
Nested OSTRICH: Hatching Compositions of Low-code Templates
João Costa Seco

NOVA University Lisbon, NOVA LINCS

Caparica, Portugal

joao.seco@fct.unl.pt

Hugo Lourenço

OutSystems

Lisbon, Portugal

hugo.lourenco@outsystems.com

Joana Parreira

NOVA University Lisbon, NOVA LINCS

Caparica, Portugal

jb.parreira@campus.fct.unl.pt

Carla Ferreira

NOVA University Lisbon, NOVA LINCS

Caparica, Portugal

carla.ferreira@fct.unl.pt

ABSTRACT

Low-code frameworks strive to simplify and speed-up application

development. Native support for the reuse and composition of

parameterised coarse-grain components (templates) is essential

to achieve these goals. OSTRICH — a rich template language for

the OutSystems platform — was designed to simplify the use and

creation of such templates. However, without a built-in composition

mechanism, OSTRICH templates are hard to create and maintain.

This paper presents a template composition mechanism and its

typing and instantiation algorithms for model-driven low-code de-

velopment environments. We evolve OSTRICH to support nested

templates and allow the instantiation (hatching) of templates in

the definition of other templates. Thus, we observe a significant

increase code reuse potential, leading to a safer evolution of appli-

cations. The present definition seamlessly extends the existing Out-

Systems metamodel with template constructs expressed by model

annotations that maintain backward compatibility with the existing

language toolchain. We present the metamodel, its annotations, and

the corresponding validation and instantiation algorithms. In par-

ticular, we introduce a type-based validation procedure that ensures

that using a template inside a template produces valid models.

The work is validated using the OSTRICH benchmark. Our proto-

type is an extension of the OutSystems IDE allowing the annotation

of models and their use to produce new models. We also analyse

which existing OutSystems sample screens templates can be im-

proved by using and sharing nested templates.

CCS CONCEPTS

• Software and its engineering→Model-driven software en-

gineering; Visual languages; Patterns; Frameworks.

ACM Reference Format:

João Costa Seco, Hugo Lourenço, Joana Parreira, and Carla Ferreira. 2022.

NestedOSTRICH:Hatching Compositions of Low-code Templates. InACM/IEEE
25th International Conference on Model Driven Engineering Languages and

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MODELS ’22, October 23–28, 2022, Montreal, QC, Canada
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9466-6/22/10. . . $15.00

https://doi.org/10.1145/3550355.3552442

Systems (MODELS ’22), October 23–28, 2022, Montreal, QC, Canada. ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/3550355.3552442

1 INTRODUCTION

Abstraction and parametrisation are amongst the most significant

mechanisms in programming languages to promote modularisation

and code reuse [19]. They are present in programming languages

from basic function definitions to sophisticated type systems [2] or

type-level computations in metaprogramming mechanisms [3, 7].

The core contribution of this paper is to improve the template

developer experience in low-code frameworks by allowing the

reuse and composition of coarse-grain components. To that end, we

equip the template language OSTRICH [20, 21] with a new built-in

abstraction mechanism. Up to this point, OSTRICH allowed for the

top-level reuse of template application components, integrated into

the IDE functionality. We build on a library of components that

encompasses templates with curated and tested functionalities, user

interfaces, and business rules, to build applications in a faster and

more reliable fashion. Without using a composition mechanism like

the one introduced in this paper, full-fledged application templates

would be cumbersome to create and impractical to maintain.

The template mechanism introduced in [20] covers more than

50% of template uses recorded by the platform. The time spent on

choosing and adapting a template to a particular scenario is reduced

from a few hours, for an experienced developer, to a few minutes,

for all levels of expertise. Next, we introduced type dependencies

between template parameters [21] in OSTRICH. This allows for more

cases to be safely captured. Notably, we safely capture the case of

a template that receives an entity and an attribute and requires

that the attribute belongs to said entity. Some basic mechanisms of

OSTRICH are nowadays at the foundations of the language in the

OutSystems platform when instantiating sample screens. Namely,

in the rendering of said screens with optional components. It is

foreseeable that many of OSTRICH’s features will inform future

versions of the OutSystems language and platform. The state of

the art in OSTRICH templates improves the life of a developer using

templates. With OSTRICH, non-experts, low-code developers can
reuse trustworthy predefined and parameterisable code. OSTRICH
templates are developed by experts, ranging from professionally

designed user interfaces to complex distributed systems algorithms.

OSTRICH templates follow an approach similar to other model-

driven low-code programming approaches, like templates in UML

(MOF) [23, 31, 32] and MetaDepth [11], where templates are in-

stantiated in place by an external mechanism. In OSTRICH, even

https://orcid.org/0000-0002-2840-3966
https://orcid.org/0000-0003-3680-7634
https://doi.org/10.1145/3550355.3552442
https://doi.org/10.1145/3550355.3552442
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3550355.3552442&domain=pdf&date_stamp=2022-10-24

MODELS ’22, October 23–28, 2022, Montreal, QC, Canada João Costa Seco, Hugo Lourenço, Joana Parreira, and Carla Ferreira

though the instantiation algorithm in [20, 21] is embedded into

the behaviour of the development environment, nevertheless, it is

not a part of the semantics of the language. The main difference

with model-driven approaches is that OSTRICH produces code at the
same level of abstraction as the template definitions. In this paper,

we present an extension of OSTRICH where the definition of a tem-

plate can be made by the composition of other templates. Templates

are still part of valid OutSystems application models that can be

created, edited, and tested as normal application components. No

other related template language has this characteristic. The default

values for the parameters and all the sample application elements

used as placeholders for a template instantiation are stubs created

with the normal low-code toolchain (IDE and compiler). Our techni-

cal approach proceeds by extending the OSTRICH metamodel with

a richer set of annotations that allow sample nodes to represent the

composition of templates by instantiation of templates inside the

definition of other (nested) templates.

Our developments are complementary to prior work [20, 21] in

the sense that they improve the lives of template developers, and im-

prove the quality of the template library. The previous instantiation

mechanism, integrated IDE, was external to the language. More-

over, the validation of template instantiation (typing arguments

against parameter specification) was also decoupled from the type

system of the language. By defining a composition mechanism for

templates we allow for an even more modular development and

reasoning that reduces the effort of producing templates and in-

creases the reuse potential of the language. The approach is central

to the GOLEM project [15] where program synthesis is being used

to generate component assemblies from high-level programming

concepts. One goal of this project is to find alternative assemblies

of larger components or full-blown applications that adapt to a con-

siderable number of situations. Also, Machine Learning techniques

could be used to identify common application patterns in the large

corpus of OutSystems code and produce valid OSTRICH templates.

We present our model-driven approach via a running example

that gets abstracted from a concrete application model of a screen to

a reusable set of templates that can then be used to build many dif-

ferent applications. We also explain the instantiation and validation

algorithm that is integrated into our prototype implementation. The

validation of our proposal proceeds by using the same benchmark

as [20], further abstracting the examples with nested templates

and highlighting the reuse and sharing of smaller template user

interface components. We give an account of the language impact

in terms of reusability in the OutSystems’ library of components.

Our contributions can be systematically presented as follows:

• Auniform compositionmechanism for the OSTRICH template

language. (Section 2)

• A backward compatible representation of the model-driven

composition of templates. (Section 3)

• A one-pass instantiation algorithm that accounts for a wide

variety of situations with cyclic dependencies betweenmodel

elements. (Sections 4 and 5)

• A typing algorithm based on symbolic information that sep-

arates phases (compile and runtime) and accounts for the

composition of templates. (Section 6)

p : App

s : Screen

Name = ProductList

w1 : Table

Source = Product.List

w2 : Column

Title = "Is In Stock"

w3: Icon

Visible = Product.List.Current.IsInStock

w6 : Value

Value = Product.List.Current.Description

e : Entity

Name = Product

at1 : Attribute

Name = Description
DisplayName = "Description"
Type = String

at2 : Attribute

Name = IsInStock
DisplayName = "Is In Stock"
Type = Bool

w5 : Column

Title = "Description"

w4 : ToggleVisibility

Widget = w2

w7 : ToggleVisibility

Widget = w5

at3 : Attribute

Name = DeliveryDate
DisplayName = "Delivery Date"
Type = Date

w9 : Value

Value = Product.List.Current.DeliveryDate

w8 : Column

Title = "DeliveryDate"

w10 : ToggleVisibility

Widget = w8

Figure 1: The instantiated application.

• An account for modularising templates in practice using an

industry-standard benchmark. (Section 7)

Although this work may be interpreted as incremental, we highlight

that it introduces a breakthrough in building, modifying, and view-

ing models. The presented results are significantly more generic,

symbolic, and potentiate the reuse of curated code fragments.

2 NESTED TEMPLATES

In this section, we illustrate the concept of OSTRICH’s nested tem-

plates by taking a new turn at modelling the application illustrated

in [20], and extending and modularising it in a new way. We il-

lustrate how nested templates can be reused and shared between

different template definitions and therefore increase the productiv-

ity of software factories. Common templates, such as the ones in

OSTRICH benchmark [20], contain styling options in user interface

components, intricate algorithms, or code patterns that developers

want to get right from start and keep uniform throughout an appli-

cation. This promotes best practices on code reuse other than clone

and own [12] on every single code pattern.

Figure 1 depicts the final stage of the application model in our

example, which is an instance of the metamodel in Figure 2 that

depicts a fragment of the low-code language of the OutSystems

platform. OutSystems models follow a strict hierarchical structure

where, for each object in the model, we identify the set of its children
elements, available as a collection as named in the metamodel.

Objects can also use other objects with no restrictions by using their
names in expressions used to define the values for their attributes.

For the sake of simplicity, in this paper, we support the definition

of applications consisting of entities (database tables), screens and

some selected widgets. We define screens as containing a tree of

user interface widgets that can depend on entities to display data.

Our sample application consists of an entity named Product
and a screen named ProductList. Entity Product has three at-

tributes: Description of type String, IsInStock of type Bool,

and DeliveryDate of type Date. Screen ListProduct contains a

Nested OSTRICH: Hatching Compositions of Low-code Templates MODELS ’22, October 23–28, 2022, Montreal, QC, Canada

Template Application

Template: Abstract Object
Arguments: Template Parameter Template Expression

Abstract Object

Name: ID
IsRoot: Bool
DisplayName: String

parent

Entity

Template Annotation
Property Value

Name: ID
Value: Template Expression

Conditional

Cond: Template Expression

Iteration

Cursor: ID
List: Template Expression

Screen

widgets

{ordered}

annotations

Template Parameter

Name: ID
Type: Template Type

params

Abstract Widget

Column

Title: String

App

entities

Attribute

Type: Type

attrs
{ordered}

Action

Value

Value: Expression

Icon

Visible: Expression
columns

{ordered}Table

Source: Expression

widgets

{ordered}

widget

ToggleVisibility

actions
screens

FormInput

Figure 2: The OSTRICH metamodel.

widget Table with an explicit data dependency to entity Product,
defined by the expression in attribute Source. The table contains
three Column widgets. All columns include a ToggleVisibility
widget that allows the end user to manually control the visibility

of the corresponding column. The value of attributes Description
and DeliveryDate are displayed using a generic Valuewidget. For
the IsInStock attribute, we use a widget Icon whose visibility is

determined by the attribute’s value. The pattern we are capturing

in this example, a screen used for listing the content of a data-

base table, is common enough that we might want to abstract and

isolate it into a reusable template, parameterized by the entity to

be displayed. Such a template may, for instance, include an elab-

orate design that one wants to propagate uniformly throughout

the application. Such a template can be modelled in OSTRICH as

depicted in Figure 3, where annotations nodes are conservatively

added (in yellow) to a regular model. The root node of the template

is identified by property IsRoot set to true. The template nodes

are green-coloured for readability purposes. Notice that we still

need all other nodes in a model to make it a valid OutSystems

application model but they are not part of the template. In the ex-

ample of Figure 3, node s1 is the root of the template; the Template
Parameter annotations (t1 and t2) declare parameters e of type

Entity and attr of type list of attributes; the Property Value
annotations (t3 and t4) define the value of the related properties

upon the instantiation of the enclosing template; an Iteration
annotation (t5), defines that the referred node is replicated in this

point of the model and instantiated for each one of the elements

of the given list; and a Template Application annotation (t6)
defines that said node will be replaced by the instantiated elements

of the referred template. Said template, defining a column, defined

in Figure 4. In that (nested) template, Conditional annotations (t3
and t5) conditionally determine the widget to be used depending

on the type of the attribute.

Notice that types for entities and attributes use a special name (N)
to establish a relationship that needs to be preserved. In this case,

the type system ensures that the list given as an argument includes

only attributes of entity e. Such compile-time names are inferred

from the definition of the templates. Fully integrating and checking

such abstraction and instantiation mechanisms in the OSTRICH
language and prototype is the core contribution of this paper. Note

that template models can only be defined using a prototype of the

OutSystems IDE with support for OSTRICH annotations.

Prior work [20] presents a parameterisable version of the model

that instantiates this application given an entity as an argument to a

declared parameter. We then extended it with the type system [21]

that statically checks the dependencies between parameters re-

ferred to above. In this paper, we further increase the expressive-

ness of OSTRICH by allowing the instantiation of templates inside

the definition of other templates, thus supporting the reuse and

sharing of code between template definitions. One challenge is to

conservatively introduce this extension, which means that OSTRICH
applications, with instantiation nodes, are still compatible with the

existing toolchain in the platform – compiler, editors, application

builders, etc. The metamodel for OSTRICH, depicted in Figure 2, con-

tains white coloured elements that correspond to the metamodel of

OutSystems applications, and yellow coloured elements that cor-

respond to annotations that conservatively extend the metamodel.

We have a uniform approach to defining as a template any element

with property IsRoot set to true, and the instantiation of templates

as the application elements that contain the annotation Template
Application. Importantly, the instantiation node is not required

to be inside a template. Figure 5 illustrates an instantiation in the

context of an application that triggers the instantiation algorithm.

Going back to the description of our running example, node w2
in Figure 3 is repeatedly cloned, and each clone is replaced by the

instantiation of a template p2.w2, with each one of the attributes as

argument (and the entity). Template p2.w2 is defined by the node

w2 in Figure 4 and its children (coloured in green). The depicted

model is still a complete model, which makes it possible to define

and verify the template in a context where some sample elements

are used. Notice also that Figure 3 includes node w3, which is nec-

essary to make the application model valid. This node is discarded

entirely when node w2, a Template Application, is instantiated.
The creation of the main application, in Figure 5, is a regular appli-

cation model with an empty screen annotated with an Template
Application annotation referring to template p1.s1 (Figure 3).

MODELS ’22, October 23–28, 2022, Montreal, QC, Canada João Costa Seco, Hugo Lourenço, Joana Parreira, and Carla Ferreira

t5 : Iteration

Cursor = attr
List = attrs

p1 : App

s1 : Screen

Name = List
IsRoot = true

w1 : Table

Source = Sample.List
Filter = Search.Value

e1 : Entity

Name = Sample

a1 : Attribute

Name = First
DisplayName = "First"
Type = String

w2 : Column

Title = "Sample Column"

t1 : Template Parameter

Type = Entity(N)
Name = e

t3 : Property Value

PropertyName = Name
Value = "List" + {{e.Name}}

t4 : Property Value

PropertyName = Source
value = {{e.Name}}.List

t6 : Template Application

Template = p2.w2
Argument (p2.w2.t1) = e
Argument (p2.w2.t2) = attr

w3 : Icon

Visible = true

t2 : Template Parameter

Type = List(Attribute(N))
Name = attrs

Figure 3: A template for tables using a template for columns.

p2 : App

s1 : Screen

Name = List

w1 : Table

Source = Sample.List

e : Entity

Name = Sample

a : Attribute

Name = First
DisplayName = "First"
Type = String

w2 : Column

Title = "Sample Column"
IsRoot = true

t3 : Conditional

Cond = attr.Type == Bool

t5 : Conditional

Cond = attr.Type != Bool

t6: Property Value

PropertyName = Value
Value = {{e.Name}}.List.Current.{{attr.Name}}

w5 : Icon

Visible = true

t4 : Property Value

PropertyName = Visible
Value = {{e.Name}}.List.Current.{{attr.Name}}

w4 : Value

Value = Sample.List.Current.First

w3 : ToggleVisibility

Widget = w2

t1 : Template Parameter

Type = Entity(N)
Name = e

t2 : Template Parameter

Type = Attribute(N,T)
Name = attr

Figure 4: The column (inner) template.

s : Screen

Name = ProductList

e : Entity

Name = Product

a1 : Attribute

Name = Description
DisplayName = "Description"
Type = String

a2 : Attribute

Name = IsInStock
DisplayName = "Is in Stock"
Type = Bool

t1 : Template Application

Template = p1.s1
Argument (p1.s1.t1) = Product
Argument (p1.s1.t2) = [a1,a2,a3]

a3 : Attribute

Name = DeliveryDate
DisplayName = "Delivery Date"
Type = Date

p : App

Figure 5: The creation of the main application.

The template preprocessor runs an instantiation algorithm and pro-

duces as a result the model in Figure 1. The definition of nested

templates allows for the reuse of the “Column” template in other

scenarios, such as the one in Figure 6 that also includes search

functionality and another template instance of a form (p7.w3) to
introduce new elements (elided from the paper for space reasons).

t5 : Iteration

Cursor = attr
List = attrs

p4 : App

s1 : Screen

Name = List
IsRoot = true

w1 : Table

Source = Sample.List
Filter = Search.Value

e1 : Entity

Name = Sample

a1 : Attribute

Name = First
DisplayName = "First"
Type = String

w2 : Column

Title = "Sample Column"

t1 : Template Parameter

Type = Entity(N)
Name = e

t3 : Property Value

PropertyName = Name
Value = "List" + {{e.Name}}

t4 : Property Value

PropertyName = Source
Value = {{e.Name}}.List

t6 : Template Application

Template = p2.w2
Argument (p2.w2.t1) = e
Argument (p2.w2.t2) = attr

w3 : Icon

Visible = true

t2 : Template Parameter

Type = List(Attribute(N))
Name = attrs

w4 : Input

Name = Search

w5 : Form

Name = AddElement

t7 : Template Application

Template = p7.w3
Argument (p7.t1) = e

Figure 6: Column template being reused in a more sophisti-

cated table template, with more (sub)templates.

t5 : Iteration

Cursor = attr
List = e1.attrs

p5 : App

IsRoot = true

s1 : Screen

Name = List

w1 : Table

Source = Sample.List

e1 : Entity

Name = Sample

a1 : Attribute

Name = SampleAttribute
DisplayName = "Sample Attribute"
Type = String

w2 : Column

Title = "Sample Column"

t3 : Property Value

PropertyName = Name
Value = "List" + {{e1.Name}}

t4 : Property Value

PropertyName = Source
Value = {{e1.Name}}.List

t6 : Template Application

Template = p2.w2
Argument (p2.w2.t1) = e1
Argument (p2.w2.t2) = attr

w3 : Icon

Visible = true

t1 : Template Parameter

Type = Name
Name = entityName

t8 : Iteration

Cursor = attr
List = attrs

t2 : Template Parameter

Type = List(Pair(Name,Type))
Name = attrs

t7 : Property Value

PropertyName = Name
Value = entityName

t9 : Property Value

PropertyName = Name
Value = attr.fst

t10 : Property Value

PropertyName = DisplayName
Value = "" + {{attr.fst}}

t11 : Property Value

PropertyName = Type
Value = attr.snd

Figure 7: A template of a complete application.

The main challenges are related to representing standard mech-

anisms as the definition of abstractions and the instantiation of

abstractions in a meta-model, representing those as sound model

transformations while maintaining backward compatibility of the

model in an industrial-grade tool. The algorithmic challenge lies in

calculating the dependency graph between nodes and evaluating

the transformations using a topological order so that the result of

instantiating some node can be used in another node. This is visible

in Figure 7 where the argument is a list of names that are used to

create attributes and said attributes are later used to create columns.

This means that a two-pass algorithm, one for creating nodes and

another to assign values to properties, is no longer enough. Sec-

tion 5 presents an algorithm that first computes a sound order of

instantiation and then uses it to correctly instantiate all the nodes.

We end our template definition exercise with an example of a

complete application defined by a template. In this case, the tem-

plate (Figure 7) replaces all nodes in a caller application (Figure 8)

with instances of the template nodes.

Nested OSTRICH: Hatching Compositions of Low-code Templates MODELS ’22, October 23–28, 2022, Montreal, QC, Canada

p6 : App t1 : Template Application

Template = p5
Argument (p5.t1) = Product
Argument (p5.t2) = [(Description, String), (IsInStock, Boolean),(DeliveryDate, Date)]

Figure 8: The creation of the main application (New).

3 THE TEMPLATE METAMODEL

We refine and extend the metamodel presented in [20] so that the

application of a template can be uniformly used in the application

models. The metamodel (Figure 2) defines the full language of

annotations that can be added to nodes in a OutSystems model.

Uncoloured elements correspond to (a simplified version of) the

metamodel for OutSystems applications. The coloured elements are

the ones that were introduced specifically by OSTRICH to support
the definition of templates and template components.

Briefly, applications comprise multiple instances of Abstract
Object nodes. These include entities (cf. database tables), entity

attributes, computational actions (cf. function declarations), ap-

plication screens, and user interface widgets. The original model

describes more kinds of nodes which were omitted here for the

sake of simplicity and space. Only the nodes used in the exam-

ple were included in this metamodel. Nodes of kind Abstract
Object may contain other nodes, thus forming a parent-child hier-

archical tree structure like the one between entities and attributes.

Abstract Object nodes can also use other nodes. For instance,

widget ToggleVisibility uses its Widget property to refer to

the widget whose visibility it is controlling. OSTRICH extends the
OutSystems metamodel by adding the following new elements:

• Template Parameter annotation: declares a typed name to

be used in the template’s annotations.

• Template Application annotation: instantiates a template

with given arguments and replaces the annotated node.

• Property Value annotation: dynamically defines at instantia-

tion time the expression that establishes a property value.

• Iteration annotation: replaces an element with a collection

of elements, once for each item in the provided list.

• Conditional annotation: dynamically includes or excludes

an element, depending on the condition compile-time value.

In relation to [20] we specifically added one kind of annotation,

the Template Application annotation, and extended template

expressions to allow references to template elements.

The template-specific metamodel elements are treated as annota-

tions on the base metamodel. This allows us to maintain backward

compatibility with existing tools, which can just ignore the annota-

tions, and at the same time facilitates extending the tools that need

to take advantage of the annotations.

There are well-formedness constraints that are captured in the

metamodel directly and not in the type system that focuses on

constructing well-typed expressions in value properties. Such con-

straints limit the kinds of nodes that can be used as children of a

node. For example, a widget Table contains only widgets Column,
and a widget Column may contain any kind of abstract widget.

Other rules, related to annotations, need to be explicitly checked on

the model. Examples of rules are the absence of template definitions

inside other templates or the use of recursion in templates.

p5c p5p

e1c e1p

a1c a1p

s1c s1p

w1c w1p

w2c w2p

Figure 9: Dependency graph for the template of Figure 7.

4 DEPENDENCY ANALYSIS

During the instantiation process, each node in the template is sub-

jected to two operations: one to create the necessary objects in the

target app, and the other to set the properties of those objects. The

order by which operations are carried out is relevant due to possible

dependencies between template nodes. For instance, in Figure 7

the name of Screen s1 is determined by the template expression

"List"+{{e1.Name}} in Property Annotation t3. This template

expression refers to the name of Entity e1, and thus can only be

evaluated after the properties of e1 have been defined.

To determine a valid creation order, we build a dependency

graph that captures the relationships between the instantiation

operations. For each relevant template node
1
two nodes are cre-

ated in the dependency graph, with subscripts 𝑐 and 𝑝 to denote

the CreateObjects and SetProperties operations, respectively.
Dependencies between nodes are established according to the rules

presented below. Figure 9 depicts the dependency graph for the

template of Figure 7 to help illustrate these rules.

(1) Objects created before initializing properties, e.g. 𝑝5𝑐←𝑝5𝑝 .

(2) Parents created before their children, e.g. 𝑝5𝑐 ← 𝑒1𝑐 .

(3) For child collections where the order is relevant, siblings’

order must be preserved, e.g. 𝑤4𝑐 ← 𝑤5𝑐 for the template

of Figure 6.

(4) Nodes whose template expressions in annotations refer to

other nodes created after the properties for referenced nodes

have been set, e.g. 𝑎1𝑝 ← 𝑤2𝑐 . Due to template expression

e1.attrs, 𝑤2 depends explicitly on 𝑒1 and implicitly, by

transitivity, on its attributes. Note that we want to evaluate

e1.attrs to the list of the attributes of the newly created

entity e1, thus requiring the attributes to have been fully

processed by the time we start processing w2.
(5) Nodes with Property Value annotations whose template

expressions reference other nodes must have their properties

set after the properties of the referenced nodes have been

set, e.g. 𝑒1𝑝 ← 𝑠1𝑝 , with e1 used in "List"+{{e1.Name}}.

The order by which operations are carried out is determined by

a topological order of the dependency graph. If the graph contains

loops and thus no topological order can be established, then the

template is deemed invalid.

The previous version of OSTRICH [20] used a two-pass algorithm
that traversed twice the template node tree – first to create all ob-

jects and then to evaluate their properties. A two-pass approach

only allows for model-level dependencies. An example of such a

1
Child nodes of nodes containing a Template Application are sample models and

are ignored. That is the case of node w3.

MODELS ’22, October 23–28, 2022, Montreal, QC, Canada João Costa Seco, Hugo Lourenço, Joana Parreira, and Carla Ferreira

dependency can be found in Figure 4, where widget w3 references

widget w2 via its Widget property. The dependency analysis intro-

duced here allows for more expressive templates in which depen-

dencies can also occur via template expressions, which may refer

to objects that will be created when the template is instantiated.

That is the case of Property Value annotation t3 in Figure 7.

5 INSTANTIATION ALGORITHM

Every application model, with or without annotated nodes, is pre-

processed when first published2 in the platform. Templates are

expanded in the current model and can be incrementally changed

after their publication. For instance, when pre-processing the model

in Figure 5, the algorithm finds the Template Application anno-

tation t1 associated to screen s. The corresponding table template

(p1.s1 in Figure 3), whose root is a screen element, is instanti-

ated in the target model to replace screen s and using the local

entity declaration Product and its attributes as argument. Since the

model of a template is a valid OutSystems model, pre-processing

a template definition model, with template declaring annotations,

results in the application model using the default values and ig-

noring said annotations. The instantiation algorithm recursively

replaces nodes annotated with top-level Template Application
annotations by cloned and instantiated versions of the template

model referred by said annotations. The instantiated annotation

Template Application is linked to the resulting root node so that
it can be refreshed and reapplied if needed. However, reapplying a

template overwrites any changes performed in the generated code.

We illustrate the instantiation algorithm (Algorithm 1) using a

template (Figure 7) and a target app (Figure 8) and the inputs in the

Template Application annotation t1 in Figure 8:

• template = p5 (template of Figure 7)

• targetParent = null (annotation t1 is applied to an app, which doesn’t have

a parent object)

• args = { entityName ↦→ "Product", attrs ↦→ [("Description", String), ...] }

The algorithm starts by calculating the dependency graph for the

template (Figure 9) and uses a topological order of the graph as the

sequence of operations to carry out (Line 2). The root evaluation en-

vironment, rootEnv, is initialized with the arguments (entityName
and attrs). The map newObjs keeps the objects that are incre-

mentally created by the instantiation algorithm. The map key is a

template node and the value is a map associating an evaluation envi-

ronment with the object created from the template node using that

environment. This representation allows us to get detailed informa-

tion about all the objects that have been created for a given template

node (Lines 7 and 11), and also pinpoint the specific instance cre-

ated for a particular environment (Lines 45 to 48). To bootstrap

the algorithm, we initialize newObjs with a value that maps the

template’s parent node to rootEnv and targetParent (Line 4). In

our example both the template’s parent node and targetParent
are null. Figure 10 depicts the algorithm initial state, and Figure 11

the state after processing operations p5𝑐 , e1𝑐 , a1𝑐 , and a1𝑝 .

The algorithm then proceeds to carry out the operations al-

ready prepared. The CreateObjects operations start by fetching

all the evaluation environments and objects for the template node’s

parent (Line 7). For the first operation, p5𝑐 , this corresponds to

2
In the OutSystems platform publishing an application corresponds to, in a single step,

generating code and deploying the application to a cloud-based infrastructure.

Algorithm 1 Template instantiation algorithm

types

Operation = AbstractObject × { CreateObjects, SetProperties }

Env = (ID→ Object) × Env

⊲ evaluation environment (with reference to parent environment)

NewObjs: AbstractObject→ (Env→ AbstractObject)

⊲ map of new objects indexed by template node and environment

input

template: AbstractObject ⊲ root template object with annotations

targetParent: AbstractObject ⊲ target parent object

args: TemplateParameter→ Object ⊲ template arguments

locals

operations: Sequence of Operation ⊲ instantiation operations

rootEnv: Env ⊲ root evaluation environment

newObjs: NewObjs

1: function instantiate(template, targetParent, args)

2: operations← topologicalOrder(template)

3: rootEnv← newEnv(args)

4: newObjs← { getParent(template) ↦→ { rootEnv ↦→ targetParent } }

5: for all (templNode, op) in operations do

6: if op = CreateObjects then

7: parentsOfNode← get(newObjs, getParent(templNode))

8: for all (env ↦→ parent) in parentsOfNode do

9: CreateObjects(templNode, parent, env, newObjs)

10: else

11: objsInNode← get(newObjs, templNode)

12: for all (env ↦→ newObj) in objsInNode do

13: SetProperties(templNode, newObj, env, newObjs)

input

templNode: AbstractObject ⊲ current template object

targetParent: AbstractObject ⊲ current target parent object

14: function CreateObjects(templNode, targetParent, env, newObjs)

15: if hasConditionalAnnotation(templNode) then

16: if evaluate(getCondExpression(templNode), env) == true then

17: CreateObject(templNode, targetParent, env, newObjs)

18: else if hasIterationAnnotation(templNode) then

19: list← evaluate(getListExpression(templNode), env)

20: cursorName← getCursor(templNode)

21: for all item in list do

22: newEnv← beginScope(env)

23: bind(newEnv, cursorName, item)

24: CreateObject(templNode, targetParent, newEnv, newObjs)

25: else CreateObject(templNode, targetParent, env, newObjs)

26: function createObject(templNode, targetParent, env, newObjs)

27: if hasTemplateApplicationAnnotation(templNode) then

28: template← getTemplate(templNode)

29: args← map(getArguments(templNode),

(param, expr)→ (param, evaluate(expr, env)))

30: Instantiate(template, targetParent, args)

31: else

32: newObj← createChild(targetParent, typeof templNode)

33: bind(env, getHandle(templNode), newObj)

34: objsInNode← get(newObjs, templNode) ∪ { env ↦→ newObj }
35: newObjs← newObjs ∪ { templNode ↦→ objsInNode }

36: function setProperties(templNode, newObj, env, newObjs)

37: for all prop in getProperties(templNode) do

38: value← evaluateProperty(templNode, prop, env, newObjs)

39: setPropertyValue(newObj, prop, value)

input

prop: Property ⊲ property to be evaluated

40: function evaluateProperty(templNode, prop, env, newObjs)

41: if hasPropertyAnnotation(templNode, prop) then

42: return evaluate(getValueExpression(templNode, prop), env)

43: else

44: value← getPropertyValue(templNode, prop)

45: if contains(newObjs, value) then ⊲ value is a template object

46: objsForValue← get(newObjs, value)

47: if contains(objsForValue, env) then

48: value← get(objsForValue, env)

49: return value

the initial and single value in newObjs, which is {rootEnv ↦→ null}.
Conditional annotations (Lines 15 to 17) are processed as expected:

Nested OSTRICH: Hatching Compositions of Low-code Templates MODELS ’22, October 23–28, 2022, Montreal, QC, Canada

null
: Env Obj

rootEnv
newObjs: NewObjs
null

rootEnv: Env
entityName
attrs

"Product"
[("Description", String), ...]

Figure 10: Initial state of the algorithm.

if their condition evaluates to true then the template node is pro-

cessed, otherwise it is ignored. For Iteration annotations (Lines 18
to 24) for each element in the evaluated list we create a new child

evaluation environment. The template node is then processed using

the new environment. If neither Conditional nor Iteration an-
notations are found then the template node is processed normally

(Line 25). Template Application annotations (Lines 27 to 30) are

processed by recursively calling the Instantiate function. The

creation of new objects occurs in Lines 32 to 35. Notice that we

store objects together with the evaluation environment in newObjs.
For SetProperties operation the process is straightforward.We

fetch all the evaluation environments and objects for the template

node (Line 11). For operation a1𝑝 , this corresponds to {env1 ↦→
at1, env2 ↦→ at2, env3 ↦→ at3}. Notice that we have three

environments/objects to process, which are the result of evaluating

Iteration annotation t8 while processing operation a1𝑐 . Function

SetProperties function is called for each element of objsInNode.
Each property of the new objects is set either using a Property

annotation (if found) or by copying the value from the template

node. Consider, as an example, the env1 ↦→ at1 case and property
Name. The template expression attr.fst (Property annotation t9
in Figure 7) evaluates do Description in environment env1, and
thus the Name of at1 is set to Description. A special and important

case is that of properties whose value is a model object, which must

be mapped to the correct object in the target app (Lines 45 to 48).

Newly created objects are stored in the evaluation environments

(Line 33) so that we can properly evaluate template expressions

that refer to template nodes. For instance, the template expression

e1.attrs in Iteration annotation t5 (Figure 7) refers to the (sam-

ple) entity e1. When processing this expression e1 is evaluated, as

desired, to entity e, according to rootEnv.
The algorithm presented here represents a significant evolution

with relation to [20] where template instantiation is external to the

language, like in traditional model transformation processes [11].

6 CHECKING MODEL SOUNDNESS

In addition to the instantiation algorithm embedded in the pre-

processing phase of the publication process in Service Studio, we

define a verification that checks the pre-conditions for the instanti-

ation algorithm to produce well-formed runtime expressions. The

use of a model-driven development environment ensures that all

models are structurally valid by construction concerning the rules

embedded in the metamodel. The introduction of orthogonal model-

defining mechanisms, such as the use of templates, requires new

validation methods. The first validation is that, when accounting

for all dependencies introduced by template annotations, the model

contains a topological order of nodes. The remaining validation is

twofold. On the caller side, one needs to check the compatibility of

the arguments used on each Template Application node against

the corresponding interface. On the callee side, one needs to check

the template definition against the specification of each parameter.

We further explore this topic in Section 6.1.

We introduce the explicit validation of the application models

which are produced by templates in terms of the node nesting rules

that are allowed in the metamodel. The immediately visible rules in

Figure 2 are: an App can only contain nodes of type Screen, Action
or Entity; an Entity can only contain nodes of type Attribute;
nodes of type Screen may contain any kind of widgets (i.e. nodes

of type Abstract Widget); nodes of type Table can only contain

nodes of type Column, which in turn may contain any kind of wid-

get. Similarly, typechecking is performed in all template expressions

defining the value of node properties, using the types of nodes and

their properties. To enforce the discipline defined by the metamodel

its categories are assigned to node types and include the rules in the

type system. Crucially, in the case of conditional nodes and iteration

nodes, multiple node types can be produced by a single annotation.

Consider the model fragment in Figure 12, the node type for the chil-

dren nodes of w2 is NodeType(ToggleVisibility,Value,Icon),
and the set of common properties is the one at Abstract Widget
level. Notice in Figure 2 that ToggleVisibility, Value, Icon do
not have any local properties in common.

We assign types to nodes when defining the semantics of tem-

plate expressions. Namely, when defining model nodes as parame-

ters to templates. Each model node has a type. Entity nodes have

type Entity(N), with N being a compile-time name, or a compile-

time (type) variable. Attribute nodes have type Attribute(N,T)
where N is the name of the entity to which it belongs, and T is

the actual type (or type variable) of the attribute value it repre-

sents. For instance, if one refers to entity Product with an at-

tribute Description in an expression (Figure 7), it is represented by
Entity(Product), and its attribute by type Attribute(Product,
String). When dealing with records of attributes from an entity

named N, we use type RecordAttr(N). The label of an attribute of

such entity is of type LabelAttr(N,T), where N is the name of the

entity, and T the type of the values it represents. We then extend this

language of types with standard types. Records of elements have

type {𝐿𝑖 : 𝑇𝑖 𝑖∈1..𝑛}, where each label 𝐿𝑖 maps to a type 𝑇𝑖 . A label 𝐿

has type Label(𝐿). Note that we omit types when convenient.

Besides defining new nodes of a target application model, tem-

plates also define new runtime expressions that define values of

properties in the newly created nodes. To build well-formed expres-

sions referring to model elements, we require extra information

about the names used, namely parameters.We introduced [21] a lim-

ited form of dependency between parameters through their types.

The particular case that is interesting to capture is the relation

between entities or entities and their attributes via a compile-time

name. We describe this mechanism in Section 6.2. Finally, in this

paper, we separate the runtime part of expressions and the compile-

time parts with a type discipline using the special type Box(T),
inspired by [10]. Although the source of our prototype cannot be

made public for intellectual property reasons, we define and make

public a textual language and reference type checking algorithm

for the model presented here
3
. We present a series of examples as

accessory materials in the repository.

3
Please refer to the link https://github.com/jbp182/OSTRICH-OCaml

https://github.com/jbp182/OSTRICH-OCaml

MODELS ’22, October 23–28, 2022, Montreal, QC, Canada João Costa Seco, Hugo Lourenço, Joana Parreira, and Carla Ferreira

p : App

e : Entity

at1 : Attribute

Name = Description
DisplayName = "Description"
Type = String

at2 : Attribute

Name = IsInStock
DisplayName = "Is In Stock"
Type = Boolean

: Env→Obj
env1 at1
env2
env3

 at2
 at3

newObjs
 null
 p5
 e1
 a1

: Env→Obj
rootEnv e

at3 : Attribute

Name = DeliveryDate
DisplayName = "Delivery Date"
Type = Date

env1: Env
 attr (Description, String)
 a1 at1

env2: Env
 attr (IsInStock, Boolean)
 a1 at2

 (DeliveryDate, Date)
env3: Env

 attr
 a1 at3

rootEnv: Env
 entityName
 attrs

 Product
 [(Description, String), ...]

 p5 p
 e1 e

parent
parent

parent

 null
: Env→Obj

rootEnv

: Env→Obj
rootEnv p

Figure 11: Algorithm state after executing operations p5𝑐 , e1𝑐 , a1𝑐 , and a1𝑝 .

w2 : Column

Title = "Sample Column"
IsRoot = true

t3 : Conditional

Cond = attr.Type == Bool

t5 : Conditional

Cond = attr.Type != Bool

t6: Property Value

PropertyName = Value
Value = {{e.Name}}.List.Current.{{attr.fst}}

w5 : Icon

Visible = true

t4 : Property Value

PropertyName = Visible
Value = {{e.Name}}.List.Current.{{attr.fst}}

w4 : Value

Value = Sample.List.Current.First

w3 : ToggleVisibility

Widget = w2

Figure 12: A node with alternative child node types.

6.1 Typing Template Applications

Since arguments used in Template Application nodes may not be

actual model instances yet, we use symbolic information to check

compatibility between arguments and parameters. Since types of

parameters may have unbound names, we use unification to match

types. Unification solves equations between symbolic expressions,

i.e., finds a substitution for type variables under which two terms

match [22]. Take the example of the template application in Fig-

ure 3 that instantiates the template p2.w2 in Figure 4. The inner

template (Figure 4) is parametrised by the compile-time values with

the entity type Entity(N) and the attribute type Attribute(N,T).
In Figure 3, e and attr are the arguments used to instantiate the

inner template. The type of e, Entity(N’), is defined in the param-

eter annotation p1.s1.t1. Since attr is an element from attrs
(p1.w2.t5), and attrs is a list of attributes of entity e (p1.s1.t2),
then attr has type Attribute(N’,Top). Here, Top represents any
arbitrary attribute type, because attr is not an actual model in-

stance, thus we do not know its values’ actual type yet. Since Top
behaves as a wildcard before instantiation, it was omitted from the

example in Figure 3. This approach is sound due to the immutability

of the attribute lists. Additionally, note that, in Figure 3 and Figure 4,

the compile-time name N appears with the same syntax, despite

being potentially different. Inside the same template definition, a

name N preserves its connotation. However, this is not transversal

between templates, i.e., templates can be instantiated with N refer-

ring to distinct compile-time names. Hence, we use names N’ and N
to distinguish between in different contexts. By unifying argument

and parameter types (N, N’, T, and Top) we obtain the substitution

N ↦→ N’ and T ↦→ Top, which is a valid substitution and ensures

the correctness of the template application in p1.w2.t6 (Figure 3).

In the (formal) functional implementation of the algorithm, we

use universal quantification to declare such names and types rather

than unification. In a low-code setting, we do not expect developers

to explicitly specify type variables. In the syntactically controlled

environment of the IDE prototype, the experience of declaring new

names is yet to be designed. We use the implicit declaration of such

variables and unification to compare them in the case of template

application nodes. In the example above, the name N is used to

denote a dependency between types, which we explore next.

6.2 Type dependencies

Name (N), used in parameters p1.s1.t1 and p1.s1.t2 in Figure 3

is used to define the types of an entity and a list of attributes. Recall

that those names are, implicitly, universally quantified. Quantified

names are unique, opaque, compile-time values that can be used

to compare parameter types, link, or distinguish one from one

another. For instance, we can detect if two parameters of two given

entity types are aliases or if an attribute type parameter is linked to

another attribute of an entity type. This is important when typing

template expressions that build runtime expressions that must be

(type) valid in the supporting model.

Template definitions contain nodes with mixed compile-time and

runtime expressions. We define a staged computation strategy [10]

when verifying and evaluating expressions to produce valid ex-

pressions and avoid harmful dependencies between compile-time

and runtime expressions (phase errors) [4]. The algorithm depicted

in Algorithm 2 detects phase errors using a runtime type envi-

ronment, r-env, and a compile-time type environment, c-env. We

restrict the typing of runtime expressions so that they only enclose

other runtime expressions and variables from r-env.
Consider the example in Figure 4, namely the runtime expression

of the Value property in p2.w5.t4 and p2.w4.t6:

{{e.Name}}.List.Current.{{attr.Name}}

In this case, we use the syntax with double curly braces [20] to

identify compile-time expressions embedded into runtime expres-

sions. Notice that variables e and attr are compile-time variables.

When instantiated in compile-time with entity Product and its

attribute Description this expression evaluates to the runtime ex-

pression Product.List.Current.Description, that may be later

evaluated to an actual string value. Both e.Name and e.Label are
compile-time expressions, that evaluate to compile-time names, that

are runtime expressions, Product and Description, respectively.
In this paper, we delimit compile-time expressions using the

special concrete syntax {{E}}. In the functional implementation

Nested OSTRICH: Hatching Compositions of Low-code Templates MODELS ’22, October 23–28, 2022, Montreal, QC, Canada

Algorithm 2 Typechecking algorithm (partial)

input

expression: Term ⊲ term expression to be typed

c-env: Env ⊲ compile-time environment

r-env: Env ⊲ runtime environment

1: function typeOf(expression, c-env, r-env)

2: match expression with

3: 𝑥 | 𝑥 : 𝑇 ∈ c-env ≜ 𝑇
4: 𝑢 | 𝑢 : 𝑇 ∈ r-env ≜ Box(𝑇)
5: 𝑀 �Name | typeOf(M, c-env, r-env) = Entity(𝑁) ≜
6: Box({List : {Current : RecordAttr(𝑁) } })
7: 𝑀 �Name | typeOf(M, c-env, r-env) = Attribute(𝑁,𝑇) ≜
8: Box(LabelAttr(𝑁,𝑇))
9: 𝑀1 �𝑀2 | typeOf(𝑀1 , c-env, r-env) = {𝐿𝑖 : 𝑇 𝑖∈1..𝑛

𝑖
}

10: and typeOf(𝑀2 , c-env, r-env) = Label(𝐿𝑗
𝑗 ∈1..𝑚

)

11: and 𝐿𝑗
𝑗 ∈1..𝑚 ⊆ 𝐿𝑖

𝑖∈1..𝑛 ≜ 𝑇𝑗

12: 𝑀1 �𝑀2 | typeOf(𝑀1 , c-env, r-env) = RecordAttr(𝑁)
13: and typeOf(𝑀2 , c-env, r-env) = LabelAttr(𝑁 ′,𝑇)
14: and 𝑁 = 𝑁 ′ ≜ 𝑇
15: 𝑀2 [{ {𝑀1 }}] | typeOf(𝑀1 , c-env, r-env) = Box(𝑇1)
16: and typeOf(𝑀2 [𝑢], empty, r-env ∪{𝑢 : 𝑇1 }) =𝑇2 ≜ Box(𝑇2)
17: end

of the algorithm, inspired by [10], we use the box constructor and

the let box destructor. The two representations are isomorphic,

where a runtime expression is enclosed by a box constructor and

the use of the double curly braces corresponds to the use of a let

box destructor for each compile-time subexpression.

Algorithm 2 shows a fragment of the typechecking algorithm

limited to the expressions necessary for this example. We use a

context-based syntax 𝐸 [𝑀] to denote an expression 𝐸 with an

inner compile-time expression 𝑀 . For instance, the expression

above can be expressed using contexts, isolating compile-time sub-

expressions, by (□.𝐿𝑖𝑠𝑡 .𝐶𝑢𝑟𝑟𝑒𝑛𝑡 .{{𝑎𝑡𝑡𝑟 .𝑁𝑎𝑚𝑒}}) [𝑒.𝑁𝑎𝑚𝑒].
Notice the typing of a runtime expression (𝑀2) assembled with an-

other subexpression (𝑀1) in Line 15. The first guard guarantees that

𝑀1 is a runtime expression, i.e.,𝑀1 has type Box(𝑇1). We guarantee

that the remainder of the𝑀2 expression contains only runtime vari-

ables by typing𝑀2 with an empty compile-time type environment

(Line 16). The result is a runtime expression with type Box(𝑇2). By
replacing the compile-time expression𝑀1 with an identifier, and

looking at our example above we can isolate the second compile-

time sub-expression (𝑢.𝐿𝑖𝑠𝑡 .𝐶𝑢𝑟𝑟𝑒𝑛𝑡 .□) [𝑎𝑡𝑡𝑟 .𝑁𝑎𝑚𝑒] and proceed

with the typing algorithm.

Within an entity, only its attributes are accessible, and therefore,

in the aforesaid expression, attr must be an attribute of e for the
expression to be well-typed. We ensure it through: the entity and

attribute types, which contain a common name N; the resulting

types of the expression M.Name (Lines 5 to 8), and the selection

operation type represented as “�” (Lines 9 to 14). Any attempt to

instantiate the model with an entity and an attribute of a differ-

ent entity would not satisfy the guard 𝑁 = 𝑁 ′ (Line 14), and the

typechecking algorithm would reject the model instantiation anno-

tation. These dependencies between types of parameters allow the

definition of more diverse templates, by introducing restrictions to

their applications and guaranteeing their appropriate instantiation

and the production of valid models.

7 EVALUATION

We evaluated the new version of OSTRICH by looking for shared

patterns in existing OutSystems screen templates. We specifically

Nested template Description

Labelled attribute Entity attribute with a text label

Pie chart Aggregate data and display as a pie chart

Listing Database data in a list format

Table Database data in a table format

Attribute Chooses widget for an entity attribute based on its data type

Filter Applies a filter to a data source

Pagination Page-based navigation in a large set of data

Table 1: Nested templates.

Listing

Attribute
Pie chart

Labelled attribute

Filter

Pagination

List with chart

Admin dashboard

Detail

Dashboard

List

List with filters

Bulk actions

Four column gallery

Account dashboard

Master detail

Table

Figure 13: Screen templates using the new nested templates.

looked at the top 10 (out of 70) most used templates [20]. Collec-

tively, this set of templates accounts for more than 50% of all screen

template instantiations after four years of generalized use in the

platform. A total of 7 shared patterns were discovered (Table 1)

and represented as nested OSTRICH templates. The existing screen

templates were successfully modified to take advantage of the new

nested templates (Figure 13; existing screen templates are on the

left, and the new nested templates are on the right and highlighted).

Finding 7 shared patterns in a small sample of 10 screen templates

is quite significant, and demonstrates that reuse occurs in practice.

Notice the case of nested template Attribute, which is either di-

rectly or indirectly used by all (top-level) screen templates. This

template strongly contributes to reducing complexity, since it al-

lows to keep in a single place the knowledge and rules about how

to properly visualize an entity attribute based on its type. This is

best understood by referring back to Figure 4, which is a simplified

variant of the Atttribute template and in which only the boolean

type is handled. In reality, OutSystems has a total of 12 different

basic types with distinct visualization rules. The addition of the 7

shared patterns results in an increase in our library of templates

from 10 to 17 (a 70% increase). We have analyzed a small subset of

screen templates (the top 10 out of 70), but we anticipate that more

shared patterns will be found in the remaining screen templates.

The introduction of nested templates in OSTRICH enabled the

creation of a set of reusable building blocks that the complexity

of existing templates and make it easier and faster to create new

templates. With nested templates, it is feasible to produce templates

that create full-fledged applications, as illustrated by Figure 7.

8 RELATEDWORK

Model driven engineering. As stated in [27], low-code develop-

ment is closely related to model-driven engineering, but low-code

MODELS ’22, October 23–28, 2022, Montreal, QC, Canada João Costa Seco, Hugo Lourenço, Joana Parreira, and Carla Ferreira

principles, practices, and techniques have relevant differences from

the ones of model-driven engineering. There are, however, intersec-

tion points between these two approaches. In particular, templating

as proposed here can be seen as a Model-to-Model transformation

(M2M) [9], since our template annotations describe the transforma-
tions to be applied to an OutSystems model. However, we argue

that there are features in OSTRICH that could not be fully addressed

with M2M. Namely, OSTRICH provides an integrated semantics of

compile and runtime programming constructs, which is possible

because templating is a seamless abstraction mechanism layered on

top of the OutSystems metamodel. In contrast, M2M approaches as

EMF [29] or MPS [17, 26] define transformations as external to the

language itself (cf. ATL [1]). Moreover, the soundness guarantees

provided the typechecking algorithm cannot be matched by M2M

syntactic checks and semantic constraints expressed in OCL.

Multistage programming. In this approach, a program is divided

into different levels of evaluation, available to the programmer

through syntactic operators called staging annotations [30]. To sup-

port the algorithmic construction of programs at compile time, mul-

tistage programming has been for several mainstream functional

programming languages, notably MetaML [30], MetaOCaml [18],

and Template Haskell [28]. Our approach is inspired by richer type-

level computations that reason about the structure of types and

produce custom code constructions [3, 7]. The innovation of our

work is the integration of multistage programming with type-level

computations, in a low-code context. Crucially, we developed a

typing algorithm to analyse nested template code guaranteeing

that a well-typed instantiation produces well-typed code.

MetaDepth [11] is related to our approach to defining a DSL

with a “generic” layer supporting nested templates. This layer al-

lows the instantiation of high-level concepts at a lower level in the

chain of models. OSTRICH constructs show/hide model elements

and iterate over (compile-time) lists of (compile-time) values. These

can also be expressed in MetaDepth through generators between

different level models. The distinguishing feature between OSTRICH
and MetaDepth is the verification of model conformance. In the

latter, and other UML approaches [14, 31], model conformance is

performed on the instances after parameter substitution. OSTRICH
checks conformance statically by verifying the template and its

arguments at compile-time.

General purpose programming languages. Most mainstream pro-

gramming languages have some support for metaprogramming.

From the basic level of lexical macros, like the ones supported by

C, to bounded polymorphism, like Java generics [2]. The latter is

closely related to parametric polymorphism [5] which abstracts

the nature of the processed elements and does not take advantage

of the structure of their arguments. As such, the concrete type

or compile-time values that are used as parameters have minimal

impact on behaviour customisation in the instantiated code.

UML Templates. Templates in UML [24] address model reuse

through the concepts of abstraction and parametrisation [19], with

some variants proposed and instantiated in EMF-based tools [6, 31,

32]. UML templating allows for the substitution of parameters and

cloning model elements to produce other diagrams. In comparison,

OSTRICH includes a full-fledged template language with constructs

for nested templates, iteration, and conditional annotations, sup-

ported by a strongly-typed approach that provides safety properties.

Moreover, we have defined and implemented a prototype for the

formal semantics of the staged template expression language that

represents OSTRICH. Similar verification results can be obtained

using OCL [14], like in [32], or using contracts [8]. However, in

both approaches [8, 32], it is not clear how to verify, at compile-

time, the instantiation of model elements and the expressions being

produced for the model instance. As with UML, OSTRICH supports

the partial instantiation of parameters as it takes a conservative

extension of the template base model where all parameters have

default values. Unlike UML templates, our templates are models

that can be viewed, edited, and compiled by the platform. This also

accounts for a seamless evolution of the existing tool ecosystem.

Template Languages for Web interfaces. Textual template lan-

guages have long enabled the creation of dynamic pages by multi-

disciplinary teams consisting of web designers (focused on design)

and developers (focused on functionality) [25]. They allow inter-

mixing imperative code with template content, while others such as

Handlebars [16] and Mustache [13] take a simpler and cleaner ap-

proach where the templates are purely declarative. OSTRICH draws

inspiration from the latter. In many such languages, it is up to the

template developer to guarantee that the template will produce

well-formed results. This is not a trivial task since the template

itself is usually not well-formed concerning the target language

grammar and thus the target language development tools cannot

be used to edit and validate the template. OSTRICH addresses these

concerns guaranteeing by design that only well-formed models are

produced. The fact that templates are annotated model elements

allows the evolution of existing tools to support defining templates.

9 CONCLUSIONS

We present an abstraction and composition mechanism for the

OSTRICH template language, that targets model-driven and low-

code platforms. By defining a composition mechanism for templates

we allow for modular development of applications that reduces the

effort of producing templates. Our developments are complemen-

tary to prior work [20, 21] in the sense that they improve the quality

of the template library and the job of a template designer.

We provide a uniform composition mechanism for the OSTRICH
template language that is backwards compatible with the OutSys-

tems model and key in the model-driven composition of templates.

Our instantiation algorithm significantly advances the state of the

art. It accounts for a wide variety of situations with cyclic depen-

dencies between model elements in one single pass. The semantics

is based on a topological order established in a dependency graph

of the different parts of model nodes. We also address the typing of

template definition and template composition based on symbolic

information that allows for separate phases (compile and runtime)

and to produce valid runtime expressions. Finally, we evaluate our

language and show that the language allows for a greater modular-

ization of templates in an industry-standard benchmark.

Acknowledgements. Partially supported by grants UIDB/04516/2020,
PTDC/CCI-INF/32081/2017, and Lisboa-01-0247-Feder-045917.

Nested OSTRICH: Hatching Compositions of Low-code Templates MODELS ’22, October 23–28, 2022, Montreal, QC, Canada

REFERENCES

[1] Atlas 2015. Atlas transformation language. https://wiki.eclipse.org/ATL/User_

Guide. Last visited in 2022-05-11.

[2] Gilad Bracha. 2004. Generics in the Java Programming Language. https:

//www.oracle.com/technetwork/java/javase/generics-tutorial-159168.pdf.

[3] Luís Caires and Bernardo Toninho. 2019. Refinement kinds: type-safe program-

ming with practical type-level computation. Proceedings of the ACM on Program-
ming Languages 3, OOPSLA (10 Oct. 2019). https://doi.org/10.1145/3360557

[4] Luca Cardelli. 1988. Phase Distinctions in Type Theory. (January 1988).

https://www.microsoft.com/en-us/research/publication/phase-distinctions-in-

type-theory/

[5] Luca Cardelli and PeterWegner. 1985. On Understanding Types, Data Abstraction,

and Polymorphism. ACM Comput. Surv. 17, 4 (Dec. 1985), 471–523. https:

//doi.org/10.1145/6041.6042

[6] Olivier Caron, Bernard Carré, Alexis Muller, and Gilles Vanwormhoudt. 2004. An

OCL Formulation of UML2 Template Binding. InUML 2004— The UnifiedModeling
Language. Modeling Languages and Applications. Springer Berlin Heidelberg,

Berlin, Heidelberg, 27–40.

[7] James Cheney and Ralf Hinze. 2003. First-class phantom types. Technical Report.
Cornell University.

[8] Arnaud Cuccuru, Ansgar Radermacher, Sébastien Gérard, and François Terrier.

2009. Constraining Type Parameters of UML 2 Templates with Substitutable

Classifiers. In Proceedings of the 12th International Conference on Model Driven
Engineering Languages and Systems (Denver, CO) (MODELS ’09). Springer-Verlag,
Berlin, Heidelberg, 644–649. https://doi.org/10.1007/978-3-642-04425-0_51

[9] Krzysztof Czarnecki and Simon Helsen. 2003. Classification of Model Transfor-

mation Approaches. In Proceedings of the 2nd OOPSLA Workshop on Generative
Techniques in the Context of the Model Driven Architecture, Vol. 45. USA, 1–17.

[10] Rowan Davies and Frank Pfenning. 2001. A Modal Analysis of Staged Computa-

tion. J. ACM 48, 3 (May 2001), 555–604. https://doi.org/10.1145/382780.382785

[11] Juan de Lara and Esther Guerra. 2013. From Types to Type Requirements: Gener-

icity for Model-Driven Engineering. Softw. Syst. Model. 12, 3 (July 2013), 453–474.

https://doi.org/10.1007/s10270-011-0221-0

[12] Eddy Ghabach. 2018. Supporting Clone-and-Own in software product line. Ph. D.
Dissertation. https://tel.archives-ouvertes.fr/tel-01931217

[13] GitHub 2021. Mustache - Logic-less templates. https://mustache.github.io/. Last

visited in 2022-05-11.

[14] Martin Gogolla, Fabian Büttner, and Mark Richters. 2007. USE: A UML-based

specification environment for validating UML and OCL. Science of Computer
Programming 69, 1 (2007), 27–34. https://doi.org/10.1016/j.scico.2007.01.013

[15] GOLEM 2020. Automated Programming to Revolutionize App Develop-

ment. https://www.cmuportugal.org/large-scale-collaborative-research-

projects/golem/. Last visited in 2022-05-11.

[16] Handlebars 2021. Handlebars - Minimal templating on steroids. https://

handlebarsjs.com/. Last visited in 2022-05-11.

[17] JetBrains. 2020. JetBrains Meta Programming System. http://github.com/

JetBrains/MPS. Last visited in 2022-05-11.

[18] Oleg Kiselyov. 2014. The Design and Implementation of BER MetaOCaml -

System Description. In Functional and Logic Programming - 12th International
Symposium, FLOPS 2014, Kanazawa, Japan, June 4-6, 2014. Proceedings (Lecture

Notes in Computer Science, Vol. 8475). Springer, 86–102. https://doi.org/10.1007/

978-3-319-07151-0_6

[19] Barbara Liskov and John Guttag. 1986. Abstraction and Specification in Program
Development. MIT Press, Cambridge, MA, USA.

[20] Hugo Lourenço, Carla Ferreira, and João Costa Seco. 2021. OSTRICH - A Type-

Safe Template Language for Low-Code Development. In 24th International Confer-
ence on Model Driven Engineering Languages and Systems, MODELS 2021, Fukuoka,
Japan, October 10-15, 2021. IEEE, 216–226. https://doi.org/10.1109/MODELS50736.

2021.00030

[21] Hugo Lourenço, João Costa Seco, Joana Parreira, and Carla Ferreira. 2022. OS-

TRICH - A Rich Template Language for Low-code Development (Extended ver-

sion). [under submission].

[22] Robin Milner. 1978. A theory of type polymorphism in programming. J. Comput.
System Sci. 17, 3 (1978), 348–375. https://doi.org/10.1016/0022-0000(78)90014-4

[23] OMG 2016. Meta Object Facility Specification Version 2.5.1. https://www.omg.

org/spec/MOF. Last visited in 2022-05-09.

[24] OMG 2017. Modeling Language Specification Version 2.5.1. https://www.omg.

org/spec/UML. Last visited in 2022-05-09.

[25] Terence John Parr. 2004. Enforcing strict model-view separation in template

engines. In Proceedings of the 13th international conference on World Wide Web,
WWW 2004, New York, NY, USA, May 17-20, 2004. ACM, 224–233. https://doi.

org/10.1145/988672.988703

[26] Vaclav Pech, Alex Shatalin, and Markus Voelter. 2013. JetBrains MPS as a tool for

extending Java. In Proceedings of the 2013 International Conference on Principles
and Practices of Programming on the Java Platform: Virtual Machines, Languages,
and Tools, Stuttgart, Germany, September 11-13, 2013. ACM, 165–168. https:

//doi.org/10.1145/2500828.2500846

[27] Davide Di Ruscio, Dimitrios S. Kolovos, Juan de Lara, Alfonso Pierantonio, Mas-

simo Tisi, and Manuel Wimmer. 2022. Low-code development and model-driven

engineering: Two sides of the same coin? Softw. Syst. Model. 21, 2 (2022), 437–446.
https://doi.org/10.1007/s10270-021-00970-2

[28] Tim Sheard and Simon Peyton Jones. 2002. Template meta-programming for

Haskell. In Proceedings of the 2002 Haskell Workshop, Pittsburgh (proceedings of

the 2002 haskell workshop, pittsburgh ed.). 1–16.

[29] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. 2009.

EMF: Eclipse Modeling Framework (2 ed.). Addison-Wesley, Upper Saddle River,

NJ. https://www.safaribooksonline.com/library/view/emf-eclipse-modeling/

9780321331885/

[30] Walid Taha and Tim Sheard. 1997. Multi-Stage Programming with Explicit

Annotations. In Proceedings of the 1997 ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-Based Program Manipulation (Amsterdam, The Nether-

lands) (PEPM ’97). Association for Computing Machinery, New York, NY, USA,

203–217. https://doi.org/10.1145/258993.259019

[31] Gilles Vanwormhoudt, Matthieu Allon, Olivier Caron, and Bernard Carré. 2020.

Template based model engineering in UML. In MODELS ’20: ACM/IEEE 23rd
International Conference on Model Driven Engineering Languages and Systems,
Virtual Event, Canada, 18-23 October, 2020. ACM, 47–56. https://doi.org/10.1145/

3365438.3410988

[32] Gilles Vanwormhoudt, Olivier Caron, and Bernard Carré. 2017. Aspectual tem-

plates in UML - Enhancing the semantics of UML templates in OCL. Softw. Syst.
Model. 16, 2 (2017), 469–497. https://doi.org/10.1007/s10270-015-0463-3

https://wiki.eclipse.org/ATL/User_Guide
https://wiki.eclipse.org/ATL/User_Guide
https://www.oracle.com/technetwork/java/javase/generics-tutorial-159168.pdf
https://www.oracle.com/technetwork/java/javase/generics-tutorial-159168.pdf
https://doi.org/10.1145/3360557
https://www.microsoft.com/en-us/research/publication/phase-distinctions-in-type-theory/
https://www.microsoft.com/en-us/research/publication/phase-distinctions-in-type-theory/
https://doi.org/10.1145/6041.6042
https://doi.org/10.1145/6041.6042
https://doi.org/10.1007/978-3-642-04425-0_51
https://doi.org/10.1145/382780.382785
https://doi.org/10.1007/s10270-011-0221-0
https://tel.archives-ouvertes.fr/tel-01931217
https://mustache.github.io/
https://doi.org/10.1016/j.scico.2007.01.013
https://www.cmuportugal.org/large-scale-collaborative-research-projects/golem/
https://www.cmuportugal.org/large-scale-collaborative-research-projects/golem/
https://handlebarsjs.com/
https://handlebarsjs.com/
http://github.com/JetBrains/MPS
http://github.com/JetBrains/MPS
https://doi.org/10.1007/978-3-319-07151-0_6
https://doi.org/10.1007/978-3-319-07151-0_6
https://doi.org/10.1109/MODELS50736.2021.00030
https://doi.org/10.1109/MODELS50736.2021.00030
https://doi.org/10.1016/0022-0000(78)90014-4
https://www.omg.org/spec/MOF
https://www.omg.org/spec/MOF
https://www.omg.org/spec/UML
https://www.omg.org/spec/UML
https://doi.org/10.1145/988672.988703
https://doi.org/10.1145/988672.988703
https://doi.org/10.1145/2500828.2500846
https://doi.org/10.1145/2500828.2500846
https://doi.org/10.1007/s10270-021-00970-2
https://www.safaribooksonline.com/library/view/emf-eclipse-modeling/9780321331885/
https://www.safaribooksonline.com/library/view/emf-eclipse-modeling/9780321331885/
https://doi.org/10.1145/258993.259019
https://doi.org/10.1145/3365438.3410988
https://doi.org/10.1145/3365438.3410988
https://doi.org/10.1007/s10270-015-0463-3

	Abstract
	1 Introduction
	2 Nested Templates
	3 The template metamodel
	4 Dependency analysis
	5 Instantiation algorithm
	6 Checking model soundness
	6.1 Typing Template Applications
	6.2 Type dependencies

	7 Evaluation
	8 Related Work
	9 Conclusions
	References

