3.51950€

2 797 Danong BN FPEquity  Consumer Non-Durables Equity 5452 € 53,26 €

3 798 Unilever UNANAEquity  Consumer Non-Durables Equity 48,69 € 4332€

4 1152 Procter & Gamble PGUSEquity  Consumer Non-Durables Equity 138,18¢€ 143,79€

5 1362 Rocket Companies RKT LN Equity Finance Equity 7.440,00€ 6.170,00€
trade date: 01/09/2020 747 797 798 1152 1362
ID|Underlying BATS LN Equity BN FP Equity UNANAEquity PG USEquity RKT LN Equity

747|BATS LN Equity

797|BN FP Equity

798| UNA NA Equity
1152|PG US Equity
1362|RKT LN Equity

Appendix 41: Overview example Autocall option (ID 1033)

Autocall Product ID 1041 -Invest Back to School Set-20

Underlying D Name Underlying Bloomberg Ticker Industry Asset Class Strike  Price as of 30/06/2022

1 101 Adidas AG ADS GY Equity  Consumer Non-Durables Equity 27610€ 168,76 €

2 185 Nestle NESN SW Equity  Consumer Non-Durables Equity 10934 € 11144€

3 358 Alphabet Inc. GOOGL USEquity  Technology Services Equity 1.465,60 € 10896 €

4 360 HP Inc. HPQUS Equity  Electronic Technology Equity 18,99€ 32,78¢€

5 848 Nokia Corporation NOKIAFH Equity  Electronic Technology Equity 335€ 444 €
trade date: 30/09/2020 101 185 358 360 248
ID| Underlying ADSGY Equity ~ NESN SW Equity GOOGL US Equity  HPQ US Equity IOKIA FH Equity

101|ADS GY Equity 0,35 0,36

185|NESN SW Equity 0,35 031 0,29
358|GOOGL US Equity 035 0,32
360|HPQ US Equity 036 0,38

sas oA Fn iy |08

Appendix 42: Overview example Autocall option (ID 1041)

Autocall Product ID 1130 -Invest Digital 5G Fev-21

Underlying D Name Underlying Bloomberg Ticker Industry AssetClass ~ Strike  Price as of 30/06/2022
1 64 AT&T Inc. T US Equity Communications Equity 21,05€ 2096 €
2 183 Vodafone Group VOD LN Equity Communications Equity 122,02€ 126,66 €
3 381 Broadcom Inc. AVGO USEquity  Electronic Technology Equity 46987€ 48581¢€
1 1009 Intel Corporation INTCUS Equity  Electronic Technology Equity 60,78 € 3741¢€
5 1347 Crown Castle Inc. CCI US Equity Finance Equity 15575€ 168,38 €
trade date: 26/02/2021 64 183 381 1009 1347
1D |Underlying T US Equity VOD LN Equity AVGO US Equity  INTC US Equity  CCI US Equity
64T US Equity
183|VOD LN Equity
381|AVGO US Equity

1009 INTC US Equity
1347|CC1 US Equity

Appendix 43: Overview example Autocall option (ID 1130)
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Autocall Product ID 1152 -Invest Natural Resources Abr-21

Underlying D Name Underlying Bloomberg Ticker Industry AssetClass  Strike  Price as of 30/06/2022
1 62 Royal Dutch Shell PLC SHELL NA Equity Energy Minerals Equity 1584 € 2485¢€
2 81 Totalenergies SE TTE FP Equity Energy Minerals Equity 36,83€ 5037€
3 164 Vale S.A. VALE US Equity ~ Non-Energy Minerals Equity 2012€ 14,63€
4 1384 BHP Group Limited BHP LN Equity ~ Non-Energy Minerals Equity 1.97580€ 2.297,00€
5 1457 Weyerhaeuser Company WY US Equity Finance Equity 3877€ 3B12¢
trade date: 30/04/2021 62 81 164 1384 1457
1D |Underlying SHELL NA Equity TTE FP Equity VALE USEquity  BHP LN Equity WY US Equity
62 SHELL NA Equity
81|TTE FP Equity
164 VALE S Euity
1384|BHP LN Equity

1457/ WY US Equity

Appendix 44: Overview example Autocall option (ID 1152)

Autocall Product ID 1190 -Invest Fintech Jul-21

Underlying D Name Underlying Bloomberg Ticker Industry AssetClass  Strike  Price as of 30/06/2022

1 359 Cisco Systems Inc. CSCO USEquity  Electronic Technology Equity 5537€ 4264€

2 377 Lloyds Banking Group LLOY LN Equity Finance Equity 4564 € 931¢€

3 4 SAP SE Q.N. SAP GY Equity Technology Services Equity 12084 € 86,93€

1 748 ING Groep N.V. INGA NA Equity Finance Equity 1085€ 943€

5 1110 Block Inc. SQ US Equity Technology Services Equity 24726€ 61,46€
trade date: 30/07/2021 359 377 424 748 1110
1D |Underlying CSCO US Equity LLOY LN Equity SAP GY Equity INGANA Equity  5Q US Equity
359|CSC0 US Equity 0,29 0,08
377|LLOY LN Equity 0,29 013
424/5AP GY Equity 0,30 0,18
748/ INGA NA Equity 0,23 015

1110{5Q,US Equity 0,08 0,13 018 0,15

Appendix 45: Overview example Autocall option (ID 1190)

Autocall Product ID 1203 -Invest Health Innovation Ago-21

Underlying D Name Underlying Bloomberg Ticker Industry Asset Class Strike  Price as of 30/06/2022

1 82 Banco Santander S.A. SAN FP Equity Finance Equity 8715€ 96,34 €

2 83 Johson & Johnson INJ US Equity Health Technology Equity 173,13€ 17751 €

3 104 Bayer AG BAYN GY Equity Health Technology Equity 4715€ 56,72 €

4 1272 Biogen Inc. BIIB US Equity Health Technology Equity 33891€ 203,94 €

5 1490 Medtronic PLC. MDT US Equity Health Technology Equity 133,48 € 80,75€
trade date: 31/08/2021 82 83 104 1272 1490
ID|Underlying SAN FP Equity INJ US Equity BAYN GY Equity  BIIB US Equity MDT US Equity
82 [SAN FP Equity 0,39 0,15 0,22
83|INJ US Equity 027 0,01 048
104|BAYN GY Equity 0,29 027 0,02 0,36
1272|BIIB US Equity 0,15 0,01 -0,02 0,16

1490|MDT US Equity 00 0,48 0,36 -0,16

Appendix 46: Overview example Autocall option (ID 1203)
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Autocall Product ID 1204 -Invest Back to School Set-21

Underlying Name Underlying Bloomberg Ticker Industry Asset Class ~ Strike  Price as of 30/06/2022

1 101 Adidas AG ADS GY Equity ~ Consumer Non-Durables Equity 271,80 € 168,76 €

2 185 Nestle NESN SW Equity ~ Consumer Non-Durables Equity 112,70€ 11144€

3 358 Alphabet Inc. GOOGL US Equity  Technology Services Equity 2.67352€ 108,96 €

4 360 HP Inc. HPQUS Equity  Electronic Technology Equity 27,36 € 32,78€

5 848 Nokia Corporation NOKIAFH Equity  Electronic Technology Equity 476€ 444€
trade date: 30/09/2021 101 185 358 360 848
1D |Undlerlying ADSGY Equity ~ NESN SW Equity GOOGL US Equity  HPQ US Equity IOKIA FH Equity
101|ADS GY Equity 012 0,14 0,14
185|NESN SW Equity 0,11 0,18
358/G00GL US Equity 0,12 026 -0,03
360|HPQ US Equity 0,14 011 0,26 0,02

848|NOKIA FH Equity 0,14 0,18 -0,03 0,02

o

Appendix 47: Overview example Autocall option (ID 1204)

Autocall Product ID 1229 -Invest Infraestruturas Globais Out-21

Underlying ID Name Underlying Bloomberg Ticker Industry Asset Class Strike  Price as of 30/06/2022
1 64 AT&T Inc. T US Equity Communications Equity 19,07€ 20,96 €
2 178 Acciones Iberdrola IBE SM Equity Utilities Equity 10,22€ 990€
3 184 Siemens AG SIE GY Equity Health Technology Equity 140,28€ 97,09€
4 209 Enel ENEL IM Equity Utilities Equity 724 520€
5 1113 Dollar General Corporation DG FP Equity Retail Trade Equity 92,37€ 8496 €
trade date: 29/10/2021 04 178 184 209 1113
ID|Underlying T US Equity IBE SM Equity SIE GY Equity ENELIM Equity DG FP Equity
64{T US Equity 0,06 0,17 0,19
178 IBE SM Equity 0,06 0,26 0,8
184|SIE GY Equity 0,22 0,21
209|ENEL IM Equity 0,17 0,38
1113|DG FP Equity 0,19 0,28 031 038

Appendix 48: Overview example Autocall option (ID 1229)

Autocall Product ID 1244 -Invest Hydrogen Nov-21

Underlying Name Underlying Bloomberg Ticker Industry Asset Class Strike  Price as of 30/06/2022

1 178 Acciones Iberdrola IBE SM Equity Utilities Equity 990€ 990€

2 395 BASF SE BAS GY Equity Process Industries Equity 57,88 € 4153 €

3 1331 C3.Alnc. Al FP Equity Technology Services Equity 13256 € 128,12€

4 1435 Linde PLC LIN GY Equity Process Industries Equity 28175€ 273,95€

5 1438 Air Products and Chemicals Inc. APD US Equity Process Industries Equity 287,44 € 240,48 €
trade date: 30/11/2021 178 395 1331 1435 1438
ID|Underlying IBE SM Equity BAS GY Equity AIFPEquity  LIN GY Equity APD US Equity
178/1BE SM Equity 042 045 0,14
395|BAS GY Equity 0,20 032 0,50 0,21
1331|Al FP Equity 042 032 017
1435|LIN GY Equity 045 0,50 0,30

1438/ APD US Equity 0,14 0,21

Appendix 49: Overview example Autocall option (ID 1244)
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Autocall Product ID 1260 -Invest Communication & Media Dez-21

Underlying Name Underlying Bloomberg Ticker Industry Asset Class Strike  Price as of 30/06/2022
1 65 Telefonica S.A. TEF SM Equity Communications Equity 385€ 486€
2 114 Alphabet Inc. GOOG US Equity Technology Services Equity 2.920,05 € 109,37€
3 165 Meta Platforms Inc. META US Equity Technology Services Equity 34436 € 161,25€
4 180 Orange ORA FP Equity Communications Equity 943€ 1122¢€
5 1520 Paramount Global PARA US Equity Consumer Services Equity 3112€ 2468 €
trade date: 30/12/2021 65 114 165 180 1520
ID|Underlying TEFSM Equity ~ GOOG US Equity META US Equity  ORA FP Equity PARA US Equity
65|TEF SM Equity 0,05 0,02
114|GOOG US Equity
165|META US Equity
180|ORA FP Equity
1520|PARA US Equity
Appendix 50: Overview example Autocall option (ID 1260)
Autocall Product ID 1348 -Invest Metaverse Mar-22
Underlying ID Name Underlying Bloomberg Ticker Industry AssetClass ~ Strike  Price as of 30/06/2022
1 115 Microsoft Corparation MSFT USEquity  Technology Services Equity 30831€ 256,83 €
2 116 International Business Machines Corporation  1BM US Equity Technology Services Equity 13002€ 141,19€
3 165 Meta Platforms Inc. METAUSEquity  Technology Services Equity 12236€ 161,25€
4 750 ASML Holding N.V. ASMLNAEquity  Electronic Technology Equity 610,00€ 455.85€
5 1498 Tencent Holding Ltd. TCEHY USEquity  Technology Services Equity 4p42£ 4530€
trade date: 31/03/2022 115 116 165 750 1498
1D |Underlying MSFT US Equity IBM US Equity META US Equity ASML NA Equity CEHY US Equity
115(MSFT US Equity 046 0,23
116/1BM US Equity 0,04 0,01
165|META US Equity 030 0,24
750|ASMLL NA Equity 0,30
1498| TCEHY US Equity
Appendix 51: Overview example Autocall option (ID 1348)
Autocall Product ID 1392 -Invest Basic Resources Abr-22
Underlying D Name Underlying Bloomberg Ticker Industry AssetClass ~ Strike  Price as of 30/06/2022
1 81 Totalenergies TTE FP Equity Energy Minerals Equity 47,23€ 5037€
2 97 Veolia Environ VIE FP Equity Utilities Equity 27,90€ 23,29€
3 123 Rio Tinto PLC RIO LN Equity Non-Energy Minerals Equity 5.706,00€ 491650€
1 164 Vale S.A. VALE USEquity ~ Non-Energy Minerals Equity 16,89 € 1463€
5 1457 Weyerhaeuser Company WY US Equity Finance Equity 122¢ 33,12€
trade date: 29/04/2022 81 97 123 164 1457
1D |Underlying TTE FP Equity VIE FP Equity RIO LN Equity VALE US Equity WY US Equity
81[TTE FP Equity 0,29 041 0,25 0,13
97|VIE P Equity 029 0,05 0,09 0,12
123[RI0 LN Equity 041 0,05 012
164|VALE US Equity 0,25 0,09 0,21
1457|WY US Equity 0,13 0,12

Appendix 52: Overview example Autocall option (ID 1392)
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Autocall Product ID 1429 -Invest Technology Jun-22

Underlying D Name Underlying Bloomberg Ticker Industry Asset Class Strike  Price as of 30/06/2022
1 159 Apple Inc. AAPLUSEquity  Electronic Technology Equity 13923 € 13672 €
2 424 SAP SEQ.N. SAP GY Equity Technology Services Equity 90,17 € 8693 €
3 755 Dassault Systemes DSY FP Equity Technology Services Equity 36,09 € 3512¢€
4 1009 Intel Corporation INTCUS Equity  Electronic Technology Equity 3729¢€ 37141€
5 1110 Block Inc. SQ US Equity Technology Services Equity 63,84 € 6146€
trade date: 30/06/2022 159 424 755 1009 1110
ID| Underlying AAPL US Equity SAP GY Equity DSY FP Equity INTC US Equity  5Q US Equity
159|AAPL US Equity 028
424/SAP GY Equity
755|DSY FP Equity
1009|INTC US Equity
1110(5Q US Equity

Appendix 53: Overview example Autocall option (ID 1429)

Autocall Product ID 1455 -Invest Blockchain Jul-22

Underlying Name Underlying Bloomberg Ticker Industry AssetClass  Strike  Price as of 30/06/2022
1 59 Banco Bilbao Vizcaya Argentaria S.A. BBVA SM Equity Finance Equity 501€ 433€
2 115 Microsoft Corporation MSFT USEquity ~ Technology Services Equity 7242€ 256,83 €
3 116 International Business Machines Corporation  1BM US Equity Technology Services Equity 13943 € 14119€
4 149 BNP Paribas BNP FP Equity Finance Equity 5281€ 4537€
5 1144 Paypal Holdings Inc. PYPLUSEquity ~ Commercial Services Equity 8248¢€ 69,84 €
trade date: 29/07/2022 59 115 116 149 1144
1D |Underlying BBVA SM Equity MSFT US Equity IBM US Equity ~ BNP FP Equity PYPL US Equity
59(BBVA SM Equity 027 0,18 0,25
115|MSFT US Equity 027 021 0,18
116/1BM US Equity 0,18 021 022 013
149|BNP FP Equity 0,18 022 024
1144|PYPL US Equity 0,25 013 024

Appendix 54: Overview example Autocall option (ID 1455)
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